Computer Science Department Technical Report
University of California
Los Angeles, CA 90024-1596

MATRIX COMPUTATIONS ON MESH ARRAYS

Jaime H. Moreno August 1989
CSD-890046

UNIVERSITY OF CALIFORNIA

Los Angeles

Matrix computations on mesh arrays

A dissertation submitted in partial satisfaction of the
requirements for the degree Doctor of Philosophy

in Computer Science

by

Jaime H. Moreno

1989

(© Copyright by
Jaime H. Moreno

1989

The dissertation of Jaime H. Moreno is approved.

/" Tony Chan

ey o
A . A
Gr

Kung Yao

Dave Rennels

Tom& Lang, Committee Chair

University of California, Los Angeles

1989

To Marisa, who shared this experience
with love, understanding and support.
To my parents, who instilled in me the de-

sire to reach further.

i

TABLE OF CONTENTS

1 Introduction.
1.1 Matrix computations and arrays
1.2 Description of research and summary of accomplishments

1.3 Organization of the dissertation

2 The design of arrays for matrix algorithms|
2.1 Matrixalgorithms L
2.2 The architectural model of mesh arrays
2.3 Tradeoffs in throughput, cell storage and cell bandwidth
2.4 Realizing algorithms and mapping algorithms onto arrays
2.5 The range of applicabilityof arrays
2.6 Approaches to partitioning large problems

2.7 Issuesinthedesignofarrays.

3 Methods for the design ofarrays

3.1 The classification of design methods by Fortes (et al.)

3.2 A framework to compare design methods
3.3 A review of other design methods
3.3.1 Algebraic descriptions,

3.3.2 Descriptions using high-level languages
3.3.3 Graph-based descriptions

3.3.4 Discussion of othermethods

iv

3.4
3.5

3.6

3.3.5 Methods for partitioning
3.3.6 Mapping methods for class-specific arrays
Computer-aided design tools
Algorithm dependencies in methods for the design of arrays

Conclusions regarding methods for the design of arrays

Description of the graph-based method

4.1

4.2

4.3
4.4

4.5

4.6

4.7

Assumptions regarding matrix algorithms and arrays
4.1.1 Matrix algorithms
412 Cellsandarrays
Summary of the data-dependency graph-based design approach

4.2.1 The regularization stage
4.2.2 The derivationof arrays
4.2.3 The performance and cost measures
Obtaining the fully-parallel data-dependency graph
Obtaining the multi-mesh data-dependency graph
Deriving G-graphs from a complete multi-mesh graph
4.5.1 The collapsingof a CMMG
4.5.2 TheexecutionofaGmode
4.5.3 Cell properties that depend on the G-graph
Deriving arrays for fixed-size data from a CMMG
4.6.1 Two-dimensional arrays
4.6.2 Linear arrays i . it e e e e e e e
Deriving arrays for partitioned problems from a CMMG
4.7.1 The selectionof G-sets

4.7.2 The schedulingof G-sets

51

o4

57
57
57
59

61

4.8
4.9

4.10

4.11

4.12

4.13

4.14
4,15
4.16

The

5.1

4.7.3 Array properties 88

Using IMMGs 90
Deriving arrays for fixed-size data from an IMMG 93
Deriving partitioned implementations from an IMMG 95
4.10.1 The selectionof G-sets 95
4.10.2 Array properties 96
Using MMGs with two flows of input data 97
4.11.1 Two-dimensional arrays for fixed-size data 98
4.11.2 Two-dimensional arrays for partitioned problems 100
Summary of performance measures of arrays e 101
4.12.1 Fixed-sizedata, 101
4.12.2 Partitioned problems 102
Arrays for the triangularization algorithm 102
4.13.1 Computationalload 103
4.13.2 Problems with fixed-sizedata 103
4.13.3 Partitioned implementations 106
Type of array as a function of the design parameters 108
Tradeoffs between linear and two-dimensional arrays 109
A canonical linear array for partitioned problems 110
formalization of the design method 113
Definitions 113
5.1.1 The canonical representation of matrix algorithms 114
512 Thearrays. 117
5.1.3 The model of executioninanarray 118
5.1.4 The performancemeasures 118

vi

5.2

5.3

5.4

3.5

3.6
3.7
3.8
3.9
5.10

3.11

5.1.5 The cost measures v v e e e 119

516 Thegraphs L L. 120
5.1.7 The equivalenceof graphs 124
5.1.8 The realizationof agraph 125
Step 4: Realizing a mesh data-dependency graph as an array 126
Step 3: Transforming a multi-mesh data-dependency graph into a

meshgraph o o o 128
Properties of cells that depend on the grouping process 135
5.4.1 Utilizationofcells. 135
5.4.2 Types of operations percell 137
54.3 Storagepercell L. 137
5.4.4 Cellbandwidth 141
54.5 Cellpipelining., 142

Step 2.2: Transforming a three-dimensional graph into an MMG . . 143

5.5.1 Eliminating data broadcasting 144
5.5.2 Eliminating bidirectional dependencies 144
5.5.3 Removing non-nearest neighbor dependencies 146
5.5.4 Synchronizing arrival of data tonodes 147

Step 2.1: Transforming the FPG into a three-dimensional graph . . 148

Step 1: Deriving the FPG of a matrix algorithm 162
Deriving arrays for matrix computations 165
The procedure to derive arrays for matrix algorithms 165
Partitioning e 166
The application of the method to the LU-decomposition 167
5.11.1 Derivingthe FPG, 167
5.11.2 Derivingthe MMG 167

vii

5.11.3 Deriving the MGs 168

5.11.4 Realizing the G-graphs as two-dimensional arrays 170

3.11.5 Evaluation of thearrays 172

6 Mapping algorithms onto class-specific arrays 179
6.1 The regularizationstage 179
6.2 The mapping stage and the specific target architecture 180
6.3 Mapping onto local-access arrays 183
6.3.1 The impact of large storage percell 183

6.3.2 Coalescing the MMG 184

6.3.3 A heuristic approach to non-uniform coalescing 186

6.3.4 The allocation of data and the schedule of primitive operations187

6.4 Example: mapping onto a memory-linked array 192
6.4.1 The target architecture 192
6.4.2 The performance evaluation measures 193
6.4.3 The mapping process 195
644 Uniformcoalescing 195
6.4.5 Interleaved uniform coalescing 203
6.4.6 Non-uniform coalescing 204

6.5 Comclusions 206

7 A comparison with other methods based on dependencies . . . 209

7.1 The regularization of algorithms 212
7.1.1 Index-dependencies 212
712 SY. Kung'smethod 218
713 MMGmethod 222

viii

7.2 The derivationof arrays 229
7.2.1 Rao’smethod 229

722 SY.Kung'smethod 232

723 MMGmethod 234

7.2.4 Comparison of derivation of arrays 238

7.3 Conclusions regarding the comparison 238

8 Summary and further research 243
References 247
A Arrays for the Faddeev algorithm 261
Al Introduction e 261
A.2 The modified Faddeev algorithm 262
A.3 Arrays for problems with fixed-sizedata 265
A.4 Evaluation of the arrays for problems with fixed-size data 270
A.5 The partitioning problem in the Faddeev algorithm 271
A.5.1 Partitioned structures previously proposed 272

A.5.2 Partitioning for lineararrays 273

A.5.3 Partitioning for two-dimensional arrays 274

A.5.4 Scheduling and I/O in partitioned Faddeev algorithm 273

A.5.5 Comparison of arrays for partitioned execution 277

A6 Conclusions e 284

B Arrays to compute BA™' o 285
B.l Introduction 285
B.2 Systolic arrays for computing BA™! 0L 285

X

B.3 Evaluation of the arrays 290
B4 Conclusions 292
Arrays for LU-decomposition with neighbor pivoting 293
C.l Imtroduction 293
C.2 The fully-parallelgraph, 293
C.3 Derivingthe MMG 293
C.4 Deriving arrays for problems with fixed-sizedata. 297
Algorithms with affine dependencies 299
D.1 The convolution algorithm 299
D.2 Derivingthe MMG 300
D.3 Deriving arrays for problems with fixed-sizedata. 302

1.1
1.2
1.3

1.4

21
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11

2.12

3.1
3.2
3.3
3.4

3.5

LIST OF FIGURES

Parallel architectures for matrix computations 2
Matching fine-grain parallelism and architecture 3
Classes of application-specific arrays for matrix algorithms 4
Data-dependency graph-based design method 7
Examples of array structures 14
Cells for the different typesof arrays 16
Computational model for multiple instances 17
Tradeoffs between local storage and cell bandwidth 19
The direct realization of a dependency graph 20
Partitioning an algorithm 24
Partitioning an algorithm through coalescing 24
Partitioning an algorithm through cut-and-pile 25
Partitioning an algorithm through coalescing and cut-and-pile . .. 26

Partitioning an algorithm through decomposition into subalgorithms 27

Indirect and direct partitioning 28
Using the internal regular part of an algorithm in partitioning . . . 29
Y-charts to describe transformational systems [Fort88] 34
Y-charts for two dependency-based methods [Fort88] 36
The stagesinadesign method 36
Index-dependencies 53
Data-dependencies 54

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20
4.21
4.22
4.23
4.24

4.25

The canonical form of a matrix algorithm
Dependency graphs of vector and matrix operators
Mesh-connected array
Data-dependency graph-based design method
The triangularization algorithm by Givens’ rotations
Symbolic evaluation of the triangularization algorithm
The FPG of the triangularization algorithm by Givens’ rotations . .
Examples of multi-mesh data-dependency graphs
Removing properties not allowed in an MMG
Graph with no broadcasting for the triangularization algorithm
Multi-mesh dependency-graph for the triangularization algorithm
Examples of mesh data-dependency graphs (G-graphs)
The CMMG used to discuss the derivation of arrays
Deriving G-graphs froma CMMG
The schedule of primitive nodes within a prism
Local storage organization inacell
Independent nodes in the flow of transmittent data
Realizing a G-graph as an array for fixed-size data
Dividing a G-graph into G-sets
Scheduling a G-graph in linear and two-dimensional arrays
The scheduleof Gsets
I/0 bandwidth in partitioned implementations
Drawing prisms in complete and incomplete MMGs
Schedule parallel to flow of transmittent data

Deriving G-graphs froman IMMG

xii

67
68
70

72

4.26
4.27
4.28
4.29
4.30
4.31
4.32

4.33

5.1
5.2
5.3
5.4
5.9
5.6
5.7
5.8
5.9
5.10
3.11
5.12
5.13
5.14
5.15
5.16

5.17

G-graphs derived from an IMMG 96

A CMMG and G-graphs with two flows of input data 99
Array for G-graphs with two tnput flows 100
Scheduling G-sets with twoinput flows 101
G-graphs for the triangularization algorithm 103

Prisms for partitioned problems in the triangularization algorithm . 107

G-sets in the triangularization algorithm 107
The canonical linear array for partitioned problems 110
The canonical form of a matrix algorithm 115
Complete and incomplete mesh arrays 117
Example of a data-dependency graph 120
Examples of mesh dependency-graphs 121
Examples of multi-mesh dependency-graphs 123
Examples of equivalent graphs 124
Summary of design method’s formalization 125
Realizing a mesh graph asan array 127
Collapsing a prism of primitive nodes onto a single node 129
Collapsing neighbor nodes from a mesh onto a single node 131
Grouping-by-prisms of size 1l by 1l by nina CMMG 133
Grouping along directions other than axes 134
Cut-set of primitive nodes executed up to timet =12 in a prism . . 138
Cardinality of a cut-set in complete and incomplete prisms 139
Determining local storage in a cell fromaprism 140
Cell bandwidth and pipelining 142
Example of broadcasting and transmittent data 144

xiii

5.18
5.19
5.20
5.21
5.22
5.23
5.24
5.25
5.26
5.27
5.28
5.29
5.30
5.31
5.32
5.33
5.34
5.35
5.36
5.37

6.1
6.2
6.3
6.4

6.5

Bidirectional dependenciesinagraph
Transforming bidirectional transmittent data
Connecting nodes’ inputs and outputs that have the same name . .
Rearranging the flow of datainaplane
Fully-parallel graph of an algorithm with scalar operations
Flows of data and graph levels in a three-dimensional space
Routing data in one plane of the three-dimensional graph
Movements of flows of data in the three-dimensional space
Three-dimensional graph for matrix algorithm as scalar operations .
Vector and matrix operators
Vector and matrix operators in neighbor planes
Directly dependent matrix operators in neighbor planes
Allocating directly dependent operators to the same plane
Fully-parallel data-dependency graph for the LU-decomposition
The LU-decomposition algorithm
Three-dimensional graph for the LU-decomposition algorithm
G-graphs for the LU-decomposition algorithm
Arrays for computing the LU-decomposition with fixed-size data . .
Decoupling I/O from computation in the LU-decomposition

Prism of primitive nodes along the Z-axis

The LU-decomposition algorithm and its MMG
A heuristic approach to perform non-uniform coalescing
The allocation of data to memory modules
Rotation in the square-root free algorithm

Schedule of primitive operations in the LU-decomposition

xiv

156

6.6
6.7
6.8
6.9
6.10
6.11

6.12

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
7.11
7.12
7.13
7.14
7.15
7.16
7.17

7.18

Scheduling primitive operations in an inner prism of the MMG . . . 191
An hypothetic memory-linkedarray 192
A cell in the target class-specificarray 193
Coalescing the LU-decomposition along the Z-axis 196
Coalescing the LU-decomposition along the X-axis 199
Coalescing the LU-decomposition along the Y-axis. 202
Scheduling primitive nodes in interleaved uniform coalescing 205
A framework to compare design methods 210
Regular iterative algorithm for matrix multiplication 213
Regular iterative algorithm for a two-dimensional filtering problem . 214

The regularization stage in Raos method 214
Regular iterative algorithm for transitive closure 215
Reduced dependency graph for transitive closure 216
Algorithms for Gaussian elimination with partial pivoting 217
The regularization stage in the Signal Flow Graph method 218
Single assignment algorithm for transitive closure 219
The dependency graph for transitive closure in the SFG method . . 220
Reindexed dependency graph 221
Modified DG for the transitive closure algorithm 222
The regularization stage in the MMG method 223
The FPG for the transitive closure algorithm 224
Replacing broadcasting by transmittent data 225
Removing bidirectional transmittent data 226
Removing bidirectional transmittent data along X-axis 227
Unidirectional dependency graph 227

7.19 Multi-mesh dependency graph 228

7.20 The derivation of arrays in Rao’s method 231
7.21 The array for transitive closure in Rao’s method [Rao85] 232
7.22 The derivation of arrays in the SFG method 233

7.23 Array for transitive closure from S.Y. Kung's method {Kung87c| . . 234

7.24 The derivation of arrays in the MMG method 235
7.25 Projecting the MMG onto G-graphs 236
7.26 Systolic arrays for tramsitive closure 237
A.1 Matrix operations with the Faddeev algorithm 263
A.2 The fully-parallel graph without broadcasting 264
A.3 The multi-mesh dependency graph 266
A.4 The G-graph from grouping along the Z-axis 267
A.5 The systolic array from grouping along the Z-axis 268
A.6 The systolic array from grouping along the X-axis 268
A.7 The systolic array from grouping along the Y-axis 269
A.8 A bi-trapezoidalarray 270
A8 The G-graph from grouping along the Y-axis 274
A.10 Partitioned linear array for the Faddeev algorithm 274
A.11 Two-dimensional partitioning of the Faddeev algorithm 275
A.12 Scheduling G-graph into linear and two-dimensional arrays 276
A.13 1/0O bandwidth in partitioning the Faddeev algorithm 278
B.1 The algorithm to compute BA~! 286
B.2 The fully-parallel dependency graph 287
B.3 The multi-mesh dependency graph 288

B.4
B.5

C1
C.2
C3
C4
C.5

D.1
D.2
D3
D.4
D.5

Grouping nodes along the Y-axis 289
Grouping nodes along the X-axis 291
LU-decomposition with neighbor pivoting. 294
Removing broadcasting L 0oL 295
Removing bidirectional dependencies 296
The multi-meshgraph 297
A G-graph for LU-decomposition with neighbor pivoting 298
Convolution algorithm with affine dependency 299
Typical linear array for convolution algorithm 300
The fully-parallel graph of convolution 301
The multi-mesh dependency graph 302
Collapsing MMG along the Z-axis 303

xvii

ACKNOWLEDGMENTS

Many people have been an asset to this dissertation, and I wish to express my
gratitude to them all.

Special thanks to my advisor, Prof. Tomas Lang. His dedication to this re-
search, his constant encouragement and support, and his constructive suggestions
and criticism have shown him to be an outstanding example of an ideal mentor in
the true spirit of the ancient traditions. He will be a role model to guide my own
research attitude. His advice has brought this dissertation to a level which I would
have never reached on my own. Thanks, Tomas.

My appreciation also to the members of my committee, in particular to Prof.
Milos Ercegovac and Prof. David Rennels, for their interest in the topic, their ideas,
and especially their support beyond the scope of this research.

I want to express my gratitude to IBM and its Graduate Fellowship Program,
who sponsored me during the last two years. Its financial support has been essential
for this research. Special thanks to Dr. Vojin Oklobdzija at IBM T.J. Watson
Research Center, for his constant interest in my progress and well-being.

I also want to thank everyone in the Computer Science Department at UCLA
with whom I have become acquainted and who helped me in different ways. In
particular, I thank Dorab Patel, Verra Morgan and Doris Sublette. They were a
great help, and I know they will continue helping others in the future; that’s their
nature. I'll treasure their kindness and friendship forever.

Last, my sincere thanks to the group of graduate students that made my daily
life at UCLA a rewarding experience, in particular Leon Alkalaj, Miquel Huguet,
T.M. Ravi, Frank Schaffa, Marc Tremblay, Jeong-A Lee and Paul Tu. Our enlight-
ening discussions, our CIGAR meetings, and our good and hard times together

will be a permanent memory of these years; our friendship will be part of my life.
Thanks to you all.

xviti

VITA

October 14, 1954 Born in Concepcidn, Chile

1978 Electrical Engineer Degree
Universidad de Concepcion
Concepcién, Chile

1978 — 1983 Lecturer, Assistant Professor
Department of Electrical Engineering
Universidad de Concepcién
Concepcioén, Chile

1983 - 1985 UNDP Fellowship

1985 M.S. in Computer Science
University of California Los Angeles
Los Angeles, California

1985 — 1987 Teaching Assistant, Teaching Associate
University of California Los Angeles
Los Angeles, California

1987 - 1989 IBM Graduate Fellowship

PUBLICATIONS AND PRESENTATIONS

1. J. Moreno and T. Lang, “Comments on ‘A systolic array for computing
BA~V" IEEE Transactions on Acoustics, Speech and Signal Processing,
November 1989.

2. J. Moreno and T. Lang, “A linear array for partitioned execution of matrix
algorithms with high utilization,” in SPIE Real-Time Signal Processing XII,
August 1989.

3. J. Moreno and T. Lang, “Comparing design methods based on index de-
pendencies and data-dependencies,” in International Conference on Systolic
Arrays, pp. 599608, May 1989.

4. J. Moreno and T. Lang, “Arrays for partitioned matrix algorithms: trade-
offs between cell storage and cell bandwidthk,” in SPIE Real-Time Signal

X1x

10.

11.

12.

13.

14.

15.

Processing XI, pp. 156-169, August 1988.

J. Moreno and T. Lang, “Partitioning algorithms for systolic arrays: applica-
tion to transitive closure,” in International Conference on Parallel Process-
ing, pp. 28-31, August 1988.

J. Moreno and T. Lang, “On partitioning the Faddeev algorithm,” in Inter-
national Conference on Systolic Arrays, pp. 125-134, May 1988,

J. Moreno and T. Lang, “Design of special-purpose arrays for matrix com-
putations: preliminary results,” in SPIE Real-Time Signal Processing X,
pp. 53-65, August 1987.

J. Moreno and T. Lang, “A multilevel pipelined processor for the Singular
Value Decomposition,” in SPIE Real-Time Signal Processing IX, pp. 100-
112, August 1986.

- J. Moreno and T. Lang, “Replication and pipelining in multiple instance

algorithms,” in International Conference on Parallel Processing, pp. 285-
292, August 1986.

J. Moreno, “Analysis of alternatives for a Singular Value Decomposition
processor,” Master Thesis, Technical Report CSD-850035, Computer Science
Department, University of California Los Angeles, October 1985,

J. Moreno and T. Lang, “Graph-based partitioning of matrix algorithms for
systolic arrays,” Technical Report CSD-880015, Computer Science Depart-
ment, University of California Los Angeles, March 1988.

J. Moreno and T. Lang, “Designing arrays for the Faddeev algorithm,” Tech-
nical Report CSD-880013, Computer Science Department, University of Cal-
ifornia Los Angeles, March 1988.

J. Moreno and T. Lang, “Reducing the number of cells in arrays for matrix
computations,” Technical Report CSD-880014, Computer Science Depart-
ment, University of California Los Angeles, March 1988.

J. Moreno and T. Lang, “Removing algorithm irregularities in the design of
arrays for matrix computations,” Technical Report CSD-870040, Computer
Science Department, University of California Los Angeles, August 1987.

J. Moreno, “A proposal for the systematic design of arrays for matrix com-
putations,” Technical Report CSD-870019, Computer Science Department,
University of California Los Angeles, May 1987.

ABSTRACT OF THE DISSERTATION

Matrix computations on mesh arrays
by

Jaime H. Moreno
Doctor of Philosophy in Computer Science
University of California, Los Angeles, 1989

Professor Tomas Lang, Chair

This dissertation addresses the systematic derivation of mesh arrays for ma-
trix computations, in particular realizing algorithm-specific arrays and mapping
algorithms onto class-specific arrays. A data-dependency graph-based transforma-
tional method is proposed in a design framework consisting of two stages, namely
algorithm regularization and derivation of arrays. The first stage derives the fully-
parallel data-dependency graph (FPG) of an algorithm and transforms this graph
into a three-dimensional one with unidirectional nearest-neighbor dependencies
(a multi-mesh graph MMG). The second stage transforms the MMG into a two-
dimensional G-graph, which is realized as an algorithm-specific array or mapped
onto a class-specific array. This stage allows the incorporation of implementation
restrictions and the evaluation of tradeoffs in properties of cells, as well as the
derivation of arrays for fixed-size data and partitioned problems, while performing

optimization of specific performance/cost measures.

The proposed method is formalized by presenting a sufficient set of transfor-
mations and demonstrating the equivalence of graphs obtained from those trans-
formations. Moreover, it is demonstrated that the MMG representation is always

possible, due to the characteristics of the operators.

The method uses systolic, pseudo-systolic (an extension to systolic) and local-

access cells. Pseudo-systolic cells include two small FIFO buffers, require band-
width that is a fraction of the computation rate, allow performing tradeoffs between
memory size and cell bandwidth, and use pipelined functional units efficiently. In
contrast, systolic cells have no local storage, while local-access cells have large local

memory and low bandwidth.

The method has been applied to a collection of matrix algorithms, including
matrix multiplication, convolution, matrix decompositions (LU, QR, Cholesky),
transitive closure, the Faddeev algorithm, and BA~!. The examples show that,
in addition to the features listed earlier, this method is easy to apply. Moreover,
the method is compared with other techniques, concluding that it is advantageous

because it meets evaluation criteria and produces more efficient arrays.

A linear class-specific array for partitioned problems is proposed for which the

method produces high cell utilization, low I/O bandwidth and low cell bandwidth.

The method has also proved useful for mapping algorithms onto local-access
arrays, using coalescing combined with a heuristic approach to achieve load bal-

ancing.

xxii

CHAPTER 1

Introduction

1.1 Matrix computations and arrays

Matrix computations are characterized by having matrix operands and/or re-
sults. These computations are a frequently used mathematical tool in modern sci-
entific and engineering applications, such as image and signal processing, systems
theory, communications, pattern recognition, and graph theory [Spei88, Klemg0,
Andr76, Golu85, Brom81]. For example, in a review of parallel processing al-
gorithms and architectures for real-time signal processing, Speiser and White-
house {Spei81, Spei83] have shown that the major computational requirements
for many important real-time signal processing tasks (such as adaptive filtering,
data compression, beamforming, and cross-ambiguity calculation) may be reduced
to a common set of basic matrix computations. For these applications, they showed
that the basic set of required matrix computations includes matrix-vector multi-
plication, matrix-matrix multiplication and addition, matrix inversion, solution of
linear systems, eigensystems solution, matrix decompositions (LU-decomposition,
QR-decomposition, singular value decomposition), and the Generalized SVD algo-
rithm.

Matrix operations such as those mentioned above are compute-intensive. Con-
sequently, they require high computation rates to achieve acceptable execution
times and to meet real-time constraints of many applications. Such computational
requirements have limited the adoption or even the comprehensive evaluation of
new signal-processing algorithms, permitting them to be applied only to small
problems in off-line computations, or to limited data sets [Spei81].

Achieving desired execution rates in matrix computations requires using paral-
lel architectures. Several classes of such architectures have been used for these pur-
poses, as depicted in Figure 1.1, exploiting different types of parallelism [Hayn82]|.
For example, vector computers {Kogg81] such as CRAY-1, CRAY-2 or NEC SX-1
use parallelism in matrix algorithms through vector instructions which are ex-
tracted from sequential programs using vectorizing compilers. These machines

Matrix
computations

Vector / \
computer Y
- Systolic-type
T array
Array Multiprocessor
computer

Figure 1.1: Parallel architectures for matrix computations

achieve high performance due to highly pipelined vector units. A similar type of
parallelism is used in array computers, such as the historically important ILLIAC
IV [Bouk72] and the recent Connection Machine [Hill85]. On the other hand,
multiprocessor systems exploit parallelism at several levels: vector operations if
they include vector processors (such as Alliant FX/Series [FXS87]), concurrent ex-
ecution of several loop iterations (also in Alliant FX/Series), block methods that
divide an algorithm into parallel tasks (as in Cedar, RP3, Hypercube, Butter-
fly) [Meie87, Fox88|, and linear system solvers [Same85a, Same85b]. Moreover,
matrix computations have become one of the preferred benchmarks for these ar-
chitectures [Dong87a, Dong87b].

Although the above-mentioned parallel architectures have demonstrated that
they are effective targets for matrix computations, they suffer from several degra-
dation factors. These factors arise from the relative general-purpose character
of those machines, and the need to adapt the algorithms to the specific hard-
ware available in those implementations. Moreover, their general-purpose nature
makes it necessary to include features that increase cost (for example, complex
memory addressing schemes) and make the architectures less suited for very-large
(VLSI) and wafer-scale (WSI) integration technology (for example, broadcasting
or complex interconnection networks). These drawbacks have led to the intro-
duction of systolic-type arrays [Kung79], architectures that seem very natural for
matrix computations because they match well with the fine granularity of paral-
lelism available in the computations, as depicted in Figure 1.2, and have very low

Figure 1.2: Matching fine-grain parallelism and architecture

overhead in communication and synchronization.! In addition, the regular nature
and nearest-neighbor connections of systolic-type arrays match very well with the
requirements for effective use of VLSI and WSI technology [Kungg2).

Several algorithms may exist for a given computation. Some algorithms are
suited for sequential execution (ie., in a single processor), because they have a
small number of operations, exclude complex operations, have locality characteris-
tics that use the memory hierarchy efficiently, or have dependencies that preclude
execution in parallel. Other algorithms are better suited for particular types of
parallel architectures. Matrix computations have properties that make them at-
tractive to all the above-mentioned classes and many algorithms have been devel-
oped [Golu85, SIAMB87]. For execution in systolic-type arrays, the algorithm should
exhibit sufficient fine-grain parallelism: in many cases the traditional algorithms
used in sequential computers have this characteristic, while for others special algo-
rithms have been developed [Luk87, Luk88]. Specific examples of algorithms de-
vised for systolic-type arrays are reported in [Boja84, Bojag6, Bren85b, Bren85a,
John84, Kung83b, Hell83, Lewi8s, Luk86, Nifie84, Niifie88, Torr88, Torr89] as well
as in [Davi88, Ibar87, McWh83, Schr82, Rajo88b]. Collections of implementation
of algorithms in arrays are found ig [Robe86] as well as in [Kung88c].

Some applications require dedicated systems for specific matrix computations.
In such cases, an application-specific array might be the most appropriate solu-
tion, as depicted in Figure 1.3, due to the possibilities of matching an array to
the particular algorithm(s), and of fulfilling specific implementation requirements
(such as speed, size, and power consumption.) If the application consists of ma-
trix operations and other computations, the array should be combined with other
modules to perform the complete task, composing a heterogeneous system. In ad-
dition, an application-specific array is usually connected to a host that performs
input /output and control functiogs.

This is in contrast to dataflow computers [Ager82], which also use fine-grain parallelism but
have large overheads.

0Py —apF

Arrays

Algorithm-specific Class-specific

Figure 1.3: Classes of application-specific arrays for matrix algorithms

In contrast to highly-specialized systems for one algorithm, there are situations
where the set of matrix computations is varied and not even predefined. For such
cases, a general array that can be adapted (i.e., programmed) for a class of matrix
algorithms is a suitable solution.

The design of algorithm-specific arrays implies determining the topology of such
an array (i.e., triangular, linear, rectangular), the functionality of each processing
element, the schedule of operations and data transfers, and the input/output. Such
a design should meet the requirements of a particular application and optimize
relevant criteria. On the other hand, programming a class-specific array consists
of assigning operations to cells, scheduling these operations and data transfers, and
specifying the input/output. Consequently, both activities have many aspects in
common and similar techniques may be used for both purposes.

Another aspect of importance is related to the relative size of matrices and
arrays, and two different cases may be identified. In the first one, the matrix
size is fixed and the array is designed to make use of the maximum parallelism
achievable with a mesh-type array (i.e., a problem with fized-size data). Such an
array is suitable to execute the computation for multiple sets of input data (i.e.,
a multiple-instance algorithm). In contrast, the second situation corresponds to
a matrix that is much larger than the size of a cost-effective array; in this case,
the computation has to be partitioned into subproblems and these subproblems
executed in sequence (i.e., a partitioned problem) [Nava87, Hell84]. Consequently,
the array is used many times with the different subproblems while operating on
the solution of a single large problem.

The topic of this dissertation is a method for the realization of matriz computa-
tions on mesh arrays. A detailed description of the characteristics of these arrays
and their computational model is given in Chapter 2. This chapter also describes

a generalization of systolic arrays, which consists of adding two small buffers to
processing elements. These buffers are used to reduce the communication band-
width between processing elements. Moreover, Chapter 2 presents a discussion of

the requirements that an array has to satisfy and of the optimization criteria that
are most significant.

Many methods have been proposed to design arrays [Fort88, Broma88, Fort87a];
some of them are reviewed in Chapter 3. Conclusions obtained from that review
indicate that proposed methods are not general enough to accommodate a large
variety of matrix algorithms, that they are difficult to use, and that they are not
able to take into account varying requirements nor incorporate optimization crite-
ria as part of the design. Moreover, most methods are oriented to the design of
arrays for fixed-size matrices and are only indirectly applicable to the case of large
matrices. To overcome these limitations, we have developed a data-dependency
based method that is the main topic of this dissertation. Such a method is pre-
sented in Chapters 4 through 6, and is compared with the most popular previously
proposed methods in Chapter 7. In these chapters, the method is illustrated with
its application to important matrix algorithms, such as LU-decomposition, QR-
decomposition, and transitive closure. More examples are given as appendices.
These examples show not only the capabilities of the method but also the deriva-
tion of more efficient arrays than those previously proposed. Nevertheless, we
concentrate on the capabilities of the method rather than on the arrays obtained.

1.2 Description of research and summary of accomplishments

The research described in this dissertation relates to techniques for the realiza-
tion of algorithm-specific mesh arrays (i.e., systolic-type) of processing elements
(PEs) for matrix algorithms, and for mapping these algorithms onto class-specific
arrays. The contributions obtained throughout this research are summarized as
follows:

Definition of pseudo-systolic cells

We extended the concept of a systolic cell to include a small local storage. The
new type of cell operates in such a way that cell bandwidth is a fraction of the
computation rate. This property is attractive for VLSI implementation, specially
for cells that have a pipelined operation unit. We call this a pseudo-systolic cell.

Development of design method

We developed a general design technique that follows a transformational ap-
proach and 1s based on the data-dependency graph of algorithms. This method is
summarized in Figure 1.4. Starting from the description of a matrix algorithm,
a fully-parallel data-dependency graph (FPG) is derived; in such a graph, nodes
represent operations and edges correspond to data dependencies. This graph is
obtained by symbolic execution of a representation of an algorithm, and its struc-
ture 1s simplified by the existence of matrix and vector operators.

A regularization process transforms the FPG into a three-dimensional graph
with unidirectional dependencies. We call this a multi-mesh data-dependency graph
(MMG). We showed that this regularization is always possible, due to characteris-
tics of the operations that compose a matrix algorithm. We identified the possible
irregularities and developed transformations to eliminate them. This regularization
process is aided by the visualization of the graph representations.

In a second stage of the method, arrays are derived from the MMG by col-
lapsing the three-dimensional graph onto a two-dimensional one {a G-greph), and
implementing this G-graph in arrays. Collapsing determines the scheduling of op-
erations in cells and data transfers from/to other cells and from/to local storage.

The second stage incorporates implementation restrictions and evaluates trade-
offs in properties of cells. Moreover, this stage allows deriving arrays for fixed-size
data problems, partitioned problems, and mapping onto class-specific arrays, while
performing optimizations of given performance/cost measures.

This method shares with other previously proposed techniques, such as the Sig-
nal Flow Graph (SFG) method by S.Y. Kung [Kung87a, Kung88¢|, the property
of using the data-dependencies in an algorithm as the description tool. However,
the method proposed in this dissertation answers questions still open in the SFG
method, such as how to derive the dependency graph and what is the form of this
graph, how to incorporate implementation restrictions (i.e., limited storage and
limited bandwidth per cell), how to perform tradeoffs between local storage and
cell bandwidth, how to effectively use pipelined cells, how to consider performance
and cost measures while applying the transformations, what are the tradeoffs be-
tween linear and two-dimensional arrays for partitioned problems, and how to map
algorithms onto class-specific arrays. Moreover, our method is more systematic and
simpler to use than the SFG technique.?

2Results from an extensive comparison between the method proposed in this dissertation, the

Matrix
algorithm

L]

PR\

AR o
Fully-parallel Regularization
data-dependency
graph

3D Multi-mesh
=3 | data-dependency o
graph ¢
Fixed-size Partitioned A
l data 'execution l Mapping

§ G-graph G-graph G-graph
%8—6 O%O Derlvation

{ I ! of arrays

. | 3G g

Figure 1.4: Data-dependency graph-based design method

Applicability of method to pseudo-systolic cells

The method developed is applicable to pseudo-systolic cells. Moreover, this
method allows the organization of local storage in those cells as two FIFO buffers,
performing tradeoffs between storage size and cell bandwidth, and the efficient
use of pipelined operation units. Note that systolic cells are a particular case of
pseudo-systolic ones, so that the method is applicable to them as well.

Preferability of linear arrays for partitioned execution

We showed that, for partitioned execution of matrix algorithms, linear arrays
are advantageous over two-dimensional arrays (with the same number of cells)
because while they have the same I/O bandwidth, they potentially provide a higher
throughput, simplify the design process, and are more suitable to include fault-
tolerance features.

Application of the method to a variety of algorithms

We applied the method to a variety of algorithms, including matrix multipli-
cation, convolution, LU-decomposition {with and without pivoting), triangular-
ization by Givens’ rotations, Cholesky decomposition, transitive closure, Faddeev
algorithm, and computation of BA~!. Through these examples, we determined
that the proposed method is easy to apply, incorporates implementation require-
ments, and optimizes selected performance measures. Moreover, the application
of the method led to the derivation of new and more efficient arrays for specific
algorithms (such as transitive closure and BA~!) than what has been previously
proposed in the literature, as well as to the systematic derivation of arrays obtained
in an ad-hoc manner by other researchers.

Formalization of the method

The transformations that compose the method outlined above were formalized.
For these purposes, a canonical representation of matriz algorithms was introduced,
and the equivalence of graphs derived through the transformations was proved. In
this process, it was demonstrated how the fully-parallel data-dependency graph of a

SFG technique, and another approach are described later.

matrix algorithm is transformed into a three-dimensional graph with unidirectional
dependencies, and conditions for achieving such a representation were determined.

Comparison with other design methods

We identified two stages of which any design technique is composed, namely
algorithm regularization and derivation of arrays. The identification of these
stages led us to devise a framework that allows evaluating design methods for
application-specific arrays. Methods based on indez-dependencies [Rao88, Quin84,
Mold83, Capp84] and data-dependencies [Kung88c| were compared in this two-
stage framework. The comparison uses the method for Regular Iterative Algo-
rithms (RIA) [Rao88] as a representative example of index-dependencies, the Signal
Flow Graph method [Kung88c] and our MMG method as data-dependencies based
approaches. We concluded that our method is advantageous, because it meets the
evaluation criteria and produces arrays that are more efficient than those obtained
with the other techniques.

Linear array for partitioned execution

We proposed a linear canonical array, suitable for partitioned execution of
matrix algorithms, that achieves high utilization, uses pipelined cells, and allows an
off-cell communication rate lower than computation rate. All these characteristics
are desirable for an implementation. Moreover, we described mapping algorithms
onto such an array using our data-dependency based method. Cells of the proposed
array consist of a pipelined functional unit, internal storage in the form of FIFO
buffers, and queues attached to ports. The array is composed of a set of cells
arranged in a linear structure, support for external I/O into the array, and memory
modules external to cells.

As an example, we described a cell whose functional unit is composed of a
conventional floating-point multiplier and an ALU. This cell was used in the map-
ping process, producing high utilization of resources and exploiting the internal
pipeline in a simple manner. Mapping was illustrated using algorithms such as
LU-decomposition, and triangularization by Givens’ rotations. Performance esti-
mates of the resulting implementations show that, for example, LU-decomposition
of a 200 by 200 matrix computed in an array with 10 cells and 4-stage pipelines
achieves about 90% utilization. Consequently, assuming a clock cycle of 50 [nsec],
such an array delivers 360 {Mflops| out of a peak capacity of 400 [Mflops].

Mapping matrix algorithms onto local-access arrays

The suitability of the method for mapping problems onto local-access arrays was
also addressed. Differences in mapping onto arrays with pseudo-systolic or systolic
and local-access cells were discussed, as well as the impact that an architecture
has on the mapping process and how the method can be adapted for a given
architecture. In particular, having large storage per cell permits using coalescing
as the partitioning approach. We described three strategies to perform coalescing,
discussed their suitability in producing good load balancing, and devised a heuristic
approach for such a purpose. To illustrate these issues, we considered a hypothetic
memory-linked array, where cells are interconnected by memory modules of large
capacity (an example of such an architecture is MWAP [Kung87b]).

Publications

The contributions listed above have originated the following publications:

1. J. Moreno and T. Lang, “Comments on ‘A systolic array for computing
BA-V'" IEEE Transactions on Acoustics, Speech and Signal Processing,
November 1989.

2. J. Moreno and T. Lang, “A linear array for partitioned execution of matrix
algorithms with high utilization,” in SPIE Real-Time Signal Processing XII,
August 1989.

3. J. Moreno and T. Lang, “Comparing design methods based on index de-
pendencies and data-dependencies,” in International Conference on Systolic
Arrays, pp. 599-608, May 1989,

4. J. Moreno and T. Lang, “Arrays for partitioned matrix algorithms: trade-
offs between cell storage and cell bandwidth,” in SPIE Real-Time Signal
Processing XI, pp. 156-169, August 1988.

5. J. Moreno and T. Lang, “Partitioning algorithms for systolic arrays: applica-
tion to transitive closure,” in International Conference on Parallel Process-
ing, pp. 28-31, August 1988.

6. J. Moreno and T. Lang, “On partitioning the Faddeev algorithm,” in Inter-
national Conference on Systolic Arrays, pp. 125-134, May 1988.

10

7. J. Moreno and T. Lang, “Design of special-purpose arrays for matrix com-
putations: preliminary results,” in SPIE Real-Time Signal Processing X,
pp. 53-65, August 1987.

8. J. Moreno and T. Lang, “Graph-based partitioning of matrix algorithms for
systolic arrays,” Technical Report CSD-880015, Computer Science Depart-
ment, University of California Los Angeles, March 1988.

9. J. Moreno and T. Lang, “Designing arrays for the Faddeev algorithm,” Tech-
nical Report CSD-880013, Computer Science Department, University of Cal-
ifornia Los Angeles, March 1988.

10. J. Moreno and T. Lang, “Reducing the number of cells in arrays for matrix
computations,” Technical Report CSD-880014, Computer Science Depart-
ment, University of California Los Angeles, March 1988.

11. J. Moreno and T. Lang, “Removing algorithm irregularities in the design of
arrays for matrix computations,” Technical Report CSD-870040, Computer
Science Department, University of California Los Angeles, August 1987.

12. J. Moreno, “A proposal for the systematic design of arrays for matrix com-
putations,” Technical Report CSD-870019, Computer Science Department,
University of California Los Angeles, May 1987.

1.3 Organization of the dissertation

Issues related to the design and implementation of arrays for matrix computa-
tions are discussed in Chapter 2. For these purposes, we consider architectures that
include the systolic array model, as originally proposed, and introduce the pseudo-
systolic extension with local storage. For those aspects that appear in the design
of arrays, a classification is proposed which distinguishes between restrictions for
a particular implementation and controlled/uncontrolled parameters.

In Chapter 3, we center our attention on systematic design approaches. A
classification of design techniques due to Fortes et al. [Fort88] is reviewed first, and
the limitations of that classification for the purposes of comparing design methods
are discussed. As a way to overcome those limitations, a framework is proposed
which allows comparing methods by identifying two stages in the application of a
design technique: regularization of algorithms and derivation of arrays. Criteria
to evaluate the suitability of methods under this framework are indicated, and

11

some of the approaches proposed in the literature are reviewed in terms of those
criteria. Such criteria also constitute a set of guidelines for the development of
a powerful design method. We highlight the convenience of using dependencies
in an algorithm as the basis for a design technique, and discuss the properties of
data-dependencies and index-dependencies for such purposes.

A description of our design method is given in Chapter 4. The different steps
are presented, as well as the impact on array performance and cost implied by the
transformations used in those steps. This description is illustrated with the trian-
gularization algorithm using Givens’ rotations. Moreover, this chapter describes
a canonical linear array for partitioned execution of algorithms with high utiliza-
tion, which is well suited for the application of the method. Chapter 5 presents a
formalization of the method, including a canonical representation of matrix algo-
rithms and proofs for the equivalence of graphs derived through the transformations
that compose the method. This chapter also demonstrates how the regularization
stage is achieved, that is, how the fully-parallel graph of a matrix algorithm is
transformed into a multi-inesh graph. Conditions that guarantee achieving such
a representation are given. Chapter 5 uses LU-decomposition without pivoting to
illustrate the steps in the formalization of the method.

The suitability of our method to map algorithms onto linear local-access arrays
is addressed in Chapter 6. We discuss mapping the LU-decomposition algorithm
onto a memory-linked array such as MWAP [Kung87b]. This example illustrates
that it is possible to obtain high utilization of hardware resources in a given array.

In Chapter 7, we compare our data-dependency based method with other tech-
niques, in particular Rao’s method for Regular Iterative Algorithms (RIAs) [Rao85,
Rao88] as a representative example of index-dependency based approaches, and
S.Y. Kung's Signal Flow Graph method {Kung87a, Kung88c]. In this compari-
son, we identify the outcome of the regularization stage and evaluate the ease of
obtaining a regular description in each method. Then, we discuss the derivation
of arrays and the ways that such a process achieves its objectives in each case.
As an illustration, the application of the three methods to the transitive closure
algorithm is presented and the results obtained are discussed.

This dissertation ends by summarizing the results obtained as well as suggesting
further work in the area. Additional examples of application of the method are
given in Appendices, in particular the Faddeev algorithm, the computation of
BA™1, the LU-decomposition algorithm with neighbor pivoting, and a convolution
algorithm with affine dependencies.

12

CHAPTER 2

The design of arrays for matrix algorithms

Since the introduction of the concept of systolic arrays [Kung78], much research
has been performed on designing algorithms and architectures suitable for that
model of computation. In this chapter, we concentrate on the design of mesh arrays
(i.e., systolic-type) for matrix algorithms. This discussion considers architectures
that include the systolic array model, as originally proposed, and extensions such
as arrays with external memory and cells with local memory.

2.1 Matrix algorithms

A canonical description of matrix algorithms is given in Chapter 5. Briefly,
matrix algorithms are characterized by the following properties:

¢ They constitute a compute-intensive class, with matrix operands and matrix
results.

¢ They exhibit fine-grain parallelism suited for implementation in systolic-type
arrays.

¢ They consist of primitive operations with up to three operands and up to
two results.

We obtained the last property listed above as a conclusion from analyzing a
large class of matrix algorithms: the execution of these algorithms consists of
unary, binary and/or ternary operations that produce one or two results each.
Consequently, these operations may be represented by nodes in a graph, with at
most three inputs and two outputs per node, leading to graphs that are three-
dimensional. This is an important characteristic of our design method, as is de-

scribed in Chapter 4, and it determines several properties of arrays as discussed in
this chapter.

13

Figure 2.1: Examples of array structures

2.2 The architectural model of mesh arrays

There is no single formal definition of systolic-type arrays (i.e., mesh arrays)
that is widely accepted. Moreover, a variety of architectural features (not nec-
essarily compatible) have been considered key properties in defining this type of
structure. In this section, we describe the properties of the architectural model of
mesh arrays used in this dissertation.

Nearest-neighbor connections, no broadcasting

Arrays are collections of processing elements connected in a nearest-neighbor
manner, with external I/O from a host only at the boundaries of the array. More-
over, these arrays have only local communications (i.e., there is no capability for
broadcasting or routing data through cells without using that data).

Arrays can be linear, rectangular, hexagonal, trapezoidal or triangular struc-
tures, as shown in Figure 2.1,

Mesh arrays, unidirectional communications

We consider only mesh-connected arrays, either linear or two-dimensional (a
linear array with K cells is 2 mesh of dimension K by 1). It will be shown in

14

Chapter 4 that matrix algorithms do not need higher connectivity, such as that
available in hexagonal structures. Moreover, flow of data in the arrays consid-
ered here is unidirectional, that is, data flows from cell to cell in one direction
only, without data counterflow. Consequently, cells of linear and two-dimensional
regular structures have two input and two ocutput ports.

Characteristics and types of cells

According to the properties of matrix algorithms given in Section 2.1, cells of
a mesh array need to be able to read up to three operands and produce up to two
results per operation. Moreover, outputs from a cell are either results computed
within the cell or operands used in the cell and passed through without modification
(i.e., transmittent data [Kung88c| (p. 118)). Since cells have only two input and
two output ports, as indicated above, the third port is obtained by a feedback loop
within the cell.

We assume that non-pipelined cells take the same amount of time to perform
any operation. On the other hand, we assume that the stage time in pipelined cells
is the same for all operations. These assumptions, which have usually been used
for the design of application-specific arrays, are highly implementation-dependent,

as recent studies of the design of application-specific cells have suggested [Erce87a,
Erce87b, Cava87].

Cells of a mesh array belong to one of the following three types:

Systolic cell: a cell with no local storage except for registers used to latch in-
pul operands for an operation. Figure 2.2a depicts a systolic cell with its
corresponding input/output ports. For ternary operations (those requiring
three operands), two operands are received from outside a cell through ports
and the third source of data is the feedback loop within the cell. For unary
and binary operations, only one or two sources of data are active (i.e., carry
data for such operations). Data flows through cells in such a way that every
operation in each cell requires one data transfer per active data source.

Pseudo-systolic cell: o cell with small, fized-size storage (i.e., storage size is
independent of the size of problems to be solved in the array). This storage
is composed of two separate FIFO buffers. Figure 2.2b depicts a pseudo-
systolic cell with its ports and buffers. Ports and local storage provide two

15

FU: functional unit

B: buffers ‘

-'-"*E-— FU o

~otfff=g o ———

a} Systolic celi b) Pseudo-systolic cell ¢) Local-access cell

Figure 2.2: Cells for the different types of arrays

sources of data for every operation. Another source of data is the feedback
loop within the cell.

Since the size of the FIFO buffers is fixed and small, we assume that access
time to this local storage matches the functional unit execution rate (i.e., cell
pipeline stage time or functional unit time) and that it is shorter than the
time to transfer data among cells. This property is exploited by performing
operations with data from the buffers. Consequently, pseudo-systolic cells
do not need to receive data through ports at every cycle, so the communica-
tion bandwidth of pseudo-systolic cells i3 lower than their computation rate.
This lower communication rate is adjusted to cell computation rate by FIFO
queues attached to ports.

Local-access cell: a cell with storage whose size is proportional to the size of
problems to be solved in an array. Figure 2.2c depicts a local-access cell.
Operations are performed in each cell with up to two operands obtained
from local storage, so that data received from neighbor cells is stored before
it is used. Another source of data is the feedback loop within the cell.

Local-access cells have large local memory with the objectives of storing a
large portion of data locally and reducing communication among cells. Con-
sequently, communication rate among cells is much lower than computation
rate (i.e., much less than one word per port per time-step).

16

instance instance
k+2 k+1

instance
k

instance
k-1

Figure 2.3: Computational model for multiple instances

Model of computation

The model of computation used in mesh arrays consists of a synchronized flow
of data through cells, with operations performed in each cell. At each time-step,
a cell reads operands from input ports, local storage, and/or the feedback loop,
performs an operation, and delivers results to output ports, local storage, and/or
the feedback loop. If the cell has a pipelined functional unit, the model of compu-
tation is also as just described except that the results delivered to ports, feedback
loop and local storage are from an operation previously initiated in the pipeline.

This model of computation exploits parallelism and pipelining in the execution
of an algorithm. Moreover, this model is suitable for the execution of multiple-
mstance elgorithms, that is, algorithms that are executed repeatedly for different
sets of input data. In such a case, one instance may use a cell during several
time-steps, and different instances may be in concurrent execution throughout the
array. Figure 2.3 depicts the flow of several instances through a mesh array.

In addition, this model is suitable for the partitioned execution of large prob-
lems in a small array. In this case, the different instances correspond to subproblems
of the large problem.

2.3 Tradeoffs in throughput, cell storage and cell bandwidth

An important conclusion is readily available from the properties of cells de-
scribed in the previous section: if there are enough cells, systolic arrays can ezploit

17

all the parallelism in an algorithm. In a systolic cell, a data element is used in one
time-step; at the next time-step, that element is immediately re-used in the same
cell for another operation or transferred to another cell because there is no place
to store data.! Consequently, every data element may be used in one cell at every
time-step and the number of cells may match the size of the problem.

In contrast, cells with local storage hold data elements which are not used for
an operation at a given time-step, so the use of parallelism is less than maximal.?
As a result, the number of cells doesn’t match the size of the problem. That is, for
a given problem size, a systolic array may have more cells than a pseudo-systolic
or a local-access array.

If the number of cells is less than the maximum determined by the size of the
problem, then different arrays may provide the same throughput regardless of the
type of cell used, as long as cells have the same step-time. The main differences
between these arrays are the tradeoffs between communication bandwidth and local
storage, and the ability to use pipelined cells without increasing cell bandwidth by
operating with data from local storage. On one extreme, systolic cells require
high communication bandwidth (equivalent to the computation rate) and no local
storage. On the other end, local-access cells have a large local memory and low
communication rate. Pseudo-systolic cells fall somewhere in between with lower
bandwidth than systolic cells and little local storage. These properties are depicted
in Figure 2.4 and described quantitatively in Table 2.1 for a matrix algorithm that
consists of n® operations, where n is the dimension of the matrix. Using the
method described in Chapter 4, realizing such an algorithm as an array with X
cells leads to the results indicated in the table (the origin of those values are
presented in Chapter 4). Table 2.1 shows that adding local storage to cells reduces
communication bandwidth proportionally to the inverse square-root of the local
storage size.

Table 2.1 also indicates the most suitable implementation for each type of cell,
based on communication and storage requirements. For example, systolic cells are
better implemented in WSI because that technology can provide communication
bandwidth between cells of a similar magnitude as computation rate (as long as
there is no need to go off-wafer). On the other hand, pseudo-systolic cells may be
implemented in WSI or as one cell per chip. In the latter case, the cell may provide

Some cells may be performing delay operations, if dependencies in the algorithm do not allow
the computation of a useful operation.

?We assume that no data are duplicated within the array, and consequently it is not possible
to have a local copy of an element that has also been transferred to another cell. As far as we
know, this is the case for all arrays proposed in the literature.

18

Storage

Local-
access

Pseudo-
systolic
Systolic/
Wavefront
e e———
Bandwidth

Figure 2.4: Tradeoffs between local storage and cell bandwidth

Table 2.1: Quantifying tradeoffs between local storage and cell bandwidth

Systolic
cell
Storage per cell None
Cell communication band- | 1
width per port [words/time-
step]
Most suitable implementa- | WSI

tion

Pseudo-systolic Local-access
cell cell
~85 ~n?l/K

1/V/§

VK /n

WSI or cell per | Board-level
chip (functional | implementa-

unit and buffer)

tion

19

K: number of cells

5 2
K S
el

(a) Graph (b) Array

Figure 2.5: The direct realization of a dependency graph

high computation rate (using data from local buffers) and lower communication
bandwidth between cells (which might require going off-chip). Finally, local-access
cells are better implemented at the board level, because they require large memory
modules that are less suited for single chip VLSI/WSI implementation.

2.4 Realizing algorithms and mapping algorithms onto arrays

A simple approach to derive an application-specific implementation for a matrix
algorithm is to represent the algorithm as a graph (i.e., one node per operation
and one edge per dependency) and perform a direct realization of this graph. That
is, each node of the graph (corresponding to an operation) is assigned to a different
cell in the array, and each edge (dependency) is assigned to a different link, as
depicted in Figure 2.5. Such an implementation is suitable for pipelined execution
of multiple instances of the algorithm, and exhibits the following characteristics:

Advantages

¢ Optimal utilization (for multiple instances), because each cell is used in a
different instance of the algorithm at each time-step.

¢ Maximum throughput, given by the computation time of a node.

¢ Minimum computation time, given by the longest path in the graph.

20

Disadvantages

¢ Large number of cells, depending on the size of the problem.

¢ Possibly complex and irregular interconnection, determined by the depen-
dencies in the algorithm.

» High I/O bandwidth, since all inputs appear simultaneously.

® Possibility of undesirable features for an implementation, such as data broad-
casting or large fan-out.

Consequently, the objectives of the design process are to find a regular structure
that requires fewer cells than the direct realization, and to remove the complex
interconnections and other undesirable characteristics. Since there are fewer cells,
it becomes necessary to map the operations in the algorithm onto array cells and
time-steps. In turn, this process requires determining the characteristics, topology
and interconnection of cells, specifying where and when each operation is per-
formed, and specifying how data flows through cells. All of these steps in the
design must be performed while preserving the algorithm dependencies.

From the discussion above, we can infer that the design of an array encompasses
two aspects:

Architecture, that is, obtaining the characteristics of modules composing the ar-
ray, their topology, and their interconnection (communication). These mod-
ules include processing cells, memories, and I/O ports. In devising an archi-
tecture, it is necessary to consider the characteristics of the algorithm (such
as type of operations and dependencies), taking into account constraints aris-
ing from the technology used in the implementation.

Mapping (spatial and temporal) of the algorithm onto the architecture, that is,
specifying what operations are performed in each cell and in what order, and
specifying the flow of data through the array. This mapping must be such
that no two operations are assigned to the same cell and expected to be exe-
cuted at the same time. Consequently, mapping requires considering not only
characteristics of the algorithm but also characteristics of the architecture.

These two aspects of a design exhibit different properties, depending on the
range of applicability of the target array. For algorithm-specific arrays (i.e., those

21

that execute a single algorithm), devising architecture and mapping are inter-
related tasks carried out simultaneously. Normally, there is no clear separation
between the two; a designer considers both aspects as a single entity. We refer to
this process as the realization of an algorithm as an array.

On the other hand, a class-specific array (i.e., an array suitable for a class
of selected algorithms) requires only mapping, because in that case a generalized
architecture is defined in advance. Consequently, an implementation on a class-
specific array consists of devising a way to use the available resources. The results
of performing the mapping are instructions (software) that specify the flow of data
and the sequencing of operations in the different cells, so that mapping onto a
class-specific array requires a suitable programming environment.

2.5 The range of applicability of arrays

As indicated in the previous section, arrays for matrix computations are clas-
sified into two groups depending on their range of applicability:

Algorithm-specific arrays (ASAs) are designed (and used) for one particular
computation. Arrays of this type are reported in [Hein87, Kand88, Loprs8,
Lack88, Lewi88, Schi86, Chouss].

Class-specific arrays (CSAs) are designed to execute a class of specific algo-
rithms. Examples include SLAPP [Drak87, Syma86], devised to compute
QR-decomposition, SVD, and GSVD, and the Hughes systolic/cellular sys-
tem {Nash88, Przy88|, originally devised for computing the Faddeev algo-
rithm and SVD. More general arrays are Warp [Anna87], ESPRIT [Groo87],
Matrix-1 [Foul87], VATA [Symas88), the arrays reported in [Avil83, Blac81],
and the earlier two-dimensional systolic-array testbed [Syma83].

If a single matrix computation is to be performed in a system, an algorithm-
specific array has the potential advantage of producing higher throughput and
better utilization than a class-specific array, because the topology and the cells
can match the particular characteristics of the algorithm. Moreover, little or no
programming would be required, because most of the sequencing and control are
embedded in the logic of the system. An ASA can also fulfill other requirements
at a lower cost. On the other hand, using a CSA for the application might reduce

22

the design and fabrication cost of the system, because a CSA for algorithms of the
same class may already exist. '

If several predefined computations have to be performed, a CSA might have
the advantage of reducing the cost of the system compared to having several ASA.
However, the CSA might have a lower performance because it has to adapt to the
characteristics of several algorithms.

Finally, for the cases in which the computations are not predefined, a class-
specific array is preferable, because today’s technology makes it easier to program
a new algorithm in this type of system rather than designing and constructing a
new system.

Fortes and Wah [Fort87b] state that there are two approaches in designing
class-specific arrays:

¢ Adding hardware mechanisms to reconfigure the topology and interconnec-
tion pattern of the array, in order to emulate the requirements of an algorithm-
specific design. Examples of this approach are the Configurable Highly
Parallel computer (CHiP) [Snyd82], which has a lattice of programmable
switches for reconfiguration purposes, and the Programmable Systolic Chip
(PSC) [Fish83].

¢ Mapping different algorithms onto an array using software. This approach
has been used in Warp [Anna87], SLAPP [Drak87] and ESPRIT [Groo87],
and proposed for Matrix-1 {Foul87] and VATA [Syma88].

2.6 Approaches to partitioning large problems

In most applications it is necessary to perform a computation with large-size
data in an array that is smaller than the size of the data, or map an algorithm
with large variable-size data onto a small array [Nava87, Hell84, Kung88c]. The
basic approach to solving both cases consists of decomposing (i.e., partitioning)
the original problem into subproblems that fit the size of the target array. Such a
decomposition is shown conceptually in Figure 2.6, where the dependency graph
of an algorithm is represented by a parallelepiped (i.e., nodes in the dependency
graph are distributed in a parallelepiped).

The basic approaches to achieve partitioning are:

23

s mmn ON) -

4 o ears 8

! & —— ——
! [1]
O(n) sl

I . H

| ! ! !
: By,

Y primitive 10548

operations

Figure 2.6: Partitioning an algorithm

o, - -
ﬂm B T~ .
| et c -

Partitioning into sub-problems Mapping onto array

Figure 2.7: Partitioning an algorithm through coalescing

a) Coalescing. This approach partitions the algorithm into a number of subprob-
lems equal to the number of cells available in the target array. The depen-
dencies between the subproblems (i.e., communication requirements) should
match the interconnection structure of the array, and each subproblem 1s
mapped onto one cell. Each cell sequentially executes the operations in its
subproblem, according to a certain schedule. Figure 2.7 depicts this tech-
nique. This figure shows the dependencies in an algorithm (depicted as a
parallelepiped), which are partitioned into a number of communicating sub-
problems that are mapped onto the array.

This type of partitioning has also been referred to as locally sequential globally
parallel partitioning(LSGP) [Kung88c]. The more intuitive name coalescing
has been frequently used as well [Nava87, Nash86a]. The scheme is attrac-
tive for its simplicity, generality and low communication bandwidth, but
it requires large local storage within each cell (large enough to store all of
the data of the corresponding subproblem). Consequently, such a scheme is
suitable for implementations using local-access cells. Moreover, this scheme
requires a careful selection of subproblems to achieve good load balancing.

b) Cut-and-pile. This approach is actually a two-level scheme, where the algo-
rithm is decomposed into subproblems and each subproblem into components.

24

4

m

Partitioning into sub-problems
and components

Mapping onto
array

Cut-and-pile

Figure 2.8: Partitioning an algorithm through cut-and-pile

A subproblem is mapped onto the entire array and each component is mapped
onto a different cell. Subproblems are mapped sequentially, according to a
certain schedule. Such a sequential mapping usually requires feedback of data
and, in many cases, memory external to the array. Figure 2.8 illustrates this
scheme, whereby an algorithm is partitioned into subproblems whose compo-
nents exhibit communication requirements in a rectangular pattern (except
for the boundaries of the algorithm). Consequently, these subproblems are
mapped onto a rectangular array.

This type of partitioning has also been referred to as locally parallel globally
sequential partitioning (LPGS) [Kung88c|. The more intuitive name cut-and-
pile was coined in [Nava87]. This approach is attractive because it is general,
it does not require memory in each cell, and it produces good load balancing.
It is suitable for partitioning algorithms for execution in mesh arrays with
systolic cells, which require high cell bandwidth. However, data must be fed
back into the array.

c} Combination of coalescing and cut-and-pile. An alternative that allows
combining the benefits of the two techniques above was proposed in [More88a].
This approach consists of a three-level process, where the granularity of an
algorithm is reduced by applying coalescing to a limited extent, partitioning
the coalesced version into subproblems, and dividing these subproblems into
components. Subproblems and components are mapped onto the array as in
cut-and-pile.

This approach, illustrated in Figure 2.9, produces arrays with pseudo-systolic
cells (which require a lower cell bandwidth than systolic cells). Moreover,
pipelined cells can be used efficiently. Drawbacks are the need for data
feedback, and some complexity in the control (sequencing) within cells.

This technique will be elaborated as part of the design method presented in
Chapter 4.

25

Partitioning into sub-problems

Limited coalescing and components
el |
K L
~ '
/ t
2 & p
“ -
~ -~
A Y -
~ i
N A .
Mapping onto FH--EH--HH"
array
Cut-and-pile

Figure 2.9: Partitioning an algorithm through coalescing and cut-and-pile

d) Decomposing the algorithm into subalgorithms. In this approach, the
original algorithm is decomposed into subalgorithms. Such subalgorithms,
which need not be the same as the original one, are executed sequentially
in the array according to a certain schedule. Consequently, this approach
transforms the original algorithm into a series of subproblems which, when
executed, provide the same result as the original algorithm.

An example of this approach was proposed by Navarro et al. [Nava87] and
is shown in Figure 2.10. In this case, an algorithm with large size dense
matrices is transformed into an algorithm with band matrices and computed
in an array tailored to the band size. This approach has the potential for
high performance when applicable, but is less general than the ones discussed
above because the decomposition depends on the algorithm.

Table 2.2 summarizes the advantages and disadvantages of the different parti-
tioning approaches.

The first three partitioning approaches described above can be performed using
either a direct or an indirect strategy, as shown in Figure 2.11. In the indirect
approach, an algorithm is first realized as a large (i.e., virtual) array whose size
depends on the size of the data. This array is then partitioned and mapped onto
the small array. As a result, partitioning is performed not on the algorithm, but
on an array that implements the algorithm for large-size data. This is in contrast
to the direct approach, where the algorithm is directly partitioned for execution
on a small array.

26

A23

Algorithm

Band algorithm

/

- — — D..éD

Mapping onto array

band size

Figure 2.10: Partitioning an algorithm through decomposition into subalgorithms

Table 2.2: Comparison of partitioning approaches

Method Advantages Disadvantages
Simple.
Coalescing General. . Large storage per cell.
Low communication band-
width.
Feedback of data.
) General.) .
Cut-and-pile High communication
Storage external to array. .
bandwidth.
General.
Small memory per cell.
Coalescing /cut- Lower communication band-
: width than cut-and-pile. Feedback of data.
and-pile
Storage external to array.
Allows pipelining within cells.
Decomposition into p - d verf. Lack of generality.
subalgorithms otentially good performance. | Complex.
Feedback of data.

27

.. .
resiricuons . Algorithm

[}
| TESITICuOnS.

\

Array for fixed-size data
(virtual, large)

Array for
partitioned execution

Figure 2.11: Indirect and direct partitioning

The differences between direct and indirect partitioning strategies can be stated
in terms of flexibility to achieve the task. In the indirect approach, the techniques
to obtain the virtual array are the same ones used to derive arrays for fixed-size
data. Consequently, one first obtains an array suitable for fixed-size data; this
imposes conditions on the array which might be detrimental for the partitioning
step. On the other hand, partitioning the algorithm directly onto an array uses all
the information available in the representation of the algorithm, and therefore can
produce a better implementation.

In other words, direct partitioning is more flexible because it can use proper-
ties of the algorithm that are not suitable for fixed-size data (and are therefore
eliminated in the indirect approach). The difference is partly due to the fact that
at a given time, a partitioned design uses a very small portion of the parallelism
available in the algorithm, while a fixed-size data design uses a much larger por-
tion. Consequently, the irregularities in the algorithm have a much larger influence
in the fixed-size data case. As shown in Figure 2.12, a partitioned design must
center its attention on efficient execution of the internal regular part, because that
part accounts for most of the computational load imposed by the algorithm. In
contrast, the fixed-size data design has to cope with the irregularities.

In this dissertation, we deal only with direct partitioning techniques.

28

internat
regular part ~
.
» N
m n
. 4
portion executed = —~
atatime
(a) Fixed-size data (b) Partitioned

Figure 2.12: Using the internal regular part of an algorithm in partitioning

2.7 Issues in the design of arrays

The design of a digital system is usually accomplished with a structured decom-
position process. A high-level specification of the system (behavior and structure)
is refined through a top-down design procedure, leading from complex compo-
nents to simpler subcomponents. These components are then implemented and
the system is evaluated in terms of cost, performance, and other requirements.
The design process is repeated if the resulting implementation is not satisfactory.
Since there are many parameters to consider which influence the implementation
in a complex way, the design process is time-consuming and costly. This is a very
important consideration in the cost-effectiveness of a system, especially in the case
of application-specific implementations where design cost is amortized with a small
production volume. As a consequence, it is imperative for these systems to have a
method and tools that reduce the design cost and time.

Mesh arrays are simpler to design than other systems, because it is possible to
proceed faster and more directly to the design of lower-level components than in
traditional design [Fort87b)]. This is because a mesh array consists of a large num-
ber of a few types of modules interconnected in a predefined manner. Moreover, it
s easier to evaluate the resulting implementations during the design process, and
it is therefore possible to reduce the number of design iterations. These charac-
teristics make mesh arrays especially attractive for application-specific systems in
those cases where the mesh organization and computation model do not have a
negative impact on cost and performance.

Typical requirements for mesh arrays are classified in Table 2.3. For a given
implementation, some of these are actual requirements, others are used as opti-

29

Table 2.3: Typical requirements for mesh arrays

Performance: | Throughput
Computation time
Cost: Number of cells
Utilization
Overhead

Types of Cells
Complexity of cells
Bandwidth

Other: Domain of applicability
Reliability

Size

Power dissipation
Expandability

mization criteria, and the rest are ignored. The division into the three classes
shown in Table 2.3 is dependent on the system being implemented. In one case
utilization of processing elements might be the most important measure, while in
other cases higher priority might be given to throughput or computation time.
Consequently, cost and performance measures are items that have to be handled
during the design process, both in defining the specific measures of interest and
determining the values obtained.

Another important aspect is the integration of arrays into existing systems,
which may be nontrivial [Fort87b]. Issues that may affect integration are:

Extensive I/O bandwidth.

¢ Interconnection with the host.

¢ Memory subsystem supporting the array.

e Buffering and access of data to meet special input/output distributions.
Multiplexing/demultiplexing data for insufficient I/Q ports.

The design of an array must deal with these issues and devise suitable mecha-
nisms to allow integrating array and host. This may require additional hardware
support, such as queues for data transfers or memory external to the array. Specific
solutions depend on characteristics of array and host.

30

Table 2.4: Typical parameters for mesh arrays

Class of admissible computations

Type of cell (systolic, pseudo-systolic, or local-access)
Dimensionality of the array (linear or two-dimensional)
Size of the array

Use of identical or specialized cells

Width of the communication path

Size of cell buffers

Cell bandwidth

Degree of cell pipelining

I/0O bandwidth and data format

Cell pins

A particular mesh array is described by many parameters. The values of these
parameters are determined during the design process in such a way that the im-
plementation satisfies the requirements. Typical parameters for mesh arrays are
given in Table 2.4. Since the number of parameters and their possible values is
large, a manageable design process requires limiting the solution space. This is
done by dividing the parameters into three classes as follows:

Restrictions. These parameters are fixed before a design starts. Some of these
restrictions are mandated by the technology, while others result from a desire
to use specific modules and/or to simplify the design. For a mesh array, the
main restriction is in its organization as an array of processing cells with
nearest-neighbor communication, with I/O only at the boundaries.

Controllable parameters. These are parameters for which values are obtained
by directing the design process.

Uncontrolled parameters. These are parameters which receive values during
the design process, but for which the process does not provide any control.

Which parameters belong to each class depends on the particular system to be
implemented and on the design method. Ideally, a design method should be able
to handle any division; of particular importance are the limitations imposed on
the set of restrictions and on the parameters that can be controlled. Flexibility

31

in defining this division is a good measure of the power of a design method. A
closed method has a predefined assignment of parameters to classes, while an open
method allows performing such an assignment as directed by the application.

The research performed in this dissertation centers on a design technique which
makes explicit to a designer the existence and impact of the above-mentioned
classes of parameters, as well as the performance and cost measures. Moreover,
the design technique is open in the sense that it allows the designer to select specific
restrictions, controllable parameters, and measures.

In this chapter, we have discussed important issues in the design and imple-
mentation of arrays for matrix algorithms. The need for methods that make these
tasks easier has been stated. The objective of design methods and tools is to help
designers in the process of deriving arrays for specific algorithms or mapping al-
gorithms onto arrays. Consequently, such methods should make the design issues
visible and explicit to the user, as discussed in the next chapter.

32

CHAPTER 3

Methods for the design of arrays

[ssues involved in designing arrays for matrix computations were discussed in
the previous chapter. We center our attention now on methods that allow carrying
out design tasks in a systematic manner. A classification of design methods due
to Fortes (et al.) [Fort88] is reviewed first, and the limitations of this classification
for the purposes of comparing methods are discussed. As a way to overcome those
limitations, a framework is proposed which identifies two stages in the application
of a design technique: regularization of algorithms and derivation of arrays. Cri-
teria to evaluate methods under this framework are presented, and some of the
approaches proposed in the literature are reviewed. The criteria, also constitute a
set of guidelines for the development of a powerful design method. We highlight
the convenience of using dependencies in an algorithm as the basis for a design
technique, and discuss the properties of data-dependencies and index-dependencies
for this purpose.

3.1 The classification of design methods by Fortes (et al.)

Different techniques have been proposed for the design of arrays. The most
successful approach for that objective has been a transformational paradigm, where
the description of an algorithm is successively transformed into a form suitable for
implementation [Fort88, Most84). This approach may also be regarded as having
an algebra, with suitable symbols and operators, where an algorithm is represented
by expressions; a design method consists in manipulating the expressions with the
objective of transforming them into a form that describes an architecture and the
mapping onto such an architecture.

According to Fortes et al. [Fort88], transformational systems are characterized
by how algorithms are described, what formal models are used, how systolic struc-
tures are specified, and what types of transformations are used on and between
these representations. Consequently, Fortes et al. visualize transformational sys-
tems as three-dimensional spaces (i.e., Y-charts), as depicted in Figure 3.1, where

33

Algorithm Algorithm
representation model

English-like Functional semantics
Algebrric expressions Structural or synuactical

High-level language

Register transfer level

Runctional blocks

Arrzy models

Architecture specification

Figure 3.1: Y-charts to describe transformational systems {Fort88)

the dimensions (or axes) have the following meanings:

The algorithm representation axis, which indicates the different forms or lev-
els to present an algorithm to the transformational system. Examples of
points along this axis include representations in natural language, algebraic
expressions, pseudo-code, and high-level language.

The algorithm model axis, which shows different levels of abstraction used to
represent relevant features of the algorithm. Examples of points along this
axis include algebraic model, computational graph, space-time representation
and dependency graph.

The architecture specification, which is associated with the hardware model
or level of design in which the systolic array is described. Points along this
axis include processing element functions and interconnections, functional
blocks, and register transfer level (RTL).

Directed arcs between points along and across the three axes of a Y-chart are
- used to illustrate transformations that map a given representation into another
representation in the same or a different axis. From these Y-charts, Fortes et al.
group the various methods that they reviewed into the following classes [Fort88:

34

1. Methods that allow transformations to be performed at the algorithm-
representation level and that advocate a direct mapping from this
level to the architecture specification.

2. Methods that prescribe transformations at the algorithm-model
level, requiring procedures for deriving the model from the algo-
rithm representation and for mapping the model onto hardware.

3. Methods that transform a previously designed architecture into a
new architecture.

4. Methods that abstract the function implemented by a given sys-
tolic architecture and use symbolic manipulations and transfor-
mations to prove the correctness of the design.

Fortes et al. associated each of the methods they reviewed with one of these
four classes, and provided the corresponding Y-charts illustrating the properties of
those methods. As a result, Fortes et al. identified fourteen techniques that perform
transformations at the algorithm-model level. The popularity of transformations
at such a level is basically due to their generality and applicability. The discussion
in the remainder of this chapter is centered around this type of method. Moreover,
the method proposed in this dissertation belongs to this class.

The classification devised by Fortes et al. has facilitated an understanding of
the characteristics of the transformational systems. However, such a classification
does not aid in comparing the capabilities of different methods or in selecting the
adequate one for a given task. The concepts attached to the Y-chart axes are
specific to each method, so that a comparison or evaluation of properties in terms
of specific measures is not feasible.

To illustrate the limitations of this classification, let us consider two methods
that use a similar tool at the algorithm-model level, namely dependencies. There
are several techniques based on dependencies, such as those described in [Rao85,
Mold83, Quin84, Kung88c, Capp84, Yaac88b]. Although these approaches have
similar underlying principles to carry out their task, the corresponding Y-charts are
not helpful for comparing and evaluating these techniques. For example, Figure 3.2
depicts the Y-charts for Quinton’s method [Quin84} and for Moldovan and Fortes’
technique [Mold83], as presented in [Fort88]. From this figure one can understand
the type of transformations available in each approach, but it is not possible to
decide which method is more suitable for a given task or how the two methods
compare.

35

representation model
URE
Dazaflow Primitive
analysis ~ ~ Runetion
Augmented set

Timing of execution
and dmaflow

. .) Ideatity
Sion dimemin, wpolgy S ——
movement data comm. direction and timing
) Quinton' s Moldovan and
 Buncional method RTL local cell design Fortes' method
description of cell

Architecture specification Archilecture specification

Figure 3.2: Y-charts for two dependency-based methods [Fort88]

Regularization Derivation of
stage arrays
Algorith Regularized
gortthm | o | “Algorithm —_ | Am

Figure 3.3: The stages in a design method

Due to the limitations described above in the classification of Fortes et al.,
in the next section we present a framework suitable for analyzing and comparing
different design techniques.

3.2 A framework to compare design methods

The objective of a design method is to support the design process. We identify
two stages in the application of a design technique, as shown in Figure 3.3:

Regularization, that is, the derivation of a canonical (regular) representation of
an algorithm from an admissible form. The regularized form must provide
an implicit or explicit description of parallelism, in a manner suitable for
implementation in arrays. Moreover, the regularized representation must be

36

in a form suitable for manipulation in the remaining steps of the method.

Derivation of arrays using the regular description obtained above.

As will be discussed later, most methods proposed in the literature assume a
regularized description of an algorithm but do not provide mechanisms to derive
such a form. In other words, proposed methods have addressed only the second
stage above, and have largely ignored the first one. Such a separation has allowed
a concentration of effort on the derivation of arrays, but has neglected the impact
that the regularized form has on implementations.

Analyzing methods in terms of the two stages given above, together with re-
quirements and characteristics associated with each stage, allows a more precise
comparison of the capabilities of different methods than that available with the
Y-charts of Fortes et al. Within this framework, the suitability of a design method
is evaluated in terms of the following criteria:

Regularization:

e The class of algorithms to which the method may be applied, that is, the
degree of generality of the admissible form of algorithms.

¢ The set of transformations used to devise a regular description, suitable for
derivation of arrays, from the admissible form of algorithms.

o The effectiveness of the regular description in conveying the properties of an
algorithm suitable for implementation in arrays.

Derivation of arrays:

The capabilities of the method for:

¢ Performing transformations.

* Incorporating implementation constraints and restrictions in the design, such
as limited local storage and limited bandwidth.

¢ Incorporating different attributes in the design of processing elements, such
as pipelining, non-conventional arithmetic, and specialized functional units.

37

¢ Performing optimization of specific performance measures as part of the de-
sign process, which requires performing tradeoffs among implementation pa-
rameters and evaluating them (i.e., moving around the space of solutions).

¢ Designing arrays for fixed-size data and partitioned problems.

* Realization and mapping, that is, designing algorithm-specific arrays and
mapping algorithms onto class-specific arrays.

An additional factor, applicable to both stages, is the ease of use and suitability
for automation.

Evaluating methods in terms of the factors above leads to the conclusion that
a design technique must have strong descriptive capabilities for ALGORITHM,
ARCHITECTURE and TRANSFORMATIONS. This is particularly true when one
considers that a method should be able to cope with algorithms and architectures
that may have very different characteristics. The need for such a descriptive power
has not been explicitly identified before.

In the next section, we review some of the design methods proposed in the
literature. We concentrate on the descriptive capabilities of these techniques, and
identify the two stages in them (whenever possible).

3.3 A review of other design methods

In spite of all the research performed, realizing algorithms as arrays remains
an open problem. Fortes et al. [Fort88] concluded that “from a global point of
view, it is clearly indicated that the two greatest limitations in the state of the art
of existing transformational systems are the non-existence of powerful systematic
semantic transformations and the inability to systematically achieve optimality in
the resulting designs.”

Significant and basic differences among design methods are found in the way
that a regularized algorithm description is represented, and in the capabilities
associated to that description. That is, methods differ in the tool or lenguage
used to describe a regularized algorithm, and in the suitability of such a tool or
language to perform transformations to derive an array. Representations used for
these purposes include algebraic expressions, graphical descriptions and high-level
languages.

38

In this section, we briefly review how some of the methods proposed in the
literature describe a regularized algorithm, how such a representation is derived,
and how it is transformed into an architecture. A more extensive comparison
of two specific methods with the one proposed in this dissertation is given in
Chapter 7. It should be noted that most of the methods reviewed in this chapter
have been devised for realizing only algorithm-specific arrays for problems with
fixed-size data. Further discussion on the capabilities of these methods can be
found in [Fort88], which also contains an extensive bibliography.

3.3.1 Algebraic descriptions

Several of the methods proposed use an algebraic approach. In such a con-
text, the regularized description is given as a set of algebraic expressions to which
transformations are applied. Examples are vector operators {Gann82}, a canonical
algebraic representation {Kung83a], recurrence equations [Mira84, Li84, Capp83,
Quin84, Delo86, Guer86], regular iterative expressions [Rao88], indices of nested
loops [Mold83, Fort85, Lee88|, dependencies and identity {Ko88], space-time trans-
formations [Capp84], and affine recurrent equations [Yaac88b, Rajo86].

For example, Kung and Lin [Kung83a| proposed an algebra for systolic com-
putation. Algebraic transformations are applied on the algebraic model of an
algorithm to obtain an algebraic representation of a systolic design. According to
Fortes et al., “such a canonical algebraic representation consists of the two matrix
expressions v «— Av + bz and y = cTv, where z represents the input, y represents
the output, and v represents variables generated by implicit functions. 4,5 and ¢
represent delay cycles between the availability and use of the variables.” In other
words, the regularized version of an algorithm is given in terms of its canonical
algebraic representation. However, there is no indication of how such a descrip-
tion is obtained for a particular algorithm. Algebraic transformations applied to
the canonical representation consist of retiming and “k-slowing.” This algebra
is used to derive designs where broadcasting is replaced by distributing common
data to different destinations at different times. The technique has been applied to
FIR and IIR filters, matrix multiplication, and has been used to derive two-level
pipelined arrays for LU-decomposition [Fort88).

Li and Wah [Li84] describe algorithms algebraically with three classes of pa-
rameters: velocities of data flows, spatial distributions of data, and periods of
computation. Relationships among these parameters are represented as constraint
vector equatioxis that must be satisfied. Consequently, the regularized description

39

in this technique consists of parameters and constraint vectors. As in the case of
Kung and Lin, this method does not include tools that allow obtaining the regular-
ized form. Li and Wah formulate the design as an optimization problem, where the
search space is polynomial on the problem size. They express completion time and
hardware complexity in terms of the three classes of parameters above, and the op-
timization process consists of minimizing completion time T or area-time AT?. As
a result, the method is suitable for considering only the issues mentioned: it does
not have the facility to incorporate other implementation constraints. Results ob-
tained include systolic arrays for FIR filters, matrix multiplication, discrete Fourier
transform, polynomial multiplication, deconvolution, triangular matrix inversion,
and tuple comparison [Fort88].

Weiser and Davis [Weis81] proposed a method that describes an algorithm as
sets of data that are treated as wavefront entities, with transformations applied
to the wavefronts. The regularized description consists of such wavefront entities,
but no tool is included in the method to obtain them. The derivation of arrays
is presented as operations on sets of data, using a KM-function on such data.
Examples of applications of this method are string matching and band matrix
multiplication.

Quinton [Quin84| uses a set of uniform recurrent equations as a description
of the algorithm. As in the previous examples, the technique does not include
facilities to derive this regularized algorithm. However, recent research has ad-
dressed this issue [Dong88b), although the effectiveness of those results is not yet
clear. Regarding the derivation of arrays, the method first finds a timing function
compatible with dependencies of the equations and then maps the equations into
a finite set of coordinates, each representing a processing element of a systolic
array. Architectures derived with this method include arrays for convolution and
matrix product. Extensions of this technique allow the derivation of arrays for
LU-decomposition and dynamic programming, as indicated in [Fort88].

Cappello and Steiglitz [Capp84] also use a set of uniform recurrence equations
to describe the algorithm. Such a representation is expanded into a canonical
form by the addition of an index representing time. Tuples of indices’ values are
associated to positions in a multi-dimensional space, where each index corresponds
to one dimension. Points in such a space correspond to primitive computations.
Arrays are obtained as the result of projections from the multi-dimensional space,
which determine the topology and size of the architecture as well as timing and
direction of data flows. Architectures for matrix-vector multiplication, convolution,
matrix-matrix product and matrix transposition have been formally derived with

40

this technique, as indicated in [Fort88].

Recent work by Cappello et al. includes a more general form of algorithms,
namely systems of affine recurrence equations {Yaac88a, Yaac88b]. The same type
of algorithm description is also used in [Rajo86, Rajo88al. '

Moldovan and Fortes [Mold83] derive an algebraic model of an algorithm by
using techniques similar to those used in software compilers. This regularized form
describes the algorithm as structured sets of indexed computations that operate
on a set of inputs to obtain a set of outputs. Such a form is modified by local
and global transformations. Local transformations affect the functional and struc-
tural specification of cells, while global transformations restructure the algorithm.
Moldovan and Fortes have devised a software tool that aids in finding suitable
transformations for deriving arrays. With such a tool the user still has to select,
from among those valid transformations, the one that best fits specific needs; this
selection was being done manually [Mold87]. Results derived with this method
include matrix-matrix multiplication, LU-decomposition, dynamic programming,
and partial differential equations [Fort88].

Rao and Kailath have proposed a method for a class of computations they refer
to as Regular Iterative Algorithms (RIAs) [Rao85, Rao88]. They have proved that
“a systolic array executes an RIA that has a uniform affine schedule and conversely,
every RIA with a uniform affine schedule can be implemented on a systolic array,”
given their definition of systolic array. Consequently, a regularized description
consists of such an RIA, which is represented by a Reduced Dependence Graph
(RDG) and a specification of the index space. This method, and later related
research [Royc88a), have given attention to the issue of deriving a regularized de-
scription, but so far the results are heuristic in nature and not fully satisfactory.
Regarding the derivation of an implementation, the method consists of projecting
the index space onto a processor space and scheduling the computations mapped
onto each cell. Projection and scheduling are obtained through algebraic opera-
tions on the dependency vectors that appear in the RDG, including solutions of
linear programming problems. Examples of application of this method are ma-
trix multiplication, two-dimensional filtering, sorting, Gaussian elimination, and
transitive closure [Rao85). This method has also been used for the Faddeev algo-
rithm [Jain87], Kalman filtering [Linc88], algorithms with pivoting [Royc88al, and
fault-tolerant digital filtering [Lev-88]. Moreover, compilation of RIAs described
as high-level language programs is reported in [Atha88].

The work by Rao and Kailath provides a unifying framework for many of the

41

algebraic-based approaches. These techniques are derived from work by Karp,
Miller and Winograd [Karp67]. In this context, Rao and Kailath state that
“Moldovan [Mold82] essentially presupposes that the RIA on hand has a strongly
separating hyperplane” [Rao86] with some added restrictions, so that “there exists
a multiplicative transformation of the index space.” Moreover, Rao and Kailath
state that “Quinton [Quin84] considers a very special sub-class of RIAs, referred
to as uniform recurrent equations. Uniform recurrent equations are RIAs in which
all variables, except for one, are propagating variables.” In other words, according
to Rao and Kailath, their regularized description is more general than that used
by other researchers and consequently its applicability is broader.

3.3.2 Descriptions using high-level languages

General-purpose high-level languages have also been used as the description
tool for design methods. For example, Lam and Mostow (Lam85] use this ap-
proach to model the design process as a series of transformations on a high-level
language description. They rely on human designers to decide which transforma-
tion to apply, instead of aiming towards a fully automated approach. A computer-
aided transformational tool is used to assist designers. The process first performs
software transformations on the description of the algorithm to prepare 1t for sys-
tolic implementation. This initial transformation converts the algorithm into a
representation composed of highly repetitive computations, expressed in terms
of nested loops and begin-end blocks. Consequently, the regularized description
corresponds to this representation, and the method has steps to derive it. Such
a regularization stage includes annotating the algorithm description with state-
ments to indicate how subfunctions should be evaluated, such as “in parailel” or
“in place” (i.e., sequentially within the same unit). The automated software tool
is capable of mapping these statements onto hardware. Subsequently, a sequence
of hardware allocation, scheduling and optimization phases are applied iteratively.
The optimization phase is guided by the user, who selects the transformations to
be applied [Lam85]. Results reported include previously known systolic arrays for
polynomial evaluation, and a system for computing the greatest common divisor
of two polynomials, as indicated in [Fort88].

Chen [Chen86] uses a general-purpose parallel programming language. Trans-
formations are applied to algorithms described in such a language to remove broad-
casting and limit the number of fan-ins and fan-outs. The output from this step
can be regarded as the regularized algorithm. Another phase of transformations

42

incorporates pipelining to the algorithm and attempts to fully utilize hardware
resources. These transformations are algebraic manipulations on expressions in
the parallel programming language, so that the language must be amenable to al-
gebraic modifications. Consequently, the approach is highly algebraic and has the
same capabilities of other schemes based on algebraic expressions. Furthermore,
it only incorporates the implementation issues indicated above, namely broadcast-

ing and fan-in/fan-out. This technique was applied to the dynamic programming
problem.

Chapman et al. [Chap85| use the OCCAM programming language for algorithm
description, simulation and eventually implementation. Although the proposed
approach yields programs which could be used on an array of Transputers, the
objective of their work is the utilization of the OCCAM algebra to aid in the design
process. Chapman et al. claim that an QCCAM program may be interpreted as
an algebraic description of a regular array architecture that implements a given
algorithm. The OCCAM program is transformed and, as long as the algebraic rules
are adhered to, the designer may assume that the program will implement the same
algorithm. However, there is no systematic way to perform those modifications,
nor any mechanism to allow only valid transformations. Moreover, this technique
does not define a regularized algorithm form.

3.3.3 Graph-based descriptions

A different line of research uses graphical notations to describe an algorithm.
Examples include S.Y. Kung’s Signal Flow Graph method [Kung87a), Schwartz and
Barnwell’s method [Schw84], the dataflow approach proposed by Ramakrishnan et
al. [Rama83], and Koren and Silverman’s technique [Kore83|, among others.

3.Y. Kung’s technique [Kung87a, Kung88c| starts by identifying a suitable al-
gorithm and representing it with a dependency graph. Some transformations are
applied on this graph to render it more suitable for later design steps, so that the
resulting graph corresponds to the regularized version of the algorithm. However,
the generation of the graph and the subsequent application of transformations
are performed in ad-hoc manner, though some guidelines have been suggested.
In any case, the process is not systematic, and it is not clear how to determine
which transformations to use. The graph obtained is mapped (i.e., projected)
onto a Signal Flow Graph (SFG), and there may be several SFGs, depending on
the direction of projection. The method does not provide guidelines in select-
ing a specific SFG. Finally, the SFG is realized in terms of an array. Since the

43

choice of dependency graph, direction of projection and schedule greatly affects
performance, Kung identifies two classes of mapping: canonical mapping for ho-
mogeneous (i.e., shift-invariant) dependency graphs, and generalized mapping for
heterogeneous dependency graphs. The method allows removing data broadcasting
by using transmittent data instead, but no other implementation restrictions, such
as limited storage or bandwidth per cell, may be incorporated. Several algorithms
have been studied with this method, including sorting, convolution, AR filter,
matrix multiplication {dense and band), LU-decomposition, QR-decomposition,
Gauss elimination, and transitive closure.

Ramakrishnan et al. [Rama83] proposed a formal model for a linear array of
processing elements, as well as graph representations of programs suitable for exe-
cution on such a model. These graphs are defined as homogeneous graphs, which
are a more limited class of program graphs than general data-flow graphs. In par-
ticular, homogeneous graphs have the same number of edges into and out of every
node, excepting those nodes representing sources or sinks of data (i.e., inputs or
outputs, respectively). This method may only be used to generate linear arrays,
and it has been used for band matrix-vector multiplication, convolution, dynamic
programming and transitive closure, as indicated in [Fort88].

Barnwell and Schwartz [Barn83, Schw84] have proposed another graphical ap-
proach. Their method starts with an algorithm described as a fully-specified flow
graph, that is, a directed graph in which nodes represent operations and edges
represent signal paths. Nodes are also used to represent delays explicitly, when
those delays are part of the algorithm (e.g., digital filters). As a result of targeting
the method to implementations in multiprocessors, this approach is suitable for
arrays with identical cells. Barnwell and Schwartz claim that systolic arrays are
characterized by synchronous data transfers, so that How-graphs are constrained
to have every output from a cell terminated by a delay node (or pipeline regis-
ter). Hence, “the generation of systolic solutions for flow-graphs reduces to the
distribution of delays nodes throughout the flow-graph.” Their method consists of
ad-hoc manipulations of the flow-graphs into systolic forms, using theorems from
graph theory. Results obtained include previously derived and new architectures
for FIR, IIR filters, and Markel-Gray lattice filters [Fort88).

Jover and Kailath [Jove84| proposed a pseudo-graphical approach. They intro-
duced the concept of lines of computation (LOCs), which are useful for determining
whether a given topology is suitable for systolic computations. LOCs are a sum-
mary of an architecture with respect to time and space, and some properties of the
architecture may be inferred from such LOCs. Jover and Kailath’s work includes

the definition of systolic-type arrays, a generalization of systolic arrays which al-
lows different cells not only at the boundary of the array but also inside. Reported
results are three designs for matrix multiplication [Fort88].

3.3.4 Discussion of other methods

The design techniques reviewed in the previous subsections exhibit many im-

portant limitations in the following three aspects, which are discussed in more
detail below:

* obtaining the regularized representation of an algorithm

® derivation of arrays (incorporating implementation restrictions and selecting
suitable transformations).

¢ simplicity

Most methods do not provide tools to obtain the corresponding regularized rep-
resentation of an algorithm, but rather assume that this representation is already
available. For some simple algorithms, such as matrix multiplication, obtaining
the regularized version (i-e., a uniform recurrence equation, a regular iterative
algorithm or a dependency graph) is straightforward, so that the lack of a sys-
tematic procedure is not an issue. However, simple algorithms are relatively few;
most matrix algorithms of importance (i.e., LU-decomposition, QR-decomposition,
transitive closure, Gaussian elimination, Faddeev algorithm, among others) are not
easily described in those regularized forms. Moreover, deriving the regularized form
often adds complexity to the algorithm (in terms of additional operations that did
not exist in the original version}. Specific examples of these problems are described
in detail in Chapter 7, where we compare Rao’s method and S.Y. Kung’s approach
with the one developed in this dissertation.

Regarding the derivation of arrays, methods reviewed in this section are ori-
ented towards the design of systolic arrays, that is, arrays of cells with no local
storage. Moreover, some of these methods assume all identical cells in an array.
Consequently, these methods have predefined the characteristics of cells and there-
fore are unable to incorporate other implementation constraints or restrictions in
the design, such as type of cells, I/O bandwidth, and number of cells. In addition,
these methods are unable to analyze tradeoffs among implementation parameters
such as local storage and communication bandwidth of processing elements, and
in many cases produce arrays with suboptimal cost and/or performance.

45

The last important aspect of transformational systems is simplicity in using
the methods and guidance in selecting suitable transformations. Several of the
techniques reviewed hide important properties of algorithms and implementations,
in many cases leading to inadequate conclusions regarding features of an algorithm
and their suitability for a particular array. That 1s, the tools used for these meth-
ods are not adequate to convey the characteristics of an algorithm that are relevant
for an implementation. A significant example is the use of algebraic expressions
that allow applying powerful transformations to an algorithm. and as a result have
been considered attractive alternatives to automate the design of arrays. However,
the complexity of such an approach obscures the process. In his pioneering work
on systolic arrays, H.T. Kung [Kung79)] concluded that “LU-decomposition, tran-
sitive closure and matrix multiplication are all defined by recurrences of the same
‘type.” Thus, it is not coincidental that they are solved by similar algorithms using
hexagonal arrays.” A similar statement was made by Moldovan in [Moldg3], in
the description of his algebraic design approach. However, it has been shown that
the algorithms for these computations have quite different dependency structures,
so that they are mapped efficiently only onto different arrays {More87, More88c).

3.3.5 Methods for partitioning

As stated earlier, most methods reviewed in this chapter are suitable only for
the design of algorithm-specific arrays for fixed-size problems, and do not con-
sider partitioning. Only a few methods use the partitioning techniques described
in Section 2.6 in a systematic manner. Among those that consider them are the
SFG method [Kung88c| (pp.374-382), Moldovan and Fortes’s technique [Mold86},
and the approach by Navarro et. al [Nava87, Nava86b, Nava86a). Excepting the
technique by Navarro et al. the others are extensions to methods for the de-
sign of arrays for fixed-size problems; as discussed below, these extensions exhibit
limitations.

Partitioning in 5.Y, Kung’s method uses either coalescing or cut-and-pile (LSGP
and LPGS respectively, in his notation), and requires separate steps for spatial
mapping and scheduling. Such an approach first derives a large array, and then
maps it onto a small array (i.e., it follows an indirect partitioning strategy). How-
ever, as we stated in Section 2.6, an indirect design of an array for partitioned
execution is less convenient than direct partitioning.

Moldovan and Fortes' partitioning technique is an extension of their method
for the design of arrays for fixed-size data. As stated earlier, Moldovan and Fortes

46

use an algebraic approach. This method also realizes the algorithm as a large
(i.e., virtual) array, which is later mapped onto a small array by partitioning it
into bands that are processed successtvely (i.e., cut-and-pile). Consequently, as in
Kung’s scheme, this method cannot benefit from the properties of an algorithm
which are suitable for direct partitioning.

Navarro et al. transform an algorithm with large-size dense matrices into an
algorithm with band matrices and compute the resulting algorithm in an array
that matches the size of the band. The original algorithm is decomposed into
subalgorithms that are chained for execution in the target array. Although the
approach is interesting, the decomposition, if possible at all, is dependent on the
algorithm; as a result, this technique is not sufficiently general.

3.3.6 Mapping methods for class-specific arrays

A number of class-specific arrays have been recently proposed or built. Among
these are Warp {Anna87], Esprit {Groo87], SLAPP [Drak87] and VATA [Syma88].
These arrays are intended to solve any of a class of algorithms. Out of these
four architectures, only Warp has reported a systematic mechanism to compile
algorithms for execution on it. According to the results published, SLAPP and
Esprit have used ad-hoc mapping approaches. VATA is still under development,
so it is not yet known what mapping approach it will use.

Warp [Kung88b] is a linear array of processing elements, able to implement dif-
ferent models of computation. Among them, a technique referred to as the domain
parallel model of computation has been described in [Tsen88). Mapping algorithms
onto Warp according to that model of computation requires the user to specify
how elements of a matrix are evenly allocated to cells (i.e., by rows or columns).
The remaining mapping steps are automatically performed by a compiler. This
approach does partitioning by coalescing, because the entire matrix is mapped
onto the array at once. Moreover, Warp cells have large memory, which allows
implementing such a partitioning technique. Consequently, all data elements and
operations associated to one row (or column) of a matrix are allocated to the same
processing element. The approach has the drawback that, for a large majority of
matrix computations, the number of operations associated with a row (or column)
of a matrix is not constant. As a result, the computational load is not evenly
distributed throughout the array, leading to under-utilization of cells. Results re-
ported in [Tsen88] indicate that, on the average, only about 33% utilization is
achieved (i.e., 33 [Mflops] are delivered out of 100 [Mflops] peak capacity).

47

3.4 Computer-aided design tools

For some of the methods proposed in the literature, the issue of devising
computer-aided tools that support those methods has been addressed. Among the
tools built for this purpose are VACS [Kung88d, Kung89], PRESAGE [Dong88a),
SYSTARS [Omtz88], DIASTOL {Fris86], ADVIS [Mold87], SDEF [Engs87|, and
HIFI [Anne88|. Poker {Snyd84], a more general tool than those cited above, has
also been considered suitable for programming systolic arrays. We briefly review
some of these tools in the paragraphs below.

SYSTARS

SYSTARS {Omtz88], developed at Delft University, employs a graphical ap-
proach for the analysis and synthesis of arrays for regular iterative algorithms
(RIA, [Ra088]). SYSTARS displays the dependency graph of an RIA as a three-
dimensional picture that can be rotated and zoomed-in by the user. Moreover, it
allows investigating the properties of space-time mappings for fixed-size data and
partitioned problems.

A SYSTARS design session starts by specifying a regular iterative algorithm
in the form of a Reduced Dependency Graph (RDG, {Karp67]). SYSTARS uses
the RDG to construct a multi-dimensional dependency graph, with one dimension
per index. Nodes in this graph specify functional relationships between input and
output variables, while directed edges between nodes represent the variables. A
space-time mapping of the dependency graph is obtained by applying a linear
transformation on the index space and the data dependencies of the RIA. Such
space-time transformations lead to arrays for fixed-sized data. An additional design
task is to partition such an array for large problems to fit on smaller size arrays.
This partitioning is accomplished using a coalescing technique with an adaptive
clustering algorithm.

The applicability of SYSTARS is limited by several factors. First, SYSTARS
can only be used on RIAs that have three indices, so that they can be represented
by three-dimensional dependency graphs. Moreover, the selection of the scheduling
vector, which requires solving an integer programming problem, has not yet been
implemented. As a result, this vector must be given by the user, although the
system checks that the vector is a valid one. In addition, the partitioning approach
followed by SYSTARS is indirect, because it first derives an array for large-size data

48

and then partitions that array to fit on a smaller one.

DIASTOL

DIASTOL [Fris86], developed in France, is based on the design method pro-
posed by Quinton [Quin84]. This tool combines the design of the topological prop-
erties of an array with the design of the cells composing such an array. The design
process starts from the equations of the algorithm, which are transformed within
the system until they become uniform recurrent equations (UREs). The system
then helps the designer to devise arrays by using a dependency mapping procedure
that results in an abstract description of the design. This abstract specification
is used as the starting point for the functional design of cells, including pipelined,
skewed or bit-serial hardware operators. Timing and allocation functions allow the
automatic computation of delays introduced by operators and the timing of the
data (at the bit level).

The main limitations of this tool result from its suitability only for those al-
gorithms that can be expressed as UREs, whose characteristics were discussed in
Section 3.3.1, and the lack of support to perform partitioning of algorithms.

PRESAGE

PRESAGE [Dong88a] was developed at Philips Research Laboratory in Bel-
gium. This is a tool for the development of systolic circuits also based on the
method for uniform recurrence equations proposed by Quinton [Quin84]. Given a
set of uniform recurrences, PRESAGE finds the linear timing and linear allocation
functions that minimize the number of time steps and the number of processing
elements in a system. Depending on the specification, pure or semi-systolic circuit
designs are generated. Specifications on the connections are used to derive cir-
cuits with unidirectional data flow. When two directions of pipelining are allowed,
PRESAGE finds the one that minimizes the cost of the system. The heart of the
tool is an algorithm that solves some specific integer programming problems.

Similar to DIASTOL, the main limitation of PRESAGE is its suitability only
for uniform recurrent equations.

49

ADVIS

ADVIS [Mold87], developed at University of Southern California, is a program
that helps to transform a sequential algorithm into a parallel form suitable for
implementation as an array. It considers both fixed-size data and partitioned
problems.

ADVIS is based on the method proposed by Moldovan and Fortes [Mold83,
Mold86]. Such a method uses an algorithm described with nested loops as the
starting point. Dependencies among the variables composing the body of these
loops are described as difference vectors of index points. These vectors, used as
an original representation of the algorithm, are transformed into another repre-
sentation where one index indicates time and the remaining indices are used to
meet the space restrictions of an implementation. ADVIS aids in the complex task
of selecting this transformation. The tool finds many valid transformations, from
which a designer chooses the one that best fits the needs of an implementation.
This selection is used in the remaining steps of the method.

The main limitations of ADVIS result from the underlying mapping method,
as discussed in Section 3.3.1.

SDEF

SDEF [Engs87] is a programming environment for describing systolic algorithms
developed at the University of California in Santa Barbara. It includes a notation
for expressing the algorithms, a translator for the notation, and a systolic array
simulator. SDEF accepts a special class of computations referred to as atomic
systolic computations. Such computations are described by a set of four properties
(S,D,E and F). Programming in SDEF is based on space-time representations
of systolic computations [Capp84]. This tool is oriented towards programmable
arrays, so that its capabilities are similar to those of Poker (described later). The
main difference is that SDEF uses a higher level notation for programming systolic
arrays instead of the message-based programming available in Poker. However,
there is no support for the mapping process. As indicated in [Engs87], SDEF
can be used to express the results of the analysis, synthesis, and optimizations
performed by other tools.

50

VACS

VACS [Kung88d, Kung89] is a tool that implements the design method pro-
posed by S.Y. Kung {Kung87a, Kung88c]. This tool accepts the description of
an algorithm in terms of a dependency graph, and generates array structures for
such an algorithm. The system is interactive and graphics-based. It allows the
evaluation of several optimality criteria and the verification of design correctness
by simulation. As a result, a designer can see the dependency graph displayed
on a screen, can modify and simulate the graph, and even evaluate the numeric
performance of an array with a finite word length.

The main limitations of VACS arise from the underlying method, as discussed
in Section 3.3.3.

The Poker programming environment

Poker [Snyd84] is a general programming environment for parallel computers
without shared memory. Although not specifically designed for systolic arrays, it
has been described as a “system exhibiting many of the characteristics that one
would expect of a programming environment specially built for systolic computa-
tion” [Snyd86]. A program written using Poker consists of five components that
describe the communication structure of the problem, the processes running on the
different cells, and I/O to cells and to array. Using an interactive interface, a user
specifies each of these components, which are stored in a database, and accesses
them through a set of views. Moreover, Poker provides debugging facilities that
allow a variety of ways to control the running of a program, such as single-step
and checkpoints.

As stated in [Snyd86], Poker exhibits many characteristics desirable in a pro-
gramming environment. However, Poker has no support for the process of mapping
an algorithm onto an array. It simply allows programming the operations that are
executed in a cell, once it has been determined what those operations are.

3.5 Algorithm dependencies in methods for the design of arrays

As described in Section 3.3, transformational methods to map matrix algo-
rithms onto arrays have used various principles to achieve their purposes: some
use dependencies in the algorithm, some rely on parameters such as velocities of

51

data flow, data distributions and periods of computations, some use an algebra for
systolic array design.

Using dependencies as a vehicle to perform transformations seems more advan-
tageous than other approaches, because these dependencies describe the fine-grain
parallelism available and dictate the communication requirements. Dependencies
have been applied successfully to formulate and implement compiler optimiza-
tions [Kuck81], and to drive the dataflow model of computation [Ager82].

An attractive property of algorithm dependencies in the design of arrays is their
suitability for obtaining a regularized description of an algorithm, and for deriving
arrays based on such a description, paying attention to the target architecture (i.e.,
incorporating constraints/restrictions arising from the implementation). However,
the effective use of dependencies for these purposes depends heavily on how those
dependencies are expressed and manipulated, as we discuss below.

There are two ways to describe dependencies:

Index-dependencies are described by relations in the index space of an algo-
rithm. That is, the computation of each instance of a variable is associated
with a point in a multi-dimensional space defined by the indices of the al-
gorithm; for such purposes, all variables must have the same number of
indices. Dependencies among variables are related to the distance between
those variables in the index space, and are represented as expressions with
those indices. This type of dependencies is illustrated in Figure 3.4a. Ex-
amples are methods for regular iterative algorithms (RIAs) [Rao88], uniform
recurrent equations (UREs) [Quin84], nested loop structures [Mold83], and
affine recurrence equations [Yaac88b).

Index-dependencies are associated to specific types of algorithms whose struc-
tures are identical at every point in the index space. Consequently, these
dependencies may be represented by a Reduced Dependency Graph (RDG).
Nodes in such a graph correspond to variables, while edges represent the
dependencies among variables. Edges are tagged with a dependency vector
which corresponds to the difference among the indices of variables that ap-
pear in an expression. As an example, Figure 3.4b depicts the RDG for the
transitive closure algorithm expressed as a RIA [Rao85].

Describing dependencies with index expressions has limited capabilities with
respect to admissible algorithms. For example, UREs are algorithms ex-
pressed by a system of equations where one variable is computed as z;(z) =

52

i j (i-1,.k-2.1-1)

1
0
2
: k 1 (k)

(a) Index-space and dependencies

(b) Reduced dependency graph for transitive closure

Figure 3.4: Index-dependencies

f(@i(z — dy),29(z — dy), ..., z2,(z - dy)) (where z and d;, j = 1,...,p are
vectors of indices) and all remaining z,(2),...,%i_1, Tit1,. . . , Zp(2) are just
data transfers (i.e., zx(z) = Ti(z — di)). RIAs, nested loop structures, and
affine recurrence equations are more general than UREs because they allow
more than one computed variable, but they still have important limitations
on admissible algorithms, as will be discussed in more detail in Chapter 7.

Data-dependencies are described by a graph and are obtained by following the
flow of data in an algorithm (such as a dataflow graph). Figure 3.5 illustrates
this description of dependencies. Examples using this approach are the Signal
Flow Graph method described in [Kung88c] and the method proposed in the
following chapters of this dissertation.

The graph used to describe data-dependencies is an explicit graph (EDG),
that is, a graph where there is one node to represent each operation and each
edge corresponds to a data dependency among two operations. Figure 3.5b
depicts the EDG for computing the transitive closure algorithm for a problem
of size n = 3.

53

X, X X _ X X X X X X
11 ﬂz ﬂ3 21 22 23 31 32 33
}

‘_

ww0n e el

C ﬁ;ﬁi HEEZH
H "'I-TrTl]'ll ppls 'ﬁflg‘l’

x* x* x* x* x*t xt x+ xt x+
i1 12 13 21 22 23 31 32 33

) (b) Explicit dependency graph
(a) Data-dependencies for transitive closure

Figure 3.5: Data-dependencies

3.6 Conclusions regarding methods for the design of arrays

In this chapter, we have reviewed characteristics of methods for the design of
arrays. It has been stated previously [Fort88] that the most convenient approach
for this purpose is a transformational paradigm, in which an algorithm is succes-
sively transformed until reaching a form suitable for implementation. We have
shown that such a transformational process consists of two stages: the first derives
a regularized version of an algorithm, while the second uses the resuiting form
to derive arrays. It has been argued in this chapter that most existing methods
provide insufficient tools, if any, to obtain the regularized representation. In fact,
most methods assume that the desired representation is available, which is usually
not the case for many matrix algorithms of interest. Moreover, it has been argued
that the existing design techniques make many assumptions regarding the char-
acteristics of cells and arrays, and that such techniques are unable to incorporate
important implementation restrictions or perform tradeoffs among implementa-
tion parameters. Consequently, one may conclude that previously proposed design
methods are not sufficient to accomplish the tasks required in the design of arrays.

54

We have argued that a successful method should use dependencies in algo-
rithms as the basis for the transformational process. Moreover, performing these
transformations requires strong capabilities which must cover both stages in a de-
sign, namely regularization and derivation of arrays. That is, desired capabilities
in a method must comprise algorithm, transformations and architecture. These
capabilities allow a design technique to take implementation restrictions into ac-
count, to perform tradeoffs among implementation parameters, and to preserve
the dependencies in the algorithm, while paying attention to performance and cost
measures.

Moreover, a successful design method should fulfill other requirements stated
earlier, namely simplicity, generality, suttability for fixed-size and partitioned prob-
lems, and the realization and mapping of algorithms onto arrays. The combination
of these factors leads to a design system that provides an integrated and unified
framework for algorithm, architecture, and transformations. Such a framework has
the potential of being a successful environment for realizing and mapping arrays
for matrix computations, without the limitations that have characterized earlier
methods.

55

36

CHAPTER 4

Description of the graph-based method

We describe now our data-dependency graph-based method for the design of
application-specific arrays for matrix computations, and illustrate it using the tri-
angularization algorithm by Givens' rotations. A formalization of this method is
given in Chapter 5. This technique is oriented towards the execution of multiple-
instance fixed-size data and partitioned matrix algorithms. Since application-
specific implementations are normally devised for the successive execution of the
same algorithm with different data sets, we believe that this orientation is proper.

4.1 Assumptions regarding matrix algorithms and arrays

The following subsections state the assumptions regarding the matrix algo-
rithms, the operators and the arrays used in our method.

4.1.1 Matrix algorithms

As shown in Figure 4.1, matrix algorithms suitable for our method! are de-
scribed recursively by an outermost loop and a loop-body that contains scalar,
vector and matrix operators, and other matrix algorithms. A sequence of algo-
rithms as those shown in Figure 4.1 is also a matrix algorithm. Operators in a
matrix algorithm have the following characteristics:

Scalar (or primitive) operators are basic unary, binary or ternary operations
whose computation time is data independent (such as add, multiply, rota-
tion, sin). Consequently, a scalar operator may have up to three operands.
Moreover, a scalar operator may produce up to two outputs. (In practice,
scalar operators produce a single result, excepting cases such as rotation of
a pair of elements which produces two outputs.)

'A formal description of this canonical form of matrix algorithms is given in Chapter 5.

57

Matrix algorithm:

/ Scalar operators
Uecr.or operators I

Figure 4.1: The canonical form of a matrix algorithm

Fori=lton
tgg; Matrix operators
Matrix algorithms

(a) Vector operator

S
' S L

(b) Matrix operator

oS
Lof

Figure 4.2: Dependency graphs of vector and matrix operators

Vector operators have up to two vector operands and produce up to two vector
results. The same primitive operator is applied to each element of the vector
operands to produce the vector results. An additional scalar operand may
be common (i.e., broadcasted) to all the instances of the primitive operator.

The dependency graph of a vector operator is shown in Figure 4.2a.

Matrix operators have one matrix operand, a vector operand common to rows
of the matrix operand, and a second vector operand common to columns of
the matrix operand. A matrix operator produces a matrix result. The same
primitive operator is applied to each element of the matrix operand (and
associated elements from the vector operands) to produce the matrix result.

Figure 4.2b depicts the dependency graph of a matrix operator.

The form of a matrix algorithm above does not have any requirements on the
way that variables are referenced, that is, on how loop indices are used to access
elements of matrices and vectors. Two types of references are usually considered:

58

(1) uniform ezpressions and (2) affine ezpressions. Uniform expressions are of the
form (i—io) (i.e., an index plus/minus a constant), while affine expressions have the
more general form (i + j — ko) (i.e., linear combination of indices and a constant).
Uniform expressions are the more common type of references and appear in most
matrix algorithms. Nevertheless, the method allows both types of references.?

In addition to input data, the output from one operator in a matrix algorithm
may also be used as input for another operator. The limitations in number of
inputs and outputs to/from the operators arises from the objective of realizing
them in mesh arrays. Since these arrays have nearest-neighbor connections (i.e.,
no broadcasting) and external I/O only at the boundaries, they are suitable for
applications where data elements flow through cells while being used for different
operations. Consequently, realizing for example a matrix operator in a mesh array
requires to eliminate broadcasting; this is achieved by transferring broadcasted
data through the cells (i.e., transmittent data), so that only one independent input
per cell is allowed (an element of the matrix operand, which is stored in the cell).
Similar restrictions exist for vector operators. These aspects will be discussed in
more detail as part of the method.

The properties of matrix and vector operators given above exclude operating
on two matrices or on three vectors (i.e., adding two matrices or rotating elements
of two vectors by corresponding angles contained in a third vector). These types of
operators are not suitable for implementation in arrays, because they do not reuse
input data. For our purposes, such cases correspond to sets of scalar operations.

From the discussion above, we observe that vector and matrix operators con-
sist of primitive operations that are “tied” together by the common operand(s).
Such operand(s) correspond to broadcasting data throughout the elements of the
vector/matrix (in the case of operating on the elements of two vectors with no
common operand, one may assume the existence of a “null” broadcasted value).

4.1.2 Cells and arrays

The following assumptions relate to characteristics of cells and arrays:

?Using uniform or affine expressions to access variables does not imply that the algorithm
must be a uniform or an affine system of equations, as required by other methods. The form of
admissible algorithms given here is more general than those restricted cases.

59

Figure 4.3: Mesh-connected array

e Arrays are either linear or two-dimensional mesh-connected structures, with
external I/O from a host only at the boundaries of the array. Cells have two
input and two output ports which are used to connect them in mesh struc-
tures. These arrays have only local communications (i.e., no capabilities for
broadcasting or routing of data through cells without using it). Moreover,
flow of data in these arrays is unidirectional, without data counterflow. Fig-
ure 4.3 depicts an array according to these characteristics.

¢ Cells are either systolic, pseudo-systolic, or local-access, as presented in
Chapter 2.

e The model of computation consists of synchronized flow of data through
cells, with operations performed in each cell. All operations have the same
computation time. If cells are pipelined, the stage time is the same for all op-
erations. Consequently, data flow rate and computation rate are determined
by a basic time-step.

* At each time-step, a cell reads up to two operands (from input ports or local
storage)® and another operand from within the cell if required, performs an
operation (or starts the operation if the cell is pipelined), and delivers results
to output ports, local storage and/or for internal reuse.

* At each time-step, a cell produces up to two outputs for neighbor cells. Such
outputs may be results computed within the cell or transmittent data.

From the discussion above, realizing an algorithm-specific array requires to:

3There may be occasions when the three operands must be brought into a cell from external
sources. In such cases, one of the two ports is used for two operands. However, this situation is not
frequent (once every O(n) time steps), so that using a single port for two purposes imposes only
a minor performance degradation on the array. Consequently, unless explicitly stated otherwise,
we ignore this fact in the rest of this chapter.

60

e specify the characteristics of cells, such as size of local storage, bandwidth,
operations performed, and number and type of functional units.

¢ specify the array topology and the number of cells.

e specify the flow of up to three data elements per operation.

¢ schedule the operations throughout the entire array.

In contrast, mapping a matrix algorithm onto a class-specific array requires
only to

® specify the flow of data
e schedule the operations on the target array

4.2 Summary of the data-dependency graph-based design approach

A transformational design method based on the dependencies of algorithms
1s proposed in this dissertation. Starting from a fully-parallel data-dependency
graph (FPG), in which nodes represent operations and edges correspond to data
dependencies, the method applies transformations to the graph to incorporate im-
plementation restrictions and handle design issues. Such transformations produce
another graph suitable for direct realization as ag algorithm-specific array or for
mapping onto a class-specific array.

We suggest using a fully-parallel data-dependency graph as the description
tool because this notation exhibits the intrinsic features of an algorithm. Such
a graph could be used to derive an implementation by assigning each node to a
different processing element (PE), and by adding delay registers to synchronize
the arrival of data to PEs. The resulting structure (a pipelined realization of the
graph) exhibits minimum delay (determined by the longest path in the graph)
and optimal throughput (for multiple-instance computations), but might require
non-neighbor and varying distance connections, large I/O bandwidth, and large
number of units. The method presented in this chapter deals with these problems,
while preserving the features inherent in the data-dependency graph.

As stated in Chapter 3, a design process consists of two stages: regularization
and derivation of arrays. These two stages for our method, and the steps within
them, are depicted in the high-level description shown in Figure 4.4, The method
1s summarized below, where we also indicate the suitability for automation of the
different steps involved. Each step is described in detail afterwards.

61

Matrix
algorithm
Q| O
Fully-parallel Q_&%&
data-dependency
graph
3D Multi-mesh
=3 | data-dependency
graph

Fixed-size
data

Partitioned
execution

Y

l Mapping

§ G-graph

ie.

0 g E G-graph

Y

Y

Y

3

i3

&
O

&

E

Regularization

L i

Derivation
of arrays

Figure 4.4: Data-dependency graph-based design method

62

4.2.1 The regularization stage

The regularization stage starts with the fully-parallel data-dependency graph
and produces a three-dimensional graph that we call a multi-mesh dependency
graph (MMG). This MMG is a unidirectional graph with nearest-neighbor depen-
dencies, edges along axes of the three-dimensional space, and nodes at integer
values of the axes. This regularization stage is performed as follows:

1. Draw the fully-parallel data-dependency graph (FPG) of the matrix algo-
rithm. Such a graph is obtained by tracing the execution of the algorithm
(i.e., outer-loop and loop-body). That is, symbolically execute the algorithm
tracking which variables are used and when, and allocate operations to nodes
and data references to edges of a graph.

2. Transform the fully-parallel data-dependency graph into a three-dimensional
multi-mesh graph (MMG). To achieve this objective, perform transforma-
tions on the FPG to remove properties that are not allowed in the MMG,
namely broadcasting, bidirectional flow of data, and non-regular dependen-
cies. The set of transformations will be presented later.

These two steps could be performed automatically. The resulting MMG is used
in the second stage of the method to realize algorithm-specific arrays for fixed-size
data and partitioned problems, or to map algorithms onto class-specific arrays.

It should be noted that some researchers have regarded the dependency graph
of a matrix algorithm as a multi-dimensional instead of a three-dimensional graph.
Such a conclusion has been obtained from representing in a graph the indez-
dependencies in the algorithm. That is, the dimensionality of the graph has been
defined by the number of indices that appear in an algorithm. In that approach, ev-
ery variable is required to have all indices, so that each instance of a variable is asso-
ciated with a point in the multi-dimensional index space [Ra088, Quin84, Mold83|.
In contrast, the dimensionality of a data-dependency graph is defined by the num-
ber of inputs and outputs to/from primitive nodes that compose the graph, and
matrix algorithms are characterized by primitive operators that have at most
three operands. An extensive comparison between data-dependencies and index-
dependencies, and their suitability for a design method, is given in Chapter 7.

63

4.2.2 The derivation of arrays

The second stage is as follows:

1. Collapse the MMG onto a two-dimensional graph (i.e., a G-graph,) by group-
ing primitive nodes onto G-nodes.

As is described later, this grouping determines properties of cells such as local
storage, comnmunication bandwidth, and cell pipelining. Moreover, group-
ing is driven by the target implementation (i.e., algorithm-specific array for
fixed-size data, partitioned implementation, or mapping onto a class-specific
array). Consequently, this step allows performing optimization of specific
measures based on implementation constraints.

2. Schedule the order of execution of the primitive operations that compose a

G-node. As is shown later, this scheduling impacts local storage and cell
bandwidth,

3. For problems with fized-size data on two-dimensional structures, realize the
G-graph obtained in (1) as an array by allocating each G-node to a different
PE and each edge to a different communication link.

For problems with fized-size data on linear arrays, apply cut-and-pile to the
G-graph obtained in (1). Each partition corresponds to a complete horizontal
or vertical path of the G-graph. Nodes in a partition (i.e., a cut) are executed
concurrently, while different partitions are scheduled (i.e., piled) for pipelined
execution in the array. Each G-node in a cut is allocated to a different PE
and each edge to a different communication link.

For partitioned problems:

{a) Divide (i.e., cut) the G-graph obtained in (1) into sets of neighbor G-
nodes { G-sets), where each G-set has as many nodes as there are cells in
the array. Nodes in a G-set are structured in linear or two-dimensional
manner, depending on the desired array topology, and are executed
concurrently in the array.

(b) Schedule (i.e., pile) G-sets for execution. G-sets are executed in over-
lapped (pipelined) manner and data flows between G-sets.

64

For mapping onto class-specific arrays:

(a) Divide (i.e., cut) the G-graph obtained ip (1) into sets of neighbor
G-nodes (G-sets) whose characteristics (i.e., number and topology of
nodes) are determined by characteristics of the specific cells and array.

(b) Schedule (i.e., pile) G-sets for execution.

Most of the steps, both in the regularization stage and in the derivation of
arrays, could be performed automatically. Exceptions are the selection of G-nodes
and the mapping onto class-specific arrays, which would require input from a
designer. These steps depend on the characteristics and restrictions of the im-

plementation, so they are less amenable for complete automation. However, such
steps could be aided by a CAD tool.

4.2.3 The performance and cost measures

To determine the performance of arrays derived with the method outlined

above, we use the following measures (where N is the number of operations in
the algorithm):

T Throughput
K Number of cells
U Utilization (U=N/K Y
Ao Input/output bandwidth
Cew Cell bandwidth
Cw Storage per cell

These measures are computed with information obtained from the dependency
graphs, both the original FPG and the transformed graphs. Moreover, transfor-
mations used in the method affect such measures, so that one can study the impact
of a particular transformation on cost and performance of the resulting array while
carrying out the transformation.

In the following sections, we discuss each step of this method in detail.

65

For rfrom 1 ton—1

begin
For i from (r+ 1) ton
begin
#.; = — arctan (f:f) v e = \Jak + a2,
For j from (r+1) ton
begin
[a,; | | cosb,; —sind; Qrj
| ai; J - [sinf,; cosé,;] I:a,-,-]
end
b, | _ | cos8,; —sinb,; b,
[bg | [sinf,; cosé,;] [b;]
end

Figure 4.5: The triangularization algorithm by Givens’ rotations

4.3 Obtaining the fully-parallel data-dependency graph

As indicated in Section 4.1, the input to the method is a matrix algorithm
described by an outermost loop and a loop-body consisting of scalar, vector and
matrix operators. For example, Figure 4.5 depicts the triangularization algorithm
by Givens’ rotations, which fulfills the admissible form. Note that an algorithm
expressed by other means can be easily transformed into this type of description.?

The fully-parallel data-dependency graph (FPG) is obtained from a symbolic
execution of the algorithm, which generates an ordered list of expressions. For
example, Figure 4.6 depicts partially the list of expressions from symbolic execu-
tion of the triangularization algorithm shown in Figure 4.5, for a problem of size
n = 4. This list contains, implicitly, the dependencies between operations that
allow extracting the existing parallelism. Such a list is used to draw a graph where
each operator is allocated to a node and references to variables are allocated to
edges. This graph, which is equivalent to an unfolded datafiow graph, is a complete
and accurate representation of the algorithm because there is a one-to-one corre-
spondence between operators and nodes, and between dependencies and edges. We

4Strictly speaking, one could derive the fully-paralle] data-dependency graph directly from a
different algorithm description, without necessarily first transforming such an algorithm into a
set of loops.

66

912 = — arcta,n(agl/an) , A1 = wa%l + a%l

@12 = cos f12a12 — sinfiaagy , @ = sinfyza12 + cos fyza90
dyz = COS8 912(113 — sin 912023 y Q23 = sin 012013 + cos 912(123
a14 = cos f12a14 — sinb2azy , azq = sinfiyar4 + cosbyzaz,
by = cos b12b; —sinfiab; , by = sinO19by + cos 8125,

813 = — arctan(agl/au) , Q11 = \/G%l + afl

a1z = cos Bh3a1y — sinfyzase , asz = sinfyzaq + cosby3ase
i3 = CO8 913(.113 — sin 013a33 , 33 = sin 613(113 + Cos 513(133
@14 = c0s B13a14 — sinBy3a34 , aaq = sinfi3a14 + cosfy3a34
bl = 08 913b1 — sin 91353 ’ b3 = sin 91361 + cos 913b3

—_ — a2
923 = - arcta.n(agg/agz) y Q22 = y/aQ3q + a%2

a3 = COS 923&23 —sin 923(133 , a3z = sin 923023 -+ cos 923033
a4 = COS 923(124 —sin 623634 , Q34 = sin 823(124 + cos 023034
b1 = CO08 92361 — sin 823[)2 ; bz = sin 923b1 + cos 92352

Figure 4.6: Symbolic evaluation of the triangularization algorithm

refer to this graph as a fully-paralle! data-dependency graph (FPG), which uniquely
describes the algorithm. Moreover, this graph corresponds to a single assignment
representation of the algorithm.

To aid drawing the FPG, one can exploit the structure available within the
algorithm in the form of vector and matrix operators. Vector operators are drawn
as linear sets of nodes, while matrix operators correspond to two-dimensional sets
of nodes, as illustrated in Figure 4.2. Moreover, the FPG consists of a sequence of
subgraphs with similar structure, where each subgraph corresponds to one iteration
of the outer loop. These aspects are illustrated in Figure 4.7, which shows the
structure obtained in the FPG of the triangularization algorithm for a 4 by 4
matrix. In this case, each subgraph is composed of scalar and vector operations
that are dependent. For example, at the top of the first subgraph there is one
scalar operation that computes a rotation angle, and one vector operation that
rotates the first two rows of A and 5. Then, a new rotation angle is computed
using data from row 3 and the updated row 1, and these two rows are rotated.
Such a process is repeated throughout the graph.

67

- Yector
operator
r=1
r=2
Wy
YYYVY Yy YYYy
Rotation r=3
angle - - =
g T3y Wy 31
O Rotation 53
u34 u3s d3
ey 'Y r=4
uss ds

Figure 4.7: The FPG of the triangularization algorithm by Givens’ rotations

68

Alleged drawbacks of FPGs for matrix algorithms are the complexity in their
derivation and the size of such graphs (usually O(n®)). However, as stated above,
an FPG can be easily derived by symbolic execution of an algorithm. Moreover,
because of the regularity of matrix algorithms, an FPG is derived for a small-size
problem (i.e., a 3 by 3 to a 6 by 6 matrix) and the results extended to larger
problems.

A formal procedure to derive an FPG is described in Chapter 5.

4.4 Obtaining the multi-mesh data-dependency graph
A multi-mesh data-dependency graph (MMG) has the following characteristics:

e Nodes only at points defined by integer values in a three-dimensional space.

¢ Unidirectional dependencies along axes of the three-dimensional space.

¢ Dependencies only between nearest-neighbor nodes (i.e., all edges have length
one).

There are two types of MMGs: complete (CMMG) and incomplete (IMMG).
A CMMG, as depicted in Figure 4.8a, has the structure of a cube because it is
composed of meshes that have the same number of nodes. For a problem of size
n, such a CMMG corresponds to an algorithm that has the maximum number
of operations (n®) and dependencies. In contrast, an IMMG has some nodes and
edges missing at the outer portions of the graph. We restrict the number of missing
nodes in an IMMG to monotonically increase or decrease along axes of the three-

dimensional space. Figure 4.8b gives examples of IMMGs. In what follows, we use
MMG to refer to both CMMG and IMMG.

Matrix algorithms always exhibit transmittent (i.e., broadcasted) data. As a
convention, and unless stated otherwise, we assume that this transmittent data
flows along the X-axis in an MMG.

We address now transforming an FPG into an MMG. In Chapter 5 we show that
the FPG of a set of scalar operations, with up to three operands and three outputs
each, is always representable in a three-dimensional space with unidirectional flow
of data along axes of the space, and computing nodes distributed throughout the
space with non-neighbor dependencies. Such a graph is transformed into an MMG
by adding delay nodes between non-neighbor nodes. However, the resulting MMG

69

() Complete multi-mesh {b) Incomplete multi-mesh
data-dependency graph (CMMG) data-dependency graphs (IMMG)

Figure 4.8: Examples of multi-mesh data-dependency graphs

has many delay nodes connecting computing nodes that are located far apart in
the space, so that it is not suitable for efficient implementation in an array. In
contrast, the structure of matrix and vector operators in matrix algorithms allows
obtaining MMGs with most computing nodes at nearest-neighbor locations in the
three-dimensional space and few delay nodes, as described in Chapter 5.

Transforming an FPG into an MMG (i.e., obtaining a regular description of an
algorithm) consists of:

¢ Removing from the FPG those characteristics that are not allowed in the
MMG. These are

e broadcasting
bidirectional flow of data
¢ non-regular dependencies

¢ non-nearest neighbor dependencies

¢ Drawing the resulting graph as a three-dimensional structure.

Removing undesirable properties and drawing the graph in three dimensions
are aided by the visual (i.e., graph) representation of the algorithm. For example,
upon visually detecting in the FPG an undesirable characteristic, a snitable trans-
formation is applied to the graph to remove it. Such transformations are formally
defined in Chapter 5. Moreover, drawing the graph as a three-dimensional struc-
ture is achieved by allocating each iteration of the outer loop in the algorithm to
one plane (or three-dimensional subgraph) in the space, and the different iterations
are allocated to neighbor planes (or three-dimensional subgraphs). In Chapter 5,

70

we state the conditions required for allocating each iteration of the outer loop to
a single plane (i.e., mesh) in the three-dimensional space.

An example of the regularization process to obtain an MMG is shown in F ig-
ure 4.9. (This graph corresponds to a portion of that for the tramsitive closure
algorithm.) Figure 4.9a shows one level of an FPG that contains several broad-
casted data elements. Some of these elements are distributed throughout the entire
level of the graph (global broadcasting), while others are broadcasted in a local
manner (i.e., to neighbor nodes). This broadcasted data is replaced by transmit-
tent data so that data flows through nodes, as illustrated in Figure 4.9b. Global
broadcasting is replaced by transmittent data flowing along the X-axis, while lo-
cally broadcasted values become transmittent data flowing along the Z-axis.

The resulting graph in F igure 4.9b has the structure of one mesh but not
all dependencies are between nearest neighbors. Moreover, such a graph exhibits
bidirectional flow of data. These bidirectional dependencies are removed by flipping
nodes at the left (outer) of the source of broadcasting to the right (inner) side of
such a broadcasting, as shown in Figure 4.9c. In addition, a delay node has been
added to make all dependencies between nearest neighbors. The resulting graph
1s a complete mesh, with unidirectional edges along each axis.

Similar transformations to those above are applied to the different levels of an
FPG, so that each level is transformed into a mesh, and the entire graph becomes
an MMG, either complete or incomplete.

Let us look into deriving the MMG for the triangularization algorithm. The
FPG in Figure 4.7 exhibits data broadcasting, which corresponds to values of
angles used to rotate pairs of rows of the matrix. This broadcasting is replaced
by transmittent data, as shown in Figure 4.10. Moreover, nodes in the topmost
section receive one external input, excepting nodes at the very top of the graph,
which receive two external inputs. Such an “irregularity” is removed by adding
a level of delay nodes that receives one external input, whose output become an
input to nodes formerly with two external inputs, as shown in Figure 4.10.

The graph in Figure 4.10 is now transformed into a three-dimensional structure
by allocating each section (i.e., one iteration of the outermost loop) to a different
plane of a three-dimensional space, as shown in Figure 4.11, Delay nodes have
been added at the top of inner planes along the Z-axis, so that the resulting graph
has dependencies only among nearest-neighbor nodes. The resulting graph has
unidirectional flow of data, and corresponds to the multi-mesh data-dependency
graph.

71

o120 13 T 721 Y22 T2 Taa T T3z %sn %34 Y4 T4z %4 taa Global
]
Local) : ! broadcasting
broadcasting - - - -
- ¢ . -
- @ -)G -
L. |
{a) One level of a fully-parallel dependency graph
Tt o R 3y Ay 3y Ay Ay Ay By Ry Ay By
Z
Y

(c) Removing bidirectional flow of data and irregriar dependencics

Figure 4.9: Removing properties not allowed in an MMG

72

l: =@
|

|ocoe

{ -‘IIIIFI

£
[N

Delay
Rotation

ald
a24
: add
pa
as3 a54
—— p——
ul2 l- ul3 ul4
JAL LA 1A

als bl
a25 b2
b3
ad5 04
-
a55 b5
ulb dl

ud4

uss

e

r=1

r=

T=

r=

d4
ds5

Figure 4.10: Graph with no broadcasting for the triangularization algorithm

73

alt al2 ata at4 a5 b1

Transmintent
L data

, $ e Rotation

angle

$ O Rotazion
@ ey

1

|

|

I

k

Y

| I E e ===

&
R

3-----0

_é-.

d1

Figure 4.11: Multi-mesh dependency-graph for the triangularization algorithm

74

X ol 4

(a) Complete-mesh (b) Incomplete-mesh
data-dependency graph (CMG) data-dependency graph (IMG)

Figure 4.12: Examples of mesh data-dependency graphs (G-graphs)

4.5 Deriving G-graphs from a complete multi-mesh graph

We discuss now the process of deriving G-graphs from an MMG. This process
consists of collapsing the MMG onto a two-dimensional graph (the G-graph) and
scheduling the execution of the primitive operations that compose the nodes of

such a G-graph (the G-nodes). This graph is later realized as (or mapped onto)
an array.

A G-graph is a mesh data-dependency graph (MG) that has the following char-
acteristics:

o Nodes only at points defined by integer values in a two-dimensional space.

¢ Unidirectional dependencies along axes of the two-dimensional space.

¢ Dependencies only between nearest-neighbor nodes (i.e., all edges have length
one).

Similarly to MMGs, there are two types of MGs: complete (CMG) and incom-
plete (IMG). A complete MG consists of a rectangular mesh of nodes, while an
IMG is obtained by removing some nodes and edges from the outer portions of a
rectangular mesh. We restrict the number of nodes removed to either increase or
decrease monotonically along axes of the two-dimensional graph. Figure 4.12 gives
examples of G-graphs (i.e., MGs).

We first discuss deriving an MG from a complete multi-mesh data-dependency
graph (CMMG) as the one shown in Figure 4.13, which has the following charac-
teristics:

75

smmmaee- (ransmittent data

g ' # dependent data

Figure 4.13: The CMMG used to discuss the derivation of arrays

e external input only from the top®
¢ only computing nodes (i.e., no delay nodes)

Later, we will address algorithms that are represented by IMMGs, as well as
MMGs with two flows of external inputs. IMMGs are usually characterized by the
existence of delay nodes in addition to computation nodes. The method is applied
in the same manner to all cases, but the tradeoffs in the characteristics of cells and
arrays are different.

4.5.1 The collapsing of a CMMG

To transform a CMMG into a G-graph, we coalesce prisms of size p by ¢ by
n in the CMMG onto G-nodes, as depicted in Figure 4.14. Criteria to select the
prisms depend on the target array.

Collapsing the CMMG requires to choose a suitable direction for the axis of the
prism. As described in Chapter 5, grouping along axes of the three-dimensional
space leads to simpler and more efficient implementations. Consequently, select-

®This is the case of many important matrix algorithms, such as LU-decomposition, QR-
decomposition, Faddeev algorithm, transitive closure.

76

sl transmittent data

—# dependent data

U Oy 4§

*f-;-ﬁ-r-ﬁ ‘

&

(b) Collapsing CMMG onto G-graph

Figure 4.14: Deriving G-graphs from a CMMG

7

ing the direction of the prism axis may be limited to three alternatives, namely
along direction X,Y, or Z. Figure 4.14 illustrates the case of prisms along axis
Z. In what follows, unless explicitly stated otherwise, we consider prisms along
axis Z, which is orthogonal to the flow of transmittent data along axis X. This
orthogonality is necessary to use pipelined cells, as will be discussed later.

4.5.2 The execution of a G-node

The functionality of a G-node, as well as its computation time, are determined
by the primitive nodes enclosed in a prism. Executing a G-node implies the sequen-
tial execution of the primitive nodes that compose it, which requires the selection
of a schedule for such nodes. Moreover, the schedule and the size of the prisms’
base determine several characteristics of the implementation obtained when real-
izing the G-graph as an array, such as the cell bandwidth, the size of local storage
in a cell, and the ability to use pipelined cells.

The execution of an operation in a cell requires reading operands from input
ports or from local storage, performing the corresponding operation, and delivering
results to output ports or local storage. These operations correspond to primitive
nodes of a G-node. Nodes at the boundaries of a prism access ports, while nodes
inside the prism access local storage and the feedback loop. This characteristic
impacts the properties of cells, as discussed below.

For reasons that will become apparent from the discussion that follows, we se-
lect to schedule primitive nodes by meshes of size p by ¢, as depicted in Figure 4.15,
where nodes have been tagged with their scheduling time. That is, all nodes in
one mesh of size p by ¢ are executed before scheduling a node from the next mesh.

4.5.3 Cell properties that depend on the G-graph

We discuss now the characteristics of cells that are direct results from the
selection of prisms and the schedule of primitive nodes.

Computation time of a G-node

The computation time of a G-node is given by

78

— —
] ..] ° |
‘e v _* v
Vd U o Ud
x | N N | [N N
v scheduling 7 . P P .
o\ 10 f = = el e] = o S
N AR ’ ! ’ I : . fmmBI;uffcr
fecdback _J' X | Y
loop 9L () - ® from buffer
buff: s Bl
p ® B1 “ @ 1I - m @ ™
i V4 1 .
Do () (&)) ®
lol;lszc:r 1 /' i ;
RN
td
from -
S A LA g
v () () ()

sufliee- tTansmittent data

opot Y =~ dependent data
Figure 4.15: The schedule of primitive nodes within a prism
te = pqn

because each prism has pgn primitive nodes.

Number of G-nodes
The number of G-nodes in the G-graph is given by
Ng = n*/pq

because there are n® primitive nodes that are coalesced into G-nodes of size pgn.

Cell communication bandwidth

There are two flows of data arriving to and leaving from a prism, namely along
axes X and Y, as depicted in the Figure 4.15. When a G-node is realized as a cell,

79

these flows are assigned to ports in the same direction as that of arrival/departure.
As a result, average cell communication bandwidth per port is determined by the
total number of edges of the CMMG that are cut by the sides of the prism that
defines a G-node. Consequently,

Average cell bandwidth, horizontal {X) port
Clw = pn/pgn = 1/q [words/time — step]
Average cell bandwidth, vertical (¥') port

Chw = qn/pgn = 1/p [words/time — step]

because pn (gn) operations take an input from outside the prism throughout the
entire execution of the prism.

Maximum cell bandwidth is determined by the schedule of primitive nodes.
With the schedule indicated in Figure 4.15, maximum cell bandwidth is identical
to the average. In such a case, the rightmost (lower) boundary of the prism is
reached every ¢ (p) primitive operations.

As stated in page 60, there may be occasions when a cell reads three operands
from external sources. In terms of the G-graph, this means that the prism receives
a third flow of data along the Z-axis. As also stated in page 60, such a flow is
allocated to either one of the two cell ports, say the X-port. Using the schedule
shown in Figure 4.15, the corresponding bandwidth required while reading such
an input data (i.e., transferring data associated to the Z-axis at the outer mesh
of the prism) is larger than the values above (i.e., (pg +p)/pg =1 +1/g). Instead
of providing this large bandwidth, it is possible to maintain cell bandwidth of 1/¢
by transferring to a local storage the pq elements flowing along the Z-axis before
starting the execution of primitive nodes of the prism. This approach requires
(pg)g = pqg® additional time-steps, increasing the G-node computation time to
tc = pqn +pq® = pq(n + q) (and reducing utilization of cells). However, for n > 1,
this effect is negligible.

Local storage per cell

Executing primitive nodes in a prism requires to store the output of one mesh
(to be used as input to the next mesh) and the output of one horizontal path

80

within the mesh (to be used as input in the next horizontal path). When primitive
nodes are scheduled by meshes of size p by ¢, as shown in Figure 4.15, the storage
requirements are

Co=pg+qg=q(p+1)

In this expression, pg locations are required to store the output of one mesh, and
¢ locations are needed to store the output of one horizontal path.

Storage access and organization

Each input to a primitive node is associated with flow of data along one axis
of the graph. These three flows of data (along the three axes in Figure 4.15)
must be assigned to data paths inside a cell. Such an assignment determines the
allocation of data flows to ports and local storage. Since there is at least one flow
of transmittent data and up to two flows of dependent data within the prism, we
allocate these flows as follows:

¢ To facilitate using pipelined cells, as discussed later, transmittent data within
the prism (i.e., the X-flow in the figure) is allocated to the feedback loop
within a cell.

¢ The Z-flow within the prism is allocated to a buffer B;, while the Y-flow is
allocated to a buffer B,, as depicted in Figures 4.15 and 4.16.

Note that allocating a flow of transmittent data to the feedback loop allows re-
placing such a loop by a register that holds the transmittent data and provides
1t to the functional unit at every time-step. This data is also transferred to the
neighbor cell, through the X port.

Consequently, local storage in a cell should be organized as two independent
buffers that serve each of the two flows of data. Such buffers have size pg and
¢ respectively, each with bandwidth of 1 [word/time-step]. In that case, buffers
are accessed without conflicts as FIFOs, as dictated by the schedule of primitive
nodes.

Cell bandwidth is 1/p (or 1/q) [word/time-step]. In contrast, buffers are ac-
cessed at a rate of 1 [word/time-step] and cell computation rate is 1 [op/time-step].

81

Yin + B, =pq [words]
L B, =q [words]

5] | e venss
X, =l TTH FU [TH— X

| FU: functional unit
é B: buffer

T,

Figure 4.16: Local storage organization in a cell

The difference between these rates and cell bandwidth is adjusted by adding queues
to cell ports, as shown in Figure 4.16. In this way, transfers in/out of a cell occur at
the rate of 1/p (or 1/q), while transfers between queues and functional unit have a
maximum rate of 1 [word/time-step]. Such queues have size p and g, respectively.

Pipelined celils

Using pipelined cells requires data-independent operations scheduled at succes-
sive time-steps. In an MMG, nodes that are connected by transmittent data cor-
respond to data-independent nodes, because their dependency in the graph arises
from broadcasting, as shown in Figure 4.17. A schedule that follows the transmit-
tent flow guarantees that nodes scheduled successively are data-independent, as
long as the length of the pipeline (P,) is shorter than the length of the transmit-
tent path within the G-node (i.e., P, < q). Consequently, we choose the schedule
shown in Figure 4.17, which also corresponds to the one used in Figure 4.15.

Using pipelined functional units reduces storage requirementsin a cell to a value
smaller than C,, = ¢(p+1). Since data takes P, time-steps to become available at
the output of the pipeline, for each flow of data there are P, values in the pipeline
that do not need to be saved in local storage. Consequently,

Co=(pg~P)+(q—P,)=pg+q-2P

82

8 8

el broadcasted data sch eduli;g =l (ranstittent data
—— dependent data order —®= dependent data

Figure 4.17: Independent nodes in the flow of transmittent data

Systolic cells

A particular case of G-graph is obtained when selecting prisms with base size
1byl (ie,p=gq= 1). This grouping corresponds to projecting the CMMG
onto a G-graph along one axis, leading to G-nodes whose execution needs no local
storage, and cell bandwidth has the same rate as computation rate. (Values of
P=g¢=11lead to pg+ ¢q = 2, which corresponds to two storage locations required
to latch input operands.) Such nodes are suitable for implementation in systolic
cells.

Note that increasing the degree of pipelining in systolic cells implies higher
computation rate but requires higher cell bandwidth as well. This is not the case
with pseudo-systolic cells, which may perform tradeoffs and adjustments of cell
bandwidth and local storage.

Non-pipelined cells

Non-pipelined cells do not require to schedule primitive operations following
the flow of transmittent data, because the results from one primitive node are
available before starting the execution of the next node. Consequently, there is no
relation between the direction of transmittent flow and the collapsing direction.

Moreover, in the case of non-pipelined systolic cells (which have no local stor-

age) there is only one schedule possible which is determined by the dependencies
in the MMG.

83

G-graph Array
Figure 4.18: Realizing a G-graph as an array for fixed-size data

4.6 Deriving arrays for fixed-size data from a CMMG

We discuss now realizing the G-graph obtained from a CMMG as an algorithm-
specific array. First, we look into problems with fixed-size data, and then parti-

tioned implementations. We defer mapping onto class-specific arrays until Chap-
ter 6.

4.6.1 Two-dimensional arrays

For problems with fixed-size data, the G-graph is directly realized as a two-
dimensional array. That is, each G-node is realized as a different cell, and each
edge in the G-graph is realized as a different communication link in the array.
Figure 4.18 depicts an example of this process.

The performance of the array is directly obtained from the characteristics of
the G-graph. In particular:

Throughput Ty =t = [pgn]™’
Number of cells K;= Ng=n?/(pq)
Cell bandwidth Cg&y = 1/¢
Ciw= 1/p
3
o _ 1y n _
Utilization Uy= N/(K;T;")= _—(nz/pq)pqn 1

These measures indicate that, for a problem with fixed-size data, an algorithm

represented by a CMMG is realized as a two-dimensional array with optimal uti-
lization.

84

4.6.2 Linear arrays

Realizing the two-dimensional G-graph obtained in Section 4.5 as a linear array
for problems with fixed-size data corresponds to a particular case of partitioning
an algorithm for implementation in an array with O(n) cells. This objective is
accomplished by dividing the G-graph into sets of neighbor G-nodes organized
in a linear arrangement, and executing such sets sequentially in the array (i.e.,
cut-and-pile, with “cuts” of size O(n)). This partitioning process is discussed in
general in the following section.

4.7 Deriving arrays for partitioned problems from a CMMG

For problems with large and/or variable-size data (and for fixed-size data prob-
lems in linear structures), a G-graph is realized as an array with fewer cells (say
K,) than the number of G-nodes by applying the partitioning technique known as
cut-and-pile [Nava87].® This technique consists of two steps:

¢ divide the G-graph into sets of neighbor nodes (G-sets)
o execute the G-sets sequentially in an array

These steps are described next within the framework of our method.

4.7.1 The selection of G-sets

G-sets are sets with as many G-nodes as there are cells in an array. That s,
an array with K, cells requires G-sets with K, G-nodes. Moreover, G-nodes in a
G-set should have the following characteristics:

e Same computation time per G-node. Since G-nodes in a G-set are executed
concurrently, identical computation time produces good cell utilization.

e Same dependency structure as communication links in the array. That is,
linear arrays with K, cells require that G-sets are linear sets of K, G-nodes,

8The G-graph has been obtained from grouping prisms in the MMG, which corresponds to the
application of coalescing to a limited extent. Consequently, the partitioning technique is actually
a combination of coalescing and cut-and-pile.

85

Figure 4.19: Dividing a G-graph into G-sets

while two-dimensional arrays require two-dimensional sets of as many G-
nodes as cells, as shown in Figure 4.19. Note that G-sets for a linear array
may be composed of horizontal or vertical paths from the G-graph.

4.7.2 The scheduling of G-sets

We discuss now the schedule of G-sets. To illustrate this scheduling, we use
the G-graph for a CMMG shown in Figure 4.20, where all G-nodes have identical
computation time tg = pgn. Nodes in this figure have been tagged with their
earliest possible scheduling time relative to a reference time.

The computation time of nodes in a G-set is O(n), while the longest time
required by a data element to traverse the array is O(K,), because there are K,
cells. Since K, <« n, the data needed to begin ezecuting the nezt G-set is available
before the G-set in execution completes. Consequently, scheduling needs to consider
only the dependencies between G-sets and needs not worry about availability of
intermediate data produced by previously scheduled G-sets.

Let us assurne that the realization of the G-graph as a linear array is performed
by composing G-sets with G-nodes in horizontal paths, as show in Figure 4.20a.
Scheduling G-sets may be done by horizontal or vertical paths. For input band-
width reasons discussed below, we choose to schedule G-sets by vertical paths,
as also depicted in Figure 4.20a. G-sets are scheduled in pipelined mode, as de-
picted in Figure 4.21. Scheduling G-sets for execution in a two-dimensional array
is similar to the linear array, as illustrated in Figure 4.20b and 4.21.

86

cariiest

scheduling ®

time

-graph into linear array

(a) - Scheduling G

SCECESISUSe

1

M_

$Ie

[

scheduling @

¢

7/
eariest

-graph into two-dimensional array

(b) - Scheduling G

Figure 4.20: Scheduling a G-graph in linear and two-dimensional arrays

87

¥) 1 se s | 0(n)|
Set3 O 1 O € (D D) G
¥ — ¥ [¥ ¥ eco |leilmifenlaileal
) T e VT s VU o ¥ /e W e T VI 2ilotl] sr2] wt3] majo @]
\.!‘_._L._L. 3 ol [smt2] sct3 | setalio @
¢80 el =2 s3] wa] e ®]

H
t

¥ ¥y ¥ Y
GGGy (N L ()
* [] L] L]

T setd{sec2] setdfmd|® &
2 | octh | sot2| setd | setd [® @
3 st | sea2] set3| setdjo @
4

Loetl]sm2fod] s} 0]

T

Figure 4.21: The schedule of G-sets

4.7.3 Array properties

Dividing a G-graph (obtained from a CMMG) into G-sets and scheduling the
G-sets determines several characteristics of the resulting array, as described next.

Number of G-sets

The number of G-sets in a G-graph is
Nes = n*/(pgK,)

because n?/(pq) G-nodes are divided into sets of size K.

Array throughput

Throughput of the array is given by

88

n? 17
T, = tolasl™ = mpalo] = /1
r

because each G-set uses each cell for ¢g time steps (tg is the computation time of
G-nodes).

Array utilization

Utilization of the array is computed as follows:

U - N n3 B n _1
T KT T KytaNgs Ku(pgn)(n®/pgK,)

That is, the partitioned execution of a matrix algorithm represented by a CMMG
leads to optimal utilization of cells in an array.

Input bandwidth

A host feeding input data to an array that executes a partitioned problem
needs to provide only the data elements appearing as external input to G-nodes.
Intermediate values are saved in, and retrieved from, ezternal memories attached
to the array, as those shown in Figure 4.22 (the M blocks). To reduce the peak
rate at which data has to be provided from the host, the G-sets containing nodes
that receive external inputs should not be scheduled consecutively. In such a case,
the host needs to feed data to the array at a rate lower than one input per cell
per time-step, and utilization of input connections may be increased by decoupling
computation from data transfers.

The approach described above leads to the input structures shown in Fig-
ure 4.22, where the host feeds data to the array through a chain of registers (the
R blocks in the figure). Each block R comsists of a register and memory. Data
from the host flows in pipelined mode through the registers and is stored in the
memories. When a G-set from the top of the graph is scheduled for execution,
data is read from memories in R into the PEs. New data is transferred from the
host to the blocks R while cells use intermediate data from memories M.

Since each node at the top of the G-graph in Figure 4.21 receives gn data

89

from

host R R host
host

7 I—q PE [1+{ PE hiol
PE 8| PE [PE [PE sl ¥ 3
1 L)} |
PE H—»{ PE 1™
e et ity ¥
M M M M 4 Y
Two-dimensional M M
Linear array array

Figure 4.22: /O bandwidth in partitioned implementations

elements from the host, input bandwidth of the array is given by

(gn)K, = qnkK, K,

Ay = 7 = e
Yilhte (pan)(n/p) n

Note that, under the conditions described above, linear and two-dimensional
arrays have the same input bandwidth from the host.

Output bandwidth

If output from a G-graph appears only at the lowermost G-nodes, then output
bandwidth follows the same pattern and may use the same structure indicated
above for the input to an array.

In contrast, if results are obtained within the different G-sets, then those re-
sults appear distributed in time (i.e., every O(n) time-steps, which corresponds
to the computation time of G-nodes). Consequently, those results may also be
transferred to the host through the same structure used for input, adding very
little communication load (i.e., a rate of 1/0(n)).

4.8 Using IMMGs

Matrix algorithms usually lead to incomplete multi-mesh dependency graphs
instead of CMMGs. Examples are algorithms for LU-decomposition, inverse of

90

non-singular triangular matrix, triangularization by Givens rotations, Faddeev al-
gorithm, among others.

The application of our method to an algorithm represented by an IMMG follows
the same procedure as in the case of CMMGs. However, there are two aspects
related to the incompleteness of an MMG that complicate the derivation of G-
graphs and influence the performance of the resulting arrays. These aspects, which
are described below, are:

o Different number of nodes per prism, which influences utilization of cells.

» Flow of transmittent data orthogonal to direction of collapsing, which allows
using pipelined cells.

Number of nodes per prism

Different number of nodes per prism implies different computation time of the
corresponding G-nodes. Since G-nodes are realized in cells, this leads to cells with
different computation time and, consequently, non-optimal cell utilization. This
drawback does not appear in a CMMG, because in that case prisms of a given base
size always have the same number of nodes, regardless of the grouping direction
chosen.

The utilization of cells may be improved by selecting prisms of varying base
size. In such a case, prisms that determine throughput are selected from the
denser portion of an IMMG. In contrast, the size of prisms’ bases in the less dense
part of the IMMG is adjusted so that the total number of primitive nodes per prism
is (roughly) equal to that in denser prisms. The price paid for the corresponding
improvement in utilization is a more complex and non-uniform sequencing within
cells than in the case with identical prisms bases.

Transmittent data and collapsing direction

The method presented in Section 4.5 assumes that the flow of transmittent
data and the direction of collapsing an MMG are orthogonal. This is necessary to
use pipelined cells in an array. In a CMMG, it is always possible to find such a
combination of directions without restrictions, because prisms along any direction
enclose the same number of primitive nodes. This fact is illustrated in Figure 4.23a.

91

Figure 4.23: Drawing prisms in complete and incomplete MMGs

In contrast, a direction of collapsing orthogonal to the flow of transmittent data in
an IMMG may lead to prisms that enclose a varying number of primitive nodes,
as it is inferred from Figure 4.23b. As indicated above, such groupings lead to
G-nodes with varying computation time and potentially low utilization of cells in
an array. Consequently, IMMGs result in lower flexibility in selecting a direction

of collapsing than CMMGs.

On the other hand, selecting a grouping direction parallel to the flow of trans-
mittent data and scheduling primitive operations following that flow leads to a
schedule by meshes of size p (or ¢) by n, requiring local storage of size O(n)
{according to the discussion in Section 4.5.3). Alternatively, one could schedule
primitive operations by following the flow of transmittent data only up to p (or ¢)
primitive operations, as depicted in Figure 4.24. The drawback of such an approach
is the need for larger (but constant) local storage and more complex sequencing
within cells than that obtained when the flow of transmittent data is orthogonal
to the direction of collapsing.

Note that the aspects discussed here only apply when one wants to use pipelined
cells in the array and selecting prisms with base size larger than 1 by 1 (so that
cell bandwidth is lower than computation rate). As described earlier, for non-
pipelined cells it is not necessary to schedule primitive operations following the
flow of transmittent data; there is no relation between the direction of such a
flow and the collapsing direction. Moreover, prisms of base size 1 by 1 have no
local storage, so that cells may be pipelined but cell bandwidth is as large as
computation rate.

92

- yansmiltent data
—— dependent data

Figure 4.24: Schedule parallel to flow of transmittent data

4.9 Deriving arrays for fixed-size data from an IMMG

We discuss now the derivation of arrays from IMMGs. For this analysis, we
assume that the IMMG has a decreasing number of nodes per mesh along the Z-
axis, as in the example shown in Figure 4.25a for a problem of size n = 6, m = 4.
Moreover, we will perform groupings along all directions; in groupings along the X-
axis, primitive nodes are scheduled as indicated in Figure 4.24. The same analysis
presented here applies to graphs with other degrees of incompleteness.

The incompleteness of the MMG affects the performance of an array, as follows:

o Throughput is given by
Ty = [maxtg]™

where t}; is the computation time of the ¢-th node in the G-graph. That is,
throughput is determined by the G-node with longest computation time, or
equivalently, by the prism with the largest number of primitive nodes.

¢ Number of cells (K;) is equal to the number of G-nodes. Such a number
depends on the direction of collapsing, and can be determined as

R .
Ky=) N;

=1

93

X-axis coalescing Y-axis coalescing
(b) G-graphs

Figure 4.25: Deriving G-graphs from an IMMG

94

where

R = number of rows of G-nodes (i.e., [n/p])
Ni = (maximum number of primitive nodes in a path of the MMG
included in i-th row of G-nodes) divided by ¢

e Utilization is computed as

N
Up = ——
T RTT

Figure 4.25b depicts the G-graphs derived from the IMMG in Figure 4.254
assuming p = q = 2, where G-nodes have been tagged with their computation
time. This figure shows that, for example, collapsing the IMMG along the Z.
axis leads to a rectangular G-graph where nodes in borizontal paths have the
Same computation time, but those in successive horizontal paths have increasing
time. Similar results are obtained when coalescing along the Y-axis. In contrast,
grouping along the X-axis leads to a trapezoidal G-graph where all G-nodes have
the same computation time, excepting along the diagonal. Arrays obtained from
realizing these G-graphs exhibit diverse cost and performance.

4.10 Deriving partitioned implementations from an IMMG

We discuss now implementing arrays for partitioned problems represented by
IMMGs. As stated in Section 4.7, realizing a G-graph as an array for partitioned
execution implies selecting G-sets from the G-graph and scheduling them for se-
quential execution. Such G-setg consist of either linear or two-dimensional sets
of G-nodes, depending on the structure of the array. The procedure to carry out
this task is the same for both CMMGs and IMMGs, but the tradeoffs in cost and
performance are different in each case, as described next,

4.10.1 The selection of G-sets

To obtain optimal utilization of an array, G-nodes in @ G-set should have the
same computation time. This property is less stringent than for fixed-size problems,
which require all G-nodes in the entire G-graph to have the same computation time.
Consequently, partitioned implementations of an IMMG have potentially higher
utilization than arrays for fixed-size data.

95

Figure 4.26: G-graphs derived from an IMMG

To illustrate the issues involved, let us consider a large IMMG that has the same
structure as the one shown in Figure 4.25. In such an IMMG, grouping leads to
G-graphs as those shown in Figure 4.26. As indicated earlier, these are rectangular
G-graphs where G-nodes in the same horizontal (or vertical) path have the same
computation time, or a trapezoidal G-graph where all nodes have identical time
(excepting at the diagonal). Consequently, the partitioned implementation in a
linear array may choose among any of the three alternatives, without affecting
performance of the resulting array. In contrast, selecting two-dimensional G-sets
from the rectangular G-graphs will include G-nodes with different computation
time, and utilization of the resulting two-dimensional array will not be optimal.
Consequently, the G-graph obtained by grouping along the X-axis produces higher
utilization in a two-dimensional array than the other two groupings.

Scheduling the G-sets obtained above is performed in the same way as in the

case of CMMGs.

4.10.2 Array properties

As inferred from the discussion above, performance of an array that implements
a partitioned problem depends on the amount of incompleteness in the IMMG and
on the collapsing direction. The performance measures are:

96

Array throughput

Throughput for partitioned problems is obtained as
Ngs -
TP = Z tfna:
i=1

where t ,_ is the longest computation time of a G-node in the j-th G-set, and Ngs
is the number of G-sets.

Array utilization

Utilization is given by

N

Up = —mer
P T KT,

I/0 bandwidth

Assuming the schedule of G-sets shown in Figure 4.21 and the I/O structure
given in Figure 4.22, I/O bandwidth is given by

K :
max; {5, Fi}
TR

Ao =

where F} is the maximum number of edges that arrive from outside the graph to
the j-th G-node in the :-th G-set.

4.11 Using MMGs with two flows of input data

Throughout this chapter we have considered that MMGs have only one flow
of input data. As indicated earlier, this is the case of many important matrix
algorithms. However, there are some algorithms that have two flows of input data,
such as matrix multiplication. In this section, we discuss how the second input
flow is handled in our method. For such purposes, we use the MMG with external

97

inputs from left and top shown in Figure 4.27a. In this case. collapsing the MMG
along the direction that has no input flow leads to a G-graph that has external
inputs only at boundary nodes, as shown in Figure 4.27b for grouping along the Z-
axis (prisms of base size 1 by 1). In contrast, collapsing the MMG along a direction
that has input flow leads to a G-graph that has external inputs at one side of the
graph and at every node throughout the graph, as illustrated in Figure 4.27¢ for
grouping along the Y axis.

We now discuss the effects that the two flows of input data have on arrays for
fixed-size and partitioned problems. We focus on two-dimensional arrays, since
the problem and solution in a linear array correspond to that of a two-dimensional
array with size K by 1.

4.11.1 Two-dimensional arrays for fixed-size data

Let us consider first the realization of two-dimensional arrays for fixed-size data.
Since the G-graph shown in Figure 4.27b has external input only at the bound-
aries, it is directly realized as a two-dimensional array without any problems. In
contrast, since the arrays considered in this dissertation have external I/O only
at boundary cells, direct realization of the G-graph shown in Figure 4.27¢ is not
feasible unless pre-loading data into cells is allowed, because each G-node receives
an external input. Pre-loading is achieved by transferring data through cells un-
til it reaches its destination. Although this is a feasible solution that has been
suggested/implemented in some cases, it has the disadvantage that cells are used
for loading/unloading data without performing useful computations, so that array
utilization and throughput decrease.

However, pre-loading data may be avoided. The computation time of G-nodes
in Figure 4.27c is {g = n, but each G-node receives only one external input along
the Z-axis during the entire evaluation of the G-node (i.e., n time-steps). Conse-
quently, the communication links associated to that data flow are under-utilized,
because data are transferred only in one out of n time-steps. This property allows
decoupling computation from data transfers, in a similar manner to the case of
partitioned implementations discussed in Section 4.7. That is, data for one in-
stance of an algorithm are transferred through a separate chain of registers, while
a previous instance is computed.

The approach described above is depicted in Figure 4.28. The cells of this array
have been augmented with a register; all those registers are connected in a chain,

98

smllipe.- transmittent data
— dependent data

i
oo

{a) Multi-mesh graph with two input flows

®
. - °
(b) G-graph by grouping along Z (¢) G-graph by grouping along Y

Figure 4.27: A CMMG and G-graphs with two flows of input data

99

»{ FUR—

B

o] (i3]
:

‘é\f_@"' 12 14
Aﬁ‘[‘

A

a

v

y L]

Figure 4.28: Array for G-graphs with two input flows

as shown in the figure. In such a case, input data arrives to the boundary of the
array and flows through cells until it reaches its destination.

4.11.2 Two-dimensional arrays for partitioned problems

For partitioned problems, realizing the G-graph in Figure 4.27b as an array
leads to large I/O bandwidth. In the case of one input flow, array I/O was de-
creased by not scheduling successively the G-sets that receive external inputs, as
illustrated in Figure 4.21. That is, the execution of two G-sets with external inputs
was spread out in time, allowing lower data transfer rate. However, this approach
is not effective in the case of a G-graph as the one in Figure 4.27b. Executing G-
sets of such a graph either vertically or horizontally implies the successive schedule
of G-sets that have external inputs, so that the array must have the capability to
provide the required bandwidth (i.e., one data element per time step). In other
words, it is not possible to spread out in time the data transfers associated to
G-sets with external inputs, unless a more complex schedule is implemented. An
example of such type of execution order is illustrated in Figure 4.29, where G-sets
are scheduled in diagonal order. Note that G-sets with external inputs are still
executed successively at the beginning, while they spread out in time later. As a
result, data for the first few G-sets has to be transferred in advance and stored in
memories external to the array, so that it can be delivered at the required rate.
Once the I/O bandwidth required by the execution of G-sets decreases to a value
that is handled by the array/host connection, then the remaining inputs are trans-
ferred from host to array and stored in memories attached to inputs, as described
in Section 4.7.

100

Figure 4.29: Scheduling G-sets with two input flows

In contrast to the approach outlined above, the G-graph with two flows of input
data shown in Figure 4.27¢ is more amenable to partitioned execution. In such a
case, the flow arriving to every G-node along the Z- axis has low bandwidth (as
discussed earlier) and it can be implemented using the same technique presented
for problems with fixed-size data, namely by transferring data in advance and
augmenting cells with a path for such transfers. Moreover, in the case of a linear
array, the same chain of R blocks shown in Figure 4.22 may be used for this
purpose.

4.12 Summary of performance measures of arrays

In this section, we review the performance measures of arrays designed with
our graph-based method. Since this method allows studying the impact of trans-
formations on performance while carrying-out such transformations, and the cor-
responding issues were described together with the respective transformations in
the previous sections, we just summarize the results at this time. Moreover, the
terms used in this summary have been defined throughout this chapter.

4.12.1 Fixed-size data

For problems with fixed-size data, the values for performance and cost measures
are (where NN is the number of operations in an algorithm)

Number of cells K; = Ng

101

Throughput 7Ty = [mar;t};]
N
Storage percell C, =gq(p+1)
Cell bandwidth CJy,, =1/p
ng =1/q
Array I/O bandwidth A0 = KpCE,

Utilization Uy

where CB,,, is the corresponding bandwidth of boundary cells (i.e., Ca or Chu),
and Kp is the number of such boundary cells.

4.12.2 Partitioned problems

The performance and cost measures for partitioned implementations are

Number of cells K,

Nes 17!
Throughput 7, = [Z trnar

J=1
N
- KT
Storage per cell C, =gq(p+1)
Cell bandwidth Cly =1/p

Caw =1/q
K i
max; {2, F}}
it

Utilization U,

Array I/O bandwidth Ao =

In the expressions above, ¢!, is the longest computation time of a node in
the i-th G-set mapped onto the array, and F} is the maximum number of data
elements that are brought from outside the graph into the j-th G-node of the i-th

G-set (i.e., edges arriving into the graph).

4.13 Arrays for the triangularization algorithm

We illustrate now the derivation of arrays from an IMMG by obtaining and
evaluating implementations for the triangularization algorithm.

102

8 o
LB ATy O
QUG U AN
S -4 @ to?
““0,‘ ®I°=l

. Delay node

X-axis Y-axis

Figure 4.30: G-graphs for the triangularization algorithm

4.13.1 Computational load

The computational load imposed by the triangularization algorithm is obtained
from the multi-mesh graph shown in Figure 4.11. This graph is composed of n
dependent meshes. The number of operations can be determined by traversing
those meshes from the innermost to outermost along axis Z. This number is

N=Zn:(z'—1)(i+l)=%[2n2+3n~5

=1

because there are (: — 1)(z + 1) operations in mesh i. Note that the expression
above does not include delay nodes in the graph, but only operation nodes.

4.13.2 Problems with fixed-size data

Let us look first into arrays for fixed-size data. Figure 4.30 depicts the results
obtained from grouping prisms of base size 1 by 1 in the MMG shown in Fig-
ure 4.11. These G-graphs are directly realized as systolic arrays. The resulting
implementations are evaluated below, for the general case of grouping by prisms
of base size p by q.

4.13.2.1 Grouping along the X-axis

Grouping along the X-axis leads to a triangular array. The number of cells in
such an array is (assuming that n/q, ¢/p are integers)

103

KF =3 4] $ta st
=1 P 2pq

The throughput of this array is determined by the bottom leftmost cell, because
this cell computes more primitive operations than other cells, as it is inferred from
the MMG. Assuming that (n —p) > n/2, (n - q) > n/2, this throughput is given
by

q
Tx' = t%* =pg(n+1) =) p(i — 1) = pg(2n — ¢ +3)/2

=1

Utilization is
N N
KfTz" Kftg=
n(2n? +3n — 5)/6
(n/2pg)(n + ¢)(pg/2)(2n — q 4 3)
2(2n? 4 3n — 5)
3(n+q)(2n—q+3)

UX=

For large n, we obtain

4n? 2
Ux 2 53=3

4.13.2.2 Grouping along Y-.axis

The number of G-nodes (and consequently the number of cells) obtained by
grouping along the Y'-axis is computed as (assuming that p/q and n/p are integers)

[n/ql - T
+1 g+1 n
KY=§:|VL"=§_._=__.”+(I+2)
d =1 b 1=1 r 2pq(

The throughput of the resulting array is determined by the computation time
of the top-rightmost cell. Assuming that (n — p) > n/2, (n — q) = n/2, this
throughput is

P
- ma . Pq
Tyl =ty-”:pqn—2q(z—l) = -—2—(2n—q+1)

1=1

104

Utilization is
N N
KITy ~ Kl epes
n(2n® +3n ~ 35)/6
(n/2pg)(n + q + 2)(pg/2)(2n — ¢ + 1)
2(2n? + 3n — 3)
3(n+qg+2)(2n—g+1)

Uy =

1

For large n, this results in

4.13.2.3 Grouping along the Z-axis

Grouping along the Z-axis leads to a rectangular array. The number of cells in
such an array is

wi=[2] |5~
= rel| ¢ g

The throughput of this array is determined by the bottom rightmost cell. Such
a cell computes more primitive operations than other cells, as it is inferred from
the MMG. Throughput is given by

P 9
T;' =17 = Y 3 (nodes along Z)

= [(h- g4 D)+ (— g+ 3+t (n—1)+20)
+(n—g¢g+2)+(n—g+3)+---+3(n-1)]
tn—g+2)+(n—g+3)+--- +4(n-2)]

P n+1]
- £ 5 -5

1=l [J=n-q+2 =1
_ z”: (n+1)(n+2) (n—g+1)(n—g+2) i(i+])
= . _ . :

=1

= 222[2”—?"'3]—'%[?2“1]

105

Utilization is

U, — N N
? 7 KIT, " T Kfpe
B £(2n? +3n — 5)
et (2(2n + 3 - g) - B(p2 — 1)
_ pq(2n? + 3n - 5)
6(n + 1) [521(211 +3—¢q)-p(p? - l)]
For large n
2
Uy — 2n‘pq =_1_
6nipg 3

4.13.2.4 Comments on arrays for fixed-size data

The expressions in the previous subsections indicate that collapsing the multi-
mesh graph along the different axes leads to arrays with diverse cost and perfor-
mance measures. For example, grouping the MMG along the X-axis leads to a
triangular systolic array (with delay registers in the diagonal) that triangularizes
a matrix of size 5 by 5 with utilization U = 0.83 and throughput 7' = 0.17. In
contrast, collapsing the G-graph along the Y-axis leads to T = 0.2 in a triangular
systolic array with more cells than the previous one, whose utilization is U = 0.69.
Consequently, the selection of the most suitable architecture is determined by the
relative weight of the different performance and cost measures.

4.13.3 Partitioned implementations

For partitioned implementations, we select the grouping direction that produces
G-sets with nodes of identical computation time. To achieve this objective, we may
select prisms along the X-axis or the Y-axis in the multi-mesh graph (grouping
along the Z-axis is not a good choice, as inferred from Figure 4.30). Figure 4.31
illustrates coalescing by prisms of cross-section size 2 by 2 along the Y-axis. The
resulting G-graph is shown in Figure 4.32a (this G-graph corresponds to a multi-
mesh graph larger than the one shown in Figure 4.31; due to space constraints,
the larger multi-mesh graph has not been shown).

The G-graph is now decomposed into G-sets, and G-sets are scheduled for
execution in the array. G-sets consist of linear or two-dimensional sets of G-nodes,

106

@ g=42
D =m0
@D o8
&

D) .

P idd
S I RO
=

i 43\ A A A

NSHEH S

eI

(b} Selecting G-sets

(x) G-graph

Figure 4.32: G-sets in the triangularization algorithm

107

as shown in Figure 4.32b. Notice that two-dimensional G-sets include G-nodes
with different computation time, so that utilization of the resulting array will not
be optimal. On the other hand, it is possible to select linear G-sets where all nodes
have the same computation time, leading to better utilization of the corresponding

linear array. Such linear G-sets are vertical paths of the G-graph, as shown in
Figure 4.32b.

Scheduling the G-sets derived above is done by considering the array I/O band-
width. Since input data appears only at leftmost G-nodes, we schedule G-sets in
horizontal order. That is, we first schedule the leftmost G-set and then all G-sets to
the right of that one. Upon reaching the right end of the G-graph, the next G-set
at the left of the graph is scheduled, and the process continues in the same manner.
G-sets are piled for execution in an array such as the one shown in Figure 4.22,

The evaluation of the partitioned implementation is not included here. An
example of such an evaluation process and the issues involved in it are given in
Appendix A.

4.14 Type of array as a function of the design parameters

The method described in this chapter allows determining the type of array
based on the size of the prisms, that is, based on values of p and ¢. The following
table gives some examples:

Array Systolic | Pseudo-systolic | Local-access (two-
dimensional)
Valuesofp,g [p=g=1]p=gq>1 p=q=n/VK
No. of G-sets n?/K n*/(pgK) 1
Storage per cell 2 pp+1) n?/K +n/VK
Cell comm. band- |1 1/p vE/n
width

These expressions led to the values in Table 2.1, where p = ¢ = /S in the case
of pseudo-systolic arrays. As indicated earlier, the two words of storage per cell in
a systolic array corresponds to registers required to latch input operands, so that
actually there is no storage per cell in that implementation. Note that adding local
storage to a cell reduces cell bandwidth proportionally to the inverse square-root
of the size of such a local storage.

108

4.15 Tradeoffs between linear and two-dimensional arrays

In this chapter, we have discussed tradeoffs that arise when designing an array
for a matrix algorithm. In particular, we have analyzed the relationship between
local storage in a cell and cell communication bandwidth, and we have also shown
that it is not always possible to achieve maximal utilization in a two-dimensional
array for partitioned execution of an IMMG.

Consequently, given a number of cells, an important issue is to determine the
most suitable structure to interconnect those cells in an algorithm-specific array.
Since we consider linear and two-dimensional mesh arrays, this question amounts
to analyzing tradeoffs between linear and two-dimensional structures.

For a problem with fixed-size data, it is necessary to go from a linear array to
a two-dimensional one when all parallelism available in one dimension has been
exhausted. That is, for problems of size O{n), an array with more than O(n) cells
must be a two-dimensional mesh.

On the other hand, for partitioned implementations the number of cells is
much smaller than the size of problems, so that deciding between linear or two-
dimensional structures is not so simple. Since the number of cells is fixed (say K},),
a two-dimensional architecture does not exploit more parallelism than a linear one
with the same number of cells. Earlier, we have shown that partitioned implemen-
tations in linear and two-dimensional arrays have the same I/O bandwidth to/from
a host. Moreover, a linear structure has potentially higher utilization than its two-
dimensional counterpart (it is easier to find linear G-sets whose nodes have the
same computation time), and is simpler to build.

In addition, a linear configuration is more suited to incorporate fault-tolerance
features, because it can include the ability of bypassing a faulty cell. This is
in contrast to two-dimensional arrays, in which the mesh has to be reconfigured
around a faulty cell, either by software or hardware mechanisms. Moreover, the
linear structure looses only the faulty cell, while the two-dimensional array may
loose one row and one column of cells after reconfiguration.

The only drawback of a linear array is that it requires (K, +1) external memory
modules, while a two-dimensional structure needs only 2,/K,. Given that memory
systems are less expensive and simpler than the remaining modules in an array,
we believe that such a drawback is minor.

Consequently, from this analysis it is possible to conclude that a linear array

109

from to
host host

—f—>:|]]——-—

I—hPE-bPE-bPE-bPE--b B, [+
1 1 ¥) | M v
¥ T v I v ¥ =
M M M M FU: functional unit

B: buffer

Figure 4.33: The canonical linear array for partitioned problems

18 more sutted for partitioned implementations than a two-dimensional structure.

The conclusions above are valid for large problems, that is, when the size of
a problem is much larger than the number of cells in an array. In such a case,
it is possible to derive a two-dimensional G-graph that will be “piled” onto an
array in several G-sets. On the other hand, if the G-graph is not large enough,
then the amount of parallelism available in such a G-graph (i.e., the number of
G-nodes along one dimension of the graph) cannot be exploited successfully with
many cells. Specifically, the conclusions stated above are valid if the G-graph has
at least K, by \/E G-nodes, because in this case the G-graph can be divided into
linear or two-dimensional G-sets with K, G-nodes.

4.16 A canonical linear array for partitioned problems

In Section 4.7, we introduced arrays that are well suited for the application
of the partitioning approach used in our method. Although such arrays were
presented in the context of algorithms described by CMMGs, they are equally
applicable to algorithms described by IMMGs. Since in the previous section we
have shown that a linear array for partitioned problems has advantages over a
two-dimensional structure, the linear architecture shown in Figure 4.33 represents
a good target implementation for the partitioned execution of matrix algorithms.

110

The array in Figure 4.33 constitutes a canonical structure. Its overall archi-
tecture is determined by the design method presented in this chapter, but the
characteristics of cells are determined by an specific algorithm and associated im-
plementation constraints (such as operations per cell, type of arithmetic, and nu-
meric precision). This architecture has the following characteristics:

1. Linear collection of cells.

2. Support for external I/O into the array.
3. Memory modules external to cells.

4. Pipelined cells.

5. Small FIFO buffers in each cell.

6. Small queues attached to ports.

7. Cell bandwidth lower than computation rate.

An example of this canonical array is described in [More89a), where cells have a
functional unit composed of a conventional floating-point multiplier and an ALU.
The realization of algorithms in such an array produces high utilization of resources
and uses the pipeline effectively. For example, performance estimates for the LU-
decomposition algorithm indicate that a 200 by 200 matrix is processed in an
array with 10 cells and 4-stage pipelines with utilization on the order of 90%.
Consequently, with a clock cycle of 50 [nsec] the array delivers 360 [Mflops} out of
a peak capacity of 400 [Mflops].

111

112

CHAPTER 5

The formalization of the design method

In this chapter, we present a formalization of the graph-based design method
described in Chapter 4. Several terms used in this discussion are introduced first,
including a canonical representation of matrix algorithms, and then we provide
proofs for the equivalence of graphs derived through the transformations that com-
pose the method. The process follows a bottom-up approach, by first discussing
mapping a mesh dependency-graph onto an array, and later building the formalism
up to the fully-parallel data-dependency graph.

5.1 Definitions

For the formalization of the method, we first introduce several terms that are
adaptations of known concepts. Many of these definitions have already been used
in preceding chapters.

Instances of an algorithm

A gingle-instance algorithm is an algorithm that is executed for a single set of
input data. In contrast, a multiple-instance algorithm is executed for multiple sets
of input data. Consequently, an instance of a multiple-instance algorithm consists
of executing the algorithm for one set of input data.

Pipelined execution of multiple-instance algorithm

Pipelined ezecution of a multiple-instance algorithm is the overlapped execution
of successive instances of the algorithm. That is, execution of a new instance is
started before execution of previous instance(s) is (are) completed. Moreover, per-
fect pipelined ezecution of a multiple-instance algorithm corresponds to pipelined
execution with no delay (idle time) between the execution of successive instances.

113

5.1.1 The canonical representation of matrix algorithms

In this dissertation, we center our attention on matriz algorithms that are de-
scribed recursively by the following canonical representation:

Matrix algorithm is a tuple
A=(1,5V,M, A)

where

e 1 is the index of a for-loop whose range is data-independent but may be
dependent on other indices (i.e., For i = j + 1 to n — k, where 7,7, k
are loop indices and n is a matrix dimension).

® S is a finite set of scalar operators, such that! |S| is independent from
the dimensions of matrices (i.e., a small and constant number).

V is a finite set of vector operators.

M is a finite set of matriz operators.
A is a finite set of matriz algorithms.

Figure 5.1 depicts such a recursive description. Consequently, we focus on
algorithms that are represented in terms of a loop-index and a loop-body composed
of scalar, vector and matrix operators, and recursively in terms of other matrix
algorithms. Moreover, a sequence of matrix algorithms as those above is also a
matrix algorithm.

Characteristics of operators in a matrix algorithm are as follows:

Scalar (primitive) operator is a tuple s = (I,,0,, f,) where

e I, is a set of scalar operands, such that |I,| € {1,2,3}.

e O, is a set of scalar outputs, such that |0,| € {1,2,3}.

¢ f, is a primitive operation performed using all elements of I, to produce
all elements of O,. The computation time of this operation is data
independent (such as add, multiply, rotation, sin).

In practice, scalar operators have |0,| = 1, excepting cases such as rotation
of a pair of elements which produces |0,| = 2.

1{4| denotes the cardinality of set A

114

Matrix algorithm: / Scalar operators
Fori=1 ton I_Veclor crperalors_l

];‘bg‘?; Matrix gperators

Matrix algorithms

Figure 5.1: The canonical form of a matrix algorithm

Vector operator is a tuple v = (1, 0,, B, F,) where

I, is a set of vector inputs, such that |I,| € {1,2}.

O, is a set of vector outputs, such that 10.] € {1,2}.

All vectors have the same length [, (i.e., the same number of elements).
B is a set of scalar inputs, such that |B| € {0,1}.

F, is a set of I, scalar operators that perform the same primitive oper-
ation f,. The i-th element of F,, say scalar operator f, is such that

f; = ({Iv(i) U B}:Ov(’.)afs)
where I,(z) and O, (%) are the i-th element of each vector in I, and O,,
respectively.

Matrix operator is a tuple m = (I, O,,,, Vin, Fin) where

I is a set of a single matrix input (i.e, |[Im] = 1).

Om is a set of a single matrix output (i.e., |[Op| = 1).

Both input and output matrices have the same dimensions (m,n).

Vin = {vn,v,} is a set of two input vectors, such that their lengths are
L(vy) = m and L(v,) = n.

F., is a set of mn scalar operators that perform the same primitive oper-
ation f,. Each scalar operator is identified as fa(thj)yi=1,....m, j =
1,...,n; moreover,

fm(3,7) = ({Im(ivj) U vp(i) U ve(7)}, Om(z,7), fa)

where

® Inn(i,7) and O, (4,) are the (,7)-th element of I, and Oy, respec-
tively.

115

¢ v(i) and v,(j) are the i-th and j-th element of vectors vp and v,
respectively.

As indicated in Chapter 4, the limitations in number of inputs and outputs
to/from the operators above arises from the ob jective of realizing those operators

in mesh arrays, and from the need to implement broadcasting by transmittent
data.

The canonical form of matrix algorithms excludes the existence of branches
or loops with data-dependent range. These properties are not present in most
matrix algorithms of interest, in particular those algorithms that are suitable for
parallel implementation, so that this limitation is minor. The only usual case
of data-dependent loop arises when testing for some termination (convergence)
condition. However, that case may be handled by treating the algorithm as a loop
with a sufficiently large range. On the other hand, the canonical form is sufficiently
general to cover algorithms that are frequently used, such as LU-decomposition,
transitive closure, Faddeev algorithm, QR-decomposition, Gaussian elimination.

As indicated in Chapter 4, the canonical form above does not have any re-
striction on the way that variables appearing in an algorithm are referenced, that
is, on how loop indices are used to access elements of matrices and vectors. The
method accepts, for example, the two common types of references usually consid-
ered: (1) uniform dependencies and (2) affine dependencies. Uniform dependencies
are of the form (i — ig) (i.e., an index plus/minus a constant), while affine depen-
dencies have the more general form (i +j — ko) (i.e., a linear combination of indices
and a constant). Uniform expressions are the more common type of references,
and appear in all the algorithms listed in the previous paragraph. Nevertheless,
the method allows both types of dependencies. Using affine expressions to access
variables may lead to a fully-parallel graph that requires more work to transform
it into a multi-mesh graph, and/or to an MMG with more delay nodes, than algo-
rithms with uniform dependencies.? Appendix D gives an example of an algorithm
with affine dependencies.

2As also indicated in Chapter 4, using uniform or affine expressions to access variables does
not imply that the algorithm must be a uniform or an affine system of equations, as required by
other methods.

116

Complete Mesh Array Incomplete Mesh Array

Figure 5.2: Complete and incomplete mesh arrays

5.1.2 The arrays

Definition 1 : Complete mesh array. Collection of processing elements
(PEs) or cells with the following properties:

o PEs are distributed on a two-dimensional grid structure such that each PE
is identified by a pair of coordinates as PE(7, j), where 1,] are integers, 1 <
t<Landl <j< M, aend L, M are the dimensions of the array.

e Communication links are such that, ezcepting at the boundaries of the mesh
array, PE(i,7) communicates with PE(z,j + 1) and PE(i + 1, j); that is, PEs
are connected in nearest-neighbor fashion and with unidirectional links.

o Eziernal input/output to the mesh array is available only at boundary cells,
that is, PE(¢,7) such that t=1orj=1)or(fi=Lorj=M).

If there are positions in the two-dimensional grid structure that do not have
a cell or there are cells without all links, then the array is an incomplete mesh
array. Figure 5.2 depicts complete and incomplete mesh arrays. We restrict
missing cells in an incomplete mesh array to fulfill the following requirements:

o Empty locations left by missing cells appear only at the ends of rows of cells.
That is, a missing cell is identified by coordinates (im, jm) such that j, > 7
or ym < j Vj, where j is used to identify an existing cell.

o The number of missing cells either increases or decreases monotonically along
axes of the two-dimensional space.

117

In the remaining of this chapter, we will use the term array to imply a mesh
array.

5.1.3 The model of execution in an array

We assume that the model of execution used by an array is synchronous, that is,
all cells operate synchronously and all data transfers are performed simultaneously.
Moreover, data flows through cells, and external input and output occurs only at
boundary cells. In each unit of time (i.e., a time-step) a cell reads operands (from
off-cell and/or local storage), performs an operation, and delivers results {off-cell
and/or to local storage). Consequently, data flows in pipelined manner throughout
the array, because it may advance one cell per time-step.

The execution of an algorithm in an array is characterized by the following
parameters:; '

t.: Computation time. Such a time corresponds to the interval between
the first and last operations performed in the array to execute one
instance of the algorithm.

t(¢,7): Computation time of PE(:, j). Continuous interval that PE(z, j)
is dedicated to the execution of one instance of an algorithm,
including idle time.

t(4,J)maz = max, ;[t(i,7)]: Computation time of the busiest cell in the
array.

5.1.4 The performance measures

Performance measures to evaluate the implementation of algorithms in arrays
are defined as follows:

Throughput of an array

Let us call ¢; the interval between the initiation of two consecutive instances of
a multiple-instance algorithm in an array. The throughput of such an array is

T =1/t

118

For perfect pipelined execution, the throughput is

Tpp = 1/t(i,j)ma,

Utilization of cells

The utilization of cells is the average fraction of time that array cells are busy
performing operations. Utilization is computed as follows:

Let N be the number of primitive operations in an algorithm, such that all
operations have the same computation time 7.

e For a single-instance algorithm

Nt
single — 'ﬁ
c

¢ For a multiple-instance algorithm (pipelined execution)

Nr

Umu]t. = W

5.1.5 The cost measures

Cost measures are defined as follows:

Number of computing cells. We distinguish two cases:

¢ K;: number of cells in an array for a problem with fixed-size data. Such
a number depends on the dimensions of matrices.

¢ K,: number of cells in an array for a partitioned problem. Such a
number is independent from matrices’ dimensions.

Array input/output data bandwidth. Maximum number of data words that
need to be transferred into and out of the array per time-step.

Storage per cell. Amount of storage in a cell that has access time compatible
with the execution rate of the functional unit in such a cell.

Cell bandwidth. Maximum number of data words that need to be transferred
into or out of a cell per time-step.

119

Figure 5.3: Example of a data-dependency graph

5.1.6 The graphs

We define now the different types of graphs used in our method.

5.1.6.1 Data-dependency graph

Definition 2 : Data-dependency graph of an algorithm (DG) is a tuple
P = (D, E) that describes operations and data dependencies of the algorithm. D 1s
a set of N nodes and E i3 a set of directed edges. Nodes correspond to operations
and edges correspond to data dependencies among such operations. Each directed
edge e;; € E connects a pair of nodes [n(i),n(j)] € D and implies that node n(z)
precedes node n(j). Such nodes are referred to as directly dependent nodes. Node
n(z) is characterized by its computation time (i) and its operation ¢(z).

Figure 5.3 depicts an example of a data-dependency graph. A DG is similar
to an unfolded dataflow graph [Ager82], in the sense that nodes are evaluated as
soon as data is available at their inputs.

In addition to operation nodes, a DG may have the following type of nodes:

Delay node: node that takes data arriving through incoming edges and delivers
it to outgoing edges after a specified delay, without performing any operation
on the data.

5.1.6.2 Mesh data-dependency graphs

Definition 3 : Complete mesh data-dependency graph (CMG) isa DG
with the following properties:

120

(a) Complete-mesh (b) Incomplete-mesh
data-dependency graph (CMG) data-dependency graph (IMG)

Figure 5.4: Examples of mesh dependency-graphs

® Nodes are distributed on a two-dimensional grid structure such that each
node is identified by a pair of coordinates as node n(z,7), where 1,5 are inte-
gers.

¢ Dependencies between neighbor nodes are unidirectional. Consequently, de-
pendencies between nodes are gs follows:

n(t,7) depends directly on n(i — 1,;) and n(,j —1) fori,j>1
n(l,7) depends directly on n(1,; — 1) fori>1
n(z,1) depends directly on n(i — 1, 1) fori>1

* Node n(i,5) has computation time 7(7,7)
Figure 5.4a depicts an example of a CMG.

Definition 4 Incomplete-mesh data-dependency graph (IMG) isa DG
obtained after removing some nodes and/or edges from a CMG. Missing nodes are
required to fulfill the following requirements:

o Empty locations left by missing nodes appear only at the ends of horizontal
paths. That is, a missing node is identified by coordinates (tmyJm) such that
Jm > J 0F jo < J Vi, where J 15 used to identify an ezisting node.

® The number of missing nodes either increases or decreases monotonically
along azes of the two-dimensional space.

Figure 5.4b depicts an example of an IMG. This figure shows how dependencies
are affected when there is a node missing. For example, node n(i,j) depends only
on node n(%,j — 1) if node n(i — 1,7) does not exist.

121

In what follows, we use MG to refer to both complete and incomplete mesh
data-dependency graphs. Moreover, unless stated otherwise, we assume that a
CMG has size n by n, while an IMG has size n at least along one dimension.

5.1.6.3 Maulti-mesh data-dependency graphs

Definition 5 : Complete multi-mesh data-dependency graph (CMMG)
18 ¢ DG with the following properties:

® Nodes are distributed on a three-dimensional grid structure such that each
node ts identified by a triple of coordinates as node n(z, j, k), where 1], k are
integers.

¢ Dependencies among nodes are as follows:

Node depends directly on

n(z,j,k) n(z— 1 j,k) n(t,j —1,k) end n(i,5,k - 1) fori,5,k>1

n(l,7,k) n(l,j —1,k) and n(1,j,k — 1) for 3,k > 1
n(z,1,k) n{i- 11k) and n(z,1,k — 1) fori k>1

n(i,7,1) n(i-1,7,1) end n{i,j — 1,1) fori, g >1

e All nodes have computation time 7(i,5,k) = 7.

Figure 5.5a depicts an example of a CMMG. Such a CMMG is composed of
CMGs with dependencies among nodes in the same position in the component

meshes. Consequently, a CMMG may be regarded as composed of parallel (depen-
dent) CMGs.

Definition 6 : Incomplete multi-mesh data-dependency graph (IMMG)
8 & DG graph obtained after removing some nodes and/or edges from « CMMG.
Missing nodes are required to fulfill the following requirements:

o Empty locations left by missing nodes appear only at the ends of paths along
one dimension. For ezample, a missing node along the dimension represented
by the second indez is identified by coordinates (im, jm,km) such that jn > j
or jm < J Vj, where j is used to identify an ezisting node.

¢ The number of missing nodes either increases or decreases monotonically
along azes of the three-dimensional space.

122

(a) Complete Multi-Mesh (b) Incomplete Multi-Mesh
Dependency-Graph (CMMG) Dependency-Graphs IMMG)

Figure 5.5: Examples of multi-mesh dependency-graphs

Figure 5.5b depicts examples of IMMGs. Since an IMMG has parallel meshes
along any of the three dimensions, an IMMG might have parallel meshes with
different number of nodes and/or edges along one dimension and the same number
of nodes and/or edges along some other dimension, as is inferred from the figure.

In what follows, we use MMG to refer to both complete and incomplete multi-
mesh data-dependency graphs. Moreover, unless stated otherwise, we assume that
a CMMG has size n by n by n, while an IMMG has size n along at least one
dimension.

5.1.6.4 Fully-parallel data-dependency graph

Definition 7 : Fully-paraliel data-dependency graph of a matriz algorithm
(FPG) is a data-dependency graph with the following characteristics:

® FPG is a directed acyclic graph.

¢ Nodes correspond to primitive operators (unary, binary or ternary). Conse-
quently, every node n(t) has at most three incoming edges and at most three
outgoing edges, which are named left, center and right inputs, and left, center
and right outputs, respectively.

o All nodes have the same computation time v(i) = 7,

Using FPGs to represent matrix algorithms requires that loops be unfolded,
because FPGs are directed acyclic graphs. Moreover, FPGs are not capable of
representing branches or data-dependent loops. However, as we stated earlier,

123

Adding
four values

Introducing
delay nodes
in a graph

Figure 5.6: Examples of equivalent graphs

branches do not appear in matrix algorithms of interest, while data-dependent
loops can be handled by considering a loop with a range sufficiently large.

5.1.7 The equivalence of graphs

The equivalence between two graphs is determined by the following definition.

Definition 8 : Graph equivalence. Two data-dependency graphs P, and P,
are equivalent if they describe the same computation. That is, the same set of input
values in both DGs produces the same set of output values in both DGs.

The equivalence among two data-dependency graphs as defined above is ver-
ified by writing the expressions for outputs in both graphs. Such a definition of
equivalence does not include any requirements in terms of path length or tim-
ing properties in a graph. Examples of equivalent graphs are shown in Figure 5.6,
which depicts alternative ways to add four elements. Note that adding delay nodes
to a graph does not change the corresponding computation.

The definition of equivalence above is used as the basis for the graph transfor-
mations devised in our design method. Consequently, a transformation on a graph
is a valid one as long as it fulfills such a definition.

124

Matrix
Algorithm

Draw fully—paraijet
STEP1 data-dependency graph |eg- - Lemmas
(FPG) 27-28
Obtain muiti-mesh
STEP 2 data-dependenc h = - Lemmas 15-17,
(MMG) Y grap Lemmas 21-26
Detive mesh
STEP 3 data-dependency graph |wge - - Lemmas 5-14
(MG)

!

STEP 4 Realize MG as an array [- - Lemmas 1-4

Figure 5.7: Summary of design method’s formalization

5.1.8 The realization of a graph

Direct realization of the DG of an algorithm is a one-to-one mapping between
the DG and an implementation, such that each node of the graph is realized
as a different PE and each edge of the graph is realized as a different com-
munication link, Consequently, the resulting structure has the same number
of cells and interconnection links as there are nodes and edges in the graph,
respectively.

Perfect realization of the DG of an algorithm is a direct realization that achieves
perfect pipelined execution of the algorithm.

Now that the terminology used in the formalization of our technique to design
arrays has been presented, we can center our attention op the specific steps of
the method. As stated earlier, we follow a bottom-up approach by discussing first
mapping an MG onto an array. The overall organization of this formalization is
shown in Figure 5.7.

125

5.2 Step 4: Realizing a mesh data-dependency graph as an array

In our method, the step closer to an implementation corresponds to realizing
a mesh data-dependency graph (MG) as an array. We present now the conditions
for such a realization and the impact of those conditions on the utilization of cells
in the resulting array. As will be inferred from the discussion here, the mesh
dependency-graph is equivalent to the G-graph used in Chapter 4.

Lemma 1 Consider a mesh date-dependency graph that describes one instance
of a multiple-instance algorithm. Such an MG is perfectly realized as an array
if input data for different instances of the algorithm is accessible as needed (i.e.,
always available).

Proof: A CMG or IMG has nodes distributed on a two-dimensional grid struc-
ture with dependencies in unidirectional nearest-neighbor fashion. Consequently,
such an MG is directly realized as an array by assigning node n(z,7) to processing
element PE(7, j) and edge €(i,5),(k,t) t0 an interconnection link between PE(z, j) and
PE(k,[). Since dependencies in the CMG or IMG are unidirectional, communica-
tion links in the array are unidirectional.

Moreover, due to the dependencies in the MG, each cell of the array initiates
computation of its associated node delayed a number of time-steps with respect to
neighbor cells upstream the flows of data (the delay depends on the size of local
memory in cells). Consequently, computation advances through the array as a
wavefront that moves at the same rate along the two dimensions, as illustrated in
Figure 5.8b. Data is input to the array in skewed manner following the computation
wavefront, as also depicted in Figure 5.8b, and intermediate data flows in pipelined
mode through the array.

Since the computation wavefront for one instance of the algorithm and the
associated intermediate data move through the array, a new instance is initiated
without delays as long as input data is available. Such a case is illustrated in
Figure 5.8c. Consequently, the MG is perfectly realized as an array. =

Lemma 2 An array that implements a perfectly realized mesh data-dependency
graph achieves utilization U = 1 if and only if all nodes have the same computation
time.

126

al

ad

Bl b2 b3 b (f=3= === mm e
Plotsm = —— = - b2 = - e -
'
N
(] 1)
I
(|) 4
|| 1
ot
I |q2.
I g (]
I
a3 |
| 1] I
!
I vz y3 oy aj‘!“
(a) Mesh graph (b) Realizing mesh o mm mm
graph as an ammay om Em g3
o my idle
yi cycie
. . .
. . .
bl ® b2 & p3 e 4y
t=4= = = = « bl= = b2= — b3= = pq— -
P =3~ =—=bl= —b2— —p3— ~mme- ~
I | t=2=~=bl = =42 — -emm— -mm— -
I
I
i 1
UL
alalalal
1Y) : : :
a2a2alal
Y g
U |
a3a3a3
L
see |
a4|4i.
(c)Realizing multiple instances DR A £ e £ e T
of mesh graph as an array 6=7 = -yl- = -y2- = -y3 — -ya- -

=6 —-yl'=-y2 —eyd = <=
=S — eyl meypm S —m e

t=4 ~oyliem—emmme o

Figure 5.8: Realizing a mesh graph as an array

127

Proof: Necessity: Consider an MG with T nodes, where each node has compu-
tation time 7(%,j) = 7,. Since each node is realized as one cell of the array, the
number of cells is K = T, and throughput is T,, = 7!, Consequently,

E}:l t(]) _ TTO TTO

U= - =
K/T, K/T,, Tn

Sufficiency: If an array has utilization U = 1 it implies that all cells are used
all the time while executing multiple instances of the algorithm. Consequently, all
cells must perform operations of the same duration. Since each cell corresponds to
one node in the MG, then all nodes have the same computation time.]

We have described the realization of a mesh dependency-graph as an array.
Moreover, we have identified the condition under which such a realization produces
optimal utilization of cells in the resulting array. The MG used here is equivalent
to the G-graph used in Chapter 4. The only apparent differences are that nodes
in a G-graph are composed of many primitive nodes and produce many outputs,
while nodes in an MG have been described as single operations with a single output
in each direction. However, if we schedule primitive operations in the G-graph and
regard the resulting sequence of operations as a single one with a set of outputs,
then G-graph and MG become the same description. Such an equivalence will be
discussed in detail in the next section.

Given the formalization developed so far, we can move one step higher in our
method and look into mechanisms that allow deriving a mesh-dependency graph.

5.3 Step 3: Transforming a multi-mesh data-dependency graph into a
mesh graph

The next step in our method considers that an algorithm is described by a
three-dimensional data-dependency graph. We state here the process to convert
such a three-dimensional graph into a mesh dependency graph. Moreover, we
indicate the impact of graph properties on characteristics of the array obtained,
according to the discussion in the previous section.

Definition 9 : A prism of size p by ¢ by n in an MMG is a prism
originating at location (i,,J,, k,) in the three-dimensional space that encloses all

128

¥ ¥
R v,

(a) Prism of MMG {(b) Scheduling primitive nodes (c) G-node

Figure 5.9: Collapsing a prism of primitive nodes onto a single node

primitive nodes identified by indices (1, §, k) such that i € {is,io+1,...,5,+n},j €
{Jordot+1,...,jot Ptk € {koyko+1,..., ko +q}. In this prism, p is the height of
the base while q is the width.

Figure 5.9a illustrates a prism of size p = 2,q = 2,n = 3. Primitive nodes in a
prism are contained in dependent submeshes of size p by q.

Note that, for a particular multi-mesh graph, is possible to draw prisms along
the three dimensions and not only along the Z-axis as indicated above. However,
one can always rotate the multi-mesh graph (or rename the axes) so that prisms
appear along the Z-axis. In the remaining of this chapter, and unless explicitly
stated otherwise, we assume that prisms are drawn as defined above.

Lemma 3 The primitive nodes enclosed by a prism in an MMG are equivalent
to a single node (i.e., a G-node) whose functionality corresponds to the sequential
ezecution of the primitive nodes. Such a sequencing is determined by a schedule
that does not violate the dependencies between primitive nodes in the MMG.

Proof: Consider dependent submeshes of an MMG, each one consisting of p by
g primitive nodes that belong to the same mesh of an MMG, as illustrated in
Figure 5.9a for p = ¢ = 2. For those submeshes, select a schedule that does
not violate the dependencies between primitive nodes, such as the one depicted
in Figure 5.9b. In this schedule, all nodes in horizontal paths of the prism are
executed before advancing to nodes in a lower horizontal path, and a complete
mesh is executed before advancing to an inner mesh.

129

Let us analyze first one submesh, as illustrated in Figure 5.10a for p = q = 2.
Any submesh is equivalent to a sequence of pg dependent nodes that follows the
schedule of primitive nodes, as depicted in Figure 5.10b for the mesh in Fig-
ure 5.10a. In this sequence, (p — 1) dependencies (i.e., edges) are added to enforce
the schedule chosen. The new graph may be collapsed onto an equivalent single
node whose computation time is pgn, has (p + ¢) input edges plus (p + g) out-
put edges, as depicted in Figure 5.10c for the sample mesh considered. There are
p incoming and p outgoing edges horizontally, while g incoming and ¢ outgoing
edges flow vertically. The resulting node is also equivalent to a node where all
edges flowing along one direction are multiplexed through a single edge, both at
inputs and outputs. This transformation is shown in Figures 5.10d for the node
in Figures 5.10c. The multiplexing/demultiplexing process as well as the internal
data transfers are control functions that may be hidden from outside, leading to a
node such as the one depicted in Figure 5.10e. This node has a single input and
a single output edge in each direction, which carry sequences of p and ¢ value,
respectively.

Similarly, each p by ¢ submesh in the prism is equivalent to a single node whose
functionality corresponds to the sequential execution of primitive nodes. All such
nodes compose a sequence of directly dependent nodes which can be collapsed onto
an equivalent single G-node, as the one depicted in Figure 5.9c¢.

The single node representation is equivalent to the set of primitive nodes en-
closed by a prism in an MMG, because identical inputs deliver the same outputs
although at different time. a

Note that arrival of data to nodes in Figure 5.10b is not synchronized. For ex-
ample, the output from node n(1) arrives at the same time to nodes 7(2) and n(3).
However, according to the schedule chosen and the corresponding added depen-
dency, n(3) is executed after n(2). Such synchronization problems are discussed in
Section 5.5.4.

Corollary 1 The computation time of a G-node is the sum of the computation
times of primitive nodes in the corresponding prism. Moreover, if primitive nodes
in a prism correspond to different operations, then the resulting G-node has to
perform several operations.

Proof: By Lemma 3. u

130

=9
1
YR
4
L.

u v
(a) Submesh {c) Single node
(b) Sequential graph
[
b
d a — o
da 8 ts
-t s o
@) Demuitipiexort
multiplexor
@ nodes
Y
v u
u
{d) Node with multiplexed
input/output (¢) Node

Figure 5.10: Collapsing neighbor nodes from a mesk onto a single node

131

From the lemma above, we can devise an important graph transformation, as
discussed below.

Definition 10 : Grouping-by-prisms in an MMG (or grouping for short)
is the process of reducing the number of nodes in the MMG by collapsing prisms of
primitive nodes onto nodes. Each of such prisms is collapsed onto a single node (a
G-node). Moreover, grouping-by-prisms reduces the MMG to a two-dimensional
graph.

We use now Definition 10 to collapse an MMG onto an MG, as follows:

Lemma 4 A multi-mesh dependency graph (MMG) is equivalent to a mesh de-
pendency graph (MG) obtained by the procedure grouping-by-prisms.

Proof: From Lemma 3, a prism of primitive nodes is collapsed onto an equivalent
single G-node. Let us allocate all primitive nodes in the MMG to parallel prismas.
That is, let us enclose all primitive nodes in the MMG with prisms of size p
by g by n (where n is the size of the MMG), though prisms are not required to
include the same number of primitive nodes in the case of IMMGs. Since prisms are
parallel, they are distributed across the MMG in a nearest-neighbor mesh structure.
Consequently, performing the procedure grouping-by-prisms reduces such prisms
to G-nodes that are also placed in a nearest-neighbor mesh structure, and the
resulting graph is a mesh graph. Moreover, the resulting graph is equivalent to the
original MMG, because both deliver the same outputs. u

As a particular case, grouping an MMG by prisms of size 1 by 1 by n cor-
responds to projecting the three-dimensional MMG onto a two-dimensional MG

along one axis. Figure 5.11 depicts such a grouping along the three axes of an
MMG.

Lemma 5 Grouping-by-prisms in a CMMG along any ezis leads to a CMG where
all G-nodes have the same computation time.

Proof: All paths of the CMMG along any axis have the same length. Con-
sequently, G-nodes obtained by grouping are composed of the same number of
primitive nodes. Therefore, all G-nodes have the same computation time (i.e., the
same number of primitive operations to perform). |

132

Figure 5.11: Grouping-by-prisms of size 1 by 1 by n in a CMMG

Corollary 2 Grouping-by-prisms in an IMMG may lead to an MG where G-nodes
do not have the same computation time.

Proof: The paths of the IMMG along at least one dimension do not have the
same length (otherwise the graph would be a CMMG). Consequently, grouping
along such a dimension leads to G-nodes with different computation time. |

The definition of grouping explicitly states that such a grouping should be per-
formed along axes of the three-dimensional space. The following lemma discusses
the drawbacks that appear when grouping along other directions.

Lemma 6 Grouping-by-prisms in an MMG along a direction other than azes of
the three-dimensional space produces a two-dimensional graph with bidirectional
flow of data. Moreover, the resulting graph has G-nodes with different computation
time when the original MMG is a CMMG.

Proof: Consider grouping-by-prisms along a direction other than the axes. Let us
assume that such a grouping is as depicted in Figure 5.12a, where nodes have been
tagged with a number identifying the prism that encloses them. As a result, there
are paths going, for example, from prism 1 to prism 3 and then back to prism
1 (such a path has been highlighted in Figure 5.12a). Consequently, grouping
along a direction other than the axes leads to neighbor prisms connected by edges

133

(b) Bi-directional flow of data in G-nodes (c) Prisms of different length in CMMG

Figure 5.12: Grouping along directions other than axes

pointing in both directions, as illustrated in Figure 5.12b. When collapsing such
prisms onto G-nodes, those edges become edges of a two-dimensional graph with
opposite flow of data.

By Lemma §, if the MMG is a CMMG then grouping along any axis implies
selecting prisms of the same length, namely n. In contrast, grouping along other di-
rection leads to prisms that do not have the same length, as shown in Figure 5.12c.
Consequently, the number of primitive nodes enclosed by the prisms (i.e., p by ¢ by
length of prism) is not constant. Since the number of primitive nodes determines
computation time of G-nodes, then G-nodes have different computation time. =

Lemma 6 indicates that an MG derived from an MMG by grouping along a
direction other than one axis is less convenient in devising an array. Drawbacks
in such a case are implementation complexity, due to the need of more ports in
a cell, and utilization of the resulting array, because even for a CMMG G-nodes
have different computation time. The only cases where grouping along a direction
other than an axis might be convenient are:

134

* When specialized cells are desired in an array for an algorithm that includes
different primitive operations (i.e., cells that perform different operations).
In such a case, it might be possible to select a direction for grouping that
leads to prisms containing only one type of primitive nodes, at the expense
of bidirectional flow of data jn the G-graph and consequently more commu-
nication ports in array cells.

¢ Whenever is possible to find a direction that leads to prisms with the same
number of primitive nodes in an algorithm represented by an IMMG, or
whenever is possible to find a better distribution of primitive nodes per prism
than by grouping along an axis. Such cases would lead to better utilization
of cells than grouping along axes.

Note that the two cases above are highly algorithm dependent, and one cannot
develop a general procedure or technique based on them. In the remaining of this
chapter, unless explicitly stated otherwise, we assume that an MG derived from
an MMG is obtained by grouping along axes of the three-dimensional space.

9.4 Properties of cells that depend on the grouping process

Grouping determines several important parameters of cells in an array derived
from an MMG, such as utilization, local storage, pipelining and operations per
cell. We discuss these issues in the following sections.

5.4.1 Utilization of cells

Lemma 7 4 mesk dependency-graph (MG) derived from a complete multi-mesh

dependency-graph (CMMG) is perfectly realized as a complete array with utilization
U=1.

Proof: Grouping-by-prisms in a CMMG is done by selecting parallel prisms along
any of the axes X, Y, or Z. By Lemma 5, grouping leads to G-nodes that have the
Same computation time. By Lemma 2, the resulting CMG is perfectly realized as
a complete array with utilization I = 1. L]

Lemma 8 A mesh data-dependency graph (MG) derived from an incomplete multi-
mesh data-dependency graph (IMMG) is perfectly realized as an incomplete array

135

with utilization U = 1 if and only if all prisms have the same number of primitive
nodes.

Proof: Necessity: If all prisms have the same number of primitive nodes, then
grouping such prisms leads to G-nodes with the same computation time. However,
since the graph is an IMMG all such G-nodes do not constitute a complete mesh
(otherwise it would be a CMMG). Therefore, the resulting graph is an IMG that
has all nodes with the same computation time. By Lemma 2, such an IMG is
realized as an incomplete array with utilization I/ = 1.

Sufficiency: If the incomplete array has utilization U = 1 then all cells in
the array execute operations with the same computation time. Such operations
correspond to G-nodes of a graph. In turn, G-nodes correspond to the sequential
execution of a set of primitive nodes. Since all G-nodes have the same computation
time, and since the computation time of all primitive nodes is the same, then G-
nodes are composed of the same number of primitive nodes. |

Corollary 3 A mesh date-dependency graph obtained from an incomplete multi-
mesh data-dependency graph by prisms with different number of primitive nodes is
perfectly mapped onto an array with utilization U < 1.

Proof: By Lemma 8.]

From the two lemmas above we infer the condition for realizing an MMG as an
array with utilization U = 1, namely the selection of prisms with the same number
of primitive nodes. However, if such an optimal mapping is not feasible due to
characteristics of the MMG, we would like to know how to perform grouping so
that utilization is maximized even though it does not reach U = 1. The following
lemma addresses this issue.

Lemma 9 Let R be an array that implements an MMG with utilization Ug < 1
and throughput Tp = 1/t; (that is, the busiest cell computes t ¢ operations and all
G-nodes have computation time 7(1,j) < ¢ 1). Ur i3 mazimized when the number
of G-nodes in the corresponding MG is minimized.

Proof: Utilization is given by Ur = N7/(Kt;). For a given algorithm, the number
of primitive operations N is fixed and all operations have the same computation
time 7. Moreover, for a given throughput T = 1/t,, the maximum computation

136

time per cell is ¢;, also fixed. Consequently, maximizing Uy requires to minimize
K, the number of cells in the array. Since realizing an MG as an array produces
as many cells as G-nodes in the MG, maximizing utilization corresponds to minj-
mizing the number of G-nodes. |

5.4.2 Types of operations per cell

Lemma 10 Let R be an array that realizes an MMG. The operations that a cell
in R has to compute (i.e., the complezity of a cell) are given by the functionality
of primitive nodes that are enclosed in e prism when performing the procedure
grouping-by-prisms.

Proof: From Lemma 3, a prism of primitive nodes is equivalent to a G-node
whose functionality is given by the sequential execution of all primitive nodes in
the prism. Since a G-node is realized as a cell, the different primitive operations
I a prism determine the computing capabilities required in the cell. |

Lemma 10 provides a criterion to select prisms based on cell complexity. For
example, to devise an array where cells perform a single operation it is necessary
to find prisms in the MMG that contajn only one type of primitive node. It should
be noted that such a choice may not always be possible.

5.4.3 Storage per cell

Lemma 11 Let R be an array that implements an MMGC. Define

o CS(t): cut-set in a prism of primitive nodes that includes all nodes ezecuted
up to time t.

o E.ui(t): set of edges in CS(t) that leave the prism (i.e., edges that reach a
destination node outside the prism).

® [S|: cardinality of set S.

Local storage required by a cell in R is given by

Cu = max[CS() - Eouy(t)

137

cut-set

Figure 5.13: Cut-set of primitive nodes executed up to time ¢t = 12 in a prism

Proof: A cut-set in a prism of an MMG that includes all nodes executed up to a
given time t consists of edges directed from nodes already executed towards nodes
that are scheduled for later execution, as depicted in Figure 5.13. All such edges
carry values that are needed for the execution of the corresponding destination
nodes within the prism, excepting those that leave the prism which correspond to
data transferred to other cells.

At time ¢ + 1, one primitive node from within the prism is executed and values
carried by edges incident on such a node are used; values in all remaining edges
must be saved for later use. Consequently, a cell that implements the prism must
save in local storage all values from edges arriving to nodes within the prism, while
edges leaving the prism do not need to be saved. The size of this storage is given
by the maximum cardinality of a cut-set after removing from it those edges leaving
the prism. n

Corollary 4 Grouping-by-prisms, with prisms of the same base size, leads to the
same or higher storage requirements for a complete prism than for an incomplete
one.

Proof: Consider an incomplete prism with base size p by ¢ (i.e., the maximum
number of primitive nodes in one mesh within the prism is p by ¢), and also a
complete prism with the same base size. Moreover, consider the same schedule
of primitive nodes in both complete and incomplete prisms. The cut-set that
includes all nodes executed up to time ¢, for both complete and incomplete prisms,
is depicted in Figure 5.14. Since an incomplete prism is obtained by removing
some nodes and edges from a complete one, the cut-set in the complete prism

138

(a) Cut-set in incomplete prism {b) Cut-set in complete prism

Figure 5.14: Cardinality of a cut-set in complete and incomplete prisms

has the same number or more edges than in the incomplete one (equal or larger
cardinality). n

An IMMG has incomplete prisms but it may also have a complete (or almost
complete) one in the denser portion of the graph. Moreover, the incompleteness
may exist only at one end of the prism while the rest has the structure of a
complete prism. Consequently, since a complete prism requires the same Or more
storage than an incomplete one, we can focus on determining the amount of storage
required for a complete prism, as discussed below. The same situation is true for
determining the bandwidth required by a cell, or the suitability of a cell for using
a pipelined functional unit, as discussed later.

Lemma 12 Let R be an array that realizes a CMMG. Scheduling primitive nodes
by meshes of size p by q in the corresponding prism leads to the minimum amount
of storage required in a cell, Moreover, this amount is

Co=gq(p+1)

and the contents of this storage are accessed in First-in First-out (FIFO) manner.

Proof: From Lemma 11, the amount of storage required at time ¢ is given by a
cut-set in the prism that includes all primitive nodes executed up to ¢t. Such a cut-
set may be regarded as a surface that partitions the prism into two disconnected
graphs, and storage locations are associated to edges of the prism that are incident
on the surface. Surfaces parallel to a mesh of the prism lead to lower number of

139

(b) Scheduling nodes by meshes

{c) Cut-set that determines storage requirements

Figure 5.15: Determining local storage in a cell from a prism

edges incident on the surface, because only edges along one axis are incident on
it. In contrast, surfaces that are not parallel to a mesh cut across edges that flow
along two axes of the MMG, as shown in Figure 5.15a. Consequently, to reduce
the amount of storage required one should schedule all primitive nodes in a mesh
of the prism before moving to another mesh. Moreover, one should select meshes
as small as possible.

Since the size of the prism is p by ¢ by n, possible sizes of surfaces parallel to
a mesh are p by ¢, p by n, and ¢ by n. The smallest of these is p by ¢ because
n > p,q. Consequently, obtaining a cut-set corresponding to a surface parallel to
meshes of size p by ¢ can be accomplished by scheduling primitive nodes by meshes
of the same size, as depicted in Figure 5.15b.

Assuming the schedule shown in Figure 5.15b, the storage required by a cell is
given by a cut-set that includes all primitive nodes in an horizontal (vertical) path
of the p by ¢ mesh ¢, and all primitive nodes in the remaining horizontal (vertical)
paths of the predecessor mesh (i — 1), as shown in Figure 5.15c. This amount
of storage corresponds to that needed to save data in edges flowing vertically

140

from nodes in mesh ¢, and in edges flowing horizontally from meshes ; and i — 1.
Scheduling any other node from mesh i removes as many edges from the cut-set
as it adds to it, so that the storage requirements do not increase. Therefore, the
amount of storage required is

Co=pg+q=gq(p+1)

because there are pq edges flowing horizontally and g edges flowing vertically in
the cut-set in Figure 5.15¢.

Moreover, both horizontal and vertical flows of data are used separately so
that local storage may be implemented as two independent modules of size pgq and
g4, respectively. Since the scheduling order within meshes is the same through-
out all meshes, data is sent to each local storage module in the same order that
it is retrieved. Consequently, the addressing pattern for these storage modules
corresponds to that of First-in, First-out (FIFO) buffers. |

5.4.4 Cell bandwidth

Lemma 13 Let R be an array that realizes a CMMG. Communication bandwidth
through ports of a cell in R that ezecutes a G-node scheduled as indicated in
Lemma 12 is

Chw = 1/q , Chw = 1/p

Proof: A cell that implements a G-node executes primitive operations in the
corresponding prism scheduled by meshes of size p by ¢, where p is the height of
the prism base and ¢ is the width. Edges going into a prism correspond to data
that arrives to a cell. Such a cell reads an input value (i.e., an incoming edge to
the prism) and performs ¢ operations before reading another input value from the
same side of the prism, as shown in Figure 5.16. Consequently, C&,,, = 1 /q.

Similarly, the cell reads an input value from the other side of the prism and
then performs p operations before reading another value from such a side, leading
to Chw = 1/p.

Expressions identical to those above are obtained for output ports. |

141

v ' v == transmittent data

\ o comm. ports — —% dependent data
Figure 5.16: Cell bandwidth and pipelining

5.4.5 Cell pipelining

Lemma 14 Let R be an array that realizes a CMMG. A cell in R that realizes a
G-node scheduled as indicated in Lemma 12 may have a pipelined functional unit of
up to q (p) stages if the flow of data parallel to the side of the prism that determines
q (p) is transmittent data.

Proof: We know that a cell that realizes a G-node executes primitive operations
in the corresponding prism scheduled by meshes of size p by ¢. Such a cell may ini-
tiate operations in a pipelined functional unit at successive time-steps if there are
data-independent operations ready for execution. Primitive operations connected
by transmittent data are data independent and therefore suitable for pipelined
execution. Consequently, scheduling operations by following the flow of transmit-
tent data allows initiating operations in a pipelined functional unit at successive
time-steps, as is inferred from Figure 5.16. =

In this section, we have described transforming an MMG into an MG suitable
for perfect realization as an array. We have also stated that such a realization leads
to arrays with utilization U = 1 if all G-nodes have the same computation time.
Moreover, we indicated that maximizing utilization when G-nodes have different
computation time requires minimizing the number of G-nodes. In addition, we de-
scribed how characteristics of cells in an implementation (i.e., operations, storage,
bandwidth, pipelining) are inferred from the prisms that define the G-nodes. Con-
sequently, if a matrix algorithm is described in terms of an MMG, then its perfect

142

realization as an array is straight-forward and the performance of the array may
be evaluated ip advance.

Therefore, the process of transforming an MMG into an MG is driven by imple-
, cell complexity, storage per cell, cel]

mmplementatjon constraints. Such constraints are Incorporated into the method,
as described in this section.

The next step in the formalization consists of a procedure to derive an MMG
from a description of an algorithm that is less regular, namely an FPG,

3.5 Step 2.2: '.I&'ansforming a three-dimensional graph into an MMG

An MMGis characterized by specific properties, in particular unidirectional and
nearest-neighbor dependencies in a three-dimensional space. On the other hand, a
fully-parallel data.—dependency graph does not necessarily exhibit such character-
1stics. Consequently, we need to provide transformations that will remove from an
FPG properties that do not exist in an MMG, These undesirable characteristics,

¢ data broadcasting
* bidirectional dependencies
¢ non nearest-neighbor dependencies

We consider first transforming a three-dimensional graph into an MMG. In the
next section, we discuss how the three-dimensional graph is obtained from the
FPG.

143

?

Figure 5.17: Example of broadcasting and transmittent data

5.5.1 Eliminating data broadcasting

The approach to deliver broadcasted data to several destinations in a graph
cousists of transferring data through nodes. Such an approach increases the latency
of an algorithm, but it does not affect throughput. Removing data broadcasting
1s performed as indicated below.

Definition 11 : Transmittent data is date that propagates through nodes of
a graph without being modified [Kung88c|.

Definition 12 : Transmittent node is a node that uses a transmittent data
element for local computation and delivers such a data in addition to the result of
the computation within the node. Consequently, transmittent nodes produce more
than one output.

Lemma 15 Transmiitent data and transmittent nodes are a suitable mechanism
to tmplement data broadcasting.

Proof: Broadcasting originates data in one node and delivers that data to several
nodes, as depicted in Figure 5.17a. This graph is equivalent to the graph shown in
Figure 5.17b, where highlighted nodes are transmittent nodes. Data going through
transmittent nodes without being modified corresponds to transmittent data. The
original graph exhibiting broadcasting has been transformed into an equivalent
graph with transmittent data, so transmittent data and transmitted nodes are a
suitable mechanism to implement broadcasting. =

5.5.2 Eliminating bidirectional dependencies

An MMG has unidirectional dependencies between nearest-neighbor nodes. In
contrast, a three-dimensional graph of a matrix algorithm with nearest-neighbor

144

O

(b) Graph with bi-directional
(a) FPG transmittent data

Figure 5.18: Bidirectional dependencies in a graph

edges may have bidirectional dependencies arising from transmittent data (i.e.,
after eliminating broadca.sting). Note that these bidirectional dependencies ap-
pear only when one edge reaches more than one destination, that 1s, only with
broadcasted data. F igure 5.18 depicts an example corresponding to one mesh in
a three-dimensiona] graph. In this figure, nodes to the left of the main diago-
nal receive transmittent data from the right, while nodes at the right receive the
same transmittent data from the left. Although the structure of the graph in Fig-
ure 5.18b is a mesh, dependencies do not fulfi]] the requirements of an MG and
consequently the entire graph is not an MMG,

Definition 13 : Movable subgraph in a mesh graph is a subgraph where

o all horizontql incoming and oulgoing edges carry transmittent data.
o all vertical incoming edges carry transmittent data that is also available as
horizontal edges.

Figure 5.18b shows examples of movable subgraphs. Note that transmittent
incoming edges in the vertical direction also appear as transmittent data in the
borizontal direction.

Lemma 16 4 three-dimensional graph writh nearest-neighbor connections and bidi.
rectional dependencies may be transformed into an MMG +f, in each mesh along

one azis, all nodes at one side of the source of transmittent data qre part of a
movable subgraph.

145

Source of =go. TFansmittent —» Computational
transmittent data data path path

Figure 5.19: Transforming bidirectional transmittent data

Proof: If all nodes at one side of the source of broadcasting belong to movable
subgraphs, then the only possible dependencies between those subgraphs arise from
transmittent data. By definition, transmittent data is available elsewhere in the
graph, in particular at the other side of the source of such a transmittent data.
Consequently, it is possible to move the movable subgraphs (hence their name) to
the other side of the source of transmittent data so that bidirectional dependencies
are eliminated, as depicted in Figure 5.19. |

5.5.3 Removing non-nearest neighbor dependencies

An MMG has dependencies only between nearest-neighbor nodes. In contrast,
a matrix algorithm represented as a three-dimensional graph might have edges
between nodes located distant from each other. This problem is solved by applying
the following definition and lemma:

Distance between directly dependent nodes n(t, 7, k) and n(p, ¢, r) in a three-
dimensional graph is given by:

6[(%]: k)s (T,S,’U)] = (1" - 3) + (5 _.7) + (U - k)

Since dependencies in MMGs are unidirectional, indices of a destination node
have values larger or equal than a corresponding source node, and distance is
always greater than zero. Moreover, dependencies in an MMG have § = 1, that is,
nearest-neighbor dependencies.

Lemma 17 Non-nearest neighbor dependencies in a three-dimensional graph are
removed by adding delay nodes.

146

Proof: Consider first the case of nodes n(i, 7, k) and n{i,j,!) at distance 6 = r
in the same mesh of a three-dimensional graph. Consequently, there are r — 1
missing nodes in the path from n(:,j, &) to n(i,7,1). If the positions of miss-
ing nodes are filled with delay nodes, then the edge e ;) (s1) becomes the path
[e(i,j,k),(i,j.kl),e(t’,j,kl),(i,j,k;)a- ey e(f,.‘i.kr_xl.(i'j.l)]' Nodes now have § = 1. The same
process is repeated to fill vacant positions when a dependency traverses different
meshes along the remaining dimensions of the graph. By the definition of equiv-
alence, the graph resulting after adding delay nodes is equivalent to the original
graph. Since the resulting graph has dependencies with § = 1, it has been trans-
formed into one with nearest-neighbor dependencies. u

3.5.4 Synchronizing arrival of data to nodes

The correct execution of a matrix algorithm in an array requires that all
operands for a given operation are available in a cell at the right time. That
15, data arrival to cells must be synchronized. Since arrays are derived from the
multi-mesh graph description of an algorithm, synchronized arrival of data to cells
18 a result of the distribution of nodes and edges in the three-dimensional space.
We discuss such an issue now.

Lemma 18 Arrival of data to nodes in a multi-mesh dependency graph is syn-
chronized.

Proof: Nodes in a multi-mesh graph are identified by three indices as n(, j, k).
Assume that node n(1,1,1) is executed at time ¢,(1,1,1) = 0 (such a node does
not depend on any other node), and that computation time of nodes is 7. Due
to the dependencies in the CMMG, the time at which node n(z, j, k) is ready for

execution is determined by the distance between this node and node n(1,1,1).
That is,

tt(ivj, k) = 6[(i&j’ k)a (1,1,1)]1‘ = [(z - 1) + (J - 1) + (k - I)JT

because that is the length of the path from n(1,1,1) to n(, 7, k) and each node
takes time 7.

Consider node n(r, s,v) which, according to the expression above, is ready for
execution at time [(r — 1) + (s — 1) + (v — 1)]7. Assume that node n(r,s,v) is

147

a predecessor of n(z, 7, k) so that there is a path from n{r,s,v) to n(4,j,k). The
length of this path is

6[(T?S~v)=(i1jak)] = (Z - r) + (.7 - '5) + (k - v)

so that a data element originating from n(r, s, v) arrives at n(z, j, k) at time

tare(r,8,0) = [(r-1)+(s—1)+(v—1)]r+[(i—r)+(j—s)+(k-v)]r
= [i-D)+G -1+ (k-1)r

This value corresponds to the time at which n(i, 7, k) is ready for execution. Con-
sequently, all data elements needed for execution of node n(z, j, k) arrive simulta-
neously (i.e., synchronized) at that node. |

Lemma 18 above states that, in a multi-mesh graph, data arrives to nodes at
the adequate time so that synchronized data arrival is guaranteed. Consequently,
removing non-neighbor dependencies according to Lemma 17 also achieves data
synchronization in a multi-mesh graph.

5.6 Step 2.1: Transforming the FPG into a three-dimensional graph

We prove now that a matriz algorithm can always be represented as a three-
dimensional data-dependency graph with unidirectional flow of data along azes of

such a graph. This three-dimensional graph is suitable for transformation into an
MMG.

First, the existence of such a three-dimensional graph is proven for an algorithm
composed only of scalar operations. This case corresponds to unfolding completely
the loop-body of the matrix algorithm and ignoring the structure of matrix and
vector operators. However, the three-dimensional graph for such a set of scalar
operations may contain many delay nodes, so that it is not suitable for imple-
mentation in an array. Consequently, after the existence of the three-dimensional
graph is proven, we discuss how considering vector/matrix operators as part of
the algorithm simplifies drawing the three-dimensional graph and leads to regu-
lar representations with few delay nodes. As a result, only the latter part of the
formalization is used afterwards as the mechanism to transform an FPG into a
three-dimensional graph.

148

delay
node

Lemma 19 [t s always possible to transform the FPQ of a matriz algorithm so
that an output from one node goes to an input with the same name (i.c., left output
to left input, and so on).

Proof: Inputs and outputs to/from a node may be ordered in any manner. Let
us call o(n,) and i(ns) an output from node n1 that is also an input to node n,,
respectively, where o, ; may be either of {left, center, right}. Assume that o(ny)
and 1(n,) are different names. In that case, one can add a delay node d between
nodes n;, n,, an edge from n, to d and another edge from d to 7z in such a way

* o(n:) and i(d) have the Same names, where i(d) is the input to node d
* o(d) and i(n;) have the same names, where o(d) is the output from node 4

This process is graphically depicted in Figure 5.20. Consequently, resulting inputs
and outputs always have the same name. From Definition 8, the resulting graph
is equivalent to the original graph. =

We refer to edges that go from output to input of the same name as left-left,
center-center and right-right edges. Moreover, we draw graphs in such a way that
a center-center edge always goes from one node to a node immediately below it,
without crossing another center-center edge. In contrast, left-left and right-right
edges may cross each other and may also cross center-center edges, as shown in
Figure 5.20.

In the rema.ining of this chapter, unless explicitly stated otherwise, we assume

149

v, v v. v - - -
2 1 n
‘ ‘ eee ‘ soe ‘ wm oy crossover §
(a) Parallel flows of data (b) Routing primitives
v 1 V2 v 1 v n
cee see
v,l Py =1
(c) Selecting first output
v 1 V2 v i VJ- v n

v toe see eee
~EH- ~H —
. * (e) Sorted vertical output

Be I
(d) Routing triangle _" "EH"

¥ Voeee § see y oo ¢

. f o
[02 Ol OJ n

Figure 5.21: Rearranging the flow of data in a plane

that edges go from an output to an input that have the same names. Moreover,
we assume that center-center edges do not cross each other.

Lemma 20 A set of parallel flows of data is sorted in any order in a triangular
orthogonal set of intersections with unidirectional data flow.

Proof: Consider n flows of data along vertical parallel lines vy, vq,...,v, of a
plane, as shown in Figure 5.21a. Assume also that the desired output order is
P1,P2,---,Pa (i.e., vy must appear in position p, in the output, and so on), where
outputs are numbered from left to right. Moreover, consider two routing primitives:
crossover and turn, as depicted in Figure 5.21b.

We first prove that n — 1 routing primitives placed in a row allow extracting
data element v; with p; = 1 from the n data flows. For such purposes, let the
leftmost element of the input data (i.e., v;) flow horizontally until it intersects

150

with v; flowing vertically, as depicted in Figure 5.21c. At this intersection, place
a turn primitive so that v, flows vertically and v, flows horizontally. Let v; fow
horizontally until jt reaches the rightmost end of the parallel flows of input data.
Moreover, let all remaining data fow vertically by placing crossover primitives in
their intersection with vy or v; flowing horizontally, as also shown in Figure 5.21c¢.
This process leads to a rowofn—1 routing primitives, with data element v, flowing
horizontally at the end of such a row, and the remaining n—1 data elements flowing
vertically. In case that v; = U1, then the (n — 1) routing primitives are crossover.

The process above is now repeated for the remaining (n — 1) vertical flows of
data, leading to a row of (n—2) routing primitives and data v; (with p; =) flowing
horizontally, and so on until all data has been sorted in the desired order. The
entire process leads to a set of routing primitives interconnected in a triangular

Data flowing horizontally can be made to flow vertically again, as illustrated
in Figure 5.21e. Consequently, data has been sorted in an arbitrary order by a set
of orthogonally connected routing intersections and unidirectional flow of data. m

azes of such a space.

Proof: Consider the fully-parallel data-dependency graph of a matrix algorithm
whose loop-body has been completely unfolded so that it consists only of scalar
operations (i.e., we ignore the structure of matrix operators within the loop-body).
Consider also the structure (or Tepetitiveness) among iterations which appears as
a result of executing the same loop-body for as many times as the range of the
outer loop. Figure 5.22a depicts the type of structure that 1s found in this case.

The loop-body consists of several levels of nodes, as shown in Figure 5.22a.

151

lteraton 1+1 I Iteration 1+1 |

|

K 2 ° Yy Y Y Y VY YY ¥ ¥ IVVVY

{ Iteration 1+] lteration 1+2 |
v

|
v WYYY VYV VY YY VOV YVWYY v v
(a) (b)

Figure 5.22: Fully-parallel graph of an algorithm with scalar operations

Applying the transformation described in Lemma, 19 leads to a graph where nodes
are connected by edges with the same names (i.e., left-left, and so on). Moreover,
center-center edges do not cross each other. In addition, we consider that all
edges between two iterations of the loop body do not intersect (i.e., intersections
of edges occur inside the graph of the loop body). These aspects are illustrated in
Figure 5.22b, which depicts the loop-body resulting from Figure 5.22a.

Allocate each named input/outputs flows to one axis in a three-dimensional
space. That is, allocate left-left edges to flow along the X-axis, center-center edges
to flow along the Z-axis, and right-right edges to the Y-axis, as illustrated in
Figure 5.23. With this allocation of edges, each level of the graph is represented in
the diagonal of a plane where the different flows of data intersect. Consequently,
all levels together (i.e., all planes) compose a three-dimensional graph.

Consider now the flow of data from level to level of the graph (i.e., from plane to
plane in the three-dimensional space). Qutputs from one plane need to be routed
towards a new set of intersections (i.e., the diagonal of a new plane), as shown in
Figure 5.23. Moreover, outputs from one plane along axes X or ¥ may need to
be routed towards a different position relative to other outputs along such axes
(sorted in order) whenever the corresponding edges intersect in the FPG. However,
edges along the Z-axis do not need to be sorted because they never intersect.

We use the results from Lemma 20 to achieve the required sorting of edges

152

(right)
Yo % Y2 -.b °®
} L

1,”
{center)

Xz — e
h 4
Y Yz’ ¥
2
L

Z
\

Figure 5.23: Flows of data and graph levels in a three-dimensional space

(i.e., reorder data between levels of the FPG). That is, we add routing triangles
along axes X and Y so that edges in each plane are reordered as depicted in
Figure 5.24. In this figure, data along the X-axis reaches the diagoral of a plane
that contains the operations in one level of the FPG. This X-flow leaves computing
nodes along the Y -azis in the same plane as operation nodes, and flows downwards
until reaching the bottom of the area that contains the operations. At that point,
Lemma 20 is applied to rearrange data, so that a triangular mesh of intersections
for routing is introduced, and data exits this part flowing horizontally, as also
shown in Figure 5.24.

A similar processes as the one just described is used for data that reaches
operation nodes flowing along axes Y, as also depicted in Figure 5.24.

Outputs from the reordering above are edges flowing along axes X and V¥ that
intersect at the diagonal of the same plane containing the operations originating
such outputs (say W), as depicted in Figures 5.25a and 5.25b. In contrast, edges
flowing along the Z-axis are available in a different plane of the three-dimensional
space (say W) and in a different (z,y) position, as shown in Figure 5.25¢. To
intersect the flows of data along the three axes, we make edges along X and ¥
flow towards an inner plane (say W,), at the same time that edges along the
Z-axis are routed through plane W;. That is, upon reaching plane W; the Z-
flow switches direction towards the right along the X-axis, and then switches flow
downwards along the Y-axis, all within plane W;. These movements are depicted
in Figure 5.25c. When elements of the Z-flow reach their respective position in

153

Yo Y, Y,
« | 1 emeas > X.flow
X - — Y flow
0 < — e 7 _flow
- O operation
0 : n 77 routing
N wmmgma- 4 jntersection
' » 4
A
I 1: b 4
1
x2 ---..: ----- -:---
: A
1
1
1

5
:
\{

Figure 5.24: Routing data in one plane of the three-dimensional graph

front of the intersection between edges along axes X and Y, they switch direction
once more along axis Z to meet the other two flows.

All data movements above are depicted together in Figure 5.26. Consequently,
two levels of the graph are represented by three planes of a three-dimensional
graph, with unidirectional flow of data only along axes of the three-dimensional
space. Moreover, the entire graph is represented by a three-dimensional graph with
unidirectional flow of data. ' u

The three-dimensional graph in Figure 5.26 has computing nodes only in the di-
agonal of planes. Moreover, every other plane of the graph is used only for routing.
Consequently, operation nodes are not in nearest-neighbor positions. Transform-
ing this three-dimensional graph into a multi-mesh graph by adding delay nodes
leads to a graph with more delay nodes than computing nodes, so that it is not
suitable for implementation in an array. However, the graph in Figure 5.26 was
derived ignoring the structure of matrix and vector operands in the algorithm. In
fact, such a graph was obtained assuming only scalar operations. In what follows,
we show that matrix and vector operands allow deriving a graph with nearest-
neighbor operation nodes which can be converted into an MMG by adding just a
few delay nodes.

Lemma 22 Upon replacing data broadcasting by transmittent data, a vector op-

154

1

2 e

RITW I IR 2 - Nl i N
F N T TRTRRS o L P
F Yt E Yy g g . - “ ._« H ..”.J".

i I i den 3ol . " .

| i L4 _fﬁ.rg b I 1

IR S O IO A]

by [[T]

b= o :.—IM?.?lw.l.vlull—.

P . M) ¢ ') " H -T.IVWIT:L

| b USRS e N U NN EE ST WA SO R 4

NN NN R ey

LA e B s AL T T

H B SRR SRS CEREMBRILS,

& (N IR R I Bl R b B

Gy L W U e 0, U R AR I

) Tn.m Mm 3 ﬂi..u_ _...w,._ 7“4“ 1

i ' e T TR T N1~ f e

] ,Muqqp_,.ﬁ#s”r_..f;l“&sq

9 WA S LIRS [P P U N U T T

Mot =M NLd oS Nl

NU/:L;;L:L.:M:

7._0

-flow

(a) X

W WZ
0

w

(c) Z-flow

Figure 5.25: Movements of flows of data in the three-dimensional space
155

ww..._ = 1 Foroa
' t ; W m ' m u _ ~ _
23 p ! “ “ M L N dn -
EI-S o e s, By —— —-
N ST frab it BN
) P 5 ES T o Lol
TH-L J/C. A DN 3 N m/f“
N A R ol +A——r4—-
do ‘ol..“r.m_ n._“ I
| YAl w1l
Jooo nah W -
i+
I N
I3
-
N

b

w, 7\

g

156

- Transmittent data

A

(a) Vector operator (b) Matrix operator

Figure 5.27: Vector and matrix operators

erator i3 represented as a linear set of nodes distributed along one azis of ¢ plane.

Proof: By definition, a vector operator has up to two independent operands per
primitive operator, and possibly one operand common for all instances of the
primitive operation. Consequently, the common operand, if it exists, can be made
to flow horizontally (or vertically) as transmittent data across primitive nodes
organized as a linear structure in a plane, while the independent data values flow
along axes Y (or X) and Z. Since one input and one output per node are used
for transmittent data, the two remaining input and output are available for two
vector operand inputs and two vector operand outputs, respectively, []

Figure 5.27a depicts a vector operator of size 1 by 4, with transmittent data
flowing along the X-axis.

Lemma 23 After replacing data broadcasting by transmittent data, a matriz op-
erator is represented as q two-dimensional set of nodes.

Proof: By definition, a matrix operator has one operand common for al] instances
of the primitive operation on each row of the matrix, and one operand common
for all instances of the primitive operation in each column of the matrix. Conse-
quently, data broadcasted in a row can be made to flow horizontally, while data
broadcasted in a column can be made to flow vertically, both as transmittent data;
primitive nodes are pPlaced at the intersection of these data flows. The resulting
structure is a two-dimensional set of nodes. Since two inputs and two outputs per
node are used for transmittent data, the remaining input and output along the
Z-axis are available for one matrix operand input and one matrix operand output,
respectively. n

Figure 5.27b depicts a matrix operator of size 2 by 4.

157

All nodes in a vector or matrix operator are located at the same level of the
FPG, because they are independent operations. Consequently, the two lemmas
above state that primitive nodes of vector and matrix operators are not allocated
to the diagonal of a plane in a three-dimensional space as it is the case for scalar
operators, but to linear and two-dimensional structures respectively.

In the remaining of this chapter, unless stated otherwise, we assume that vector

and matrix operators are represented by linear and two-dimensional sets of nodes,
respectively.

From Lemma 21, we infer three interrelated factors that lead to placing nodes
from different levels of the FPG at non-neighbor planes in the three-dimensional
space:

e primitive nodes allocated to the diagonal of a plane _

¢ the need to route three data flows so that they intersect at the next plane of
computing nodes.

¢ reordering of data elements

However, from Lemmas 22 and 23, these reasons do not exist for matrix and
vector operands, as we discuss next. We consider first the more stringent case
when a vector operator has two outputs and both outputs are used as inputs to
the same operator (vector or matrix) in the next level of the graph. Later, we
address the more frequent case of a vector operator with a single output.

Lemma 24 Consider a vector operator with two outputs that preceds another vec-
tor operator (or a matric operator), and that both outputs from the preceding vector
operator are used as input to the succeeding vector (or matriz) operator. These op-
erators are allocated to adjacent planes of a three-dimensional graph if the elements
of the two outputs from the preceding vector operator do not need to be reordered
for use in the succeeding vector (or matriz) operator.

Proof: Consider a vector operator in a plane of a three-dimensional graph. With-
out loss of generality, assume that transmittent data flows along the X-axis so
that primitive nodes of the vector operator are placed in a linear structure along
this axis, as shown in Figure 5.28. Consequently, data flowing along axes Y and
Z correspond to vector operands and vector outputs to/from the preceding vector
operator. S3ince, by hypothesis, both outputs from the preceding vector are not

158

i
1
1
I
*

¥

[

L7

L Ttk S

F-..-—-

sl Transminent

data

{a) Vector-vector dependency

H
1 1
J pE_ 1 " 1 e !
NI eS¢
ity Sk LT TRE PGS S |
' 1] 1 []]
AR
TR
o - ,._r,“uﬂl.l ..!1 ’ _
H JllJlkll l..__..l.—l .
1]]
‘! w '
et et e
, _

e et L
I
’m

o ip)

)

' i ~| 1
1] '
, — N T '
mgrend L1 1
) A I st | , !
h it T SRR R ST I b -
,) | 1 : i
k ! I) :]
: I 1 i 4 '
- - - LY -
et S bl b L "
e R ! ¢]
T L L] L] L) H a
i 1 I f : P
0 [f 3 : i
AL T I B T Lk N Lo
) RN B N B i N ;”n.a,h.
, R i ror Ty
T f ' N
Lﬁn | ; i [T
X BN P g i AR
] .._.....,/nr.«...tﬁa-....yns..s..ﬂz,.t../ﬂ..._..l..;ﬁ‘_
N AN R Y te B S sy
1 1} k]) L4 T ¥ 'l"{‘l-1I¥.
S T T ‘ P o
L S T S : P 11y
o R T R T T N R N T
U R T e et Tl U= S U I TR TV
._ﬂ..._ ! .&n;_ N Aﬂz_ fn...- Anz-
, —id al e R O Bt

T
Pt

‘iiiggé'
(St

(b) Vector-matrix dependency

Figure 5.28: Vector and matrix operators in neighbor planes

159

— Transmittent
data

Figure 5.29: Directly dependent matrix operators in neighbor planes

reordered, they can be used as input to another vector operation {or to a matrix
operation) placed in an adjacent plane of the three-dimensional space, as depicted
in Figure 5.28. L

Note that in the case of vector-vector dependencies, data leaving along axis Z
(Y) from the first vector operator becomes a flow along axis Y (Z) when reaching
the second operator. Similarly, in the case of vector-matrix dependencies, the
change of flow is Z to Y and Y to X. Moreover, note that in the case of vector-
matrix dependencies the graph requires space for changing direction in the same
planes as operation nodes.

Lemma 25 Two directly dependent matriz operations can be allocated to adjacent
planes of a three-dimensional graph if elements of the output matriz from the pre-
ceding matriz operator are not reordered before being used as input to the succeeding
matriz operator.

Proof: Consider a matrix operator in a plane of a three-dimensional graph. The
single matrix operand input and output flows along the Z-axis. Since elements of
the output matrix operand are not reordered between the two levels, the succeeding
matrix operator can be allocated to an adjacent plane of the three-dimensional
space in such a way that the two matrix operators are aligned. This arrangement
is depicted in Figure 5.29. u

160

(a) Vector-vector dependency

(b) Vector-matrix dependency

Figure 5.30: Allocating directly dependent operators to the same plane

We consider now the case of a wector operator with o single output that is
used as input to a succeeding vector or matrix operator. This is the common
case that appears in matrix algorithms of interest, including LU-decomposition,
QR-decomposition, the Faddeev algorithm and Cholesky decomposition, among

Lemma 26 Consider ¢ vector operator with a single output that preceds another
vector operator (or a matriz operator). These operators are allocated to the same
plane of a three-dimensional graph if the elements of the output from the preceding
vector operator do not need to be reordered for use in the succeeding vector (or
matriz) operator.

Proof: Assume that the Predecessor vector operand is allocated to a linear set
of nodes in one pPlane of the three-dimensional space. Moreover, assume that
transmittent data through this operator flows along the X-axis. The single vector
output produced by this operator can be delivered along axis Y in the same plane
as operation nodes, as depicted in Figure 5.30. Such an output correspond to the
input to the next vector operator, which is placed directly below the first vector
operator, in the same plane. The same sttuation occurs for a vector operator that
precedes a matrix operator, as also shown in Figure 5.30. (Note that the matrix
operator has a second vector input that comes from a different source). [

161

In this section, we have analyzed the representation of a matrix algorithm by a
multi-mesh data-dependency graph. Such a graph is derived from the fully-parallel
data-dependency graph. We have proved the existence of the three-dimensional
representation. Moreover, we have also proved that two directly dependent levels
of the FPG, composed of a vector with a single output and a succeeding vector or
matrix operator, are allocated to the same plane in the three-dimensional space as
long as the output elements from the first vector operator are not reordered between
the two levels. Similarly, two directly dependent levels of the FPG composed of
matrix operators are allocated to adjacent planes in the three-dimensional space,
if the output elements from the first matrix operator are not reordered between
the two levels.

Consequently, the three-dimensional graph obtained from an FPG has most
of its operation nodes in nearest neighbor positions. Moreover, such a graph is
transformed into an MMG by applying the necessary transformations from those
presented in the previous section.

5.7 Step 1: Deriving the FPG of a matrix algorithm

The only step of our method that remains left in this formalization is deriving
the FPG of a matrix algorithm. We address this issue now.

Lemma 27 Any matriz algorithm can be represented by an FPG. Moreover, such
a representation 13 unique for a given algorithm.

Proof: Any matrix algorithm can be executed symbolically, that is, executed to
determine what operations are performed on which variables. The output of that
execution is an ordered list of operations with up to three operands and up to
three results each. This ordered list can be traversed and mapped onto a graph as
follows:

e Assign each operator to a node. Such a node has at most three incoming
and three outgoing edges, since each operation has at most three operands
and produces at most three results.

o Map references to variables in the algorithm to edges of the graph. Such
edges go from the node representing the latest evaluation of a variable to the
node using the variable.

162

The resulting graph is the fully-parallel data-dependency graph describing the
algorithm. Since there is a one-to-one correspondence between operations of the
algorithm and nodes of the graph, and between data dependencies and edges, the
FPG uniquely describes the algorithm. =

The FPG corresponds to a single assignment description of an algorithm. From
the proof to Lemma 27 above, nodes of the FPG are generated when variables in the
algorithm are created and every time that those variables are updated. New nodes
to update a variable correspond to the generation of new variables. Since these
new variables are generated on demand (i.e., as needed by the symbolic execution
of the algorithm), only the minimum number of extra variables is generated.

Lemma 28 The FPQ of a matriz algorithm consists of a sequence of subgraphs
with the same dependency structure, but potentially different number of nodes
and/or edges in each subgraph. Each subgraph corresponds to one iteration of
the outer loop in the algorithm.

Proof: According to the canonical representation, a matrix algorithm consists
of an outer loop and a loop-body which may recursively contain other matrix
algorithms nested to any level. As stated in Lemma 27, the FPG is obtained by
symbolic execution. This execution implies unfolding the outer loop, which in
turn implies that the body of the loop is replicated as many times as the range
of such a loop. Since the loop-body is fixed, all replications of the body have the
same dependency structure, though the number of nodes and edges may change
depending on the size of vector and matrix operands in each instance of the loop-
body. Each replication of the loop-body can be regarded as being a subgraph, so
that the entire FPG cousists of a sequence of subgraphs with similar structure. m

The two lemmas above provide necessary elements to draw the FPG of a matrix
algorithm. From Lemma 27, symbolic execution of a matrix algorithm leads to a
sequence of expressions which are used to draw the FPG. Moreover, from Lemma 28
we know that the FPG consists of a sequence of subgraphs with similar dependency
structure. This structure is given by the presence of vector and matrix operators, so
that one can aid the process of drawing the FPG by using the knowledge regarding
the existence of those operators. In other words, the presence of a vector operator
leads to a set of nodes arranged in a linear structure, while a matrix operator leads
to nodes in a two-dimensional arrangement,

An example of the issues discussed above i shown in Figure 5.31, which depicts
the FPG for LU-decomposition without pivoting of a 4 by 4 matrix 4. Note that

163

all al2 all ald

ull a.in II31 M1{ ui2) yl3 uld

&
o]
&
&
S

-

832 K2

-

Figure 5.31: Fully-parallel data-dependency graph for the LU-decomposition

164

there are three subgraphs, each of them consisting of a set of nodes distributed
In a linear structure (vector operators computing values of I;; and u;j), and a set
of nodes in a two-dimensional structure (matrix operator updating values of aij).
Moreover, each subgraph consists of levels that have vector operators with a single
output preceding a matrix operator. Such subgraphs are allocated to one plane of
a three-dimensional graph, according to the discussion in the previous section.

5.8 Deriving arrays for matrix computations

We have presented the components of a method for the realization of arrays for
matrix computations. Such components can be combined in the following theorem:

Theorem 1 A matriz algorithm is perfectly realized as an array.

Proof: Lemma 27 stated that is possible to derive the FPG of a matrix algo-
rithm by symbolic execution of such an algorithm. Moreover, this graph consists
of a sequence of subgraphs with similar structure, as indicated by Lemma 28.
Lemma 21 and Lemmas 15 through 17 allow transforming the FPG into an MMG.
The resulting MMG can be reduced into an MG, as indicated in Lemma 4. This
transformation is carried out taking into account issues such as performance, local
storage per cell, cell bandwidth, cell utilization, and cell complexity, as stated in
Lemmas 7 through 14. Finally, the MG can be perfectly realized as an array by
Lemma 1.]

5.9 The procedure to derive arrays for matrix algorithms

From the formalization in this chapter, we can extract the following procedure
to design an array for a matrix algorithm:

1. Obtain the fully-parallel data-dependency graph (FPG) (Lemmas 27,28).

2. Transform the FPG into a multi-mesh data-dependency graph. This implies:

(a) Replace data broadcasting by transmittent data (Lemma 15).
(b) Draw the graph in a three-dimensional space (Lemma 21-26).

(c) Eliminate bidirectional transmittent data (Lemma 16).

165

(d}) Remove non nearest-neighbor dependencies (Lemma 17).

The resulting MMG corresponds to a regularized description of the matrix
algorithm.

3. Collapse the resulting MMG onto an MG by performing the procedure group-
ing by-prisms (Lemma 4). This procedure is carried out taking into account
implementation constraints (such as local storage per cell, cell bandwidth,
cell pipelining) and the impact on performance (i.e., utilization of cells) aris-
ing from collapsing (Lemmas 5-14). Consequently, this step requires choices
that determine characteristics of cells in an array and performance of the
implementation.

4. The resulting MG is perfectly mapped onto an array by allocating each G-
node from the MG to a cell, and each edge to a link in the array (Lemma 1).

5.10 Partitioning

The previous sections in this chapter have presented a formalization of our
data-dependency graph-based method for the design of mesh arrays, which has
addressed the derivation of structures for problems with fixed-data. The formal-
ization of partitioning is an extension to the case of fixed-size data. In particular,
the derivation of the MMG and the process of collapsing the MMG onto a G-graph
are identical in both cases, as well as the determination of the schedule of primitive
nodes within a G-node.

The last steps in the second stage of our method, namely the selection of G-sets
and the process of scheduling G-sets, does not exist in the case of problems for
fixed-size data. However, these steps are not that different from the process of
grouping primitive nodes of the MMG into G-nodes. In other words, selecting and
scheduling G-sets can be regarded as transforming the G-graph into a new graph
that consists of as many nodes as there are cells in the array. These new nodes
are composed of G-nodes. Consequently, the corresponding formalization follows
trivially from the discussion in this chapter, and therefore is not included here.

166

Fork=1ton n=4 uy =1/ay,

Ukt = 1/az Uz = @12; U3 = a3;
For j=(k+1)ton laa = az) *uyy; 3y =
Uky = Qkj az2 =04z — lz,l * Up2
For:=(k+1)ton @23 = a3~ ly1 % U3
lie = Qg * g Q24 = aaq — Iy xup4
Fori=(k+1)ton azz = azz — 3y * up o
Forj=(k+1)ton Gz =aszz—I31%u3

a;; = ai; — l,'k * ukj
(a) Algorithm (b) Symbolic execution

Figure 5.32: The LU-decomposition algorithm

3.11 The application of the method to the LU-decomposition

We illustrate now the formalism for problems with fixed-size data developed
in this chapter by applying it to the derivation and evaluation of arrays for the
LU-decomposition algorithm. Additional examples are given in the appendices.

5.11.1 Deriving the FPG

The LU-decomposition algorithm is shown in Figure 5.32a. By Lemma 27,
This algorithm can be executed symbolically, leading to a list of expressions as
the one depicted in Figure 5.32b. The FPG constructed from this list was shown
in Figure 5.31. As stated before, this graph consists of several sections that have
the same dependency structure although different number of nodes per section
(Lemma 28).

5.11.2 Deriving the MMG

The FPG in Figure 5.31 is transformed into an MMG by removing data broad-
casting (Lemma 15) and by drawing the graph in a three-dimensional space (Lemma
21). The body of the outer loop in the algorithm in Figure 5.32a consists of two
vector operators, with a single output each, that are succeeded by a matrix opera-

167

% divide

S matiply

O mult/add
121 . delay

all

a2l

131

a3l

-*---b 143
udd
-‘---.- 42

;w4

141

a4l

uil ul2 ul3 ul4

Figure 5.33: Three-dimensional graph for the LU-decomposition algorithm

tor that uses the output from both vector operators. Each iteration of the loop is
allocated to a single plane in the three-dimensional space (Lemma 26), and the en-
tire algorithm is represented by the three-dimensional graph shown in Figure 5.33
for a matrix of size 4 by 4.

5.11.3 Deriving the MGs

The MMG shown in Figure 5.33 can be collapsed onto two-dimensional G-
graphs by grouping primitive nodes into G-nodes (Lemma 4). The G-graphs re-
sulting from grouping along the three axes are shown in Figure 5.34, where, for
simplicity in the drawing, we have assumed prisms of base size 1 by 1.

168

ul¥ al

[+
2y |} | !
| 1
i — = —*= g
1]
—-—.h“!
—ﬁ“z
Ml

wll ull2

(s) Growping siong Z-axie

:g uly
(c) Gromping along X-axis

(b) Growping slong Y-axis
Figure 5.34: G-graphs for the LU-decomposition algorithm

169

43 gy
il [RX)

o3y g A

121 3l s al3
2l 42

132 31
141 131 121
143142 141
142132

ud uld
u22 ulld
ul2

ull

{a) Array for grouping along Z-axis

4l4al3ul2all

A3 422221

434233332231

a4 0d] 042 241

{c) Array for grouping along X-axis

Figure 5.35: Arrays for computing the LU-decomposition with fixed-size data

5.11.4 Realizing the G-graphs as two-dimensional arrays

For problems with fixed-size data, G-graphs as those obtained in Figure 5.34
are directly realized as two-dimensional arrays® (Lemma 1). The resuiting arrays
are shown in Figure 5.35, which correspond to square and triangular structures.

Note that inputs and outputs to the three arrays exhibit different characteris-
tics. For example, in the square array obtained from grouping along the Z-axis all
cells require external inputs, while results are available at the lower and rightmost
boundaries. In contrast. the triangular array obtained from grouping along the
Y.axis has data input only at topmost cells, while matrix U is left inside the array

3Recall that the realization of linear arrays is treated as a case of partitioning an algorithm,
so that is not discused in this Chapter.

170

ad2

a4l 32
a3l a22
a2l al2

{b) Array for grouping along Y-axis

ol

243
233
a2l
all

[N

[l

a1l 212 213 414

a2l a22 223 124

j - 132 131
131 132 433 234 I !

4] 242 143 ad4

13 142 141
udd
ul4
u3l w24
u23 ul4
u22 ull

ul2
ull

(a) Array for grouping along Z-axis

114 413 212 411

24 423 222 a2l 1

a34 233 432 431

ull ul2 ul3 uld 244 243 242 a4]
ML 131 121
uZ2 u23 u24
142 132 w4 M3
933 ul4 ud 132 433
uld 121 u23 142
e 143 ul3 1?1)
ul2 41
ull
(c) Array for grouping along X-axis

Figure 5.36: Decoupling I/0O from computation in the LU-decomposition

and matrix L appears at the right boundary. Finally,
ing along the X-axis exhibits external data input onl

is left inside the array, and matrix U appears at the bottom cells.

udd

the array derived by group-
y to leftmost cells, matrix L

Delivering data to inner cells or reading results from inner cells of an array can
be implemented as discussed in Section 4.11, that is, by introducing an additional
path between cells that is used only for transferring data. This is also similar to
the I/O structures for partitioned implementations described in Section 4.6. These
I/O structures are depicted in Figure 5.36.

171

5.11.5 Evaluation of the arrays

We discuss now the performance that is obtained in the arrays for computing
the LU-decomposition. For such purposes, we use number of cells, throughput
and utilization as performance and cost measures, and obtain expressions for such
measures in terms of the prisms sizes (i.e., p,q and prisms length). Measures
related to cell characteristics (such as local storage and cell bandwidth) depend on
p and q only, so that they are identical for groupings along the different axes.

5.11.5.1 Computational load

The computational load imposed by the LU-decomposition algorithm is ob-
tained from the multi-mesh dependency graph shown in Figure 5.33. This graph
is composed of n dependent meshes. The number of operations in the algorithm
18 given by

N:i:izz n(n+1)6(2n+1)

i=1

because there are i operations in mesh i (when traversing meshes from the inner-
most to outermost along axis Z).

5.11.5.2 Grouping along the Z-axis

Grouping along the Z-axis leads to the two-dimensional G-graph shown in
Figure 5.34a, and consequently to the square array shown in Figure 5.35a. The
number of cells in such an array is

2

R
Pilgq Pq

if (n/p), (n/q) are integer values.

Throughput of this array is determined by the bottom rightmost cell, because
such a cell computes more primitive operations than other cells, as is inferred from
the G-graph. The corresponding prism, shown in Figure 5.37, includes p by ¢
paths along the Z-axis that do not have the same length. In fact, the length of

172

A | i
1 1 LYo
Y)yl ¥ =1 '
-4 ¥ o~ 4RI
[}
b < 3
< S
-l g o

Uij
Lij

OC0

Ajj

Figure 5.37: Prism of primitive nodes along the Z-axis

paths at the bottom of the prism increases from (n — ¢ + 1) up to n, as depicted
in Figure 5.37. In contrast, the length of paths next to the bottom of the prism
increases from (n — ¢+ 1) up to (n — 1), and there are two paths with such a final
length. A similar pattern appears in other parts of the prism, up to the top of the
prism where paths length varies from (n — ¢ + 1) up to (n — p + 1) and there are
p paths with the final length.. Consequently, throughput is given by

-1 _ jmax

i j (nodes along Z)
(n—g¢+1)+(n~q¢+2)+---+(n=1)+n]
Hn—g+D)+(n-g+2)+--+2n 1)
+n—g+1)+(n—g+2)+---+3(n -2)|
Hn—g+1)+{n-g+2)+ - +p(n—p+1)]
L8

Fin(n+1l) (n—-q@n-—-q+1) (-1)
;[2 2 T2 l
P

2

1
Plona - +a-30+10

2 3a2n - g+ 1) = (p+1)(p

173

n(n+1) = (= g)m—q+ 1)~ 3(p+ (o~ 1)]

1)
- 1)

For large n, we obtain
T——l — ¢maz 2 3 2 -
z =177 — £(39)(2n) = pgn

Utilization is
N N
K7T;' ~ KZig=
in(n + 1)(2n + 1)
s7slBa(2n—q+1) - (p+ 1)(p- 1)
g(n+1){(2n + 1)
Ing(2n — g+ 1) ~n(p+ 1)(p-1)

U; =

For large n, this becomes

5.11.5.3 Grouping along Y -axis

The number of G-nodes (and consequently number of cells) obtained by group-
ing along the Y-axis in Figure 5.33 is computed as

[a/p]

K{ = 3 [ip/q]

i=1

because the triangular G-graph in Figure 5.34b has [n/p] horizontal paths and
each path has {ip/q] G-nodes (where i is the path number from inner to outer
path in the figure).

Assuming that p/q and n/p are integers, the expression for number of cells
above is written as

nfp
KY — i = PRy o nntp)
; g;(p/q) ety Tmd

Throughput of the resulting array, shown in Figure 5.35b, is determined by the
computation time of the top-rightmost cell. Assuming that (n—p) > n/2, (n—¢q) >
n/2, this computation time is

174

P
%% = pgn — 3 _q(i — 1) = pg(2n —p + 1)/2

i=i

because vertical paths of primitive nodes enclosed in the corresponding prism have
length n for the outermost ¢ paths, but the remaining paths have decreasing length,
as inferred from Figure 5.33.

Utilization is

o - N __ N
YT KITT T Kl
n(n+1)(2n+1)/6
(n/2pq)(n + p)(pq/2)(2n — p +1)
2(n + 1)(2n + 1)
3(n+p)(2n—-p+1)
For large n,
4n? 2
Uy = —— = =
v 6n? 3

5.11.5.4 Grouping along X-axis

The number of G-nodes obtained by grouping along the X-axis is given by

X [n/fql .
Ki =) [ig/p]

=1

because the triangular G-graph in Figure 5.34c has [n/q] vertical paths and each
path has [ig/p] G-nodes (where i is the path number from right to left in the
figure).

Assuming that ¢/p and n/q are integers, the expression for number of cells
above is written as

n/q n nn
KF =Y a/p)i = 122 412 = 2210

Throughput of the resulting array, shown in Figure 5.35c, is determined by the
computation time of the bottom-leftmost cell. Assuming that (n —p) > n/2, (n—
q) > n/2, this computation time is

175

14
t%°* =pgn —3_q(i — 1) = pg(2n — p +1)/2

{=1

Utilization is

Ue — N _ N
¥ T KT T Kfige
B n{n+1)(2n + 1)/6
(n/2pq)(n + q)(pg/2)(2n — p + 1)
2(n 4+ 1)(2n + 1)
3n+qg)2n—p+1)
For large n,
4n? 2
Ux - & =2
X 6n* 3

5.11.5.5 Summary of evaluation measures

Table 5.1 summarizes the expressions obtained in evaluating the arrays for com-
puting the LU-decomposition algorithm. This table indicates that groupings along
the X or Y axes are more advantageous than grouping along the Z-axis, because
they provide better utilization and the same throughput. Such a conclusion could
also be inferred directly from the MMG, due to the incompleteness of the graph.

176

Table 5.1: Summary of evaluation measures for LU-decomposition

[Measures

|

Assumptions

Z-axis:
Number of cells
(Throughput)~!

n?/pq

3pa(2n—-g+1)-p(p+1)(p-1)

- pqn

6
. (n+1)(2n+1) 1
Utilization 3m(2nig+1)—n(l’+1)(p—1] 3
Y -axs:

Number of cells n{n + p)/2pq
(Throughput)~? 3p9(2n —p+1) — pqn
e 2(n+1)(2n+1) 2
r[_)'txhzatlon 3{n+p)(en—p+1] 3

X-axis:

Number of cells n{n + q)/2pgq
(Throughput)~™' | {pg(2n —p+1) — pqn
e L 2(n+1)(2n+1 2

Utilization 3(n:q)(2n_p+1} —3

n/p, p/q integers
n—p>n/f2,
n—gq2nf2

n/q, q/p integers
n—p>nf2,
n—q>nf2

177

178

CHAPTER 6

Mapping algorithms onto class-specific arrays

The method described in Chapters 4 and 5 can also be used to map algo-
rithms onto class-specific arrays. Several of these arrays have been built or pub-
lished [Anna87, Groo87, Niel88, Drak87, Syma88] and in {More89a] we propose
one that is well suited for the use of our method.

Since the number of processing elements in a class-specific array is fixed, and
such a structure is used in a relatively general purpose mode, the size of the array
does not correspond to the sizes of matrices; consequently, mapping requires to
use the partitioning capabilities of our method.

The regularization stage of the method remains unchanged; that is, for a partic-
ular algorithm the same MMG is obtained as for the application-specific case. The
only additional consideration is that primitive nodes in the graph may correspond
to operations more complex than the capabilities of functional units in the array,
as long as these operations are executed in one cell and fulfill the requirement of
at most three inputs and three outputs. This issue is discussed in detail later.

On the other hand, the second stage of the method is influenced by the re-
strictions imposed by the architecture of the target array. Since these restrictions
may have a large number of alternatives, the method has to be adapted to each
particular case. We cannot cover all possible situations here; instead, we discuss
the issues to consider in this adaptation.

The aspects involved are illustrated using the LU-decomposition algorithm,
which is mapped onto a particular class-specific linear array.

6.1 The regularization stage

In the design of an algorithm-specific array one uses a description of the algo-
rithm at the finest level of granularity desirable for an implementation, because
such an information is used to determine the characteristics of cells that com-

179

pose the array. For example, to realize an algorithm which includes division with
cells not capable of executing that operation, one may choose to describe division
in terms of basic operations (i.e., a sequence of multiplies); those multiplies are
realized in the array through the application of the method.

In contrast, granularity in mapping onto a class-specific array is related to the
execution of operations in a cell. That is, the algorithm only needs to be described
in terms of operations that are indivisible for a cell, even when the cell has to
execute such operations as sequences of basic operations. For example, mapping
triangularization by Givens’ rotations onto an array whose cells are only capable of
performing multiplication and addition requires determining how rotation angles
and rotations are computed. However, each rotation angle or rotation is com-
puted entirely in one cell (there is no advantage in spreading such a computation
throughout cells), so the mapping process only needs to consider a description in
terms of the complex operations that are allocated to each cell.

Dividing complex operations across cells might seem a suitable approach to
achieve load balancing. That is, complex operations that are composed of several
primitive operations (and therefore take several time-steps to complete) could be
distributed across different cells that share such a load. However, load balancing
can also be achieved by allocating a varying number of complex operations per
cell, taking into account the computation time of each operation. As will be
discussed in this chapter, this latter approach is simpler and effective in achieving
load balancing,

The regularization stage requires determining the multi-mesh dependency graph
(MMG). This graph is derived as discussed in Sections 5.5 and 5.7, and was illus-
trated in Section 5.11 for the LU-decomposition algorithm. The algorithm and
resulting MMG are repeated in Figure 6.1 for later use in this chapter.

6.2 The mapping stage and the specific target architecture

The second stage of the method when partitioning an algorithm for a class-
specific array consists of:

e Collapsing the MMG onto a mesh graph. This step involves the selection of
a collapsing direction and of a prism size. Moreover, it implies determining
a schedule for the operations included in a prism.

180

Fork=1ton
uek = 1/akx
Forj=(k+1)ton
Uk = Ak;
Fori:=(k+1)ton
Lk = ik * Ups
For:=(k+1)ton
Forj=(k+1)ton

@ij = @ij — lig * ug;

all

a2l

a3l

bt

-lvnnub 143
' udd
-'---» 142

ul4

141

sl

ull ul2 ul3 uld

Figure 6.1: The LU-decomposition algorithm and its MMG

181

o Partitioning the mesh graph so that it can be executed in the array. The

strategies discussed in Section 2.6 can be used. This partitioning determines
the schedule of nodes and the 1/0O.

We now discuss how the basic architectural characteristics influence each of
these steps. Note that several characteristics might influence the same aspect of
the process, many times in conflicting ways; in such cases, different alternatives
should be analyzed to select the most appropriate one. This selection is aided by
the representation of the algorithm in the regularized form (the MMG).

Type of cell

As discussed in Section 2.2, there are three types of cells: systolic, pseudo-
systolic and local-access. The type of cell determines the size of prisms in the
grouping process. For systolic cells the size of the prism’s base is 1 by 1, for
pseudo-systolic cells is p by ¢, while for local-access cells it depends on the size of
the array (i.e., (n/K) by n in a linear array with K cells, (n/K) by (n/K) in a
two-dimensional array also with K cells). Moreover, the values of p and ¢ for a
pseudo-systolic cell are determined by the size of the cell’s internal storage, the cell
bandwidth, and the number of stages in the pipeline, as discussed in the previous
chapters.

Functional units

The type and number of functional units per cell, and their organization, de-
termines the schedule of operations within a prism. To obtain maximal utilization
of arithmetic resources, it is necessary to schedule in every time-step as many op-
erations as functional units exist in the array. For example, maximal utilization
in cells composed of a multiplier and an ALU requires scheduling one multiply
and one ALU operation in each time-step. However, dependencies in an algorithm
might not allow doing so.

Datapaths

The datapaths to access operands from memory, from neighboring cells, and
from the cell’s internal storage determine the allocation of data and the schedule
of operations.

182

To schedule several operations per time-step in a cell (as may be required by the
number of functional units), it is necessary that many operands be available and
several results be stored in every time-step. Since the number of memory accesses
that can be initiated per time-step is usually limited, the maximal utilization is
achieved only while executing operations that access several sources/destinations
other than memory. For example, if cells are composed of a multiplier and an ALU
that are accessed independently and memory allows initiating only two accesses
per time-step, maximal utilization requires that at least four sources/destinations
of data are other than memory.

Cells may share storage for operands and results. Consequently, scheduling has

to avoid conflicts in using that shared resource(s), limiting the flexibility of such a
scheduling.

I/O paths

I/O paths to internal cells influences the direction of collapsing. For example,
external I/O is available only at the ends of a linear array. Consequently, trans-
ferring input data to inner cells requires to use outer cells. However, cells may not
be capable of performing useful computations and data transfers simultaneously.
Using an architecture with such characteristics requires to devise, if possible, map-
pings that allow allocating operations with input data on cells at the ends of the
array, while inner cells operate on intermediate results generated by neighbor cells.

6.3 Mapping onto local-access arrays

Mapping onto class-specific systolic or pseudo-systolic arrays follows the com-
putational model and method described in Chapters 4 and 5, as outlined in the
previous section. In contrast, mapping onto local-access arrays exhibits several im-
portant differences as a consequence of having large memory per cell, as discussed
below.

6.3.1 The impact of large storage per cell

1. Local-access arrays are suitable to perform partitioning using coalescing, be-
cause large memories allow the allocation of a portion of the problem to each
cell. Moreover, cell bandwidth is low because many operations are performed

183

with data local to each cell, thus reducing the need to transfer data between
cells.

2. Since communication between cells is low, as described in (1), cells may oper-
ate in a loosely-coupled mode instead of the tightly-coupled that characterizes
systolic and pseudo-systolic arrays. Consequently, the computational model
suitable for local-access cells is asynchronous. That is, cells operate inde-
pendently on data that is stored locally, transfer results to neighbor cells as
determined by the mapping process, and synchronize through queues or flags
attached to ports.

In addition to the differences listed above, an important similarity between
local-access and pseudo-systolic/systolic cells arises from the existence {or lack) of
some small storage close to the functional units. A local-access cell may or may
not have a register file which may be used to perform a function similar to the
buffers in pseudo-systolic cells. Such a register file impacts the mapping process,
as discussed later. In the remaining of this chapter, we assume that local-access
cells have a register file.

6.3.2 Coalescing the MMG

There are some properties of an MMG such as the one in Figure 6.1 that are
necessary to consider when coalescing an algorithm onto a local-access array:

1. The MMG may have uneven distribution of primitive nodes throughout
meshes. For example, Figure 6.1 shows that there are fewer nodes at the
left of the graph than at its right. The same is true from top to bottom.
Such a distribution of nodes varies monotonically across the graph.

2. The MMG may have uneven distribution of computational requirements
throughout nodes. For example, Figure 6.1 shows that many nodes com-
pute multiply/adds (i.e., update the matrix) which are “light-weight” nodes
in the sense that they require a basic operation, while there are fewer “heavy-
weight” nodes which require division. This difference in computational re-
quirements of nodes is even larger in algorithms such as triangularization by
Givens’ rotations, where heavy-weight nodes correspond to computation of
rotation angles (including divides and square-root) while light-weight nodes
are rotations (muitiplies and adds only).

184

Partitioning by coalescing doesn’t explicitly derive a mesh-graph, as done for
systolic and pseudo-systolic arrays. Although one could derive a mesh-graph and
map that graph onto a local-access array, coalescing allows going directly from
the MMG to the array without the need to derive the mesh-graph. As it will be
apparent from this chapter, the mesh-graph is implicit in the mapping process.

Coalescing requires dividing the MMG into subgraphs that are allocated to
each cell. Consequently, there must be as many partitions as cells in the array. A
suitable way to obtain these partitions consists of dividing the MMG into sections
by performing cuts along one of the axes in the three-dimensional space. There
are three options for this task:

Uniform partitions, that is, divide the MMG into partitions of the same size,
and allocate each partition to a cell.

This approach has the advantage of being simple, but it might lead to un-
balanced distribution of load in the array and consequently bad utilization
of cells, as a result of the uneven distribution of nodes throughout the MMG
and the different computation time of nodes.

Interleaved uniform partitions, that is, divide the MMG also into partitions
of the same size but such partitions are composed of nodes from non-neighbor
meshes in the MMG. For a linear array, for example, traversing meshes along
an axis of the three-dimensional space leads to allocating mesh i to cell
(¢ mod K), where K is the number of cells in the array.

Since the distribution of nodes throughout the MMG is uneven and the size
of meshes varies monotonically along dimensions of the graph, this approach
attempts to compensate such uneveness by spreading meshes of similar size
throughout cells. For example, the K smallest (or largest) meshes in the
MMG are first distributed across the K cells in a linear array, then the
next K meshes, and so on. Since meshes of similar size are distributed to
cells in each case, good load balancing is expected. This technique requires
bidirectional communication between cells and a more complex scheduling
policy than uniform partitioning, as will be described later.

Non-uniform partitions, that is, divide the MMG into partitions of variable size
in such a way that the total computational load assigned to each partition is
roughly the same, and allocate each of such partitions to a cell.

This approach requires additional work to determine an adequate size for
each partition, but potentially leads to better utilization of cells than uniform

185

Compute n; = load in mesh i in MMG, forz=1ton
Compute N, = total load in execution of algorithm
Compute N,y = IE‘}E = average load per cell

1 =10
For each cell do
1=t14+1

allocate mesh i of the MMG to PE, until load in
PE; is nearest possible to average load per cell

Figure 6.2: A heuristic approach to perform non-uniform coalescing

partitions because it provides better load balancing. In the next section,
we propose a simple heuristic procedure that allows determining the size of
partitions.

Later in this chapter, we will illustrate these different partitioning strategies
using LU-decomposition and a linear array.

6.3.3 A heuristic approach to non-uniform coalescing

To perform non-uniform coalescing, we need a technique that allows selecting
the size of each partition. We propose a heuristic approach, described by the
algorithm in Figure 6.2 for a linear array. As indicated in the figure, this technique
allocates meshes from the MMG to a cell until the load accumulated on such a cell
is close to an ideal average per cell.

To choose the break point in allocating meshes to cells, the heuristic technique
uses a greedy strategy. That is, before allocating a mesh to a cell we compute the
total load placed on such a cell and compare it with the ideal average. If the load
is higher than the average, the difference from that average is computed assuming
that the mesh is both allocated and not allocated to the cell. The final selection
is determined by the smallest difference among the two.

186

X
L .
ry | Z ¢ memory
==y

Figure 6.3: The allocation of data to memory modules

6.3.4 The allocation of data and the schedule of primitive operations

Mapping onto local-access arrays requires determining where data is stored,
how data flows through the array, and how operations are scheduled for execution.
We can assume that memory attached to a cell is divided (physically or logically)
into two modules and that two memory accesses (one to each module) may be
initiated every time-step; we refer to those modules as left-memory and right-
memory. (If memory allows initiating only one access per cycle, then memory
bandwidth is lower; in such a case, allocation and flow of data are determined in
the same manner as the case of insufficient memory bandwidth described later.)
Under these conditions, and assuming that transmittent data flows along the X-
axis in the MMG, we propose the following allocation of data to memory modules
as shown in Figure 6.3:

¢ Data flowing along the X-axis in the multi-mesh graph is allocated to the
left mmemory module of a cell. That is, a value that is transferred along the
X-axis of the MMG is accessed by a cell from the left memory module.

¢ Data that flows along the Y-axis in the MMG is allocated to the right memory
module.

e Data that flows along the Z-axis in the MMG is also allocated to the left
memory module.

With the allocation of data to memory modules given above, transmittent data
may be read from memory into the register file, and operations may be initiated by
reading one element from each memory module without conflicts. This allocation
works well when memory reads and memory writes may be interleaved without
conflicts. For example, an operation that takes more than one time-step allows
reading data from memory in one cycle and storing results in the following cy-
cle(s). That is the case of Givens’ rotations for example, where data elements

187

Aip = Qjk — Aji04k

A = CQik + A
— -

aJ'k —_ ajk

Ak = aj

Figure 6.4: Rotation in the square-root free algorithm

for one rotation are used to perform three multiplies (or four, depending on the
algorithm) and two adds before sending results to memory, as shown in Figure 6.4.
Consequently, while one rotation is being computed results from the previous one
may be sent to memory without conflicts.

In contrast, if every read operation implies writing a result in memory, then
there is not enough memory bandwidth to support the data allocation described
above. In such a case, one must rely on a more complex scheduling of opera-
tions that uses the register file to save intermediate results and re-uses data from
there. For example, in LU-decomposition every multiply/add operation reads two
operands (in addition to a common value for several operations), and produces
one result. If a multiply/add is initiated every time-step, two memory reads and
one memory write are initiated in every cycle and there is not enough memory
bandwidth to support such a scheme.

This problem of memory bandwidth and cell computation rate is equivalent
to that found in the design of algorithm-specific arrays described earlier in this
dissertation. Consequently, a similar solution to the one devised there may also be
applied in this case. Such a solution is based on the concept of prisms in the MMG.
That is, data allocation and scheduling primitive operations is done by prisms, and
the prisms base size i3 determined by the size of the register file within a cell.

To illustrate this issue further, let’s lock into scheduling primitive operations
for LU-decomposition in more detail. In this algorithm, it is convenient to optimize
the computation of multiply/adds because these are the most frequent operations.
Ignoring for the moment restrictions arising from conflicts in accessing memory, a
cell could obtain from memory the value corresponding to an element [/, save it
in the register file, perform all operations associated to that element while reading
from memory the corresponding a,; and u;; pairs, and then repeat the process by
obtaining a new /. This schedule allows using a cell pipeline for long intervals
and should be the driving force in a mapping procedure. Consequently, primitive

188

& divide

® multiply

(O muladd
121 . delay

131

iy
30;
-uj: - I4V

Figure 6.5: Schedule of primitive operations in the LU-decomposition

operations are scheduled following the flow of transmittent data in the MMG (i.e.,
following the flow of lix). Moreover, paths of transmittent data allocated to a cell
are long, so that the pipeline may be kept full for long intervals.

However, the scheme above is not feasible because, for every pair (ay;, us;) read
from memory, an updated value of a;; must also be stored in memory. Instead,
scheduling multiply/adds may be done by prisms as depicted in Figure 6.5 for a
linear array. In such a figure, each edge of the MMG has been tagged with the
name of the associated storage module: RF for register file, LM and RM for left
and right memory modules respectively. This prism correspond to executing the
first operations in the leftmost cell of the array. Scheduling inner prims and in
inner cells follows the same pattern described here. The schedule is as follows:

¢ a1y is read from LM, u;; is computed and stored in RM. This process is
repeated with a;,a;3 and so on until a,, (¢ is determined by the size of the
register file, as discussed later).

189

® a7 is read from LM, uy; is read from RM, &, is computed and stored in RF.
This process is repeated with aj;, a4; and so on until ap1 (p 1s also determined
by the size of the register file). Elements /;; are also transferred to the next
cell to the right.

These operations are pipelined without lost cycles, as long as ¢ is larger than the
number of stages in the pipeline. At the end of these two steps, all values of {;;, u; 5
contained in the prism are computed and stored in RF and RM respectively. Now,
multiply/add operations are scheduled as follows:

® a,; is read from LM, the corresponding u;, is read from RM, I,; is read from
RF, a multiply/add operation is executed and the result is stored in RF.
This process is repeated with a3, as4 and so on until Q2q-

¢ The step above is repeated for other horizontal paths of the MMG until
reaching path p.

At the end of the steps above, the portion of the matrix that has been updated
is stored in the register file, values I;; are also stored in RF, while values u,; are
stored in RM. The entire schedule is repeated, but this time reading elements ai;
from RF as follows:

® ay 1s read from RF, uj; is computed and stored in RM. This process is
repeated with a3, 224 and so on until as,

® a3 is read from RF, u,; is read from RM, I3, is computed, stored in RF and
transferred to the next cell. This process is repeated with a43, a5 and so on
until a,.

® a33 is read from RF, the corresponding uy; is read from RM, I3, is read from
RF, a multiply/add operation is executed and the result is stored in RF.
This process is repeated with asy, ass and so on until G3q-

¢ The last step above is repeated for other horizontal paths of the MMG until
reaching path p.

With the schedule above, there are no cycles lost as long as paths (vertical and
horizontal} inside the prism are longer than the number of stages in the pipeline.
Moreover, the schedule above determines the relationship between the size of the

190

Figure 6.6: Scheduling primitive operations in an inner prism of the MMG

register file and prism size, which is identical to the one found for storage per cell
in Chapter 5. Representing the size of the register file as RF,, this relation is

RFE, =p+pg=p(g+1)

In the remaining of this chapter, we assume that RF, is large enough so that
time-steps lost due to pipeline latency while executing inner meshes of an incom-
plete prism are negligible.

Scheduling prisms as discussed above is characterized by using the arithmetic
pipeline to compute every variable used. Instead, a prism that appears later in the
MMG doesn’t need to compute values [;; and ug; because those are transmittent
data, as depicted in Figure 6.6. However, the schedule expects to compute and
store [in the register file. Consequently, inner cells require to transfer those
values into RF without performing computations, introducing some overhead due
to data transfers.

Notice that the overhead mentioned above exists only for the leftmost prism
allocated to a cell. By scheduling prisms in horizontal order, other prisms in the
same cell may use values [;; already in RF so that no further overhead exists.

191

Figure 6.7: An hypothetic memory-linked array

6.4 Example: mapping onto a memory-linked array

We now illustrate mapping for a particular target array, using LU-decomposition
as application example.

6.4.1 The target architecture

The architecture used in this example consists of a linear array of processing
cells linked by large dual-port memory modules, as shown in Figure 6.7. Conse-
quently, each cell has access to large storage which is physically divided into two
modules, one attached to each side of a cell. Communications between cells occurs
through the memories, and memory modules at the ends of the array communi-
cate with a host for I/O. This target architecture has been previously proposed
(i.e., MWAP [Kung87b] (pp.31-32)), and a commercial memory-linked array is
QUEN ([Niel8s].

We assume that cells in the target array contain a 4-stage pipelined arithmetic
unit consisting of a multiplier and an ALU connected in cascade. In addition, each
cell contains a 3-port (2-out, 1-in) register file, is capable of paralle] access to the
two memory modules to which it is attached to, has independent addressing logic
for each memory module, and has internal program memory. Such a cell is depicted
in Figure 6.8. Data memory is accessed as a 2-stage pipeline. Consequently, an
operation that accesses data from/to memory sees the cell as an 8-stage pipeline:
2-stage memory (to read operands), 4-stage arithmetic pipeline, 2-stage memory
(to write results).

Each cell may initiate one read or write one word per time-step from/to each
memory module. In addition to reading/ writing operands from/to memory, cells
use the register file as source and destination of operands, as also depicted in
Figure 6.8.

The arithmetic pipeline allows initiating one multiply and one ALU opera-

192

Reg.
File
Multiplier
ALU
Y
ML MR

Figure 6.8: A cell in the target class-specific array

tion per time-step. Complex operations (such as divide, square-root, rotation) are
implemented as sequences of basic operations and iterative procedures. For exam-
ple, we assume that a divide is implemented in the equivalent of eight multiply
operations. Consequently, primitive operations in an algorithm have different com-
putation time in the target array. All operations are performed on single-precision
floating-point data, and all data transfers are done on floating-point data as well.

We assume that synchronization of cells is achieved using flags in the memory
modules (i.e., as MWAP does [Kung87b]).

6.4.2 The performance evaluation measures

The main performance measures used to evaluate different mappings of an
algorithm onto a class-specific array are computation time (¢} and utilization of
processing elements (U). Such measures are computed as follows:

t = t

where

¢ 13 is the computation time of the busiest cell.

193

¢ Ny is the total number of [flops] required by the algorithm.
¢ K is the number of cells.

® Fis the cell computation rate (i.e., number of [flops] per cell per time-step).

The total number of operations in the LU-decomposition algorithm is inferred
from the MMG shown in Figure 6.1 as:

Nyw = n

n

Nowt = 2(1 -1)= n(n — 1)/2

Nawiejada = Y (i —1) =n(n—1)(2n —1)/6

=1

These expressions do not include delay nodes in the MMG. Such nodes are
data transfers in the algorithm (i.e., uz; = ax;), so that they do not contribute
computing load. Since we assume that a divide requires 8 [flops] in the target cells,
and since a multiply/add needs 2 [flops], the total number of [flops] N s required
by LU-decomposition is

nfn—1) 2n(n-1)(2n—-1)
2 + 6
= %[47&3 — 3n? 4+ 47n] [flops]

Nf = 8n+

For a matrix of size n = 200, the expression above leads to
N¢(200) = 53149200 [flops]

In the remaining of this chapter, we use this value of N, for evaluations of estimated
performance.

Computing LU-decomposition in a single cell

Before mapping the LU-decomposition algorithm onto the target array, let’s
look into the performance achievable by computing the algorithm in a single cell.
This result gives a measure of the cells suitability for the type of algorithm at hand.
The schedule of primitive operations is as described in Section 6.3.4. We assume
that the register file is large enough so that computing cycles lost to pipeline latency
are negligible, and that a new operation may be initiated every cycle without

194

conflicts. Moreover, since overhead in the execution of inner prisms (according
to the chosen schedule) arise from transferring values of lix into RF, we schedule
prisms in horizontal order so that each value l;; is computed, stored in RF, and
used for every operation that requires it. Consequently, no overhead in transferring
data exists.

From the expressions given earlier for number of operations in the algorithm,
and since a multiply/add is initiated in a single cycle, the total number of time-
steps required to execute LU-decomposition in the target array is

n(n —1) N n(n—1)(2n — 1)

ti(n) = 8
i(n) = 8n + —— 6

= %(nz + 23)
For a matrix of size n = 200, this becomes
t,(200) = 2668200 [time steps)

Consequently, utilization achievable in an implementation with a single cell is

Ny 5314900

U1(200) = —
1(200) K+« F#t, 1#2*2668200

= {.996

That is, executing the LU-decomposition algorithm in one cell of the target
array allows obtaining almost unitary utilization. The only losses of utilization
arise when computing simple multiply operations and divides, because no other
operation is executed in the ALU at the same time. However, as determined from
the MMG, such operations are few compared with the number of multiply/adds
that may be pipelined in the single cell.

6.4.3 The mapping process

We discuss coalescing LU-decomposition onto the memory-linked array using
the different techniques to determine the partitions discussed earlier.

6.4.4 Uniform coalescing

Let’s consider first performing uniform coalescing and the performance that is
achievable with such a strategy. As indicated before, we consider three possible

195

a2l

a3l

a4l

ull ul2 ul3 nl4

PE{|[+>®® <> PE,

Figure 6.9: Coalescing the LU-decomposition along the Z-axis

ways to coalesce the graph, namely by cutting the MMG along each axis in the
three-dimensional space. These alternatives are reviewed now.

6.4.4.1 Along the Z-axis

Coalescing the MMG in Figure 6.1 by partitioning the graph along the Z-axis
and assigning each partition to one cell is depicted in Figure 6.9. This technique
corresponds to allocating to each cell a number of iterations of the outermost loop
of the algorithm in Figure 6.1. Data is input only to the leftmost cell, so that no
pre-loading of data to inner cells is required. Moreover, data transfers to cells at
the right occur as results of computations, so that no time-steps are required to
perform data transfers.

Cells to the right in the array receive as input a smaller matrix than the one
processed by a cell to the left; such smaller matrix is generated (i.e., updated) in

196

the left cell. Moreover, each cell produces part of the resulting matrix, in row-
wise manner; since the output iIs a triangular matrix, more results are produced in
leftmost cells than in rightmost ones.

Let’s look into the performance of this mapping. Traversing meshes along the
Z-axis as shown in Figure 6.9, the number of operations in mesh ¢ and the total
number of time-steps N} required to execute such a mesh are

N;iu =1
Nywe = (i—1)
multfagd = (1—1)?

Ny = 8+(i—1)+(i—1)?

Since we consider that the register file is large enough, these expressions do
not include cycles lost due to dependencies and pipeline latency. Moreover, since
each element /i is computed and used only in once cell, no overhead due to data
transfers exist.

With uniform coalescing, mapping by cutting along the Z-axis requires that
each cell computes n/K meshes of the graph. If n/K is not an integer value, and
since meshes of the MMG along the Z-axis have a decreasing number of nodes, we
allocate [n/K| meshes of the graph to half of the PFEs (the leftmost ones), and
[n/ K| meshes to the remaining ones.

For K = 10, the number of time-steps required by each cell when solving a
problem of size n = 200 is given in Table 6.1, which shows that uniform coalescing
along the Z-axis leads to bad load balancing as a consequence of the uneven dis-
tribution of nodes and nodes’ computation time throughout the MMG. The total
time required by the target array to compute the LU-decomposition is given by
the busiest cell, namely PE,. Considering the number of [flops] in the algorithm
for a problem of size n = 200, the performance of the array with this mapping is

tz = tpg, = 722820 [time steps]
N 5314900
Uz(200) = ! 149

K xF*tpg, 10 * 2 « 722820

In addition to low utilization, an (apparent) drawback of the approach described
above is the latency introduced between cells. That is, cells to the right start
computing the algorithm delayed with respect to cells at the left. However, due
to the load unbalance, such a latency doesn’t affect performance of the array (i.e.,
rightmost cells have fewer operations to perform).

197

Table 6.1: Load per cell in uniform coalescing along Z-axis

| Celll Cycles | ceu] Cycles |

722820 162820
2 578820 ? 98820
3 | 450820 81 50820
4 | 378820 91 18820
5 | 242820 10 2820

The expressions given above are a simplified view of the results obtained with
the mapping performed here. In particular, such expressions assume that data
is always available, and there are no time-steps lost to dependent operations and
latency in the arithmetic pipeline. As we discussed before, some time-steps are lost
when the size of meshes within a prism is smaller than the number of stages in the
pipeline, as it is the case when executing innermost meshes along the Z-axis (i.e.,
in the last cell). However, since the busiest cell is PE;, this issue doesn’t impact
the performance of the implementation.

6.4.4.2 Along the X-axis

Let’s consider now the case of coalescing the MMG in Figure 6.1 along the
X-axis and assigning each partition to one cell, as shown in Figure 6.10. This
approach corresponds to allocating to each cell a number of columns of the input
matrix, so that data must be pre-loaded in cells before starting execution of the
algorithm. Moreover, each cell produces part of the resulting matrix, in column-
wise manner, so that cells to the right generate more results than cells to the left.
(In case n/K is not an integer value, the allocation of meshes to cells is done as
described for mapping along the Z-axis.)

We discuss now the performance achievable with this uniform coalescing. Num-
bering meshes from right to left in Figure 6.10, the number of operations in mesh
t along the X-axis is

198

meshn mesh 2 mesh 1

all

121 . delay

a2l

B1

it

-*---.— 143
ud4
-‘---.— 142

. u34

a3l

141

a4l

PEq PEsje» @ @ «»PEy

Figure 6.10: Coalescing the LU-decomposition along the X-axis

199

f Number of ops.
divides 1
multiplies (t—1)
multiply/adds | 72! j = [n(n — 1) — (i — 1)]/2

Consequently, the total number of cycles N} required to execute mesh i is

Ny = 8+(i—1)+%{n(n—l)—i(i—l)}

1 1. .
= 8+§n(n——l)——(z—-1)(z—2)

3%

This mapping requires the transfer of values [;; through cells. As stated earlier,
these data transfers are a source of overhead in the algorithm. This overhead
consists of values [;x that a cell receives from the left, which corresponds to the
number of multiply/add operations in the leftmost mesh allocated to a cell. That
is,

Li =(n/K}{(K-k-1) leftmost mesh allocated to PE;
Or =Y%0320,7 overhead in PE;

= n(n - 1)/2 — Lk(Lk - 1)/2

For K = 10, the number of cycles required by each cell when operating on a
matrix of size n = 200 is given in Table 6.2, which indicates that this approach
exhibits better load balancing than mapping along the Z-axis. This is a conse-
quence of distributing triangular meshes across cells rather than square meshes as
it was the case before. The total time required to compute the algorithm is given
by the busiest cell, namely PE,q, which is also the cell with the largest overhead
due to data transfers. A similar analysis to mapping along the Z-axis leads to the
following performance estimates:

tx = 416730[time steps]
N
Ux(200) = 5314900

= = 0.64
K*Fxtpg, 102416730

Same as in mapping along the Z-axis, the expressions given above are a simpli-
fied view of the results obtained with this scheme. In particular, the expressions
above are valid only for the outermost meshes. Upon traversing a few meshes along
the Z-axis, the size of meshes allocated to leftmost PEs becomes smaller than the
pipeline latency, leading to the introduction of idle cycles. However, the perfor-
mance of the array is determined by PE,,, where this overhead is small compared
to the number of operations allocated to this cell.

200

Table 6.2: Load per cell in uniform coalescing along X-axis

1 PE [Cycles ” PE I Cycles |

1] 40620 | 6] 333570
21116010 | 7| 366960
31183000 | 8 |391950
41241590 | 9 | 408540
51291780 || 10 | 416730

6.4.4.3 Along the Y-axis

The third uniform coalescing alternative consists of grouping the MMG in Fig-
ure 6.1 along the Y-axis, as depicted in Figure 6.11. This technique corresponds
to allocating data to each cell in row-wise manner, that is, each PE has access to
several rows of the input matrix. Consequently, this partitioning strategy requires
to preload data in cells. However, all resuits are obtained in the rightmost cell.

We discuss now the performance achievable with uniform coalescing in this
case. Numbering meshes from bottom to top in Figure 6.11, the operations in
mesh 7 along the Y -axis are

| Number of ops.
divides 1
multiplies (n—1)
multiply/adds | £%5' / = [n(n — 1) — i(z - 1)]/2

Consequently, the total number of cycles N} required to execute mesh 1 is
i S | 1.,
¥ =8+(n—z)+§n(n—l)—§z(z—1)

This mapping computes and uses each /;; value within the same cell, so that
no overhead due to data transfers arises from this source. However, values wu;
are transferred across cells. Since the schedule in prisms expects to find values
ug; in RM, such values have to be passed from LM to RM, introducing overhead
that corresponds to the number of uy; values that arrive to a cell, or equivalently,
that corresponds to the number of multiply/add operations in the topmost mesh
allocated to a cell. That is,

201

PE,

le—> @

PEg

ull ul2 ul3 uld

& divide O mulvadd
@ multiply . delay

Figure 6.11: Coalescing the LU-decomposition along the Y-axis

202

Table 6.3: Load per cell in uniform coalescing along Y -axis

! PE I Cycles ” PE | Cycles I

1{ 37020 6 | 333970

21113210 7 1368160

3 | 181000 8 | 393950

4 | 240390 9 [411340

5 (291380 || 10 | 420330
T =(n/K)}{K-k+1) topmost mesh allocated to PE;
O =Y 1’. J overhead in PE,

= n{n —1)/2 = Te(Tk - 1)/2

For K = 10, the number of time-steps required by each cell with a 200 by 200
matrix is given in Table 6.3. The total time required to compute the algorithm is
given by the busiest cell, namely PE,o, which is also the cell with largest overhead
due to data transfers. Similarly to the previous cases, performance is computed as

ty = 420330[tirﬁe steps|
N
Uy (200) = 5314900

= = 0.63
K+ Fxtpg,, 10*2%420330

This scheme has a performance almost identical to that derived by mapping
along the X-axis, due to the symmetry of the MMG along axes X and Y. Once
again, the expressions given above are a simplified version of the results obtained
with the mapping performed. These expressions are not valid for innermost meshes
of the graph along the Z-axis, but this doesn’t affect the resulting performance.

6.4.5 Interleaved uniform coalescing

The results obtained in Section 6.4.4 are one way to map the LU-decomposition
algorithm onto the target array. An alternative consists of interleaved non-uniform
coalescing, as discussed earlier.

Let’s consider interleaved non-uniform coalescing along the X-axis. For K = 10
and n = 200, and considering that Ny = 8 + n(n — 1)/2 — (i — 1)(¢ — 2)/2
as determined earlier, the distribution of load across cells is given in Table 6.4
(ignoring overhead due to data transfers).

203

Table 6.4: Load per cell in interleaved uniform coalescing along X-axis

l PE I Cycles ” PE I Cycles I

1| 275610 6 | 265910
273710 71263910
271790 8 i 261830
269850 9 1 259850
267890 || 10 [257790

UV W N

Results in Table 6.4 are encouraging. However, as we stated earlier, interleaved
coalescing leads to complex scheduling of primitive nodes. Such complexities are
depicted in Figure 6.12, where we consider n = 6, K = 2. Highlighted nodes
and edges are mapped onto one cell, while dimmed nodes and edges are mapped
onto the second cell. Using the schedule described in Section 6.3.4 and depicted
in Figure 6.12, we find that predecessor nodes in the MMG appear scheduled after
successor nodes (this is a consequence of the MMG incompleteness). For example,
node scheduled at time ¢ = 23 in the second cell (the one executing dimmed
nodes) is a predecessor of node scheduled at time ¢ = 21 in the first cell. Similar
examples appear throughout the MMG. Consequently, the simple and efficient
schedule devised earlier can’t be applied in this case and has to be replaced by a
more complex one. In addition, this scheme requires bidirectional communications
between cells.

In the next section, we show that non-uniform coalescing also allows achieving
load balancing but without the scheduling and bidirectional communications prob-
lems found in this case. Consequently, we don’t discuss this mapping approach
further. It should be noted that non-uniform coalescing seems to be the technique
applied in Warp to achieve load balancing while using the domain parallel model
of computation [Kung88a].

6.4.6 Non-uniform coalescing

The results obtained with uniform coalescing can be improved by allocating to
cells portions of the MMG of variable size. We use only coalescing along the X -axis
for this approach, because it produced the best results with uniform coalescing.

Using non-uniform coalescing and the heuristic procedure to determine the size

204

205

3 . 2
2] ' o n o9 Iy g
5 7 3 i % s by s S
*]] * Tf!fl*ltvl!_'m.:!.m- *
1 y ! @/ : ¥ hhﬁ/\n s 9
L] f&#?!l!l’ﬂ-ﬂﬂ#!fl‘!l!—ﬂ!fﬂ\ﬁ’ 1
! 3 U A% ¢ P A 4 b
i LT S VPO Foe oo g] -
- «wam MXm b u.fr—-.t.\wv.:ltl.l. &V\w*m
@.’x) .Mf...\n; ! n.f/\f? .“. ! /W_N/..pwf u-W “.o ! .rMW/\o,. -
RV IR ER R S
2 3 ﬁ.u P i 1 3 08 o $
! ' ! meeboledo oo o517
1 [1]
] Mﬁhlrlll.m/uthlflll I'Amﬁhfm.
] 1] 1
mnilill'#flllll HT’IIIIIIJ'%”'W
@] % H
-lll* K - L) Jﬁ vm
ﬁJ..I.L.. IS il B —
= = z | N %]
5 ¢ 1 3 “ I 7m " y 1 %
8 1 1 ! 4! “
ﬁﬂ/f‘uln!.l‘l..%.ﬂ"l”"ilfl}iﬂ."rw.m
Sl g Gl R SRR S S Y
SN 1 SHR ¥ N8 R v 4
p.b!’ i @.fzx e, 1 m-ﬂ e, " &.r/..‘ 5 *
1 .\(. - -i\ If 1 -1 T - -‘If.ﬂ.'u
3o 0 i - 3 ' i
l'l'ﬁntl 'll'ﬁ’l l"l"ﬂl‘vm
uuﬁ/ “w.s m.iu m1r1 o
! H | *
g i 3 ." g ' g
b oe e e ﬂ I-l..ll.l-t'.ﬁi.ﬂ ‘l"l!"&?’.uv
d s o ¥ e {)
. . ™. >
9 3 g b
£y W =
~ _ - JM/I l}l - lu
]]] T 2 A}

Figure 6.12: Scheduling primitive nodes in interleaved uniform coalescing

Table 6.5: Load per cell in non-uniform coalescing along X-axis

I PE | Cycles] Meshes ” PE] Cycles] Meshes |

2512127] 200 — 149 || 287600 { 70 - 56
279947 | 148 - 124 281552 | 55 — 42
284787 | 123 - 104 290057 | 41 - 28
276025 | 103 - 87 295622 | 27 - 14
287173 86 - 71 10 (2783401 13 -1

O 00 =]

(LIS VR]

of partitions described in Section 6.3.3, we obtain the allocation of meshes to cells
shown in Table 6.5; entries of this table include the overhead due to transferring
values l;; across cells. From this table, we infer that load balancing has been
improved with respect to the best case in uniform coalescing, and is similar to
that possible with interleaved uniform coalescing but without the complexities in
scheduling neither bidirectional communication. Total time required to compute
the LU-decomposition algorithm is given by the busiest cell, namely PEgy, with
295622 time-steps. Consequently, performance of this mapping is given by

ty = 295622[time steps]
N 14900
Uy(200) = - = 0.90
K+ Fxipg, 10x*2%295622

This mapping produces utilization that is close to the maximum possible for
the LU-decomposition algorithm in the target array, as discussed when mapping
the algorithm onto a single cell.

6.5 Conclusions

In this chapter, we have described the suitability of the method proposed
in this dissertation for mapping algorithms onto class-specific arrays, in partic-
ular linear local-access arrays. Differences in mapping onto arrays with pseudo-
systolic/systolic and local-access cells were discussed. Local-access arrays have
large storage per cell, so that partitioning by coalescing has been applied. Three
strategies have been discussed, which we refer to as uniform, interleaved uniform,
and non-uniform coalescing.

A mapping technique that uses an explicit representation of the algorithm,

206

as the MMG in our method, allows analyzing the impact that different issues
have on the mapping process. In this case, we have shown that the allocation
of operations to cells is determined in straight-forward manner from the MMG,
paying attention to load balancing. Moreover, scheduling such operations is also
accomplished without difficulty from the MMG, exploiting the arithmetic pipeline
within cells and taking into account overheads due to data transfers.

The analysis has been illustrated using an hypothetic memory-linked linear ar-
ray, such as MWAP [Kung87b] (a commercial version of MWAP is known as the
QUEN processor [Niel88]), and mapping the LU-decomposition algorithm. Results
obtained here indicate that uniform coalescing is simple, but produces bad load
balancing. In contrast, non-uniform coalescing allows achieving very good utiliza-
tion (for example, U = 0.90 for an LU-decomposition of size n = 200 in an array
with ten cells). Non-uniform coalescing requires a mechanism to determine the
size of partitions allocated to cells. We have proposed a simple heuristic procedure
that maps a varying number of meshes from the MMG onto cells, based on load
balancing criteria.

This chapter has also shown that interleaved uniform coalescing requires bidi-
rectional communications and cannot use a simple schedule of primitive operations,
as in the other two cases. Although such an approach has the potential to reach
good utilization, these drawbacks make it less attractive than non-uniform coa-
lescing which produces similar utilization without the drawbacks mentioned.

207

208

CHAPTER 7

A comparison with other methods based on dependencies

Now that we have presented our method for the design of mesh arrays, it is of
interest to analyze how this technique compares with other methods proposed in
the literature, in particular with those that also use dependencies as the basis for
the transformational process.

Specific dependency-based methods differ significantly in applicability, ease of
use and in the resulting array characteristics. The topic of this chapter is to
compare data-dependency graph-based techniques with methods in which depen-
dencies are presented as index relations (i.e., indez-dependencies). Basic prop-
erties of both classes of dependencies were given in Chapter 3. We use Rao’s
method [Rao85, Rao88] as a representative example of index-dependency based
techniques; other methods based on index-dependencies include those described
in {Quin84, Capp83, Yaac88b]. On the other hand, we use our Multi-Mesh Graph
(MMG) method and S.Y. Kung Signal Flow Graph (SFG) technique [Kung88c| as
data-dependency based approaches.

In Chapter 3, we proposed a framework to compare design techniques which
identifies two stages in the application of any method: algorithm reqularization and
derivation of arrays. This framework is depicted in Figure 7.1. Moreover, we stated
criteria to evaluate the suitability of design methods based on such a framework,
which are listed in Table 7.1. We use the design framework and associated criteria
to compare the methods indicated above, and illustrate the comparison using the
transitive closure algorithm.

209

Computation

Algorithm
Regularization
Regularized
algorithm '
Derivation of
arrays
Array

Figure 7.1: A framework to compare design methods

210

Table 7.1: Criteria to evaluate the suitability of design methods

Regularization stage

¢ General class of admissible algorithms
¢ Capabilities to derive regularized representation
o Effective regularized representation

Derivation of arrays

The capabilities of the method to:

o Perform transformations
e Incorporate implementation constraints and restrictions

¢ memory per cell

o cell and I/O bandwidth.
o Incorporate different cell attributes

¢ pipeline
e non-conventional arithmetic
e specialized functional units

o Optimize specific performance/cost measures
o Design arrays for fixed-size data and partitioned problems
¢ Produce algorithm-specific and class-specific arrays

Overall

¢ Easy to use
e Suitable for automation

211

7.1 The regularization of algorithms

In this section, we center our attention on the process of regularizing an algo-
rithm so that it can be used in a design method. '

7.1.1 Index-dependencies

As stated in Section 3.5, it is possible to associate the computation of each
instance of a variable in an algorithm with a point in a multi-dimensional space
defined by the indices in the algorithm. For this purpose, all variables must have
the same number of indices. Dependencies among variables are related to the
distance between those variables in the index-space, and are represented as ex-
pressions with those indices. We refer to these as indez-dependencies.

For an arbitrary algorithm, dependencies such as those above might be com-
plex to handle due to characteristics such as broadcasting, diverse fan-in/fan-
out, or non-regularities. However, for certain classes of algorithms these depen-
dencies exhibit a regular structure. Examples are Regular Iterative Algorithms
(RIAs) [Ra088], Uniform Recurrent Equations {UREs) [Quin84], and Affine Recur-
rent Equations (AREs) [Yaac88b|. As stated earlier, we use RIAs as representative
of index-dependency based descriptions.

A Regular Iterative Algorithm [Rao88] is defined by the triple {I, X, F}, where

e [is the index space.

o X is the set of variables defined at every point in the index space. ra(E)
denotes variable z, defined at index point k, and takes on a unique value
throughout the entire evaluation of the algorithm.

¢ F is the set of functional relations among the variables, restricted to be such
that if a:,,(E) is computed using xb(E - d;) then dy, is a constant vector
independent of E and of the extent of the index space. Moreover, for every [
contained in the index space, z,({) is computed using zs(I — da).

An additional restriction not stated above is that, since the values of dp, deter-
mine the communication links in an array, nearest-neighbor connections between
cells require dy, = 1 Va, b.

212

For i :=1to N, do
For ; :=1 to N, do
For k := 1 to N3 do

Cij = Cij + Gixbyj
(a) Original algorithm

For::=1to N; do
For 7 := 1 to N; do
For k := 1 to N5 do

ali,j+1,k) = a(i, j, k)
b(l +1,7,k) = b(l,], k)
(2,5, k) = (i, j, k — 1) + a(4, §, k)b(3, j, k)

(b)Regular Iterative Algorithm (RIA)

Figure 7.2: Regular iterative algorithm for matrix multiplication

Examples of algorithms and their respective RIAs, taken from [Rao83], are
given in Figure 7.2 and Figure 7.3. These examples correspond to matrix multi-
plication and a two-dimensional filtering problem.

The regularization stage in Rao’s method is summarized in Figure 7.4. Since
the RIA is the form of the algorithm used to derive arrays, the RIA corresponds
to the regularized description. For a particular computation, the question is how
to derive an RIA. A few algorithms are expressed as RIAs in straight-forward
manner; that is the case of matrix multiplication for example, as illustrated in
Figure 7.2. However, obtaining RIAs for most other algorithms is a rather complex
task. Two approaches were proposed by Rao to solve this problem, as shown in
Figure 7.4: (1) synthesis by reformulating existing algorithms, and (2} synthesis
by first principles [Rao85]. In the first case, an algorithm expressed as a sequence
of FOR. loops might be converted into an RIA using a three-step procedure: (a)
converting the algorithm to single assignment form, (b) index-matching, and (c)
localization of dependencies. Performing the last of these steps may not be easy
or feasible, and the solution to this problem has been regarded as a heuristic
one [Rao85, Royc88a]; some research has specifically addressed this issue [Royc88b),

213

n n
Yii = 9 OkYiokjok + > brtik ok
k=1 k=0

(a) Original algorithm

Fori::=1tondo
For 7,k := 1 to N do

o(i, 7 + 1,k +1) = foulz(s, 5, k), y(2. 7, k) w(i, j, k)
y(t + 1,5, k) = fuilz(i, 5, k), y(3, 5, k), w(i, 5, k)
UJ(E - }-!ja k) = fw,.‘(l'(i,j,k),w(i,j,k))

fzis fuis fws are linear functions determined by a synthesis procedure

(b) Regular Iterative Algorithm (RIA)

Figure 7.3: Regular iterative algorithm for a two-dimensional filtering problem

Computation

Algorithm - sequence of FOR-loops

Synthesis by
first principles) - obtain single assignment form
Synthesisby index-matching

reformulation - localization of dependencies

e

Figure 7.4: The regularization stage in Rao’s method

214

For k from 1 to n
For: from 1 ton
For j from 1 ton
zf; <ol Bt @ oy

(a) Warshall’s algorithm

For: from 1 ton
For j from [max(i,n) — n + 1] to [min(z,n) + nj
For k from 1 to min(z, j,n)

- _ [alii,k) iy # k
alt,j +1,k) = { (3,5, k) @ [ali, j, k) ® b(3, 4, k)] ifj =k

s b5 k) ifi # &
it Lsik) = { cliy i, k) @ [aliy , k) ® B(i, 5, k)] ifi = k

c(t, g, k+1) = (2,5, k) @ [a(i, j, k) ® b3, 5, k)]

(b) Regular iterative algorithm (RIA)

Figure 7.5: Regular iterative algorithm for transitive closure

but the effectiveness of the solutions is not yet clear. On the other hand, synthesis
by first principles seeks to find an RIA by considering a problem afresh.

The latter of the two approaches above was used in [Ra085] to derive an RIA for
the transitive closure computation; the corresponding RIA is shown in Figure 7.5.
Rao formulated transitive closure by relating it to “a certain smoothing problem in
image processing.” In such a problem, pixels in a black-and-white image composed
of (N by N) pixels have intensity a(¢, 7), and the output image is required to be
such that the intensity at pixel (i,7) is equivalent to the transitive closure of
element a(z, j).

Since the dependency structure in an RIA is identical at every point in the
index space, these dependencies may be represented by a Reduced Dependency
Graph (RDG). This is a directed graph, where nodes correspond to variables in

215

Figure 7.6: Reduced dependency graph for transitive closure

the algorithm and edges represent dependencies between pairs of variables. As an
example, Figure 7.6 depicts the RDG for the transitive closure algorithm given in
Figure 7.5. Edges in the RDG are tagged with a data-dependency vector, which
corresponds to the difference between indices of the corresponding pair of variables.

RIAs seem an attractive regular description of algorithms, due to their com-
pactness and suitability for manipulation. However, an analysis of the process of
obtaining RIAs indicates the following limitations of such a description:

e Transforming an algorithm into an RIA might add computing load, in terms
of additional variables and operations. For example, the RIA shown in Fig-
ure 7.5 has introduced two additional computed variables that do not exist
in Warshall’s algorithm for transitive closure, plus evaluation of conditionals
and operations on the extra variables. Consequently, implementing the RIA
implies performing more operations than those present in Warshall’s algo-
rithm. More dramatic cases of added computing load are found for example
in Gaussian elimination, with and without pivoting, as obtained in [Rao85]
and [Royc88a], respectively. These two RIAs were obtained by reformulat-
ing existing algorithms. Figure 7.7 depicts the original Gaussian elimination
algorithm with partial pivoting and the resulting RIA derived in [Royc88a).!

¢ Currently, there is no systematic technique to obtain an RIA for a given
algorithm, in spite of the procedure indicated earlier. Attempts to solve
specific issues have been reported in [Royc88a, Dong88b, Royc88b).

VThe original algorithm shown here is modified from the one given in [Royc88al, because that
one appears to have some errors,

216

Fork:=1to{m—-1)do
Determine p € {k,k +1,...,n} so |au| = maXe<i<n |Gikf ;
For : := k to n do
Swap ay; and ap,
Fori:=(k+1) tomdo
= (a/a);
For j :=(k+ 1) ton do

Qij = Q¢ — NAk;
a) Sequential representation

For all triples (4,7,k),1 <i < M;k<j<Nand1<k<M_1do

(3,7, k) = #(z,],k)Xs(z—l k) + (2,5, k) x a(i, 7, k)

ik { ~15k) < la(i, 4, B) x G A B i j =k

’ z;—lk fj>k

- 1,5,k xt(i,7,k) + 1 x t(z,7, k) fj=k%

(1,5, F { null otherwise

(2,7, k ifi=m

w(i, g k { t-}-l],k) ifi<n
{P(U,k) ifi=mandj=&

z(t, 7,k z{i+1,7,k) ifj=k

z(1,k) if j >k

oiri k) %xc(zg,k) (z(1,7,k) = i) if j =k

p(1,7 - 1,k) fj>k

o2y, k+1) =i, j, k) V (i = 2(4, 5, k))
a(i, j, k+ 1) = a(i, 5, k) — p(i, 5, k) x w(i, j, k)

b) Regular iterative algorithm (RIA) [Royc88al

Figure 7.7: Algorithms for Gaussian elimination with partial pivoting

217

Computation

Algorithm
Recursive algorithm
Single assignment Il zed pad p!
algorithm ! ! L1

! o
Dependency graph \é) Localized graph
(multi-dimensional)

Figure 7.8: The regularization stage in the Signal Flow Graph method

Because of these limitations, the representation of algorithms as RIAs has re-
stricted applicability.

7.1.2 S.Y. Kung’s method

The design method proposed by S.Y. Kung [Kung87a, Kung88c] uses data-
dependencies in an algorithm, although this fact has not been recognized explicitly
and some of the steps in the process seem to indicate otherwise. The regularization
stage in this method, summarized in Figure 7.8, consists of identifying a suitable
algorithm expression (i.e., a single assignment representation) and generating a
dependency graph. The resulting graph is used to derive arrays, so that it corre-
sponds to the regularized representation.

This method does not state what are the characteristics of the dependency
graph (DG), implying that it may have almost any structure. In fact, Kung
states that “the structure of a DG greatly affects the final array design” so that
“further modifications on the DG are often desirable in order to achieve a bet-
ter design” [Kung88c] (pp.119). However, the general objectives of those further
modifications are not indicated and, as a consequence, the process to derive the
regularized form is carried-out with ad-hoc transformations.

Since DGs may exhibit diverse characteristics, Kung identifies two different

218

For 1,7,k from 1 to n

[z(i,5,k—1) ifj=k
c(i, 1, k) — ¢ oli,j+1,k) ifj <k
e(i,j—1,k) ifj >k
2(i,5,k—1) ifi=k
r(i, 1 k) — ¢ r(e+1,5,k) ifi<k
r(i—1,7,k) ifi >k
(3,5, k) — z(i,5,k = 1) ®r(Z, §,k) Q c(s, j, k

Figure 7.9: Single assignment algorithm for transitive closure

design strategies: a canonical method for homogeneous DGs (i.e., shift-invariant),
and a generalized method for heterogeneous DGs. The claim is that a large number
of algorithms may be expressed in terms of a regular and localized DG, and the
canonical method exploits this regularity to obtain simple and regular structures.

Kung regards the dependency graph of an algorithm as a multi-dimensional
one (the method addresses multi-dimensional projections in the second stage).
This concept has arisen from interpreting the DG as a representation of index-
dependencies rather than data-dependencies (recall that an index-dependency graph
has one dimension for each index in the algorithm, potentially leading to graphs
with many dimensions).

Let us review the regularization stage in this method for the transitive closure
algorithm, as done in [Kung87c, Kung88c]. Starting from the sequential Warshall's
algorithm, the method obtains the single assignment form shown in Figure 7.9.
This localized representation is derived by adding propagating variables r for rows
and c for columns at each iteration, and using these new variables in the compu-
tation of the expression that composes the algorithm.

The dependency graph for the single assignment algorithm is shown in Fig-
ure 7.10, where nodes compute three variables. Since this graph exhibits bidirec-
tional flow of data, Kung et al. state that there is no possible systolic schedule for
it. To get around this problem, they reindex the nodes in the DG until the graph
becomes a more regular one with possible systolic schedules. For this purpose,
they introduce the following reindexing:

node(t, 7, k) — node(((i — k) mod N) + 1,((; — k) mod N) + 1,k)

219

Figure 7.10: The dependency graph for transitive closure in the SFG method

220

Figure 7.11: Reindexed dependency graph

The reindexing arranges the ij—planes in such a way that the nodes that are
sources of transmittent data appear at the left and innermost part of each plane.
Edges within the planes remain among nearest-neighbors. On the other hand,
edges between planes become less regular: these edges are either diagonal ones
(direction [-1,-1,1]) or spiral ones. Two planes of the resulting graph are depicted
in Figure 7.11.

The reindexed graph is used to derive arrays in the second stage of the method,
but it leads to complex and not efficient structures (spiral links and low cell uti-
lization). To overcome these limitations, Kung et al. perform modifications to
the graph to obtain another one that is more convenient. This modification takes
advantage of properties in the algorithm (operations that are not needed and trans-
mittent data) to remove the spiral edges. The new graph is shown in Figure 7.12.
The fact that the graph in Figure 7.11 as well as the graph in Figure 7.12 are used
for the second stage of the method is a clear indication that this technique has no
precise form for the regularized representation.

From the discussion above, we infer that the SFG method has the following
drawbacks in terms of algorithm regularization:

o It does not state what is the form of the regularized description.
¢ It does not provide a systematic mechanism to derive the DG.
o The intent of modifications on a DG to obtain a better one are not stated, so

221

Figure 7.12: Modified DG for the transitive closure algorithm

that devising them is not clear. From the examples given, these are ad-hoc
transformations.

7.1.3 MMG method

The design method proposed in this dissertation represents dependencies in an
algorithm using an Explicit Dependency Graph (EDG), that is, a graph where each
node represents a primitive operation and each edge corresponds to a dependency
among two operations. We refer to these as data-dependencies, and to the graph
as the fully-parallel data-dependency graph (FPG), which corresponds to a single
assignment representation of an algorithm.

As stated in Chapter 5, the FPG of an arbitrary algorithm might exhibit no
structure so that edges are long and intersecting in many places. However, matrix
and vector operators in a matrix algorithm allow obtaining a regular graph, which
we refer to as a multi-mesh dependency graph (MMG). Moreover, we have provided
transformations that allow obtaining such an MMG from an FPG, exploiting the
graphical representation of the algorithm.

The regularization stage in our method is summarized in Figure 7.13. The
MMG is the description used to derive arrays, so that it corresponds to the regu-
larized form. This representation is obtained through a systematic procedure, as
discussed in Chapters 4 and 5.

Let us illustrate the regularization of the transitive closure algorithm in our
method. Figure 7.14 depicts the FPG for a problem of size n = 4, which is obtained

222

Computation

Matrix algorithm:
For i=1ton |/ Scalar operations
. Vector operations
Algorithm -> Loop Matrix operations
body))
- symbolic execution Matrix algorithms
Fully-parallel graph -> R P
I
- broadcasting
- bidirectional dependencies

- non-neighbor dependencies

Multi-mesh graph
(three-dimensional) -

Figure 7.13: The regularization stage in the MMG method

from the symbolic execution of Warshall’s algorithm. This FPG is characterized
by many broadcasted elements. In addition, one can identify several operations
that are superfluous (which have been highlighted in the figure), because the result
is equal to one of the input operands. This property, a consequence of primitive
operations AND/OR, is dependent on the specific algorithm but it serves to il-
lustrate the capabilities of an explicit description. Superfluous operations may be
removed if that is advantageous for an implementation (i.e., if it simplifies the
resulting array).

The FPG shown in Figure 7.14 consists of n levels, where each level corresponds
to one iteration of the outer-most loop in the original Warshall’s algorithm. At
each level, there is global and local broadcasting. Global broadcasting corresponds
to data that is broadcasted throughout the entire level, while locally broadcasted
data reaches only a portion of the level. Sources of broadcasting change from level
to level; at the k-th level of the graph, the k-th row of matrix data, as well as the
k-th element of each row, are broadcasted.

Regularizing the graph in Figure 7.14 consists of replacing data broadcasting

223

a
n iz 3 e gy ' %2 B %y 2y

33
@ Superfluous
¥

operation

T YeTo 88 ‘)b&b%m
I RELL T 3 -
Siskidsidisiii

Figure 7.14: The FPG for the transitive closure algorithm

by transmittent data, drawing the graph as a three-dimensional structure, remov-
ing bidirectional flow of transmittent data, and adding delay nodes to make all
dependencies among nearest-neighbor nodes. The specific transformations used to
remove these characteristics from the FPG have been presented in Chapter 4 and
formalized in Chapter 5. We describe this process in detail now.

Eliminate data broadcasting

We first transform the FPG by replacing data broadcasting by transmittent
data. Globally broadcasted data is drawn orthogonal to the flow of locally broad-
casted elements, in a three-dimensional structure. The resulting graph, shown in
Figure 7.15, is a three-dimensional graph that does not fulfill the requirements of
an MMG. This graph has the same dependency structure has the one used in the
SFG method, shown in Figure 7.10; however, nodes in the graph derived with the
MMG method compute only one variable (instead of three in the SFG method).

224

2 293 A4 ay ay azy ay ay 2y 43 a44

a3 a4 app

a11 app

X\

A

O4..1@1

— dependent
—=p data

smellie- {ransmittent

LT T

n

@ superfluous

Figure 7.15: Replacing broadcasting by transmittent data

225

(b) Removing bi-directional transmitient data along Z-axis

Figure 7.16: Removing bidirectional transmittent data

Eliminate bidirectional transmittent data

Due to the varying source of broadcasting, the graph in Figure 7.15 exhibits
bidirectional flow of transmittent data. As indicated in Section 5.5, this undesir-
able property can be eliminated if all nodes at one side of the source of transmittent
data are part of a movable subgraph. The graph in Figure 7.15 fulfills this require-
ment, so that nodes may be moved to one side of the source of transmittent data.
This transformation is applied in two steps: first, nodes to the left of sources of
horizontal transmittent data are flipped to the right end of each level of the graph,
as shown in Figure 7.16a. The application of this transformation leads to the
graph in Figure 7.17. Then, nodes in front of sources of transmittent data along
the Z-axis are flipped to the end of this direction, as shown in Figure 7.16b. The
graph obtained as a result of this last transformation is shown in Figure 7.18.

Remove non-nearest neighbor dependencies

Figure 7.18 still exhibits one characteristic that is not allowed in a multi-
mesh dependency graph: dependencies between nodes at the boundaries of the

226

ependent

=™ data

giNwEsewes

=—fie- {ransmittent -—e= d

: 3
L3 t
; =0 M N "
i s ¥ It . ; :
“illlllll ..MI m - m m “ 1“ 4 .-!"
I e O A A : g sghd-----Rd-4- -
m m li!ll+l m.e |“ m = -
£ i L . i
S 1 - A
H @

'd

e

ELLE TS B

N

4

*
+ 3
* “ 1
....* “ <o owd_Jew II*IM
.]

x. CoRY -.. -

Figure 7.17: Removing bidirectional transmittent data along X-axis

P10
{
Pas
| ok
ft\
+ o
Sterennns

A113128 13914 312 228 130 54 31333033834 A4y D243y,

Figure 7.18: Unidirectional dependency graph
227

Rrrliadnnlyy Bylpafagdy Sy 8yl Ralglnly

Figure 7.19: Multi-mesh dependency graph

three-dimensional structure are not between nearest-neighbors. As indicated in
Section 5.5, this irregularity is eliminated by adding delay nodes in the vacant
positions, leading to the multi-mesh dependency-graph shown in Figure 7.19. In
this figure, we have also replaced superfluous nodes by delay nodes.

From the discussion above, one can infer that the MMG is advantageous in
describing an algorithm, because the MMG provides information on all opera-
tions and dependencies without imposing constraints on the form of the algorithm.
Moreover, transforming an algorithm described by an FPG into a regular MMG
is performed in a simple and systematic manner, by using the transformations de-
scribed in Chapter 5 and taking advantage of the graphic capabilities offered by
the data-dependencies.

228

7.2 The derivation of arrays

Once an algorithm has been regularized, the next step 1s to derive arrays for
it using a transformational paradigm. Such transformations should be applied
considering the criteria indicated in Table 7.1. In this section, we analvze how this
stage of the design is performed by the methods being compared.

7.2.1 Rao’s method

Rao’s method implicitly considers systolic arrays with identical cells as the
target for an implementation. At each time step, each cell computes all expressions
appearing in the RIA {Rao88]. Consequently, the method does not need to describe
features of the architecture.

The design process in this method attempts to exploit the parallelism avail-
able in the RIA, while at the same time minimizing the resources used in the
implementation. To achieve these objectives and render the problem tractable,
Rao restricts his attention to linear partitions of the set of computations which
produce the processor space. Once the processor space is decided upon, a linear
schedule with respect to the index vectors is used to determine the schedule of
operations assigned to each cell. The process can be described as follows [Rao88]:

1. A set of parallel lines is drawn through the index space, so that all computa-
tions corresponding to index points that lie on the same line are executed in
the same cell. An array (including communication links) is obtained by pro-
Jecting the embedded dependency graph of the RIA along these lines onto a
lower dimensional lattice of points known as the processor space. The direc-
tion along which this projection is made is represented by an integer vector
%, and is defined as the iteration vector.

2. Once the processor space is decided upon, computations mapped onto a given
cell are scheduled. That is, a “time slot” is assigned to each variable (with
respect to a global reference time) during which its computation is performed
by the cell.

The choice of schedule is constrained both by dependencies in the algorithm

and by the choice of processor space.

Formally, the two steps described in the preceding paragraphs are performed

229

as transcribed below [Rao83]:

1. The S-dimensional iteration vector # defines the topology of the array. Two
index points ky and &, are mapped onto the same cell if and only if £y — k7 =
ati, where « is some scalar integer. This means that k: and k_; map on the
same point when the index space is projected along the direction defined by

e

.

Let P be any (S5 — 1) x S-dimensional integer matrix of rank (S — 1) that
is orthogonal to @ (i.e., P& = 0). Then, the array is defined by the lattice
of points obtained by mapping the index space according to 7 = Pk, where
k € index space.

In the last expression above, § defines the location of the processor that
carries out the computation at index point k. The necessary communication
links are defined by the vector weights on the edges in the RDG. If y(k) is
dependent on m(E — d), then there must be a directed link Pk —d) — Pk
in the array, for all .

2. Once the array is obtained as described above, computations have to be
scheduled. To avoid having to know the capabilities of cells, a schedule
that partitions computations into global steps is devised, with the following
restrictions:

o If variable y(k) is computed using variable J;(E — d), then step s,(k) at
which y(E) is computed must be strictly larger than step s.(k — d) to
which z(% — d) is assigned. That is, sy(k) > sq(k = d) + 1.

o All computations at step = are completed by every cell in the array
before step (r + 1) is begun.

o At each step, each cell must be assigned a “small” number of computa-
tions.

A uniform affine schedule is chosen, where sx(i:') = (XTIG. +7z)s X is a constant
vector, independent of z, whereas 7, is a scalar that is specific to z. Then,
(w—1=+ XTJ) > 1, and this must be true for all such dependencies, that
is, for every directed edge in the RDG. Expressed in matrix form, these
constraints can be written as (37C + ATD) > [11--- 1], where

o C is the edge-verter incidence matriz or the connection matriz com-
monly found in circuit analysis.
e D is the (S x E)-dimensional indez displacement matriz.

230

— e e e o o e e e = -

» Projection

T
« Scheduling function: affine schedule sfo=2a k+y,

- choose iteration vector u array topology
Pu=0, p=Pk
T -
-solve y C+A D2 [11..1) C: connection matrix of RDG
T D: displacement matrix
Au=0 ¥, A: vectors of affine schedule
l constants
Array

Figure 7.20: The derivation of arrays in Rao’s method

* ¥ is the vector obtained by stacking {v.} in the appropriate order.
consistent with the arrangement of the rows in the connection matrix.

3. If x(k-;) and z(k;) are computed by the same cell, then they must not be
ass:gned to the same step in the schedule. This 1mp11es that (v, + ATk, #
Yo+ AT k), for all (K —k3) = ad, which simplifies to A7 # 0. This constraint
is dependent upon the choice of the iteration vector 1.

From linear programming considerations, it can be shown that if there exists

a feasible solution to the set of constraints (F7C + ATD) > [11-.-1], then
there always exists a feasible solution that meets the additional constraint
ATt # 0.

The procedure to derive arrays reproduced above from [Ra088] is summarized
in Figure 7.20.

Let us review how an array for the transitive closure algorithm is derived in
Rao’s method, as described in [Rao85]. The RIA for this algorithm was shown in
Figure 7.5. First, the iteration vector [0 0 0] is chosen (though it is not indicated
why), and then a linear scheduling function is obtained by solving (57C + i7 D) >
[11---1] subject to the condition AT% # 0 (these steps are not shown in detail
in [Ra085]). The resulting array is shown in Figure 7.21, which has approximately
3n? cells; each cell computes all the operations that appear in the RIA of Figure 7.5.

The procedure and example described above show that Rao’s method relies on
algebraic descriptions for algorithm, transformations (recall that the architecture
is implicit in this technique). The algebraic nature of transformations leads to-

231

Figure 7.21: The array for transitive closure in Rao’s method [Rao85]

wards procedures that could be automated. This is an advantage of the approach,
a comsequence of its highly specialized area of application. Moreover, these trans-
formations potentially allow finding many solutions.

However, the restricted scope of Rao’s method is a major drawback, because
transformations have limited capabilities. That is, the strict requirements on the
architecture imply that the method can deal with only a limited set of design issues.
For example, this technique assumes that the implementation is a systolic-type
architecture, and no considerations or tradeoffs are possible among implementation
parameters such as size of local storage and limited cell bandwidth. Moreover,
transformations and optimality criteria are very distant from an implementation,
so that they are difficult to use by a designer that needs to devise an array with
actual requirements and constraints.

In addition, approaches such as Rao’s are not suitable to map algorithms onto
class-specific arrays, due to the inability to incorporate properties of the array as
part of the method. In such a case, the architectural model is not implicit and has
to be taken into account. Moreover, this method does not have built-in capabilities
for partitioning problems.

7.2.2 S.Y. Kung’s method

Let us review now the process of deriving arrays in Kung’s method. The pro-
cedure, which is summarized in Figure 7.22, has the following two steps:

232

Dependency graph
(multi-dimensional)

Graphical
Lo e
Projection
- projection direction
Schedule
- normal schedule Algebraic
d: projection vector €: computation
Signal Flow s: linear schedule e: edges .
Graph n: node position D(e): delays in edges
b: set of dependencies t{c): time of input
P: processor basis
T T
nodemapping: =P ¢ ; Pd=0
D(e) sT
arc mapping: ve . [liEl
Le 1 LP
ng: | t©] [sT]
I/O mapping:
\/ - [c]
Array L. n | LP]

Figure 7.22: The derivation of arrays in the SFG method

¢ Derive a Signal Flow Graph (SFG) from the dependency graph (DG) by
projecting the DG.
¢ Realize the SFG as an array.

In addition to using the graphical representation of dependency graphs and pro-
jections, this method also includes an algebraic approach to derive arrays. Such
an approach follows the same principles that appear in Rao’s technique, as dis-
cussed earlier, and combines the two steps above into a single one. The algorithm
is represented by the dependency graph, and dependency vectors extracted from
that graph are used in the algebraic manipulations.

Deriving a SFG requires to choose a suitable projection direction. However, the
method does not provide tools to aid in such a selection. In [Kung88c) (pp. 157),
while discussing the derivation of arrays for LU-decomposition, it is stated: “the
SFGs derived by different projection directions may have substantially different
properties. In order to find an optimal projection, we may try several directions and
see how the results are.” In other words, exhaustive search is being suggested. It
should be pointed out that, conceptually at least, there is a large number of possible

233

'

Y,

et~ | el -

t§+
R

ANNAN

Y
!

T Tt

Figure 7.23: Array for transitive closure from S.Y. Kung’s method [Kung87c]

projection directions. In practice, most of the examples given use pro jections along
axes of a three-dimensional space.

Derivation of arrays for the transitive closure algorithm was reported by Kung
et al. in [Kung87c]. They used the algebraic rather than the graphical capabilities
of the method, because they found it difficult to determine a permissible schedule
vector from the graph in Figure 7.12 by simple observation. Consequently, the
array is derived directly from the dependency graph without obtaining an SFG.
The array depicted in Figure 7.23 is obtained after choosing projection vector
d = [1 0 0]” and solving the expressions indicated in Figure 7.22. This array has
n? cells, two diagonal links between cells (with one and two time-steps of delay in
each one, respectively), and requires some control to load data in cells and reuse
that data for n time-steps.

7.2.3 MMG method

The transformational process to derive arrays in our data-dependency based
method is summarized in Figure 7.24. Since the method was described in Chap-
ters 4 and 5, we just summarize it here and immediately apply it to the transitive
closure. This method consists of the following steps:

¢ Collapsing the MMG onto a two-dimensional G-graph by grouping prisms of
primitive nodes onto different G-nodes. As described in Chapter 5, grouping
along axes of the three-dimensional space leads to simpler and more efficient

234

Muiti-mesh graph
(three-dimensional)

_____ * _— — o — e —

Grouping by prisms (pqn)
l

-cell memory =p(q+1)
- cell BW =1/p, 1/q .
- pipeline < q stages

G-graph

(two-dimensional)

fixed-size
partitioned

mapping
Array

Figure 7.24: The derivation of arrays in the MMG method

implementations, so that selecting the direction of collapsing is limited to
three alternatives, one along each of the axes.

The size of prisms determines properties of cells, such as local storage, com-
munication bandwidth, and cell pipelining. Consequently, tradeoffs are per-
formed that allow selecting a prism size, and therefore cell properties, ac-
cording to specific requirements for an implementation. The type of trade-
offs possible and the corresponding results were described in Chapter 5. In
order to compare the results obtained from this method with those derived
with the other techniques discussed in this chapter, we consider grouping by
prisms of base size 1 by 1 (i.e., grouping for systolic arrays). Projecting the
MMG of transitive closure along the three axes is shown in Figure 7.25.

As is already known, projecting is just a particular case in the MMG method
(i.e., prisms of base size 1 by 1). The general case consists of grouping prisms
of base size p by ¢, as discussed in Chapters 4 and 5, which leads to pseudo-
systolic arrays.

o Scheduling the order of execution of primitive operations that compose a G-
node. In the case of prisms of base size 1 by 1, the only schedule possible is
determined by the dependencies. For larger base size, the schedule is done
by meshes of primitive nodes, as described in the previous chapters.

¢ Realizing the G-graph as an array. For problems with fixed-size data, a G-
graph is directly realized as an array. Figure 7.26 depicts the arrays for

235

Figure 7.25: Projecting the MMG onto G-graphs

236

Figure 7.26: Systolic arrays for transitive closure

transitive closure obtained from the G-graphs in Figure 7.25.

For partitioned implementations, the realization is performed by selecting
sets of G-nodes (i.e., G-sets) and mapping such G-sets sequentially onto an
array (i.e., using cut-and-pile), as described in Chapter 4

The cost and performance of the three systolic arrays derived above can be
inferred directly from the MMG. For example, grouping along the Y-axis is not
convenient, because paths have different lengths so utilization of cells is not opti-
mal. On the other hand, grouping along axes X or Z collapses paths of the same
length, with the associated benefits in performance. Note that the array derived by
grouping along the Y-axis has a similar structure to the one obtained with Rao’s
method.

237

Table 7.2: Comparison of sytolic arrays for transitive closure

Method | Throughput | Opers. | # cells Links
per cell per cell
[RIA 1/n 3 [~ 3n? 4
SFG 1/n 3 n? 8
MMG |1i/n 1 nin —1)s 4
2n delay regs.

7.2.4 Comparison of derivation of arrays

The discussion in this section allows us to conclude that the derivation of arrays
in our MMG method is systematic, flexible and suited to obtain these structures,
taking into account architectural features, implementation constraints and per-
formance and cost measures. In contrast, the SFG and Rao’s methods are less
capable because they do not consider properties of cells in the transformational
process, there is little (if any) support to select certain parameters that are part
of the process (i.e., projection direction), and the process is too distant from the
implementations.

Given that Rao’s approach is specifically oriented towards the design of systolic
arrays and Kung’s method has been used mainly in that context, an important
comparison is how effective the three techniques compared here are in devising
such arrays. Table 7.2 summarizes the salient features of the different structures
described in this chapter.

7.3 Conclusions regarding the comparison

In terms of the evaluation criteria for a design method indicated in Table 7.1,
we conclude the following characteristics of our data-dependency based method:

Applicable to matrix algorithms, as defined in Chapter 5.

Able to incorporate implementation restrictions such as limited storage and
limited bandwidth per cell.

¢ Able to perform tradeoffs between local storage and cell bandwidth.

¢ Able to use pipelined cells and devise specialized cells.

238

¢ Considers performance and cost measures while applying the transforma-
tions.

* Exhibits strong capabilities to regularize algorithm and to describe transfor-
mations and architecture.

® Suitable for interactive use.

In contrast, Rao’s method is applicable only to a class of algorithms (RIAs),
it does not incorporate implementations restrictions or features of an architec-
ture, and exhibits fewer capabilities to regularize the algorithm and to describe
the transformations. Moreover, although Rao’s method seems more suitable for
automation, it produces arrays that are less efficient than those derived with our
technique.

On the other hand, Kung's method is also less effective than our approach
because it is less systematic in the process of regularizing an algorithm. and it
does not have a precise definition of the regularized form. Moreover, the SFG
method has many options (such as selecting the direction of projection, using the
graphical or algebraic approach), and few facilities to help in selecting among those
options.

We have not discussed the suitability of the three methods to derive arrays for
partitioned execution of algorithms. Although partitioning has not been explic-
itly considered in Rao’s technique, his method could use an indirect strategy as
described in Chapter 2: first derive a large virtual array, and then partition that
array for execution in a smaller one (i.e., applying coalescing or cut-and-pile). The
same i3 true for Kung’s method, with the only difference that these capabilities
have been proposed as part of the technique.

On the other hand, our method is suitable to devise partitioned implemen-
tations using a direct strategy and a combination of coalescing and cut-and-pile.
In Chapter 2, we stated that the direct strategy is more advantageous than the
indirect one. Consequently, our method can exploit algorithm properties that are
suitable for partitioned execution, which is not the case with the other methods
discussed here. In addition, we have not discussed the possibilities of performing
tradeoffs between linear and two-dimensional arrays for partitioned implementa-
tions, an additional feature of our method.

Moreover, the MMG method can also be used to perform mapping onto class-
spectfic structures, which has not been discussed in this chapter but was illustrated
in Chapter 6.

239

Table 7.3: Summary of evaluation criteria in methods compared

Regularization stage

Class of admissible algorithms

RIA only RIAs

SFG | single assignment algorithm

MMG | canonical form of matrix algorithms

r— e —

Procedure to regularize algorithm
RIA | no systematic technique

SFG | no systematic technique; ad-hoc transformations
MMG | systematic, transformational

Effectiveness of regaarized form
RIA | regular algorithm representation; adds computing load
SFG | depends on ad-hoc transformations
MMG | effective

All the aspects discussed above are summarized in Tables 7.3 and 7.4.

Consequently, we conclude that our data-dependency based approach meets
the evaluation criteria for a design method. In contrast, Rao’s method and Kung’s
technique fail for several of those criteria. The advantages are even more significant
when one considers that the type of transformations used in our approach are
suitable for a CAD tool, because the graph representations are amenable for the
user-interface and the procedures implemented within such a tool.

240

Table 7.4: Summary of evaluation criteria in methods compared

Derivation of arrays

Architecture

RIA | no need to describe architecture; systolic array
SFG | some concern for architecture

MMG | considers properties of architecture

Transformational process

RIA | single-step transformation
SFG | rather ad-hoc transformational process
MMG | systematic transformational process

Restrictions and cell attributes
RIA | systolic cells
SFG | predefined cells
MMG | memory per cell, bandwidth, tradeoffs
Partitioning
RIA | indirect partitioning
SFG | indirect partitioning; coalescing and cut-and-pile (LSGP, LPGS)
MMG | direct partitioning; combination of coalescing and cut-and-pile

Arrays ;r;duced

RIA | algorithm-specific only

SFG | algorithm-specific and class-specific
MMG | algorithm-specific and class-specific

Ease of use and automation

RIA | hard to use manually, amenable for automation
SFG | too many options, amenable for interactive use
MMG | simple, graphical, amenable for interactive use

241

242

CHAPTER 8

Summary and further research

This dissertation has addressed the systematic realization of matrix computa-
tions on mesh arrays, which are two-dimensional structures with nearest-neighbor
connected cells (i.e., systolic-type structures, although the architectures consid-
ered are more general than the systolic model.) The research described here deals
with the design of algorithm-specific arrays, as well as mapping algorithms onto
class-specific arrays.

We first introduced an extension to the concept of systolic cell to include a small
local memory. The new type of cell operates in such a way that cell bandwidth is a
fraction of computation rate. This is an attractive property for VLSI/WSI imple-
mentation, especially for cells that have a pipelined operation unit. We called this
a pseudo-systolic cell. We then analyzed aspects of the design and implementation
of arrays for matrix algorithms, such as tradeoffs in throughput, tradeoffs in cell
storage and cell bandwidth, range of application of arrays, and partitioning ap-
proaches. A classification of design issues was proposed which distinguishes among
resirictions for a particular implementation (i.e., aspects that are fixed before a
design starts), controllable and uncontrolled parameters.

Since designing arrays requires suitable techniques and tools, several methods
for the design of systolic arrays were reviewed. A framework was proposed to
compare design approaches. This framework identifies two stages in the application
of any technique: algorithm regularization and derivation of arrays. Criteria to
evaluate the suitability of methods under this framework were indicated; such
criteria also constitute a set of guidelines for the development of a powerful design
technique. From the review of existing methods, we concluded that the previously
proposed approaches are not general enough to accommodate a large variety of
matrix algorithms, that they are difficult to use, and that they are not able to take
into account varying requirements or to incorporate flexible optimization criteria
as part of the design. Moreover, most methods are oriented towards the design of
arrays for fixed-size matrices and are only indirectly applicable to the case of large
matrices.

243

To overcome the problems mentioned above, we proposed a data-dependency
graph-based design method that has been the main topic of this dissertation. This
method is a general design technique that follows a transformational approach. We
stated a canonical representation of matrix algorithms: a recursive definition in
terms of a loop statement, and a loop body composed of matrix/vector operators
and matrix algorithms. We used such a description to derive a fully-parallel data-
dependency graph (FPG) by symbolic execution of the description. A regularization
process then transforms the FPG into a multi-mesh dependency graph (MMG),
which consists of a three-dimensional graph with unidirectional nearest-neighbor
dependencies. It was shown that this regularization process is always possible, due
to the characteristics of the operations that compose a matrix algorithm. In a
second stage of the method, arrays are derived from the MMG by collapsing the
three-dimensional graph onto a two-dimensional one (a G-graph), and realizing this
G-graph as an algorithm-specific array or mapping it onto a class-specific array.
The second stage allows the incorporation of implementation restrictions and the
evaluation of tradeoffs in properties of cells. Moreover, this stage allows deriving
arrays for fixed-size data problems and partitioned problems, as well as mapping
onto class-specific arrays, while performing optimization of specific performance
and cost measures,

The method developed is applicable to psendo-systolic cells. Since systolic cells
are a particular case of pseudo-systolic ones, the method is applicable to them as
well. Moreover, our approach is such that local memory in cells is organized as two
FIFO buffers, so that local address generation is not an issue. Tradeoffs between
memory size and cell bandwidth are possible. Moreover, efficient use of pipelined
cells is allowed.

We have applied the method to a variety of algorithms, including matrix multi-
plication, convolution, LU-decomposition, triangularization by Givens’ rotations,
Cholesky decomposition, transitive closure, the Faddeev algorithm, and computa-
tion of BA~!; some of these are given as appendices. Through these examples, we
determined that the proposed method is easy to apply, incorporates implementa-
tion requirements, and optimizes selected performance measures.

The transformations that compose the technique derived in this dissertation
were formalized. A canonical form to represent matrix algorithms was proposed,
and the equivalence of graphs derived through the transformations was proved.
This formalization demonstrated how the FPG of a matrix algorithm is trans-
formed into an MMG suitable for realization as an array, and conditions for achiev-
ing such a representation were determined.

244

The method proposed in this dissertation was compared with other design
techniques within the framework discussed earlier. In particular, we evaluated
our data—dependency based approach with respect to methods based on index-
dependencies, using the technique for Regular Iterative Algorithms (RIAs) {Rao85]
as a representative example of index-dependencies. This comparison also included
the Signal Flow Graph method [Kung88c). We concluded that our method is
advantageous, because it meets the evaluation criteria and produces arrays that
are more eflicient than those obtained with other approaches.

The method devised here also allows comparisons between linear and two-
dimensional arrays. We showed that, for partitioned execution of matrix algo-
rithms, linear arrays are advantageous over two-dimensional arrays with the same
number of cells, for while they have the same I/O bandwidth, linear structures
potentially provide a higher throughput and are more sujtabje for including fault-
tolerance features,

Based on the properties of matrix algorithms that are reflected in the MMG, a
linear canonical array for partitioned execution of matrix algorithms has been pro-
posed in this dissertation. Such an array achieves high utilization, uses pipelined
cells, and has an off-cells communication rate lower than the computation rate.
Cells of the proposed architecture consist of a pipelined functional unit, internal
storage in the form of FIFQ buffers, and queues attached to ports. The array is a
linear set of cells with support for external I/Q and memory modules attached to
those cells. An example of such a canonical structure, where cells have a multiplier
and an ALU, is described in [More89a). Estimates of performance of that array
have indicated utilization of about 90% for problems of size 200 by 200 in an array
with 10 celis,

Mapping problems onto linear local-access arrays was also considered. We
discussed issues arising from the algorithms, the architecture and the mapping
process. The capabilities of the method in this context were illustrated using
a hypothetic memory-linked architecture, where cells are connected by memory
modules of large capacity so that partitioning by coalescing is the suitable map-
ping technique. A heuristic approach to achieve load balancing during partitioning
by coalescing was devised; this produced a high estimated utilization (on the or-
der of 90%) while solving problems of size 200 by 200 in an array with 10 cells.
These results are significantly better than those obtained in other arrays that have
comparable characteristics [Tsen88].

Further research in this area may be divided into the following fields:

245

1. Development of a CAD tool that implements the method proposed here.
Most steps in this technique are suitable for complete automation, and the
remaining ones are suitable for an interactive environment. Moreover, the
visual (i.e., graphical) properties of the method make it very attractive for
a CAD tool that effectively uses the currently available graphics capabilities
of computing workstations.

Some work in this area is already under development [Erce88]. Moreover,
this task may benefit from experience accumulated by others in the imple-
mentation of graphics-oriented design tools [Omtz88, Kung88d, Kung89).

2. Application of the method to other algorithms and class-specific architec-
tures. Some experience has already been gained in the latter case, be-
cause our technique has been used to study mapping algorithms such as
QR-decomposition onto the QUEN™ processor [Niel8s, More89bl, with es-
timated utilization higher than 60%. This value is about twice that obtained
earlier on the same machine. Further work includes using other machines as
target implementations, as well as other algorithms for class-specific map-
pings and algorithm-specific realizations.

3. Study of the suitability of the regularized representation as a tool for mapping
algorithms onto general-purpose parallel computers, such as multiprocessors,
hypercubes, or shared-memory machines. The description of a matrix algo-
rithm through the MMG makes it possible to study in detail the characteris-
tics of computational load, load balancing, and communication load imposed
by the algorithm. The type of analysis feasible is similar to that used in
this dissertation to map matrix algorithms onto a hypothetic memory-linked
array. Results from such an analysis are very promising and indicate that it
is possible to obtain higher performance than that usually achieved in imple-
mentations of matrix algorithms. This benefit arises from the structured and
static form of dependencies in matrix algorithms (the MMG), which allows
properties of the computation to be taken into account at compile time.

246

[Ager82]

[Ahme82]

[Andr76]

[Annag7]

[Anness]

[Atha88]

[Avil83]

[Barn83|

[Blac81]

[Boja84]

Bibliography

T. Agerwala and E. Arvind, editors, Special Issue on Data Flow Sys-
tems, IEEE Computer (February 1982).

H. Ahmed, J. Delosme, and M. Morf, Highly Concurrent Computing
Structures for Matrix Arithmetic and Signal Processing, IEFE Com-
puter, 15(1):65-82 (January 1982).

H.C. Andrews and C.L. Patterson, Singular Value Decomposition and
Digital Image Processing, IEEE Transactions on Acoustics, Speech and
Signal Processing, ASSP-24(1):26-53 (February 1976).

M. Annaratone, E. Arnould, T. Gross, H.T. Kung, M. Lam, O. Men-
zilcioglu, and J.A. Webb, The Warp Computer: Architecture, Imple-
mentation and Performance, IEEE Transactions on Computers, C-
36(12):1523-1538 (December 1987).

J. Annevelink and P. Dewilde, HIFI: A Functional Design System for
VLSI Processing Arrays, pp. 413-452, in International Conference on
Systolic Arrays (May 1988).

A. Athavale and J. J4J4, Compiling Programs for Systolic Arrays,
pp- 509-519, in VLSI Signal Processing, IIT (November 1988).

J.H. Avila and P.J. Kuekes, A One Gigaflop VLSI Systolic Processor,
pp. 159-163, in SPIE Real-Time Signal Processing VI (August 1983).

T.P. Barnwell and D.A. Schwartz, Optimal Implementation of Flow
Graphs on Synchronous Multiprocessors, pp. 188-193, in Asilomar
Conference on Circuits and Systems (November 1983).

J. Blackmer, G. Frank, and P. Kuekes, A 200 Million Operations per
Second (MOPS) Systolic Processor, pp. 10-18, in SPIE Real-Time
Signal Processing IV (August 1981).

A. Bojanczyk, R.P. Brent, and H.T. Kung, Numerically Stable So-
lution of Dense Systems of Linear Equations Using Mesh-Connected

Processors, SIAM Journal on Scientific and Statistical Computing,
5(1):95-104 (March 1984).

247

[Bojag6|

[Bouk72]

[Bren85a]

[Bren85b]

[Brom81]

[Brom88]

[Capp83]

[Capp84]

[Cava87]

[Chap85]

[Cheng6]

A.W. Bojanczyk, R.P. Brent, and F.R. de Hoog, Parallel QR decom-
position of Toeplitz Matrices, pp. 39-44, in SPIE Advanced Algorithms
and Architectures for Signal Processing (August 1986).

W.J. Bouknight, S.A. Denenberg, D.E. McIntyre, J.M. Randall, A.H.
Sameh, and D.L. Slotnick, The ILLIAC IV System, Proceedings of the
IEEE, 60(4):369-388 (April 1972).

R.P. Brent and F.T. Luk, A Systolic Array for the Linear-Time Solu-
tion of Toeplitz Systems of Equations, Journal of VLSI and Computer
Systems, 1(1):1-22 (1985).

R.P. Brent, F.T. Luk, and C. van Loan, Computation of the Singular
Value Decomposition Using Mesh-Connected Processors, Journal of
VLSI and Computer Systems, 1{3):242-270 (1985).

K. Bromley and H.J. Whitehouse, Signal Processing Technology
Overview, pp. 102-106, in SPIE Real-Time Signal Processing IV (Au-
gust 1981).

K. Bromley, S.Y. Kung, and E. Swartzlander, editors, International
Conference on Systolic Arrays, IEEE Computer Society Press (May
1988).

P.R. Cappello and K. Steiglitz, Unifying VLSI Array Designs with
Geometric Transformations, pp. 448457, in International Conference
on Parallel Processing (August 1983).

P.R. Cappello and K. Steiglitz, Unifying VLSI Array Design with
Linear Transformations of Space-Time, in Advances in Computing Re-
search, vol. 2, pp. 23-65, JAI Press Inc. (1984).

J.R. Cavallaro and F.T. Luk, CORDIC Arithmetic for an SVD pro-
cessor, pp. 215-222, in 8th Symposium on Computer Arithmetic (May
1987).

R. Chapman, T.S. Durrani, and T. Willey, Design Strategies for Imple-
menting Systolic and Wavefront Arrays using OCCAM, pp. 292-295,
in International Conference on Acoustics, Speech and Signal Processing

(March 1985).

M. Chen, Synthesizing VLSI Architectures: Dynamic Programming
Solver, pp. 776-784, in International Conference on Parallel Processing
(August 1986).

248

(Chou88]

[Chua84]

[Chuags)]

[Como8T]

[Daviss)

[Delo86]

[Dong87a|

[Dong87b]

[Dong88a

[Dong88b]

[Drak87]

S.I. Chou and C.M. Rader, Algorithm-based Error Detection of a
Cholesky Factor Updating Systolic Array Using CORDIC Processors,
pp. 104-111, in SPIE Real-Time Signal Processing XI (August 1988).

H.Y.H. Chuang and G. He, Design of Problem-Size Independent Sys-
tolic Array Systems, pp. 152-157, in International Conference on Com-
puter Design (October 1984).

H.Y.H Chuang and G. He, A Versatile Systolic Array for Matrix Com-
putations, pp. 315-322, in 12th Annual Symposium on Computer Ar-
chitecture (June 1985).

P. Comon and Y. Robert, A Systolic Array for Computing BA™!,
IEEE Transactions on Acoustics, Speech and Signal Processing, ASSP-
35(6):717-723 (June 1987).

G.A. Davidson, P.R. Cappello, and A. Gersho, Systolic Architectures
for Vector Quantization, IEEE Transactions on Acoustics, Speech and
Stgnal Processing, 36(10):1651-1664 (October 1988).

J.M. Delosme and I.C.F. Ipsen, Design Methodology for Systolic Ar-
rays, pp. 245-259, in SPIE Advanced Algorithms and Architectures for
Signal Processing (August 1986).

J.J. Dongarra, Performance of Various Computers Using Standard
Linear Equations Software in a Fortran Environment, Technical Mem-
orandum 23, Mathematics and Computer Science Division, Argonne
National Laboratory (October 1987).

J.J. Dongarra, J.L. Martin, and J. Worlton, Computer Benchmarking:
Paths and Pitfalls, JEEE Spectrum, 3843 (July 1987).

V. van Dongen, PRESAGE, a Tool for the Design of Low-Cost Systolic
Circuits, pp. 2765-2768, in International Symposium on Circuits and
Systems (1988).

V. van Dongen and P. Quinton, Uniformization of Linear Recurrence
Equations: A Step Towards the Automatic Synthesis of Systolic Ar-
rays, pp. 473482, in International Conference on Systolic Arrays (May
1988).

B.L. Drake, F.T. Luk, J.M. Speiser, and J.J. Symanski, SLAPP: A
Systolic Linear Algebra Parallel Processor, [EEE Computer, 20(7):45-
50 (July 1987).

249

[Engs87]

(Erce87a)

[Erce87b]

(Erce88]

[Fadd63]

[Fish83]

[Fort85]

[Fort87a]

[Fort87b]

[Fort88§]

[Foul87]

[Fox88]

B.R. Engstron and P.R. Cappello, The SDEF Systolic Programming
System, Technical Report TRCS87-15, Department of Computer Sci-
ence, University of California Santa Barbara (August 1987).

M. Ercegovac and T. Lang, On-line Scheme for Computing Rotation
Factors, pp. 196-203, in 8th Symposium on Computer Arithmetic (May
1987).

M. Ercegovac and T. Lang, Redundant and On-Line CORDIC: Appli-
cation to Matriz Triangularization and SVD, Technical Report CSD-

870046, Computer Science Department, University of California Los
Angeles (1987).

M.D. Ercegovac and T. Lang, Graph-based method for the design of
arrays for matriz computations, Proposal for Research, Computer
Science Department, University of California Los Angeles (November
1988).

D.K. Faddeev and V.N. Faddeeva, Computational Methods of Linear
Algebra, pp. 150-158, W.H. Freeman and Co. (1963).

A.L. Fisher, H.T. Kung, and L.M. Monier, Architecture of the PSC:
A Programmable Systolic Chip, pp. 48-53, in 10th Annual Symposium
on Computer Architecture (1983).

J.A.B. Fortes and D.I. Moldovan, Parallelism Detection and Trans-
formation Techniques Useful for VLSI Algorithms, Journal of Parallel
and Distributed Computing, 2:277-301 (1985).

J.A.B. Fortes and B.W. Wah, editors, Special Issue on Systolic Arrays,
IEEE Computer Society (July 1987).

J.A.B. Fortes and B.W. Wah, Systolic Arrays - From Concept to Im-
plementation, [EEE Computer, 20(7):12-17 (July 1987).

J.A.B. Fortes, K. Fu, and B.W. Wah, Systematic Approaches to the
Design of Algorithmically Specified Systolic Arrays, in Veljko Mi-
lutinovi¢, editor, Computer Architecture, pp. 454-494, North-Holland
(1988).

D.E. Foulser and R. Schreiber, The Saxpy Matrix-1: A General Pur-
pose Systolic Computer, IEEE Computer, 20(7):35-44 (July 1987).

G. Fox, editor, Third Conference on Hypercube Concurrent Comput-
ers and Applications. Banded and Full Matriz Algorithms, ACM Press
(January 1988).

250

(Fris86]

[FXS87]

[Gann82]

[Gent81]

[Golu85|

[Groo87]

[Guer86]

[Hayn82)

[Hein87]

[Hell83]

[Hell84]

(Hills]
[Hwan82]

P. Frison, P. Gachet, and P. Quinton, Designing Systolic Arrays with
DIASTOL, pp. 93-105, in VLSI Signal Processing, II (November 1986).

FX/Series Product Summary, Alliant Computer Systems Corporation
(June 1987).

D. Gannon, Pipelining Array Computations for MIMD Parallelism: A
Functional Specification, pp. 284-286, in International Conference on
Parallel Processing (August 1982),

W.M. Gentleman and H.T. Kung, Matrix Triangularization by Systolic
Arrays, pp. 19-26, in SPIE Real-Time Signal Processing IV (August
1981).

G.H. Golub and C.F. van Loan, Matriz Computations, The John
Hopkins University Press (1985).

A.J. De Groot, E.M. Johansson, and S.R. Parker, Systolic Array for
Efficient Execution of the Faddeev Algorithm, pp. 86-93, in SPIE
Real-Time Signal Processing X (August 1987).

C. Guerra and R. Melhem, Synthesizing Non-Uniform Systolic De-
signs, pp. 765-771, in International Conference on Parallel Processing
(August 1986).

L.S. Haynes, R.L. Lau, D.P. Siewiorek, and D.W. Mizell, A Survey
of Highly Parallel Computing, IEEE Computer, 15(1):9-24 (January
1982).

C.E. Hein, R.M. Zieger, and J.A. Urbano, The Design of a GaAs
Systolic Array for an Adaptive Null Steering Beamforming Controller,
IEEE Computer, 20(7):92-93 (July 1987).

D.E. Heller and I.C.F. Ipsen, Systolic Networks for Orthogonal De-
compositions, SIAM Journal on Scientific and Statistical Computing,
4(2): (June 1983).

D. Heller, Partitioning Big Matrices for Small Systolic Arrays, in S.Y.
Kung, H.J. Whitehouse, and T. Kailath, editors, Concurrent Array
Processors, pp. 185-199, Prentice Hall (1984).

W.D. Hillis, The Connection Machine, MIT Press (1985).

K. Hwang and Y.H. Cheng, Partitioned Matrix Algorithms for
VLSI Arithmetic Systems, IEEE Transactions on Computers, C-
31(12):1215-1224 (December 1982).

251

[Ibar87]

[Jain87]

[John84]

[Jove84)

[Kandgs]

[Karp67]

[Klem80]

[Ko88]

[Koggs1]

[Kore83]

[Kucksl1]

[Kung78]

O.H. Ibarra and M.A. Palis, VLSI Algorithms for Solving Recurrence
Equations and Applications, [EEE Transactions on Acoustics, Speech
and Signal Processing, ASSP-35(7):1046-1063 (July 1987).

K. Jainandunsing, H. Nelis, and E.F. Deprettere, Systematic Design of
Fixed Size Systolic Arrays, Applied to the Orthogonal Faddeev Equa-
tions Solver, pp. 471-477, in European Conference on Circuit Theory
and Design (ECCTD) (September 1987).

L. Johnsson, Highly Concurrent Algorithms for Solving Linear Systems
of Equations, pp. 105-126, in Conference on Elliptic Problem Solvers
IT(1984).

J.M. Jover and T. Kailath, Design Framework for Systolic-Type Ar-
rays, pp. 8.5.1-8.5.4, in International Conference on Acoustics, Speech
and Signal Processing (March 1984).

D.A. Kandle, A Systolic Signal Processor for Signal-Processing Appli-
cations, IEEE Computer, 20(7):94-95 (July 1988).

R.M. Karp, R.E. Miller, and S. Winograd, The Organization of Com-
putations for Uniform Recurrence Equations, Journal of the Associa-
tion for Computing Machinery, 14(3):563-590 (July 1967).

V.C. Klema and A.J. Laub, The Singular Value Decomposition: Its
Computation and Some Applications, IEEE Transactions on Auto-
matic Control, AC-25(2):164-176 (April 1980).

C.K. Ko and O. Wing, Mapping Strategy for Automatic Design of
Systolic Arrays, pp. 285-294, in International Conference on Systolic
Arrays (May 1988).

P. Kogge, The Architecture of Pipelined Computers, McGraw-Hill
(1981).

I. Koren and G.M. Silberman, A Direct Mapping of Algorithms onto
VLSI Processing Arrays Based on the Data Flow Approach, pp. 335-
337, in International Conference on Parallel Processing (August 1983).

D.J. Kuck, R.H. Kuhn, D.A. Padua, B. Leasure, and M. Wolfe, De-
pendence Graphs and Compiler Optimizations, pp. 207-218, in ACM
(1981).

H.T. Kung and C.E. Leiserson, Systolic Arrays (for VLSI), in Sympo-
stum on Sparse Matriz Computations and their Applications (Novem-
ber 1978).

252

[Kung79]
'Kung82]
[Kung83a)

[Kung83b]

'Kung87a]

[Kung87h]

[Kung87c]

[Kung83a]

[Kung88b]

[Kung88c]
[Kung88d]

[Kung89]

[Lack88]

H.T. Kung, Let’s Design Algorithms for VLSI Systems, pp. 65-90, in
CALTECH Conference on VLSI (January 1979).

H.T. Kung, Why Systolic Architectures?, IEEE Computer, 15(1):37~
46 (January 1982).

H.T. Kung and W.T. Lin, An Algebra for Systolic Computation,
pp- 141-160, in Conference on Elliptic Problem Solvers (1983).

S.Y. Kung and Y.H. Hu, A Highly Concurrent Algorithm and Pipelined
Architecture for Solving Toeplitz Systems, IEEE Transactions on
Acoustics, Speech and Signal Processing, ASSP-31(1):66-75 (February
1983).

5.Y. Kung, P.S. Lewis, and S.N. Jean, Canonic and Generalized
Mapping from Algorithms to Arrays - A Graph Based Methodology,
pp. 124-133, in 20th Annual Hawaii International Conference on Sys-
tem Sciences (1987).

S.Y. Kung, S.C. Lo, S.N. Jean, and J.N. Hwang, Wavefront Array
Processors - Concept to Implementation, JEEE Computer, 20(7):18-
33 (July 1987).

S.Y. Kung, S.C. Lo, and P.S. Lewis, Optimal Systolic Design for the
Transitive Closure and the Shortest Path Problems, [EEE Transac-
tions on Computers, C-36(5):603-614 (May 1987).

H.T. Kung, presentation, in SPIE Real-Time Signal Processing XI
(August 1988).

H.T. Kung, Warp Experience: We Can Map Computations onto a
Parallel Computer Efficiently, pp. 668-675, in International Conference
on Supercomputing (July 1988).

S.Y. Kung, VLSI Array Processors, Prentice Hall (1988).

S.Y. Kung and S.N. Jean, A VLSI Array Compiler System (VACS) for
Array Design, pp. 495-508, in VLSI Signal Processing, III (November
1988).

S.Y. Kung and J.S.N. Jean, Array Compiler Design for VLSI/WSI
Systems, in International Conference on Systolic Arrays (May 1989).

R.J. Lackey, H.F. Baurle, and J. Barile, Application-specific Super
Computer, pp. 187-195, in SPIE Real-Time Signal Processing XI (Au-
gust 1988).

253

[Lam85)

[Lee88]

[Lev-88]

[Lewi88]

[Lis4]

[Linc88]

[Lopr88|

[Lukse6]

[Luk87]

[Lukss]

[McWha83]

[Meie87]

[Mira84]

M.S. Lam and J. Mostow, A Transformational Model of VLSI Systolic
Design, /EEE Computer, 42-52 (February 1985).

P. Lee and Z.M. Kedem, Synthesizing Linear Array Algorithms from
Nested For Loop Algorithms, I[EEE Transactions on Computers,
37(12):1578-1598 (December 1988).

H. Lev-Ari and B. Friedlander, On the Systematic Design of
Fault-Tolerant Processor Arrays with Application to Digital Filtering,
pp. 483494, in VLSI Signal Processing, III (November 1988).

P.S. Lewis, Algorithms and Architectures for Multichannel Enhance-
ment of Magnetoencephalographic Signals, pp. 741-745, in Asilomar
Conference on Signals, Systems and Computations (1988).

G.J. Li and B.W. Wah, The Design of Optimal Systolic Arrays, /[EEE
Transactions on Computers, C-34(1):66-77 {October 1984).

R.A. Lincoln and K. Yao, Efficient Systolic Kalman Filtering Design by
Dependence Graph Mapping, pp. 396407, in VLSI Signal Processing,
IIT (November 1988).

D.P. Lopresti, P-NAC: A Systolic Array for Comparing Nucleic Acid
Sequences, IEEE Computer, 20(7):98-99 (July 1988).

F.T. Luk, Architectures for Computing Eigenvalues and SVD’s,
pp. 24-33, in SPIE Highly Parallel Signal Processing Architectures
{January 1986).

F.T. Luk, editor, Advanced Algorithms and Architectures for Real-
Time Signal Processing I, SPIE-The International Society for Optical
Engineering (August 1987).

F.T. Luk, editor, Advanced Algorithms and Architectures for Real-
Time Signal Processing III, SPIE-The International Society for Optical
Engineering (August 1988).

J.G. McWhirter, Recursive Least-Squares Minimization Using a Sys-
tolic Array, pp. 105-112, in SPIE Real-Time Signal Processing VI
(August 1983).

U. Meier and A. Sameh, Numerical Linear Algebra on the CEDAR
Multiprocessor, pp. 1-9, in SPIE Advanced Algorithms and Architec-
tures for Signal Processing IT (August 1987).

W.L. Miranker and A. Winkler, Space-Time Representations of Com-
putational Structures, Computing, 32:93-114 (1984).

254

[Molds?]

[Mold83]

[Molds6]

[Mold87]

[Moreg7]

[More88a]

[More88b]

[Moreg8c]

[More89a]

[More89b]

[Most84)

[Nifie84]

D.I. Moldovan, On the Analysis and Synthesis of VLSI Algorithms,
IEEE Transactions on Computers, C-31(11):1121-1126 (November
1982).

D.I. Moldovan, On the Design of Algorithms for VLSI Systolic Arrays,
Proceedings of the IEEE, 71(1):113-120 (January 1983).

D.I. Moldovan and J.A.B. Fortes, Partitioning and Mapping Algo-
rithms into Fixed Size Systolic Arrays, IEEE Transactions on Com-
puters, C-35(1):1-12 (January 1986).

D.I. Moldovan, ADVIS: A Software Package for the Design of Systolic
Arrays, IEEE Transactions on Computer-Aided Design, CAD-6(1):33-
40 (January 1987).

J.H. Moreno and T. Lang, Design of Special-Purpose Arrays for Matrix
Computations: Preliminary Results, pp. 53-65, in SPIE Real-Time
Signal Processing X (August 1987). '

J.H. Moreno and T. Lang, Arrays for Partitioned Matrix Algorithms:
Tradeoffs Between Cell Storage and Cell Bandwidth, in SPIE Real-
Time Signal Processing XI (August 1988).

J.H. Moreno and T. Lang, Designing Arrays for the Faddeev Algo-
rithm, Technical Report CSD-880013, Computer Science Department,
University of California Los Angeles (March 1988).

J.H. Moreno and T. Lang, Graph-based Partitioning of Matrix Algo-
rithms for Systolic Arrays: Application to Transitive Closure, pp. 28-
31, in International Conference on Parallel Processing (August 1988).

J.H. Moreno and T. Lang, Linear Array for Partitioned Execution of
Matrix Algorithms with High Utilization, in SPIE Real-Time Signal
Processing XII (August 1989).

J.H. Moreno and R. Nielsen, Mapping the QR-decomposition algorithm
onto the QUEN processor, Technical Report, Interstate Electronics
Corporation, 1001 E. Ball Rd, Anaheim, CA 92803 (March 1989).

J. Mostow and B. Balzer, Application of a Transformational Software
Development Methodology to VLSI Design, Journal of Systems and
Software, 4:51-61 (1984).

F.J Nifiez and N. Torralba, Transitive Closure Partitioning and its
Mapping to a Systolic Array, pp. 564-566, in International Conference
on Parallel Processing (August 1987).

255

[Nidiess]

[Nash84]

[Nash86a]

[Nash86b)]

[Nash88]

[Nava86a)

[Nava86b]

[Nava87]

[Niel88]

[Omt288]

[Przy88]

[Quing4]

F.J. Nifiez and M. Valero, A Block Algorithm for the Algebraic Path
Problem and its Execution on a Systolic Array, pp. 265-274, in Inter-
national Conference on Systolic Arrays (May 1988).

J.G. Nash and S. Hansen, Modified Faddeev Algorithm for Matrix
Manipulation, pp. 39-46, in SPIE Real-Time Signal Processing VII
(August 1984).

J.G. Nash, S. Hansen, and K.W. Przytula, Systolic Partitioned and
Banded Linear Algebraic Computations, pp. 10-16, in SPIF Real-Time
Signal Processing IX (August 1986).

J.G. Nash, K.W. Przytula, and S. Hansen, Systolic/Cellular Processor
for Linear Algebraic Operations, pp. 306-315, in VLSI Signal Process-
ing, II (1986).

J.G. Nash, K.W. Przytula, and S. Hansen, The Systolic/Cellular Sys-
tem for Signal Processing, IEEE Computer, 20(7):96-97 (July 1988).

J.J. Navarro, J.M. Llaberia, and M. Valero, Computing Size-
Independent Matrix Problems on Systolic Array Processors, pp. 271-
278, in 13th Annual Symposium on Computer Architecture (June 1986).

J.J. Navarro, J.M. LLaberia, and M. Valero, Solving Matrix Problems
with No Size Restriction on a Systolic Array Processor, pp. 676-683,
in International Conference on Parallel Processing (August 1986).

J.J. Navarro, J.M. Llaberia, and M. Valero, Partitioning: An Essential
Step in Mapping Algorithms into Systolic Array Processors, [EEE
Computer, 20(7):77-89 (July 1987).

R. Nielsen, High-performance Sonar System, Defense Science (August
1988).

E.T.L. Omtzigt, SYSTARS: A CAD Tool for the Synthesis and Anal-
ysis of VLSI Systolic/Wavefront Arrays, pp. 383-389, in International
Conference on Systolic Arrays (May 1988).

K.W. Przytula and J.G. Nash, A Special Purpose Coprocessor for
Signal Processing, pp. 736-740, in Asilomar Conference on Signals,
Systems and Computations (1988).

P. Quinton, Automatic Synthesis of Systolic Arrays from Uniform Re-
current Equations, pp. 208-214, in 11th Annual Symposium on Com-
puter Architecture (June 1984).

256

[Rajo86]

[Rajo88al

[Rajo88b]

[Rama83]

[Rao85]

[Rao86]

[Rao88)

[Robeg6]

[Royc88a)]

[Royc88b]

[Same85a]

[Same85b]

[Schis6]

S.V. Rajopadhye, S. Purushothaman, and R.M. Fujimoto, On Synthe-
sizing Systolic Arrays from Recurrence Equations with Linear Depen-
dencies, in 6th Conference on Foundations of Software Technology and
Theoretical Computer Science (December 1986).

S.V. Rajopadhye, I/O Behavior of Systolic Arrays, pp. 423-434, in
VLSI Signal Processing, IIT (November 1988).

S.V. Rajopadhye, Systolic Arrays for LU decomposition, pp. 2513~
25186, in International Symposium on Circuits and Systems (1988).

L.V. Ramakrishnan, D.A. Fussell, and A. Silberschatz, On Mapping
Homogeneous Graphs on A Linear Array-Processor Model, pp. 440-
447, in International Conference on Parallel Processing (August 1983).

S.K. Rao, Regular Iterative Algorithms and their Implementation on
Processor Arrays, PhD dissertation, Information Systems Laboratory,
Stanford University, Stanford, California (October 1985).

S.K. Rao and T. Kailath, What is a Systolic Algorithm, pp. 3448, in
SPIE Highly Parallel Signal Processing Architectures (January 1986).

S.K. Rao and T. Kailath, Regular Iterative Algorithms and their Im-
plementation on Processor Arrays, Proceedings of the IEEE, 76(3):259-
269 (March 1988).

L. Robert, Algorithmes et Architectures Systoliques, Institut National
Polytechnique de Grenoble (1986).

V.P. Roychowdhury and T. Kailath, Regular Processor Arrays for
Matrix Algorithms with Pivoting, pp. 237-246, in International Con-
ference on Systolic Arrays (May 1988).

V.P. Roychowdhury, S.K. Rao, L. Thiele, and T. Kailath, On the
Localization of Algorithms for VLSI Processor Arrays, pp. 459470, in
VLSI Signal Processing, III (November 1988).

A. Sameh, Algorithms and Experiments for Parallel Linear Systems
Solvers, in 2nd SIAM Conference on Parallel Processing for Scientific
Computing (November 1985).

A. Sameh, Parallel Linear Systems Solvers, in Conference on Vector
and Parallel Processors for Scientific Computation (May 1985).

D.E. Schimmel and F.T. Luk, A Practical Real Time SVD Machine
with Multi-level Fault Tolerance, pp. 142-148, in SPIE Real-Time
Signal Processing IX (August 1986).

257

[Schrg82]

(Schwg4]

[STAMSTY)

[Snyd82]

(Snyd84]

[Snyd86]

[Spei8l]

[Spei83]

[Spei88]

[Syma83]

[Symag6)

[Syma88]

R. Schreiber, Systolic Arrays for Eigenvalue Computation, pp. 27-34,
in SPIE Real-Time Signal Processing V (August 1982).

D.A. Schwartz and T.P. Barnwell, A Graph Theoretic Technique for
the Generation of Systolic Implementations for Shift-Invariant Flow
Graphs, pp. 8.3.1-8.3.4, in International Conference on Acoustics,
Speech and Signal Processing (March 1984).

SIAM, editor, Third SIAM Conference on Parallel Processing for Sci-
entific Computing, Society for Industrial and Applied Mathematics
(December 1987).

L. Snyder, Introduction to the Configurable Highly Parallel Machine,
IEEE Computer, 15(1):47-64 (January 1982).

L. Snyder, Parallel Programming and the Poker Programming Envi-
ronment, JEEE Computer, 17(7):27-36 (July 1984).

L. Snyder, Programming Environments for Systolic Arrays, pp. 134-
144, in SPIE Highly Parallel Signal Processing Architectures (January
1986).

J.M. Speiser and H. Whitehouse, Parallel Processing Algorithms and
Architectures for Real-Time Signal Processing, pp. 2-9, in SPIE Real-
Time Signal Processing IV (August 1981).

J.M. Speiser and H. Whitehouse, A Review of Signal Processing with
Systolic Arrays, pp. 2-6, in SPIE Real-Time Signal Processing VI
(August 1983).

J.M. Speiser, An Overview of Matrix-Based Signal Processing,
pp. 284-289, in Asilomar Conference on Signals, Systems and Com-
putations (1988).

J.J. Symanski, Implementation of Matrix Operations on the Two-
Dimensional Systolic Array Testbed, pp. 136-142, in SPIE Real-Time
Signal Processing VI (August 1983).

J.J. Symanski, Architecture of the Systolic Linear Algebra Parallel
Processor (SLAPP), pp. 17-21, in SPIE Real-Time Signal Processing
IX (August 1986).

J.J. Symanski and K. Bromley, Video Analysis Transputer Array
(VATA) Processor, in SPIE Real-Time Signal Processing XI (August
1988).

258

[Torr88]

[Torr89]

[Tsen88]

[Weis81]

[Yaac88a)]

[Yaac88b]

N. Torralba and J.J. Navarro, A One Dimensional Systolic Array for
Solving Arbitrarily Large Least Mean Square Problems, pp. 103-112,
in International Conference on Systolic Arrays (May 1988).

N. Torralba and J.J. Navarro, Size-independent Systolic Algorithms for
QR Iteration and Hessenberg Reduction, pp. 166-175, in International
Conference on Systolic Arrays (May 1989).

P.S. Tseng, M. Lam, and H.T. Kung, The Domain Parallel Computa-
tion Model on Warp, pp. 130-137, in SPIE Real-Time Signal Process-
ing XI (August 1988).

V. Weiser and A. Davis, A Wavefront Notation Tool for VLSI Array
Design, in H.T. Kung et al., editor, VLSI Systems and Computations,
pp. 226-234, Computer Science Press (October 1981).

Y. Yaacoby and P. Cappello, Converting Affine Recurrence Equations
to Quasi-Uniform Recurrence Equations, Technical Report TRCS87-
18, Department of Computer Science, University of California Santa
Barbara (February 1988).

Y. Yaacoby and P.R. Cappello, Scheduling a System of Affine Recur-
rence Equations onto a Systolic Array, pp. 373-382, in International
Conference on Systolic Arrays (May 1988).

259

260

APPENDIX A

Arrays for the Faddeev algorithm

A.1 Introduction

The traditional approach to offer flexibility in an array (so that different al-
gorithms may be computed in the same structure) consists of providing pro-
grammable features that are activated via software. An alternative is using an
algorithm for a class of problems, such as the Faddeev algorithm [Fadd63), which
has the capability of performing a variety of matrix computations without the
need for programmable features in the array. Some overhead or cost is involved
of course, which consists of performing additional operations. Several arrays to
compute the Faddeev algorithm have been discussed in the literature [Nash84,
Nash86a, Nash86b, Chua85]. Nash and Hansen [Nash84] proposed a trapezoidal
array for problems with fixed-size data and an implementation of their scheme was
presented in [Nash86b]. The same structure is used in [Nash86a] to partition the
algorithm. The Faddeev algorithm is also implemented in [Chua85} for both fixed-
size and variable-size problems, and in [Groo87] for partitioned implementation in
a two-dimensional array of transputers.

In this chapter, we apply our design method to the Faddeev algorithm. We
discuss the design of arrays for fixed-size problems as well as partitioning the
algorithm, and evaluate the structures obtained. We show that for matrices of
size n by n it is possible to achieve throughput [n]~! or [2n]~! in two-dimensional
arrays with O(n?) cells. The utilization of these arrays tends to 7/9.! One of
the two-dimensional schemes derived here corresponds to that proposed by Nash
and Hansen in [Nash84], though their paper did not include an evaluation of the

array in terms of throughput and utilization as it is possible with our graph-based
technique.

In partitioned mode, we show that for large matrices the throughput of linear
and two-dimensional arrays tends to (3K)/(7n3) (where K is the number of PEs)
and utilization tends to 1. The two-dimensional partitioned scheme devised here is

!Linear arrays with O(n) cells and throughput 2/(3n? — n + 2) are derived in [More88b).

261

more efficient than the one proposed in [Chua85]. In addition, it does not need the
complex loading and un-loading of data required in {Nash86a]. Moreover, we show
that the linear array is simpler, has slightly better throughput and utilization with
the same number of units than a square array, and exhibits better characteristics
for fault-tolerant implementations than a two-dimensional structure.

A.2 The modified Faddeev algorithm

The matrix version of the Faddeev algorithm evaluates the expression CX +
D subject to the condition AX = B, where A4,B,C,D are given matrices, X
is a column vector, and A is of full rank. The algorithm can be expressed by
representing the data as the extended matrix

-C|D

and performing linear combinations on this extended matrix with the objective
of transforming matrix C into a matrix of zeroes. If we represent such linear
combinations as W, the operations performed are (—C + WA) and (D + WB).
The annulment of C requires that W = CA~!, so that D+ WB = D + CA-'B.
Since X = A~!B, the final result D+ W B = D+ CX replaces the values of matrix
D in the expression above [Nashg&4).

Several matrix operations are possible by selecting specific entries for matrices
A,B,C and D. Figure A.1 depicts some alternatives, including matrix multi-
plication/addition, matrix inversion and solution of linear systems of equations.
Therefore, the Faddeev algorithm allows a degree of “programmability” by select-
ing the values of input data. The cost of this flexibility consists of additional
operations, because the algorithm operates on four matrices.

In addition to its capability to perform different matrix operations, the Faddeev
algorithm has other advantages:

¢ The algorithm does not need to compute the elements of W, because it must
only annul the elements of C. Such annulment is done by ordinary Gaussian
elimination.

¢ When solving linear systems of equations, the algorithm does not need the
back-substitution step usually found in triangularization methods. Instead,
results are obtained directly at the end of the annulment of C.

262

-1
—Tlo — “ —clo — ¢F
I |B A|B .
1D D+CB —~To A™'B

Al B B

Figure A.1: Matrix operations with the Faddeev algorithm

Since Gaussian elimination does not guarantee numerical stability and fails for
zero pivot elements, Nash and Hansen have proposed a modification to the original
Fadeev algorithm [Nash84]. This modification consists of “adding an orthogonal
factorization capability for added numerical stability and to allow the coefficient
matrix to be non-square for over- and under-determined systems of equations”.
Nash and Hansen'’s scheme uses Givens rotations to annul matrix C. The utiliza-
tion of Givens rotations requires to divide the process of annulling matrix C into
the following two-step procedure [Nash84):

¢ Triangularization of matrix A through Givens rotations and application of
such rotations to matrix B.

¢ Gaussian elimination of the elements of C using the rotated matrix A to
compute pivots, and application of the same transformations to D using the
rotated matrix B.

Figure A.2 shows the dependency graph of the modified Faddeev algorithm for
4 by 4 matrices, after replacing data broadcasting by transmittent data. Moreover,
delay nodes have been added to enhance communications regularity between nodes
of the graph and to obtain nodes with at most one external input. Operation
nodes correspond to the computation of multiply/add, division, rotation angle
and rotation.

The graph in Figure A.2 is divided into sections that correspond to different
iterations in the algorithm. We can distinguish four parts in each section of the
graph in Figure A.2, namely those used to operate on the four different matrices.
In the top-left part, leftmost elements of matrix A are used to compute rotation

263

bi4
24

b12 b1}

b22

bll

b21

- —

ald
324

a34
add
c14

A
— TR Sl ee— —— il e— t——

al2

all

azl

:

] g — et e —

;

1 -
| 131 r3ﬂ
[34 1 i - +——H Fﬂmﬁ
e L L el el-eL-e] LSO ool
3 PO RO 8080 | | * _
" m : ARl FEES =
- ! 1 1 ST@O DO D) Y
T e = el s 1, Ny ey))) | L
g E u.mﬁpmhpm..u_p_ _Ym _ _ ,
! " 1 t -,
“ y W I] mr=ar ! At Rk
—H T —H—H—H— HH Y RS AT p.uu‘u_nﬁnﬁﬂu.n_ ER
5 ER ER EN BNy D020 | ¥ | L
aaaaa -..-TL.-..:-._ |

i - — e et —

32
adl fad2

a3l

E

E
o
:

Figure A.2: The fully-parallel graph without broadcasting

264

angles. These angles are broadcasted horizontally to the remaining elements of A
on the same row and to the elements of B also on the same row. All these elements
are rotated according to such angles. Elements of the transformed matrix 4 (say
A’) and the rotated matrix B (say B’) flow towards the lower parts of the section.
In the lower-left part, leftmost elements of A’ are used to compute pivots for
performing Gaussian elimination on matrix C. Pivots are broadcasted horizontally
and used together with elements of B’ to perform the same transformation on
matrix D.

The graph in Figure A.2 is now transformed into an MMG by allocating each
section of the graph to a different plane of a three-dimensional graph, as shown in
Figure A.3. In what follows, we use this MMG to derive arrays for the Faddeev
algorithm.

A.3 Arrays for problems with fixed-size data

Let us consider first deriving G-graphs for problems with fixed size data, and
realizing the G-graphs as two-dimensional arrays. As an example, the G-graph
obtained by coalescing prisms of size 1 by 1 along the Z-axis is depicted in Fig-
ure A.4. The G-graph is directly realized as the systolic array shown in Figure A.5.
This array is characterized by a region of maximal utilization of cells (the bottom
rightmost one, corresponding to the computation of matrix D in the algorithm);
utilization of cells decreases for cell towards the top and left of the array. Moreover,
this array requires external input in every cell, while results are left inside the n?
lower rightmost cells.

Deriving G-graphs by grouping along axes X and Y and realizing the resulting
graphs as arrays leads to the trapezoidal structures depicted in Figures A.6 and A.7.
The array in this latter figure corresponds to the structure proposed in [Nash84].
These two arrays receive external input only at one side (i.e., left or top) and
produce results also only at one side (right or bottom, respectively).

From the MMG one may search for two-dimensional arrays with higher through-
put than what is achievable in the arrays above. While grouping along axes Y or
Z, nodes in the different sections of the graph may be grouped separately. This
approach leads to pairs of trapezoidal graphs as the ones used to derive the trape-
zoidal arrays described above. Nodes at the same position in these graphs are from
the same path in the MMG. Since there is a connection along such a path, the two
graphs have their corresponding nodes interconnected. Figure A.8 shows the array

265

OMult/Add @ Delay

®Rotatioa @ Rotation @ Division

angle

Figure A.3: The multi-mesh dependency graph

266

|

|

.
:?J__Lﬁ_-“
o

s

1

)

]

Tﬁ

!

i i;%g: M)

7o 7Y |
Ay —

i
|
it

f
4 ST T e 4K 4K 1T
1 a2 b ae |Vpy et [V et et e
Iy 1 1y, M Yy Ly, Py o
O (o] (8 gttt
Fipiptd R o ek o g e e
{) ’ { ey {) { e {2 @)
/ ’ s 7 ” 7 7 y
oAl A2 43 obd dal wuz 3 a4d
@ Romation © Rotation S Division O Mult/Add @ Delay
angle

Figure A.4: The G-graph from grouping along the Z-axis

267

decreasing
utilization

Operations per cell
m Rotation angle

Rotation angle,
“] Rotation

Rotation

Division

Division,
Multv/Add

=
[Muvadd
O

Delay

maximal
utilization

b14,b13,b12,611.a14,a13,a12,a11

b24,b23,622,b21,a24,a23,222 a21

b34,b33,b32,b31,234,533,232,a31

b44,b43,bd2,bd 1,244,043 242,41

d14,d13,d12,d11,c14,c13,c12,c1t

d24,d23,d22,d21,c24,623,622, 621

d34,d33,432,d31,634,¢33,c32,c31

dd4,d43,d42,d41,c44,043,c42.c41

Rotation angle Division maximal decreas.
. Delay Rotations Mult/Add utiliz. utiliz.

Figure A.6: The systolic array from grouping along the X -axis

268

d44
d43 di4
d42 433 d24
d41 d32 d23 di4
c44 d3y d22 13 bh44d
c43 ¢34 d21 di2 b43 b4
c42 €33 c24 d11 b42 b33 b24
c41 c32 ¢23 ci4 b41 b32 b23 bi14
ci c22 c13 a44 bl1 b22 b13
c21 ct2 ad3 ald4 b2y bt2
ci1 ad2 ai3 az24 bn

Rotation angle B2 Divisi Rotation
o oot Division
Division s Muit/Add

Figure A.7: The systolic array from grouping along the Y -axis

269

Rotation = :
. Delay angle Rotation

Figure A.8: A bi-trapezoidal array

obtained after realizing the pair of graphs derived by grouping along the Y-axis.
The cell with longest computation time in this structure performs n operations, so
that throughput is twice that of the single trapezoidal arrays.

A.4 Evaluation of the arrays for problems with fixed-size data

We compare now the performance of the different arrays to compute the Fad-
deev algorithm for fixed-size data devised in the previous section.

The number of computing nodes in Figure A.2 (i.e., the number of operations
in the algorithm) is given by

N = 2(2n-i)(2n—i-—1)

7 n
= —nd—=

3 3

This expression is different from the one given by DeGroot et al. in [Groo87],
because they count as operations cycles when a cell is waiting to collect the first
two operands before performing the first operation. This delay is due to the single-
input capacity of cells. Consequently, their measure of complexity of the algorithm
(i.e., 3n® + n? operations) is greater than the actual value.

Performance and cost measures are shown in Table A.l (the + sign in the en-
tnes for trapezoidal structures is due to the difference in number of cells between
both trapezoidal schemes). This table includes a relative measure of complexity

270

Table A.1: Performance measures for arrays for fixed size problems

Array # Cells | Throughput | Input | Utilization
[1/o0ps] pads
Z-axis 4n? n-! on? 71"_22;51 -
X/Y-axes |2n?t2 {2n] ! 2n 5—;%:31—" —
. . _ 2 —
Bi-trapezoidal | 3n? £ n n-! dn | o — g
Array Cells complexity
Z-axis 5{3n — 1) complex, 3(5n — 3) simple; 2n
delays
- 3 2 n -
X/Y-axes | n complex, 22~ + 2 simple
Bi-trapezoidal | 2n complex, 3n? & n simple

of cells: a “simple” cell corresponds to a cell which does not perform division or
computation of rotation angles, while a “complex” cell performs these two opera-
tions. Note that such a classification is not a rigorous one, because cell complexity
is highly implementation-dependent.

From the expressions in Table A.1, utilization of the trapezoidal arrays is better
than that of the square array, as it could be inferred from the MMG. ‘The structure
with two-planes offers twice the throughput of the other trapezoidal arrays with
the same utilization. Thus, such an alternative is more attractive if one can afford
the larger number of PEs and input connections.

A.5 The partitioning problem in the Faddeev algorithm

In the previous sections we devised two-dimensional arrays for the Faddeev
algorithm for fixed-size matrices. We center our attention now to the problem of
partitioning this algorithm for problems with large size data. We first review some
structures previously proposed to execute the Faddeev algorithm in partitioned
mode and later apply our method.

271

A.5.1 Partitioned structures previously proposed

An array to compute the Faddeev algorithm in partitioned mode was proposed
by Nash et al. in [Nash86a]. This structure is based on the one proposed in [Nash84]
for fixed-size matrices. It conmsists of a square array which is used to process both
triangular and rectangular portions of a trapezoidal model of the algorithm such
as the one shown in Figure A.7. The scheme partitions matrices A and B into
vertical strips as wide as the size of the array and feeds such strips sequentially to
the array (i.e., applies cut-and-pile as partitioning strategy). After both A and B
have been processed completely, matrices C and D are partitioned and processed
in the same manner.

Putting Nash et al. procedure in terms of transformations as those used in
our method, they separate the nodes in the different sections of the dependency
graph shown in Figure A.2 and group them independently, leading to a pair of
trapezoidal subgraphs (as the one that leads to the bi-trapezoidal array shown
in Figure A.8). Moreover, they map each trapezoidal subgraph independently
onto the target square array. As we described in Section A.3, the two subgraphs
have their corresponding nodes interconnected. Such interconnections represent
intermediate results from processing A and B that are needed to process C and
D. Mapping the trapezoidal subgraphs independently implies that intermediate
results are left stored inside the array. As a consequence, Nash et al. scheme
requires an unloading/loading step every time a new part of a strip (i.e., a new
cut) is brought into the array for processing. In addition, a skewing/de-skewing
procedure is used for maximal utilization of the array when computing the square
portions of the algorithm. The authors claim that this overhead is not significant,
although they do not provide figures for such a claim.

A different partitioning approach was used by Chuang and He in [Chua84],
based on I/O constraints. They do not use Givens rotations for the annulment of
matrix C in the Faddeev algorithm, but use neighbor pivoting instead [Gent81].
Consequently, the dependency graph for their version of the Faddeev algorithm is
not the one shown in Figure A.2. They describe the algorithm using a trapezoidal
model as the G-graph that leads to the array shown in Figure A.7. Different parti-
tioning schemes are proposed, leading to different structures. The most adequate of
those structures consist of an array composed of a triangular and a square section
of the same width. To use such a structure, they partition the trapezoidal model
into horizontal strips as wide as the size of the arrays. The triangular portion of
the horizontal strips is executed in the triangular array, while the remaining of the

272

strips is executed in the square array (i.e., using cut-and-pile). Since the size of
the rectangular part of a strip is larger than the triangular part, the square array
is used several times in each horizontal strip while the triangular array is used
only once, leading to low utilization of the triangular array. The other partitioning
schemes proposed by Chuang and He exhibit similar characteristics.

Another work on partitioning the Faddeev algorithm was presented by De Groot
et al. in {Groo87). They describe the implementation of a partitioned scheme that
corresponds to one of those proposed by Nash et al. in [Nash86a]. It consists of
visualizing the algorithm as implemented by a large virtual array and mapping
muitiple contiguous cells from the virtual array into each cell of the target array
(1.e., coalescing the virtual array). Nash et al. discarded this scheme in spite of
its simplicity because it requires O(n?) memory locations per cell. De Groot et
al. implementation uses an array of transputers with 128K Memory PEr processor,
so that memory is not a major limitation. In fact, their main concern is to in-
crease the processor utilization due to the low communication bandwidth of their
array. Consequently, they pay the cost of increased memory requirements with the
objective of reducing communications.

We apply now our method to derive arrays for partitioned execution of the
Faddeev algorithm.

A.5.2 Partitioning for linear arrays

Let us assume that we want to partition the Faddeev algorithm for n by n
matrices so that it fits in a linear structure with only K cells, where K < n.
For these purposes, we use the trapezoidal G-graph obtained by grouping the
MMG along the Y-axis shown in Figure A.9. In this G-graph, horizontal paths
of G-nodes have the same computation time and such time decreases for lower
horizontal paths.

We realize the G-graph as a linear array by selecting G-sets of K G-nodes, as
shown in Figure A.10a. The schedule of the G-sets is discussed later. Intermediate
results from G-sets are saved in external memories. Those intermediate results
include rotation angles or pivots flowing horizontally, and rotated or pivoted rows
of the matrices flowing vertically. Such data is available at the boundary of the
set, so that saving it in external memories is straight-forward.

The structure resulting from the approach outlined above is shown in Fig-

273

ol ca
3 3 =
at 2 o
eil az e
»l w2 v
] az hent
al < 4
al ug b
A A
- -
** -
O -
G

L

@ Rotatioe Q@ Divition
& Roation QO Mub/Add
® Delay

£33 34

=
-

Memory

Figure A.10: Partitioned linear array for the Faddeev algorithm

ure A.10b. All G-nodes executed concurrently have the same computation time,
except when executing boundary sets in some horizontal paths which might not
use all cells in the array.

A.5.3 Partitioning for two-dimensional arrays

Mapping the trapezoidal G-graph shown in Figure A.9 for execution in a two-
dimensional structure with K cells requires to simulate a triangular array and
a square array, because those are the major components of the G-graph. Both
requirements are fulfilled in a square array, with the proper control signals. G-

274

Memory

Figure A.11: Two-dimensional partitioning of the Faddeev algorithm

sets are mapped onto the array as square blocks of V& by VK nodes, as shown
in Figure A.1la. Intermediate results are saved in external memories. Those
intermediate results consist of rotation angles or pivots flowing horizontally, and
rotated or pivoted rows of the matrices flowing vertically. The structure resulting
from this approach is shown in F igure A.11b. Note that computation time of
G-nodes is not the same for all nodes in a G-set.

A.5.4 Scheduling and I/O in partitioned Faddeev algorithm

We discuss now the schedule of G-sets mapped onto linear and two-dimensional
arrays. To illustrate such schedule, we use the G-graph shown in Figure A.12 (this
graph corresponds to the internal portion of a large G-graph), where G-nodes in
horizontal subpaths have identical computation time. Nodes in F igure A.12 have
been tagged with their earliest scheduling time (i.e., at what time they could start
execution) relative to a reference time.

Mapping onto a linear array was performed by composing a G-set with nodes
in horizontal subpaths, because such nodes have the same computation time.
Scheduling G-sets can be done by horizontal or vertical subpaths. Due to I/O
bandwidth, we choose to schedule G-sets by vertical subpaths as depicted in Fig-
ure A.12a. Scheduling G-sets for execution in a two-dimensional array is similar to
the linear array discussed above. Due to I/O bandwidth, we also choose to schedule
G-sets by vertical subpaths, as illustrated in Figure A.12b. With these schedules
of G-sets, suitable arrays for partitioned execution of the Faddeev algorithm are
shown in Figure A.13. In these cases, I/O bandwidth is given by

2nK

A =
1/0 ?=l e,

275

¥

) D
- ¥

I)

J e b :)
"N e - L4

[) e ¢ 1
]

B }
*

B J
*

e)
*scheduling

(a) - Scheduling G-graph into lincar srray
G-aots
.l[".l

(b)-SdledulimG—gxq;hixmmo-dim:iomlmy

Figure A.12: Scheduling G-graph into linear and two-dimensional arrays

276

2nK
(2rn+ 1)n — in(n+ 1)
4K
3n+1

where ¢, is computation time of G-nodes in the :-th horizontal path of the G-

have the same 1/0 bandwidth from the host.

A.5.5 Comparison of arrays for partitioned execution

Linear array

When scheduling the G-graph shown in Figure A.7 for execution in a linear
array with K cells, the first horizontal subpath of the graph is mapped in 2n/K
sets. Each G-node in this subpath consists of 2n; operations. The second horizontal
subpath is mapped in [(2n - 1)/K] sets, because the length of the subpath is
shorter and each G-node consists of 2r -] operations. This pattern repeats for all
horizontal subpaths and the last one is mapped in [(n + 1)/K7] sets. Therefore,
the array is used for

E; [3"7.{:—'] (2n - i) g [(%’1 —j) g(zn — —jK)J
-1

> (& = [(211 ~IKE -5 f}

bis
R LR SR R

x=ﬂv+l

277

2
B . | o, 1‘5.1
*

Tl 4)
(L2)»(3 »»(4)
L ¢ %

v y

CH R CD L CD), @
f¥—
y &

_ : ' ¥ ¥ 1V
g A, S N s
" .

LO BW = (4K){3a+1)

() - O bandwidth in two-dimensional array

Figure A.13: I/O bandwidth in partitioning the Faddeev algorithm

278

28n% — 9n?(K — 1)

K [ops]
and throughput is
12K
Tinear = -
! %m —om(Kk =1y Pl
Utilization is given by
U 3 nodes In(Tn? ~1)
linear = —0——— =
K/T K (4z(28n3 - 9n2(K - 1))
28n% — 4

28n? — On(K — 1)

Therefore, for large n, utilization tends to 1 and throughput tends to %;"g-

Square array

In the square array, G-sets are scheduled as square blocks of VK by V'K nodes.
Therefore, the first /K horizontal subpaths of the G-graph are mapped to the cells
in 2n/VK sets. Computation time of these sets is given by the computation time
of nodes in the first horizontal subpath, which consist of 2n operations. The next
V'K horizontal subpaths are mapped to the array in (2n — VK)/VK sets, because
the length of these subpaths is shorter than previous ones. Computing these sets
requires (2n — K) operations. The remaining horizontal subpaths follow a similar
pattern, so that the array is used for

‘i(%ﬁ‘)(%—iﬁ) = ‘/—%E(Zn—iﬁ)z

= fk-ﬂ

7nd
= 3K [ops]

where p = n/ V'K is the number of rows of VK by VK sets of G-nodes needed to
cover the entire G-graph. Throughput is

279

3K »
Taquare = 7—71'5 [OPS]

and utilization is given by

U _ 2 nodes in(7n?-1)
rquare I{/T — [{ (51?(7113))
_ Tn—n
- n3d

Therefore, for large n, utilization tends to 1 and throughput tends to %5—

Nash et al. array

Nash et al. [Nash86a) use a square array to map their bi-trapezoidal model.

They map each of the trapezoidal subgraphs independently, so that they require
certain overhead in unloading/loading and skewing/de-skewing data. Since this
overhead has not been reported quantitatively, we compute the throughput of
their scheme ignoring the overhead. Consequently, this is an upper bound of what
1s achievable with their implementation.

Computing how long their array is used can be decomposed into computing

how long each of the trapezoidal subgraphs uses the array, as follows (where p =

n/VvEK):

¢ Triangularizing matrix A and transforming matrix B (1.e., executing the first
trapezoidal subgraph). In this subgraph, there are as many nodes as in the
trapezoidal graph mapped onto the square array discussed above, but the
computation time of each node is smaller. Consequently, execution of these
G-sets takes

Ply, 3 L 6n2VEK K
2211 n/I?(n—i\/I?) - 503 + 6n2VEK + n
= VK 6K
¢ Annulling matrix C (i.e., executing the triangular portion of the second
trapezoidal sub-graph). Execution of these G-sets takes

5 (E;\/E_f}/—f) e T +2,;{=\/;?

=0

280

¢ Updating matrix D (i.e., executing the rectangular portion of the second
trapezoidal sub-graph). This operation takes

These three terms, together with an extra term accounting for overhead in data

transfers, give the throughput of this implementation as
T; = oK [ops] ™"
"% T 1403 £ 9n3VK + nK 4 6K(OVED) P

Utilization is given by

Ueor — Y nodes . 14n® -2
“RTTRIT T Wt toniVR +nK 4 6K (OVHD)

Consequently, Nash et al. implementation has the same throughput as the
square array proposed above if there is no overhead in data transfers. In practice,
the throughput and utilization are lower. In addition, their scheme exhibits com-
plexity in the control required to perform those data transfers into and out of the
array. I/O bandwidth of Nash et al. scheme is higher than the square array above,
because of the loading/unloading of data.

De Groot et al. partitioned scheme

De Groot et al. [Groo87] evaluate their partitioning scheme and array consider-
ing that data communication is ten times slower than performing a single operation
in a cell. This is a consequence of their implementation, an hypercube with trans-
puters as nodes. In addition, they use completion time as performance measure.
Although completion time is an important parameter for certain applications, we
believe that throughput is more important so we use the latter for our evaluation.

De Groot’s scheme consists of a trapezoidal structure with (3P? + P)/2 cells,
where P is the dimension of the square and triangular portions of their array. To
compare this array with the ones derived here, we express P in terms of K, that
is in terms of the number of cells in our arrays. Thus (3P* + P)/2 = K leads
us to P = é[m — 1]. The trapezoidal model describing the algorithm is
partitioned into blocks of adjacent nodes and each block is mapped onto a single
cell. Consequently, in the square portion of the trapezoidal model such blocks have
(n/P) vertical subpaths with (n/P) nodes in each subpath. Throughput of their

281

implementation is given by the computation time of the first row of cells in the
array, since those cells have the most operations to compute. Such cells perform
2n+(2n—1)+.. . +(2n - 7 11} operations for each of the (n/P) vertical sub-paths.
Thus, computation time of the cells is

n

n
t = — — —
cell 7 [271 +2n—-1)4...+ (2n 7 + 1)]

n "% n
= };E(Zn—ﬁ+z’)

i=1

2n

= %L Z z:’ z=2n—-%+i

=2n- -ﬁ+l

~ =3 3G

Replacing the value of P computed above, we obtain

36n3 54n3
teell = —— o —_ R
“ 2K - V24K +1+1 (12K V2K + 1+)(VAAK 31 1)
_ 18n3 {2 3
T 12K - VK +1+1 24K +1 -1
36n3

RN — ops
12K VR T+l loPs]

so that throughput is

12K — V24K +1+1]_1

3603 [ops

TDcGroot =

and utilization becomes

Y. nodes 3n(Tn? - 1)

Upecrow = Z0292 .
NfT K (=)

(Tn? - 1)(12K — V22K +1 + 1)

108n? K
_ 8n’K — 12K + (Tn? = 1)(1 — V2K 1)
- 108n2 K

Therefore, for large n, utilization tends only to 7/9 and throughput tends to %%

The results above are summarized in Table A.2. We bave not completed the
entries in the table for Nash et al. array, because the overhead in loading/skewing
data has not been reported quantitatively. Furthermore, we have not included

282

Table A.2: Performance measures for partitioned implementations

Array Throughput 1/0
{1/ops] BW
i 12K 4K
Linear P ey e
3K aK
Square % .
De Groot 12Ky TaRFT41 __
36n
6K 4K
Nash 14n3 +577 VR +nK +8K (ovhd) | on+i T ovhd
Array Utilization Overhead
Linear m?&%m — 1 none
7nd—
Square e — 1 none
Tn? —1)(12K - vZaK+1
14n3-2 . .
Nash 14n3 493K +nK +6K {ovhd) loading, skewing

I/O bandwidth for De Groot et el. scheme, because of their approach towards
data transfer. From this table we infer that, for large n, both our linear and
square arrays tend to the same throughput (i.e., %5) and optimal utilization. In
addition, both exhibit the same I/O bandwidth from the host. These linear and
square arrays have better performance measures than the array proposed by De
Groot et al. and do not exhibit the overhead required in the scheme proposed by
Nash et al.

In addition to the performance measures described above, the linear array is
more advantageous than the two-dimensional one because:

e it is simpler to implement

o for a finite value of n it has slightly higher utilization than the two-dimensional
structure

® it is better suited to incorporate fault-tolerance capabilities (i.e., it is easier
to skip a faulty cell in a linear array than to reconfigure a two-dimensional

283

structure)

Consequently, we conclude that for partitioned execution of the Faddeev algo-
rithm, a linear array offers better performance and implementation than a two-
dimensional array.

A.6 Conclusions

We have presented the application of our graph-based method to derive arrays
for computing the Faddeev algorithm, for fixed-size and partitioned problems. We
have derived two-dimensional implementations for such an algorithm, and we have
compared these arrays with other schemes previously proposed in the literature.
The evaluation used performance measures such as number of processing elements
(PEs), throughput, I/0 bandwidth, utilization of PEs and overhead due to parti-
tioning.

Our results show that, for fixed-size problems, throughput reaches (2rn)-! or
n~! with 2n and 4n cells respectively. Utilization of all these arrays tends to 7/9.
One of the arrays presented here corresponds to the one proposed in [Nash84].

Two-dimensional and linear structures for partitioned problems were also de-
rived. We obtained a two-dimensional array that is more efficient and has less
overhead than other structures previously proposed. We have shown that through-
put of our partitioned implementation, both linear and two-dimensional, tends to
(3K)/(7n?), where K is the number of cells. Moreover, we have shown that both
linear and two-dimensional structures have the same I/0 bandwidth from the host,
namely (4K)/(3n + 1) [words/ops].

284

APPENDIX B

Arrays to compute BA™!

B.1 Introduction

In [Como87], Comon and Robert introduced a systolic array of n{n + 1) ele-
mentary processors that computes BA™! in (4n + p — 2) time steps, where A is
a dense (non-singular) n by n matrix, and B is a dense p by n matrix. More-
over, such an array can be directly extended to compute the vector ¥ = BA™'R,
where R is a vector with n components. These computations arise frequently in
signal processing applications, as described by Comon and Robert and other re-
searchers [Kung82, Ahme82, Spei8l1]. The algorithm used in {Como87] is shown in
Figure B.1.

In this appendix, we apply our method to the algorithm in Figure B.1. We
derive the array in [Como87] and another array that computes the algorithm in
the same time but using only [3n(n + 1) + pn| units. Moreover, this new array
exhibits throughput (n+1)~! and requires (n+2p) I/O ports, while these measures
are (n +p)~! and 2n respectively for the the array in [Como87].

B.2 Systolic arrays for computing BA-!

Figure B.2 depicts the fully-parallel dependency graph for the algorithm in
Figure B.1, where A is a 4 by 4 matrix and B is a 2 by 2 matrix. Such a graph
is obtained by symbolic execution of the sequential algorithm in Figure B.1. This
graph exhibits broadcasting of data, bi-directional data flow, and O(n?) I/0 band-
width.

We first transform the fully-parallel dependency graph in Figure B.2 into a
multi-mesh graph. To achieve this transformation, we remove from the FPG those
characteristics that are not allowed in the MMG, in the following order: replace
broadcasting by transmittent data [Kung88c], remove bi-directional data flow by
moving nodes to one side of the sources of broadcasting, and add delay nodes so

285

Fork=1ton
begin
k k-
ci(ck) = l/ci(ck Y

Forj=1ton,j#k

k k) (k-1
Cl(cj) = _'c.(kk)cl(cj }
For i = (k+1) to (n + p)
begin

Forj=1ton,j#k

c,(-;-‘) = cg‘-l) + c,(-f'l)cg;);
& k-1) (k
C.('k) = CSI: l)c.tk);

end

CO

I
G

-
I

, D=BA"l
D

Figure B.1: The algorithm to compute BA~!

that dependencies are strictly between neighbor nodes. The resulting graph, shown
in Figure B.3, consists of parallel meshes of nodes that are dependent, although
the meshes do not have the same number of nodes.

According to our method, we now collapse the MMG onto a two-dimensional G-
graph by grouping primitive nodes onto different nodes. We present two alternative
groupings, along axes X and Y. Grouping along the Z-axis is significantly less
efficient, as it can be inferred from the MMG, so that it does not merit discussing
it here.

Grouping along the Y-axis

The first alternative that we consider consists of grouping nodes in the MMG
by vertical paths, that is, each path along the Y-axis in the graph is collapsed
onto a different G-node. The resulting G-graph, shown in Figure B.4a, leads to
the array shown in Figure B.4b. This array corresponds to the one proposed by
Comon and Robert. The performance of such an array is discussed later.

286

Jta "

v

n
Figure B.2: The fully-parallel dependency graph

N
\
bt1 'g b12
\

287

Z
a3 al4
alt a2 . .

& & o

o

al4

5 % rrJ ' : b N
adl a3 a3 m}H *ﬂf ® oy
e

' o
w1 ez a3 r A, art a1 413 | g1
AT

an d22 dz3 ! dz24

R P Ry é\;y_ '

Figure B.3: The multi-mesh dependency graph

288

d11 d12 413 d14

b1 b12 b13 b4 {a) Grouping along Y-axis
£V 4] b2 b2 b24
b24
b2 b14
b2 b13 4
b21 b12 M3 a4
m1 a2 al3 24
M ai2 a3 a4
al 22 a1y -
a2t a2 - -
al - - -
¥ f .
i o
Y]
] []
i ...qit:{__] _..H:':b ..q:?H:
-
M =
(] oum] [] ﬁ: (]
] Y Y Y
- - - a4
b - - a2 d14
(b) Systolic array - el -
an d12

Figure B.4: Grouping nodes along the Y-axis

289

Table B.1: Performance measures of systolic arrays to compute BA~!

Y-axis X-axis
I S .
Computation time n+p-2 dn+p-2
Throughput (n+p)! (n+1)"!
Number of cells n(n +1) an(n+1) +pn
I/0 ports 2n n+2p
Utilization 2—'(',(‘":% ~ 1/2 ;(:le) -1
Cells’ complexity 3 types 2 types
1/z,[~ab,c+ ab],ab | [L/z,—ab],[c + ab, ab]

Grouping along the X-axis

A second alternative consists of grouping nodes in the MMG along the X-axis,
that is, each horizontal path in the graph is collapsed onto a different node. The
graph obtained from such grouping is shown in Figure B.5a, which can be mapped
onto the array shown in Figure B.5b. Performance of this array is described below.

B.3 Evaluation of the arrays

Table B.1 summarizes the characteristics and performance of the two arrays
derived here. From such a table, we conclude that the array derived from grouping
nodes along the X-axis, shown in Figure B.5, has better performance measures
than Comorn and Robert’s scheme (obtained by grouping along the Y-axis) due to
the following reasons:

290

dan

di4

(a) Grouping along X-axis

atlt
al2

al4

s ¥Bpy Bhg,

d11
b1t - d12
b12 d13
b13 ' "_ dis
b14 dat
b2t a22
b22 da23
b23 d24

(b) Systolic array

Figure B.5: Grouping nodes along the X-axis

291

e It computes the algorithm in the same number of steps but using fewer units
(if p < n/2). This improvement is achieved by having good utilization of
cells, while this is not the case in Comon and Robert’s scheme.

¢ Throughput of the array while computing successive instances of the al-

gorithm (i.e., computation of the algorithm for different sets of data), is
independent of p.

o Lower number of I/0 ports.

However, Comon and Robert’s scheme has the advantage that it can compute
BA-! for successive matrices By, B,,... on the same array, without modifications.
This case corresponds to extending the multi-mesh graph shown in Figure B.3 along
the Y-axis, so that added nodes become part of existing groups when grouping
along the Y-axis. This is in contrast to grouping along the X-axis, where the
added nodes lead to more cells (in this case, successive matrices B should be
handled as a partitioning problem).

The G-graphs in Figures B.4a and B.5a are also suitable for partitioning the
algorithm (i.e., computing a large problem on a small size array), using the fa-
cilities for partitioning available in our method. For these purposes, the graph
derived from grouping along the X-axis is more advantageous, due to the identical
computation time of all G-nodes.

B.4 Conclusions

We have applied our data-dependency graph-based method for the design of
systolic arrays to an algorithm that computes BA~!, We have systematically
derived two systolic structures for such algorithm, among them one previously
proposed by Comon and Robert. We concluded that the array shown in Figure B.5
has better performance than Comon and Robert’s scheme.

This exercise has shown that the application of our graph-based design method
is powerful, producing results that are new and more efficient than others devised
in ad-hoc manners.

292

APPENDIX C

Arrays for LU-decomposition with neighbor pivoting

C.1 Introduction

The LU-decomposition aigorithm requires division by the diagonal elements of
the matrix. Unless the matrix is well conditioned, it is necessary to use pivoting for
numerical stability. The strategies suggested for this task are complete or partial
pivoting. However, neither of these two schemes is amenable for parallel computa-
tion because they require global communication. Gentleman and Kung [Gent81]
proposed another approach, called neighbor pivoting, where the pivot is selected
as the largest element between two neighbors. They used this approach to devise
a systolic array for matrix triangularization. They claim that neighbor pivoting
is stable and that numerical experiments have confirmed so. We use this pivot-
ing scheme for LU-decomposition to illustrate the capabilities of our method. We
make no specific statements regarding the suitability neighbor pivoting from the
numeric point of view.

C.2 The fully-parallel graph

The LU-decomposition algorithm with neighbor pivoting is described by the
fully-parallel dependency graph shown in Figure C.1, for a problem of size 4 by
4. In this algorithm, pivots are selected as the largest of a diagonal element and
the element in the next row and same column. That is, at iteration k the pivot
is chosen as max(ar, arr14). If the chosen pivot is element Gk41,k, TOWS k and
(k+1) of L and A must be exchanged.

C.3 Deriving the MMG

The graph in Figure C.1 exhibits data broadcasting and bidirectional depen-
dencies. Broadcasting is replaced by transmittent data, as depicted in Figure C.2.

293

all a2l o
al2a2? al3 a23 al4 a24 . Pivoting

ap o || | N

a1 a22 a23 a24 .

ul S 1

ul2 ul3 uld

A ' O a6

a32 a33 a3d @ exchange

a4l Tl;l Tg @
ad2 a43 ad4

Yy LA J

u2 u24

133

- ---.------.‘

swap

¥

141 131 142 132
143

Figure C.1: LU-decomposition with neighbor pivoting

294

. Pivoting
N
¥ S i)
a1 O aaj)
@ exchange

udd

Figure C.2: Removing broadcasting

Bidirectional dependencies arise from the need to use the information about the
selection of a pivot to exchange previously computed values Lij (2 <j)as well as
to compute values u;; (j > i). This undesirable feature is removed by flipping
nodes at the left of the sources of bidirectional broadcasting to the right of such
sources, as shown in Figure C.3.

The resulting graph is drawn in a three-dimensional space, as depicted in Fig-
ure C.4. Delay nodes have been added to the graph to make all dependencies
among nearest neighbors. Note that nodes at the top of each mesh deliver two
values to nodes immediately below them, while the remaining nodes deliver only
one value in that direction. This characteristic is due to the need to transfer the

295

a2lall a22al12

ail ai2
a4l a4
ull ul2

.Pivoung il sl R FPRES P - - -

S uip
S 1)
O i)
@ exchange

a23 al3

a3l

a43

a24 al4

ad4

uld

w3 M3 u3d

ud4

Figure C.3: Removing bidirectional dependencies

296

12§

132 f

41 42 143

143

Figure C.4: The multi-mesh graph

values u;; and a4y to compute the next row of the updated matrix A. Since
these two values are transferred and used together, they may be regarded as single
value. However, we have chosen to draw two edges to emphasize the nature of the
problem.

C.4 Deriving arrays for problems with fixed-size data

The graph in Figure C.4 is suitable for deriving arrays by grouping along any
axis in the three-dimensional space. In particular, grouping along the X-axis is
advantageous because it leads to fewer cells. The G-graph obtained from such a
grouping is depicted in Figure C.5 and leads to a triangular array.

297

al4 al3 al2 all

a24 a23 a22 a2l

a34 a33 a32 a3l

ad44 ad43 ad2 adi o 132 131

143 142 141

uld w24 w34 ud4
uld u23 u33

ul2 w22

ull

Figure C.5: A G-graph for LU-decomposition with neighbor pivoting

298

APPENDIX D

Algorithms with affine dependencies

The canonical form of matrix algorithms given in Chapter 5 does not have any
restriction on how loop indices are used to access elements of matrices and vectors.
As indicated there, the two common types of references usually considered are: (1)
untform ezpressions and (2) affine ezpressions. Uniform expressions are the most
frequent of the two, and appear in all the algorithms used as examples throughout
this dissertation. However, there are some algorithms that access variables using
affine expressions. In this chapter, we illustrate the capabilities of our method
using one example of such a class, namely an algorithm to perform convolution.

Affine expressions with loop indices have the general form (i + j — ko) (i.e., a
linear combination of indices and a constant). In contrast, uniform expressions are
of the form (i — 4o) (i.e., an index plus/minus a constant). As will be shown here,
the method is able to deal with affine dependencies without difficulty. It should be
noted that using uniform or affine expressions to access variables does not imply
that the algorithm must be a uniform or an affine system of equations, as required
by other methods.

D.1 The convolution algorithm

As an example of affine dependencies, we consider the convolution algorithm
depicted in Figure D.1. Note that the single statement in the body of the loop
contains the term z;;,_,, which originates the affine dependency.

For:=1ton
Forj=1tom
Yi = ¥i + WiTig

Figure D.1: Convolution algorithm with affine dependency

299

Yi

Figure D.2: Typical linear array for convolution algorithm

A typical realization of an algorithm as the ome in Figure D.1 is shown in
Figure D.2. In this figure, the algorithm has been represented first by a dependency
graph, and the graph has been realized as a linear array with bidirectional flow
of data. Values of z and y enter the array from opposite ends, weights are stored
within cells, and results appear at the nightmost end. As a consequence of the
bidirectional flow each cell is idle half of the time, waiting for data to be delivered
from a neighbor cell. Utilization of the array is only U = 0.5.

Fully-parallel graph

The fully-parallel graph of the algorithm in Figure D.1 is obtained from the
symbolic execution of that algorithm. This graph is shown in Figure D.3.

D.2 Deriving the MMG

The FPG in Figure D.3 consists of a sequence of vector operators with a single
vector result. However, there is broadcasting across levels of the FPG. In fact,

300

1N X2 ¥y X3 Y3

e | |
X4
W, ~ T~ ™~
Xs
3

w4\1 ﬁ‘\
< 13

¥ Y3

Figure D.3: The fully-parallel graph of convolution

301

Figure D.4: The multi-mesh dependency graph

values of z; are used in several levels (which are dependent). Consequently, after
replacing broadcasting by transmittent data, each vector operator produces two
outputs that are used as input at the next level of the graph: the result from the
operation performed, and the transmittent data. Due to this property, drawing
the MMG requires to use the construct described in Lemma 24; that 18, primitive
nodes of the vector operators must be allocated to adjacent planes in the three-
dimensional space instead of the same plane.

The resulting MMG is shown in Figure D.4. For clarity in the description, edges
of this graph have been tagged with the name of the corresponding data element.
Note that there is one vector operand per plane, with operation nodes surrounded
by delay nodes; these delay nodes are needed to obtain nearest-neighbor depen-
dencies.

D.3 Deriving arrays for problems with fixed-size data

Let us consider the derivation of systolic arrays from the MMG in Figure D .4.
We illustrate here only the case of grouping along the Z-axis (prisms of base size
1 by 1). Since operation nodes in F igure D.4 are flanked by delay nodes, grouping
along the Z-axis leads to a two-dimensional G-graph where G-nodes have compu-
tation time tg = 3 but they perform only one operation. This drawback arises as a
consequence of introducing delay nodes to obtain nearest-neighbor dependencies.

302

Wa

el ¥

W3 4

Figure D.5: Collapsing MMG along the Z-axis

Since in this algorithm there is only one vector operation per plane, the delay
nodes introduce a significant overhead.

However, as we indicated earlier, vector operators in this algorithm produce
two outputs that are used at the next level of the graph. These two outputs may
be regarded as a single one, so that there is no need for delay nodes except at the
boundary of the graph. This situation is depicted in Figure D.5, where we have
collapsed the MMG into a G-graph along the Z-axis. We have explicitly shown
two edges between nodes to indicate the transfer of two values.

The G-graph in Figure D.5 is realized as a linear array, as also depicted in
the figure. This array has unidirectional flow of data, so that utilization of cells
is optimal. Values of z and y enter from the same end of the array, weights are
stored in the cells, and output values appear at the other end of the structure.
(The last few values of z; - z, through z¢ in the figure - are also input at the end
of the array and transferred through the cells. That is, delay nodes are added to
the G-graph so that those inputs may appear at the first cell.)

In the same manner described above, the method allows deriving other arrays
by collapsing the MMG along the remaining axes.

303

