Computer Science Department Technical Report
University of California
Los Angeles, CA 90024-1596

ARCHITECTURAL SUPPORT FOR CONCURRENT
LOGIC PROGRAMMING LANGUAGES

Leon Alkalaj August 1989
CSD-890047

UNIVERSITY OF CALIFORNIA
Los Angeles

Architectural Support for Concurrent Logic Programming Languages

A dissertation submitted in partial satisfaction of the
requirements for the degree Doctor of Philosophy

in Computer Science

by

Leon Alkalaj

1989

© Copyright by
Leon Alkalaj
1989

The dissertation of Leon Alkalaj is approved.

Bruce Rothschild

W, o Bbn

Kirby Baker

D. Stott Parker

A Ee

Gerald Estrin

Vilis D Gree g

Milos Ercegovac, Committee Co-Chair

&

~C ']]
Tomas Lang, Committee Co>CHair

University of California, Los Angeles

1989

To my wife Lea.

To my late aunt, Rene-Lela Kohn.

1 Introduction

TABLE OF CONTENTS

...............................

1.1 Motivation
1.2 Research Objective
1.3 Contributions

1.4 Qutline of Dissertation v v i

Concurrent Logic Programming Languages
2.1 Logic Programming
2.2 Parallel AND-OR Execution Models
2.3 Sequential AND-OR Execution Model
2.4 Parallel Prolog Execution Model
2.5 Concurrent Logic Programming

2.5.1 Committed-Choice Process Model
2.6 Flat Concurrent Logic Programming Languages

2.7 An Execution Model of Flat Concurrent Prolog

271 FCP Clause-Try

2.7.2 Goal Suspension and Activation

273 GoalReduction

2.8 FCP Programming Examples
2.9 Chapter Summary0

3 Related Work.

v

16
18
20
21
25
26

28

3.1 Special-Purpose Single-Processor Architectures 38
3.2 Parallel Inference Machines 41
3.3 Shared Memory Inference Machines. 50
3.4 Chapter Summary 54
Implementations of FCP 57
4.1 FCP Sequential Interpreter Implementation 57
4,1.1 FCP Interpreter Characteristics 61
4.2 FCP Sequential Abstract Machine Implementation 61
4.2.1 Abstract Machine Instructions 64
4.2.2 FCP Abstract Machine and WAM 66
4.2.3 Program Representation 67
4.2.4 Performance of Abstract Machine Implementation 70
4.2.5 Compiler Optimizations 71
4.3 A Distributed Implementationof FCP 73
4.3.1 FCP Distributed Interpreter. 75
4.3.2 FCP Distributed Abstract Machine 76
4.4 Summary e e e e e e 78
Special-Purpose Architectural Support: Design Approach and
Results of Analysis 81
5.1 Architectural Support Lo 81
5.2 FCP Processor Design Approach 83
5.2.1 From Operational Semantics to Machine 83
5.3 FCP Implementation Analysis Tradeoffs 84
5.3.1 Proposed Implementation Level Analysis 86
5.4 Empirical Analysis of a Specific System Workload 90

5.4.1 Selected FCP Benchmarks 91

9.4.2 A Workload Session L. 94
5.4.3 Previously Used Benchmarks, . 95
3.5 Analytic Performance Evaluation of Hypothesized Bottlenecks . . 96
5.5.1 Analytic Performance Models 96
5.5.2 Redundant Clause Selection 98
5.5.3 Goal Suspension, Activation and Management 102
554 Dereferencing L. 115
5.5.5 Clause-Try Trailing 118
3.6 A General Goal Reduction Performance Model 124
3.7 Summary e e 128
FCP Processor Architectural Model 129
6.1 FCP Processor Top-Level Organization 130
6.2 FCP Processor Instruction Set 132
6.3 FCP Processor Interpretive Mechanism 133
6.4 Reduction Umit L. 136
6.4.1 RU Register Storage, 136
6.4.2 RUInstructionSet 139
6.5 Tag Umit.ot e 141
6.6 Goal Management Uit 143
6.7 Instruction Unit 146
6.8 GoalCache 147
6.9 DataCache 149
6.10 Memory Modules 153
6.10.1 Goal Memory o 153

6.11 Chapter Summary 154
Overlapped Goal Reduction and Goal Management 155
7.1 Overlapped GMU Execution 155
72 RU-GMUlInterface 159
721 ZeroCycleDelay 160
7.2.2 Goal Suspension and Activation: A Global View 162
7.3 GMU Instruction Execution Using the Goal Cache 164
7.3.1 Goal Termination. 165
7.3.2 GoalSpawning 167
7.3.3 Gc‘>a1 Suspension 168
7.3.4 Goal Activation 170
7.4 Examples of GMU Execution using the Goal Cache 171
7.5 Properties of GMU Execution using GC 174
Analytic Performance Evaluation of RU-GMU Execution. . . 177
8.1 RU-GMU Performance Measures _ . 177
8.2 System Organization and Parameters. 178
8.3 Performance Parameter Measurement 181
8.4 PerformanceModel, 183
8.4.1 Average Instruction Execution Time 183
8.4.2 Average RU-GMU Wait Time, W 184
8.4.3 Relative Effective GMU Execution Time, R, 186
8.4.4 GMU and RU Utilizations, Ugnyy Upey 187
8.5 Performance Model Parameter Values 189
8.6 Performance Model Analysis. 191

8.6.1 Average RU-GMU Wait Time, W 193

8.6.2 Relative Effective Execution Time, R, 198

8.6.3 RU and GMU Utilization, Ury, Ugrnee - -+ - - - . - 199

86.4 Chapter Summary 200

9 FCP Processor Performance Evaluation 203
9.1 Implementation Dependent Parameters 203
9.2 Performance Improvements due to Functional Units 205
9.2.1 Support for Goal Management 207

9.2.2 Support for Data Trailing 207

9.3 Performance versus Goal Management Complexity and Goal Re-
duction Granularity, 209

3.4 Overlapped Goal Management versus Granularity and Complexity 214

9.4.1 Increasing RU Speed of Execution 217

9.4.2 Scaling Granpularity 220

9.4.3 Modeling Communication Protocols 223

10 Thesis Summary, Conclusions and Future Work 225
10.1 Future Work: Shared Memory Multiprocessor 227
References 233

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13

3.1
3.2
3.3
3.4
3.5
3.6
3.7

4.1

LIST OF FIGURES

AND/OR Computation Tree of a Logic Program
AND-OR Process Model
Prolog Computation Tree: Sequential Search
Prolog Clause-Try
Guarded Horn Clause Computation Tree
Committed-Choice Process Model
Flat Guarded Horn Clause Computation Tree
Program Resolvent: Non-Deterministic Goal Reduction
FCP Clause-Try
FCP Goal Suspension
FCP Goal Reduction

The PIM-D Machine
The PIM-R Machine
The Parallel Inference Machine for Kabu-Wake Execution .

PSI-II Machine Organization
Multi-PSI Organization
The Parallel Inference Engine for FLENG

The Aquarius Multiprocessor Machine

FCP Program Interpretation

ix

4.2 FCP Interpreter Run-Time Environment 39

4.3 Goal Record Selection 60
4.4 Clause-Tries in Textual Order 61
4.5 Interpreter and Compiler Oriented Machine Implementation . . . 62
4.6 FCP Abstract Machine Run-Time Environment 63
4.7 Goal Suspension Mechanism 67
4.8 FCP Abstract Machine Compiler: Evaluate Interpreter. 68
4.9 FCP ProcedureEncoding 69
4.10 FCP Clause Types 0 i i i i ittt it 69
4.11 Compiling FCP Clause Types 71
4.12 Decision Tree Compilation 72
4.13 Remote References in a Distributed Execution Environment . . . 74
5.1 FCP Implementation via Abstract Machine Emulation 85
5.2 FCP Program Analysis Approach 88
5.3 System’s Development Workload Session 94
5.4 Analytic PerformanceModels 97
5.5 Redundant Clause-Try Relative Execution Time 101
5.6 Distribution of the Number of Goal Arguments 107
5.7 Distribution of the Number of Suspension Variables 108
5.8 Distribution of Goals Activated at Clause-Commit 110
5.9 Relative Execution Time Oy, N, =58 112
5.10 Relative Execution Time Oy, N, =1 113
5.11 Distribution of Dereference Length 116
5.12 Relative Execution Time of Argument Dereferencing 117
5.13 Distribution of Trail Size at Clause-Commit 121

5.14
5.15
5.16

5.17

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11

6.12

7.1
7.2
7.3
7.4
7.5
7.6
7.7

7.8

Distribution of Trail Size at Clause-Suspend
Trailing at Clause-Failure
Relative Execution Time of Clause Trailing, @,

Goal Reduction Model

Considerations for the FCP Processor Architectural Model
FCP Processor Multi-Functional Unit Organization
Instruction Execution for Multiple Functional Units
State Diagram of RU-GMU Execution Model
RU,TU and GMU Instruction Execution
RU Addréssable Registers During Goal Reduction
TU Tag Setting and Loading
GMU Ozganization
IU Instruction Prefetching
Goal Cache Organization
Data-Trail Cache Policy: Delayed Binding
Data Trail Policy

Overlapped: a) get/halt; b) put/spawn
Enabling the Overlapped Execution of Suspend
Enabling the Overlapped Execution of Commit
Overlapped Goal Management and Goal Reduction
RU-GMU Interface via Goal Window Pointers.
RU Interpretation of GMU Instructions
FCP Processor Execution of Overlapped Goal Suspension

FCP Processor Execution of Overlapped Goal Activation

130
131
133
135
135
138
143
145
146
147
151

152

156
157
158
159
161
161
162

163

7.9

7.10
7.11
7.12
7.13
7.14
7.15
7.16
7.17

7.18

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8

9.1
9.2
9.3
9.4
9.5

9.6

Goal Termination Algorithm,
Goal Termination that Results in GC Underflow
Goal Spawning Algorithm
Goal Spawning that Results in GC Overflow
Goal Suspension Algorithm
Goal Suspension Algorithm,
Goal Activation Algorithm
Goal Activation Algorithm, ..
Quicksort Program 0oL

Executing the Quicksort Program in the Goal Cache

RU-GMU Performance Model System Orgamization
Performance Parameter Measurement Approach.
RU-GMU Iunstruction Wait Time w;
GMU Instruction Distance Distribution
Average Wait Time, W
Relative Effective GMU Execution Time, R,
RU Utilization, U, e
GMU Utilization, Ugmy - - - - - o v o o v o oo i o

Relative Execution Times of Goal Reduction Functions.
Relative Execution Times with Support for Goal Management . .
Relative Execution Times with GMU and Data Trail Support .

Performance of Different Application Domains
Maximum Speedup for Different Application Domains

The Effect of a Scaled RU on Program Execution Time

9.7 Scaled RU Execution Vs. Overlapped GMU 218

9.8 Speedup Versus Increased RU Speed of Execution 219
9.9 Speedup Versus Scaled Goal Management Complexity 222
9.10 Program: Lord of the Rings 223
10.1 Distribution of the Active Goal Queue Size 228
10.2 A Shared Memory FCP Processor Architecture 230
10.3 Load Balancingof Goals 231

ACKNOWLEDGEMENTS

There are many people that I would like to thank for contributing to my
Doctoral thesis. It seems only appropriate that I should start, from the beginning.

I would first like to thank my parents: mother, Vera (“ljubt ga magka ...”)
and father, Jozef. Without them, none of this would have been possible. I would
like to thank my big-brother, Peter, for being an inspiration and a role-model,
and my aunt Beba-Klara Alkalaj for her support.

There are many people that I would like to thank at UCLA. Most of all, my
advisors: Prof. Milo§ Ercegovac and Tomas Lang. Their wisdom, dedication to
work, and honesty will continue to inspire me, for years to come. They have set
a standard of advising that I will try to maintain, and to teach others.

The years of work on my PhD would have been more difficult, had it not
been for all my friends. I would particularly like to thank Jaime Moreno, Miquel
Huguet, T. M. Ravi, Marc Tremblay, Paul Tu, Art Goldberg, Frank Shaffa, Milan
Kovagevié and Jeong-A Lee, for all the fruitful (and not so fruitful) discussions.
A special thank you to Verra Morgan, Dorris Sublette and Saba Hunt.

I would like to thank Prof. Gerald Estrin for taking a special interest in my
work and for finding time for long meetings. I thank both Prof. Gerald Estrin
and Prof. Eli Gafni for advising me to visit the Weizmann Institute of Science,

and work with Dr. Ehud Shapiro.

The visit to the Weizmann Institute and working with Dr. Ehud Shapiro
resulted in my dissertation topic. I am immensely grateful to him for being a
great outside-advisor, a dear friend, and for generously sponsoring my two visits
to Israel.

At the Weizmann Institute, I had the pleasure of working with Shimuel Kliger,
Avshalom Houri and Bill Silverman. They have significantly contributed to my
work with many useful discussions. In particular I thank Avshalom for his pa-
tience during the development of the Statistics Logiz system. Also thanks to
Michael Hirsch, Jaakov Levy, Muli Safra, Steve Taylor, Eyal Yardeni, David
Weinbaum and John Gallagher. In addition, I would like to thank Lesley, Sara
and Dina for their friendship and hospitality.

Finally, this thesis is dedicated to two people. First, to my wife Lea. It is not
easy to support a husband-student, and to do it with love and affection. Thank
you for your patience, understanding and love. Second, my late aunt, Rene-Lela
Kohn. Unfortunately Lela did not live to see her nephew become a Doctor. This
was her dream and ambition. Her generosity, love and devotion were unique.
Thank you.

xiv

VITA

December 25, 1958. Born, Belgrade, Yugoslavia

1977 - 1982 Diploma of Electrical Engineering
Faculty of Electrical Engineering
University of Belgrade
Belgrade, Yugoslavia

1983 - 1986 M.S. Computer Science
University of California at Los Angeles
Los Angeles, California

1984 - 1987 Student Supplement
IBM Scientific Center
Los Angeles, CA. 90024

1983 - 1987 Teaching Associate
UCLA Computer Science Department
Los Angeles, CA. 90024

1986 - 1989 PhD. Computer Science
University of California at Los Angeles
Los Angeles, California

Summer 1987 and 1988 Visiting Scientist
Weizmann Institute of Science
Applied Mathematics Dept.
Rehovot, Israel

PUBLICATIONS and PRESENTATIONS

1. L. Alkalaj, “Flat Concurrent Prolog Abstract Machine Characteristics,”
UCLA Technical Report, CSD-890019.

2. L. Alkalaj, E. Shapiro, “An Architectural Model for A Flat Concurrent
Prolog Processor,” 5th Logic Programming Conference/Symposium, Seattle
1989.

[2+]

L. Alkalaj, A. Bond, “Parallel Logic Programming in CAD/CAM Appli-
cations,” Manufacturing Engineering Program, Technical Report, October
1988.

L. Alkalaj, “A Review of Proposed Architectures for the Execution of Con-
current Logic Programming Languages: An Extended Abstract,” Proceed-
ings of the WesCon/88 Conference, Anaheim, CA, 1988.

L. Alkalaj et. al., “Action Management for a LAN Resource-Sharing Sys-
tem,” 6th International Phoeniz Conference on Comp. and Comm., pp.
469-475.

L. Alkalaj et. al., “Action Management for the RM Resource-Sharing Sys-
tem: Providing User’s Interface to Services,” IBM LA Scientific Center,
TR G320-2801, 1986.

L. Alkalaj et. al. “A Dynamic Memory Management Policy for FP,” 20th
Hawaii International Conference on System Sciences, Vol.1., pp. 350-361.

L. Alkalaj, “A Uniprocessor Implementation of FP Functional Language,”
Master’s Thesis, UCLA TR CSD-860064, April 1986.

L. Alkalaj, “An Analysis Of A Microprocessor Controlled PABX,” Diploma
Thesis, University of Belgrade, Yugoslavia, 1982.

xvi

ABSTRACT OF THE DISSERTATION

Architectural Support for Concurrent Logic Programming Languages

by

Leon Alkalaj
Doctor of Philosophy in Computer Science
University of California, Los Angeles, 1989
Professor Milo§ Ercegovac, Co-Chair

Professor Tomads Lang, Co-Chair

We propose a special-purpose processor and shared-memory multiprocessor
architecture for the efficient execution of Flat Concurrent Prolog (FCP). Our
design method is based on the analysis of the following suspected implementation
bottlenecks: the overhead of redundant clause-tries, goal suspension, activation,
argument dereferencing, and clause-trailing. The analysis consists of a set of

performance models that are part of a general goal reduction model.

We evaluate the models using program parameters obtained empirically by
executing the System’s Development Workload, which includes programs like the
Logix Operating System, FCP Compiler, FCP Processor Simulator, Program
Analyzer and Debugger. Measurements are obtained using the Statistics Logiz

(Slogiz) emulator.

xvii

The most significant implementation bottleneck is the overhead of goal man-
agement. This includes goal creation, termination, suspension and activation.
We characterize the workload as a collection of tightly-coupled fine-grain com-

putations for the cooperative execution of a task.

Based on the analysis, we propose a special-purpose processor and multi-
processor architecture for FCP. The processor consists of multiple concurrent
functional units. The main feature is the overlapped execution of goal reduction,
in the Reduction Unit, and goal management, in the Goal Management Unit.
Goal management operations execute efficiently using a Goal Cache. The over-
head of data trailing is reduced using a Data Cache with the Delayed Binding
policy. The Instruction Unit prefetches instructions for goals stored in the Goal
Cache. This enables the execution of goal management operations without losing

processor cycles.

In a multiprocessor configuration, Goal Management Unit enables overlapped
load balancing and goal sharing. Two simulators of FCP execution (written in
FCP) were developed. The first simulates the multi-functional unit architecture,

and the second the shared-memory multi-processor architecture.

We evaluate the proposed architecture using analytic performance models.
The Goal Management Unit reduces the overhead of goal management from
50% to less than 4% of program execution time, compared to a system that

does not have support for goal management. Using the models, we evaluate the

xviii

relative execution time of functions, which enables the analysis of implementation

bottlenecks.

In the analysis, we also consider other workloads. Overlapped execution of
goal management results in higher speedups if the granularity of goal reduction
is finer compared to the granularity of goal management. Distributed algorithms
and communication protocols exhibit this property. Overlapped execution of
goal management, and other features of the FCP processor, are also applicable

to Flat Concurrent Logic Programming languages like Flat Parlog or FGHC.

xix

CHAPTER 1

Introduction

1.1 Motivation

A number of high-level programming languages have been proposed with the
objective to model the cooperative execution of communicating units of work
called processes [Hoar85), actors [Agha86)], objects [Gold86] or threads [Birr87).
Recently, in the field of logic programming, a group of Concurrent Logic Pro-
gramming languages have been defined that model the concurrent computation
of units of work called goals. In particular, we consider the programming lan-
guage called Flat Concurrent Prolog or FCP {Shap83]. Whereas the different
languages represent a variety of programming paradigms, they can be character-
ized as a collection of tightly-coupled, fine-grain concurrent computations that
cooperatively perform a task.

Due to the mismaich between the abstract computation models of the pre-
viously mentioned programming paradigms, and the execution mechanism of
general-purpose machines, their combination results in poor performance. As a
consequence, the full power of the programming languages is seldomly achieved.
To enable a more efficient execution mechanism, the design of special-purpose
environments have been proposed. For example, the Transputer processor is
designed for the efficient execution of Occam [Whit85], the J-Machine for CST
[Dall88], the Firefly workstation for the Topaz system [Thac88], and so on.

1.2 Research Objective

One way to 1mprove the performance of FCP relative to the sequential imple-
mentation on a single general-purpose processor is to define a parallel execution
mechanism and then execute FCP on a system of parallel, general-purpose pro-
cessors. This approach was described in [Tayl89], where FCP is implemented
on the Hypercube machine. However, the tradeoff is that the parallel execution
model incurs an overhead compared to the sequential execution model running on

a single processor, and second, the complexity of the parallel control mechanism
can result in a large overhead of inter-process communication and synchroniza-
tion. Preliminary performance analysis of some FCP programming stereotypes
result in performance degradation rather than speedup, when executed on a 7 5-
node Hypercube compared to the sequential execution [Tayl88]. These res:ts
motivate research in the following two directions: A more efficient parallel «xe-
cution mechanism that takes into account the tradeoffs between the complexity
of the execution model and the overhead of concurrent execution, and seccnd, a
more efficient, special-purpose, sequential execution environment as a node in a
parallel environment.

The objective of this research is the design and performance evaluation of
a special-purpose architecture for the efficient execution of FCP. Qur primary
research goal is to investigate a special-purpose single processor architecture as
a step towards a parallel multiprocessor architecture. The objective is to show
ways of enhancing system performance compared to previously proposed proces-
sor architectures for the execution of FCP. We are particularly concerned with
the design approach used to propose the architecture and the methodology for
performance evaluation.

An important part in the design stage is the analysis of previously reported
and suggested implementation bottlenecks. The most significant of these bottle-
necks is the overhead of goal suspension and activation, together with other goal
management operations, such as goal creation and termination. The analysis
should provide insight into the design of the special-purpose architecture.

The field of performance evaluation of computer systems is a well established
and documented area of research [Ferr78], [Svob76], {Lave83]. However, this field
is very poorly represented in the evaluation of logic programming systems. Our
objective is to contribute with a more systematic and meaningful approach to
performance analysis and evaluation of the proposed special-purpose processor
architecture for FCP.

1.3 Contributions

We partition the contributions of this thesis into the following three areas:

1. Performance analysis of existing FCP implementations and design approach.

2. Special-purpose FCP processor architecture.

3. Performance evaluation of the proposed FCP processor architecture.

Performance Analysis

Since the motivation for the analysis of existing general-purpose implemen-
tations of FCP is to propose a special-purpose architecture, we claim that the
analysis results must provide information that is independent of the existing
implementation. We propose high-level analysis that captures the algorithmic
behavior of FCP program execution.

To obtain the high-level analysis results, an instrumented version of the ex-
isting Logix emulator for FCP was written called Statistics Logix or Slogiz. Mea-
surements are obtained using existing applications written in FCP.

During the process of performance analysis, we use a real workload that is
representative of the existing development environment. The workload consists
of large FCP applications such as simulators, compilers, the Logix Operating
System etc. We refer to this workload as the System's Development Workload.

The performance analysis is based on a set of analytic performance models.
They are used to describe the relative execution time of previously suggested
implementation bottlenecks. The performance models distinguish high-level pro-
gram parameters from low-level implementation dependent parameters. The
high-level algorithmic parameters are derived empirically by characterizing the
System's Development Workload. The analysis is then performed for a range of
implementation dependent parameter values. The individual performance mod-
els are then combined into one general model for the average execution time of
a goal reduction.

From the performed analysis, we conclude that the overhead of goal manage-
ment as well as the overhead due to redundant clause selection are the two main
implementation bottlenecks. In addition we model the relative execution time of
argument dereferencing and data trailing. The overhead of clause selection can
be improved with better compilation techniques. This feature is also considered
in the analytic models. However, reducing the overhead of clause selection using
for example, clause indexing techniques results in the increased relative execution
time of goal management operations. These results strongly motivate the need
for architectural support for goal management. A more detailed collection of the

high-level analysis results is described in [Alka89)].

FCP Special-Purpose Processor Architecture

We propose a special-purpose processor architecture for the efficient execution
of FCP [Alka88]. The processor consists of multiple functional units that operate
concurrently. The Reduction Unit executes a RISC instruction set with special-
ized instructions to support FCP execution. Other functional units include the
Goal Management Unit, Tag Unit and the Instruction Unit. In addition, spe-
cialized cache units are defined for data, goals and instructions.

The main feature of the processor control mechanism is the overlapped ex-
ecution of goal management, performed by the Goal Management Unit, and
goal reduction performed by the Reduction Unit. By defining data structures to
support the execution model, the two operations are completely decoupled thus
enabling the overlapped mode of operation.

The efficient execution of goal management operations is performed using a
special-purpose Goal Cache. It acts as a buffer of recently spawned goals. Goals
are always scheduled for execution from the Goal Cache. We define the Goal
Cache policy which consists of algorithms to perform goal creation, termination,
suspension and activation. Switching between goals in the Goal Cache is per-
formed without delaying goal reduction by having the Instruction Unit prefetch
the first instruction from the next scheduled goal in the Goal Cache.

The processor architecture defines support for data trailing as part of the
special-purpose Data Cache. The Data Cache policy called Delayed Binding,
marks all assignments during a clause-try as temporary until the outcome of the
clause-try is known. If the clause-try commits, the bindings become permanent.
Otherwise, they are cleared.

FCP Processor Evaluation

To evaluate the main feature of the FCP processor architecture, namely the
overlapped execution of goal reduction and goal management, we define a set
of performance measures and analytic performance models. We conclude that,
for the System’s Development Workload, the overhead of goal management is
reduced from approximately 50% of the program execution time when there is

no architectural support for goal management, to less than 3% of the program
execution time when the overlapped Goal Management Unit is used.

We compare the proposed FCP processor architecture to the performance
of other existing special-purpose processor architectures for FCP, For the same
workload, we conclude that a speedup of at least 2.5 can be achieved by combining
the speedup due to the Goal Management Unit and the Data Cache, with respect
to the previously proposed processor, [Hars88].

We analyze the performance of the special-purpose FCP processor for a differ-
ent set of workloads. The System’s Development Workload that we use, exhibits
both a higher complexity of goal management and a higher granularity of goal
reduction compared to previously reported benchmark applications. Other appli-
catton areas such as modeling communication protocols or distributed algorithms
exhibit a similar complexity of goal management but a lower granularity of goal
reduction. For these type of workloads, the attainable speedup due to overlapped
execution of goal management with goal reduction is proportional to the ratio of
their relative execution times.

Finally, we contribute by showing how the FCP processor architecture is
used in a shared-memory multiprocessor environment. The use of the private
Goal Management Units and the corresponding Goal Caches act as local pools
of tasks or goals. Each Goal Management Unit first executes goals efficiently
in the local Goal Cache. If the Goal Cache overflows, goals are shared in the
common goal pool stored in the Goal Memory. Load balancing of goals is thus
implicitly defined and also performed in an overlapped mode of operation, while
the Reduction Units are busy.

1.4 Outline of Dissertation

This dissertation is organized as follows. In Chapter 2 we define the execution
model of FCP. We do so by first discussing the main features of logic programming
languages in general. The focus is on the various computation models. We
specifically emphasize the transformations of the AND/OR computation tree,
starting from Horn Clause logic programming languages and then describing the
class of committed-choice, Guarded Horn Clause languages, such as FCP.

In Chapter 3, we outline the related work. The closest research to our own
1s the design of the RISC processor for FCP [Hars88]. We compare our work to

special-purpose Prolog processors, parallel inference machines from the Institute
for Fifth Generation Computer Technology, ICOT, and parallel shared-memory
implementations of logic programming languages.

In Chapter 4, we describe the previous implementations of FCP on general-
purpose machines. This is important since many of the implementation features
also apply to the FCP processor implementation. Particularly, the sequential
abstract machine for FCP is modified to derive the special-purpose processor
execution model,

In Chapter 5, we define the method for the analysis of existing implementa-
tions, and the design approach. This chapter consists of two main sections. First,
we describe the tradeoffs of the analysis and we define the System’s Development
Workload used for empirical performance analysis. In the second part, we present
the analytic models and the results of analysis. We also describe a general model
of FCP goal reduction, that combines all the individual models together.

In Chapter 6, we define the architecture of the special-purpose processor. It is
proposed based on the results of analysis described in Chapter 5. We describe the
processor organization and execution model. The processor consists of multiple
functional units that execute concurrently on a single processor. The processor is
hierarchically structured with execution units accessing separate memory sections
using specialized cache units. The two main execution units are the Reduction
Unit and the Goal Management Unit, and the specialized caches are the Data
Cache and the Goal Cache.

In Chapter 7, we describe the partitioning of the sequential abstract machine
for FCP into two decoupled and concurrent abstract machines. We describe the
main algorithms for overlapped goal management and goal reduction. Moreover,
we define the Goal Cache policy and how it is used to perform goal management
operations efficiently.

In Chapter 8, we evaluate the overlapped execution of goal management op-
erations. We propose a set of analytic models and we perform the analysis using
the specific implementation parameters according to the processor organization
specified in Chapter 6, and the program parameters obtained in Chapter 5.

In Chapter 9, we evaluate the overall performance of the FCP processor. We
also compare its execution to other existing processor architectures and we eval-
uate the contribution of the overlapped goal management strategy when applied
to different system workloads.

Finally, in Chapter 10, we conclude our thesis and discuss extensions of the
processor architecture to a multiprocessor environment. We also show how the
load balancing of goals is performed using the overlapped goal management units.

CHAPTER 2

Concurrent Logic Programming Languages

In this chapter we focus on the description of the execution model of con-
current logic programming languages. However, this description is incomplete
without a historic perspective and comparison to some of the language predeces-
sors such as Prolog proposed by Colmerauer or Parlog [Clar86}. This section is
organized as follows. First we describe the main features of logic programming in
general followed by a description of the first practical logic programming language
called Prolog. Various parallel models for the execution of logic programming
languages are reviewed. This then introduces the concept of concurrent logic
programming, which is distinguished from the term parallel logic programming.
The differences between the two concepts is established and finally a simple ab-

stract execution model for FCP, a concurrent logic programming language, is
described.

2.1 Logic Programming

Using first order predicate calculus as the basis for programming languages
has been the theme of a number of recently published books [Lloy84], [KowaT9],
[Brat86], [Ster86|. In the following, we briefly present an outline of the main
features that are important for the reading of this thesis. For more detailed
information, the reader should consult the referenced books.

Horn Clause Syntax

A logic program P can be represented as a set of sentences or clauses of the
form:

P = {S | S = V,(X,)(H — Bl,Bz, ...,B".),(n 2 0)}

where X; denote universally quantified variables whose scope is the clause mn
which they are defined. In other words, in each clause, a distinct set of variables
i1s assumed. Declaratively, the clause is read as an implication of conjunctive

goals, that is, “H if B, and B; and ... and B,.” H is called the clause-head
and the B;s are called body-goals. A clause that does not contain body goals
(n = 0) is called an assertion or a fact. A clause may also consist of only body
goals and an empty clause-head. That is, the clause:

— Bl, Bg, ey Bn.

is called a goal statement. A clause with a non-empty body is also referred to as
an inference rule.

The symbols H and B; belong to a set of literals that denote predicate re-
lations over objects called terms. For example, the father relation over terms ¢,
and t; is denoted as father(t,t;) and can be interpreted as “t; is the father of
t2”. A term is recursively defined to be either an atom, a variable or a complez
term, which consists of a functor symbol and a finite number of arguments that
are terms. The number of arguments is called the arity of the functor. For ex-
ample, f(x,b) denotes a complex term with the functor name f, arguments x and
b, and arity equal to 2. By convention, atoms and functors are represented using
names that start with lower case symbols (for example a and father are atoms),
as opposed to names of variables that start with upper case symbols (for example
X, Var are examples of variable names).

Let us consider the following example of a logic program that consists of 3
clauses describing the father and mother predicate relation:

P = {
clausel : Y(X,Y)(father(X,Y) « child(Y, X), male(Y)).
clause2 : Y(X,Y)(mother(X,Y) + child(Y, X), female(Y)).
claused : V(X,Y, Z)(mother(X,Y) — mother(X, Z), sister(Z,Y)).

}

The first two clauses are interpreted as the following rules: “for all X and Y,
X is the father of Y if Y is the child of X and Y is a male”, and “for all X and
Y, X is the mother of Y if Y is the child of X and Y is a female”. Note that the
(X,Y) pairs in the two clauses are completely independent. In fact, for clarity,
the variables in each clause should be renamed using a distinct set of variable
names.

In the same program P, clauses 2 and 3 denote the same predicate relation,
that is, they have the same predicate name and arity. Such group of clauses are
jointly referred to as a procedure. Alternative clauses in a procedure are read as

10

a disjunction of implications. In other words, either the first clause rule for the
mother relation is true (clause 2) or the second (clause 3). For simplicity, the
universal quantifier in the clauses is commonly ommitted and is implicit for all
the variables in the clause.

Let us now consider the clauses of program P and the following goal state-
ment « mother(Judy, X), that is, the set {P, «— mother(Judy,X) }. The goal
statement is interpreted as the following query: “Given the program P, does
there exist an assignment to X such that mother(Judy,X) is true in P ?” Or
simply, “Who are the children of Judy ?”

The literal mother in the goal statement or in the clause-body is referred to as
- a procedure call. Therefore, the second clause in the procedure for mother defines
a recursive procedure.

Resolution and Unification

The procedure call execution consists of applying the rules of inference defined
in the program to the arguments of the procedure call. The method of apply-
ing the inference rule is called the resolution principle [Robi65). Given a goal
statement or resolvent R: «— A,,..., A;,..., A,, a single resolution step consists of
selecting a goal A; from the resolvent, finding a matching clause 4; + By, ..., B,.,
and forming a new goal statement «— (A,,..., By, ..., Bn, ..., An)8 where 6 denotes
the variable substitution set derived from matching arguments in the procedure
call A; with arguments in the clause-head A). The variable substitution set, 8 is
a set of pairs (V — T') where V denotes variables and T terms such that all the
variables are distinct and Vs do not occur in T. Applying the substitution set ¢
to the resolvent R means replacing every occurrence of V in R with T for every
pair (V — T) € 6. For example, applying the substitution set § = {X/2,Y/f(a)}
to the term g(X,p(Y'),Y) results in the term:

89(X,p(Y),Y) = 9(2,p(f(a)), f(a))

In general, applying the substitution § to term T results in 7° = T8 where T" is
called an instance of T.

The algorithm to find the set of variable substitutions that results in the most
general common instance of two terms is called unification. The unification of
terms Ty and T; denoted unify(Ty,T;) results in the substitution & such that
118 = T,0 if unification succeeds. Alternatively, the “not unifiable message” is

11

calling goai

«<- g(A1,A2, ... ,An) 7 variable
P . substitutions

{ A1/B1, ... }

N] —
¢(B1,B2,Bn) «- ...

selected program clause-head

Figure 2.1: Goal-Head Unification

returned if unification fa:is. Unification of two atoms succeeds if they are both
the same. Variable X unifies with a term T that does not contain the variable X
and is denoted {X/T}. The unification of two complex terms is recursive. They
unify if they denote the same functor {they have the same functor name and
arity) and if all of their arguments unify.

In Figure 2.1 we show the general case where a goal g{A,,..., A,) is being
unified with the clause-head ¢(B,..., B,) producing a substitution set #, where
each element of 6 is of the type {4,;/B;}.

An Abstract Interpreter

The following is the algorithm of an informal abstract interpreter of a logic
program P and an initial goal resolvent G.

While the Resolvent is non-empty:
Select a goal A from the Resolvent
Select a clause A" — By, ..., B, from P
IF Unify(4,4") = ¢
Replace A with By, ..., B, in Resolvent
Apply @ to Resolvent

Successful program termination is interpreted as a proof procedure of the
goal G in the program P. However, the useful information is contained in the
substitution set & such that the instance of the original goal statement G, G 8

12

Don’'t Carse Non-Determinism

< p(X,Y), g(X,Y).

Don't Know
Non-Determinism

——> pGY) <- .. .98} =(X/a,¥/b} |xfb,vm=e;<_ gixY) «- "I_
e p(X,Y) <= .. ——pq; ={X/b,Y/a} Ix:’a,YI::}:f%‘_' g(Xx,¥) <- .
B AN R R LU

Figure 2.2: Don’t Care and Don’t Know Non-Determinism

is derived by the abstract interpreter. Therefore, € is the composition of all the
6; derived during the inference steps of the abstract interpreter that ended in an
empty resolvent.

Goal Selection

The selection of the goal from the current goal resolvent is non-deterministic.
In other words, one ‘does not care’ which goal selection approach is used. This
type of non-determinism is referred to as don’t care non-determinism. Moreover,

since the goal statement is interpreted as a conjunction of goals, it is also referred
to as AND-Parallelism.

Clause Selection

Each clause in a procedure represents an independent procedure call entry-
point corresponding to separate inference rules. At procedure-call time, it is ‘not
known’ which entry-points will lead to a successful solution and which entry-
points will lead to failure. Moreover, more than one entry point may succeed, thus
producing multiple solutions. The non-deterministic selection of inference rules
used to resolve the procedure call is referred to as don’t know non-determinism.
Since the declarative reading of clauses in a procedure corresponds to disjunction,
the non-deterministic selection of inference rules is also called OR-Parallelism.

In Figure 2.2 we show a goal statement that consists of two goals p(X,Y)

i3

and g(XY). If we assume that there are 3 clauses that denote the predicate
relation p and 2 clauses that denote the g relation, then procedure p has 3 entry
points and procedure g has 2 entry points. Attempting program execution at
each entry point may result in the assignment of terms to variables using the
previously described unification algorithm. In Figure 2.2 we show the case where
the 3 inference rules corresponding to goal p produce 3 different sets of values for
variables X and Y. The sets are labeled 65, 93, and 9_3. In a similar way, the two
inference rules corresponding to goal g result in variable bindings sets 6, and 62.

Since the goal statement denotes the conjunction of goals, only those substi-
tution sets that form a consistent set of bindings, when combined together, are
considered as valid solutions. That is, conflicting sets of bindings are interpreted
as failure. For example, if X/a € 6; and X/b € 8; then the attempted solution
path that produces the bindings (8; ;) that is, their conjunction results in fail-
ure. In other words, successful program execution of a goal statement results in
a multiset of consistent variable substitutions, with each set being the result of
applying one inference rule.

Therefore, alternative inference rules in the same procedure result in binding
sets that correspond to multiple solutions whereas the conjunctive set of goals
correspond to a set of constraints on the variable bindings belonging to only one
solution. Only those substitution sets that satisfy all of the conjunctive con-
straints defined in the goal statement are considered as valid program solutions.

Logical Variables

The special treatment of the variable in logic programming deserves further
attention, since it enables the use of many programming techniques that are
unique to the logic programming model. In contrast to imperative languages
where a variable represents a location in the program’s run-time environment,
the logical variable is used to denote objects in the logic program execution
environment. Therefore, assigning the complex structure f(a,b,c) to the logical
variable X is interpreted as: “X denotes f(a,b,c)”. Moreover, variable X can be
assigned to another variable Y meaning that X and Y denote the same object.

The other feature that distinguishes the logical variable from variables in other
programming languages, is the meaning of assigning a value to a variable. Given
the set of variables in the logic program, successful program termination can be
described as a multi-assignment of values to variables such that the assigned set

14

< p(X,Y), q(X,Y).] Goal Statement

] OR Layer

Figure 2.3: AND/OR Computation Tree of a Logic Program

can be derived by applying inference rules defined in the program. Therefore,
during a single proof procedure, variables are defined as strictly single-assignment
variables. Once a value is assigned to a variable, all further references to the
variable denote the value. An alternative value can be assigned to the same
variable only if another proof procedure is considered, in which case the previous
value is revoked.

AND/OR Computation Tree

The computation of a logic program can be described using an AND/OR
tree. In Figure 2.3 we show the tree structure for the following goal statement
— p(X,Y),q(X,Y) and a simple program. The tree contains two sets of nodes:
AND nodes and OR nodes which are interleaved, forming layers. The conjunctive
relation between goals is denoted using a horizontal arc that interconnects the
vertical arcs between two OR nodes. There is one OR node for each AND literal
in the goal statement and one AND node connected to the OR node for each
corresponding clause that matches the goal literal.

Program execution consists of traversing the AND/OR tree according to a
predefined strategy. We now describe several AND-OR execution models that
have been proposed.

15

2.2 Parallel AND-OR Execution Models

Several models for the parallel execution of the AND/OR computation tree
have been proposed. They can be distinguished according to how they address
the following two issues:

¢ The type of parallelism supported by the execution model.

e The way substitution sets that correspond to multiple solution paths are
managed.

We briefly review several models. A more detailed description of the various
parallel execution models is presented in {Cone87), [Wise86), [Ciep83], [Fagi8Th).

A pure or full parallel execution model explores all solutions to a goal state-
ment in parallel (OR-parallelism}, and applies all conjunctive constraints in par-
allel (AND-parallelism). This may result in a combinatorial explosion of paral-
lelism that is impossible to handle. This is particularly true for programs like
chess or other games where for every conjunctive goal there are many disjunctive
alternatives. Therefore, some mechanism for controlling the amount of paral-
lelism in an AND/OR system is essential.

AND-OR Process Models

In common for all of the described AND-OR process models is the fact that
they consider the complete AND/OR computation tree, computing more than
a single solution, if available. We refer to these models as Parallel Logic Pro-
gramming Models and we distinguish them from Concurrent Logic Programming
Models that consider only parts of the AND/OR computation tree and find only
single solution. We describe the Concurrent Logic Programming models later
in this chapter. A review of the various implementations of different AND-OR
models of computation is described in Chapter 3.

In the AND-OR process model proposed by Conery [Cone87], AND and OR
processes are spawned corresponding to the nodes in the AND/OR tree. The
process model pursues multiple paths in parallel, but computes only one solution
at a time. The OR process is spawned for each literal in the goal statement.
It, in turn, spawns AND processes for each clause that can potentially match

16

1o parent
CR process

L a,b,c,d.

OR
Processes

gather gather
solutions solulions

Figure 2.4: AND-OR Process Model

the selected literal. In Figure 2.4 we show an example where the AND process
that consists of four goals spawns OR processes for each goal literal. Each OR
process distinguishes the first successful variable substitution set from its child
AND node, and reports the bindings to its parent node using the success message.
All subsequent bindings sets from the child OR process are delayed until the
parent demands them by sending the redo message. Meanwhile, the OR process
runs in the gathering mode of operation. In this mode, all additional solutions
that it may compute are stored in a list of solutions. They are given to the
parent process only on request. Therefore, the OR parallelism is controlled by
implementing a demand driven approach to finding multiple solutions.

The AND parallelism is controlled by executing in parallel only those goals
that have no unbound variables, and thus cannot result in conflicting bindings.
This approach is called Restricted AND-parallelism [DeGr84].

A more general approach for exploiting AND-parallelism in logic programs is
described in [Lin88]. In this execution model, the conjunctive goals in a clause
are ordered according to a gencrator and consumer relation using shared logical
variables. The leftmost goal (including the clause head) that shares variable X
is selected as the generator, and the remaining goals in the clause that share the
variable, are marked as consumers. When a goal executes and produces bindings,
it sends tokens to the consumer goals. When a goal becomes the generator of all
the variables in its local environment, only then is it scheduled for execution.

Besides maintaining a list of tokens that indicate the order in which the goal

17

processes should execute, called forward execution, each process stores in a list,
the names of processes that generate the bindings. In case of failure, a backward
execution algorithm is used to request from the producer of the binding, an
alternative solution.

Allowing the user to specify primitives that control the amount of parallelism
and direct execution, is another approach. In the execution model described in
[Chan85], the programmer declares the activation modes for each user predicate
using three types of variable bindings: non-ground and dependent, non-ground
"and independent and ground. Using the activation modes, a static dependency-
graph is generated at compile time. This graph is then used to schedule goals
during forward execution.

In the AND-OR process model defined in Epilog [Wise86], sequential and
and or primitives called CAND and COR respectively are defined, as well as
input/output modes and threshold primitives to implement data-flow synchro-

nization of conjunctive goals. The sequential operators are used to prevent the
default creation of parailel AND and OR processes.

In the PEPSys [Baro88a] execution model, the degree of OR-parallelism and
Restricted AND-parallelism is specified by the user using procedure declarations.

The main problem in exploiting OR-parallelism is how to maintain the multi-
ple bindings of the same set of variables resulting from different solutions. Several
approaches have been proposed. In the SRI model {Warr87], binding arrays are
associated with each shared variable and in the PEPSys model hash windows are
used. A good analysis of the different approaches and the tradeoffs involved is
described in [Warr87).

The tradeoff between the different AND-OR execution models that consider
the complete AND/OR computation tree, is the degree of parallelism versus the
complexity of the model.

2.3 Sequential AND-OR Execution Model

One way of controlling the amount of parallelism in the AND/OR computa-
tion tree is to execute it sequentially. This actually resulted in the first efficient
implementation of the logic programming model of computation and in the first
logic programming language, called Prolog. We now discuss the Prolog execution

18

Goal Selection L->» R

OR Layer

. / AND Layer
A £ Y 35 |

NI AN

Clause Selection,
Textual

Figure 2.5: Prolog Computation Tree: Sequential Search

model in more detail, since it also lead to the development of the Parallel Prolog
execution model subsequently discussed.

Prolog

Prolog is the first widely used logic programming language that executes the
AND/OR computation tree in a sequential manner. In Prolog, goals in the goal
statement are selected from left to right and the corresponding inference rules
are applied in textual order. This corresponds to a depth-first search strategy, as
highlighted in Figure 2.5.

If an inconsistent binding set is made during the application of an inference
rule, the search path fails and the last alternative search path is followed. This
process of rescinding an inference rule that was previously applied and applying
a new rule is referred to as backtracking. If all search paths fail and there is no
alternative path to search, the program fails.

The sequential, depth-first execution strategy of Prolog has the following
very important property which enabled its wider use: an efficient stack-based
abstract machine implementation was defined by Warren [Warr83]. Given the
tree structure of computation, Prolog execution using the sequential abstract
machine resembles the way procedure records are pushed onto a stack in imper-
ative languages. Upon failure, Prolog efficiently pops the records on top of the
stack until an alternative path (called a choice-point) is found.

19

variable
Control Stack substitutions

8 { A1/B1, ...}

<= g{A1,A2, ... ,An) 7 calling goal Eavirooment
P | — Stack
~N ! — T \I Al, Bi

g(B1,B2,Bn) «- ...

Trail Stack

selecied program clause-head
TE——

Figure 2.6: Prolog Clause-Try

Similarly, the binding sets produced during forward execution are stored us-
ing a stack of environments. Upon failure, backtracking through environments
follows the backtracking of control. Moreover, all of the bindings created during
the failed forward execution must have been trailed using a trail stack. Upon
backtracking through control and environments, all of the bindings are undone.

In Figure 2.6 we show the unification of a left most goal from the current goal
statement stored in the control stack, with a matching clause-head defined in the
program. Besides the variable substitution set 8 which is recorded in the current
environment allocated for the goal, the set of addresses 7 of variables that have
received values are stored in the trail stack.

Therefore, it is the multiple stack architecture of the Warren Abstract Ma-
chine (WAM) that resulted in an efficient implementation on general-purpose
ProCessors.

2.4 Parallel Prolog Execution Model

Because of the fine granularity of processes as well as the complexity of the
inter-process communication protocols, the AND-OR process models that ea-
gerly exploit concurrency are outperformed by the sequential execution of the
AND/OR tree using the WAM. This fact resulted in the following approach we

refer to as the Parallel Prolog execution model. Program execution consists of

20

parallel sessions of sequential Prolog execution. Given the AND/OR tree, a single
Prolog session starts from the root of the tree. Given the availability of parallel
processing elements, an OR branch in the AND/OR tree is partitioned and sent
to the idle processor. All busy processing elements continue to execute sequential
Prolog.

An example of a Parallel Prolog system is the Kabu-Wake method [Sohm85],
that partitions the tree in half at a point closest to the root, in order to increase
the granularity of the spawned Prolog sessions. The main overhead is introduced
when the tree is being partitioned, since it requires the management of shared
variables that are sent together with the partitioned AND/OR tree.

Another approach is defined in the Aurora system [Lusk88], which subsumes
the approach of Kabu-Wake. In Aurora, parallel execution depends on the avail-
ability of parallel workers (processors or parallel processes). Available workers
search for work by walking up and down the computation tree. In Chapter 3,
we discuss in more detail both the Kabu-Wake and the Aurora Parallel Prolog
implementations.

2.5 Concurrent Logic Programming

Concurrent logic programming languages are parallel programming languages
that have evolved from the abstract logic programming model. Syntactically, the
main difference compared to Horn Clause logic programs is the addition of the
commat control operator |, which partitions the clause into the guard part and
the clause-body. A guarded horn clause is represented as follows:

P={S|S=ViXi{(H — Gi,...,Gm | By, B3, ..., Bn.),(n,m > 0)}

where the G;s represent guard goals. The clause is read as an implication of
conjunctive guard goals and body goals. Semantically, the main departure from
the non-guarded horn clause reading is that the application of an inference step
commits to the body of at most one clause. Given a literal in the goal statement
and several matching guarded clauses, the body of only one clause is used for
continued program execution. Program execution commits to the body of the
clause whose goal-head unifies with the selected goal and whose guard goals
evaluate successfully. If the clauses are evaluated in parallel, after commitment
to one clause, all alternative clauses are disregarded.

The use of the commit operator resembles the use of the cut control mecha-

21

Goal Selectlon : Non-Deterministic

Clause Selection:
Non-Deterministic

Commit-Choice HNon-Determinism

Figure 2.7: Guarded Horn Clause Computation Tree

nism used in Prolog to prune the control stack when it is clear that a deterministic
path is being explored. Using the commit operator, program execution does not
backtrack across committed boundaries.

Therefore, concurrent logic programming languages do not implicitly search
for multiple solutions of a goal statement. If this is required, it must be explicitly
programmed by the user. This is a significant departure from the AND/OR
semantics of logic programs and defines a different application domain compared
to programs that consider the search for multiple solutions an essential part of
the abstract computational model.

In Figure 2.7 we show the computation tree of a guarded horn clause logic
program. Since the goals in the guard may themselves spawn additional guarded
goals, a nesting of alternative paths may be created in the same way as it was
done in the non-guarded clauses. However, at each level, a commit operation
results in the elimination of part of the computation tree thus resulting in a
deterministic path to the solution. This class of languages are also referred to as
commatied-choice languages. The bounded OR parallelism is achieved by having
goals in the guard.

22

Committed-Choice AND Parallelism

The main type of parallelism used in concurrent logic programming languages
is AND parallelism rather than OR. Using AND parallelism in non-guarded horn
clause programs created the problem of synchronizing access of conjunctive goals
to shared variables. Using guarded clauses, program execution commits to a
single binding set that belongs to only one solution. Since committed-choice
AND parallelism is the main form of concurrency in this model, the question
remains which conjunctive goal will produce the bindings of a shared logical
variable if two goals execute concurrently. The issue of accessing shared logical
variables is addressed by defining rules of suspension. We now discuss approaches
that distinguish three programming languages.

Rules of Suspension

Rules of suspension in concurrent logic programming languages define the
mechanism used to synchronize access to logical variables shared amongst con-
junctive goals. Without rules of suspension, the behavior of two goals that share
a logical variable depends on which goal commits first, setting the binding to the
variable. To avoid this erratic behavior, the language Concurrent Prolog {Shap83]
supports user annotations of shared logical variables. The user may annotate a
shared variable X as read-only, using the read-only annotation ?, that is, X?.
A goal that attempts to assign a value to the read-only version of the variable
will suspend waiting for variable X to receive a value. Presumably, another goal

contains the writable occurrence of the same variable and will eventually assign
the value.

In the following example, two goal predicates p and q share the same logical
variable X. Goal p has read access while goal q write access. The program clauses
for the two predicates both assign the value a to X as follows:

goal statement : «— p(X?), ¢(X).
clause for p: (Y)Y =a]..
clause for q: gdZy—Z=al..

The same semantics of program execution should be maintained regardless of the
order in which the two goals p and q execute. If goal p is scheduled first, it will
attempt to assign the value a to the variable Y where the substitution {X?/Y}
results from goal-head unification. Since the goal suspension rule does not allow

23

a value to be assigned to a read-only variable, the combined substitution set {
X?/Y, Y/a} resuits in the suspension of goal p waiting for X to receive a value.
When goal q gets scheduled, the goal-head unification and guard evaluation re-
sults in the substitution set 8 = {X/Y,Y/a} which does not suspend. After
this, the goal p can be scheduled for execution. Therefore, using the reed-only
annotations of variables, one can model the direction of unification imposing an
ordering of goal reduction.

In the programming language Parlog [Clar86] the user uses procedure in-
put/output modes to indicate the directionality of arguments defined in the
clause-heads. At compile time, it is determined whether the argument should
have a value or not. Using the same example as above, if the variable argument
X is declared as input using the | input mode declaration, then, if the argument
is an unbound variable at run-time, the goal will suspend until the value for the
variable becomes available. In other words, the two predicates are declared as

follows:
goal statement : — p(X), ¢(X).

declaration for p: p(X |).
declaration for q: ¢(X 1).
clause for p: Y)Y =a]..
clause for g : W{Z)—Z=a]..

The programming language called Guarded Horn Clause or simply GHC
[Ueda86] defines implicit goal synchronization that does not require any user
annotations of variables or input/output declarations. The following two sus-
pension rules are defined in GHC. First, a goal suspends if an attempt i1s made
to bind a variable in the clause-head or guard. Assigning values to variables can
only be performed in the clause-body. The second rule is that the body goals
cannot assign a value to a variable before program execution commits to the
body of the clause. This allows for a less restrictive semantics enabling body
goals to execute before guard goals, as long as they do not modify the common
environment. Using the same program, in GHC the consumer goal will check in
the clause-head or guard whether the variable has a value. If not it will suspend.
The producer of the value assigns the value in the body of the clause rather than

in the guard.
goal statement : — p(X),q(X).

clause for p: pY)—Y =al..
clause for q: @ Z) « true | Z = aq,...

A fourth goal suspension mechanism is proposed by Saraswat in [Sara89) and

24

Program

<-a, b, c

a«gl,gl|da.

a«g3,04] ...

a < 5. g6 |

d e) a (b '(c 'I
-- \—
L : ~
K TI K11
- -~ Pl = ~ r-- - -~ . = Pl - ~
lc\lgusa_a_ ’ \cla:se 3, cliuu -1‘| gk use‘z_ . \glaijse 3,
A R K .
r ’
\xuu 17?' \ m;," \Ndkin
.- PR T T
\-'. R N Cp ,513.\- 9t

[}])
Figure 2.8: Committed-Choice Process Model

used in the programming language FCP(|,;,?) [Klig88b]. Here, the clause-guard
is divided into the ask and tell part delimited by the : operator. In the ask part,
implicit goal suspension is used if an assignment is attempted. This is like the
mechanism used in GHC. Assignments are allowed in the tell part of the guard
and in the body of the clause. In addition, read-only variables can be used.

2.5.1 Committed-Choice Process Model

A process model for the execution of committed-choice languages is defined
by Crammond in [Cram86]. In this model, two types of processes are created:
goal processes (corresponding to OR processes in the AND/OR tree) and clause
processes (corresponding to AND processes). The processes communicate using
three types of messages: done, quit, and kill. The model is best explained using
a simple example shown in Figure 2.8.

Three goal processes are created for each literal in the goal statement. Let
us consider the execution of the goal literal a that has three matching clauses
in the user program. The goal process for a thus creates three clause processes.
Intuitively, due to the committed-choice execution model, only one clause process

25

should be allowed to succeed, whereas all the other clause processes should be
aborted (if they do not fail).

The clause processes attempt to unify the goal head with the corresponding
clause head. Let us assume that the first two clauses succeed in doing so, and
continue execution by spawning each two new goal processes corresponding to
the clause guards. The third clause process, however does not succeed to unify
the calling goal with the clause-head. This clause process sends a done message
to the parent goal process, whereas the others continue with execution.

In Figure 2.8(a} we show the case where both guard goals g, and g, belonging
to the first clause process succeed. When a goal process succeeds, it notifies the
parent clause process by sending a done message. Alternatively, the two guard
goals g3 and g4 belonging to the second clause process result in one success and
one failure of execution. The failed goal process sends a quit message to the parent
process whereas the successful goal sends the done message. Therefore, the first
clause process receives two done messages denoting successful termination of its
two guard goals, and the second clause receives one message denoting that one
guard failed. As a result, the first clause process reports success to its parent by
sending a quit message, and the second clause reports failure by sending a done
message.

In response, the first clause process attempts to commit to the parent goal
process by checking to see if there was any other clause that previously com-
mitted. Since there was not, the parent goal process is reduced to the body
of the committed clause, and the parent process sends to all the other children
clause processes kill messages to terminate their execution. The kill messages are
propagated to all the child processes. This situation is shown in Figure 2.8(b).

Note, that the result of the committed-choice execution, besides terminating
parts of the alternative branches in the goal/clause tree, the committed path is
reduced to the body of the selected clause. This is shown in Figure 2.8(c).

2.6 Flat Concurrent Logic Programming Languages

Flat concurrent logic programming languages are a subset of concurrent logic
programming languages that allow only simple predefined language primitives in
the clause-guard. Examples of flat concurrent logic programming languages are
Flat Concurrent Prolog (FCP) [Mier85|, Flat Parlog and Flat GHC (FGHC).

26

Goal Selection : Non-Deterministic

Clause Selection:
Nen-Detarministic

11

muocmﬁ
2002000006 - - 0. - 000

Commit-Choice Non-Determinism
@ active

@ suspendad

Figure 2.9: Flat Guarded Horn Clause Computation Tree

By restricting the guard goals to only simple primitive operations, a gunard goal
cannot spawn additional goals and therefore cannot result in the nesting of en-
vironments that need to be managed prior to commit. Some of the problems
regarding the management of the non-flat environments in the guards of Con-
current Prolog are reported in [Sara87]. These problems are avoided by keep-
ing the goal execution environment flat. The allowed OR parallelism is thus
further constrained in flat CLP languages to only one level. We refer to this
parallelism as shallow OR parallelism as opposed to bounded OR parallelism in
non-flat committed-choice languages, and full OR parallelism in parallel logic
programming languages. Within this single level of alternative clauses, a choice
must be made, which clause to commit to based on the clause-guards and the
arguments in the clause-head.

In Figure 2.9 we show the computation tree of flat concurrent logic program-
ming languages. One should note that what remains from the original AND/OR
computation tree of logic programs are those leaves that correspond to conjunc-
tive goals. These goals could be scheduled for reduction in a non-deterministic
manner and are synchronized using goal suspension rules. Since the various fiat
concurrent logic programming languages have their subtle differences, we now
describe in more detail the execution model of Flat Concurrent Prolog. We will
refer to this execution model throughout this thesis.

27

2.7 An Execution Model of Flat Concurrent Prolog

FCP program execution consists of non-deterministic goal reduction of con-
junctive goals that correspond to the leaves of the computation tree shown in
Figure 2.9. The reducible set of goals represents the program resolvent. The goals
in the resolvent share logical variables that are used for inter-goal communication
and synchronization. Also shown in Figure 2.9 are some conjunctive goals that
were scheduled for reduction before a shared logical variable received a value.
These goals are labeled as suspended.

We partition the resolvent R into two disjoint sets: the active set of goals A
and the set of suspended goals §. Goal reduction is performed by selecting and
scheduling goals from the active set of goals.

The scheduled goal represents a unit of concurrent work in a system of con-
Junctive goals. It consists of a program and a finite number of goal arguments.
The program denotes the set of control primitives (machine instructions) repre-
senting the program. Goal reduction consists of interpreting the control prim-
itives using a defined interpretation algorithm. In Figure 2.10 we show goal g
that has 3 arguments, represented as g(A;, Az, Az) and denoted using argument
pointers. There are three possible outcomes of a goal reduction:

1. Goal-Failure
2. Goal-Commit

3. Goal-Suspension

Program execution requires all goals to succeed. Goal-failure results in program
failure. However, detecting program failure can be implemented at a higher,
meta-interpreter level. Goal-commit occurs when the selected goal unifies with
one of the program clause-heads and all of the guards in the clause evaluate
successfully. This then leads to goal reduction which will be described shortly.
Goal reduction that requires additional data in order to determine goal-commit
or goal-failure, results in goal-suspension. In Figure 2.10 we show the program
resolvent partitioned into the active and suspended set and the non-deterministic
selection of a goal scheduled for reduction.

Informally, the FCP execution model can be described as follows.

28

Program Resolvent

OActIvo Gonl&) O
O O schedule
&=

Cr* 5

00 Qo=
[~

Suspended Goals

giA1,AZ,AT)

suspend commit ftail

=—

A2

Figure 2.10: Program Resolvent: Non-Deterministic Goal Reduction

o While the set of active goals A is not empty, for every G; € A do the
following;:

— Attempt to find a clause whose head unifies with G; and whose guard
goals evaluate successfully, resulting in the variable substitution set
. If successful, commit to this clause and replace G; with the goals
in the clause-body, and apply 6 to the new resolvent. Also, add to
the active set of goals A all suspended goals in & that have received
values during clause-head unification.

— If all attempts to find a matching clause-head fail, then fail.

— Otherwise, suspend G; on variables whose values eventually determine
whether the goal will commit or fail. Goal G; is moved to the suspen-
sion set S.

Whether a goal fails, suspends or commits is determined by inspection of the
goal arguments and matching them to one of the program clauses. An attempt
to unify the calling goal with one clause is referred to as a clause-try. Therefore,
the outcome of a goal reduction is determined by the alternative clause-tries. We
now discuss in more detail the operations of a clause-try followed by a description
of goal suspension and goal reduction.

29

2.7.1 FCP Clause-Try

In Figure 2.11 we show a clause-try performed in FCP. There are three pos-
sible outcomes of a clause-try:

1. Clause-Failure
2. Clause-Commit

3. Clause-Suspension

In the execution model for FCP considered in this thesis, we assume the sequen-
tial execution of clause-tries. In other words, we do not consider the parallelism
of alternative clause-tries. If a clause-try fails, another clause-try is attempted
until either a clause-try commits or suspends. If all clause-tries fail, the goal
reduction fails. The sequential execution of clause-tries is considered for the
following reasons:

o In FCP, because of the flat nature of the clause guards, the operations
performed during a clause-try are generally simple operations. We assume
that the penalty of spawning these primitive operations and executing them
in parallel is greater than the performance improvement due to parallel
execution.

¢ Performing a clause-try consists of matching arguments of a calling goal
with arguments in the program clause. Reducing the execution time of a
clause-try is an active area of research in the field of advanced compiler tech-
nology. For example, clause-indexing techniques exist to determine which
clause is applicable to the calling goal. If more information is provided
through argument type declarations or input/output modes, the clause-try
execution time can further be reduced, and thus result in efficient sequential
execution.

As shown in Figure 2.11, a clause-try in FCP is different from the clause-try in
Prolog in the following three ways. First, in addition to producing the substitu-
tion set & and the trail set 7, a clause-try in FCP records in a Suspension Variable
Table (SVT) a suspension variable set s. During a clause-try, the addresses of
those unbound variables where a value was expected, are stored in SVT. If the
clause-try does not fail, and there is at least one element in SVT, then the out-
come of the clause-try is clause-suspension. In other words, the clause-try did

30

Suspension
Variahle Table

< g(A1,A2, ... ,An) ? calling goal

pa -~

V1, v2

"""""""""""" _ 9 { A1/B1, ..}

~ 7 -
g(B1,B2, ... ,Bn) <- gl... gn | ...

selected program clause-head

Figure 2.11: FCP Clause-Try

not commit or fail, but may succeed in the future when more data corresponding
to variables in s become available. Second, the clause-try in FCP is augmented
with primitive guard tests that also have to succeed prior to clause-commit. The
commit operation prevents program execution from backtracking. Finally, the
clause-tries in FCP can be performed in any order, as opposed to textual order
of Prolog.

When a clause-try fails, the bindings performed during the clause-try are
revoked, in the same way as it is performed in Prolog. This type of backtracking
within the same procedure is called shallow backiracking, as opposed to deep
backtracking that transcends across nested binding environments. There is no
deep backtracking in FCP due to its flat committed-choice execution model.

2.7.2 (Goal Suspension and Activation

The committed-choice semantics of FCP implies that at least one clause in
the procedure must eventually commit. If any sequential ordering is imposed
on the clause-tries, then, a clause-suspension does not immediately result in the
goal-suspension. In other words, a goal suspends only if there is no clause-try
that can succeed, and at least one clause-try did not fail. This implies that the
clause-try may succeed in the future. A goal reduction suspends if there is at
least one clause-try that suspends and none of the clause-tries commit.

For example, let us consider the following two cases of a selected goal that

31

Program HResolvent

Actlve Goals

schodgo)
\v\l\ O /Fm

suspend

<D<)C) O :gg“

-

Suspendsd Goals N \m

Variables

Figure 2.12: FCP Goal Suspension

has four potentially matching clauses in the program. If the first two clause-tries
fail, the third suspends and the fourth commits, this results in goal-commit and
the goal reduces to the body of the fourth clause. If, however, the first two
clause-tries fail and the third and fourth suspend, the result is goal suspension
using the variables stored in the suspension table.

Goal Suspension

Consider the program resolvent R, the active set of goals .A and the set of
suspended goals S, such that, (R = AUS and ANS = §). In addition, we
label the set of all goals as Goals and the set of distinct variables as Vars. We
denote that goal G; € Goals suspends on variables V C Var using the following
relation: suspend(G;, V) With each variable X; € Var, a Suspension;,; func-
tion is associated that returns all goals suspended on X;. The following steps are
performed during goal suspension:

A= A\G,
S=8UG;

Y(X; € ff) : Suspensionyi(X;) = Suspension;(X;) U G;

That is, the suspended goal is moved from the active set to the suspended set of
goals and the goal G; is associated with the suspension list of all the variables in
the suspension set V.

32

Goal Activation

Using the same notation as for the goal suspension, we denote the activation
of a set of goals G C Goals by a set of variables V C Var as the following
function: G = activation(V'), where:

G = {G, I G; € suspension“st(x;) A (X, nv #* @)}

In addition, the following operations are performed:

A=AUG

§=8\¢G
V(X € f/')_: Suspensionw{ X;) = Suspension {X:) \ Gi

In other words, the activated goals are moved to the active set of goals and
the goals are removed from the suspension lists of the variables that activate
the goals. By suspending when there is insufficient data to commit, and by
activating the suspended goals when the data becomes available, a data-flow
goal scheduling mechanism is implemented. In Figure 2.12 we show the case
where a goal suspends after it is determined that the value of variable A; is
required but unavailable during goal reduction.

Using the above description of goal suspension and activation, one should
note the following. If goal G; suspends on a variable X, it is associated with the
suspension list of that variable. If the variable X is then unified with variable
Y then variable X denotes variable Y by a substitution { X/Y}. If a clause-try
results in the substitution set § = {Y/a} then the goal G; is activated since it is
associated with the suspension list of X that is denoted by Y.

2.7.3 Goal Reduction

When it is determined that a clause-try succeeds with a variable substitution
set §, program execution commits to the selected clause and the selected goal
is reduced to the body of the committed clause. All suspended goals that have
received values in the substitution # are rescheduled for execution, that is, acti-
vated. We distinguish the following two cases for a goal reduction. Either the
committed clause-body is empty or it contains body goals. The fact that the

33

Program Resoivent

Active Goals

O O : O schedule

>
R0
activate

NS |
O O OO:\\Q\ Variables

Suspended Goals \m

Figure 2.13: FCP Goal Reduction

empty clause-body is selected for reduction implies that the goal has successfully
terminated and a new goal may be scheduled for reduction.

If the clause-body contains (sub)goals, these new goals replace the reduced
goal in the program resolvent. In Figure 2.13 we show the case where the selected
committed-clause reduced to three new goals; these are all added to the active
set of goals from where they are scheduled for reduction.

2.8 FCP Programming Examples

A good survey of FCP programming techniques can be found in [Shap86] and
in [Shap87]. We show here two simple examples of FCP programs, both from
[Shap87]. The first is the stack monitor program and the second is the stream
merge program. We briefly describe each in turn.

stack_monitor([push(X)}In],S) <-
stack_monitor{In?,[X|5]).

stack_monitor([pop(X) |In], [XIS]) <-
stack_monitor(In7,S).

stack_monitor([],[]).

The stack monitor interprets three types of messages on its input stream In

34

that modify the state of the stack S. If the push(X) message is received, the
element X is placed in front of the stack S. This is denoted by managing the
stack as a list, where X is the head of the list and S is the tail, denoted as [X|S].
When the pop(X) message is received, the element on top of the stack, X, is
unified with the variable in the message. The stack monitor then iterates with
the tail of the stack, S, thus denoting that the top of the stack was poped. If
the null element is received on the input stream, the stack monitor terminates
execution. Note that the read-only variable annotation of the input stream In?
prevents the monitor from writing onto the input stream. In other words, the
monitor can only read messages sent to it.

In the stream_merge program, there are two input streams X and Y and one
output stream Z. Messages from the input streams are merged onto the output
streams. The first clause shows an element from the first stream copied to the
output, and the second clause does the same for the second input stream. The
streams are closed when the null element is received.

stream_merge([X|Xsl,Y,[XIZ]) <-
stream_merge(Xs?,Y,Z).
stream_merge(X, [YIYs], [YIZ]) <-
stream_merge(X,Ys?,Z).
stream_merge([],Y,Y).
stream_merge(X, [],X).

2.9 Chapter Summary

We have reviewed the computation model of non-guarded and guarded Horn
clause programs by showing their relation to the AND/OR computation tree. In
Flat Concurrent Logic Programming languages like FCP, only the conjunctive
goals remain as leaves of the reduced computation tree and all the alternative
OR branches are discarded during clause-commit. The only OR parallelism that
remains is the clause selection parallelisin, that is, shallow OR parallelism, which
1s not used in the FCP execution model, since all clause-tries are performed
sequentially. This distinguishes CLP languages from non-committed choice lan-
guages that explore the full AND-OR model thus deriving multiple solutions to
a given goal. It also defines a separate domain of program applications.

The computational model of FCP is described in terms of non-deterministic
goal scheduling from a pool of active goals with a mechanism to implement data-

35

flow goal synchronization. The suspension rules in FCP differ from those of
related CLP languages such as FGHC and Flat Parlog.

Process, Procedure and Co-Routine Model Analogy

In [Shap86] a process model analogy is drawn between the execution model
of FCP goals and processes in a multiprocessing system. Goals are analogous
to processes and the shared logical variables are analogous to the inter-process
communication media. Goal suspension corresponds to process blocking and goal
activation to resuming process execution. A goal reduction that commits to an
empty clause is interpreted as process termination.

Another analogy is between goals and procedures. This analogy is already
established for Prolog but can also apply to FCP. In fact, given the size and
frequency of goal execution, the dynamic behavior of goals may be closer to
procedure calls than processes in a multiprocessing system. However, the notion
of goal suspension and activation resembles the use of co-routine operations such
as co-routine exit and co-routine resume.

36

CHAPTER 3

Related Work

In this chapter we review previous work related to our research. We divide
the description of proposed special-purpose architectures for logic programming
languages into the following three categories:

Special-purpose single-processor architectures.

Parallel Inference Machines

Parallel Inference Machines.

Shared memory multiprocessor architectures.

In the first category we review the work that is most closely related to our
research, that is, the design of a special-purpose processor architecture for FCP.
We discuss the VL.SI FCP processor design approach proposed by Harsat and Gi-
nosar called Carmel [Hars88]. We also briefly review some of the special-purpose
processors proposed for the execution of Prolog. Even though the Prolog execu-
tion model is significantly different from FCP, we discuss the common features
that the two languages share as well as how these features are supported at the ar-
chitectural level. As Prolog is a predecessor to FCP, the work on special-purpose
architectures for Prolog have significantly influenced the design of architectures
for committed-choice languages.

In the second category we consider parallel implementations of logic program-
ming languages such as Concurrent Prolog, GHC, Parlog and Parallel Prolog.
Five machine architectures proposed by the Japanese Institute for Fifth Gen-
eration Computer Technology (ICOT) are reviewed. Each machine consists of
processing elements that are interconnected in a distributed environment with no
shared memory. This research is related to our own in the following way. Initially,
the parallel inference machines proposed by ICOT have embarked on implement-
ing full Concurrent Prolog as the target language, as well as OR-parallel Prolog.

37

However, the complexity of the execution model as well as the difficulties encoun-
tered with the semantics of Concurrent Prolog, resulted in research for a simpler
and more precise computation model, and thus languages such as FCP [Mier85).

In the third category we consider the more recent implementations of logic
programming languages on general-purpose shared-memory multiprocessor ar-
chitectures. These architectures are more recent, since the initial research con-
ducted at ICOT proposed only distributed implementations with the intention of
defining highly parallel systems. Since commercial general-purpose shared mem-
ory multiprocessors have become an affordable reality, they are being used to
prototype parallel logic programming implementations.

First we review the implementation of Parlog, a committed-choice language,
as described by Crammond in [Cram88]. We then describe the OR-parallel im-
plementation of Prolog called Aurora [Lusk88|. Both Parlog and Aurora are
implemented on the Balance Sequent multiprocessor. A detailed comparison of
a committed-choice langnage KL1 (FGHC) versus the Aurora non-committed
choice implementation on a shared memory multiprocessor is described by Tick
in [Tick88]. We review the main results of this analysis. Whereas Aurora im-
plements only OR-parallelism, we review two more parallel implementations of
Prolog that allow for both OR and Restricied AND-parallelism. These are the
PEPSys architecture proposed at ECRC [Baro88a] and the Aquarius project from
Berkeley [Fagi87a).

3.1 Special-Purpose Single-Processor Architectures

Carmel VLSI Processor

A VLSI RISC processor for the execution of FCP is proposed by Harsat and
Ginosar in [Hars88]). The processor data path is very simple and consists of a
three-port register file with only 25 registers and one arithmetic logic unit. A
Harvard memory architecture is used to separate instruction and data memory.

The memory load/store instructions are 2-cycle operations with one delay slot
that can be filled.

The RISC instruction set of the Carmel processor contains several non-RISC
instructions to support the execution of FCP. The deref(Rd2,F,Rs,Rd1,Tag) in-
struction is 11 words long, and is used to implement pointer dereferencing. Start-
ing from the address in Rs the dereferenced value is stored in Rd2 and register

38

Rd1 contains the last reference value. The Tag field is used for subsequent 10-
way branching on the dereferenced data type and F is a special-purpose flag. The
following four instructions are define for the manipulation of tags. Instruction
InsTag(Rs,Tag,Rd) is used to set the destination register Rd with the value part of
Rs and the tag value Tag. Instructions IfTag(Rs,Tag,52) and IfNotTag(Rs, Tag,52)
are used to branch depending on whether the tag part of Rs is equal (or not) to
Tag. The BRonTag(Rs) is a ten-way branch on the tag part of Rs. In addition, the
SetTS(C) instruction sets the time-slice register to C and the IfTS(Y) instruction
performs the decrement-and-branch-if-zero operation.

In this dissertation we will compare our work to that of Ginosar and Harsat
in several places. First, in Chapter 5, we discuss the design approach for a
special-purpose processor architecture given an existing general-purpose imple-
mentation. We claim that the analysis must be independent of the host ma-
chine characteristics and should be performed at the higher algorithmic level.
In [Gino87], low-level machine dependent measures are made to determine time
consuming events in the implementation. Using operating system profiling tools,
the measures are used to direct the design process.

Also in Chapter 5, our work differs from that of Harsat and Ginosar in the
way performance evaluation is performed. We define a system workload that
consists of large applications currently in use. Our measurements and conclusions
are confined to this workload. Our approach to performance analysis is based
on analytic performance models which are also applicable to different workload
characteristics. In [Hars88] the performance of the append program is reported
and it is hard to precisely evaluate the performance of Carmel when it runs large
applications.

Special-Purpose Prolog Processors

Several special-purpose processor architectures for the execution of Prolog
have been proposed. The Programmable Logic Machine (PLM) [Dobr87], the
High-Speed Prolog Machine (HPM) [Naka85] and the Integrated Prolog Pro-
cessor (IPP) [Abe87| are microprogrammed machines that emulate the Warren
Abstract Machine instruction set [Warr83]. In contrast, Pegasus [Seo87] is a
VLSI RISC processor for the execution of Prolog.

The PLM is a processor architecture for the execution of Prolog programs
within the heterogeneons MIMD multiprocessor system called Aquarius [Dobr85).

39

The address space of PLM is divided into two areas: the Code space and Data
space. The Prolog Engine consists of a wide horizontal microcoded control unit
and an execution unit that consists of a register file and an ALU with three
pairs of dedicated busses. The instructions executed are modified instructions
of the Warren Abstract Machine. The specialized instruction set together w:-h
architectural support for tag manipulation and the use of a specialized cacie
enables the PLM to “greatly improve performance” of compiled Prolog execi:tion
compared to general-purpose processor implementations [Dobr85]. The HP}{ and
IPP machines architectures follow the same design approach as the PLM.

In contrast to the previously described high-level machine architectures for
Prolog, the Pegasus processor is a VLSI RISC processor that includes one in-
teresting feature that deserves attention. The processor register file consists of
two parts: the main set of 17 registers and a set of 17 shadow registers. Since
Prolog creates choice-points while traversing the AND/OR tree, this requires
that choice-point registers be saved in a special stack area in memory, much like
a context switch. Upon goal failure and backtracking, the saved choice-point
registers are restored, that is, moved from memory to the register file.

In Pegasus, instead of moving the choice-point registers to memory, they are
written into the shadow register area within a single processor cycle. While
the processor continues to execute instructions that do not access memory, the
shadow registers are moved to memory. If another choice-point is created before
the shadow registers are saved in memory, a forced shadow write stage is entered
which suspends processor execution until the write phase is complete. A similar
situation occurs upon backtracking, where the processor moves the shadow reg-
isters into the main set of registers. If further backtracking is required while the
processor is prefetching the context into shadow registers, the processor execu-
tion suspends until the prefetching is completed. The operations of the shadow
registers are dynamically controlled using control bits stored in the processor
instructions by the compiler.

Preliminary performance analysis using the quicksort program indicate that
the performance improvement due to the shadow registers is 18%. Almost one
half of the total processor register file size are shadow registers. The register file
itself is 20% of the total processor chip area. Since the choice-point size varies
with procedure invocation, it is not clear what is the utilization of the shadow
registers and whether it is justified to dedicate the amount of processor resources.

A dctailed analysis of the Prolog memory reference behavior is described by

40

Tick in [Tick87]. The minimum choice-point size is 7 and the mean value was
measured to be just over 11. The use of a choice-point buffer is described with
a hit ratio that levels off at 84% for a buffer size of 12 words. Considering these
results, a more cost-effective use of the shadow registers in Pegasus may have
been proposed.

3.2 Parallel Inference Machines

Research into parallel inference machines (PIM) was set as the most im-
portant objective of the Japanese Fifth Generation Computer System (FGCS)
project in the field of computer architecture [Fuch86], [Goto87], [Mura85b}. The
programming environment of the inference machines is targeted for the execu-
tion of logic programming languages. Initially, the languages selected for parallel
implementation were Prolog and Concurrent Prolog [Shap83]. More recently,
the committed-choice logic programming language GHC was chosen as the basis
for the kernel language KL1 of PIM [Ueda86]. As described in Chapter 2, Flat
GHC as well as FCP can be used to model explicit inter-goal communication and
synchronization and have been proposed as parallel programming languages for
system development [Shap84]. Therefore, FGHC is considered as the implemen-
tation language of the Parallel Inference Machine Operating System, PIMOS.

The performance objective for the PIM project was to execute 50-100 K
Logical Inferences Per Second (LIPS) on a single processor and 2-5 MLIPS per
system of 100 processors, executing the PIMOS operating system. We will refer
to the meaning of LIPS and the set objectives later in this thesis. We now review
the following special-purpose architectures defined within the parallel inference
machine projects:

¢ PIM based on dataflow machine, PIM-D.

Reduction based PIM machine, PIM-R.

Kabu-Wake parallel execution method.

Personal Sequential Inference machine, PSI and Multi-PSI.

Parallel Inference Engine, PIE.

41

Processar Cluster ? Network Node
- >
E Network Node E Network Node

(1
4 I ; Token Buc 4L> Token Bus

PQU
APU| | APU|" * 1 APU| LMU

J 1 T

|-BUs

Proceasing Elements Sharedm Memory

Figure 3.1: The PIM-D Machine

Dataflow Based Parailel Inference Machine, PIM-D

The dataflow based parallel inference machine, PIM-D, from ICOT is de-
scribed in [Ito85}, [Kish85] and [Ito86]. Concurrent Prolog programs are compiled
to a dataflow graph with nodes corresponding to primitive operations interpreted
by the machine. The parallelism is low-level and inherent in the dataflow graph
and not controlled by the user. As in conveniional dataflow execution models,
only those operators that have all operands available are executed sending results
on the output arcs.

The PIM-D architecture is shown in Figure 3.1. A single processing element
contains one instruction control unit (ICU), one packet queue unit (PQU) and
several atomic processing units (APU). PQU receives result packets from the
token-bus and passes them to ICU where it is determined which units of compu-
tation in the dataflow graph have all operands available. For this purpose, ICU
uses hardware hash tables. The ready instruction packets are sent out on the
instruction bus to the APU for execution creating more result-packets.

PIM-D is hierarchically structured. More processing elements are connected
to each other and to structured memory modules using the token bus, thus
forming a cluster. Moreover, clusters are also connected via a network node and
the token-bus.

In the software simulations of the PIM-D architecture, it is assumed that the
PEs are connected in a 2-dimensional mesh network. The network connecting

42

I Inter-u\.'lc Network: Mesh | /' PPU

o+ MEMEC]
4% PP PPC |
v

| Match [—' cP

N

sMM || smm « s+ | SMM v

uu

System Organization

Figure 3.2: The PIM-R Machine

the PEs and the shared memory modules SMs is a multistage switching network
and the SMs are also connected via an inter-SM mesh network. Preliminary
evaluation using simple applications shows that speedup levels off at 16, when
64 processing elements are used.,

However, it is not specified what is the overhead of the parallel model com-
pared to the sequential implementation. In other words, the single processing
unit performance should be compared to other single processor implementations.

Reduction Based Parallel Inference Machine: PIM-R

Parallel goal reduction is the basis for the execution model of the paralle] in-
ference machine PIM-R. It is used for the AND-Parallel execution of Concurrent
Prolog and the OR-parallel execution of Prolog [Mura85a). In the distributed
execution environment of PIM-R, conjunctive goals are executed in parallel on
different processors, using shared logical variables as communication channels.
The OR-parallelism in the guards of a Concurrent Prolog clause is not distributed
but executed on the same processor as the parent goal.

The organization of PIM-R shown in Figure 3.2 is described in [Onai85a],
[Onai85b] and [Onai85¢c]. It consists of inference modules (IM) and structure
memory modules (SMM) interconnected using two networks. The inter-IM net-

43

work is a mesh and the IM-SMM network is a shared bus. The structure memory
modules implement a distributed shared memory system. One IM is located at
each mesh node and consists of a process pool unit (PPU) and a unification unit
(UU). The unification unit contains a copy of the entire program in the clause
pool memory. In addition, UU consists of a clause-matching unit and a unific:.
UU receives a process from PPU and the matching unit tries to find a matchiug
clause by searching the clause pool. Matching clauses are sent to the unification
unit for reduction. Reduced clauses are sent back to PPU for creating new pro-
cesses stored in PPU. Process suspension is implemented using a message board
for storing shared logical variables as channels. The message board is controlled
by the message board controller.

When PPU receives reduced clauses from UU, conjunctive processes are dis-
tributed via the inter-IM network to those IM with the shortest input buffer
length. The network nodes dynamically control the distribution of processes.
For this purpose, special node controllers of the Inmos Transputer type are pro-
posed.

In [Onai85a] the speedup of executing the gquicksort program in Concurrent
Prolog on 16 inference modules is just over 2. The following are some of the
reasons for performance degradation: frequent goal suspensions and activations,
frequent control messages distributed over the network and poor load distribution
and balancing. Moreover, the same comment made for the PIM-D machine can
be made here as well. By specifying only the speedup values, it is not clear how
the single inference module compares to other single-processor implementations.

The Kabu-Wake Method

In [Sohm385] and {Kumo86] a parallel inference method for the OR-parallel
execution of Prolog is proposed called Kabu- Wake. The name refers (in Japanese)
to the method of splitting a tree at a node and then replanting it at a different
location. If we recall the AND/OR tree computation model for logic programs
described in Chapter 2, the Prolog sequential execution performs the depth-first
search using an efficient stack control mechanism. Alternative paths in the tree

are stored on the stack, and are considered only if the current path of execution
fails.

It is the efficient sequential implementation that has motivated the Kabu-
Wake method. Each busy processor in a distributed Kabu-Wake machine exe-

44

Canirol Network

Task Network

PRI

Figure 3.3: The Parallel Inference Machine for Kabu-Wake Execution

cutes sequential Prolog. An idle processor sends a message to a busy processor
requesting work. In response, the busy processor services the request by first
leaving the current busy execution mode and backtracking to the choice-point
closest to the root of the AND/OR tree. The tree is then split into half, packaged
and sent to the idle processor to execute. The execution model at each processor
continues to be sequential, as if executing sequential Prolog.

The following feature of the Kabu-Wake method should be clear. The par-
allelism that is exploited between processors is strictly OR-parallelism. The
sequential Prolog execution model on a single processor would eventually reach
the split subtree if all the subtrees to the left of it fail. Since Prolog unbinds
variables upon failure and backtracking, so the Kabu-Wake method must unbind
all variables that belong to the left of the subtree prior to sending. This may be
a source of performance degradation.

In Figure 3.3 we show the parallel inference machine proposed for the execu-
tion of the Kabu-Wake method. It consists of 16 general-purpose processors with
local memory. The processors are connected via two different networks called the
data network and control network. The data network is a multi-stage switching
network used for transferring parts of the subtree from one processor to another.
The control network is a ring bus used for reporting the status of each processor

45

and for requesting subtrees from busy nodes.

Preliminary performance evaluation of the parse program shows that the
method is sensitive to the granularity of parallelism. The main overhead is in
splitting the subtree and preparing it for sending to a remote processor. The
speedup depends on how effectively the program application is split and whethcr
it is split close to the root or not. Running on 16 processors a specific parse
sentence showed a speed-up of 10.8 relative to execution on a single processor.
However, introducing the Kabu-Wake method on a single node results in an over-
head of sequential execution due to the special-treatment of the logical variable.

PSI-IT and Multi PSI Architecture

As a result of research of the previously described inference machines, it was
clear that a simpler language and execution model were required to reap the
benefit of parallel execution in a distributed environment. For this purpose,
the core of a kernel language KL1 was defined based on Flat GHC (FGHC).
A distributed implementation of FGHC on a network of Personal Sequential
Inference machines (PSI) called Multi-PSI is proposed. The first version of the
uniprocessor is called PSI-I and the subsequent improved version PSI-II.

The PSI-I was designed as a special-purpose high-level language processor
for the execution of logic programming languages. It is a microprogrammed
architecture with 16 Kwords of 64-bit writable control store used for the execution
of a logic programming interpreter. It has special-purpose hardware support for
the manipulation of data tags and for the manipulation of multiple-stacks. It is
implemented in TTL MSI technology and has a processor cycle of 200nsec.

The PSI-II [Naka87], is an improved version of the PSI-I, both in terms of
performance and cost. Compared to PSI-I, the PSI-II was designed with three
objectives in mind: to reduce the hardware size, to improve the processor per-
formance and to accommodate extensions for a Multi-PSI processor implemen-
tation. The hardware size was reduced by using a higher scale of integration
and by building custom LSI modules. Using gate-array CMOS technology the
size of PSI-II is reduced to one quarter of the size of PSI-I. To increase system
performance, the microcoded interpreter was replaced by a microcoded special-
purpose instruction set that is suitable for compilation and compiler optimization
techniques. The performance improvement resuilted in program speedups of 3 to
10. Finally, the PSI-II is designed with multiprocessor extensions in mind. The

46

Unit Translator

Main Memory

<lep| Cade
Controller Memory

Data Processing @-plg-p] Address ——
.

!

170 Bus -t System
Interface Controller

\4
Internal
f Bus
& /O Bus

Figure 3.4: PSI-II Machine Organization

extensions include a larger instruction format to accommodate future special-
purpose instructions used in a parallel implementation; a larger memory address
space with reserved address areas for use in the multiprocessor machine and
more. The system organization of the PSI-II is shown in Figure 3.4. It has a
machine cycle of 166.7 nsec.

The Multi-PSI [Kish86] is a multiprocessor machine that connects up to 64
PSI-II processors in a 2-dimensional mesh network, as shown in Figure 3.5. Each
processor in the network has 16 Mwords of 40bits local memory and communi-
cates with other processors via a network communication controller.

The distributed implementation of Flat GHC on the Multi-PSI is described
in [Ichi87]. The Multi-PSI does not assume a global address space. Therefore,
there are no explicit remote references to locations at remote processors. Rather,
an indirect addressing mechanism is maintained at each processor. The indirect
addressing is implemented using a variable address management table at each
processor. The motivation for this approach is found in the localized rather
than distributed garbage collection algorithm that can be applied. When remote
references are used, garbage collection at one processor must follow the chain of
remote references and induce a distributed garbage collection algorithm. This
may create a bottleneck. Using the indirect table mechanism allows local garbage
collection. As data structures are relocated locally, their indirect address pointers
are updated in the variable management table. There is no need to access remote
processors. However, an analysis of the tradeoffs involved is necessary.

47

network
cotroller

] memory
modules

Figure 3.5: Multi-PSI Organization

Conceptually, each processor in the Multi-PSI machine consists of a active
queue of reducible goals, an input and output communication channels and a
variable management table. Goal reduction at one processing element may result
in the “throwing” of goals to remote processors to reduce. The goal migration is
controlled by user defined pragmas. As of yet, a detailed performance evaluation
of the distributed implementation of FGHC on the Multi-PSI is not available.

Parallel Inference Engine: PIE

A Parallel Inference Engine (PIE) for the execution of AND-parallel languages
is proposed in [Koik86] [Tosh87]. It implements a subset of the language GHC
without guards, called FLENG. The language models goal suspension and acti-
vation in the same way as GHC and can thus be used to implement GHC as a
higher level language.

The PIE system consists of multiple inference units (IU) connected using
two different networks. Onme is an omege packet switching network used for
distributing goals between the inference units, (DN), and the other is a shared
memory network (SMN) for managing shared variables and structures as well as
activating suspended goals. The type of network used for SMN “has not been
decided yet” [Tosh87]. The organization of PIE and the inference units is shown
in Figure 3.6.

Each IU contains a unification processor (UP), program definition memory

48

1 DN: Omega Network To DNI

4 [
‘ ' ‘
DM [*» up MM

iU v R B 3 I
¢ ¥
: t : Cache SM

| SMN: Shared Bus | tTo SMN:

System Organization IV Organization

Figure 3.6: The Parallel Inference Engine for FLENG

(DM}, a memory module (MM) connected to the distribution network used for
storing goals, a distributed shared memory (SM) and a shared memory cache
(C). The definition memory in each IU contains a copy of the complete FLENG
program.

The parallel execution model of PIE described in [Tosh87] specifies that goals
spawned as a result of a goal reduction are “distributed into different MMs”. To
reduce the use of the SMN, goal argument structures are copied and distributed
as well. Goals are distributed via DN according to the load in each IU, where the
load is determined according to the number of active goals. When UP spawns a
new goal, it is sent to the IU with the least number of active goals.

Goal suspension is implemented by storing a goal pointer in the suspension
variable and changing the status of the goal from active to suspended. When
the variable receives a value, a message is sent via SMN to the IUs with the
suspended goals. In response, the suspended goal is reactivated. If a message is
received for a goal that is being executed, the UP aborts execution and restarts
with the newly received value stored in the cache.

A preliminary evaluation of PIE is described in [Tosh87) using simulations and
executing four simple programs: gquicksort, naive reverse, primes and permute.
It is noticed that the frequency of process suspension and activation degrades
system performance. Moreover, the following two issues remain a problem in the
architecture. First, the overhead of accessing remote shared memories and the
existence of a suitable network that connects the distributed memory modules.
For systems of more than 64 processors, a cluster architecture is proposed. The

49

second issue is the problem of load-balancing and distribution of reducible goals
to remote processing units.

3.3 Shared Memory Inference Machines

Parlog on the Sequent Balance Multiprocessor

The implementation of Parlog on the Sequent Balance multiprocessor is de-
scribed by Crammond in [Cram88]. The Sequent Balance is a shared-memory
general-purpose multiprocessor composed of NS32032 processors connected on
a shared bus. This is a departure from the previously described execution
models that used distributed rather than shared memory architectures. Each
dual-processor board shares a 8Kbyte write-through cache that follows a cache
coherency protocol. In addition, a separate SLIC Bus is used to connect the
System Link and Interrupt Controllers (SLIC) that are used for low level control
messages and interrupts.

The parallel implementation of Parlog on the Sequent Balance relies on the
existing operating system Dyniz which supports parallel programming. At the
operating system level, a separate Parlog abstract machine runs on each node
of the multiprocessor. Each abstract machine has a separate run-queue used for
scheduling goals locally. In case one of the queues becomes empty, a search for
work algorithm is used to find a non-empty queue from which to steal executable
goals. Preliminary performance evaluation of six small programs show in most
cases “very good” speedup of 12 to 15, when executed on 20 processors.

Aurora OR-Parallel Prolog System

Aurorais a prototype implementation of OR-parallel Prolog on a shared mem-
ory, general-purpose, multiprocessor machine [Lusk88|. The objective of Aurora
is to effectively implement full Prolog using the implicit OR-parallelism in a trans-
parent way. Since Prolog is efficiently implemented on a general-purpose machine
by emulating the sequential abstract machine proposed by Warren [Warr83}, par-
allel execution models of Prolog are proposed as extensions to the emulator for
the purpose of exploiting implicit parallelism whereas preserving as much of the
sequential efficiency as possible.

In Aurora, the AND/OR tree that is sequentially searched in Prolog (depth-

50

first), is searched in parallel by independent workers. A worker may be a physical
processor or a process in a multiprocessing environment. Each worker executes
part of the AND/OR tree as if it is a separate Prolog session. When a worker is
out of work, the scheduler is responsible for matching the worker with available
work searching the tree.

The main problem in implementing OR-parallel search tree execution is the
management of shared variable bindings that belong to different execution paths.
In Aurora, the SRI model is used [Warr87]. In this model, shared logical variables

“have no special treatment if they are allocated on a deterministic path in the tree.
However, with the creation of the first choice-point, the allocated variable may
potentially have more than one value. To manage different instances of the same
variable in the SRI model, a worker maintains a private binding array for storing
conditional bindings. A shared variable that is conditionally bound stores an
offset into the binding array where the value is found.

The maintenance of binding arrays results in significant overhead mainly when
a worker needs to look for more work, thus switching to another part of the search
tree. As a worker moves up or down the tree looking for work, so it must update
its binding array.

The preliminary performance evaluation of the Aurora system using simple
applications shows encouraging results and speedups of up to 14, on 16 proces-
sors. The modifications made to the sequential Prolog emulator result in a 25%
overhead when Aurora executes on a single processor.

Comparison of KL1 and Aurora Execution on the Sequent

The analysis of AND-parallel committed choice execution of KL1 (FGHC)
and the execution of the OR-parallel non-committed choice system Aurora is
described in [Tick88]. Both languages are implemented on the Balance Sequent
multiprocessor machine. The empirical evaluation is performed using non-trivial
benchmark programs optimized for performance in both languages. Various
memory hierarchy organizations are considered including coherent cache policy
alternatives.

The following two observations made in [Tick88] deserve attention. First, Au-
rora (non-committed choice language) has “better” memory performance char-
acteristics than FGHC (committed-choice language). The reason is that Aurora

51

makes use of the more efficient stack-based storage model of sequential Prolog
compared to the heap-based storage model of FGHC. This results in reduced
memory reference locality which in turn reflects on the memory performance of
data caching,.

The second observation is that cornmitted-choice execution of FGHC performs
better than Aurora for single-solution problems, while Aurora performs better in
applications where multiple solutions are required. In other words, since single
solution problems tend to have more fine grain concurrency, and since the over-
head of creating new tasks is greater in OR-parallel systems than in AND-parallel
systems, this explains why single solution problems execute more efficiently in
KL1 compared to Aurora.

The motivation for performance analysis described in [Tick88| as well as the
analysis approach are further discussed and compared to the analysis approach
in this thesis, later in Chapter 5.

The PEPSys Machine Architecture

The Parallel ECRC Prolog System (PEPSys) is a research project to design
and evaluate a multiprocessor system for the execution of large scale parallel
Prolog applications [Baro88a]. In contrast to the SRI model used in the Aurora
system which makes use of only OR-parallelism, PEPSys defines both OR-parallel
and restricted AND-parallel execution which is specified by the user using proce-
dure declarations. Restricted AND-parallelism allows the concurrent execution of
only those conjunctive goals that do not share variables or have fully instantiated
variables so that no conflict can occur. The result is a more complex implemen-
tation with an objective to exploit more of the potential concurrency inherent
to the AND/OR tree search. Even though the preliminary analysis of program
execution on a shared memory multiprocessor with 8 processing elements shows
encouraging speedup, a meaningful comparison of the parallel Prolog execution
models as well as the analysis of tradeoffs between concurrency and overhead of
implementation has not yet been made.

The architecture of the PEPSys machine is described as a system of dis-
tributed clusters, with each cluster being a shared memory multiprocessor. In
addition to a set of processing elements that share a common bus inside a cluster,
a special-purpose Cluster Processor (CP) performs inter-cluster communication
via message passing. Each cluster has a local workpool of concurrent OR and

52

AND processes. While the workpool is non-empty, the processing elements exe-
cute processes stored in the shared memory. When one of the processes becomes
idle and the workpool is empty, a message is sent to CP reporting its idle status.
CP maintains a list of cluster workload distribution, and sends a message to a
selected remote cluster requesting work. The cluster receiving the message can
either ignore the message or alternatively search for work and respond by sending
work to the cluster with the idle processing element.

Software simulation and evaluation of the cluster architecture executing the
8 queens problem is described in [Baro88b]. Increasing the number of processing
elements in a cluster results in performance improvements but increasing the
number of clusters for the same number of processing elements degrades perfor-
mance considerably. The following reasons are cited. First, the load balancing
scheme that takes work from a remote cluster does not result in effective load
sharing unless care is taken not to share fine grain computations. Second, the
cluster processor needs to perform faster than the processing elements in the
cluster to avoid long idle times. And finally, the 8 queens problem is hardly
representative of a large scale application and thus the evaluation of the PEP-
Sys cluster architecture may not be appropriate using a program that does not
exhibit enough parallelism.

The Aquarius Multiprocessor Machine

The Aquarius multiprocessor machine consists of Parallel Prolog Processors
(PPP) that share a multi-module memory system. The PPP is an extension of the
PLM processor for the execution of Prolog, described earlier. In the considered
machine organization, each PPP can access 16 memory modules via a cross-bar
switch and a special-purpose synchronization memory via a shared bus. A cache
is used between each PPP and each main memory module in addition to a cache
placed between each PPP and the synchronization memory. The organization of
the Aquarius multiprocessor shown in Figure 3.7 is described in [Fagi87a).

The multiprocessor system of PPPs executes Prolog in both OR-parallel and
Restricted AND-parallel mode as described in [Fagi87b]. In addition, intelligent
backtracking algorithms are used to improve performance. The performance re-
sults presented in {Fagi8Ta] are obtained from simulating an ideal multiprocessor
system with 4 and 8 processors executing a set of benchmark programs previously
used for the evaluation of Prolog systems. The author recognizes very poor per-
formance improvements due to parallel processing using the PPP model, and is

53

aM Synchronization

Memory
] | H
=] el m]...@lij
1 1 I
PPP PPP PPP et PRP

]
Lc::] {cacne | [cacne| . . . |cacne

Memory Modules

3 [T

Cross-Bar Switch

Figure 3.7: The Aquarius Multiprocessor Machine

doubtful that the benefit of concurrency can outweigh the cost of multiprocessing
in a parallel Prolog model like PPP. The reasons cited are the overhead of process
creation and termination, scheduling, synchronization and in general the cost as-
sociated with multiprocessing. However, the results and conclusions are based
on applications that are not representative of a real system workload. Better
results may be achieved using programs that exhibit more inherent parallelism.

3.4 Chapter Summary

We have reviewed special-purpose architectures for logic programming lan-
guages that are related to our work. Therefore, this chapter is not intended
as a complete review of the field but to identify some of the common research
directions and problems. Common to all the previously described architectures
and logic programming execution models is the lack of a systematic approach to
performance evaluation. Preliminary evaluations using simple programs that are
not representative of a system workload are repeatedly perforrned. The work of
Tick [Tick87] and Fagin [Fagi87b] are encouraging attempts to rectify this trend.
In this thesis, we contribute by suggesting a methodology for performance evalua-
tion based on analytic performance models. The empirical approach to evaluation

54

is based on a set of programs representative of a specific system workload.

Except for the Aurora system, none of the previously described parallel imple-
mentations of logic programming languages, specify the overhead of the parallel
model compared to sequential execution. Without this information, the speedup
numbers based on simple applications are less meaningful.

The main problems that are cited in the implementations of parallel logic
programming languages is the overhead of goal suspension, activation, context
switching, task creation, and in general the complexity of the parallel model.
Other issues include load balancing, overhead of inter-processor communication
etc. In this thesis, we address these issues and suggest ways to reduce the over-
head of goal management in FCP, which includes goal spawning, goal termina-
tion, suspension activation and goal (context) switching. Goal management is
one aspect of the special-purpose FCP processor proposed.

55

56

CHAPTER 4

Implementations of FCP

In this chapter we describe the following previously proposed implementations
of FCP on existing general-purpose architectures:

[y

. Sequential Interpreter

b3

. Sequential Abstract Machine

(2]

. Distributed Interpreter

W

. Distributed Abstract Machine

The first two represent sequential control models, written in Pascal and C respec-
tively, that execute on general-purpose uniprocessors. The latter two represent
parallel control models for the execution of FCP in a distributed environment.
The distributed interpreter is written in Occam and its execution on a system
of Transputers is simmulated. The distributed abstract machine is emulated in
C and implemented on the Hypercube. Both distributed implementations are
defined as extensions of the sequential execution models. For each implementa-
tion we describe the run time environment and the control algorithms. Where
available, we also discuss the preliminary performance evaluations and reported
implementation problems.

4.1 FCP Sequential Interpreter Implementation

An interpreter-based implementation of FCP is described in [Mier84]. It is
composed of two levels. The lower level consists of an interpreter of the language
kernel, written in Pascal, and the higher level consists of a boot, tokenizer, parser
and other programs written in FCP that define the language support and user
interface. In the following section we briefly discuss only the lower level since it
directly led to the development of the compiler-based implementation described
in Section 4.2 .

57

FCP Socuros M

transiation

Iinterpretation

| FCP interpreter E
I exweocoutian
Host Machine E

Figure 4.1: FCP Program Interpretation

Program Representation

Figure 4.1 symbolically represents the interpreter level of program execution.
FCP source programs are translated to a high-level representation and then sym-
bolically interpreted on the host machine. The program is represented as a list
of procedures where each procedure is a list of clauses. A clause is represented
as a structure with three arguments denoting the clause-head, clause guard and
clause-body.

Run Time Environment

The run-time environment consists of a heap, a Trail Stack (TS), a2 Suspension
Variable Table (SVT), a Functor Table (FT) and a String Table (ST), as depicted
in Figure 4.2. The heap is implemented as an array of tagged words. It is used
for storing all program terms, that is, structures, lists, constants, references and
variables, and also for storing programs and the program control structures.
Memory for program execution is allocated during a clause-try from the top of
the heap using the HP pointer. The HB pointer marks the top of the heap prior
to the clause-try. It is used for garbage collecting the top of the heap during
shallow backtracking. That is, when a clause-try fails, the top of the heap is
reclaimed by assigning HB to HP. When the end of the heap is reached, a stop-
and-copy garbage collection algorithm is used to reclaim unused data structures
only in the heap. An FCP program is stored as a program data structure on the

58

TS SVT FT ST

-
N
o HB HP Max
Program Data, Not Reclaimed
Programs, during GC

Control,

Figure 4.2: FCP Interpreter Run-Time Environment

Heap.

Two types of program control structures are also allocated on the heap: goal
records and suspension records. A goal record contains a pointer to a goal,
a pointer to the stored program, and a pointer to the next goal record. The
set of active goals ready for reduction is managed as a queue of goal records.
The pointers QF and QB denote the front and end of the active goal queue. In
addition, a goal free list pointer GFL is used to link discarded goal records after
the goal is reduced.

Suspension records linked in suspension lists are used to implement the goal
suspension and activation mechanisms. The suspension list starts in the variable
on which the goal suspends on. The suspension records are collected onto the
suspension free list SFL upon goal activation.

TS is used to store changes to the program environment during a clause-try.
Each entry in the stack consists of a variable address and previous value. The
variable value is either a null value if the variable was previously uninstantiated,
or a pomnter to a suspension record. If the outcome of the clause-try is fail or
suspend, the entries in TS are used to restore the program environment to the
state prior to the clause-try. If the outcome is commii, then TS is used to access
suspension record pointers and activate suspended goals.

SVT is used during a clause-try to store addresses of variables on which a
goal may suspend. In case of a clause-try failure or commit, the table is reset.

59

While (Q_not_empty)
Goal = deq_active_q
Try = Reduce(Goal)
switch{Try)
case: commit
activate_now_gaols|
spawn_clause body
case: suspend
suspend(Goal)
case: fail
report failure

Main Control Loop

Figure 4.3: Goal Record Selection

Only in case of a goal suspension are the entries in the table used to implement
the goal suspension mechanism.

FT is used as a hash table for the access of functors by name and arity. The
stored values represent entries into the ST, which stores all program strings.

Interpreter Control

The active set of goals in the FCP interpreter implementation is represented
using a queue denoted by the QF and QB pointers, as shown in Figure 4.3.
Selecting the next goal for reduction consists of accessing the front of the queue,
removing the goal and updating the queue pointer.

Goal reduction consists of a series of clause-tries performed in textual order,
as shown in Figure 4.4. A single clause-try is implemented as a function call
that returns either true (if it succeeds) or false (if it fails or suspends). For each
pair of arguments in the clause-try, a unify(goal_arg,clause_arg) function call is
made that also evaluates to true or false. Goal-head unification succeeds if all
the individual argument unifications evaluate to true, otherwise it fails.

60

Goal Record Calling Goal

reduce
Goal Reduction Control

clause(g(...),guard1 ,body1)
clause(g(...).guard2,body2)

; for_each_clause (1 < j < n)
3:| clause(g{...),guard3, body3)

clause_try(g(...),clausae(j))
if commit then

. return{commit,body j)
. if (SVT not Empty)
. return(suspend)

N:| clause(g(...),guardN,bodyN) §{ | efse return(tail)

Figure 4.4: Clause-Tries in Textual Order

4.1.1 FCP Interpreter Characteristics

The above described interpreter represents the first implementation of FCP
on a general-purpose machine. The data structures and control mechanisms de-
fined in the interpreter implementation, as well as the top level user support were
fundamental for the design of the compiler implementation discussed in Section
4.2. The main motivation to develop a compiler-based architecture was the inad-
equate performance of the FCP interpreter implementation and the potential for
increased performance a compiler may provide. A detailed performance analysis
of the FCP interpreter was not performed; the only performance related result
available quoted an execution rate of 386 Logical Inferences Per Second (LIPS)
for the interpreter execution of the naive reverse(100) program running on the
VAX 11/750 machine. By dividing the FCP interpreter level into a sequence of
primitive operations, a wide range of compiler optimization techniques become
available. These are discussed in following section.

4.2 FCP Sequential Abstract Machine Implementation

The compiler-based sequential abstract machine for the execution of FCP
[Hour86], resulted directly from the FCP interpreter discussed in the previous
section. To understand the continued process towards compilation, let us recall
the level at which FCP programs were interpreted. That is, FCP programs were
translated into a high-level clausal representation with the interpretation algo-

61

transiation

compilation

SAM
Instructionsy

execulion

. '!-;lg-h—Lc:ul'
' Program \‘
— ‘_Form___ -

interpretation

execution

| SAM Emuiator)|

emulation

Host Machina Host Machine

Figure 4.5: Interpreter and Compiler Oriented Machine Implementation

rithm executing at the clause-try level. Therefore, clause-head unification was
interpreted and not divided into a set of primitive operations. It is in this direc-
tion that the compiler-oriented implementation extends the translation process
to a level closer to the general-purpose host machine. In Figure 4.5 we show
the continued process of FCP translation by placing the compiler target machine
level below the interpretation level and closer to the physical machine level.

Therefore, the FCP sequential abstract machine is based on the following two
features:
e The interpreter run-time architecture and control form the basis for the

compiler-oriented implementation.

o Program representation, clause selection and clause-level interpretation are
replaced by abstract machine instructions similar to the Prolog abstract
machine instructions defined by Warren [Warr83].

We now describe the abstract machine run-time environment followed by the
abstract machine instructions and the compiled program representation.

Run-Time Environment

The FCP abstract machine run-time environment is shown in Figure 4.6. It
is a slightly modified version of the FCP interpreter environment. By allowing

62

Registers
global reduction clause-try

E =N] |]

HP.HB,OF,QB,GFL,SFL CG,TS.PC AP.STP FL,TRP A, 5P M, Xi

- Heap ’_TS SVT
i

o HB HP Max

Program Dazta, Not Reclaimed

Programs, during GC

Control.

Figure 4.6: FCP Abstract Machine Run-Time Environment

string data structures to be represented on the Heap, FT and ST are eliminated
as special-purpose areas. Also, a goal record is redefined to include the goal
arguments explicitly, instead of pointing to a goal representation. The most im-
portant addition to the run-time environment is the notion of abstract machine
registers that denote the abstract machine state and which are used by the ab-

stract machine instructions. The following three functional sets of registers are
defined:

¢ Global Registers: HB, HP, QF, QB, GFL, SFL
¢ Goal Reduction Registers: CG, TS, PC, AP, STP

o Clause-try Registers: FL, TRP, A, M, SP, X;

The global registers are used for Heap management in the same way as it
was described in the FCP interpreter. During a goal reduction the current goal
pointer is stored in CG and the current program counter in PC. To prevent an
infinitely recursive goal from depriving other goals of execution time, a time slice
is associated with each recursive goal reduction. The time slice value is stored in
TS and is decremented at the end of each iteration. If the time slice is exhausted,
a goal switch is induced and a new goal is selected for reduction, while the current
goal is placed at the end of the active queue. The value of the time slice can be
varied. During goal activation, a pointer to the activation list is stored in AP,

63

and during a clause-try STP denotes the next entry in SVT for storing suspension
variable pointers.

During a clause-try FL stores the Failure Label used for selecting the next
clause in case of clause-try fail or suspend. The Trail Stack Pointer TRP denotes
the top of Trail Stack, A keeps the goal argument pointer index, SP the struc-
ture pointer index used during unification and M stores the unification mode of
operation. The X; registers denote a set of temporary registers that can be used
by the abstract machine compiler.

4.2.1 Abstract Machine Instructions

The FCP sequential abstract machine instructions are based on the WAM
instruction set for Prolog. They are grouped into the following categories:

¢ Indexing Instructions

Clause-Head Unification Instructions

Guard Instructions

Argument Creation Instructions

o Goal Management Instructions

The main difference between the instruction set of the FCP abstract machine and
the WAM instructions is the addition of goal management instructions as well as
the modification of unification instructions to handle read-only variables. This
type of unification is also referred to as read-only unification. We now briefly
review only the use of the abstract machine instruction groups. A detailed list
of the abstract machine instructions can be found in [Hour86].

Indexing

Indexing instructions are used to select a clause during a goal reduction. The
try_me_else(Label) instruction precedes a clause-try sequence of instructions and
specifies the address of the next clause-try. The Label value is stored in the
FL register during clause-try execution. If the current clause-try fails, the next
clause-try denoted by the FL register is selected.

64

Clause-Head Unification

Two types of abstract instructions are used during goal-head unification: get
and unify instructions. The get instructions define the structure of the clause-
head argument and are thus used only at the top level of argument unification.
Subsequent nestings of argument untfications are encoded using the unify instruc-
tions. For example, to match a clause-head that has n arguments with a calling
goal, the get instruction type will be used n times. However, for each argument,
the matching of nested structures is performed with the unify type of instructions.

It should be pointed out that we refer to the get and unify instructions as types
of instructions. That is, they denote a group of instructions that can be tailored
for a specific type of argument. For example, the get instruction type includes
instructions such as: get_variable(X), get_list(X) etc. Besides the treatment of
read-only variables, these instructions are the same as the WAM instructions.

Guard Calls

The call(Arg,Index) abstract instruction represents a function call to a pre-
defined primitive operation used only in the clause guard. The guard call is
identified using Index. Arg denotes the arguments of the function cail.

Argument Creation

After a clause-try commits, the arguments of the body goals are created using
two types of instructions: put and unify. The use of these instructions is similar
to the use of get and unify instructions in the clause-head unification. That is,
the put instructions are used to form the top level structure of the body goal.
Successive put instructions correspond to new goal arguments. For example, to
create n arguments of a body goal, the put instruction type will be used n times.
In between the put instructions the unify type of instructions are used to create
nested argument structures.

Goal Management

Five goal management instructions are defined in the FCP abstract machine:
commit, spawn(Goal), execute(Goal), halt and suspend. The commit instruction

65

denotes the end of a successful clause-try and consists of activating goals using
the suspension pointers trailed in TS. The spawn({Goal) instruction allocates and
places a goal record onto the active goal queus. Subsequent put instructions
place the argument pointers into the goal record. The execute(Goal) instruction
is used to iterate, and execute Goal without selecting a new goal from the active
goal queue. The time slice is thus decremented to limit the number of iterations
and to force a goal switch if the time slice is exhausted. The halt instruction
marks the termination of the current goal, collects the goal record and schedules
a new goal from the active goal queue. Finally, the suspend instruction results in
the suspension of the current goal using the variables stored in SVT.

In the following section we describe how FCP programs are compiled to the
abstract machine level using the above defined instruction types and specific
mstructions.

4.2.2 FCP Abstract Machine and WAM

The FCP abstract machine was significantly influenced by the design of the
Prolog abstract machine (WAM) [Warr83]. General unification is implemented
using the same get, put and unify instructions extended to handle the unification

of read-only annotated variables [Hour86]. Several important features distinguish
the FCP abstract machine from WAM.

» Non-deterministic goal scheduling.
¢ Goal suspension and data flow activation.

¢ Heap storage model.

As a concurrent logic programming language intended for parallel processing,
the program resolvent is modeled as a set of non-deterministically scheduled goals,
much like processes in a multiprocessing system. In the FCP abstract machine,
a queue of goals is used instead of the stack-based control used in WAM.

To model inter-goal communication and synchronization, FCP and concur-
rent logic programming languages in general, define rules of suspension. A goal
suspends if there is insufficient data to perform successful goal-head unification
whereas the reduction may succeed when the data becomes available. In the
FCP abstract machine, goal suspension is implemented using suspension lists

66

Figure 4.7: Goal Suspension Mechanism

assoclated with each suspending variable. Data flow activation is implemented
by rescheduling the suspended goals when the suspending variables receive data
from other active goals. In Figure 4.7, we show goal p suspended on variable X
and goal q on variables X and Y. Suspension records are linked into suspension
lists if more than one goal is suspended on the same variable. Single activation
records per suspended goal prevent multiple activation of the same goal.

The third important feature that distinguishes the FCP abstract machine
from WAM is the storage model. FCP uses a heap-based model as opposed
to the stack-based model, to store both program and control structures. The
common heap is an essential part of the parallel programming model. It enables
the implementation of asynchronous inter-goal communication using dynamically
allocated logical variables as a continuous communication stream.

4.2.3 Program Representation

In the FCP abstract machine a program clause is stored on the Heap, rep-
resented as a sequence of abstract machine instructions. The assembled instruc-
tions represent the unfolding of the FCP clause-level interpreter execution, spe-
cialized according to the structure of the clause arguments. Since the structure of
the clause argumentsis known at compile time, it is possible to assemble abstract
machine instructions according to the clause arguments’ type.

For example, a clause-head with n arguments may be compiled to a sequence

67

FCP Source Program Structure
Programs Information

b

FCP Interpreter

P
Compller

L

(Evailuate

FCP Abstract Machine Instructions

Figure 4.8: FCP Abstract Machine Compiler: Evaluate Interpreter

of n unification instructions rather than having the single clause-try interpreter
perform the complete clause-try. Moreover, if one knows that the first two argu-
ments of the clause are a list and constant, there is no need to call the general uni-
fication algorithm. Instead, the specialized instructions get_list and get_constant
represent the same unification call partially evaluated according to the data types
known at compile time. In Figure 4.8 we show the continued transformation of
the source program using the interpreter algorithm partially evaluated with com-
pile time information about the program structure.

We now discuss the encoding of an FCP procedure followed by the represen-
tation of a single clause in the procedure.

Procedure Encoding

In Figure 4.9 we show the encoding of a procedure that consists of n clauses.
Each block of abstract machine instructions for a single clause is preceded by the
try_me_else(Label) instruction. If the last clause-try fails, the goal reduction will
suspend if the SVT is empty, otherwise an error message is generated.

Clause Encoding

In FCP, three types of clauses are distinguished, as shown in Figure 4.10,
for the general case of a predicate relation p. Let ¢; denote a set of predefined

68

try_me_sisa(L1)

clause 1

L1:
L2:
-
L J
try_me_woise(Ln)
Ln: clause n

suspand

Figure 4.9: FCP Procedure Encoding

p("') - glr---,ugn | true.
P(-+) = Gryennm | @1(-0).

P(oe) = g1yeenr | @1{i)yq2(c-0) e sgn(-0)-

Figure 4.10: FCP Clause Types

69

clause guard primitives, and let ¢, denote user defined predicate relations. The
first clause is called halting clause, the second iterating clause and the third is
referred to as spawning clause.

All clause types are compiled in the following way. First, a set of unify and get
instruction types denote clause-head unification. Following this, are the clanse
guard calls. If any of the above instructions fail, the clause at label FL is selected.
After a successful clause-try, the commit instruction denotes the clause-commit
phase of goal-reduction. This part of the clause level encoding with the abstract
machine instructions is common to all three clause types.

The halting clause type denotes a clause with no body. In this case, the
halt abstract instruction terminates the goal reduction. At this point, the goal
structures of the terminated goal may be collected.

For the iterating clause type, the arguments of the new goal are created using
a sequence of put and unify instructions. This is followed by an iterate(Goal)
instruction. This instruction is actually an optimization of the spawn instruction
used in the spawning clause type. That is, iterate assumes that the newly created
arguments reuse the existing goal record and thus execution continues with the
same goal record.

Spawning more than one goal in the the body of the committed clause is
encoded by successive put and unify instructions followed by spawn instructions.
The spawn instruction implements the scheduling of the newly created goal at the
end of the active goal queue. After the arguments of the last goal are spawned the
iterate instruction continues program execution with one of the newly spawned
goals. In Figure 4.11 we show the encoding of the three FCP clause types.

4.2.4 Performance of Abstract Machine Implementation

A preliminary evaluation of the program execution time was performed for
small FCP test applications executing on the VAX 11/750 host machine. For
example, the abstract machine implementation executed the natve reverse(100)
program at a rate of 2K LIPS, which is a six-fold improvement compared to the
interpreter implementation on the same host machine. A peak performance of
10K was estimated for the trivial case of the (p :- p.) iteration.

Even though a complete and thorough comparison of the two FCP sequential
implementations was not performed, in general it is expected of the FCP abstract

70

owt, =1 1 L even—Fyemamney
unify unifHantican
=l auma—ogrisarnd
o 11
guard_ca ovaluat 1oy
commit
put, put,
hatt wunify unify
nalting <f = =
- RUne * "
=i e of Iterate <
purt, iterating cladvse
wunify
bl

put,
unikfy
i I

v

Iterate q,

spaRwning clavee

Figure 4.11: Compiling FCP Clause Types

machine implementation to perform better than the FCP interpreter (as the
simple case of the naive reverse program may indicate). However, the real benefit
of a compiler based abstract machine implementation is the potential for compile
time analysis and optimizations that result in reduced program execution time.
One important compilation technique called Decision Tree Analysis, is described
in the following subsection.

4.2.5 Compiler Optimizations

A compiler for a subset of the FCP language is described in {Klig87]. The
main concept introduced is the method of Decision Tree Compilation. Compared
to the compilation approach used in the abstract machine implementation, the
main difference is how the clause-tries in the procedures are compiled.

Let us consider the representation of a procedure with C clauses shown in
Figure 4.12(a). The compiled program is stored as a sequence of clause-tries sep-
arated by the try_me_else(L) instruction (see Figure 4.9). Therefore, the clauses
are tried sequentially. Within a clause, the arguments are tested for unification,

71

R e b e
Fy goal{A1,A2, ... , An) :- Y goal(AI,t:, i o] AR) i-
goul(B‘.B!, - s BR) - goal{B1,p2, |.. ,(Bn) -
goali€C1,C2, ... , Cn) :- goal{C1,£2, |.. ,[Cn) :-
——
c . C
go-l(Dq,D2, w o DD} 3= goai{D1,p2, {.. ,{Dn} :-
v goal(E1,E2, ... , En) :- Y

a) O=Cxn b}

Figure 4.12: Decision Tree Compilation

again in a sequential manuer, this time from left to right. If we consider that
a procedure has C clauses and N arguments, then in the abstract machine, the
upper bound of the number of arguments tested for unification is equal to C X V.

As a result of the FCP programming style, one may note that, in a typical
procedure, it is common for the same argument to be in several clauses. Using
the abstract machine compilation approach, repetitious argument testing is per-
formed. Moreover, if two clauses differ in only one argument, and the first one
fails to match the calling goal, checking the same arguments of the next clanse
is redundant. It is quite clear that a compiler that performs inter clause-try
optimizations is required.

In the Decision Tree Compiler, the complete procedure is compiled to a deci-
sion tree where the first step is to check whether the first argument matches any
of the corresponding clauses. Since with the first test some of the clauses may
be eliminated from further checking, the following argument checks may involve
only a subset of the clauses. Finally, a committing clause is found within at most
N argument checks. The main advantage is that all of the argument data types
are known at compile time; therefore, the decision tree is formed at compile time
and used to implement clause-head unification.

The vertical rather than horizontal clause selection is represented in Figure
4.12(b). The effect is that with this approach, all of the clauses in the procedure
are concurrently performing a clause-try, rather than performing them sequen-
tially. The decision tree takes the format of an interleaved argument test and

72

multiway branch. The multiway branch depends on the number of different data
types defined.

One drawback of this compilation technique is that it may possibly generate
large code size. This is due to the potential for an ezplosion of decision tree
possibilities, that is, branches. However, in practice, preliminary measurements
using simple test programs indicate a potential for performance improvements

[KLigs7).

4.3 A Distributed Implementation of FCP

In this section we describe two distributed implementations of FCP. The first
is an extension of the FCP interpreter implementation described in Section 4.1
and the second is a compiler based distributed abstract machine implementation.
In both implementations it is assumed that the execution environment consists
of a set of parallel processors, each with only local memory and with direct com-
munication links to a small number of neighboring processors. For example, a
hypercube or a torus ring multiprocessor configuration would fit the above descrip-
tion. The main reason for considering a distributed system for the execution of
FCP was the long term ob jective to implement FCP on a very large and scalable
processing network. From this point of view, a shared-memory multiprocessor
architecture was considered unsuitable. Before we consider the two distributed
implementations of FCP, we first consider some common requirements.

Atomic Transactions

Since FCP is a committed-choice concurrent logic programming language with
atomic unification, the distributed implementation must support the capability of
atomic transactions across processor boundaries. In other words, since unification
in FCP is performed as an atomic operation all the data structures used during
a goal reduction must be exclusively accessed by the processor performing the
goal reduction.

Mutually exclusive access requires a processor locking capability at the data
structure level. Since the logical variable is the only data structure that can be
assigned a value, that is modified, locking must be performed at the level of
the logical variable. Together with the variable locking capability, a mechanism
for preventing multiple writers from getting into a dead-lock situation should be

73

Message Passing
Nelwork

Processor Processor Processor
1 N M
I L LR
Local ‘
Memory remote ref /’J

i

local ret

remote ref

Figure 4.13: Remote References in a Distributed Execution Environment

ensured.

Shared Data Structures

A mechanism for accessing non-local shared data must be integrated into the
FCP primitive operations. In both distributed implementations of FCP, a new
data type called remote reference, allows program data structures to be shared
by multiple processors, thus transcending the local memory boundaries and 1m-
plementing a global memory address space. The remote reference contains the
following information: remote reference tag RRef, remote processor identification
number PID and a remote processor memory address A. In Figure 4.13 we show
several remote references across multiple processors denoting the same logical
variable. One should note that in the distributed implementation there is always
only a single occurrence of a particular logical variable and all other occurrences
are local or remote references to the variable.

Distributed Control Algorithm

The FCP distributed implementation consists of a distributed run-time envi-
ronment and control mechanism that must ensure the same language semantics
as the single-processor implementation. The distributed control algorithm de-

74

fines the sequence of control steps taken when a remote reference is encountered
during execution. If a remote reference is not encountered, program execution
proceeds as in a single-processor implementation. However, since there is no
shared memory, when a remote reference is encountered the only way to access
the remote structure is to send a message to the referenced remote processor.
The processor receiving the message then responds accordingly thus maintaining
a distributed access control of shared data structures. We now consider first
the FCP distributed interpreter followed by the FCP distributed compiler based
implementation.

4.3.1 FCP Distributed Interpreter

A distributed FCP interpreter written in Occam is described [Bar-86]. Occam
was chosen with the intention of implementing FCP on a network of InMos Trans-
puter processors. The main control algorithm and the run-time environment of
the interpreter are defined as an extension of the FCP interpreter implementa-
tion described in Section 4.1. The main extension to the sequential run-time
environment are two message queues Qln and QOut used to buffer incoming and
outgoing messages. Since the processing of incomming messages may alter the
program data structures, this is performed between successive goal reductions so
as to ensure atomicity.

The FCP distributed unification control mechanism used in the interpreter
implementation represents the first version of the algorithm subsequently im-
proved. We therefore discuss some of the preliminary observations and per-
formance results of the interpreter implementation and describe the improved
control algorithm in Section 4.3.2.

4.3.1.1 Reported Preliminary Performance Results

Preliminary performance measurements of the FCP distributed interpreter
implementation, using small test applications, indicate small speed-up values.
For a 2x2 grid architecture a speed-up between 1 and 2 is reported, and for the
4x4 processor grid architecture a speed-up of 1 to 4.5 was obtained. The following
drawbacks of the distributed FCP interpreter implementation were cited as the
reasons for the poor performance:

75

o Idle Time. In most test applications the processor idle time was up to 30%
of the program execution time. The idle time is due to the communication
protocol.

e Communication Overhead. In all applications, the inter-processor com-
munication overhead was unacceptably high. In some cases the ratic of
reduction time versus communication time was equal to one, meaning that
50% of the execution time was spent performing operations related to inter-
Processor commuiication.

Some of the reported performance results may be explained by the inefficient
implementation of FCP in Occam. That is, Occam was the language used to
implement the FCP interpreter, with the intention of executing on a network of
Transputer machines. Since the actual Transputer machines were not available,
Occam was implemented on the Vax 11/750 machine. The sequential implemen-
tation of the FCP interpreter written in Occam executed 3 times slower than
the same interpreter written in Pascal. However, the distributed implementation
timing results were obtained by simulating execution time on the 2x2 and 4x4
grid processor architectures.

4.3.2 FCP Distributed Abstract Machine

A compiler based distributed abstract machine implementation of FCP, as
well as a prototype implementation on the ipSC Hypercube architecture, is de-
scribed in [Tayl89]. We now briefly describe only the main features of the dis-
tributed unification algorithm.

4.3.2.1 Distributed Unification Algorithm

If all data structures are local during goal reduction, the distributed unifica-
tion algorithm implements the single-processor abstract machine control mecha-
nism. Inter-processor messages are sent as a result of remote references to shared
data structures. Distributed unification may require either read or write access
to the remote data structure. For read access, no locking is necessary. However,
a write access request must lock the variable prior to the assignment. Moreover,
exclusive lock requests must be obtained for all data structures that are modified
during a goal reduction. The locks are released upon goal commit.

76

The FCP unification algorithm for the implementation of atomic transac-
tions in a distributed environment, is defined using Read, Value, Lock and Grant
messages. We describe how the messages are used in the following two scenarios:

¢ Read access to a remote reference

o Write access to a remote reference

Read-Remote Reference

The Read message is sent to the remote processor when an atternpt is made
to read the remote reference, that is, when goal reduction requires the value of a
data structure located at a remote processor. The response of the processor that
receives the Read message depends on the data type of the referenced structure.
If it is itself a remote reference, the message is forwarded to the new destination.
If the address referes to a ground term, the data structure is packed and sent
to the processor that originated the message. This is performed using the Value
message. However, if the referenced data is a variable, then a mechanism is
implemented to notify the requesting processor whenever the variable receives
a value. This is performed in the same way as a goal suspension. That is, a
broadcast note is enqueued onto the variable suspension queue. When some goal
reduction commits by assigning a value to the variable with the broadcast note,
a Value message is sent with the newly arrived data.

Write Remote Reference

A Lock message is sent when an attempt is made to write on a remote refer-
ence. This message requests exclusive access to the remote variable by attempt-
ing to lock it. In order to preveni dead-lock, processors are discriminated using
priority numbers. A Lock request from a high-priority processor is considered a
high-priority lock. In a way similar to the above read remote reference case, the
Lock message is forwarded if it referes to another remote reference, and a Value
message is returned if the referred term is ground.

The lock on a variable is immediately granted to a high-priority lock message
using the Grant message. If there were any goals suspended on the variable, these
goals are activated. The local variable is then converted to a remote reference,
and the processor that originated the Lock message converts the remote reference

77

to a variable. In this way, variable migration is implemented in order to bring
variables closer to processors that modify them.

In case a Lock message comes from a low-priority processor, the lock is granted
if the variable is unlocked. Otherwise, the lock is deferred. The deferred =~ -k
request is granted only when the higher-priority processor relinquishes its - ck
on the shared variable.

4.3.2.2 Preliminary Performance Results

The performance study of the distributed FCP implementation was performed
by executing five FCP benchmark programs and five selected program stereotypes
on a four dimensional (d-4) Hypercube multiprocessor. In summary, three of the
applications exhibited a speed-up between 9.4 and 12. The poor speedup of the
other two applications (less than 3.5) is attributed to “low granularity and poor
load balancing.”

Of the five selected stereotype program techniques, poor speed-up results are
also reported. Two of the programs showed performance degradation when exe-
cuted on two processors relative to the single processor implementation. Another
showed a performance degradation of 3.8 on the d-4 Hypercube architecture rel-
ative to a single-processor implementation. One of the reasons for the poor
performance is the overhead of locking shared data structures.

4.4 Summary

In this section we described four different implementations of FCP on general-
purpose machines. The FCP interpreter represents the first prototype implemen-
tation that evolved into the subsequent implementations. The sequential abstract
machine based on the abstract machine for Prolog opened the door to compiler
optimizations. For example, decision tree compilation may reduce the overhead
of unsuccessful clause-tries. Whereas the performance of the FCP interpreter
was several hundred LIPS for a naive program, the same program showed a
six-fold improvement in the abstract machine implementation. Even though a
performance analysis was not made, it is reasonable to assume that the abstract
machine implementation will outperform the interpreter by an order of magni-
tude. Further improvements are expected with the new compilation technique.

78

Two distributed implementations of FCP were described. The first is based
on the FCP interpreter and the second is based on the FCP abstract machine.
In both cases the implementors of the language, after performing preliminary
measurements, quote the overhead of communication as the main reason for the
poor performance of the distributed implementation. Even though the unification
algorithm described in [Tayl89] is claimed to be simple, the overhead of locking
required to maintain atomic transactions in a distributed system affects program
execution time significantly.

Therefore, the degree of sharing amongst concurrent goals in an FCP program
is perhaps more suitable for a tightly coupled rather than loosely coupled mul-
tiprocessor system, at least at the size of the multiprocessor systems considered,
(note, large processing networks and large applications were never evaluated).
In this thesis we will consider an execution model and special-purpose architec-
tural support and evaluate the suitability of larger applications to make use of
parallelism in a shared memory environment.

79

80

CHAPTER 5

Special-Purpose Architectural Support: Design Approach and
Results of Analysis

This chapter is divided into six sections. In the first section, we define what
is meant by erchitectural support for FCP and we discuss the main motivation as
well as the scope of the support. In the second section we propose an approach
for the design of a special-purpose processor architecture based on previously
reported bottlenecks observed in existing implementations of FCP. The tradeoffs
involved in the design and analysis are pointed out. The analysis approach,
described in the third section, is based on empirical evaluation methods. For this
purpose we select benchmark programs that represent a specific system workolad.
The workload is described in the fourth section. The main emphasis of this
chapter is the performance modeling and analysis of potential implementation
bottlenecks, discussed in the fifth section. Finally, a general goal reduction model
is described in the sixth section. A multi-functional unit processor organization
is discussed as a way of providing special-purpose support for the implementation
of FCP. The specific processor architecture organization and execution model is
described in Chapter 6.

5.1 Architectural Support

As it was described in Chapter 4, current implementations of FCP execute on
general-purpose processors, either sequentially or distributed in a medium-scale
multiprocessor environment. The performance of these implementations does not
adequately meet the users’ needs. This may be accounted for in the following:

o The field of concurrent logic programming is a recent one, so that many is-
sues remain unsolved and unoptimized. For example, new compilation tech-
niques are currently being researched, promising significant performance
improvements. Improved algorithms for a distributed implementation is
another research topic under investigation.

81

¢ The execution model of concurrent logic programming languages is partic-
ularly unsuitable for emulation and execution on existing general-purpose
machines.

We are interested in analyzing ways of improving the performance of FCP
implementations in addition to the advances in compilation techniques and other
system software issues. We thus consider architectural support for FCP imple-
mentations. Architectural support for the execution of a high-level language
implementation like FCP, can be considered in either of the following two forms:

¢ General-purpose architectural support is an effective way of improving per-
formance using existing general-purpose components. For example, in-
creasing main memory size, adding a general-purpose memory cache, a
functional co-processor or upgrading the existing machine with a faster
general-purpose processor is considered general-purpose architectural sup-
port.

o Special-purpose architectural support involves the addition of components
that are specifically designed for the performance improvement of the target
language implementation. For example, a specialized cache with a cache-
policy or organization designed to match the specific characteristics of the
language is considered special-purpose support. In other words, the design
of special-purpose architectural support requires the characterization of
system behavior which is then used in the process of design.

Motivation

The main motivation to consider special-purpose architectural support for
FCP is the potential for improvements in system performance beyond what
is possible using general-purpose architectural support. The design of special-
purpose support 1s more expensive than using existing general-purpose support.
Therefore, a cost-effective improvement of system performance may involve a
combination of architectural supports according to a specific cost function. We
now discuss the design approach used to propose a special-purpose processor.

82

5.2 FCP Processor Design Approach

In this section we discuss some of the tradeoffs involved in designing a special-
purpose processor architecture for FCP. Instrumental in the design approach is
the process of system analysis. We describe our approach and compare it to
previously reported approaches.

5.2.1 From Operational Semantics to Machine

It seems only reasonable that the process of designing a special-purpose pro-
cessor for FCP should start from the language itself, that is, its semantics. In
particular, one could use the operational semantics of the language, defined as
an algorithm that describes the machine independent execution of programs in

that language. For the programming language FCP, the operational semantics
1s fully described in [Mier85].

Hypothesis Driven Design Approach

Ideally, starting from the operational semantics of a high-level language, one
method for the design of a processor architecture may be described as a search
in the space of architectural alternatives. At each step of the search, the change
in system cost and performance is evaluated according to a set of cost and per-
formance criteria. A cost-effective design is then represented as a region that
satisfies the set of performance and cost constraints originally defined as the
design goal.

In practice, however, the number of architectural alternatives even for a sim-
ple design is so large that any meaningful systematic approach is out of the
question. By limiting the number of alternatives to a small subset, the prospects
of a systematic design become more reasonable, but at the expense of finding
a cost-effective solution. We now discuss a less systematic but practical design
approach.

Using an existing implementation of FCP, our approach for the design of
special-purpose architectural support consists of first obtaining high-level pro-
gram characteristics of a specific system workload. Based on these results, a
hypothesis is made regarding the potential system bottleneck. A performance
model for the selected phenomenon is defined, evaluated and the hypothesis is

83

thus verified. This process is repeated for other suspected bottlenecks.

It is very important in this design approach that the dependency of the ob-
tained system parameters on the language implementation be well understood,
and where possible abstracted. The tradeoffs involved in obtaining the program
parameters are discussed in the following section.

5.3 FCP Implementation Analysis Tradeoffs

In Chapter 4 we reviewed the compiler-oriented FCP implementation based
on the emulation of a high-level abstract machine. However, the sequential ab-
stract machine represents only one implementation of the FCP operational se-
mantics. Alternative abstract machines with different data structures and in-
struction sets could be proposed. In Figure 5.1 we symbolically represent the
implementation of the FCP operational semantics using the sequential abstract
machine, whereas possible alternative abstract machines are depicted as shaded
boxes.

One way of executing FCP programs on existing real machines is to emulate
the abstract machine using an emulation language that executes on the host ma-
chine. The choice of the emulation language is usually made based on issues such
as portability, programmability and implementation efficiency. Which emulation
language is more suitable for emulating the high-level language abstract machine
is an important question, but is beyond the scope of this report. Also shown
in Figure 5.1 are some of the emulation language and physical machine choices
made in environments where the FCP language is used. Whereas in all cases
the emulation language is the same (C programming language), the host ma-
chines vary (VAX, SUN, CCI). The use of different emulation languages is also
represented using shaded bozes. Also shown in Figure 5.1 is the special-purpose
processor architecture as well as the execution model.

For a given system workload, one may define specific measurement tools to
obtain a set of parameters that will characterize the language execution at var-
ious implementation levels [Ferr89]. For example, the FCP interpreter could be
enhanced to capture the algorithmic behavior of the semantics. On the other
hand, hardware tools could be used to describe the memory reference behavior
or the processor register usage of the particular physical machine.

The choice at which level to characterize the implementation is a very impor-

84

Algorithm

Y

program. parameters {Source Program

Special
Purpose
Abstract
Machine

1

Sequential A.M.
Data Structures
+
Instructions

implementation parameters ¢

Special
Purpose
Processor

CCl

ulator

SUN 3/50

NN

VAX 780

Oparatlonal
Semasantics

l user

FCP
Programs

abs. machine
compiler
Abstract
Machine

emulation
language
Abs.Machine
Emulator
emulation
l language
compiler
Physical
Machine

Figure 5.1: FCP Implementation via Abstract Machine Emulation

85

tant one and depends on the design objective. A characterization of a language
implementation that does not take into account the purpose of the measure-
ments may result in erroneous design choices. We recognize the following two
objectives:

¢ Improvements to the specific implementation

¢ The design of a special-purpose implementation

To improve the system performance of a particular implementation using
either general-purpose or special-purpose architectural support, analysis is ap-
propriate at all levels of the implementation, since they are characteristic of the
specific execution environment. Other issues such as the availability or cost of
the measurement tools may be the deciding factor.

However, if the objective is to obtain implementation characteristics for the
purpose of designing a special-purpose processor, it is essential that they be
either abstracted from the current implementation or shown to be true in other
implementations. In the case of the compiler based implementation of FCP, one
would want to consider characteristics that are invariant to the selection of the
abstract machine implementation, emulation language and host machine.

For example, high-level program characteristics such as complexity, termina-
tion detection, dead-lock detection and prevention, non-determinism etc., could
be analyzed by symbolic interpretation using another high-level language imple-
mentation. To interpret and analyze logic programs, Prolog is often used.

Unfortunately, the number of features that can be captured at the symbolic
interpretation level is usually smaller than at a lower level. On the other hand,
as measurements are obtained at the lower level so they become more dependent
on the actual implementation. Therefore, the essence of the described tradeoff is
between the level of detail versus the generality of the results.

5.3.1 Proposed Implementation Level Analysis

The main motivation for the considered implementation analysis 1s the design
of a special-purpose processor for FCP. We propose an implementation analysis
and design approach based on the following two features:

86

e Hypothesis driven empirical characterization of program execution at the
abstract machine level.

¢ Low-level implementation characterization of the specific special-purpose
processor architecture for FCP.

The abstract machine characterization is independent of the selected emula-
tion language and the underlying host machine. However, it does depend on the
selected abstract machine data structures and defined abstract machine instruc-
tions. These results describe the high-level program behavior and are used to
suggest the top-level processor organization. Low-level implementation param-
eters such as timing measurements or memory reference behavior are captured
only after the complete specification of the processor, which includes the proces-
sor mstruction set.

Analyzing program execution at the sequential abstract machine level also
has the following advantages:
¢ All implementations of the FCP programming language currently in use

are based on the emulation of the sequential abstract machine.

o A full compiler to the abstract machine instructions is available.

A significant number of large FCP program applications is available in the
existing abstract machine environment.

A complete development environment, the Logix operating system, has
been developed using the proposed abstract machine organization.

As of yet, no other sequential abstract machine for FCP has been proposed.

To obtain FCP implementation characteristics at the abstract machine level,
a new instrumented version of the existing abstract machine emulator has been
created. This new emulator, called slogiz (statistics logix), contains extra data
structures such as tables and counters for the purpose of collecting statistics.
Logically, FCP programs execute as if executing in the original emulation envi-
ronment, only 3 to 5 times slower. All of the results presented in this thesis are
derived using slogiz.

In Figure 5.2 we show the approach used for program analysis at the abstract
machine level. Existing, FCP applications are used as benchmark programs.

87

FCP Source
Programs

Seguential A M.

Data Structures
+
Instructions

init_stats
print_stats(file)
f—

Slogix

Host Machine

Figure 5.2: FCP Program Analysis Approach

They are compiled, using the FCP abstract machine compiler, to abstract ma-
chine instructions. The compiled programs are then executed by the slogiz emula-
tor. Additional features are also introduced to aide program analysis. These are
the machine#request(init_stats) and the machine#request(print_stats,file) logix
commands. Before executing a program the machineg#request(init_stats) com-
mand initializes all the data structures used for statistics gathering. This is
necessary since Logix is also written as an FCP application and the effect of its
execution on statistics is also recorded unless initialization is performed prior to
a specific benchmark analysis. The machine#request(print_stats,file) is used to
store the results in file.

5.3.1.1 Previous Approaches

Profiling Logix with gprof

An attempt to characterize FCP program execution has been proposed in
[Gino87]. The motivation for the analysis was similar to ours, that is, the design
of a special-purpose processor architecture. However, in this approach, program
execution is analyzed at the host machine level using existing profiling tools of

88

the emulation language and the operating system. Specifically, the Unix gprof
is used to determine time consuming events in the language emulator. This
approach suffers from the following drawbacks:

¢ The program execution analysis is dependent on the emulation language.
For example the results may differ depending on whether C or Pascal is
used.

¢ The program execution analysis is dependent on the host machine. Versions
of the emulator exist for the Vax, CCI, SUN ...

¢ The program execution analysis is dependent on the implementation of the
emulation language on the host machine. For example, the results may
differ depending on the emulation language compiler used.

o The programexecution analysis results depend on the use of the emulation
language. Whether a macro rather than a function call is used may alter
program characteristics.

¢ Using timing facilities provided by an operating system commonly incur a
margin of error. If the profiling analysis is used to repeatedly evaluate the
duration of an event that is of the same order of magnitude as the incurred
error, the accumulated error may be too high.

In other words, this analysis approach may be suitable to capture the char-
acteristics of the specific implementation (for example the emulation language
C was used and the host machine was the VAX) but not for the design of a
special-purpose processor. Moreover, the measuring tools used in this approach
do not allow for an accurate characterization of a specific implementation.

Applying the profiling technique on the Logix operating system using the
above described approach, it is claimed that 22% of the execution time is spent
dereferencing, 17% copying, and 15% of the execution time performing type
identification. These results are then used as a basis for the design of specialized
hardware support for FCP, described in [Hars88].

Performance Analysis of FGHC on the Sequent

In [Tick88], a detailed analysis of FGHC execution in a parallel programming
environment, namely the Sequent multiprocessor architecture is described. The

39

main motivation for the performance analysis is to compare the execution of an
AND-parallel, committed-choice logic programming language like FGHC with
the execution of an uncommitted-choice OR-parallel logic programming language
Aurora, running on the same multiprocessor machine. The program analysis is
performed at both the abstract machine level, called high-level analysis, and the
physical machine level referred to as the low-level analysis. In addition, the
raw timings of the two parallel systems are compared using selected benchmark
programs.

Our work differs from that presented by Tick in the following way. Since the
concern in [Tick88] is to characterize and optimize execution of a specific execu-
tion model and compare it to another model, most of the analysis is appropriately
performed at the physical machine level. According to the classification earlier
described, this type of analysis is concerned with special-purpose support for
an implementation on a general-purpose machine. Since we are concerned with
characterizing FCP program execution for the sake of proposing a special-purpose
processor architecture, it is itnportant that the analysis be machine independent.
Therefore, all of our analysis is at the abstract machine level and not the physi-
cal machine level. To extrapolate low-level machine program execution analysis
from one machine to another requires justification. This is particularly true if a
new processor architecture is under consideration.

5.4 Empirical Analysis of a Specific System Workload

The FCP implementation characteristics used in this thesis are derived empir-
ically by executing FCP benchmark programs. The selection of sample programs
for the purpose of performance analysis is a critical step. We now characterize
the system workload used for empirical performance analysis.

System’s Development Workload

For the FCP program analysis we have selected 7 large FCP programming
applications. For each application, the following holds:

e All of the programs are authentic, unaliered, FCP programs that were
not optimized for the purpose of benchmarking. Also, the programs were
written by various programmers, thus exhibiting a variety of programming

90

styles.

¢ Since program analysis was the main motive for benchmarking, the pro-
grams were not selected for their performance, but rather for their charac-
teristic behavior.

e All FCP programs are real applications used repeatedly within the Logix
development environment.

o All of the selected FCP programs are large in terms of the number of
high-level source code lines. Also, they all run for several hours. This is
important in order to get a reasonable average of program behavior.

o The selected programs exhibit considerable program complexity and make
use of programming techniques representative of FCP.

Therefore, the selected programs are representative of the FCP programming
environment currently under development. If there is one drawback of the se-
lected programs, it is that they are specific of a single development environment.
That is, due to the lack of a large spectrum of user applications, the selected
programs are limited in their scope of application to system applications for pro-
gram development. We thus refer to the selected FCP programs as characteristic
of a System’s Development Workload. Other workloads specific of alternative
application areas may be defined and may thus exhibit different behavior.

5.4.1 Selected FCP Benchmarks

In Table 5.1 we show some of the features of the selected FCP benchmark
programs. Some applications were written in FCP using user annotations of
variables in order to model inter-goal communication and synchronization; we
denote these as written in fcp(?). More recently, applications have been written
using input unification in the guard to model goal suspension; we denote these
applications as fep(:).

Also shown in Table 5.1 are the modes of execution of the benchmark pro-
grams under the Logix system. That is, a program can execute in trust or
interpret mode. In trust mode, program execution proceeds as if each goal re-
duction may either succeed or suspend. A failure in this mode leads to program
failure. In order to analyze program execution and detect failure, the program
must be compiled using the interpret mode declaration. For comparison, one of

91

Info FCP Benchmark Programs
Comp. Sim1l Sim2 | Debug | Solver | Distr. Logix
Lang. fep(?) fep(?) fep(?) fep(:) | fep(?) | fep(:) fep(7?)
Mode trust trust interp trust | interp | interp trust
Lines 3885 2066 2066 2000 676 2097 16000
Red. || 7075380 | 3009280 | 7722376 | 1593286 | 409075 | 259283 | 1481900

Table 5.1: FCP Benchmark Information

the benchmark programs (the FCP Processor Simulator) is benchmarked in both
trust and interpret mode. A program running under interpret mode generally
runs 3 to 5 times slower than in trust mode.

One should note that the selected FCP programs are all large. This is quite
important, and is one of the main drawbacks of previously used benchmarks, as
we will discuss shortly. The smallest application is the program analysis called
Solver, which is 676 lines of FCP code. As far as the number of goal reductions
performed, we see that the average number is of the order of several million.

We now briefly describe each of the used FCP benchmark programs. The
program source is not listed here due to their large size, but can be requested
from the corresponding authors, as shown in Table 5.1.

FCP Compiler

The FCP Compiler consists of 3885 lines of FCP code [Hour86|. It translates
FCP source code to the sequential abstract machine instructions. The bench-

mark program consists of compiling the complete Logix Operating system which
consists of 10000 lines of FCP code divided into 12 different modules.

FCP Processor Simulator

The FCP Processor simulator consists of 2066 lines of source code. The pro-
gram specifies the architecture of the special-purpose processor for the execution
of FCP, described in this thesis. The processor counsists of concurrent functional
units that cooperatively perform goal reduction. A full description of the pro-
posed special-purpose FCP processor is described in Chapters 6 and 7. The
actual benchmark consists of running the processor simulator as it interprets a

92

hand-compiled version of small application programs.

FCP Debugger

The FCP Debugger is a program application used for debugging FCP pro-
grams. It is written as an FCP meta-interpreter, and consists of over 2000 lines

of FCP code.

OR-Parallel Prolog Solver

The OR-parallel Prolog solver performs an abstract interpretation of a pro-
gram with a goal. The algorithm itself is not practical for application to larger
programs but is the basis for flow analysis, mode analysis and type inference.
The algorithm computes the least fixed point of a function, based on the OLDT
proof strategy of Tamaki and Sato.

FCP Distributed FCP Implementation Simulator

The FCP Distributed Implementation Simulator simulates the execution of
FCP over a system of distributed processing nodes. FCP programs are annotated
with inter-processor communication pragmas. The actual benchmark program
executes the reverse of a list on a ring network of 20 processors.

Logix Session

One of the most commonly used applications of FCP is the Logix operating
system and development environment. It consists of over 10000 lines of FCP code
written by various programmers. To benchmark the use of the Logix operating
system, a script was kept of a “typical” system workload. This consisted of a
sequence of compilations, program runs with errors, debugging sessions, type
checking and so on.

93

Sysiem Prototypes
and Simulators

FCP FCp
Processor Processor

System
Development
Toois

Systolle N

Statistics

Figure 5.3: System’s Development Workload Session

5.4.2 A Workload Session

A typical System’s Development Workload session is described as follows.
FCP programs for system prototyping and simulation are developed under the
Logiz development system. Two different simulation environments are being
modeled. One is a concurrent, multi-functional unit environment for the exe-
cution of FCP called Simulator!, and the second is a simulator of a distributed
FCP implementation executing on a 20-node ring architecture, called Distribute.
A second version of the Simulatorl program called Simulator?2 (compiled in inter-
pret mode) is debugged using the Debugger program. All programs are compiled
using the FCP Compiler. Program flow analysis using abstract interpretation is
performed using the Solver program.

The 7 selected FCP programs and their use in the System’s Development
Workload session is shown in Figure 5.3. The characteristics of the programs
are equally weighed even though they vary in size and execution time. This is
because we view them as representing different types of workloads, and we are
interested in their average.

Also shown in Figure 5.3 is the use of other possible workloads besides the
System’s Development Workload. For example, the use of FCP in modeling

94

communication protocols and distributed algorithms has been suggested [Shaf84]
[Hell83].

5.4.3 Previously Used Benchmarks

The benchmark programs used in this thesis differ significantly from the pre-
viously used benchmarks. In [Gino87}, small applications such as string append,
string reverse and quicksort are used as well as the larger parse program. The
largest program size was 260 lines of FCP code. These programs are not repre-
sentative of a specific FCP application domain.

In [Tick88], larger program applications are used. However, the author cor-
rectly acknowledges that the main drawback of the analysis is the use of "small
symbolic manipulation problems”. On the other hand, the benchmarks were
used as a means of comparing two different language architectures, and not so
much to characterize a single language tmplementation. Therefore, the relative
comparison makes the analysis more meaningful and useful.

Another set of benchmarks was used in [Tayl89] to evaluate the distributed
unification algorithm described in Chapter 4. Five program stereotypes were
used as characteristic of a particular program behavior. These programs are
small and are used to model typical inter-process communication patterns and
not overall system performance.

a5

5.5 Analytic Performance Evaluation of Hypothesized Bottlenecks

We now consider the following potential implementation bottlenecks, as re-
ported by various researchers:

e Overhead of Clause Selection
o Frequent Goal Suspension and Activation

¢ Pointer Dereferencing

o Clause Trailing

For each case, we define and analyze a performance model for a specific range of
system parameter values. The model assumes a sequential execution environment
for FCP based on the abstract machine described in Chapter 4. Before we discuss
each of the reported bottlenecks, we first describe the general approach used in
the process of analytic modeling and performance analysis.

5.5.1 Analytic Performance Models

One of the objectives and benefits of using analytic models for performance
evaluation is the ability to inspect a wide space of performance characteristics
using analytic means. To do so empirically requires the execution of numerous
and lengthy simulation sessions, thus making this approach impractical. For the
analytic model to be useful, one must be able to vary the system parameter values
and evaluate their effect on system performance in a computationally tractable
way.

In Figure 5.4 we symbolically denote the performance model as a set of func-
tions or expressions defined over the domain of system parameters. We also show
that the system parameters belong to two distinct groups: one group character-
izes implementation-dependent parameters that depend on system organization
or architecture and the other group characterizes implementation-independent
program parameters. By separating the two sets of parameters one is free to in-
dependently abstract program behavior in terms of the proposed parameters. In
general, characterizing program behavior is very difficult. However, we are con-
cerned with modeling only specific aspects of program execution, and therefore

96

range of values

Empiricall Implementation
Obtainez’ ;Jaia;erer Dependent
Parameters

Values
\T/ System

Performance
Program Analytic Measure
Parameters Performance [
Model

Figure 5.4: Analytic Performance Models

are able to characterize program behavior in terms of a few well defined program
parameters.

We present the performance analysis in the following three steps.

1. Performance Measure: We define a common system performance mea-
sure for all the suspected implementation bottlenecks. It is important to
precisely identify and define the performance measure since it determines
what to model and evaluate during the performance analysis.

2. Performance Model: A performance model defines a relation between
the performance measure and other parameters in the model. We group
the parameters into program dependent and implementation dependent pa-
rameters. Since we are interested in a machine independent performance
analysis, we consider the machine dependent parameters as variables in the
model.

3. Performance Model Analysis: The analysis of the performance model
consists of inspecting the range of performance measure values for a spe-
cific range of program parameter values and machine dependent parameter
values. In our analysis, the program parameters are obtained using the
slogiz system executing the previously defined benchmark programs.

97

General Performance Measure

Let 75 represent the average execution time of function f during goal reduction
in a specific sequential implementation of FCP. Let ?, denote the average exe-
cution time of the remaining part of goal reduction in the same implementation
environment. Therefore, the average execution time of a goal reduction 7,.q is
represented as:

tred = f_f + i, (5.1)

We now define the relative execution time of function f as:

i
Oy = =L (5.2)
tred
that is,
1
O = - (5.3)
1+
where #; # 0.

We specifically do not refer to the relative ezecution time of function f as
the overhead associated with the function execution since it is not clear at this
stage what are the practical limitations in the function implementation, and
what is truly an overhead. What we can say, is that the relative execution time
corresponds to the overhead of function execution with respect to an idealized
system in which the average function execution time is t; = ¢, where ¢ — 0. We
now consider each of the previously hypothesized implementation bottlenecks.

5.5.2 Redundant Clause Selection

In the sequential abstract machine, all clause-tries are performed sequen-
tially, in textual order. We refer to all clause-tries that fail and all clause-tries
that suspend but do not result in goal suspension as redundant clause-tries. In
other words, the number of redundant clause-tries reflects the difference between
the clause-selection strategy used in the program and a perfect clause-selection
algorithm. We now define the redundant clause-try performance model and pa-
rameters, followed by the results of analysis.

98

5.5.2.1 Performance Model

Let us represent the average execution time of a goal reduction £,.4 as follows:
treda = FLNIEw + (1 = FLONLEL + 4, (5.4)

where N, represents the average number of clause-tries per goal reduction, F7,
represents the fraction of redundant clause-tries, ¥, the average clause-try execu-
tion time per clause-try, and 7, the average remaining goal reduction execution
time which includes goal suspension, activation, spawning and termination. Note
that the term N/T,, represents the average clause-try execution time per goal re-
duction. The relative execution time of redundant clause-tries is then represented

as:

1
Oct = = (5.5)
{(1-F ::)+N—:"7—
1 + youd 43
Let & denote the ratio: _
t
K= — (5.6)
I p
The performance parameter O, is now simplified to the following expression:
1

O = (5.7)

e SArT
14—

o
In this performance model, we consider the fraction of redundant clause-tries F,
a program parameter and « an implementation dependent variable. Note that «
represents the ratio of the total execution time of operations that are not part of
a clause-try, relative to the total clasue-try execution time.

To determine the fraction of redundant clause-tries, let CT denote the total
number of clause-tries, CS clause-suspensions, CF clause-failures and CR suc-
cessful clause-tries or reductions. The total number of clause tries CT is equal
to the sum of the clause failures CF, clause suspensions CS and reductions CR.
Since a clause suspension need not result in the suspension of the goal, we also
consider the total number of goal suspensions GS.

Let us now consider all clause-tries that lead to (goal) reduction and all clause-
suspensions that result in goal-suspension as useful clause-tries, and consider all
clause-tries that fail and all clause-suspensions that succeed, as redundant clause-
tries. We can now denote the total fraction of redundant clause-tries as:

CR &GS

Fa=1-(grtor

(5.8)

99

FCP Benchmark Programs

Compiler | Sim.1 | Sim.2 | Debug | Solver | Distr. { Logix
CT (109) 20.14 | 18.94 | 48.99| 7.46| 4.52| 2.59| 5.85
CR (10%) 7.07| 3.00| 772 1.59| 040| 025| 1.48
CF (10°) 10.65 | 3.58| 24.93| 294 379} 1.79| 2.84
CS (10°) 2.41 | 12.35} 16.33| 292 031| 054 1.52
GS (10°) 0.88 | 1.89| 2.51| 050| 0.05| 0.08] 0.30
& 0.35| 016 016 021| 009{ 01| 025
&= 053| 019} 051 039| 084] 069[0.49
& 012] 065| 033] 039| 0.07| 021} 0.26
&2 037 015 015| o0.17] 0.16]| 015| 0.20
g 0.04| 0.10| 005| 0.07| 001} 0.03] 0.05
Fr, 0.60| 0.74| 079{ 0.82 09| 087 069

Table 5.2: Clause-Try Statistics

where,
CT=CR+CS+CF (5.9)

We now discuss each of the above performance model parameters in turn.

5.5.2.2 Performance Model Parameters

Redundant Clause-Try Frequency, Fj,

ct

In Table 5.2 we show the total number of clause-tries (CT), clause-suspensions
(CS), clause-failures (CF) and successful clause-tries or reductions (CR) found
in the selected FCP programs. We also show the ratio of the successful clause-
reductions to the total number of clause tries (CR/CT), the rate of clause-try fail-
ures and suspensions per clause-try (CF/CT) and (CS/CT) respectively. Since
not all clause suspensions result in goal-suspension, (an alternative clause may
succeed), we show the ratio of real goal suspensions versus total clause suspen-

sion, (GS/CS).

The total number of redundant clause-tries shown in Table 5.2 ranges from
60% in the case of the Compiler to 90% in the Dist program. The average
value of redundant clause-tries is 77%. It is precisely this issue of the large
number of redundant clause-tries that is addressed in the work in [Klig88a} using
compilation techniques.

100

Fet,r

‘@ o8
Relative
Execution ‘0. 0.7
Time, ‘- o6
Oct
‘0- 0.5

Cc 0.1 0.2 0.2 040506070809 1 11
ir/te

Figure 5.5: Redundant Clause-Try Relative Execution Time

Performance Model Variables

A single performance model variable, s, is defined that represents the ratio
between remaining goal reduction time and the clause-try execution time. The
average clause-try execution time per goal reduction, denoted as N7, includes
all redundant clause-tries as well as clause-tries that lead to goal-commit or goal-
suspend.

5.5.2.3 Performance Model Analysis

The average fraction of redundant clause-tries obtained from Table 5.2 is F!, =
0.77. Since there are so many redundant clause-tries during a goal reduction, it
is reasonable to assume that the average clause-try execution time 7., is greater
than the average remaining goal reduction execution time %,, that is, 0 < x < 1.
In Figure 5.5 we show the relative execution time O for (0 < s < 1) and for
a set of cases where the fraction of redundant clause-tries is F, = 0.8 and also
for several cases where (0.5 < Fr, < 0.8).

For the case where F, = 0.8, the relative execution time of redundant clause-
tries ranges from 80% for x — 0 to 40% for x = 1. This is a significant amount
which should be reduced in a special-purpose implementation. The relative ex-
ecution time O can be reduced by reducing the average execution time of a
clause-try #,. This is possible using improved compilation techniques, as de-
scribed in Chapter 4.

101

Summary of Results

¢ We have defined a performance model that describes the relative execution
time of redundant clause-trying during goal reduction, O,,.

¢ In the selected benchmark programs, the average number of redundant
clause-tries is very high, that is, F, = 0.77

e Depending on the relative average weight of clause-tries 7., compared to
the average execution time of the remaining part of goal reduction %,, and
for a range of values 0 < & = N—;&; < 1, the relative execution time of
redundant clause-tries O,, ranges from 40% to more than 80% of program
execution time.

¢ Reducing the overhead of redundant clause-tries may be achieved using pro-
gram compilation techniques that may significantly improve goal reduction
performance. Therefore, rather than introducing special-purpose architec-
tural support to reduce the execution time of clause-tries, we consider this
optimization to be within the domain of compilation techniques.

5.5.3 Goal Suspension, Activation and Management

In [Fost87], the overhead of goal suspension and goal activation is labeled as
one of the possible factors resulting in degraded FCP performance on a single
processor. Goal suspension and activation is an implementation mechanism used
to capture the asynchronous inter-goal communication characteristic of FCP. It
1s suspected to create a bottleneck because of the complexity of the suspension
mechanism described in Chapter 4 and because of the frequency with which it
occurs.

More generally, goal suspension and activation represents one aspect of the
dynamic behavior of FCP goals. In addition, a goal may create new goals, ter-
minate execution or iterate. We refer to this dynamic behavior of goals as goal
management. In the following sections we define a performance model for the rel-
ative execution time of all goal management operations during a goal reduction.
We then describe the program and system parameters followed by the model
analysis and results.

102

5.5.3.1 Performance Model

Let ., denote the average clause-try execution time and N7, the average
number of clause-tries per goal reduction. Let us divide the remaining goal
reduction execution time into the average execution time of goal suspensions
and the average execution time of the clause-body, fyq,. We can represent the
average goal reduction execution time #,.4 as follows:

.fred = Ncrt-fct + FauspN:arzsusp + (1 - Fsuap)(N:d?com + ?body) (510)

where F,,,, denotes the frequency of goal suspensions, that is, the Average Sus-
pension Rate (ASR), N, the average number of variables a goal suspends on,
f,u,p represents the average goal suspension execution time per suspension vari-
able, NZ, the average number of activated goals per goal-commit and 7., the

average goal activation time per activated goal.

To represent the average execution time of a clause-body, let us consider
the following situation. For each goal that is reduced, its arguments had to be
created, that is, put into the goal record. N,, of the reduced goals were actually
spawned and N, of them terminated. Let 7, denote the average put time for
each argument of the created goal, 7,, represents the average spawn time and %,
represents the average halt time. The average clause-body execution time per
goal reduction fbody is represented as:

El”‘-”d!i' = N‘"’.??P + Fhfh + Fspfsp (5.11)
The complete expression for the average goal reduction time is now expressed as:

fred = N:tict + FsuspN:arEsusp + (1 - Fsusp)(N:ct:Ecom + Nargfp + Fh-fh + Fsp{sp) (5-12)

The relative execution time of goal management during goal reduction is
represented using the general expression described earlier. That is,

1
Ogm = 3 > 5.13
gm 1 + - Ngttct"'Narg(l—Fgu‘p)‘p - - ()
FauupN‘fa,.hu-p"I-(l—F.“,p)(N:cttccm+thh+F‘p‘.P)

In the above expression for the relative execution time of goal management
operations Oy, all execution times ?; are implementation dependent, whereas
the rest of the parameters are program dependent parameters obtained using the
slogiz system. To simplify the expression we make the following assumptions:

103

¢ F, = F,p. The frequency of goal creation is equal to the frequency of goal
termination. That is, we consider program completion when all the created
goals terminate.

¢ #, = 1,, = t. The execution time of a halt and spawn operation are both
equal to time units in a given implementation. Both operations manipu-
late the active goal queue and are of the same complexity.

® fousp = Lom = pt. The execution time of a goal suspension per suspended
variable is equal to the activation time per activated goal and both opera-
tions execute in ut units of time in a given implementation.

Let us further represent the average execution time of a clause-try as:

Ta=cxt (5.14)

and the average execution time of a put argument as:

t={xt (5.15)
The relative goal management execution time is now simplified to the following
expression:
1
Ogm = . eNT+Narg(1=Fausp)é (5.16)

FauapNt ot H(1—Fayap{(Nj 0 4i+2F5)

Therefore, 3 variable parameters are defined in the above expression: p represents
the execution time of suspend and commit relative to spawn and halt, ¢ denotes
the ratio of average clause-try execution time versus the spawn or halt execution
time and £ denotes the ratio of average put time per goal argument versus spawn
or halt execution time. In addition, the proposed performance model defines the
following 6 system parameters:

1. Fj represents the number of goal creations per goal reduction.

2. Fiup is the goal suspension rate per goal reduction (ASR).

3. N, represents the average number of clause-tries per goal reduction.

4. N, denotes the average number of goal arguments in a goal.

3. Ny, is the average number of suspension variables used for suspension.

6. N, represents the average number of goals activated at goal commit.

We now present measurements obtained using slogiz.

104

Goal: FCP Benchmark Programs
Compiler Sim.1 Sim.2 | Debug | Solver | Distr. Logix
N, 1890235 | 1133169 | 2501064 | 573869 | 156491 | 104799 | 477568

Ny 1887576 | 1131614 | 2499518 | 572005 | 155306 | 97184 | 474729
Nousp 887590 | 1892561 | 2513692 | 502659 | 52448 | 83315 306450
Noat 884945 | 1891022 | 2512160 | 500816 | 51277 | 75714 | 303625

Nred 7075380 | 3009280 | 7722376 | 1593286 | 409075 | 259283 | 1481900

Table 5.3: Goal Management Statistics

FCP Benchmark Programs

Compiler | Sim.1 | Sim.2 | Debug | Solver | Distr. | Logix
Fy 0.27 | 0.38 0.32 0.36 0.38 0.4 0.32
Fousp 0.1 0.6 0.33 0.32 0.13 0.3 0.21
AGM 0.8 2 1.29 1.3 1.3 1.2 1.1

Table 5.4: Goal Management Parameters

5.5.3.2 Performance Model Parameters

In table 5.3 we show the number of goals that are created and terminated
during the execution of the benchmark programs, as well as the total number of
performed goal reductions. Also shown are the number of goal suspensions and
activations.

Frequency of Goal Creations, F}

In table 5.4 we show the number of goal creations per goal reduction Fj,. It
ranges from 0.27 to 0.4, with the average value 0.35. The reciprocal value of
F}, denotes the number of goal reductions per created goal. On the average, a
goal performs between 2 to 4 reductions before it terminates, with the mean
value being 2.9 reductions. In terms of goal reductions, a typical goal in the FCP
programsis a light weight or shori-lived computation, that iterates on the average
3 reductions prior to termination. There is not a simple correlation between a
goal reduction and actual execution time, which is implementation dependent.

105

Average Goal Suspension Rate, F,,,,

The goal suspension rate F,,,,, varies more significantly amongst the selected
programs. The Compiler performs on the average 8 reductions prior to a geal
suspension and the Solver performs less than 2 reductions prior to suspensicn.
The average value is F,,, = 0.26 suspensions per reduction.

It is interesting to note that the benchmarks used in [Tick88] recorded a
significantly smaller number for F,,,,, that is, between 0 and 0.09. Whereas this
value is closer to the characteristic behavior of the Compiler program, on the
average the benchmarks that we use exhibit almost 3 times the maximum ASR
value found in Tick’s benchmarks. It is our observation that larger programs in
FCP exhibit a more complex behavior than the programs used in [Tick88], which
were also optimized for performance.

If we consider both the rate of goal suspension and activation as a single
parameter (approximately 2 X F,,,p), then on the average a goal suspends or ac-
tivates other goals every 1.5 reductions. In the selected programs, the maximum
rate corresponds to the Simulator! program, which suspends or activates goals
1.25 times per goal reduction. This implies that goals suspend more than once
before being reduced. Such a situation occurs when a goal that is suspended on
several vanables, receives data from just one variable. The goal is nevertheless
activated since there may exist a matching clause that results in goal reduction.

In Table 5.4 we also show the average goal management activity per goal
reduction, AGM, for all of the selected programs. It is interesting to see a sur-
prisingly similar behavior. For all of the programs except Simulator2, the value
for AGM is close to 1 and for Simulator2 it is equal to 2. That is, on the average,
a goal reduction will perform approximately one goal management operation per
reduction. We say “surprisingly”, since the selected programs represent a vari-
ety of program applications written by different programmers. Nevertheless, the
goal management characteristics are quite similar, thus indicating a consistent
behavior typical of large FCP programs and of the selected system’s workload.

Frequency of Clause-Tries, N7,

ci

In Table 5.2 used during the analysis of the redundant clause-try relative
execution time, one of the table entries was the average number of reductions
per clause-try, CR/CT. This is the reciprocal value of N7,. We note that the

106

Compiler

Simulatort

Simulator2
Debug

Soiver

(%)

Distribute

Logix

1 2 345 6 7 8 9 101112131
Number of Goal Arguments

4:.
U'i
O')
—
~

Figure 5.6: Distribution of the Number of Goal Arguments

number of clause-tries per goal reduction varies from 3 for the C’ompiler program
to 11 in the case of the Solver program. The average value is V), = 5.8.

Number of Goal Arguments, N,,.,

In Figure 5.6 we show the distribution of the number of goal arguments found
in the selected FCP benchmarks. The goal size indicates the number of program
arguments and does not include the program counter {or perhaps some other
system arguments that may be stored as part of a goal).

In Table 5.5 we also show the total number of allocated arguments, the max-
imum number of arguments found in a single goal and the average number of
arguments per created goal. From the distribution of the number of goal ar-
guments shown in Figure 5.6 we see that most of the goals have less than 7
arguments. Whereas the maximum number of goal arguments is between 14 and
17, these occur very rarely. The average size is quite similar in all of the selected
programs, and ranges from 4.5 to 5.1. The overall mean value for the number of
goal arguments is N,y = 4.7.

Goal Suspension Variables, N

var

In Figure 5.7 we show the distribution of the number of variables a goal
suspends on during program execution. The results reconfirm what was assumed
about flat committed choice languages, namely that they suspend mostly on very

107

FCP Benchmark Programs
Compiler | Sim1 | Sim2 | Debug | Solver | Distr. | Logix
Tot. (10°) 39.70 | 22.94 | 51.43 9.77 2.15 1.75 1 8.67
GT (10°) 7.96 | 5901023 209| 046 0.34| 1.78
Ave. 4.9 3.9 4.6 4.7 4.7 5.1 4.9
Max. 14 17 14 14 14 14 14

Table 5.5: Goal Arguments: Maximum, Average

214 ;
5o .\7 ®- Compiler
70
\ O- Simulator1
60 \
o0 . - Simuilator2
(%) -2\ 5

0 % ‘Q\ O- Debug
30 X -,
20 E Solver

\ 3 . .
20 5 . A _ - ~&~ Distribute

— e

ol g \§_§§§£§5x—§—x X- | ogix

2 3 4 5 6 7 8 9 10

Number of Variables at Clause-Suspend
Figure 5.7: Distribution of the Number of Suspension Variables

few variables. However, whereas it was assumed that most suspensions are on one
or two variables and less frequently three or more, only the Compiler program
exhibited this type of expected characteristic. The rest of the programs showed
a higher distribution for suspensions on 3 variables rather than 1 or 2.

This type of unezpected goal suspension characteristic can be explained as
follows. First, the behavior of goal suspension in large applications of flat com-
mitted choice languages was never precisely evaluated. Second, the observation
that suspension occurs usually for 1, 2 and less frequently 3 variables was usually
made on small applications that do not exhibit the program complexity typical of
large applications. And third, it is readily assumed that more advanced compila-
tion techniques can eliminate redundant suspensions on more variables. Whereas
this may be true, such compilation techniques are still a matter of research and
are not yet available.

In Table 5.6 we show the total number of variables that goals suspend on

108

FCP Benchmark Programs
Compiler Sim.1 Sim.2 | Debug | Solver | Distr. | Logix
Total 1228145 | 4340234 | 8281821 | 1590037 | 170657 | 235218 | 809585
Noyusp 886526 | 1891370 | 2512452 | 501468 | 51355 | 82122 | 305386

Ave. 1.4 2.3 3.3 3.1 3.3 2.8 2.5
Max. 8 9 12 14 14 10 15
(1-4) 97 91.9 87.2 34 87.7 86.9 88.8

Table 5.6: Suspending Variables at Suspend

during program execution as well as the total number of goal suspensions. Also
shown are the maximum and average number of variables a goal suspends on.
Note that the maximum value ranges from 8 variables for the Compiler to 15
variables for the Logiz operating system. Also, the average values are higher
than was expected. It ranges from 1.4 for the Compiler program to 3.3 for the
Solver program.

Therefore, based on the benchmarked FCP programs, one can see that goal
suspension occurs mainly on few variables. In Table 5.6 we show that the per
centage of all goal suspensions that occurred with 4 or less variables. This ranges
from 84% for the Debugger to 97% for the Compiler. However, the average
number of variables a goal suspends on is higher than expected. Closer to 3
variables than 1. The mean value for the number of suspension variables is
N _ =26.

var

Goal Activation Rate, N¢,

In Figure 5.8 we show the distribution of the number of activated goals at
clanse-commit. One should note that in most cases, a clause-commit will not
activate any goal. That is, either there were no new assignments made during
the clause-head unification and guard evaluation, or, if there were assignments
made, there were no goals suspended waiting for these values. Only in the case
of the Simulator! program were as few as 50% of the commits empty, whereas in
the other programs as many as 88% and more clause-commits did not activate
any goals.

From Table 5.7 we see that the average number of goals activated per non-
empty clause-commit is generally slightly over 1. However, the maximum number

109

80
805\ -@- Compiler
70 ‘O« Simulator1
60 1
(%) 500 ‘B- Simulator2
°! a0
Q. .0O-
30 : \\ Debug
20 E"“‘- ~_ - golver
1°'*——'§2§— - Distribute
0 4 x b
o 1 2 3 K- Logix

Activated Goals

Figure 5.8: Distribution of Goals Activated at Clause-Commit

Goals FCP Benchmark Programs

Compiler Sim.1 Sim.2 | Debug { Solver | Distr. | Logix
NZ, 884945 | 1891022 | 2512160 { 500816 | 51277 | 75714 | 858276
Ave. 1.1 1.3 1.3 1.2 1.1 1.2 1.2
Max. 192 12 23 10 4 20 142

Table 5.7: Activated Goals at Clause-Commit

of goals activated may be unexpectedly high. In the Logiz system benchmark the
maximum number of goals activated at any time was 142 and in the Compiler as
many as 192. This situation corresponds to data broadcasting where many goals
are waiting for the same data element.

Performance Model Variables

The three variables defined in the goal management performance model rep-
resent implementation dependent ratios of goal management operation execution
times and goal reduction operations of a clause-try, ¥, or argument creation ,,.
In general, the goal management operations: suspend, commit, spawn and halt
are high-level operations that are more complex and time consuming when exe-
cuted in a sequential, general-purpose environment. We now consider the range
of variable values that are reasonable for performance analysis.

¢ u: The suspend and commit operations are more complex than spawn and
halt. Therefore, the condition x > 1 is assumed. In the performance model

110

analysis we consider the range of values 1 < y < 20. This ratio depends on
such implementation issues such as the type of machine instructions.

o z: The average execution time of a clause-try is considered to be more
complex than the spawn and halt operations. During a clause-try, each
argument in the clause is matched with the arguments of a calling goal.
The arguments are previously dereferenced. The matching process called
unification may require variable trailing. These aspects of a clause-try are
modeled later in this chapter. We consider that the clause-try time is
greater than the time to perform a spawn or halt operation. Therefore, we
consider the case where ¢ > 1, and a range: 1 <e < 5.

e {: We assume that the halt and spawn operations are more complex than
the average execution time of a single argument put operation. We therefore
consider 0 < £ < 1.

5.5.3.3 Performance Model Analysis

In Figure 5.9 we show the relative execution time of goal management op-
erations Oy, during goal reduction. The average values for the performance
model system parameters are: F,,,, = 0.26, F), = 0.35, Ng,, = 4.7, N/, = 5.8,
Niar = 0.26 and NS, = 0.2. Four different cases for the relative execution time

are shown in Figure 5.9, for values £ € (0.25,0.5,0.75,1) (shown clockwise from
top left). In each diagram 1 < z < 5 is used as the function parameter.

Let us consider the execution of FCP in a general-purpose, sequential envi-
ronment for the System’s Development Workload defined by the set of system
parameter values. Let us further assume that the work-point is defined to be
in the middle of the defined performance variables range of values. That is, for
the workpoint defined by £ = 0.5, ¢ = 3 and u = 10, we note that the relative
execution time is 35%, that is, O, = 0.35.

It is assumed in the presented diagrams that the compilation technique is
the one used in the abstract machine which performs clause-selection in textual
order. Thus, the system parameter that denotes the number of clause-tries per
reduction is N, = 5.8. Using a better compilation technique, the clause-try
execution time is proportional to the number of arguments of the clause-try
rather than the product of the number of arguments and the number of clauses.

In Figure 5.10 we show the relative execution time of goal management exe-

111

tpitep x 025

tot/tsp

1 5 18 5 20
tsuspitap
| tpitsp = 1
" tetitap
l
(44
LEF
s
04
034
02
ITL "
o .
1 [} " 15 L]
tsuspitsp

' tpisp & 0.3
[+

tet/tep

] I
or e ot v
1] N, i o s N el
j Ogm o5 4
] e 4
3 u1
02} 1

111..
o
1 § 0 1% 0
tsuspitsp
. tpitap = 475
: wtitep
[H
. N\ "
ogm 8 \‘l/ —
04
&9
[H§
ﬂ'l'
o
1 3 10 15 1]
isuspiisp

Figure 5.9: Relative Execution Time Oy, NI, = 5.8

112

o N\ s tetiTap 1 lpitp = 85 tetitap
o }Y_A::::JEQ oy
or ot 1 —
N o Z
-2
W AR
e ‘
02
01
) . . 1 3 10 1]
1 5 " 15 0 tsuspitep
tsunpiisp
1 e u $ 1 wup = 073
- wetite o totitep
o N a [T} LY -
o e
08 = A
Ogm a3 -
ogm o5 py o
04 N W AN
% o .
0z
o wt '
1 H H 3 15 20

1 5 i3] 15 @

tauspits
tsuspilsp prise

Figure 5.10: Relative Execution Time Oy, NI, =1

cution, but this time for the program parameter N7, = 1. We notice a significant
increase in the relative execution time, for the same set of system parameter

values and for the workpoint defined by (¢ = 0.5, = 3, = 10). In this case,
Ogm = 0.7.

5.5.3.4 Goal Management Statistics Summary

We now summarize the above presented goal management statistics for the
selected large FCP programs.

¢ A performance model for the analysis of the relative execution time of
goal management operations, O, is defined. It consists of 6 program
parameters and 3 implementation dependent variables.

¢ The relative goal management execution time Oy, for a reasonably selected
working point characterizing a general-purpose processor implementation,

113

and for the specific system workload defined by the system parameter val-
ues, is very high, 35% .

¢ Using decision-tree compilation the overhead of clause-try is reduce: and
the relative goal management execution time is further pronounced.

¢ Therefore, architectural support for goal management operations is « high-
priority in the design of a special-purpose processor architecturc for the
execution of FCP.

In addition to the results of the performance model analysis, a number of
additional observations can be made regarding goal management operations in
general.

o The execution of large FCP programs such as compilers, simulators or de-
velopment systems (like the Logix operating system) result in the frequent
creation of concurrent, cooperating and communicating goals.

o Goals are light weight computations relative to the number of goal reduc-
tions. That is, the average life time of a goal is between 2 or 3 goal reduc-
tions.

® Due to the asynchronous nature of inter-goal communication, FCP goals
frequently suspend execution waiting for data to be communicated by an-
other goal. The average goal suspension rate (ASR) in the selected pro-
grams is 0.29. Goal suspension and activation occurred as often as 1.5
times per reduction. A note should be made that the ASR observed in the
selected workload almost 3 times larger than the suspension rate reported
in [Tick88].

¢ In almost 90% of the cases, a goal suspends on 4 or less variables. However,
the average number of variables a goal suspends on is N2 = 2.6.

var

¢ Suspended goals are activated only at clause-commit. Between 50-88% of
all clause-commits do not activate goals. In most cases, however, only a
single goal is placed onto the active goal queue. The average number of
activated goal per goal-commit is N¢, = 0.2.

s An FCP goal frequently performs goal management operations. The av-
erage goal management activity, AGM, is 1.2 goal management operations
per goal reduction.

114

5.5.4 Dereferencing

A goal argument is denoted as a reference to a program data structure or as
a reference to another reference. It is for this reason that an argument reference
is dereferenced prior to matching with another program data structure. Argu-
ment dereferencing consists of following a chain of reference pointers until a non
reference is encountered. It is performed not only during goal-head unification
for matching goal arguments, but also prior to the assignment of a value to a
variable. In general, dereferencing is a frequent operation in FCP.

5.5.4.1 Performance Model

Let N§* denote the average number of dereference calls per clause-try, I, the
average length of a dereference chain and 3 the average execution time of a
dereference operation per unit length. The average goal reduction time %,.4 is
then represented as follows:

- ...d - -
trea = NLT, + NLNG s + 1, (5.17)
where ff:t is the average clause-try execuiton time without dereferencing, and 7,
15 the remaining goal reduction time. As in the goal management performance
model N, denotes the average number of clause-tries per goal reduction. The
relative execution time of argument dereferencing is now represented as:

1
U4 = — (5.18)
1+ l‘d+N" tg
Nely

Let us denote the ratios of clause-try execution time and the remaining goal re-

duction time (both without dereferencing) versus the execution time of a deref-
erence of a unit length as:

b
2=p (5.19)
ta
< = (5.20)
tq
The relative execution time of argument dereferencing is now expressed as:
1
1+ =
d td

The parameters 3 and v are performance model variables whereas N§, I; and
N, are system parameters. We now discuss the performance model parameters.

115

“®=- Compiler

[]
-O- Simulatori
N

(%) ‘= Simulator2

304 \ O- Dm
20; \ =4 Solver
10%) - 2 Distribut
OE) . 5éx x " |s.r| ute
0 1 2 3 4 5 g Xl
Dereferance Length
Figure 5.11: Distribution of Dereference Length
FCP Benchmark Programs
Compiler | Sim.1 | Sim.2 | Debug | Solver | Distr. | Logix
D (10%) 86.15 | 74.50 | 174.25| 67.94 | 13.96 8.49 | 25.62
Len. (10%) 115.42 | 183.74 | 481.52 | 115.29 | 28.47 | 23.25 | 47.49
Iy = L/D 1.34 2.46 2.76 1.69 2.03 2.73 1.85
CT (10°%) 20.14 | 18.94 | 48.99 7.46 4.52 2.59 5.85
N =D/CT 4.28 3.93 3.56 9.09 3.08 3.27) 4.38

Table 5.8: Dereferencing Statistics

5.5.4.2 Performance Model Parameters

System Parameters

In Figure 5.11 we show the distribution of the dereference length in the FCP
benchmark programs. We see that most of the dereference chains are less than
3. In Table 5.8 we show the total number of dereference calls {D) made in the
FCP programs, the total dereference length (Len) and the average dereference
length per dereference call ;. We also show the average number of dereference
calls per clause-try, N§* = 4.5. The overall mean value of the dereference length
1s Id = 2.1.

Even though the average dereference length is between 1 and 3 in most pro-
grams, one should note that there are also dereference chains of length 400 and
more. This is not so surprising since it is quite easy to form large chains of
references by repeated unification of logical variables. This case, for example,

116

tet/td
045

0.4 ."Ir
Oe—® @50
0.35 P e s R
= s e T A Orgp
03 e e
e [A] = [s 0 e T By 4,
0.25 ‘Eﬂaﬂ;ﬂs —page=s | T
od R==j{
. O30
0.15
01 4 90
D 2 "y

S50 60 70 80 90 100 110 120 130 140 150

Figure 5.12: Relative Execution Tifne of Argument Dereferencing

occurs during the use of the short circuit technique used for detecting program
termination.

Performance Model Variables

The two implementation dependent performance model variables 3 and -y
denote the relative execution times of clause-try and remaining goal reduction
execution time (both without argument dereferencing) versus the execution time
of a dereference operation of unit length, ;. Since ¥4 consists of a memory read
plus operations such as tag extraction and comparison, one can safely assume
that 3 >> 1 and v >> 1. We now discuss the performance model analysis for a
specific range of variable values.

5.5.4.3 Performance Model Analysis

In Figure 5.12 we show the relative execution time of argument dereferencing,
for the range of values (50 < # < 100) and (100 < v < 150).

For values of v = 100 and 3 = 50 the relative execution time of argument
dereferencing is as high as 16%. This value decreases as both v and 8 increase. It
is assumed here that the program compilation did not include the possible opti-
mizations of the decision tree type. That is, the number of argument dereferenc-
ing is proportional to the product of the number of arguments and the number
of clauses in a procedure. Therefore, the relative execution time of dereferencing

117

can be reduced using decision tree compilation.

5.5.4.4 Summary and Conclusion

¢ A performance model for the analysis of the relative execution time of
dereferencing during goal reduction, Oy is defined. It consists of 3 program
parameters and two implementation dependent variables.

¢ The relative execution time of argument dereferencing for the specific sys-
tem workload ranges from 10% to 16% for a range of system variable values
(50 < § <100) and (100 < v < 150).

e Using improved compilation techniques, the number of argument derefer-
encing calls can be reduced, and thus the relative execution time of deref-
erencing can also be reduced.

In general, the following characteristics have been observed regarding deref-
erencing in the selected FCP programs:

¢ Dereferencing is a frequent operation performed on the average N = 4.5
times per clause-try.

¢ The average length of a dereference operation is Iy = 2.1.

5.5.5 Clause-Try Trailing

As described in Section 4.1 and shown in Figure 4.2 a clause-try may result
in the assignment of values to logical variables. If a clause-try succeeds, the
bindings become visible to the programming environment and the goal reduction
commits. However, if a clause-try fails or suspends, the assignments to memory
must be undone so that a new clause-try may begin with the same memory state
that preceded the clause-try. It is for this reason that the assignments to memory
are irailed during a clause-try.

Trailing consists of storing the address and previous value of a trailed logical
variable. For this purpose, the Trail Stack is used in the sequential abstract
machine for FCP. Prior to assigning a value to the logical variable, the variable
address and old value are pushed into the stack. In case of clause-try failure or
suspension, the entries are poped from the trail, and memory is restored to the
state preceding the last clause-try.

118

5.5.5.1 Performance Model

Let 1, denote the average execution time of clause-trailing during a clause-try.
The average goal reduction time 7,4 is then represented as follows:

Trea = NIT, + NTT, + 7, (5.22)

where 7., is the average clause-try execution time without trailing and %, is the
remaining goal reduction time. Since the execution time of trailing a logical
variable depends on whether the clause-try committed, suspended or failed, we
represent the average trailing time per clause-try as follows:

=N+ NI +N/E (5.23)

where N,, N;, and W{ denote the average number of variables trailed per clause-
commit, clause-suspend and clause-failure respectively. Similarly, 7;, 7;, and
ff denote the execution time of clause-trailing per unit element during clause-
commit, clause-suspend and clause-failure respectively. The difference in the
execution times is that a trailed clement during a clause-try that suspends or
fails also has to include the time to restore the old variable value. In case of

clause-commit, the execution time consists of only trailing.

Therefore, the average execution time of goal reduction is represented as:

Trea = NGB, + NL(NIE + NE + NlE) 41, (5.24)

Since the execution time of trailing during a clause-suspend is the same as
during clause-failure, that is, 7, = f{ , the relative execution time for clause-try
trailing is now represented as:

1
O, = — (5.25)
1 + N:ttct".'_t" —
N:l[Nt‘!+?:(N:+N{)]

This expression can be further simplified if we assume that the execution time
of clause-suspend is twice the execution time of clause-commit, that is, f; = 2x%;:

O, = 1 (5.26)
R -
1+

ty NT. &,
Ni+2x(Ni+N)

119

Let us denote the ratios of clause-try execution time without trailing and the
remaining goal reduction time, versus the execution time of a trail for a single
variable during a clause-try that commits, as follows:

™

t_cit =T (5.27)
Ly
i
Z=)p (5.28)

o~

The relative execution time of clause-try trailing is now expressed as:

1
O, = (5.29)
T+
1+ A

N 2N +N))

The parameters 7 and p are implementation dependent parameters that are used
as variables in the proposed model whereas N,, N;, _N'f and N], are system
parameters described in the following subsection.

5.5.5.2 Performance Model Parameters

System Parameters

In Table 5.9 we show the average number of trailed variables stored in the
trail stack during a clause-try that commits, suspends and fails, for the selected
FCP programs. We also show the average length of trailed elements during those
clause-tries that committed: 7, = 5, suspended: I} = 1.4 and failed: f{ = 0.5.
Therefore, one can note the following. Most of the trailing occurs during the
clause-tries that succeed. In fact, an order of magnitude more than during the
clause-tries that fail. In other words, most clause-tries fail before they require
much trailing.

In Figure 5.13 we show the distribution of the trail size at clause-commit.
Even though the behavior of the distribution is not the same for each of the
selected FCP programs, in most cases the trail size is less than 5 or 6 entries.
In Table 5.9 we show the average and maximum size of the trail, as well as
the total number of trailed entries at clause-commit clause-suspend and clause-
failure. Whereas the average size is quite small for each program, the maximum
number of trailed entries may be high. In the case of the Distribute program as
many as 163 entries were trailed. This, however, occurred very infrequently.

120

FCP Benchmark Programs

Figure 5.13: Distribution of Trail Size at Clause-Comimit

Trail Size

121

Compiler | Sim.1 | Sim.2 | Debug | Solver | Distr. | Logix
CR (10°) 707 3.00| 772 1.39| 040 0.25]| 1.48
L.(108) 23.78 | 20.35(36.31 | 9.74| 2.32| 141| 6.76
Max 36 47 22 35 54 | 163 87
I, 3.4 6.8 4.7 6.1 5.6 55| 4.6
N, 12| 11] o7 13| 05| 05| 12
CS (10%) 241 1235{ 1633 292| 031| 054| 1.52
L,(10%) 2.81 | 1646 29.21| 5.05| 0.30| 1.01| 241
Max 12 16 18 21 21 26 92
T 11| 11] 1.2 16| 16| 17| 14
N, 0.1 0.9 0.6 0.7 0.1 0.4 0.4
CF (10°) 10.65 | 3.58| 24.93| 2.94| 3.79| 1.79| 2.84
L;(10%) 2.76 | 1.38(13.76 | 2.25| 346| 1.62| 1.81
Max 38 10 12 20 46 18 81
[0.2 04| 05 0.4 0.9 08| 0.5
N, 01 0.1 0.3 0.3 0.8 0.6 0.3
Table 5.9: Trailing at Clause-Cominit
®- Compiler
'O~ Simulator1
‘B simulator2
‘O~ Dabug
“ Solver
0= Distribute
X 1 oqix

100 o

0 3

80X & Compil

70 ©- Simulatort

&0 ‘\ B simulator2
™ S0 o

A\ | Dot

4 Sclvar

30 4 -~

20 4 ,A\\ Distribute

10 4 ;x L X togic . |

s WY =
0 ._\Eé‘,éx_x—x_x—-!_ﬁ

1 2 3 4 5 8 7 L] 9
Trall Size

Figure 5.14: Distribution of Trail Size at Clause-Suspend

@ Compiler

©- simulatert

B Simulator2
O- Debug
A Soiver

(%}

o Distribute
LX:1oolx . |

O ra}
0 4 _s>¥é§§§—x—x
0 1 2

3 4 5]
Trail Size

Figure 5.15: Trailing at Clause-Failure

In Figure 5.14 we show the distribution of the trail size at clause-suspend. It
is quite similar for all the selected FCP programs. In most cases, the trail size is
less than 4 entries. In Table 5.9 we give the total number of clause-suspension,
the total number of trailed entries, and the maximum and average size of the
trail. The average size of the trail at clause-suspension is 1.4. This is smaller
than the average trail size at clause-commit. Also, the maximum number of
trailed entries is generally smaller, except in the case of the Logiz benchmark.

In Figure 5.15 we show the distribution of the trail size at clause-failure. In
most cases it is less than 2 entries. In Table 5.9 we can see that the average trail
size 1s less than 1 in all of the benchmarked programs. However, the maximum
number of trailed entries is also high, ranging from 10 for the Simulator! program
to 81 in the case of Logiz.

122

tritt_

0.4 1 @
. ®- 10
0.35 \ ©- 2p
0.3 Y -
0. ®, 30
INCN
0.25 i o e O~ 40
Ot o2 e . . N -
) =] O [] 50
\U\I\O\.
0.15 SommoThe= -+ 5o
X-—..x E"-—-. ‘-—._'——.2‘——-A
i ———t ~——.u——-‘——=‘——= ..
0.1 @ g -—-x-nﬁau__ e S | X- 7p
® .==."—=_’ﬁ_——"'-—'7"5
: L L1 =11 X
Q.05 80
0 + + + + + + ol ~= 90
10 0 3 4 70 80 80 100
20 30 40 S0 60 * 100
tet/tt

Figure 5.16: Relative Execution Time of Clause Trailing, O,

System Variables

The implementation of variable trailing in a general-purpose environment
consists of reading the value of a variable location and storing both the value
and address pair into the trail stack. If we assuming that the trail stack is
located in memory, trailing a single variable consists of three memory accesses
(1 to read variable value and 2 to store the variable address and value) and
incrementing the trail stack pointer. Therefore, compared to the operations of a
clause-try and the spawning of a clause-body, the following range of values for
the system variables is reasonable: 7 >> 1 and p >> 1.

5.5.5.3 Performance Model Analysis

In Figure 5.16 we show the relative execution time of clause trailing for the
range of variable values 10 < 7 < 100 and 10 < p < 100. In a general-purpose
implementation it is expected that both 7 and p will be large, thus resulting
in a low relative execution time of clause trailing. However, additional special-
purpose support may change this situation by either reducing the clause-try time
(compilation techriques using decision tree analysis) or the goal management
execution time.

For a range of values 10 < r < 60 and 10 < p < 60, the relative execution
time of clause trailing is 5% < O, < 35%.

123

5.5.5.4 Summary and Conclusion

o A performance model for the evaluation of the relative execution time of
variable trailing during a clause-try, Oy, is defined. It contains 4 program
parameters and 2 implementation dependent variables.

o For the selected range of implementation dependent parameters, and for the
specific program parameters, the relative execution time of clause-trailing

In general, the following observations regarding trailing were made:

e The average length of trailed vana.bles per clause-try that comrmts isl, =5,
suspends is I; = 1.4, and fails lt = 0.5.

¢ The maximum number of trailed variables was in several cases as high as
160.

5.6 A General Goal Reduction Performance Model

In the previous sections we presented performance models that characterize
the relative execution time of special purpose functions during program execu-
tion. We now combine these models into a general performance model. The
advantage is the ability to capture the inter-dependency of the individual mod-
els. That is, it allows for changes in specific parameter values to be reflected in
the general performance model.

The individual performance models characterize the average goal reduction
execution time in terms of the specific functions that were considered as potential
implementation bottlenecks. As a result, the average execution time of a clause-
try was divided into the average dereferencing and trailing execution times. The
remaining average execution time of a clasue-try can be expressed as a function
of the number of arguments of a clause-try, N,,,, and the average execution time
per clasue argument. Since the operations of a clause-try are commonly referred
to as get operations, let I, denote the average execution time of a clause-try
operation per clause argument. The average execution time of a clause-try is
then expressed as follows:

Tt = Nargly + N3 LE + [V, + 2V, + N)[E (5.30)

124

tred

+ o+ + A+

+ + +

NI %

{N a_rgfg +

N gt lita+

[V +2(N; + N+
FruspN oarLsusp+

(1 — Fyysp) X

(Noettoom+

Narglp+

Foplep+

Frin)

% cluase — try per reduction
% average get time

% dere ferencing

% variable trailing

% goal suspension

% goal reduction

% goal activation

(5.31)

% argument creation
% goal creation
% goal termination

Figure 5.17: Goal Reduction Model

where the average execution time of a get operation does not include the time

for dereferencing arguments and trailing variable assignments.

If we now combine the performance models for goal management with the

above expression for the average clause-try execution time, the average goal re-
duction execution time, %,.4 is represented in Figure 5.17.

System Parameters

The above defined performance model defines the following system parame-

ters:

N,. Average number of clause tries per goal reduction.

Narg. Average number of arguments per clause-try.

N§t. Average number of dereference calls per clause-try.

1;. Average dereference length per dereference call.

o« N}, W:,J_V-{ Average number of variables trailed per clause commit, sus-
pend and fail,

N.!

var"®

NC

act”

Average number of suspension variables per goal suspension.

Average number of goal activations per goal reduction.

125

® FLup. Average number of goal suspensions per goal reduction.
e F,,. Average number of goal creations per goal reduction.

e F,. Average number of goal terminations per goal reduction.

The system parameters have been empirically characterized using the slogiz
system. The parameter values are specific for a workload that is used in a sys-
tem’s development environment. Similar characterization could be obtained for
various system workloads and used in same the performance model. Moreover,
various system workloads could be synthesized and used in the defined goal re-
duction performance model.

Implementation Dependent Parameters

The following implementation dependent parameters are part of the general
performance model:

. 'f,u,p. The execution time of goal suspension per variable.

® Z.om- The execution time of goal activation per goal.

e 7). The execution time of goal termination.

¢ %,,. The execution time of goal spawning.

e 7;. The execution time of a dereference of unit length.

e 7,. The execution time of a single variable trailing during a clause-try that

commits.

Two more parameters are defined that depend on machine implementation, com-
piler technology and program characteristics. In other words they are architecture
dependent. These are:

¢ 7,. The average execution time of a single argument matching during a
clause-try, or get operation.

e 7,. The average execution time of a single argument put during goal spawn-
ing.

126

General Performance Model Analysis

If we replace the system parameters that characterize the specific workload
into the performance model expression, the result is a linear expression of the
implementation dependent parameters. That is,

zm:e:l = F(?suspvzcom’fhs?spafd,?::tgitp) (532)

Similarly, the performance model variables previously defined for the analysis
of the specific goal reduction functions, also depend on the same implementation
parameters. If for example, one were to change the implementation and reduce
the average goal suspension execution time %,y,p, this would directly result in the
reduced value of variable y = I—t-“h—z used to evaluate the relative execution time of
goal management shown if equation 5.16. The variables £ and & are not affected
by the change. The result is a reduction in the relative execution time O,,,.

As a result of reducing 7,.,.p, the following system variables are also affected:
7, which is used to evaluate the relative execution time of argument dereferencing,
Og4 shown in equation 5.21, and p which is used to evaluate the relative execution
time of variable trailing, O, shown in equation 5.29. Therefore, changes in one
implementation parameter are reflected in the overall distribution of the relative
execution times of specific functions.

To perform a detailed sensitivity analysis of the general performance model
relative to each implementation parameter is beyond the scope of this thesis;
especially since it would require that a cost-effective function be associated with
each implementation dependent parameter. However, we do discuss which are
the dominant aspects of the performance model which we then use for the design
of a propose a special-purpose architecture.

Let us consider that the improvement in the average goal reduction time,
At,.4 due to function i, is proportional to the product of the workload depen-
dent parameter w; and the change in the implementation dependent parameter
At;. In other words, both workload and implementation dependent parameters
influence the degree of performance improvement. In the performance model
we consider, the implementation of goal suspension and activation is more com-
plex and time consuming, compared to other implementation parameters. Even
though a low system dependent constant value is associated with the goal sus-
pension parameter, the overall affect on performance can be significant due to

127

the large value of ¢,,,,. The same applies to other goal management operations
such as goal activation, creation and termination.

Also shown in the performance model is the number of clause-tries per goal
reduction. This parameter significantly affects the clause-try execution time.
Using better compilation techniques, the number of clasue-tries per reduction is
expected to be lower.

5.7 Summary

In this chapter we have defined analytic performance models for the evalua-
tion of the relative execution time of individual functions during goal reduction.
The selected functions correspond to previously reported and suspected imple-
mentation bottlenecks. We show that the relative execution time of redundant
clause-selection during goal reduction may create a serious implementation bot-
tleneck. However, instead of suggesting architectural support for clause selection,
we expect this feature to be part of advances in compilation technology. Some
preliminary results have been reported in [Klig87].

We conclude that the relative execution time of goal management during goal
reduction is very high, and increases with improvements in clause-selection which
reduces the average clause-iry execution time. In a special-purpose architecture,
support for goal management operations is imperative.

The relative execution time of argument dereferencing and variable trailing
are less significant than clause-try selection or goal management. However, in
a special-purpose architecture where support for both clause-selection and goal
managemment is available, the argument dereferencing and variable trailing exe-
cution times may become significant.

We have combined the individual performance models into a general perfor-
mance model for goal reduction. The allows for changes in a single parameter
to be reflected in the overall performance model. Moreover, changing the pro-
gram parameters, one may consider different workloads in the same performance
model.

128

CHAPTER 6

FCP Processor Architectural Model

We now propose the architectural model of a special-purpose processor for
the efficient execution of Flat Concurrent Prolog. In general, a processor ar-
chitecture consists of an instruction set, a storage model and an interpretation
mechanism that controls the execution of the processor instructions [Flyn88]. By
an architectural model, we mean the abstract functional description of the proces-
sor architecture. By abstract, we imply that many of the implementation-level
details are left unspecified.

The special-purpose FCP processor architecture is proposed with the follow-
ing considerations in mind:

o Functional concurrency is the main form of intra-processor concurrency.

® A high-bandwidth memory hierarchy is integrated into the processor archi-
tecture to reduce storage access time.

Both of these considerations are represented in Figure 6.1. The FCP proces-
sor interpretive mechanism is decoupled and partitioned into multiple functional
units that execute concurrently. The functional decomposition of program inter-
pretation into concurrently executing units is motivated by the implementation
bottlenecks discussed in Chapter 5. The processor instruction set consists of
instructions belonging to each functional unit.

The storage model is defined as a high-bandwidth system by partitioning the
storage space into separate memory sections according to the organization of the
interpretive mechanism, as well as defining a memory hierarchy that produces a
fast response time.

We now describe the FCP processor high-level organization and interpretive
mechanism. We then describe in detail the organization and operations of each
unit separately.

129

Slorage
Hierarchy

Control

;|

@ Functional
Units
inter-Unit
Paths

@ FuiStorage

Paths

Figure 6.1: Considerations for the FCP Processor Architectural Model

6.1 FCP Processor Top-Level Organization

The FCP processor consists of multiple functional units for the cooperative
execution of FCP programs. In Figure 6.2 we show the three-layer hierarchical
structure of the processor organization. The first level contains the tightly cou-
pled ezecution units, the second level consists of specialized cache units and the
third level contains the special-purpose memory modules. The following are the
FCP Processor concurrent functional units and memory hierarchy components:

1. Execution Units: Reduction Unit (RU), Tag Unit (TU), Goal Manage-
ment Unit (GMU) and Instruction Unit (IU).

2. Specialized Cache Units: Goal Cache (GC), Data and Tag Cache (DC),
and Instruction Cache (IC).

3. Memory Sections: Goal Memory (GM), Data and Tag Memory (DM),
and Instruction Memory (IM).

The Reduction Unit, RU, is the main instruction-set unit in the FCP pro-
cessor. It is tightly coupled with the execution of the Tag Unit, TU. The Goal
Management Unit, GMU, serves the Reduction Unit by providing it with a con-
tinuous flow of reducible goals and performing concurrent goal management. The
GMU executes special-purpose goal management instructions. The purpose of
the Instruction Unit, IU, is to service the remaining execution units with special-
purpose instructions. RU, TU and GMU are instruction-set units whereas IU
prefetches instructions for these units. The operations of the execution units

130

Instruction -
Memory

Data and Tag Memory

Figure 6.2: FCP Processor Multi-Functional Unit Organization

are dedicated to manipulating specific objects. RU manipulates program data
structures, TU manipulates data tags, GMU manipulates goal management data,
structures and IU manipulates the set of FCP processor instructions.

Three special-purpose cache units are defined as part of the FCP processor
architecture. These are the Goal Cache, Data Cache, and the Instruction Cache.
The purpose of the dedicated cache units is to enable a higher throughput of
objects requested by the execution units. In other words, all execution units
access the specialized caches and only if there is a cache miss are objects requested
from the dedicated memory modules.

Besides defining multiple specialized functional units and corresponding spe-
cialized cache modules, memory is divided into dedicated memory sections. Each
memory section is accessed and managed only by the corresponding execution
units. The Data Memory is used for storing all program data structures such as
lists, variables, tuples, constants ect. The Tag Memory is used to store all the
tags of the corresponding data objects. The Instruction Memory is used for stor-
ing FCP processor machine instructions and the Goal Memory is used to store
all the control structures used for goal creation, suspension, activation and ter-

131

mination. The Goal Memory is accessed and managed by the Goal Management
Unit.

6.2 FCP Processor Instruction Set

The FCP processor instructions are divided into three groups according to
the instruction-set execution units: RU, TU and GMU. RU executes a special-
ized RISC-type instruction set, TU executes instructions that manipulate tag
operations and GMU executes goal management related instructions. The cor-
responding instruction sets are specified in more detail later in this chapter. For
now, we are only concerned that each functional unit executes a separate set of
dedicated instructions. The dedicated groups of instructions corresponding to
each instruction-set execution unit is symbolically shown in Figure 6.3.

FCP Processor Instruction Format

Rather than fetching each execution unit instruction separately and executing
them sequentially, we consider one FCP instruction to be of a wide instruction
format, with dedicated instruction fields corresponding to each functional unit.
This instruction format can be seen as a compiler optimization of a sequence of
instructions dedicated to separate functional units, as shown in Figure 6.3.

Since the instruction sets for each functional unit vary in number and size, the
complexity of instruction fetching and decoding is reduced by defining a uniform
instruction format. This instruction format also enables the concurrent execution
of instruction fields by corresponding functional units.

Also shown in Figure 6.3 is the Instruction Register (IR) that stores the
current instruction. It is fetched by the Instruction Unit from IC, and contains
three opcode fields for the RU, TU and GMU functional units. The rest of the
instruction is used for storing instruction operands. Since there are very few
well defined GMU and TU instructions, and since they do not require additional
operands, the operand field is used only by RU.

As a result of compiler compaction of individual functional unit instructions
into a wide instruction format, some opcode fields are not filled by useful op-
erations. These are denoted as blank areas in Figure 6.3, and they represent
functional unit no-op instructions.

132

Single Unit Multiple Units

r

optimization

instruction
Registar

Compiled Program

Instructions:

Figure 6.3: Instruction Execution for Multiple Functional Units

6.3 FCP Processor Interpretive Mechanism

FCP program execution consists of successive goal reductions performed con-
currently by the specialized functional units. GMU performs all goal-related
operations as well as scheduling goals for execution by RU and TU. IU is respon-
sible for providing both RU, TU and GMU with instructions corresponding to
the currently scheduled goal.

RU and TU Instruction Execution

RU and TU execute tightly-synchronized instructions that execute in lock-
step. For each executed RU instruction, the corresponding TU operation-field
may specify a concurrent operation to be performed by the Tag Unit. A new TU
instruction is considered together with the following RU instruction. In other
words, TU does not execute the following instruction before RU completes its
operation. The TU instructions are simple operations with execution times less
or equal to the execution time of RU instructions.

133

RU and GMU Instruction Execution

GMU instructions are high-level operations that take longer to execute than
a RU and TU instructions, While GMU executes the current goal management
instruction, RU and TU continue executing their subsequent instructions. These
instructions are fetched by IU. If the fetched instruction contains another instruc.
tion for GMU, prior to GMU terrmnating the current operation, the processor
instruction execution is suspended until GMU completes the instruction.

The overlapped RU-GMU execution is best described using the state diagram
shown in Figure 6.4. Each state is defined as a tuple S; =< s,,s; > where
$1,82 € {busy, wait} describe respectively RU and GMU in either a busy or wait
mode of execution. We consider the following four states and their transitions:

* 51 =< idle,idle >: Both RU and GMU are idle. This is an initial state
or a state during program execution in which some external actrvity, such
as user input or system interrupt, is expected. The occurrence of such an
interrupt results in a transition to state S,.

® 52 == busy,idle >: RU is busy and GMU is idle. RU executes program
instructions. If the instruction register IR contains only RU and TU in-
structions and no GMU instructions, these operations are executed and the
state transition remains in state S,. If IR contains an instruction for GMU,
a state transition is made to state S;.

® S3 == busy, busy >~: Both RU and GMU are busy. IU continues to fetch
instructions executed by RU while GMU executes the goal management
operation. If the fetched instruction contains only RU opcode, the instruc-
tion si executed by RU. If the instruction contains an opcode for GMU,
a transition is made to state S4. If during program execution GMU com-
pletes its operation before another GMU instruction is decoded, a state
transition to Sy is made.

* 54 =<idle,busy »: RU waits for GMU to complete the current operation.
Meanwhile the state model remains in S,. Upon completion, a transition
to state S; is made. The pending goal management instruction is then
executed by GMU and IU continues to fetch instructions.

Therefore, GMU does not maintain a queue of instructions but can execute
only one goal management instruction at a time. An instruction queue for GMU

134

no interrupt RU instruction RU and GMU instruction GMU instruction
execution execution eaxacytion

interrupt GMU instruction

no active GMU instruction GMU instruction

goals 1o ended endad
reduce

idle-idle busy-idie busy-busy idle-busy

Figure 6.4: State Diagram of RU-GMU Execution Model

Figure 6.5: RU,TU and GMU Instruction Execution

was initially considered, but the complexity of the corresponding control was too
high, since it required the ability to perform program roll-back. Details regarding
GMU instruction execution are described in Chapter 7.

In Figure 6.5 we show the overlapped FCP instruction execution, correspond-
ing to the three functional units. Note that the instruction execution is delayed
if two consecutive GMU instructions are decoded before the goal management
instruction completes its current operation.

We now describe in more detail the characteristics of each execution unit,
specialized cache and dedicated memory section.

135

6.4 Reduction Unit

RU is the main unit in the FCP processor. It is an instruction-set unit with
load/store RISC instructions and additional specialized instruction support for
FCP execution. RU is tightly coupled with other execution units, that is, with
GMU, IU and TU. The main function of RU is to reduce goals supplied by GMU.
A goal is implemented as a data structure that contains a program counter (PC)
and argument pointers. RU reduces goals by executing the program instructions
denoted by the current goal’s program counter. Instructions are requested and
received from IU,

The operations of RU are determined by its instruction set. However, in
the proposed architectural model for the FCP processor we do not give a fixed
instruction set; rather, we define a class of RU instructions. In fact, RU may
execute a general purpose instruction set with several modifications that we will
discuss in the following subsection. For simplicity, we regard RU instructions as
a RISC type instruction set, even though this is not essential.

Before we describe the class of RU instruction sets, we first discuss the set of
registers that are accessible by RU during a goal reduction. The actual compo-
nents that constitute the RU arithmetic and logic units depend on the specifics
of its instruction set. We will discuss only those aspects that are essential to
support the RU execution model and its interface to other functional units.

6.4.1 RU Register Storage

A complete description of the RU data path requires the specification of all
the arithmetic and logic units, as well as their interface to the RU registers.
For VLSI RISC processors these issues as well as the tradeoffs involved, are well
known and documented. We do not consider this our focus, nor do we offer
contributions in this area. Recent commercial RISC processors like the Intel N10
[Inte89], Motorola 88000 {Mele89], MIPS-X [Horo87) or the Crisp [Bere87] as well
as university projects [Tayl86] offer a variety of solutions to problems such as:
reducing the penalty due to branches in pipelined RISC processors; design of
RISC instruction pipeline stages; register allocation; delayed load/store memory
slots etc. We assume that RU executes a specialized RISC instruction set at an
effective rate of 1 instruction per processor cycle and borrows existing techniques
to achieve this throughput.

136

In Figure 6.6 we show the register address space during a single goal reduction.
The following groups of registers are addressable by RU:

Active Window Registers

Spawn Window Registers

General Purpose Registers

Special Purpose Registers

A register window consists of a fixed number of n registers. For the purpose of
describing RU organization and instruction execution, it is not necessary to spec-
ify the exact size of the goal window. However, it can be determined according
to the average size of a goal; for example, from the measurements presented in
Chapter 5, a reasonable number for the goal size is between 7 and 10.

The active and spawn windows belong to a set of goal windows that are part of
a Goal Cache. The role of the Goal Cache will be described later in this chapter.
The active window contains the active goal currently being reduced. The goal
program counter is stored in the first register labeled a(1). Subsequent registers
in the active window a(2), ... , a(n) are used for storing the goal argument
pointers. The second window is the spawn window used for spawning new goals.
The spawn window registers are labeled s(1), ... , s(n). We assume that all of
the goal windows in the Goal Cache are of equal size.

A small number of general purpose registers are defined, labeled r(1), ..., r(m).
As part of the register file design, we assume that the goal window size n is chosen
so that it is greater than the average size of a goal, that is, n > (s + 1) (average
numnber of arguments plus program counter). Therefore, in most cases one may
expect that all of the goal arguments are placed into the goal window registers.
Moreover, since the number of arguments, s, is known at compile time, the
compiler allocates as general purpose registers all registers that are not occupied
by the goal arguments in the active window, that is, registers a(j),s < j < n.
Similarly, the size of spawned goal k is known at compile time so that the registers
3(#), k <7 < n are also used as general purpose registers during a goal reduction.
Therefore, in the general case, if there are m general purpose registers, and s
is the size of the active goal and k is the size of the goal being spawned by the
current goal, then the total number of general-purpose register available to the
compiler is:
N=(m+2xn-s-k) (6.1)

137

RU Addressable Registers r

RU
a(1) s(1)
o || _ Arthm.
A e
i

STt
TGO
HOHEE G
HITHEO

LI PeHP
SN wo ST HBPSW r(1) we r(m)
Shared by GMU a(n}) . s(n)
ESSEEERemmm OCtiVe . spawn

goal . goal

Goal Cache

Figure 6.6: RU Addressable Registers During Goal Reduction

for the case where n > (s +1).

However, a program may contain goals that have more arguments that the
goal size n. These cases, even though they are expected to be infrequent, are
detected at compile time and rewritten to have n — 1 arguments. This is achieved
by compacting the individual arguments that overflow the fixed window size,
into a single tuple argument. Fach element in the tuple corresponds to one
goal argument. The compiler then generates the corresponding instructions to
extract the arguments from the tuple. This technique is used in the FCP abstract
machine compiler.

In addition to the two register windows, and the set of general-purpose regis-
ters, RU uses two groups of special-purpose registers. The first group defines the
following state registers: Program Counter (PC), Program Status Word (PSW),
Heap Pointer (HP) and Heap Backtrack Pointer (HB). The second group of reg-
isters are defined to support the goal management operations discussed in more
detail in Chapter 7. These include the Suspension Table registers, the WakeUp
Queue registers and the Suspension Note register (SN).

138

6.4.2 RU Iunstruction Set

The RU instruction set consists mainly of general-purpose instructions with
several special-purpose instructions to support FCP program execution. For sim-
plicity, we consider the general-purpose instruction set to be of a RISC type. Only
load and store instructions are used to access memory and all register_to_register
instructions execute in a single processor cycle. There is another reason to con-
sider RU instructions as RISC. Since the FCP processor consists of multiple
functional units that each perform specific (some of them high-level) operations
during program execution, RU is left to perform simple operations. Moreover,
defining RU instructions as RISC, aides the overall feasibility of designing a
single-chip multi-functional unit VLSI processor.

We now discuss the following groups of instructions that contain special-
purpose support for FCP program execution.

e Special Load and Store Instructions
o Branching Instructions

¢ Goal Management Support Instructions

Load and Store Instructions

To support pointer dereferencing, a special mode of the load instruction called
loaD(SR,DR) is defined that continuously follows the chain of references until a
non-reference value is found. Starting with the address stored in register SR,
the first word of the dereferenced value is stored in register DR. In addition the
address of the dereferenced value is stored in SR. By previously moving the value
in SR to a register R and by following the dereference operation loaD(SR,DR)
with the Store(R,SR) instruction, the effect of reference shortenning is achieved.
All following references to the address stored in R will immediately reference the
final value rather than following the previously traversed reference chain. This
is particularly useful in languages like FCP where lengthy chains of references
can easily be created by repeated variable-to-variable unifications. For example,
in the FCP benchmarks considered in Chapter 5, dereference lengths of over 400
were detected.

The execution time of the loaD(SR,DR) instruction is linearly proportional to
the dereference length. In Chapter 5, we showed that the average dereference

139

length in the selected FCP programsis 2.1. This instruction is also aided by the
TU that decodes the data tag upon its loading from memory. Therefore, there
are no explicit instructions to check the tag and branch if it is a reference.

A special-purpose dereference instruction was also used in the Carmel RISC

processor for FCP [Hars88]. Similar memory reference behavior was also reported
for Prolog in [Tick85].

Branching Instructions

In FCP, operations are commonly determined based on the operand type.
Thus, dereferencing a pointer is followed by a test-and-branch operation on
the type of the dereferenced value. This is analogous to a case statement.
Rather than having multiple compare and branch instructions. we define a mul-
tiple switch(b1,b2,b3,b4) instruction that branches on the four most commonly
used data types.

In [Hars88] it is claimed that all data types in FCP are of equal probability.
Our measurements disagree with this observation, at least for the workload that
we consider. In Table 6.1 we show the spectrum of dereferenced data types found
in the selected FCP benchmark programs. The most frequently dereferenced data
type is the logical variable (Var), followed by tuple (Tup), string (Str) and integer
(Int). In all of the selected FCP programs. these four data types accounted for
75% of all the dereferenced objects. Therefore, the four branch addresses in
the switch instruction are implicitly defined for the four types: Variable, Tuple,
String and Integer.

Once again, the results represent a specific workload and are not necessarily
applicable to other workloads. If an additional test is required, for the types that
are not implicitly included in the switch instruction, (for example the nil data
type), a separate instruction sequence is used.

Goal Management Support

The following two instructions support the execution of GMU overlapped goal
management operations. These are the load and move instructions that have as
a destination the Suspension Table (ST) and the Wakeup Queue (WQ). Since
ST and WQ are managed as stacks, each has associated a stack pointer value.

140

Type FCP Benchmark Programs
Compiler | Siml. | Sim2. { Debug. | Solver | Distr. | Logix

Var 0.23 0.32 | 0.21 0.37 0.23 0.38 | 0.30
RO Var 0.05 0.12 | 0.05 0.03 0.17 0.07 | 0.08
Integer 0.17 0.05 | 0.04 0.08 0.08 0.05 | 0.10
Real 0.00 0.00 | 0.00 0.00 0.00 0.00 0.00
String 0.15 0.16 | 0.23 0.13 0.12 0.14 0.16
Nil 0.03 0.01 | 0.02 0.01 0.03 0.01 0.02

Car Ref 0.13 0.06 | 0.10 0.04 0.08 0.05 | 0.07
Car Int 0.07 0.01 | 0.02 0.01 0.07 0.00 | 0.05
Car Nil 0.00 0.00 | 0.00 0.00 0.00 0.00 { 0.00
Tuple 0.16 0.26 | 0.32 0.35 0.22 0.30 | 0.21
Vector 0.01 0.01 0.02 0.00 0.00 0.02 | 0.01

Table 6.1: Distribution of Dereferenced Data Tvpes

Successive writes into the corresponding stack increments the stack pointer.

Since ST and WQ consist of a finite number of registers, exception conditions
are detected when either of the two overflow. In this case, the goal that caused
the condition is restarted, but now using the Data Memory instead of ST and
WQ. For example, if more goal pointers need to be stored in WQ than there
are available registers in WQ), the activation of goals is performed incrementally,
under the control of the exception handler.

6.5 Tag Unit

FCP incorporates polymorphic operations on primitive data types. As a
result, data values are distinguished using tags. All data tags are stored in a
separate memory section called Tag Memory, {(TM). Architectural support for
tag related operations is not a new feature and is common in implementations
of symbolic languages such as Lisp {Moon85], [Tayl86]. Moreover, all of the
Prolog processors as well as the Carmel processor for FCP, described in Chapter

3, include special-purpose support for tag processing as part of the machine
mstruction set.

In the FCP processor, all tag operations are performed by TU. A separate
TU-TM processor to memory path for tags enables concurrent tag access. We

141

now describe the types of operations performed by TU.

TU Instructions

As described in [Stee87], run-time tag operations can be grouped into the
following four types of instructions:

o Tag Insertion
o Tag Removal
o Tag Extraction

e Tag Checking

Tag insertion consists of setting the data type of an operand. Given the
operand wvalue, the < tag,value > pair is formed by setting the corresponding
tag part. The reverse operation is called tag removal. Given the tagged object,
only the value is required while the tag is removed. Tag eztraction is performed
when the tag value is needed for further processing. For example, in the tag
checking type of operation, the tag value is compared to another tag.

TU performs the four types of tag operations concurrently with RU execution
in a tightly coupled fashion. Tag setting is performed concurrently with the
store(SR,DR) instruction executed by RU. While the value in SR is being stored
in the data memory at location denoted by DR, the tag type denoted by the
set(Tag) instruction is stored in the same memory address in the Tag Memory.
The effect is as if the store(SR, Tag,DR /) is executed as a single instruction. For
example, to store the contents of SR into the address denoted by DR and to set
its tag value to integer, the instruction mnemonic would be: store(SR,Int,DR).

Similarly, on each load(SR,DR), the tag value corresponding to the source
address is fetched together with the data value, and stored in the Tag register.
This corresponds to both tag eztraction and remowval, In addition, the fetched tag
value is decoded and sets the type condition codes that are accessible by RU. This
corresponds to tag checking. Using branch type of instructions, RU can check
the data types. In Figure 6.7 we show both the tag setting, and tag loading and
decoding operations.

142

store(SR.,Int,DR) load{SR,DR)
cCc
AU TU RU TU
A JoR FZLIDR U -
EZZ] SR 3 SR It
I====""99=-===" == - -I - - = """ -==-="="="9 -
S .. L S = o -
3 A
Data Tag Data Tag
Memory Memory Memory Mamory
A NPT roger” A (PP I PP imeger -

Figure 6.7: TU Tag Setting and Loading

6.6 Goal Management Unit

In FCP and in other concurrent logic programming languages, spawning,
halting, suspending and activating concurrent goals represents the main control
mechanism analogous to procedure calls or co-routines in procedural languages
(see Summary of Chapter 3) . The purpose of GMU is to reduce the effective
time spent performing goal management operations. By effective time, we imply
the time as seen by RU, which includes the overhead of communication and
synchronization. If we consider a processor organization that does not have any
architectural support for goal management, then, the effective execution time
corresponds to the time it takes to execute processor instructions that perform
the specified functions. We propose to reduce this effective time in the following
way:

¢ GMU operations execute concurrently with goal reduction performed by
RU and TU. In other words, an overlapped goal reduction and goal man-
agement execution model is defined.

¢ Goal management operations are complex, high-level operations that may
take many RU instruction cycles to execute. To implement goal manage-
ment operations efficiently, a special-purpose Goal Cache is used.

143

Both of these issues are the focus of Chapter 7. We now discuss the GMU
organization and instruction execution.

GMU Organization

In Figure 6.8 we show the organization of GMU. It consists of the following
components:

o Goal Management Controller (GMC).
e GMU Registers (GMR).
¢ Goal Status Bits (GSB).

¢ Memory Port (GMP) to Goal Memory

GMC controls the execution of GMU instructions received from IU. In addi-
tion, it shares one control flag called Busy Flag used by 1U to synchronize RU and
GMU execution. When GMU receives an instruction from IU (assuming GMU
in not busy), the GMU Busy Flag is set. Subsequent FCP processor instructions
that contain GMU operations are suspended until the GMU Busy Flag is reset.
When GMU completes its current operation, it resets the flag. Any pending
instruction is then resumed.

GMU contains five special-purpose registers used for managing the Goal Mem-
ory (GM). These are the Heap Pointer (HP), Goal Queue Front (QF), Goal Queue
Back (QB), Goal Free List (GFL) and Suspension Free List (SFL). The use of
these registers is discussed later in this chapter and in Chapter 7.

The goal status bits, GSB, reflect the status of the goals stored in the Goal
Cache, GC. These are used by GC to implement the goal management operations.
The separate memory port, GMP, to GM allows the concurrent transfer of goal
data structures between GC and GM.

In addition to the above components, GMU shares hardware resources with
RU. The control for these resources is managed so that their access is mutually
exclusive. GMU requires the access to the following shared data:

e Goal Window Pointers: Current Goal (CWP), Current Spawn (CSP), Next
Goal (NGP) and Next Spawn (NSP) window pointers.

144

l >

‘ GSB From IU
GMC
GSB | |GMu
TO RU
// 41 E-Units
L
g /;J‘.:' ;
A | 24
Goal Cache Shared
v Special-Purpose
GMP Registers

Figure 6.8: GMU Organization

¢ Variable Suspension Table (ST).
¢ Wake—up Queue (WQ).

» Suspension Note (SN).

The goal window pointers are used by GMU to manage goals in GC. The
pointer values are modified in a mutually exclusive way by both RU and GMU.
The variable Suspension Table (ST) and the Suspension Note register (SN) are
used to 1mplement the goal suspension algorithm. This is fully described in the
following chapter. The Wake-Up Queue (WQ) is used to store pointers to goals
that should be activated if the clause-try commits.

GMU Instruction Execution

In the FCP processor, GMU executes the following special-purpose goal man-
agement instructions: halt, spawn, suspend and commit. All goal management
instructions are implemented using the Goal Cache. Those goal management
instructions that result in a cache hif are implemented by simply changing the
value of the goal status bits. However, all goal management instructions that

145

To instruction
Memory

!

Instruction I

Cache

v

SRS Prefetched
Sl LA | truetion

i Busy Flag

Prefetch

Next
Goal

Figure 6.9: IU Instruction Prefetching

require access to the goal memory are interpreted as a goal cache miss. The
organization of the Goal Cache is described in section 6.8.

6.7 Instruction Unit

IU fetches instructions stored in IM and cached in IC. The fetched instruction
contains operation fields for each of the execution units and is stored in the
Instruction Register, IR. The sequencing of instructions depends on the value of
the RU program counter, PC, but also on the status of GMU. In Figure 6.9 we
show that IU shares the Busy Flag with GMU. If this flag is set, and if the GMU

opcode is not empty, IU suspends the RU pipelined execution until the flag is
reset.

Besides fetching instructions, IU also performs the following prefetching op-
eration. As it will be described in the following section (and in more detail in
Chapter 7), the Goal Cache always has at least one goal prefetched into a free
window, in order to enable fast goal switching. The first register in the next-goal
window is the program counter of the next goal. This value is used by IU to
prefetch the next instruction prior to the goal switch. Upon a goal switch, the
next instruction is immediately placed into the instruction pipeline, allowing for

146

\

From 11U

GMC

[(riFlalnlrinlsleln]

TO RU
] a2 4 E-Units
; e .
A A7
GC Window CwpP,CcsSP
Registers NWP,NSP

Figure 6.10: Goal Cache Organization

zero-cycle switching between goals.

6.8 Goal Cache

GMU performs efficient goal management by manipulating goals in the goal
cache. The goal cache consists of N goal windows implemented using a fixed
number of processor registers, as shown in Figure 6.10. At each point during
program execution, there are two windows addressable by RU: the Active or the
Current Goal Window (CGW) and the Current Spawn Window (CSW). These
windows are denoted by the pointers CWP and CSP, which are part of the RU
Program Status Word register (PSW). CGW contains the currently executing
goal while CSW is empty and is used for spawning a new goal. Each goal-
window in GC may be in one of the following four states:

e Active: window contains the currently executing goal.
e Spawn: window is empty and is currently being used for spawmning.
o Ready: window contains a goal that is ready to be scheduled for execution.

o Free: window is empty.

147

If GC contains more than a single ready goal, switching between goals is per-
formed within GC and involves changing the value in the CWP and updating
the goal status bits. Placing a newly spawned goal onto the active goal queue
consists of changing its status to ready. Similarly, halting an active goal is im-
plemented by changing its status from active to free. All goal-window states .. e
stored in the Goal Status Bits {GSB) module. Moreover, all operations on : ae
status bits are also performed in the GSB.

The Goal Management Controller (GMC) detects two exceptional conditions
in GC. First, GC overflow occurs when the goal cache becomes full and there is
no place available in GC for spawning. Upon overflow, a goal is moved to the
goal queue in GM. The front and back of the goal queue are denoted with the
GQF and GQB goal memory pointers. To implement efficient spawning of new
goals, GMC detects overflow before the GC becomes completely full. That is,
GMC ensures that there is always one empty goal window available in GC for
fast spawning,.

The second exceptional condition is GC underflow, which occurs after a se-
quence of halt instructions deplete GC of available goals for scheduling. To imple-
ment efficient halting, GMC ensures that there is always at least one prefetched
goal available in GC. This enables GMU to always schedule a new goal whenever
the current goal is halted. Otherwise, RU may need to wait until a new goal is
fetched from GM.

Goal Cache Policy

A detailed description of the GC operations is presented in Chapter T; here we
describe the main concepts. Goal scheduling is determined by inspection of the
goal window status bits stored in GSB. In GC, the first ready goal is scheduled
for execution and the goals are selected in a round-robin fashion relative to the
halting goal. Spawning a new goal is performed in one of the available windows
that is labeled as free. This is analogous to a cache placement policy. If there
are several windows that are empty and marked as free, the first empty one is
selected.

In case of a goal cache overflow, one goal is moved from the goal cache into the
goal memory. The selection of the goal is analogous to the goal cache replacement
policy. The first non-empty goal window is selected. In the implementations that
we consider, we are more concerned with implementation efficiency than with a

148

certain scheduling strategy.

Goals are moved from the goal memory into the goal cache only when goal
cache underflow occurs. When a goal suspends, it is removed from GC unless
it 1s one of only two goals in GC and the goal queue in memory is empty. This
avoids the unnecessary thrashing of the same goal.

An important concern when considering goal scheduling is fairness. By us-
ing a goal cache, we do not implement strict fairness of goal scheduling, since a
recently spawned goal is scheduled before goals that were spawned before it. Ac-
tually, the GC policy is designed for efficiency rather than fairness. On the other
hand, to prevent goals in GC from being scheduled indefinitely, we use a time—out
mechanism. After a certain number of goal reductions in GC without any goals
being moved to the GM (overflow) or brought in from the GM (underflow), a
GC mass is induced if the goal queue in GM is non-empty.

It is important to note that we emphasize the flexibility of the design approach
of the GMU and do not claim an optimal goal scheduling policy. The prospect
of priorities amongst goals can also be considered and is discussed later in this
thesis.

6.9 Data Cache

The Data Cache (DC) is used for storing both data and tag values. In this
section we consider a special data cache policy that supports clause-try trailing.
We refer to this cache policy as Delayed Binding. It can be described as follows:

o All assignments performed during a clause-try are ‘delayed’ until the out-
come of the clause-iry is known. If the outcome is successful, the bindings
become permanent otherwise they are cleared.

By delayed bindings, we imply that the bindings are considered as temporary
while the outcome of the clause-try is not known. If the clause-try commits, the
bindings become permanent, otherwise they are ignored.

The Data Cache policy provides architectural support for shallow backtrack-
ing. Two other techniques have been proposed to support shallow backtracking
in Prolog. First, in [Tick87], the use of a choice-point buffer is described that
keeps the top of the choice-point stack. In the Pegasus VLSI RISC processor

149

[Seo87], shadow-registers are used. When a choice point is encountered, the cur-
rent choice point is moved to the shadow registers and saved during idle memory
cycles.

The approach in [Tick87) suggests the use of special-purpose buffers, that
could be used in addition to a Data Cache. On the other hand. the Pegasus
approach requires significant processor resources to be allocated as part of the
processor register file. The method proposed for the FCP processor assumes the
existence of a Data Cache and considers modifications to the cache policy to
support shallow backtracking. We now discuss the Data Cache policy in more
detail.

Data Cache Assumptions

The following assumptions are made regarding the Data Cache and its inter-
face to RU and TU:
¢ The Data Cache distinguishes read, write and trasl requests from RU.

¢ Two control signals from RU affect the status of the cached elements. These
are the commit and fail control signals.

» Changes in the cached data status are performed atomically and efficiently
by modifying the status bits.

Given the above conditions for the Data Cache, we now define the following
cache policy for shallow backtracking.

Data Cache Algorithm With Trailing

Let us assume that the data cache is fully associative with a write-back pol-
icy. The data cache stores the address, the value, tag and status of the cached
elements. The status is defined to be: Empty, Clean, Dirty or Trailed. An entry
labeled Empty is vacant. If the status is Clean the cached element is identical to
the corresponding value in DM. A Dirty status indicates that the stored value in
the cache differs from the value in memory, and the Trailed status indicates that
the value in the cache is temporary.

150

commit / fail read / write / trail

adddr _ data adddr __data
[E
T VL L L E
T VIS E
Q R B -L B
D LD e
I E
E {) E !]
(@) During Clause-Try (b) If Commit (¢) If Fail

Figure 6.11: Data-Trail Cache Policy: Delayed Binding

DC receives read, write and traidl memory requests. The read and the write
requests are treated in the conventional way. Upon receiving the trail memory
request, DC performs the following operation:

o trail(Address,Value): If there is a cache hit, the following cases may
occur depending on the status of the cached element. If it is Clean, the
new value is stored in the cache and marked as Trailed. If it is Dirty the
cached value is written back to the DM and the new value is stored in the
cache and marked as Trailed. If it was already Trailed, the new value is
written in the cache and remains Trailed.

In case of a cache miss, the cache replacement policy vacates an entry that
is not Trasled, writes the new value in the cache and marks it as Trailed. If
the non-trailed element is not found, an exception condition is generated.

The following operations are performed when the control signals fail and
commast determine clause-try failure or success.

e fail: All Trailed entries are marked Free.

e commit: All Trailed entries are marked Dirty.
In Figure 6.11a we show the DTU cache during a clause-try. The elements
marked as T are being trailed. In Figures 6.11b and 6.11c we show the contents of

the cache after a clause success and failure. The complete data cache algorithm
1s specified in Figure 6.12.

151

traili(addres,value)

‘ from RU

DC Control

read{address, value}

write(address,value)

commit

fall

If cache hit then
If status=Clean
write toc cache
mark{Trail)
if status=Dirty
wtiteback
write to cache
mark({Trall)
I statusaTrail

if cache hit then
return from cache
else Il miss then
replacemeant pollcy
write to cache
mark{Clean})

i{ cache hit then

if status=Clean
mark(Dirty)
write to cache
else if mlss then
replacement policy
write ta cache
mark(Dirty)

changa Trail to
Dirty

change Trall to
Free

write to cache
alse it miss then
replacemsent policy
write 10 cache
mark(Trall}

Figure 6.12: Data Trail Policy

Therefore, the proposed data cache policy implements the Delayed Binding
approach to data trailing by keeping the trailed values in the cache and either
committing them to Dirty upon clause-try success, or resetting them upon clause-
try failure. One should note that Trailed values are never replaced by the cache
replacement policy. Furthermore, trailed values are accessible during the clause-
try even before they commit or fail. Trailed values that commit to Dirty remain
in the data cache as valid cache entries.

The following features of the Data-Trail Unit and the Data Cache policy
should be discussed. First, there are no explicit instructions used for saving,
that is trailing assignments in the Data Memory. This is implicitly performed as
part of the Data Cache operation. Second, restoring a previous memory state due
to clause-try failure can be performed in constant time setting the appropriate
bit in the status of the cached elements. And finally, at commit time, the trailed
elernents remain in the cache thus improving the locality of data references.

The Data Cache policy for shallow backtracking, relys on the cache replace-
ment policy not to replace any trailed values from the cache. This is because the
trailed values are temporary, and should thus not reach the Data Memory, where
they will overwrite the existing contents of memory. The exception condition
that detects the case where all of the elements in the cache are trailed, results in

the use of a Trail Stack in the Data Memory. This is performed by the exception
handler. If the Data Cache is fully associative, such conditions are expected to
occur very infrequently. From the measurements shown in Chapter 5, clause-tries
that commit, in most cases require trailing of less than 10 elements.

Since a fully associative cache is costly, a set associative cache may be more
suitable for implementation in the FCP processor. In this case, the same De-
layed Binding approach for shallow backtracking applies to the set associative
organization, as well as other cache organizations. as long as the trailed values
are not replaced and written back into memory. The chances for the exceptional
condition to occur is higher in cache organizations that are not fully associative.

6.10 Memory Modules

The address space of an FCP program is partitioned into four areas: Instruc-
tion, Goal, Data and Tag Memory. The compiled program is stored in IM which
is accessed and managed by the IU. GM is used for storing all of the goal con-
trol structures. It is accessed and managed only by GMU. Tags are stored in
TM whereas DM is used for storing program data structures like lists, variables,
tuples, integers etc.

The data and tag memories are accessed using the common address. Memory
is allocated on the heap using the HP and HB pointers. The stop and copy algo-
rithm for garbage collection could be used to recycle discarded data structures.

6.10.1 Goal Memory

GM is accessed and managed solely by GMU. It is used for storing goal control
structures private to GMU. GM contains three types of control structures as
described in Chapter 4. These are: goal records, activation records and suspension
records. Memory allocation in GM is performed either by using the Goal Heap
Pointer (GHP) or the two free list pointers: goal free list (GFL) or suspension
free list (SFL). GFL are used to link discarded goal structures in GM. Similarly,
activation and suspension records are linked onto SFL.

When a goal suspends, associated with each goal record is a unique goal
hanger that consists of the goal pointer and a reference count of the number
of variables the goal is suspended on. This allows the activation record to be

153

dynamically garbage collected once there are no more variables that point to it
(this avoids having dangling pointers). Therefore, GM is dynamically managed
independently of Data Memory or any other memory section.

6.11 Chapter Summary

The FCP processor architectural model defines multiple functional units that
execute concurrently. Based on the performance analysis models described in
Chapter 5, we have proposed architectural support for each of the hypothesized
implementation bottlenecks.

The FCP processor instruction set enables each functional unit to receive
mstructions concurrently, thus resulting in a long instruction format. The Goal
Management Unit offers architectural support for overlapped goal management
and eflicient execution using a special-purpose Goal Cache. Zero-cycle switching
between goals is enabled by prefetching instructions from the next goal already
in the Goal Cache. Instruction prefetching is performed by IU. The Reduction
Unit and TU perform goal reduction by executing a specialized RISC instruction
set. A separate instruction provides support for pointer dereferencing. Clause-
trailing during shallow backtracking is supported by the specialized Data Cache.
For this purpose, the cache policy called Delayed Binding is defined.

154

CHAPTER 7

Overlapped Goal Reduction and Goal Management

We now consider the overlapped execution of goal reduction, performed by
RU, with goal management performed in GMU. We divide this chapter into the
following five sections. First we describe how to decouple the two sets of op-
erations, starting from the sequential abstract machine for FCP, described in
Chapter 4. In the second section we describe how RU interprets goal manage-
ment operations that execute in GMU. In other words, we describe the RU-
GMU synchronization and interface. In the third section we present the goal
management execution algorithms and describe their implementation using the
special-purpose Goal Cache. In the fourth section we give several examples of
GMU execution, including goal cache overflow and underflow. Finally, in the fifth
section we summarize the properties of the overlapped execution algorithms.

7.1 Overlapped GMU Execution

Starting from the sequential abstract machine for FCP, and for each of the
goal management instructions: halt, spawn, suspend and commit, we first describe
the dependency between these operations and goal reduction execution. We then
suggest a way to remove the dependencies, decouple goal reduction from goal
management, and allow overlapped execution in a special-purpose environment.

Halt

In the sequential abstract machine described in Chapter 4, goal termination
or halting consists of scheduling a new goal for reduction and also performing
some memory management operations. There is no data dependency between
the goal management instruction halt and the goal reduction of the next sched-
uled goal, which corresponds to the get and unify instructions. That is, if the
first instruction of the next goal is prefetched, the two operations can execute
concurrently in a special-purpose environment. In Figure 7.1(a) we show this by

155

a) Overlapped Get/Halt

I get p |
. J
| commit |
! put g1]
A h 4
l put g2 | spawn q1]
t ¥ L 4
[put g3 1 1 spawn g2 |
< ¥ ¥
" | put qn | spawn q n-1 1}
¥
| iterate gn |

b) Overiapped Put/Spawn

Figure 7.1: Overlapped: a) get/halt; b) put/spawn

representing the two operations halt and get as overlapping.

Spawn

Spawning a new goal consists of placing the goal record onto the active goal
queue from which it will be scheduled for execution. In the sequential abstract
machine, the spawn operation also allocates the new goal record. During the
execution of a clause-body with more than one goal, there is no data dependency
between the actual scheduling of the goal record and the creation of the goal
arguments of the following goal in the same clause. Therefore, the put and spawn
operations of successive goals in the clause-body could overlap, as shown in

Figure 7.1(Db).

Suspend

During a clause—try, the get and unify instructions use the Suspension Table
(ST) to store the address of variables that the goal may suspend on. If the out-
come of a clause-try is indeed suspend, ST is used to implement goal suspension.

156

_getp __}-write

t ST
IIM write ~m read_;[ST P]
next goal Conflict
a} Confllct During Access to ST
[getp e
wWrite
& g N LR
next goal ST ST2
t
No Conflict

b) Conilict Resolved using ST1 and ST2

Figure 7.2: Enabling the Overlapped Execution of Suspend

The next goal in the active goal queue is then scheduled for execution. The sus-
pend instruction of the current goal cannot overlap execution with the get and
unify instructions of the next goal reduction, since they may both access the same
ST structure. Therefore, there is an implicit data dependency because of the use
of the same shared resource, ST. We show this conflict of access in Figure 7.2(a).

One way to allow the overlapped execution of the suspend operation and the
clause-try instructions of the next goal is to partition ST into two parts. One is
used by RU and the other by GMU. The data dependency is avoided by moving
the contents of the ST that is accessed by RU into the one accessed by GMU.
The effect is the same as if one were to consider the use of two suspension tables
ST1 and ST2 used by the get and suspend instructions in an alternating manner.
Upon goal suspension, goal reduction continues with the alternate ST, while goal
suspension is implemented concurrently using the old ST. Whether a switch or a
iransfer mechanism is used is an implementation issue not discussed here. This
is shown in Figure 7.2(b).

Commit

The commit instruction consists of activating previously suspended goals that
have received new assignments during the committed clause-try. In Figure 7.3(a)

157

. nflict
: read geo N read

write pointers to
Czzhern crrdazes T suspended

var X var'yY goals

a) Confllct during Access to Variable
tl read o Wwa
£ ¥
| - N 1
¥ var X var 'Y

b) Conflict Resclved using Wake-up Queue

Figure 7.3: Enabling the Overlapped Execution of Commit

we show two shared variables X and Y that have goals suspended on them.
This is implemented by storing a goal pointer in the variable location. The
commit instruction encountered during the reduction of a non-empty clause-body
is commonly followed by put and unify operations. Goal reduction may not
overlap with goal activation since the unify instructions may overwrite the same
variables that contain suspension record pointers required to activate suspended
goals. Therefore, there is a conflict between the commit instruction and the put
and unify operation performed in the clause-body of the committed clause.

In Figure 7.3(b) we show the use of a Wake-up Queue (WQ) to store the
suspension record pointers to suspended goals. Prior to the commit instruction,
the goal pointers are stored in WQ. In a way similar to the use of ST, WQ is
partitioned into two parts accessed separately by RU and GMU. The commit
operation consists of switching to the new WQ section that is empty while GMU
accesses the part containing suspension record pointers. Therefore, overlapped
goal reduction and goal management is enabled by the use of two STs and WQs
for overlapped goal suspension and goal activation respectively. On the other
hand, there is no data dependency between goal termination, goal spawning, and
goal reduction. In Figure 7.4 we symbolically denote the overlapped execution
of goal management and goal reduction.

Prior to suspension, ST contains variable entries that GMU uses to imple-

158

RU and GMU Instructions

Sequential
Abstract
Machine

GMU Instructions RU Instructions

Figure 7.4: Overlapped Goal Management and Goal Reduction

ment the goal suspension mechanism. These were moved into ST by executing
specialized RU instructions. At suspension, the context of ST is transferred so
as to vacate the current ST, and allow GMU to access the old ST. While GMU
performs goal suspension, RU continues to execute instructions. During goal
suspension, the WQ is unaffected.

Prior to commit, RU stores in WQ suspension note pointers that GMU uses
to activate suspended goals. The pointers are stored in WQ using the same
push_WQ instructions in the same way as described for ST.

7.2 RU-GMU Interface

The FCP processor instruction stream can be described as a sequence of
specialized RISC-like instructions executed by RU and interleaved with high-
level goal management operations. In a general-purpose execution environment,
the goal management operations are also encoded using the host machine in-
structions. Moreover, the goal reduction instructions and the goal management
instructions would execute sequentially rather than in an overlapped mode. The
RU instructions that follow goal management instructions may either belong to

159

the same goal or may result in a switch to another goal. In case of a switch.
RU instructions are fetched from the next scheduled goal. This is analogous to
a contest switch in a multiprocessing system.

In the execution environment that we propose, goal management ope: ".tions
exccute in an overlapped mode with goal reduction. Furthermore a s ecial-
purpose goal cache enables their efficient implementation. In the previous section
we showed how the goal management operations are decoupled from goal reduc-
tion operations using a special-purpose suspension table and wake-up queue.
From the RU point of view, the effective execution time of goal management
operations is measured in terms of elapsed instruction cycles between the RU
instruction preceding and following the goal management operation. For ex-
ample, in a sequential environment, the goal management instruction can be
implemented as a subroutine call. Only after the call is executed and returns
control, is the next RU instruction that follows the goal management operation,
executed. In this case, the effective execution time of the goal management in-
struction is equal to the number of cycles required to make the call, perform the
operation, and return control.

In the following section we describe the mechanism used to achieve a zero-
cycle delay, or zero cycle effective execution time, for the interpretation of goal
management instructions by RU.

7.2.1 Zero Cycle Delay

RU addresses the current goal window (CGW) and the current spawn window
(CSW) in the goal cache using the current window pointer (CWP) and current
spawn pointer (CSP) respectively. In addition, GMU distinguishes two windows
and window pointers in the goal cache: the Next Goal Window (NGW) and the
Next Spawn Window (NSW) are denoted using the next window pointer (NWP)
and the next spawn pointer (NSP). NWP points to the next ready goal in the goal
cache whereas NSP points to the next free window that will be used for spawning.
The next pointers are set by GMU, but read by RU. In other words, the RU-GMU
interface that allows the efficient interpretation of goal management instructions
consists of managing four goal window pointers. This is shown in Figure 7.5.
The current window pointers CWP and CSP are modified only by RU.

From RU’s point of view, goal management operations are performed by
moving the next pointer values into the current values. In Figure 7.6 we show

160

Set by GMU
—P

b
Read by RU

Figure 7.5: RU-GMU Interface via Goal Window Pointers

GMU GMU
; . . <
I NSP . m
ewe
Halt and Suspend Spawn

Figure 7.6: RU Interpretation of GMU Instructions

the management of the window pointer registers for the three goal management
instructions: halt, spawn and suspend. The commit instruction does not affect
the goal window pointers.

In Figure 7.6a, the interpretation of the hait instruction is shown to consist
of moving NWP to CWP. The value of the CSP is not affected during the halt
instruction. The same is true for the suspend operation. In case of the spawn
instruction, NSP is moved to CSP whereas the value of the CWP is not changed,
as shown in Figure 7.6. The new values of NWP and NSP are determined and
set by GMU.

The NWP is used by the Instruction Unit to prefetch instructions from the
next goal which are then used in the case of the halt and suspend instructions.
If IU prefetches the first few instructions of the next goal using NWP, then the
effective execution time of goal management instructions could be equal to zero.
The effective execution time is then determined by the possible wait time caused
by the single instruction goal management protocol, which does not allow the
queueing of GMU instructions. We evaluate the GMU wait time as well as other

161

1u U
pretetoh —f———#{/Noxt FC 4 | prefetoh _ I
[amu § p : N GMU 2 :
idla busy
suspend
|V WL S
DRrFFrrrrrrrysy
[ks
a) Before Suspend b) Suspend

Figure 7.7: FCP Processor Execution of Overlapped Goal Suspension

goal management parameters in Chapter 8.

7.2.2 Goal Suspension and Activation: A Global View

Before we proceed to describe the execution of goal management operations
using the Goal Cache, it is useful at this point to describe the global picture of
the FCP processor execution, while GMU executes overlapped goal management
operations and RU continues to perform goal reduction. In Figure 7.7 we show
GMU, RU, DU and IU execution units as well as the Data Cache. The Goal
Cache access is described in the following section. We now describe first the
execution of goal suspension followed by goal activation.

Prior to the suspend instruction, ST contains values that GMU needs to fully
implement goal suspension of the currently active goal stored in the Goal Cache.
These values are pointers to suspension notes. The same suspension note pointers
are also stored in the suspension variable locations in the Data Memory. If the
suspension variable already contained a suspension note pointer, then this pointer
is stored in ST. This case occurs if the current goal suspends on a variable that
another goal previously suspended on. If the current goal suspends on a variable
for the first time, then the variable location does not contain a suspension note
pointer. In this case, the SN register value is store in the variable location, and

162

1u 11U
pretaton ———»{/NextFc g l preteton ———={ NextPC | |
GMU 3 GMU
fclle busy
motivate
?’I””III;
¥
a) Before Suspend b) Suspend

Figure 7.8: FCP Processor Execution of Overlapped Goal Activation

also in ST. The SN register value is set by GMU so that it always points to a
preallocated suspension note. This value is determined by either incrementing
the Goal Memory heap pointer, or by using the free list pointer SFL.

In Figure 7.7, we show the active goal which is denoted by CWP. GMU
precomputed the values of the next window pointers NWP and NSP. These are
shown above the pointers CWP and CSP. We also show that IU has prefetched
the first instruction of the next goal. We label this instruction nezt_PC. In the

Data Cache, during the clause-try, several assignments to the Data Memory are
marked trailed.

When the suspend instruction is fetched and decoded, the following operations
take place. The context switch to the next goal consists of moving the NWP to
the CWP, and by shifting the contents of ST so that it is accessible by GMU.
The first instruction of the next ready goal is given to RU to execute, while in
the Data Cache, the status bits of the trailed values is changed to free.

With the above described steps, GMU is now completely decoupled from RU,
and can perform overlapped goal suspension. In addition, GMU precomputes
the next goal window pointers, and allows IU to prefetch the first instruction of
the next goal.

A scenario similar to goal suspension, applies to the activation of goals at goal

163

commit time. Before the commit operation, WQ contains pointers to suspension
records that were stored in the suspension variables in the Data Memory. The
pointers are stored in WQ using move or load instructions, with WQ as the
destination address.

When the commit operation is decoded, all of the trailed elements in the Data
Cache are changed to dirty. Moreover, WQ is shifted so that a new WQ is used
during continued goal reduction. During the clause-try that succeeds, RU may
have place entries into ST as well as WQ. Therefore. at commit-time it is neces-
sary to reset the ST stack pointer value, that is, clear ST. The implementation
of the commit goal management instruction is shown in Figure 7.8.

7.3 GMU Instruction Execution Using the Goal Cache

The goal cache is primarily proposed for the efficient execution of GMU in-
structions. That is, GMU instructions could also be implemented without the
use of a goal cache, but they would be less efficient. Most goal management
instructions execute by simply manipulating the goal window status bits (GSB).
However, in case of GC overflow or underflow, goals are either enqueued or
prefetched to or from the goal memory. We now describe in detail the execution
of GMU instructions using the goal cache. A variety of strategies are described
but not evaluated. We consider a subset of a range of implementation approaches.

The GMU instruction execution algorithms described in the following sections
are determined by the state of following three control primitives:

¢ Goal Cache Counter, (GCC). GCC keeps count of the number of ready
goals in GC. The counter enables the detection of cases when GC contains
only one goal (underflow) or has only one empty window (overflow). We
define the counter increment and decrement operations labeled GCC+ and

GCC- respectively. Note that if GC contains N goal windows, overflow is
detected when (GCC = N —1).

® Goal Memory Flag, (GMF). GMF maintains the status of the active queue
in the goal memory. It is set if there is at least one goal in the active queue

and reset otherwise. The active goal queue in GM is empty when the GQF
= GQB = null. Two operations: goal prefetch and goal enqueve modify
the GMF status after they manipulate the active goal queue.

164

e GMU Busy Flag, (GMUBusy). GMUBusy is set when GMU is performing
goal management, that is, when GMU is busy. It is used by IU to schedule
instructions. IU also sets the flag when GMU receives a new goal manage-
ment instruction. The flag is reset by GMU upon its completion of the goal
management instruction.

Let us further define the following multiple assignment statement used to de-
note changes to GSB performed by GMU: GSB(wy, ...,wn) = (81, ...,sx). That
is, the status bit of goal window w; is changed to s;, for 1 < i < N. Given the
above defined GMU operations, we now specify the goal termination and spawn-
ing algorithms, followed by the goal suspension and activation algorithms. We
use the following notation to denote that there is no data dependency between
operations pi, ... , pn: [p1 || p2, .. , || pa]. That is, these operations could
execute concurrently.

7.3.1 Goal Termination

Goal termination is always performed in the goal cache. That is, the active
goal is always located in one of the goal windows denoted by the CWP window
pointer. The next goal to be scheduled for reduction, upon the termination of
the current goal, is denoted by the NWP window pointer. The goal termination
algorithm is shown in Figure 7.9.

When there is no cache underflow due to a halt instruction, the above al-
gorithm shows that the active goal is marked as free and the next ready goal
is marked active. GMU then computes the next ready goal and sets the NWP
window pointer value. Upon completion of the halt instruction, the GM UBusy
flag is reset.

In Figure 7.10 we depict the halt operation in GC, for the case that leads to
a goal cache underflow. The function nezt(ready) returns the next ready window
pointer value determined by inspection of the GSB. This may be the first available
ready window in some priority order or perhaps in a round-robin order. In any
case, for small sizes of N (number of goal windows) the next function may be
implemented efficiently using combinational logic.

In case of underflow, goal termination prefetches a new goal from the non-
empty active goal queue, and stores it in the (just) vacated goal window. Since
1t is not important where the goal is stored in GC, for simplicity it is stored in

165

GCC-.

IF (Not underflow):
GSB(CWP,NWP) = (Free,Active).
NWP = next(Ready).

IF (underflow) And (GMF):
| GSB(CWP,NWP) = (Ready,Active). ||

NWP = CWP. ||
GC(CWP) = Prefetch. ||
GCC+].

IF underflow And Not GMF:
GSB(CWPNWP) = (Free, Active).
Reset(GM UBusy).

Figure 7.9: Goal Termination Algorithm

PSW LTELTLL?P_A LNf.EI PSW LN.%LLTLL?F_I me'J
GSB

FIAlFIS] ELR esB[FTRTFTSTET A

&7 5 & &=

GC Ba GC gi [k
F B4 oF B4
e} AN L
AN A\ f

AN\ A\

|
Goal Memaory %Go-l Memory

Figure 7.10: Goal Termination that Results in GC Underflow

166

[GCC+. ||
GSB(CWPNWP) = (Ready,Spawn)).
IF (Not overflow):

NSP = next(Free).

If (overflow):
{ Enqueue(CSP). ||
GCC-. ||
NSP = CSP].
Reset{(GMUBusy).

Figure 7.11: Goal Spawning Algorithm

the same window as the terminated goal.

7.3.2 Goal Spawning

Spawning a new goal by the currently active goal is always performed in
GC using the current spawn window denoted by CSP. Therefore, the goal cache
policy is to always maintain one empty goal window used for fast spawning. This
window is marked as spawn in GSB. After placing the new goal argument pointers
in CSW registers, spawning the goal is performed according to the algorithm
described in Figure 7.11.

A spawn instruction that does not result in overflow is implemented by mark-
ing the currently spawned goal as ready, and the next empty window as spawn.
GMU then computes the next free location and sets the NSP window pointer
value.

Spawning a goal that results in the goal cache overflow is shown in Figure
7.12. Asin the goal termination algorithm, the nezt(Status) function is used to
find the next free window that will be designated as the next spawn window.
In case of goal cache overflow, any goal window could be vacated from the goal
cache and used for spawning the next goal. For simplicity, the above algorithm
specifies that the most recently spawned goal is moved to the goal memory. An

167

PSW EQYLL?E_LTLI PSW Lufﬂ'iu'bfu ch'ral
GSB Al F1sSs! BRI R GSB| Rl Al S| F af
‘F@ 2o 28 zo M M3 ;5:% %
D1l Al c1] E B1 1] A} Sil Bl 1
GC 21 A2 c2 E Bg GC 2] A2 Sﬁﬁ £E2 4
1 c1.] E3] B3 1 el e a
3 c3 B4 ar 3 o] 4
feor) D5 ap 1N\N_D5
G|\ s T\ l
Gaoal Memory 7R\ Goai Memory
a) b)

Figure 7.12: Goal Spawning that Results in GC Overflow

alternative is to move the nearest (first) ready goal rather than the most recently
spawned goal.

7.3.3 Goal Suspension

GMU implements goal suspension by accessing the suspension record pointers
stored in ST. The goal suspension control data structures used are the same as
those described in Chapter 4. We assume that RU has switched to a new ST,
and thus GMU has exclusive access to the ST that contains the suspension note
pointers. The goal suspension algorithm performed by GMU is presented in
Figure 7.13.

When the active goal suspends, it is moved from the goal cache into the goal
memory, if this does not result in a goal cache underflow condition. If it does,
and the active queue in memory is empty, the goal remains in the goal cache
and is marked as ready. In case the active queue is not empty, the active goal is

suspended by moving it from the goal cache to goal memory, and a new goal is
prefetched.

If the underflow condition does not occur, the main part of the goal suspen-
sion algorithm is performed. This case is depicted in Figure 7.14. Let us assume
that the current goal needs to suspend, waiting for three variable values to receive

168

GCC-.
IF (Not underflow):
GSB{CWP NWP) = (Free. Active).
[NWP = next(Ready). ||
g = Allocate(goal_record). ||
h = Allocate(hanger).)
[GM() = g |
GM(h+) = 1. ||
GM(g) = Store_goal(CWP), |
FOR EACH p in ST:
[GM(h+)+. ||
value = GM(p). |
IF (value == null)

THEN
GM(p) = g.

ELSE
sn = Allocate(suspension_note).
[GM(sn) = g. |
GM(sn+) = GM(p+). ||
GM(p-+) = sn. |

IF (underflow And Not GMF):
GSB(CWP) = (Ready).
NWP = CWP.

Reset(GMUBusy).

Figure 7.13: Goal Suspension Algorithm

169

assignments. The values stored in ST are denoted as p;, p, and p; and they are
the same values stored in the suspension variables located in the Data Memory.
The values are pointers to suspension notes stored in the Goal Memory area.
Two of the suspension note pointers in ST, p; and p; point to already existing
suspension lists, whereas p; points to a preallocated suspension note. 7 e exist-
ing suspension control data structures prior to executing the suspend i Lruction
are shown in Figure 7.14a. In Figure 7.14b. we show the newly allocated data
structures that implement the suspension of the suspended goal. Ncte that the
reference count value stored in the goal hanger of the newly suspended goal is
equal to 3. This is because there are three suspension notes that point to this
hanger.

Alternative goal suspension strategies could be proposed. that consider the
possibility of leaving suspended goals in the goal cache, by marking them either
as ready or labeled as suspended. In the first case. the goal suspension algorithm
would be of a busy-waiting type. We suspect that this would result in a larger
number of suspensions, and thus reduce performance. In the second case, the
goal suspension algorithm becomes significantly more complex. It requires that
goal activation check whether the activated goal is in the goal cache or mnot.
Moreover, the case where all goals in the cache are marked as suspended would
have to be detected and resolved. Evaluating various alternative goal suspension
algorithms is beyond the scope of this thesis and is left for future research.

7.3.4 Goal Activation

As described in Chapter 5, most of the times the commit instruction does not
result in the activation of goals. That is, WQ is empty. We refer to these cases
as a goal cache hit. Those commit instructions that result in the activation of
suspended goals are referred to as a goal cache miss. Upon goal activation, goals
are enqueued onto the active goal queue in GM. Only in case of GC underflow
are activated goals prefetched into GC. The goal activation algorithm is specified
in Figure 7.15.

In Figure 7.16, we show the case where the previously suspended goals shown
in Figure 7.14 receive data assignments during the clause-try that resulted in
a successful goal reduction. Let us assume that at commit time, WQ contains
suspension note pointers p;, p; and p;. These pointers are successively accessed
and the suspension notes are traversed. The goals are activated by placing them

170

h3

a) Before Suspend b) After Suspend

Figure 7.14: Goal Suspension Algorithm

onto the active queue, denoted usning the GQF and GQB pointers. Upon activa-
tion, the suspension notes are garbage collected onto the Suspension Free List,
denoted by SFL. Since there may be more suspension notes that point to the
same hanger, a reference count is kept in the hanger location. The hanger is
garbage collected only when the reference count of 0 is reached. When a goal
is activated, the corresponding hanger is cleared so that later commits do not
attempt to activate the same goal.

7.4 Examples of GMU Execution using the Goal Cache

We now show an example of GMU execution using the goal cache. Let us
consider the following FCP program for quicksort. Each recursive call to the
quicksort goal spawns four concurrent goals.

In Figure 7.18, we show the active goal window containing the quicksort goal,
with the program counter labeled PC-Q and two argument pointers 4; and A,.
The arguments denote the input list of elements [X|Xs/ and the result variable
Sort. The program is stored in the Instruction Memory (IM} whereas the list of
input elements and the result are stored in the Data Memory (DM).

171

For EACH (p) in WQ:

WHILE (

Reset(GMUBusy).

GM(p) Not == null)

h = GM(p).

g = GM(h).

IF (g Not == null)
[Activate(g). ||
GM(h)} = null.]

GM(h+)-.

IF (GM(h+) == 0)
Collect(h,SFL).

pl = GM(p+).

Collect(p,SFL).

p =rpl.

Figure 7.15: Goal Activation Algorithm

[SFL]GoF] [Gas]

h1 ha h2
f;f] :??i "—gs ? pi: 41:1 ph

G1 G4 G2 +G§ G1 G4 G2 a
SIESECE SIS BN

a) Before Commit b) After Commit

Figure 7.16: Goal Activation Algorithm

quicksort([X|Xs],Sort) :-
partition(X?,Xs?,Small,Large),
quicksort(Small?,S),
quicksort(Large?,L),
append(S?, [X|L7],Sort).
quicksort([],[]).

partition(X,[Y!Ys],[Y|Small],Large):~
X =< Y | partition(X?,Ys?,Small,Large).
partition(X, [Y|Ys],Small,[Y|Large]):-
X > Y | partition(X7,Ys?,Small,Large).
partition(X,[1,01,[1).

Figure 7.17: Quicksort Program

173

In the PSW register, CGP points to the active goal window, CSP to the
spawn window, NGP to the next ready goal and NSP points to a free window
that will be used during the next spawning.

Instructions executed by RU first perform clause-head unification followed
by clause-guard evaluation. Let us assume that this has completed successfully.
At this point, four goals are spawned corresponding to two new quicksort goals,
one partition goal and one append goal. Since a spawn window is already preal-
located, spawning consists of moving argument pointers into the spawn window
registers. As soon as the spawn operation is completed, RU continues executing
the following instructions, thus creating the next goal. This is again performed
by placing arguments into the newly preallocated spawn window.

An optimization is performed in the case of the last goal. Instead of spawning
it and then selecting a goal for scheduling, the active goal is modified and sched-
uled for execution. This procedure is referred to as tail recursion optimization.

Also shown in Figure 7.18 is the case when the last spawned goal results in
goal cache overflow. We show that GMU vacates one goal cache window while
RU still has one empty window for spawning.

7.5 Properties of GMU Execution using GC

Overlapping goal management operations with goal reduction execution and
using a goal cache for storing FCP goals has the following properties:

¢ Goals are always spawned in the CSW goal cache window. Without a goal
cache, goals would either be created in memory, or first in registers and
then moved to memory. Furthermore, by always having both the active and
spawn goal in registers, an increase in the number of register—to—register
operations, and thus performance is expected.

* GMU always maintains at least one empty goal window for spawning a new
goal. Thus, RU never allocates memory for a goal record. This is always
done by GMU, while the RU is performing goal reduction.

¢ Goal Memory is completely isolated from the rest of the processor archi-
tecture. That is, GMU privately accesses the GM and performs dynamic
garbage collection. Allocating goals and goal control structures using the

174

r activg free Ispawnlfree

-FIPc-q FC-P
B A B
2 AL
=

a) Executing Quicksort Goal: Spawn Partition

SRawNn
PC-&

T Overflow detected
CcSP
b) Executing Quicksort Goal: Spawn Quicksort;

free jactive
Lo ety
Al

c) GMU Empties One Goal Window

Figure 7.18: Executing the Quicksort Program in the Goal Cache

175

same memory area results in frequent garbage collection interruptions, that
degrade performance. This is in general a common problem of list—oriented
languages. By dynamically garbage collecting in the Goal Memory we iso-
late the problem to the Data Memory area. Maintaining a separate control
memory could also be used in the sequential abstract machine and may
also result in less frequent garbage collection interruptions.

FCP goals are generally light—weight computations. Goals spawned in the
Goal Cache may terminate in the Goal Cache without ever being removed.
Therefore, goal caching reduces the number and time spent allocating mem-
ory for goal records and other goal management control data structures.

Part of the FCP programming style is to perform computations using com-
municating goals, often spawned in the same committed clause. The goal
cache policy described in this section stores recently spawned goals closer
to the processor in order to maximize performance. What is trading-off
is goal scheduling fairness. Goals spawned within a short distance of each
other are more likely to be found together in the goal cache, thus capturing
inter-goal locality of communication.

176

CHAPTER 8

Analytic Performance Evaluation of RU-GMU Execution

In this chapter we analytically evaluate the performance of overlapped exe-
cution of goal management and goal reduction, as proposed in Chapter 6 and
described in Chapter 7. First we specify the performance measures followed by
the analytic performance model and finally the performance analysis for a range
of characteristic parameter values.

The approach used for performance modeling in this chapter differs from
that presented in Chapter 5 in the following way. Since we are considering here a
specific physical machine architecture, the proposed model contains parameters
that describe its organization and instruction execution as opposed to the more
high-level model used in Chapter 3. As far as the system workload is concerned,
we use the same set of benchmark programs and their corresponding parameter
values.

8.1 RU-GMU Performance Measures

To evaluate RU-GMU performance we define the following four performance
measures:

i

. Average Instruction Execution Time (7).

3]

. Average RU-GMU Wait Time (W).

3. Relative Effective GMU Execution Time (R.}.

4. GMU Utilization (Uypy,) and RU Utilization (U,,).

The average RU-GMU instruction execution time, 7, characterizes the per-
formance of program execution for a given system workload. It corresponds to

the average number of processor cycles required to execute a single processor
mstruction. For a specific processor instruction set the objective is to define an

177

execution model and (cost-effective) architectural support to reduce the aver-
age execution time. The average instruction execution time is not necessarily
indicative of overall system performance which may depend on other system
components.

‘The average RU-GMU wait time, W, is a measure of the time that RU waits
for GMU. The wait time directly affects program execution time and the ob jec-
tive is to reduce this overhead. As a performance measure, the average wait time
is also included as part of the average instruction execution time and the relative
effective GMU execution time discussed in the following paragraph. However,
since we comsider it an important performance measure on its own, we make a
point of analyzing it separately and using this analysis to evaluate other perfor-
maince measures.

The relative effective RU-GMU execution time, R., compares the effective
times performing goal reduction in RU and goal management in GMU, for a given
system workload. It is a measure of the RU-GMU execution model which includes
inter-unit communication and synchronization. The objective is to reduce the
effective time for goal management execution below a specified value A'%. In an
effort to completely overlap goal reduction and goal management, the objective
may be to set the value for K to be very small (for example R, < K = 3 — 4%).

The GMU utilization, Uy, determines the time spent performing goal man-
agement relative to the program execution time, for a given system workload.
Similarly, RU utilization, U,,, determines the time spent performing goal reduc-
tion relative to the program execution time. Together, the utilization factors
are a measure of the workload balance. Ideally, for a balanced system. the two
concurrent units RU and GMU are equally loaded resulting in 100% utilization.
By investigating the workload balance between concurrently executing units one
may investigate more cost-effective use of available resources. In general, this
is one way of achieving a more efficient, balanced system without bottlenecks
(see [Ferr78] for details). We now describe the RU-GMU system organization
followed by the description of the performance model parameters.

8.2 System Organization and Parameters

In Figure 8.1 we show the RU-GMU system organization used to define the
performance model. It shows the functional units RU, GMU as well as the goal
cache (GC) and the goal memory. RU executes a RISC-type instruction set

178

From U

Wait

Tima

Figure 8.1: RU-GMU Performance Model System Organization

whereas GMU executes instructions: hait, spawn, suspend, and commit. GMU
instructions that execute only in the goal cache are modeled as goal cache hits.
GMU instructions that require access to the goal memory are considered a goal
cache miss. In the implementation algorithm discussed in Chapter 7, halt and
spawn result in a goal cache hit if there is no goal cache underflow or overflow.
Commit instructions that result in the activation of previously suspended goals
in the goal memory are considered a goal cache miss. However, a commit instruc-
tion that does not activate goals is considered a goal cache hit. If the suspend
instruction results in the transfer of the current goal to goal memory, a goal cache
miss results, otherwise a goal cache hit occurs.

We group the performance model parameters into the following three cate-
gories:

1. Implementation dependent parameters.
2. Workload parameters.

3. Architecture and workload dependent parameters.

Implementation Dependent Parameters

All the execution times of GMU and RU instructions are implementation
dependent. These parameters are denoted with the lower case letter ¢. For ex-

179

ample, the average execution time of RU instructions is denoted as %,.. Simmlarly,
the execution time of a GMU instruction i that results in a goal cache miss is
denoted as ¢* and the execution time of a goal cache hit as t¥.

Goal management operations are overlapped with goal reduction execution.
The effective execution time of goal management operations is also implemen-
tation dependent. It depends on the overlapped execution algorithm and ar-
chitectural support. For example, ideally, the effective execution time of a goal
management operation is equal to zero. We denote the effective execution time
of GMU instructions that result in a goal cache miss as tome and the effective

execution time of GMU instructions that result in a goal cache hit as toh

Another implementation dependent parameter is the goal memory bandwidth
denoted as B. Let D denote the data width of the GMU parallel memory port to
goal memory, n the ratio of GMU processor cycle time and goal memory access
time, p the GMU clock cycle time and I the interleaved factor of the goal memory
system. The goal memory bandwidth B is then expressed as:

IxD
nxp

B =

(8.1)

The degree of memory interleaving, I, of the goal memory system determines
the maximum number of memory requests that may be serviced concurrently by
separate goal memory modules.

Workload Parameters

In Chapter 5 we described a set of workload parameters that characterize the
execution of the selected FCP benchmark programs. The same set of parameters
is used in this chapter. For example, the average number of variables a goal
suspends on, Nj ., the average number of goals activated at clause commit,
Nz, and the average size of a goal, S are also used. In addition, N,,,, denotes
the total number of GMU instructions executed and Fjg,, Fopy Fousp and From,
the fraction of executed goal management instructions halt, spawn, suspend and
commit respectively.

Architecture and Workload Dependent Parameters

Some parameters in the analytic model are both architecture and workload
dependent. By architecture we mean both hardware support and implementation

180

aspects such as the state of the art of compiler technology. Moreover, these
parameters also depend on features of the workload. such as locality of memory
referencing.

For example, N,, denotes the number of executed RU instructions and N

grmu
the number of GMU instructions. Their frequencies are labeled F,, and Eonu
respectively. F ghmu denotes the goal cacle hit ratio, that is, the fraction of all goal

management instructions that do not result in goal memory access. We denote
the hit ratio of each goal management instruction i as F!,

8.3 Performance Parameter Measurement

In Chapter 5 we showed how the workload parameters are obtained by per-
forming analysis at the abstract machine level. The analysis produces results that
are mndependent of the host machine implementation and abstract machine em-
ulation language. Moreover, it was argued that lower-level, machine-dependent
analysis is appropriate only if the specific machine implementation is being op-
timized and the results can not be simply applied to other machine implementa-
tions.

After specifying the special-purpose processor architecture for FCP, we are
able to determine the machine dependent parameter values such as the execu-
tion time of machine instructions. For example, the execution rate of a RISC
instruction set may be approximated as one instruction per processor cycle.

However, those performance model parameters that depend on both the archi-
tecture and implementation have to be determined using simulations unless the
processor architecture is actually manufactured. We use the following approach.
The abstract machine execution described in Chapter 5 is compiler based and
executes a set of abstract machine instructions. Each one of the abstract machine
instructions is implemented using the specific instruction set of the FCP proces-
sor. The instructions are dynamically counted and approximate the program
execution on the special-purpose FCP processor.

The above described approach is an approximation because of the following
features:

¢ The abstract machine goal scheduling strategy differs from what is proposed
as part of the FCP processor execution model.

181

Parameter Evaluation Approach Type of Parameters

' Y
Abstract Machine g Workload
Execution Characteristics
. J

r Y
Abstiract Machine

Simulates T
FCP Processor
ch Pr°fr..°r Architecture and
_ xecution - Workload Parameters

Specitication of
FCP Processor o impilementation
Organization Dependent
Parameters

Figure 8.2: Performance Parameter Measurement Approach

¢ The simulated FCP processor instruction execution uses the current version
of the abstract machine compiler. More efficient compiler techniques are
thus not modeled. In this sense, the analysis will result in more time
consuming clause-tries, as it was discussed in Chapter 5. Improvements in
compiler technology and particularly advances in clause indexing strategies
are expected to reduce the clause-try time and thus increase the relative
time that goal management is being performed.

The first issue does not affect the obtained results for the following reason.
The programs that are used are very large applications and therefore correspond
to a reasonable average of program behavior. From this point of view, the ob-
tained trace can be considered as a good average that is characteristic of the
considered system’s development workload.

The second issue, that is the compiler technology, does affect the obtained
measurements in the following way. We expect that a lower bound on the relative
execution time of goal management is evaluated. In other words, improvements
in compilation techniques may reduce the clause-try time and thus increase the
relative execution time of goal management.

8.4 Performance Model

We now express the four performance measures using the previously defined
parameters.

8.4.1 Average Instruction Execution Time

The average instruction execution time, 7, is equal to the sum of the average
execution time of RU instructions and the average effective execution time of
GMU instructions. That is,

T = (1 - Fgmu)fru + Fgmuizmu (82)
The effective execution time of GMU instructions. T muw
First, each GMU instruction, whether it leads to a goal cache hit or miss, results
in an effective execution time of t;;f'm and second, an average wait time of W, is

incurred by each executed GMU instruction. If we label the total wait time as W

consists of two parts.

then the average wait time per GMU instruction is expressed as W gmu = N:i .
The GMU effective execution time is equal to:
A A7

E;mu = t;mu + ng“ (83)

In other words, t;;,’,‘m denotes the minimum effective execution time of a goal

management instruction. It reflects the time it takes for RU to interpret the
instruction while GMU performs the overlapped execution. The effective execu-
tion time of a GMU instruction hit depends on the architectural support such as
instruction prefetching. This will be further discussed later in this chapter.

If we replace expression (8.3) in equation (8.2) we derive the following ex-
pression for the average instruction execution time 7:

T=(1- Fgmu)fru + Fgmute’h +W (8.4)

gmu

where W denotes the average RU-GMU wait time per total number of executed
instructions. That is, F,,, X ngu =W.

From expression (8.4), one can see that the average instruction execution time
T consists of three parts, represented as:

T=T1+T7T2+T7T3 (8.5)

183

The first part, T, represents the average instruction execution time of RU in-
structions, 7, represents the average effective time spent by RU interpreting
GMU instructions regardless of whether a goal cache hit or miss occurred, and
T3 represents the average wait time per executed instruction, W. One can note
that if program execution does not contain GMU instructions, then the average
instruction execution time 7 is equal to the average instruction execution time
of RU instructions ?.,, since the average wait time is then equal to zero.

8.4.2 Average RU-GMU Wait Time, W

The average RU-GMU wait time, ¥, is equal to the ratio of the total RU-
GMU wait time W and the number of executed GMU and RU instructions N.

That 1s,

— W —r

T/V = ﬁ = gmu X I/ngu (8.6)
To determine the RU-GMU Wait Time, W, we consider the execution of two
consecutive GMU instructions, as shown in Figure 8.3. Let A’ denote the elapsed
time between two consecutive GMU instructions gmu; and gmuiq, and t;mu the
time it takes to execute GMU instruction ¢. If the duration of GMU instruction
¢ is less than the distance A, the wait time, w;, is equal to zero. However, if the
duration is greater than the distance, a non-zero wait time is incurred. Thus, we

express the wait time for the i** GMU instruction as:

(toma — AY) H AT <8
.= u gmu 8.7
v { 0 otherwise (8.7)

The total RU-GMU wait time is then represented as the sum over all executed
GMU instructions:

i=Ngmu

W=y (w) (8.8)

=1

Using expressions (8.7) and (8.8) to evaluate the RU-GMU wait time requires
that one compute the execution time of each GMU instruction, and the distance
between consecutive instructions. As a performance model, this does not seem
practical, since one must consider too many combinations of ezrecution times
versus distance distributions. However, the performance model can be simplified
due to the following features:

1. There are only four GMU instructions.

184

gmu gmuj 4

- GMU Instruction execution

OQverlapped RU execution

'/ /4 RU-GMU Communication
Overhead

tl+1

time

Figure 8.3: RU-GAMU Instruction Wait Time w;

3%

. The GMU instruction execution times are well defined.
3. The number of significant program and implementation parameters in the

defined performance model is small.

The RU-GMU wait time can be divided according to the four GMU instruc-
tions as follows:

W = Whalt T Wsp + Wsuap + Wcom (89)
Moreover, as it was described in Chapter 5, goals in FCP programs typically
suspend on several variables, with the average being N° = 2.6 and the number

of goal activations is typically 1 or 2, with the average being N¢, = 1.12. There-
fore, the number of significant program parameter values required to model the
execution time of suspend and commit is small. We describe the execution times
of GMU instructions in more detail later in this chapter.

From expression 8.7, one can see that the meaningful values for inter-GMU
instruction distances are those that are less than the maximum value of the GMU
instruction execution times. All GMU instruction distances beyond this value

can be ignored, since they can not interrupt the overlapped GMU execution. Let

tmaz
gmu

the inter-goal instruction distance. and f; the frequency with which the GMU

denote the longest execution time for a single GMU instruction. Let i denote
instruction j € (halt, spawn, suspend, commit) is interrupted by another GMU

instruction at distance i. For example, f7,,, denotes the frequency of interruptions
of the halt instruction at distance : = 6.

185

For the suspend and commit instructions, the execution time depends on the
number of suspension variables N}, and the number of activated goals N°,
respectively. The frequency with which a suspend instruction that suspends on
N, variables (and a commit instruction that activates N¢, goals) is interrupted
at instruction distance 7 is denoted as f;mp(N2 {(and similarly f;om(Ne)).

If we define a unary function u(z) as :

r 20
= = 8.10
Uz) { 0 otherwise ()

then the total wait time, W, is expressed as:

W = Yy, (th—a)fﬁu(w—) flp

am

+ NE“P:}(U(varLsusp z)f;usp N2.) (8.11)
TN (N toom — Df we)l
where N7 denotes the maximum number of variables a goal suspends on, and
Nz denotes the maximum number of activated goals at clause-commit.

8.4.3 Relative Effective GMU Execution Time, R,

The relative effective GMU execution time compares the total effective GMU
execution time T, = with the absolute RU execution time 7,,. That is:

Temu ? u XN"’"‘
R, = 1{ = Ng (8.12)

If we divide the above equation with the total number of executed instructions

N we derive the following expression for the relative effective GMU execution
time: — .

R, = t.g_m" X Fymu = tfm" X Eyme (8.13)

t,.u Fru t,.u 1 Fgmu
Using expression (8.3) for the effective GMU instruction execution time in the
above expression, we derive the following expression for R,:
_ tomu T Woma Fymu
t,.u 1- F gmu

(8.14)

One should note that another way to represent the relative effective GMU ex-
ecution time K. is using the notation for the three parts of the average instruction

execution time, ¥ found in expression (8.5). That is,
R, = 21T (8.15)

T1

186

8.4.4 GMU and RU Utilizations, Uy, Ury
We define the GMU utilization U, as the ratio of the GMU execution time,
Tymu, and the total program execution time. T.

T Nx7

Ugmu =

(8.16)

That 1s,

Ugmu - Fgmu X

- (8.17)

where %, represents the average GMU execution time defined in (8.21), and 7
is defined by expression (8.4).

The RU utilization U,, is similarly defined as the ratio of the RU execution
time. T,,, and the total program execution time 7. That is,

T
Uy = = 8.18
i (8.18)
If we use the notation of expression (8.5), we express RU utilization as:
U= — (8.19)

T1+T24T3

If we divide the above expression with 7, and use equation (8.15), we derive the
following expression for the RU utilization:

Uy = (8.20)

We now evaluate in more detail the average GMU instruction execution time

tomu-

8.4.4.1 Average GMU Instruction Execution Time, ;m.

To evaluate the GMU utilization and the RU-GMU wait times, we evaluate
the GMU absolute instruction execution times as follows. Let GMU execute
instructions with the average execution times: Tpgi, Top, fousp, fcom and with
instruction frequencies: Fiquu, Fip, Fousp, and Fr,,. The average absolute GMU

instruction execution time 7, is thus expressed as:

u

?gmu == Fhaltghalt + Fapfap + Fsuspfsusp + Fcomzcom (821)

187

Moreover, if we denote the GMU instruction execution times for a goal cache hit
and miss as ., t™ the average execution times for the halt, spawn, suspend
and commit instructions are expressed as:

|

R 4k A
natt = Froutian + (1 — Flo e

by h 1h A yqme
w = Fht 1-—
e L 522
E’“JP = Fsusptauap + (1 - Fsuap)tausp
tCO‘m = Fcf:)mt:l:lom + (1 - F::tm)tcn;m

As described in Chapter 7, the execution of GMU instructions that result in a
goal cache hit is efficiently implemented by manipulating the goal window status
bits. However, the execution time of GMU instructions that result in a goal
cache miss require access to goal memory, and the manipulation of goal memory
control structures.

The frequency of goal cache misses that result during the halt and spawn
instruction correspond to the goal cache underflow and overflow respectively. In
each case S goal memory words, corresponding to the goal size, are transferred
to/from memory. In addition, the garbage collection of discarded data structures
is performed where necessary.

If we assume that a goal memory word consists of 4 bytes, that the goal size is
S words, the goal memory bandwidth B bytes/cycle, and a single memory access
time is equal to n cycles, the execution time of a halt or spawn instruction that
result in a goal cache miss is represented as:

thatfsp = [4 % (S +3)/B] ; consecutive memory r/w accesses
+ [4/B] ; 1 memory access (8.23)
+ 1 ; 1 processor cycle

The execution time of the suspend instruction that results in a goal cache
miss 1s linearly proportional to the number of variables, N2, _, the current goal
suspends on. Similarly, the execution time of the commit operation is linearly
proportional to the number of goals activated at commit time, NE,,. The sus-
pend instruction always results in the transfer of the suspended goal to the goal
memory, thus effectively behaving as a goal cache miss. Besides the transfer of
4 x S goal memory bytes, suspension control data structures are allocated and

manipulated as described in Chapter 4. The execution time for goal suspension

188

1s then represented as:

towsp = [4x (5 +2)/B] ; move goal to memory
+ 2(1(2/B)1) ; allocate hanger
+ [Np (3x[4/B]+[(2/B)] +2)] ; allocate suspension notes
(8.24)
Note that since all suspend instructions result in a goal cache miss, Fl.,=0.

The commit instruction requires that goals be placed onto the active goal
queue and that the data structures used during goal suspension be garbage col-
lected. The commit instruction execution time for a goal cache miss is expressed
as:

thom = [NEL(3[(2/B)] +[4/B])] ; activate goals (8.25)
+ 4 ; '

In summary, we characterize the execution GMU instructions as follows:

e All GMU instructions that result in a goal cache hit are efficiently imple-
mented by manipulating the goal window status bits.

¢ GMU instructions that result in a goal cache miss are memory bound.

Therefore, their execution time is proportional to the goal memory band-
width.

e All suspend instructions result in a goal cache miss.

8.5 Performance Model Parameter Values

We now present the measured values for each of the three groups of perfor-
mance model parameters described earlier, in Section 8.3,

Workload Parameter Values

The workload parameter values used in the analytic performance evaluation
model are shown in Table 8.1, and are the same values shown in Chapter 5.

189

Workload Parameters | Architecture and Workload Parameters

S jv;ar Art;:ct Fgmu thmu(4) F;mu(N)
Ave. | 5.8 2.6 1.12 3.6% | 37% 70%

Table 8.1: Parameter Values

Architecture_and Workload Parameter Values

In Table 8.1 we show the average number of executed RU and GMU instruc-
tions as well as the frequency of GMU instructions, y

The goal cache hit ratio for the halt and spawn instructions depend on the
goal cache size and the locality of goal management behavior. However, the goal
cache miss ratio due to suspend and commit instructions is unaffected by the
goal cache size, and depends only on the program characteristics. We consider
two extreme cases for the goal cache size. First, the minimum goal cache which
consists of only 4 goal windows: active. spawn, free and ready. The second case
is when the goal cache is sufficiently large so that no cache overflow or underflow
conditions occur. That is, the only instructions that result in a goal cache miss
are all suspend and some commit operations. In Table 8.1 we show the average

goal cache hit ratios for a minimum goal cache size (GC=4) and for a large goal
cache (GC=N).

Implementation Parameter Values

The goal memory bandwidth required during program execution may be es-
timated using the following back-of-the-envelope calculation. If we assume that
on the average, each GMU instruction results in the transfer of 4 x (S +1) bytes
to goal memory, the required goal memory bandwidth is equal to:

Nogmu X 45+ 1) Fymy x S
T T
where T' denotes the total program execution time. For the average number of

goal arguments of $ = 7, F,ny = 4% and 7 & 1, the required goal memory
bandwidth is B = 1.3bytes/cycle.

B=

(8.26)

In the performance model analysis, we consider three different goal memory
bandwidth values: B = 2bytes/cycle. 4bytes/cycle and 8bytes/cycle. The respec-
tive bandwidth is obtained by increasing the degree of goal memory interleaving,
I, as discussed in (8.1).

190

B=2bytes/cycle B=4bytes/cycle B=8bytes/cycle

m m m m
tgmu tha!t/ap tJUJP teom thalt/ap tﬂ“’P tCU"‘ thalt/ap t-"“P toom

cycles 19 42 10 10 26 9 6 22 9

Table 8.2: GMU Instruction Execuntion Times

In Table 8.2 we show the execution times of GMU instructions that result
in a goal cache miss. The values are obtained by replacing the goal memory
bandwidth value B and the average goal size S in expressions 8.23, 8.24 and
8.23.

8.6 Performance Model Analysis

We begin the performance analysis by first considering the objective to con-
tain the relative effective execution time R, below the value ’'%. Using expres-
sion 8.14, the condition R, < K% is expressed as follows:

Fomutsh +W

R, = . <K 8.27
© (1“Fgmu)tru = ()

and using expression 8.5, the average instruction execution time 7 is then ex-
pressed as:

7 <7 (1 + K) (8.28)

To determine the necessary conditions for (8.27) to hold, let us assume that
the average instruction execution rate of RU instructions is equal to one, (,, =
1). That is, if the conditions are met when t,, = 1, then the less restrictive
cases when t,, > 1 is also satisfied. Let us further consider the minimum value
for R, which results when the average wait time per instruction is equal to zero,
(W = 0). That is, let:

R = Rl (8.20)

The relative effective GMU execution time is then expressed as:

qute,h
T gmy (8.30)

R;m'n —
(1 — Fymu)

The above expression (8.30) for the relative effective GMU execution time repre-
sents the minimum possible value for the RU-GMU overhead which is achieved
when the wait time is reduced to zero. The value for the effective execution time

191

of a GMU instruction that leads to a goal cache hit, t" is implementation

gmu>
dependent. We consider the following two cases. If t&h, = 0, then the mini-
mum value for R, is also zero. If. however, t52 = 1. then the minimum relative

effective GMU execution time is given with the following expression:

; 1
. (8.31)

Fgmu

For values of Fym, < 1 that are small, we can approximate the relative effec-
tive GMU execution time as:

R™™ o F (8.32)

That is, the relative execution time is bound by the frequency of GMU instruc-
tions. Therefore, in the case of Fomu = 10%, R:“" > 10%.

In other words, if the frequency of GMU instructions is Fymu, and the min-
imum effective execution time of GMU instructions is tch, = 1 processor cycle,
and the average execution time of RU instructions is also ,, = 1 processor cycle,
then R:‘*" > Fgmu- If the frequency of GMU instructions is small, then this may
not cuase a problem. However, if the objective is made to reduce the overhead of

goal management execution, R., below the value K, where K < Fymy this cannot
be achieved if t* =1.

gmu

Therefore, to reduce the overhead of goal management below Fomy, the effec-
tive execution time of a goal cache hit must be set to zero. That is,

toh, =0 (8.33)
The above condition of making the effective execution time of GMU instruc-
tions that result in a goal cache hit, equal to zero can be achieved by previously

prefetching instructions from the continuing instruction stream. This issue was
discussed in Chapter 7.

Expression (8.27) is now rewritten as follows:
Rmin — A <K (8.34)

which sets the following requirement for the average RU-GMU wait time, W:

W < K x (1 = Fymu)tra (8.35)

80

70 n
80 / \\ @: suspend
50.—]lg \ O hant
F 40 4
10. N commit
204 0 O spawn
og e —=lms 0 g u==Cma]

1 10 20 30 40 50 60 70 80 90 100
Instruction Distance, d

Figure 8.4: GMU Instruction Distance Distribution

To set the boundary condition for the average RU-GMU wait time, let us
again consider the case where each RU instruction executes at an average rate of
one instruction per cycle (7., = 1). The condition set by expression (8.35) now
becomes:

W < K x (1~ Fppa) (8.36)

To determine the range of architectural parameters required to obtain an aver-
age mstruction wait time that satisfies condition (8.36) and to be able to evaluate
the GMU utilization, we now consider the distribution of GMU instructions in
the large FCP benchmarks described in Chapter 5.

8.6.1 Average RU-GMU Wait Time, W

In Figure 8.4 we show the distribution of instruction distances between con-
secutive GMU instructions halt, spawn. suspend and commit. In all cases, 90% of
GMU instructions are followed by another GMU instruction in less than 30 RU
instructions.

Based on the distribution shown in Figure 8.4, and using expression (8.11), we
compute the average GMU instruction execution wait time W, shown in Figure
8.5, for 3 different cases of goal memory bandwidth and two cases for the goal
cache size. The goal memory bandwidth considered is 2, 4 and 8 bytes/cycle.
The two goal cache sizes are a minimal cache that consists of 4 windows: active,
spawn ready and free, and a goal cache that is large. A large goal cache enables
all halt and spawn instructions to always execute in the goal cache. We do not

193

| §Vce
H GC4)-SEQ
Min GC(4), Hit=37%

Large GC, Hit=70%

2 4 8
Bandwidth (bytes/cycle)

Figure 8.5: Average Wait Time, W

correlate the actual goal cache size and the captured locality of halt and spawn,
but just examine the two extreme cases.

Also shown in Figure 8.5 are the following two special cases. In the first
column we show the average wait time when the goal management unit and
the goal cache are not used. In this case the goal management operations are
implemented in software, using the FCP processor instruction set. We label this
average wait time as W;. Since this average wait time does not depend on the
goal memory bandwidth, we only show it in the first column, that is, for the goal
memory bandwidth of 2 bytes/cycle. We will elaborate more on this issue later
in this section.

In the second column, we show the average wait time when the goal man-
agement operations execute sequentially using the same execution times as if a
minimal goal cache is used. We label this average wait time as W,. The sec-
ond and third column represent the average wait time for a minimal cache size
W, and a large cache size W,. The difference between the second and the third
column in Figure 8.5 is only that the goal management operations are overlapped.

194

Goal Management Without Architectural Support

If the goal management operations are implemented in software using the
FCP processor instruction set, in Figure 8.5 we show that the average wait time
is almost 1. This implies that half the time of goal reduction is spent perform-
ing goal management. The following features affect the execution time of goal
management operations when they are implemented without a goal management
unit. We list only few of the most important features.

o If a goal cache is not used during goal reduction, all goal arguments are
manipulated in memory. Even if processor registers are used during a goal
reduction, a goal that is scheduled has to bring all the goal arguments into
processor registers. This is avoided if the the goal cache is used.

¢ Spawning a goal requires the allocation of a goal record, which is performed
by executing processor instructions. Using the goal management unit, this
operation is efficiently performed by selecting the next free window in the
goal cache.

¢ Without goal windows, modified goal arguments stored in processor regis-
ters must be written back into the goal record stored in memory, prior to
goal suspension. This is avoided when the goal cache is used. The reason
is that the goal cache is an extension of the goal queue in memory. A
goal that is brought into the goal cache from the goal queue, is no longer
represented in goal memory. This is not the case when the complete queue
is stored in memory. The active goal, if it is first brought into processor
registers and then modified, must be written back into the goal memory.

Another important feature accounts for the degree of goal management rel-
ative execution time in the case when goal management operations are imple-
mented in software. The fact that the processor architecture has support for
processor dereferencing and argument trailing, as well as tag manipulation, re-
duces the effective time that goal reduction is being performed, compared to an
implementation on a general-purpose processor where this support 1s not avail-
able. This then results in the increased amount of relative goal management
execution time. Moreover, the result would be even more in favor of goal man-
agement execution if an improved compiler is used that would reduce the effective
time of clause-try execution.

195

Sequential Execution using Goal Cache

Using the goal cache and the goal management algorithms proposed in Chap-
ter 7, and implementing all goal management operations in a non-overlapped
mode of execution reduces the average wait time significantly. If we consider the
ratio of the average wait time W, and W, for the case when the goal memory
bandwidth is equal to 2 bytes/cycle:

Vy
S| = == =2.96 8.37
1 v, (7)

=

we see that more than a three fold reduction in the average wait time is achieved
using the goal cache. The reduction in the average wait time further increases
by increasing the goal memory bandwidth.

Overlapped Execution using Goal Cache

By overlapping goal management execution using the goal cache, further re-
ductions of the average wait time is obtained. For the goal memory bandwidth
of 2 bytes/cycle, the ratio;

Sy = % =2.75 (8.38)
results in an improvement of almost four times, for the minimal cache configu-
ration. Further reductions in the average wait time are obtained by increasing
the goal cache size, but these changes are not significant. The overall reduction
of the average wait time, from the software implementation to the overlapped
execution using a goal cache is denoted as the product:

S=5%5,=814 (8.39)

Therefore, almost an order of magnitude of reduction in the average wait time
is achieved. We now further discuss the behavior of the average wait time with
respect to the selected goal cache algorithm and the goal cache size.

Increasing Goal Cache Size

Given the goal cache algorithm described in Chapter 7, the goal cache size
does not influence the average execution time of the suspend instruction. Every
goal that suspends is moved to the goal memory. Therefore its execution time

196

depends only on the goal memory bandwidth. The goal cache size influences
the average execution time of halt and spawn. However, most of the halt and
spawn instructions are overlapped even with a minimum goal cache configuration
of 4 goal windows. The difference between the minimum goal cache and a large
goal cache becomes even less significant as the goal memory bandwidth increases,
since the execution times of halt and spawn are further reduced. The wait time
is almost completely the result of how goal suspension is implemented. For the
goal memory bandwidth of 2 bytes/cycle, the reduction in the average wait time
obtained by increasing the goal cache size is represented as S,, where:

W
S3 = T_;: =138 (8.40)

4

Another interesting observation is that the increase in goal memory band-
width does not reduce the wait time as much as one may expect, assuming that
the average execution time of goal suspension is memory bound. That is, one
would expect the wait time to be zero. However, increasing the goal memory
bandwidth reduces the time it takes to transfer a goal from the goal cache to
the goal memory, which is enough to reduce the effective execution time of halt
and spawn. However, the complexity of goal suspension requires the allocation
of suspension notes that are then linked into suspension lists. This implies an
inherent data dependency that does not depend only on the memory bandwidth.
Increasing the goal memory bandwidth reduces the goal suspension time as long
as it affects the transfer time from goal cache to goal memory. Further increases
in goal memory bandwidth do not have any effect on goal suspension execution
time.

From the results shown in Figure 8.5 a minimum goal cache of size 4 goal
windows, together with a goal memory bandwidth of 4 bytes/cycle results in a
system with an average wait time of less than 4%.

Assuming that IU prefetches the mext instruction using the next window
pointer (NWP) set by GMU (fe'h 0), and that RU executes a RISC-type

gmu

instruction set (?m = 1), the average instruction execution time 7 is represented
as:

F=1l—Fymu+W (8.41)

With the frequency of goal management operations being Fym, = 3.6%, the av-
erage instruction execution time is T = 1.014. Therefore, if RU executes one in-
struction per processor cycle, and all goal management operations are overlapped

197

M NoGC

Relative
Effective | GC(4)-SEQ
Exscution

Time, Min GC{4), Hit=37%

(%)
Larga GG, Hit=70%

Bandwidth, (bytesfcycle)

Figure 8.6: Relative Effective GMU Execution Time, R,

using a minimal goal cache with a goal memory bandwidth of 4 bytes/cycle, the
effective execution time of goal management operations is close to one per pro-

cessor cycle. The degradation relative to the single-cycle execution rate is less
than 2%.

8.6.2 Relative Effective Execution Time, R,

As expected, the Relative Effective Execution time, shown in Figure 8.6 is
affected by both the goal cache size and the goal memory bandwidth. As the
bandwidth increases, the effect of the goal cache is reduced. For a goal memory
bandwidth of 4 bytes/cycle and a minimal goal cache configuration, the rela-
tive execution time is 5%. Further increases in bandwidth result in a relative
execution time values that are close to 2%.

When the goal management operations are implemented in software, the rel-
ative execution time of goal management execution is over 1, meaning that over
50% of the execution time is spent performing goal management operations. This
is reduced to 20% when the goal memory bandwidth is 4 bytes/cycle and sequen-
tial goal cache is used. By overlapping goal management operations in the goal
cache, the relative execution time is reduced to less than 5%, for the same goal
mermmory bandwidth value.

198

100 -

RU
Utilization,
{%)

W Min GC(4), Hit=37%

8 Large GC, Hit=70%

2 4 8
Bandwidth, (bytes/cycle)

Figure 8.7: RU Utilization, U,

8.6.3 RU and GMU Utilization, U,., Ujmy

In Figure 8.7 we show the utilization of RU which is always over 88%. As
the goal cache size or the goal memory bandwidth increase, RU utilization in-
creases since the average execution times of the goal management operations are
reduced, and thus the RU wait time is reduced. This is not the case for the
GMU utilization shown in Figure 8.8. As the average execution time of GMU
instructions is reduced, so is the GMU utilization. This is because the reduction
of goal instruction execution time is much more significant that the reduction of
the resulting wait time and thus the total program execution time.

For example, for the minimum goal cache size and a goal memory bandwidth
of 4 bytes/cycle, the GMU utilization is Uy, = 20%. This implies an imbalance
of goal management and goal reduction leading to an underutilized GMU. A
better utilization of GMU could be achieved at the expense of program execution
time by making GMU slower. However, this would result in an increase in the
RU-GMU wait time and thus performance degradation.

The meaningful direction to improve GMU utilization is to allow GMU to
perform additional useful computations while it is idle. These operations should
be of lower priority, so that when the requests for goal management operations
arrive, they are not delayed. For example, GMU may implement more complex

199

au
Utilization,
{%)

N Gc
H GClLarge)

2 4 8
Bandwidth, {byles/cycle)

Figure 8.8: GMU Utilization, U,

scheduling algorithms that involve the management of goal priorities. For exam-
ple, if one distinguishes between user goals, system goals and kernel goals, GMU
may compute in advance the scheduling priorities. Another example may be the
support of real-time systems where time-critical goals are scheduled first.

A more heuristic approach could be to dynamically keep count of statistics
used for scheduling. While GMU is idle, it could access the goal queue and
reorder goals according to the statistics. One possibility is to keep the count of
the number of suspensions a goal makes during program execution. Goals that
communicate with each other frequently, could be bubbled-up closer to the front
of the queue from where they are scheduled for execution.

8.6.4 Chapter Summary

We have evaluated the overlapped execution of goal reduction and goal mange-
ment in the proposed FCP processor. The evaluation is based on specific perfor-
mance measurements and analytic models that define the relation between the
performance measures and other system parameters. The main result is that
the relative execution time of goal management can be reduced to less than 5%
compared to the sequential execution with no goal management support. This
represents close to an order of magnitude reduction in the relative execution time.
This is achieved by first providing the special-purpose goal cache and then defin-

200

ing the overlapped execution model. It is assumed that the first instruction in
the next goal is prefetched by the Instruction Unit, and that all RU instructions

execute in a single processor cycle. The goal memory bandwidth requirement
was set at 4 bytes/cycle.

Using the goal cache algorithm specified in Chapter 6 and 7. the goal cache
size does not significantly affect the goal management relative execution time
and average wait time. A minimum cache size of four goal windows achieves
adequate performance, given the goal memory bandwidth of 4 bytes/cycle.

The RU utilization is evaluated to be always above 88%, whereas the GMU
utilization is close to 20%. We have discussed ways of increasing the GMU
utilization by performing useful operations during its idle cycles.

[SV]
&

CHAPTER 9

FCP Processor Performance Evaluation

We now evaluate the FCP processor architecture described in Section 6 using
the analytic performance evaluation model defined in Chapter 5. The same
parameters that represent the System’s Development Workload are used here.
However, the analysis in this chapter differs from that presented in Chapter 5 in
the following way.

e The analysis of potential implementation bottlenecks described in Chapter
5 was performed at the abstract machine implementation level, since it
was important to have results that were independent of the host physical
machine and abstract machine emulation language. All implementation
dependent parameters in the model were treated as variables, with a range
of implementation dependent values.

The analysis described in this chapter, is performed after the FCP processor
architecture is specified. Therefore, low-level analysis is justified, since
we are now interested in optimizing a specific architecture, that is, the
proposed FCP processor. Rather than looking at a range of values for the
implementation dependent parameters, we consider specific values.

We present the performance evaluation of the FCP processor in the following
three steps. First, we discuss those aspects of the FCP processor architecture
that determine the values of the implementation dependent parameters defined
in Chapter 5. In the second section, we consider how each functional unit sep-
arately contributes to system performance, followed by their combined effect on
performance. In the third section we analyze how the FCP processor architecture
performs for a variety of workloads.

9.1 Implementation Dependent Parameters

In Chapter 8, we analyzed in detail the performance of overlapped goal man-
agement in the FCP processor. We also described the values for the implementa-

tion dependent goal management parameters that correspond to the halt, spawn,
suspend and commit instructions: Zn, %5, fousp and Teom.

We now discuss the following goal reduction implementation dependent pa-
rameters that are defined in Chapter 3:

s i,: Average argument matching execution time.

® {,: Average argument creation execution time.

e 14 Average argument dereferencing execution time per unit length.

* t;: Average variable trailing execution time.

By executing a RISC instruction set with an effective throughput of one
instruction per cycle, the average execution time of the clause-try operation per
argument as well as the average execution time of creating a new goal argument,
is equal to the average number of executed instructions per operation. The
instruction counts are specified in Chapter 8.

The dereference operation per unit length consists of fetching a word from
memory, isolating the tag value and checking whether it is a reference or not.
Since RU executes together with the tightly-coupled TU, tag manipulation op-
erations, such as tag decoding of a word loaded from memory, are performed
concurrently. In this case, the execution time of the dereference operation per
unit length is equal to 1 RISC load instruction cycle. That is, we consider Ts=1.

In the FCP processor, the data trailing operations are part of the Data Cache
policy. Let us first consider the execution time of a trail function without the
Data Cache. In this case, trailing is performed in the Data Memory using a
separate Trail Stack, TS. Trailing a single variable consists of 2 instructions to
store the trailed address and value. We assume the values were previously loaded
into processor registers during program execution. That is, it is not necessary to
first load the address and value into registers. In case of failure or suspension,
undoing the trail takes an additional 2 load instructions, to bring the address
and value from TS into registers, followed by 1 store instruction to restore the
old memory word value. In case of clause-commit, TS is reset, and then there is
no need for additional instructions.

Therefore, trailing during a clause-try that succeeds requires 2 memory in-
structions, and during a clause-try that fails or suspends requires 5 memory

instructions, when there is no architectural support for data trailing. From mea-
surements in Chapter 5, we showed that most of the trailing occurs during those
clause-tries that succeed. For the System’s Development Workload. the average
number of trailed values during a clause that commits is equal to 5. The amount
of trailing performed during those clause-tries that fail or suspend is an order of
magnitude lower.

With the use of the Data Cache. trailing is performed in a transparent way,
as part of the Data Cache policy. No penalty is incurred as long as the number of
trailed elements in the cache does not result in overflow. If it does, the clause-try
is restarted with the trailing policy performed in the Data Memory.

9.2 Performance Improvements due to Functional Units

We now evalunate the special-purpose FCP processor, by considering the con-
tribution of each functional unit to system performance. Let T denote the pro-
gram execution time in a system that has no special-purpose support for function
f, and let 7y denote the execution time of the same function. The upper bound
on speedup due to a special-purpose functional unit for function f is given by the
following expression:

T

Sf:ﬁ

{9.1)
where T} denotes the execution time when an ideal functional unit is available.
That is, an ideal functional unit reduces the program execution time by the
execution time of function f, T}, as follows:

'

Tf =T _— Tf (9.2)

According to the definition of the Relative Execution Time of function f, R7,
given in the previous chapter, the speedup is represented as:

Sy=1+R! (9.3)

In the following analysis, we first consider the execution of only RU and TU,
without any support for goal management or data trailing. However, the system
has support for dereferencing in the form of a special-purpose instruction. We
then consider the contribution of units for goal management and data trailing.

28.78%

3 peret
M Goal Man.

El Traiting

B Goal Reduction

43.39%

Figure 9.1: Relative Execution Times of Goal Reduction Functions

By implementing each goal management operation using FCP RISC instruc-
tions and using the workload parameters of Section 5, we evaluate the relative
execution times of goal management, argument dereferencing, variable trailing
and the remaining execution time of goal reduction, as shown in Figure 9.1. The
goal management is implemented in software, that is, without the support of the
goal management unit. We see that almost half the execution time is spent per-
forming goal management. Argument dereferencing and variable trailing together
contribute as much as the remaining part of goal reduction. From this diagram,
we reconfirm that goal management does represent the system-bottleneck.

Since Figure 9.1 corresponds to a processor that does not have support for
goal management and data trailing, but does have support for dereferencing and
tag manipulation, the execution environment subsumes the architecture of the
Carmel processor described in [Hars88]. Therefore, for the System’s Development
Workload, and an execution environment that consists of RU and TU, the main
system bottleneck is goal management. The maximum speedup due to special-
purpose units for goal management and data trailing are evaluated for the specific
workload as follows:

ngu 22, Spai = 1.2 (9'4)

206

s

»

LW
9
0‘,0
()

,
SR
SRS
%!

Kl Deret
I Goai Man.
3.51% 3 Trailing

B Goal Reduction

49.06%

Figure 9.2: Relative Execution Times with Support for Goal Management

9.2.1 Support for Goal Management

In Chapter 8, we showed how the relative execution time of goal management
can be reduced to approximately 3-4% of program execution using a special-
purpose goal cache and an overlapped goal management policy. The required
goal memory bandwidth was set at 4bytes/cycle. Compared to an FCP proces-
sor architecture that does not have support for goal management, the relative
execution time is reduced an order of magnitude.

In Figure 9.2 we show the relative execution times when the architectural
support for goal management operations are added. The system bottleneck shifts
from goal management to the remaining goal reduction operations. Also, the
relative execution times of argument dereferencing and variable trailing become
more significant, even though they are not the main bottleneck. Therefore, the
new bottleneck of system performance is the goal reduction time which consists
of manipulating data objects during a clause-try and during the creation of goal
arguments.

9.2.2 Support for Data Trailing

From Figure 9.2 we also see that the relative execution time of data trailing
is slightly less than dereferencing. However, the dereferencing operations are not
an overhead, but a part of the data manipulation operations. The dereferencing

Ed Deref

B Goal Man.
A Trailing

61.65% %

2} Goal Reduction

Figure 9.3: Relative Execution Times with GMU and Data Trail Support

operations are already optimized and are equivalent to single memory load op-
erations. By adding the special-purpose Data Cache with the Delayed Binding
policy, the program execution time can be improved by at most 22%. That is,
the achievable speedup is:

Serait = 1.28 (9.5)

Combined together, the maximum speedup due to goal management and data
trailing is given by:
S = Symu X Strait = 2.56 (9.6)

relative to a processor that has no support for goal management and data trailing,.

In Figure 9.3 we show the distribution of the relative execution times when
there is support for goal management (GMU) and data trailing (Data Cache).
The overhead of data trailing is computed as follows. For all cases where the
number of trailed elements is less than 10, we assume that the Data Cache
performs shallow backtracking using the Delayed Binding cache policy. For all
cases where there are more than 10 trailed elements, it is assumed that the
trailing is performed in the Data Memory. If the trailing occurred during a

clause-commit, the penalty is 2 instructions per trailed element, otherwise it is
5.

After providing architectural support for both goal management and data
trailing, what remains is the relative execution time due to goal reduction. We
now consider ways of further improving the FCP processor system performance.

9.3 Performance versus Goal Management Complexity and Goal Re-
duction Granularity

The fact that the Goal Management Unit can double the performance of the
RU+TU execution environment, that is. an execution environment that does not
have support for goal management, is not unreasonable. On the contrary, the
specific workload that we consider in this thesis is not particularly favorable to
the special-purpose GMU. We now discuss in more detail the following issues,
and their effect on system performance:

¢ Granularity of Goal Reduction
¢ Granularity of Goal Management

¢ Complexity. of Goal Management

Granularity of Goal Reduction

By granularity of goal reduction we mean the average execution time of goal
reduction during program execution. We label this execution time as T,. For
simplicity, let us consider an execution environment in which each program ex-
ecution (interpretation) step executes in a single cycle, that is, a RISC-type
instruction set. In this case, the granularity or average goal reduction execution
time, is equal to the number of executed RISC instructions, N,.

Compared to previously reported measurements, the programs used in the
System’s Development Workload exhibit a higher average granularity of goal
reduction. The reason is that our programs are in most cases list oriented opera-
tions that do not explicitly model inter-goal communication and synchronization.
Therefore, the granularity is representative of the specific application area for
system development.

In Table 9.1, we show the distribution of the number of RISC instructions
executed (IC) per goal reduction (GR). The average value is equal to 256 instruc-
tions per goal reduction. Note that the number of RU instructions do not include
the GMU instruction count. The higher granularity of goal reduction resulted
in a relatively low frequency of goal management operations. In Chapter 5. we
show that the average value is Fj,,, = 4%.

FCP Benchmark Programs
Compiler Sim1 Sim2 | Debug | Solver | Distr. Logix
GR 7075380 | 3009280 | 7722376 | 1593286 | 409075 | 259283 | 1481900
< 25 43 20 485 728 416 78

Table 9.1: Goal Reduction Granularity

However, one should also note that there is a significant difference in the
granularity between the various applications programs. For example, for the
Compiler, the granularity is 25 instructions, and for the Solver it is 728 instruc-
tions. This can be explained as follows. The programs that have a higher granu-
larity in the System’s Development Workload are applications for FCP program
interpretation, that is meta-interpreters. For example, the program Debugger
is used to debug the execution of the FCP processor simulator written in FCP.
In the simulator, a goal reduction consists of modifying the processor state for
each fetched and executed instruction. This results in a low average granularity.
However, the Debugger treats the simnulator as data, and symbolically interprets
its execution. Thus the high-granularity.

As part of the System’s Development Workload, we did not consider the two
types of applications separately, since we defined the workload as consisting of a
mix of both types of applications. That is, the user is not just running simulations
or meta-interpreters, but doing both.

Granularity of Goal Management

The selected FCP programsin the System’s Development Workload exhibit a
higher goal suspension and activation rate than previously reported in [Tick88].
In Chapter 5, we evaluated the Average Goal Management activity (AGM) to be
1.3 goal management operations per goal reduction. This includes goal creation,
goal termination, goal suspension and activation. The most time consuming goal
management operation is goal suspension. We showed that on the average, goals
in the selected programs suspend on 2.6 variables. This was also higher than
originally anticipated.

The granularity of goal management, labeled as Ty, depends on several pro-
gram and implementation dependent parameters. The simplest way to measure
the granularity of goal management is in a way analogous to measuring goal gran-
ularity. That is, by evaluating the effective number of RISC-type instructions,

Ngm, required to perform the average number of goal management operations per
goal reduction. Program parameters such as the average number of suspension
variables affect the execution time of goal management according to the perfor-
mance models defined in Chapter 5. Therefore. we say that a program exhibits
a higher granularity of goal management (compared to another program), if the
number of interpretation steps using a RISC-type instruction set is higher.

Complexity of Goal Management

We define the complexity of goal management C as the ratio of goal manage-
ment execution time 7,,, and goal reduction execution time, T,.. That is, the
ratio of goal management and goal reduction granularities:
Tym

T,
Thus, when we refer to applications with higher complexity of goal management,

C =

(9.7)

it means that they have a higher execution time of goal management relative to
goal reduction.

For example, in [Tayl89], a set of five FCP programming stereotypes were
selected for benchmarking. These programs have a low granularity of goal re-
duction and goal management, but a high complexity of goal management. The
applications explicitly model inter-goal communication protocols and thus per-
form frequent goal management operations, whereas the goal reduction phase
is simple. However, the ratio of goal management execution time versus goal
reduction execution time can be very high.

In Figure 9.4, we symbolically represent the performance of a system workload
in the space of goal management and goal reduction granularities. Both measures
of granularity (execution time), are implementation dependent. That is, they
depend on whether the execution environment (interpretation mechanism) is a
RISC, CISC, VLIW architecture etc. We consider for both features that the
execution environment is a RISC-type instruction set where instructions execute
in a single cycle. For a given processor cycle time, the number of RISC-type
instructions executed is directly proportional to the execution time. Represented
in Figure 9.4 are the following concepts, for system workloads that execute the
same number of goals, that is, N, = const.

1. An application domain that exhibits an increased goal management granu-
larity for the same goal reduction granularity results in performance degra-

211

Performance =1 /T

Ng = const

— Nr
Granularity

M-domain

C-domain
Granularity Coi

Figure 9.4: Performance of Different Application Domains

dation. This is shown in Figure 9.4 by slanting the performance plane
towards higher granularity of goal management.

Lo

An application domain that exhibits lower granularity of goal reduction
for the same degree of goal management activity results in an increase in
system performance. This is indicated by showing the performance plane
slanted towards higher granularity of goal reduction.

The first issue corresponds to the following example. Consider two applica-
tions with the same granularity of goal reduction, but in the first program each
goal suspension suspends on one variable, whereas in the second application cach
suspension suspends on two variables. It is clear that the granularity of goal man-
agement is greater in the second program. and thus the system performance of
the first application is better than the second application.

In the second case, consider two applications that have the same goal manage-
ment execution times, but the first executes less instructions per goal reduction

than the second. It is again clear that the first application exhibits better system
performance.

Both goal reduction and goal management granularities are values greater
than zero. For each goal that is reduced, it at least has to be spawned and
terminated, which we consider as part of goal management.

Application Domains

Depending on the goal management and goal reduction granularities, we par-
tition the space shown in Figure 9.4 into the following four regions:

e M-domain: High goal reduction and low goal management granularity.

¢ A-domain: Low goal reduction and low goal management granularity.

e C-domain: Low goal reduction and high goal management granularity.

¢ S-domain: High goal reduction and goal management granularity.

The M-domain denotes the region of low goal management and high goal
reduction granularity (more than 200 instructions). This domain is observed

to be characteristic of applications such as Meta-Interpreters, which perform
symbolic interpretation of programs as data.

The application domain with both low goal management and goal reduction
granularity is labeled as the A-domain. A typical example of a program in this
domain is the deterministic list Append program, that has often been used for
comparative benchmarking. This application performs very little goal manage-
ment (no goal suspension), thus exhibiting low goal management granularity.
The granularity of a goal reduction in the A-domain is approximately 20 RISC
operations,

In contrast, the System’s Development Workload, has an average goal reduc-
tion granularity that is similar to the M-domain, but a goal management granu-
larity that is significantly higher than the A-domain. We labeled this workload
domain as the S-domain.

The C-domain denotes the region of applications with high goal management
granularity and low goal reduction granularity. Applications characteristic for
this domain are Communication protocols that explicitly model the inter-goal
communication and synchronization.

Also shown in Figure 9.4 is the line that delimits the domains of higher
complexity (C > 1) from lower complexity (C < 1). The complexity line (C=1)
marks the domain where the execution time of goal management is equal to the
execution time of goal reduction, that is, Tom =T,.

In the following analysis, we consider the effect of overlapped goal manage-
ment execution, on program execution time, in the space of alternative goal
management and goal reduction granularities, as well as complexities.

9.4 Overlapped Goal Management versus Granularity and Complex-
ity

In Figure 9.5 we label the average program execution time of the System’s
Development Workload as T It consists of the goal reduction execution time, 7},
and goal management execution time 7,,. Without goal management support,
we showed in Figure 9.1 that the goal reduction time is almost equal to the
goal management time, that is, T, & T,.,. In other words, the complexity of goal
management for the S-domain and the System’s Development Workload is C a2 1.

Program
Execution
Time

T'gm

Ngm

S-domain
C-domain

Granularity

Figure 9.5: Maximum Speedup for Different Application Domains

In this case, the goal management operations were considered a bottleneck, which
motivated special-purpose support using GMU. The maximum possible speedup
due to overlapped execution of goal management. S™%%. is achieved when the
goal management operations are completely overlapped using GMU, resulting in
zero wait time by RU. That is:

T

™ =14+ E2 =14 (9.8)

T,
Realistically, however, a delay of W results from the overlapped execution using
GMU. In this case, the obtained speedup is represented as:

r_ Tm+T. 1+C
T T.+W “1+=}%

(9.9)

For the System’s Development Workload where the complexity is C = 1, the
maximum speedup, denoted as S7 is 53%* = 2. In Chapter 8, we showed that
the wait time due to overlapped execution can be made small, less than 5% of 7.
Therefore, S5 is close to the maximum possible, since the operations are almost

completely overlapped resulting in a low value for the overlapped wait time, W.
Thus, S§ = STe* a 2.

In the C-domain (high granularity of goal management and low granularity of
goal reduction), we label the goal reduction and goal management times as T. and
T;m respectively. Since, for this application domain, it is true that T. < T., for
the corresponding goal management complexities it is true that Co > Cg. It thus
results that the maximum possible speedup due to overlapped goal management
using GMU in the C-domain, 7% is:

Spaz 5, gmaz _ g (9.10)

Programs that are characteristic of this domain are applications that ex-
plicitly model inter-goal communication protocols. These applications spawn
numerous goals that often suspend and activate without performing many goal
reduction operations. In these cases, most of the execution time is spent per-
forming goal management which consists of inter-goal communication and syn-
chronization. From this point of view, the goals in this application domain are
very tightly coupled. For this reason, several applications in [Tayl89] performed
more efficiently on a single processor than the distributed implementation of
general-purpose processors connected in a 16-node Hypercube machine.

We now answer the following two questions regarding the performance of
overlapped goal management using GMU:

1. What is the effect of a faster RU on system performance?

2. What is the effect of scaling both goal management and goal reduction
granularity?

9.4.1 Increasing RU Speed of Execution

We now consider the effect of increasing the speed of execution of goal redue-
tion, for the same ratio of the number of goal management instructions versus
number of goal reduction instructions. In other words, within the RU and GMU
execution environment, we assume that RU execution time is scaled by a factor
labeled s, where 0 < 5 < 1.

A faster RU has the following two effects on execution times. First, RU exe-
cutes goal reduction instructions faster, as well as goal management instructions
in a system where GMU is not available. In other words, the software implemen-
tation of goal management operations is also faster when emulated by a faster
RU. Second, a faster RU effects the distribution of goal management instructions
which directly affects the RU wait time when GMU is available.

In Figure 9.6 we show the following three functions: the scaled goal reduction
time 7,s, the RU-GMU Wait time W{(s), and the program execution time when
RU and GMU execute concurrently, 7. The third function is the sum of the
previous two. That is,

T=Ts+ W(s) (9.11)

As the speed of RU increases, the overall program execution time is reduced,
However, the faster execution of RU instructions results in an increase in the RU-
GMU wait time. For example, if the instruction distance between two consecutive
goal management instructions was originally 20, now this distance is also scaled
down and will result in more frequent and longer delays.

From Figure 9.6 we see that for a scale factor of 0.2, the wait time is more
than half the goal reduction time, thus becoming again a bottleneck. Further in-
creasing the RU speed results in almost completely wait time, and so the decrease
in goal reduction time does not further affect system performance.

increasing RU Speed,
GMU Speed Constant

300
250 g
200
T

(M cycles) 150
100
50

1 09 08 07 06 05 04 03 02 01 Q.08 008
Scale Factor, s
Bl Scaled GR Time [3@ Wait Time ®- Total Exec. Time

Figure 9.6: The Effect of a Scaled RU on Program Execution Time

Increasing RU Speed,
GMU Speed Constant

6004
500 -
4004
T
(M cycles) 300+

1 09 08 07 06 05 04 03 02 01 008 0.06
Scale Factor, s

B8 Scated GR and GM Time ® Total Exec. Time

Figure 9.7: Scaled RU Execution Vs. Overlapped GMU

Increasing RU Speed of Executlon

5
45 .A

: /
35
3 ® Q- Smax
Speedup 25 ./ M s

-~
2=—g=g=—0—0—0 O 0—0O0—0—0—0
—i—p—g— -
15 1 =>.

— T “-—-"'I-..._
05

Ty
.-‘.:..
0

L 2 Sp

t 09 08 07 08 05 04 03 02 01 008006
Scale Factor, s

Figure 9.8: Speedup Versus Increased RU Speed of Execution

It is also interesting to consider how the increase in RU speed affects the exe-
cution of goal management operations when GMU is not used. That is, in Figure
9.7 we show the overlapped execution time as well as the software implementation
time, Tho_gmu, When the scaled RU is used:

Tno_gmu = (Tgm + T,-)S (912)

For the scale factor of 1, we see the same situation as described earlier, that is,
the sofiware implementation of goal management operations results in system
degradation by a factor of 2. If RU performance increases by the scale factor,
the overlapped execution time using GMU becomes closer to the execution time
when GMU is not used. Moreover, when the RU speed is increased by a factor of
10, the overlapped execution is slower than the non-overlapped case with a faster
RU. This is because we assume, in the overlapped case, that the speed of GMU
does not change. Presumably, if one can increase the speed of RU execution
one could do the same with GMU. However, with RU executing 10 times faster
than GMU, RU implements goal management operations more efficiently than
the overlapped execution using GMU.

The maximum speedup possible by completely overlapping goal management
operations, relative to a system without GMU, is defined as follows:

T, m)$
gmae _ Tt Tam)s _ L (9.13)
T3

219

Realistically, however, a wait time of W(s) is incurred, and the speedup is ex-
pressed as:
T+ Tym)s 1+C
o (+ g)b _ ‘|;V (914)
Tos+W(s) 14 ¥

Tra

The two speedup functions are depicted in Figure 9.8. The maximum speedup
is constant, since the complexity is constant. Moreover. since, for the System’s
Development Workload the complexity is close to 1, the maximum speedup is
always equal to 2. By increasing the speed of RU execution and maintaining the
same speed of GMU execution, the speedup decreases, and at some point results
in system degradation. This is shown in Figure 9.8 where S, < 1.

The above described behavior of S, is intuitive. That 1s, as the speed of RU
increases relative to a GMU whose speed is not changed, the benefit of overlapped
execution using GMU is reduced. However, a faster RU does initially lmprove
system performance, but, as the speed further increases, it is eventually degraded
by the effect of growing wait time. To see how much the performance is improved
by using a faster RU, in Figure 9.8 we also show a third function, S, that denotes
the relative execution time of a system with a scaled RU and without. That 18,

T +W

P T+ W(s) (9.15)

We see that the speedup due to the increased speed of RU levels off at approxi-
mately 5.

From this analysis we conclude the following. Without GMU, we showed
that goal management operations represent a serious implementation bottleneck.
This bottleneck is eliminated by introducing the overlapped execution of goal
management operations in GMU. Increasing the speed of RU execution results
in performance improvements. If the speed of RU is increased by a factor of 10,
a performance improvement of 5 is sustained. Further increases do not result

in performance improvement, and goal management again becomes the system
bottleneck.

9.4.2 Scaling Granularity

In the previous analysis, we considered scaling RU speed of execution without
affecting granularity of goal management or goal reduction. In other words,
the faster execution of RU also affected the software implementation of goal
management operations, as well as goal reduction. We now consider increasing

220

the complexity of goal management by scaling down the execution time of goal
reduction, and scaling up the execution time of goal management. In Figure
9.4, the scaling of goal management complexity represents moving to different
application domains that are to the left of the Line denoted by C = 1. Starting
from the S-domain, the scaling moves to applications characteristic of the C-
domain.

Using the same notation as before, let T, denote the goal reduction time, Tom
the goal management time and g the granularity scale factor. If we first consider
scaling down the goal reduction time, the program execution time T is expressed
as follows:

T="Tg+ Tgm (9'16)

The maximuin speedup due to overlapped execution using GMU is then expressed
as:

Lg+Tm . € (9.17)
1.9 g

The same expression is obtained when the granularity of goal management is

Sma;t: _

increased by the scale factor g. That is, consider the total program execution
time to be expressed as:

T
T=T +*2 (9.18)
g
The maximum speedup is expressed as:
T, + fam c
R e) & 9.19
T *3 (9.19)

Therefore, whether we consider scaling down the execution time of goal reduc-
tion or scaling up the execution time of goal management, the effect on goal
management complexity is the same. In the continued analysis, we consider only
the scaling up of goal management and the same expressions apply to the scaling
down of goal reduction.

The difference between the maximum possible speedup due to overlapped
execution and the realistic speedup is determined by the incurred RU-GMU wait
time. In the following analysis, we consider that the scaled execution time of goal
management has the following two effects on the wait time. In the first case, we
assume that the increased execution time is due to the increased number of goal
management instructions, but their distribution is not changed. In this case, the
realistic speedup due to overlapped execution is expressed as:

T, + Tom 1+£
= - W
T.+W(g) 1+ 54

rl

(9.20)

221

18

O
16 /.
14
[o]
12 AL
0/ ® 811
10 I.v
Speedup . // Q- Smax
// H 52
5 P
4 794 "._.-—.
- ~ ﬂsﬁﬁl-"‘.
2 Gl ===

OJ. $ t $ ¥ $ } $ t $ + 1
1 09 08 07 06 05 04 03 02 01 0.08 0.06
Granularity Scals Factor, g

Figure 9.9: Speedup Versus Scaled Goal Management Complexity

In the second case, we assume that the scaled execution time of goal man-
agement affects the distribution of goal management instructions, so that the
RU-GMU wait time is also scaled. In this situation, the speedup due to over-
lapped execution is expressed as:

Tom c
_ L+ 145

= Wig] W{g)
T,- + g 1 + Trg

Sr?

(9.21)

In Figure 9.9 we show the maximum speedup $™%, as well as the two mod-
eled realistic speedups S™ and S"?. We observe the following results. Increasing
the complexity of goal management, that is, reducing the granularity of goal re-
duction or increasing the granularity of goal management, results in higher wait
times, due to the effect on the goal management instruction distance distribu-
tions. In other words, for the same number of goal reduction instructions and an
increased number of goal management operations, the distribution will be more
compact, resulting in more frequent delays. While the maximum possible benefit
due to overlapped execution increases, the realistic speedup is dependent on the
increase in the RU-GMU wait time.

In the case where the increased complexity of goal management results from
more goal management instructions and not the goal management instruction
distributions, Sy, the realistic speedup due to overlapped execution of goal man-
agement follows quite closely the maximum possible value S™*. For example,

[3]
]
]

node(asleep,M,L, [msg(1,M) |51],R):-
node{active,M,L,S1,R7?).
node(active,M,_L, [msg(2,I)151], [msg(1,I}IR1]):-
M=\=1]
node(active,M,I,51,R17).
node(active,M,_L,[], Imsg(1,M}]1).
node(active,M,L, [msg(1,L) IS1], [msg(2,J) |R1]):-
L>J, L>M|
node(active,L,L,S1,R17).
node(active,M,L,S, [msg(2,_J)IR1}):-
L < max(M,J7) |
node(passive,_,_,S,R17).
node(passive,_,_, [MsgiS1], [MsgiR1]):-
node(passive,_,_,S51,R17).
node(passive,_,_,[]1,[]1).

Figure 9.10: Program: Lord of the Rings

increasing the complexity by a factor of 10, results in an attainable speedup of
close to 10, from a maximum value of 11.

We now consider a simple example of an FCP program that exhibits a higher
goal management complexity than the System’s Development Workload.

9.4.3 Modeling Communication Protocols

The “Lord of the Rings” algorithm computes the extreme value of nodes
connected in a unidirectional circle using O{NlogN) messages [Dole81]. The
FCP program shown in Figure 9.10 is adapted from [Shaf84]. A unidirectional
ring of N asynchronous nodes is created, with each node being in one of the
following three states: asleep, active or passive. Each node contains a node
identifier M, a Send and Receive communication channel to each neighboring
node, and a local variable to store the identifier of the active process to its left.
Initially, the created ring consists of nodes in the asleep state.

Without further describing the details of the algorithm, it is evident that
each node performs very simple operations which include sending and receiving

[V
[)
W

Lord of the Rings, N = 200
Creations | Terminations | Suspensions | Activations | Reductions
7342 7342 6779 6779 22745

Table 9.2: Goal Management Activity

messages on the input and output channels. The processing at each node consists
of checking the state, and whether a message was received on the input channel.
If a message is not present, the node suspends. Otherwise the message 1s received
and as a result, a message is sent on the output channel.

Because of the simplicity of each node, the average goal reduction granularity
is small, corresponding to the A-domain of program applications, as described
in Figure 9.4. For example, the average granularity of approximately 30 FCP
processor RISC instructions is obtained from a hand-compiled version of the
program. To compute the goal management granularity, in Table 9.2 we show
the total number of goal creations, terminations, suspensions and activations, as
well as the total number of goal reduction, for a ring of N = 200.

The high suspension rate and goal management activity results in a goal
management complexity that is greater than one (C > 1). For the optimized
case where each goal suspension always suspends on only one variable (the receive
channel), a goal management complexity of C & 5 is simulated.

L]
L]
TN

CHAPTER 10

Thesis Summary, Conclusions and Future Work

In this thesis we propose a special-purpose single processor architecture for
the efficient execution of the flat committed-choice logic programming language
FCP. The processor provides architectural support for the main feature of the
language, namely, the inter-goal communication, synchronization and, in general,
goal management operations.

As part of the design procedure. which consists of empirical performance
evaluation, we consider a real system workload that is representative of an ex-
isting environment used for system prototyping and development. We refer to
this workload as the System’s Development Workload. It consists of the Logix
Operating System, the FCP Compiler, Debugger, Program Analyzer, and FCP
Processor Simulator.

By analyzing the workload at the abstract machine level, we derive a set of
algorithmic program parameters that do not depend on the physical machine
implementation or the abstract machine emulation language. For example, the
average number of variables that a goal suspends on is measured as 2.6 for the
System’s Development Workload. To derive the program parameters, a new
instrumented version of the existing FCP abstract machine emulator was written,

called Statistics Logiz or Slogiz. A detailed set of abstract machine characteristics
can be found [Alka89].

The abstract machine parameters are used in the set of analytic performance
models that describe the relative execution time of previously suspected imple-
mentation bottlenecks. The models are general, and applicable to other system
workloads. Together, the individual models are combined to describe the average
goal reduction execution time.

From the analysis, we conclude that the two main implementation bottlenecks
are goal management and the overhead of redundant clause selection performed
during shallow backtracking. The clause-selection overhead can be reduced using
improved clause-indexing techniques. We model this improvement, and show

R
[)
o

that this further results in an increase in the relative execution time of goal man-
agement. Therefore, the results of the analysis motivate the design of the special-
purpose processor architecture, with architectural support for goal management.
Goal management operations include goal creation, termination, suspension and
activation.

The main feature of the special-purpose FCP single-processor architecture
proposed in this thesis, is the multi-functional unit organization and its concur-
rent execution mechanism. The processor architecture is hierarchically struc-
tured in three layers, to provide a high memory bandwidth. In the first layer
are the execution units: Reduction Unit, Tag Unit, Goal Management Unit and
Instruction Unit. In the second layer are the following special-purpose cache
units: Data and Tag Cache, Goal Cache and Instruction Cache. The third layer
consists of the following specialized and dedicated memory modules: Data and
Tag Memory, Goal Memory and Instruction Memory.

The most important feature of the FCP processor is the overlapped execution
of goal management in the Goal Management Unit, and goal reduction in the
Reduction Unit. The inter-unit communication protocol allows one overlapped
goal management operation to be performed while the Reduction Unit continues
program execution.

The efficient execution of goal management operations is performed using the
special-purpose Goal Cache which is accessible by both the Goal Management
Unit and the Reduction Unit. Fast goal switching, spawning and halting is per-
formed by manipulating goal window pointers in the Goal Cache. Goal Cache
underflow and overflow, as well as goal suspension and activation result in the
manipulation of goal memory structures that are stored only in the Goal Memory.
It is during this time that RU may have to wait, if another goal management
operation i1s decoded, prior to the current one completing. For the System’s
Development Workload, we conclude that the overlapped execution of goal man-
agement operations, reduces the relative execution time of goal management from
approximately 50% of the program execution time to approximately 3%. This is
achieved using a Goal Memory bandwidth of 4 bytes/cycle.

The Data Cache in the FCP processor provides architectural support for
data trailing, in the form of a special-purpose cache policy called Delayed Bind-
ing. Using this policy, all bindings performed during a clause-try are marked
as temporary in the Data Cache. If the clause-try succeeds, the bindings are
marked as permanent. However, if the clause-try fails or suspends, the bindings

1\
by
(o]

are cleared. The relative execution time of data trailing in the FCP processor
that does not have any special-purpose support is evaluated at 22%.

Combining the architectural support for goal management and data trailing in
the Data Cache, we compared the FCP processor to the existing special-purpose
processor proposed in [Hars88]. We show that the FCP processor provides a
speedup of at least 2.5, for the same system workload.

The benefit of overlapped goal management is directly proportional to the
relative execution time of goal management operations compared to the execution
time of goal reduction operations. 1We refer to this ratio as the Goal Management
Complexity, C. The maximum speedup due to overlapped execution using the
FCP processor is equal to §™* = 1+C. Since the System's Development Workload
exhibits a goal management complexity of ¢ &~ 1, the maximum speedup due to
overlapped execution is equal to 2.

Other application areas such as modeling distributed algorithms and com-
munication protocols, exhibit a higher complexity of goal management. that is,
C > 1. For this application domain, the attainable speedup of overtapped goal
management is higher than 2. We simulated the execution of the Lord of the
Rings distributed algorithm for finding the extrema in a unidirectional ring of
asynchronous nodes. A speedup of over 5 was measured due to overlapped exe-
cution of goal management, relative to a system where there is no architectural
support for goal management.

10.1 Future Work: Shared Memory Multiprocessor

The research described in this thesis opened a number of interesting research
issues that can be addressed in the immediate future. One such aspect of our
work is a shared-memory multiprocessor architecture for the execution of FCP,
which is composed of the defined special-purpose processors. Even though a
shared-memory simulator for the multiprocessor architecture was developed, its
analysis and evaluation was beyond the scope of this thesis. We now describe
this architecture in more detail.

Since the model of computation of Concurrent Logic Programming languages
is based on asynchronous communication between concurrent goals, the machine
architectures considered by other researchers, for the execution of these class
of languages, were generally based on distributed systems where inter-processor

)
12
3

7N
121—e 0
(%) 8 ! ‘olo;

2&'?.(— > x"‘—!xlx o e e o AATATA
d i g I M NG o A e b e e
g ‘;_f’-? — bt — l,l-__l,=?=,;x(,;X(,;Xn:X_;K_;x_;x_gx;xmx,x,x

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Active Queue Size

‘®- Gompiler "O- Simulatort B+ Simulatorz ‘0 Debug
4 Solver -& Distribute %+ Logix

Figure 10.1: Distribution of the Active Goal Queue Size

communication is based on message-passing. However, our characterization of an
existing Concurrent Logic Programming working environment. strongly suggests
that the system of concurrent goals are tightly coupled. For small and medium
scale multiprocessor organizations based on message-passing, the penalty of inter-
process communication overcomes the benefit of parallel execution. This accounts
for the performance degradation results obtained on the 16-node Hypercube,
compared to sequential execution, [Tayl88].

Active Goal Queue Size

In order to get a first impression of the degree of concurrency available in the
System Development Workload, we measured the size of the active queue during
program execution. This distribution is shown in Figure 10.1, for the queue size
values between 0 and 30. The results are surprising. It was generally thought
that the size of the active goal queue would be very large. However, for all
programs the maximum value of the distribution is for queue size values less
than 12.

In Table 10.1 we show the maximum queue size, the average queue size value
for each program, and the percentage of the queue size distribution not accounted
for in Figure 10.1. Note that the Compiler program reached a maximum queue
size value of 3195, whereas the other programs had values between 50 and 200.

Even though the maximum number of goals at some point can reach several

]
]
<0

Size FCP Benchmark Programs

Compiler { Siml | Sim2 | Debug | Solver | Distr. | Logix
Max. 3195 T2 56 50 51 148 200
Ave. 6 T 8 11 13 10 7.9
Range 10% | 0.2% | 0.8% | 1.2% | 24% | 24% | 20.5%

Table 10.1: FCP Active Queue Size: Maximum and Average

thousand, the average size is much smaller. For the workload we consider, the
average is approximately 10. On the other hand, the application programs were
not selected for their concurrency, nor do they run on data that may result in a
higher degree of concurrency. It would be of interest to consider such applications
in the future.

If we assume that the granularity of the goals is of the same order of magni-
tude, then the distribution does indicate that the degree of parallelism i1s confined
to a small to medium scale multiprocessor system. We now raise the following
question: Can the implicit concurrency be exploited effectively in a multiproces-
sor system?

Shared-Memory Multiprocessor Organization

In Figure 10.2, we show the special-purpose multiprocessor organization. The
separate Goal, Data and Instruction Memories are now shared via three special-
purpose busses. The only modifications to the processor organization relative to
the single processor architecture are the addition of standard features to imple-
ment mutual exclusion and access control to shared areas in memory. The most
problematic part is the shared Data Memory, since it requires access control to
shared logical variables. To reduce the potential overhead of contention for locks
on variables, a separate Lock Bus and a Lock Cache per processor could be used.

The most interesting feature of the multiprocessor architecture, is the sharing
of goals via the shared Goal Memory. We now discuss this aspect.

Goal Sharing in the FCP Multiprocessor

The Goal Management Unit, in conjunction with the Goal Cache allows the
efficient execution of goal management operations. When the Goal Cache over-

O]
S
(<o

[GMU fa—p RU + TU | U [
&

Shared i GMU | RU + TU |g o 1U | Shared
Goal | | Instr.
Memory 4 Memory
lap| GMU = AU + TU [——— |y |

y
api GMU [« RU + TU (gl (U [
Goal | y \ 1 itnstruction
Caches Caches

cu DU DU bu Data

* # # Caches

v

Shared
Data Memory

Figure 10.2: A Shared Memory FCP Processor Architecture

flows, it means that there are too many goals in the Goal Cache. A goal is then
moved to the Goal Memory. In the multiprocessor configuration, the Goal Mem-
ory is shared. Therefore, an idle processor can pick up the goal that overflowed,
and continue program execution. In other words, a goal may migrate from a busy

processor to an idle processor. Moreover, these operations are performed while
the Reduction unit is busy.

The size of the Goal Cache determines the tradeoff between the eagerness
for sharing and the goal memory traffic that results from sharing. A more eager
sharing system, for example, with a minimal cache size, is likely to result in a
more balanced distribution of goals and a more utilized multiprocessor system.
However, the tradeoff is the performance degradation due to contention for the
shared Goal Memory. More traffic for the shared goal memory would slow down
the goal management execution time, which would result in longer effective ex-
ecution time of goal management operations (longer RU-GMU wait times), and
thus reduce performance. The goal sharing approach is shown in Figure 10.3.

One thing should be noted. In most of the parallel implementation of Con-
current Logic Programming systems, the main problems that resulted in very
poor performance, was the overhead of goal management and the poor load bal-

IRU4

IRU1 IRU2 IRU3 IRU4

I overflow underfiow

A

e i

Goal Memory

L T J

Goal Memory

Figure 10.3: Load Balancing of Goals

ancing strategy. We propose a solution to the goal management problem by
overlapping ther execution using the Goal Management Unit. In addition, in a
multiprocessing environment, the Goal Management Unit can also perform load
balancing.

One additional feature of the Goal Management Unit could be to listen to the
shared Goal Memory Bus, whenever it has no goals to schedule for execution,
that is, whenever it is idle. As soon as one of the Goal Caches of the busy
Reduction Units overlows, the first idle Goal Management Unit takes this goal
without it being stored in the Goal Memory. In our immediate research, we plan
to pursue these and other ideas.

232

[Abe8T]

[Agha86)

[Alka8S]

[Alka89]

[Bar-86]

[Baro88a]

[Baro88b]

[Bere87)

[Birr87]

Bibliography

S. Abe, T. Bandoh, S. Yamaguchi, K. Kurosawa, and K. Kiriyama,
High Performance Integrated Prolog Processor, IPP, pp. 100 - 107,
in 14th Annual Symposium on Computer Architecture (June 1987).

Gul Agha, Actors, A Model of Concurrent Computation in Dis-
tributed Systems, MIT Press, Cambridge Massachusettes (1986).

L. Alkalaj and E. Shapiro, An Architectural Model for a Flat Con-
current Prolog Processor, pp. 1245 — 1323, in Proceedings of the 5th

International Conference/Symposium on Logic Programming (Aug
1988).

L. Alkalaj, Flat Concurrent Prolog Abstract Machine Characteristics,
Technical Report CSD-890018, University of California, Los Angeles
(April 1989).

U. Bar-on, A Distributed Implementation of Flat Concurrent Pro-
log, Master’s Thesis CS 86, Weizmann Institute of Science, Applied
Mathematics Department (January 1986).

U. Baron, J. Chassin de Kergommeaux, M. Hailperin, M. Ratcliffe,
P. Robert, and J. Syre, The Parallel ECRC Prolog System PEPSys:
An Overview And Evaluation Results, pp. 841-850, in International

Conference on Fifth Gneration Computer Systems 1988 (November
1988).

U. Baron, B. Ing, M. Ratcliffe, and P. Robert, A Distributed Archi-
tecture for the PEPSys Parallel Logic Programming System, pp. 410
- 413, in Proceedings of the 1988 International Conference on Parallel
Processing, Vol 1 (August 1988).

A. Berenbaum, B. Colbry, D. Ditzel, R.D. Freeman, H. R. Mclellan,
and K. J. O’Connor adn M. Shoji, CRISP: A Pipelined 32-bit Micro-
processor with 13-kbit of Cache Memory, IEEE Journal of Solid-State
Circuits, 22(5):776 — 782 (Octorber 1987).

A. D. Birrell, J. V. Guttag, J. J. Hornig, and R. Levin, Synchroniza-
tion Primitives for a Multiprocessor: A formal Specification, Techm-
cal Report 20, DEC Systems Research Center (August 1987).

233

[Brat86]

[Chan85]

[Ciep83]

[Clar86]

[Cone87]

[Cram86]

{Cram388]

[Dallgs]

[DeGr84]

[Dobr85]

[Dobr87)

[Dole81]

I. Bratko, Prolog Programming for Artificiel Intelligence, Addison-
Wesley (1986).

J. H. Chang and A.M. Despain, Semi-intelligent backtracking of Pro-
log based on the Static Data Dependency Analysis, pp. 43 - 70,

in Proceedings of the IEEE Symposium on Logic Programming (Aug
1985).

A. Ciepilewski and S. Haridi, A Formal Model for OR-Parallel Ex-
ecution of Logic Programs, pp. 299 — 305, in IFIP 83 Conference,
North Holland (1983).

K. Clark, PARLOG: Parallel Programming In Logic, ACM Trans.
Prog. Lang. Syst., 8(1):1 — 49 (January 1986).

John S. Conery, Parallel Ezecution of Logic Programs, Kluwer Aca-
demic Publishers (1987).

Jim Crammond, An Execution Model for Committed-Choice Non-
Deterministic Languages, pp. 148 — 158, in 1986 Symposium on Logic
Programming (September 1986).

J. Crammond, Implementation of Committed Choice Logic Languages
on Shared Memory Multiprocessors, Doctoral Dissertation PAR 88/4,
Imperial College of Science and Technology {May 1988).

W. J. Dally, The J-Machine: System Support for Actors, Mas-
sachusetts Institute of Technology, Cambridge, Massachusettes, Ar-

tificial Intelligence Laboratory and Laboratory for Computer Science
(November 1988).

D. DeGroot, Restricted AND-Parallelism, pp. 471 — 478, in Proceed-
ings of the International Conference on Fifth Generation Computer
Systems (November 1984).

T. P. Dobry, A. M. Despain, and Y. N. Patt, Performance Studies
of a Prolog Machine Architecture, pp. 180 — 190, in 12th Annual
Symposium on Computer Architecture (June 1985).

T. P. Dobry, A High Performance Architecture for Prolog, Doctoral
Dissertation UCB/CSD 87/352, University of California, Berkeley
(May 198T7).

D. Dolev, M. Klawe, and M. Rodeh, An O{NlogN) Unidirectional
Distributed Algorithm for Ezirema Finding in e Circle, Technical
Report RJ3185, IBM Research Laboratory, San Jose (July 1981).

234

[Fagi8Tal

[Fagi87b]

[Ferr78]

[Ferr89]

[Flyn88]

[Fost87)

[Fuch86]

{Gino87]

[Gold86]

[Goto87)

[Hars88]

Hell83)

[Hoar85}

B. Fagin and A. M. Despain, Performance Studies of a Parallel Prolog
Architecture, pp. 108 — 116, in 14th Annual Symposium on Computer
Architecture (June 1987).

B. S. Fagin, A Parallel Ezecution Model for Prolog, Doctoral Disser-
tation UCB/CSD 87/380, University of California, Berkeley (Novem-
ber 1987).

Domenico Ferrari, Computer Systems Performance Evaluation,
Prentice-Hall (1978).

Domenico Ferrari, Workload Characterization of Tightly-Coupled
and Loosley-Coupled Systems, pp. 210, in Proceedings of the 1989
ACM SIGMETRICS and PERFORMANCE 89 (May 1989).

M. Flynn, Foreword, in V. Milutinovic, editor, High-Level Language
Architectures, pp. 1 — 2, North Holland (1988).

I. Foster and S. Taylor, Flat Parlog: A Basis for Companison, Inter-
national Journal of Parallel Programming, 16(2): (1987).

K. Fuchi and K. Furukawa, The Role of Logic Programning in the
Fifth Generation Project, pp. 1 — 24, in Proceedings of the 3th Inter-
national Conference on Logic Programming (July 1986).

R. Ginosar and A. Harsat, Profiling LOGIX: A Step Towards o Flat
Concurrent Prolog Processor, EE Pub. Technical Report No. 617,
Technion Institute of Technology, Haifa (January 1987).

A. Goldberg, Smalltalk, Prentice-Hall (1986).

A. Goto and S. Uchida, Towards a High Performance Inference Ma-
chine; The Intermediate Stage of PIM, in Future Parallel Computers,
LNCS 272, pp. 299 — 320, Springer-Verlag (1987).

A. Harsat and R. Ginosar, CARMEL-2: A Second Generation
VLSI Architecture for Flat Concurrent Prolog, pp. 962-970, in In-
ternational Conference on Fifth Gneration Computer Sysiems 1988
(November 1988).

L. Hellerstein and E. Shapiro, Implementing Parallel Algorithms
in Concurrent Prolog: The MAXFLOW Ezperience, Technical Re-
port CS 83-12, Weizmann Institute of Science, Applied Mathematics
Department (August 1983).

C.A.R. Hoare, Communicating Sequential Processes, Prentice-Hall
(1985).

235

[Horo87]

[Hour86]

[Ichi87]

[Inte89]

[Ito85]

(Ito86]

[Kish85]

[Kish86)

[Klig87]

[Klig88a)]

[Klig88b]

M. Horowitz, P. Chow adn D. Stark, R. Simoni, A. Salz, S. Przybyliski,
J Henessey, G. Culak adn A. Agrawal, and J. M. Acken, MIPS-X:
A 20 MIPS Peak 32-bit Microprocessor with On Chip Cache, IEFE
Journal of Solid-State Circuits, 22(5):790 - 799 (Octorber 1987).

A. Houri and E. Shapiro, The Sequential Abstract Machine for Flat
Concurrent Prolog, Master’s Thesis CS 86-20, Weizmann Institute of
Science, Applied Mathematics Department {July 1986).

N. Ichiyoshi, A Distributed limplementation of Flat GHC on the
Multi-PSI, pp. 257 - 275, in Proceedings of the 4th International
Conference on Logic Programming (Aug 1987).

Intel, N10, JEEE Spectrum, 1(1):1 - 1 (Apml 1989).

N. Ito, H. Shimizu, E. Kuno A. Kishi, and K. Rukosawa, Datafiow
Based Execution Mechanism of Parallel and Concurrent Prolog, New
Generation Computing, 3(1):15 — 41 (February 1985).

N. Ito, M. Sato, E. Kuno, and K. Rokusawa, The Architecture and
Preliminary Evaluation Results of the Experimental Parallel Infer-
ence Machine PIM-D, pp. 149 - 156, in I5th Annual Symposium on
Computer Architecture (June 1986).

M. Kishi, E. Kuno, K. Rokusawa, and N. Ito, The Dataflow-based
Parallel Inference Machine To Support Two Basic Languages in KL1,
ICOT, TR-114, Institute of Fifth Generation Computers (July 1985).

M. Kishishita, J. Tanaka, T. Miyazaki, K. Taki, and T. Chikayama,
Distributed Implementation of FGHC,; Towards the Realization of
Mult:-PSI System, ICOT, TR-159, Institute of Fifth Generation
Computers (March 1986).

S. Kliger, Towards a Native Code Compiler for Flat Concurrent Pro-
log, Master’s Thesis CS 87, Weizmann Institute of Science, Applied
Mathematics Department (July 1987).

S. Kliger and E. Shapiro, A Decision Tree Compilation Algorithm
for FCP(:,7), pp. 1315 - 1336, in Proceedings of the 5th International
Conference/Symposium on Logic Programming (Aug 1988).

S. Kliger, E. Yardeni, K. Kahn, and E. Shapiro, The Language
FCP(:,?), pp. 763-774, in Proceedings of the Fifth Generation Com-
puter Systems 1988 (December 1988).

236

[Koik86]

[KowaT9]

[Kumno8s6)

[Lave83|

[Lin88|

[Lloy84|

[Lusk88]

[Meled9]

[Mier85|

[Moon85]

[Mura85a)

[Mura85b]

[Naka85]

H. Koike and H. Tanaka, Fast Execution Mechanism of a Parallel
Inference Engine PIE: Pipelined Goal Rewriting and Goal Multitask-
ing, pp. 159 — 169, in Logic Programming 1986, Proceedings of the
5th Conference, LNCS 264, Springer-Verlag (1986).

Robert Kowalski, Logic for Problem Solving, North-Holland (1979).

K. Kumon, H. Masuzawa, A. Itashiki, K. Satoh, and Y Sohma, Kabu-
Wake: A New Parallel Inference Method and sts Evaluation, ICOT,
TR-150, Institute of Fifth Generation Computers (March 1986).

Steven Lavernberg, Compuier Performance Modelling Handbook,
Academic Press (1983).

Yow-Jian Lin and Vipin Kumar, An Execution Model for Exploiting

AND-Parallelism in Logic Programs, New Generation Computing,
5(2):393 — 425 (February 1988).

J. W. Lloyd, Foundations of Logic Programming, Springer-Verlag
(1984).

E. Lusk, D.H.D. Warren, S. Haridi, and et al, The AURORA OR
Parallel Prolog System, pp. 819-830, in International Conference on
Fifth Gneration Computer Systems 1988 (November 1988).

Charles Melear, The Design of the 88000 RISC Family, IEEE M:cro,
9(2):26 - 38 (April 1989).

C. Mierowsky, The Design and Implementation Flat Concurrent Pro-
log, Master’s Thesis CS 85-09, Weizmann Institute of Science, Ap-
plied Mathematics Department (July 1985).

D. A. Moon, Architecture of the Symbolics 3600, pp. 76 — 83, in 12tk
Annual Symposium on Computer Architecture (June 1985).

K. Murakami, T. Kakuta, and R. Onai, Architectures and Hardware
Systems: Paraliel Inference Machine and Knowledge Base Machine,
ICOT, TR-084, Institute of Fifth Generation Computers (1985).

K. Murakami, T. Kakuta, R. Onai, and N. Ito, Research on Parallel
Machine Architecture for Fifth-Generation Computer Systems, JEEE
Computer, 18(6):76 — 92 (June 1985).

R. Nakazami, A. Konagaya, S. Habata, H. Shimazu, M. Umemura, M.
Yamamoto, M. Yokota, and T. Chikayama, Design of a High Speed
Prolog Machine (HPM), pp. 191 — 197, in 12th Annual Symposium
on Computer Architecture (June 1985).

237

[Naka87]

[Onai8sal

[Onai85b)

[Onai85c¢]

[Robi65]

[Sara87]

[Sara89]

[Seo87]

[Shafs4]

[Shap83]

[Shap84)

[Shap86}

[Shap87)

H. Nakashima and K. Nakajma, Hardware Architecture of the Se-
quential Inference Machine: PSI-II, pp. 104 - 113, in Proceedings of
the 4th Symposium on Logic Programming (Aug 1987).

R. Onai, M. Aso, K. Masuda H. Shimizu, and A. Matsumoto., Ar-
chitecture of a Reduction-Based Parallel Inference Machine: PIM-R,,
New Generation Computing, 3(2):197 - 228 (February 1985).

R. Onai, M. Aso, H. Shimizu, K. Masuda, and A. Matsumoto, Ar-
chitecture of a Reduction-Based Parallel Inference Machine: PIM-R,
ICOT, TR-105, Institute of Fifth Generation Computers (June 1985).

R. Onai, K. Masuda, H. Shimizu, A. Matsumoto, and M. Aso, Ar-
chitecture and Evaluationn of a Reduction-Based Inference Machine:
PIM-R, ICOT, TR-138, Institute of Fifth Generation Computers
(September 1985).

J. A. Robinson, A Machine Oriented Logic Based on the Resolution
Principle, J. ACM, 12(1):23 - 41 (January 1965).

V. Saraswat, GHC: Operational Semantics, Problems and Relation-
ship with CP(|,|}, pp. 347 — 358, in Proceedings of the IEEE Sym-
posium on Logic Programming (August 1987).

V. Saraswat, Concurrent Constraint Programming, Doctoral Disser-
tation CMU, Carnegie Mellon University {April 1989).

K. Seo and T. Yokota, A Processor for High-Performance Execution
of Prolog Programs, pp. 261 — 274, in VLSI 1987, Ed. Cario H.
Sequin, North Holland (1987).

A. Shafrir and E. Shapiro, Distributed Programming in Concurrent
Prolog, Technical Report CS 84-02, Weizmann Institute of Science,
Applied Mathematics Department (January 1984).

E. Shapiro, A Subset of Concurrent Prolog and its Interpreter, ICOT,
TR-003, Institute of Fifth Generation Computers (January 1983).

Ehud Shapiro, System Programming in Concurrent Prolog, Technical
Report CS84-01, Weizmann Institute of Science, Applied Mathemat-
ics Department (January 1984).

Ehud Shapiro, Concurrent Prolog: A Progress Report, JEEE Com-
puter, 18(6):76 — 92 (August 1986).

Ehud Shapiro, editor, Concurrent Prolog: Collected Papers, Voll and
Vol2, MIT Press (1987).

238

[Sohm85] Y. Sohma, K. Satoh, K. Kumon, H. Masuzawa, and A. Itashiki,

[Stee8T)

[Ster86|
[SvobT6]

[Tayl86|

[Tayl88]

[Tayl89]

[Thac8s]

[Ticks5)]

[Ticks7]

[Tick8s|

[Tosh87)

A New Parallel Inference Mechanism Based on Sequential Process-
ing, ICOT, TM-0131, Institute of Fifth Generation Computers (July
1985).

P. Steenkiste and J. Henessey, Tags and Type Checking in LISP:
Hardware and Software Approaches, pp. 50 — 59, in Second Inier-
national Conference on Architectural Support for Programming Lan-
guages and Operating Systems (October 1987).

L. Sterling and E. Shapiro, The Art of Prolog, MIT Press (1986).

Liba Svobodova, Computer Performance Measurement and Evalua-
tion Methods: Analysis and Applications, Elsevier Computer Science
Library (1976).

G. S. Taylor, P. N. Hillfinger, and P. N. Larus, Evaluation of the
SPUR Lisp Architecture, pp. 444 — 452, in 13th Annual Symposium
on Computer Architecture (June 1986).

S. Taylor, R. Shapiro, and E. Shapiro, FCP: A Summary of Per-
formance Results, pp. 1364 - 1373, in The Third Conference on
Hypercube Concurrent Computers and Applications (January 1988).

S. Taylor, Parallel Logic Programming Techniques, Prentice Hall
(1989).

C. P. Thacker, L. C. Stewart, and E. H. Satterthwaite Jr., Firefly:
A Multiprocessor Workstation, IEEE Transactions on Computers,
37(8):909 - 920 {August 1988).

E. Tick, Prolog Memory Reference Behavior, Technical Re-
port CSL-TR-85-281, Computer Systems Laboratory, Stanford Uni-
versity (September 1985).

E. Tick, Studies in Prolog Architectures, Technical Report CSL-TR-
87-329, Computer Systems Laboratory, Stanford University (June
1987).

E. Tick, Performance of Parallel Logic Programming Architectures,
Technical Report TR-421, ICOT, Japan (September 1988).

T. Toshiaki, T. Maruyama, and H. Tanaka, A Preliminary Evaluation
of a Parallel Inference Machine for Stream Parallel Languages, in
Logic Programming 1987, Proceedings of the 6th Conference, LNCS
315, pp. 132 - 147, Springer-Verlag (1987).

239

[Uedag6]

[Warr83|

{Warr87|

[Whit85]

[Wise86]

K. Ueda, Guarded Horn Clauses, Doctoral Dissertation, University
of Tokyo (March 1986).

David H. D Warren, An Abstract Prolog Instruction Set, Technical
Report 309, Artificial Intelligence Center. SRI International (January
1983).

D. H. Warren, OR-Parallel Execution Models of Prolog, pp. 242 —
259, in Proceedings of the International Joint Conference on Theory
and Practice of Software Development, LNCS 250 (Aug 1987).

Colin Whitby-Stevens, The Transputer, pp. 292 - 300, in 12th An-
nual Symposium on Computer Architecture (June 1985).

Michael J. Wise, Prolog Multiprocessors, Prentice-Hall (1986).

240

