Computer Science Department Technical Report
Cognitive Systems Laboratory
University of California
Los Angeles, CA 90024-1596

INHERITANCE = CHAINING + DEFEAT

Hector Gefiner June 1989
Tom Verma CSD-890039

Sdbmitted to the 4th International Symposium

on Methodologies for Intelligent Systems. TECHNICAL REPORT
R-129
Harch 1989

Inheritance = Chaining + Defeat

Hector Geffner and Tom Verma*
Cognitive Systems Lab.
Dept. of Computer Science, UCLA
LA, CA 90024

Abstract

A simple but powerful scheme for inheritance reasoning is presented. The inher-
itance scheme embodies clear notions of specificity and defeat, yielding an intuitive,
justifiable behavior. We illustrate the scheme with several non-trivial examples and
prove its consistency and complexity properties. Finally, a polynomial algorithm which
provides a satisfactory sound but incomplete approximation of the inheritance criterion
proposed is presented.

1 Introduction

Defeasible inheritance hierarchies constitute appealing devices for organizing prototypical
knowledge about classes. Rather than explicitly stating the attributes of each possible
individual, individuals are implicitly assumed to inherit a certain set of attributes by
virtue of the place they occupy in the hierarchy.

Several systems embedding this type of facility have been reported (e.g. [Fahlman, 791).
An important feature supported by these systems, unlike those based on classical first or-
der logic, has been the ability to accommodate objects belonging to classes with conflicting
attributes. In these cases, the systems normally assume the objects to inherit from their
closest classes in the hierarchy. This view of inheritance permitted efficient implementa-
tions and appeared to correctly embed a preference favoring information attached to more
specific classes.

More recently, it has been noted that these simple inheritance strategies are bound to
produce anomalous results under a number of circumstances [Etherington and Reiter, 83;
Touretzky, 84]. Touretzky, for instance, illustrated some of the anomalies that result from

*This work was supported in part by Grants # N00014-87-K-2029 and TRI-8610155.

the presence of ambiguities and redundancies in the networks. Further work has illustrated
other subtle aspects of inheritance reasoning and has revealed a space of options wider
than once thought [Touretzky et al., 87). The inheritance reasoners of Horty et al. (87)
and Sandewal [86], as well as the more general systems of defeasible inference of Nute
[86], Delgrande [87], Loui [87] and Geffner and Pearl [87], have recently explored different
alternatives.

Important clues about some of the features a reasonable inheritance scheme is likely
to possess have emerged from this body of work. Several of these schemes appear to
suggest, for instance, the adequacy of definitions of inheritance cast in inductive form.
These schemes regard a defeasible link p — ¢ as asserting a context-dependent relation
which permits to establish ¢ whenever p represents all the available evidence. The task
of a definition of defeasible inheritance then appears to be that of determining from these
‘base cases’ whether ¢ should be warranted in contexts with evidence other than p. An
adequate definition will be such that intuitive conclusions are captured, counterintuitive
conclusions are rejected, and meaningful justifications are facilitated.

Horty et al. [87] proposed an account of inheritance reasoning along these lines, which
they showed to possess some interesting properties. The core of such an account resides
in the conditions under which ‘supported’ paths can be chained with links in the net to
yield longer ‘supported’ paths. The scheme has the virtue of simplicity in its form and the
elimination of some idiosyncratic features of a former account reported by Touretzky (86].
However, its reliance on questionable notions of ‘preemption’ and ‘skepticism’ results in
a behavior which does not always admit clear justification and which often departs from
intuition.

In this paper we present an alternative account of inheritance reasoning which, we claim,
rests on more solid principles. Our proposal draws on the approach to default inference
advocated in [Geffner and Pearl, 87] and results in a system which closely resembles Horty's
et ol. in form, but which departs from it in some significant ways. In particular, we argue
that it embodies a more appropriate notion of specificity and defeat, a safer approach
towards ambiguity and a capability to deal with cyclic networks.

The paper is organized as follows. In section 2 we describe the proposed inheritance
scheme, whose main logical properties are summarized in section 3. In section 4 we analyze
a number of examples illustrating its main features and how it departs from related ac-
counts. In section 5 we analyze the complexity of the inheritance scheme proposed, which
turns out to be intractable, and introduce a polynomial algorithm which, we claim, consti-
tutes a satisfactory sound but incomplete approximation. The main results and possible
extensions are discussed in section 6.

2 A Scheme for Defeasible Inheritance

2.1 Notation

Every inheritance network is associated with a set of positive and negative paths or argu-
ments. Positive paths are sequences of the form p-¢-r- - - whose members are propositional
symbols. Negative paths are positive sequences followed by a single negated propositional
symbol, e.g. p-q - -,

Normally, some propositional symbols are taken to stand for classes while others are
taken to stand for individuals. Here, we shall not need to be concerned with such a
distinction so, without loss of generality and unless stated otherwise, we shall assume all
propositional symbols to stand for classes.

Small greek letters o, 7, ..., are used as variables ranging over (potentially empty) path
sequences, and propositional letters from the end of the alphabet, z, y, ..., are exclusively
used as variables ranging over literals, i.e. positive and negated propositional symbols.
Furthermore, we use the notation ~z for complementation, so that if # stands for P, ~&
denotes —p; and if z stands for —p, ~z denotes p.

Path sequences of length two are referred as links or defaults. A path o - z, can be
chained with a link z - y to yield a new path ¢ -z -y. An inheritance net T is a set of
links whose antecedents are positive literals. We will use I'* to refer to the set of paths
comprising those in I' together with those which can be obtained from I' by successive
chaining.

2.2 The Rules of Inference

In order to characterize the literals that follow from a given propositional symbol, we
introduce the consequence operator ‘ fx .’ For a propositional symbol z and a literal y, the
notation z fx y states that y is derivable from z in the network represented by I'. Often,
however, we simply write z by, leaving T implicit. Such notation will mean that z has
the property y, if # stands for an individual, and that typically, xs are ys, if z is a class.
Defining inheritance in terms of a binary relation over literals rather that in terms of paths
has its benefits which will become apparent later.

¢

The consequence relation ‘ .’ is essentially characterized by two inference rules. The

first rule:

Rule 1 (Links)
Ifz-yel, thenzky

simply states that y follows from z if there is a link connecting z to y in the net. Similar

3

rules appear in [Horty et al., 87; Delgrande, 87; Geffner and Pearl, 87]. Such a rule
expresses the view that a default ‘if = then y’ can be interpreted as a license to infer v,
when z represents all the available evidence.

The second rule spells out the conditions under which a path and a link can be chained
together to yield a conclusion only implicit in the net. A safe rule to that effect would be
the following:

Rule 2’ (Conservative Chaining)
Fzky,y-2€T and thereisnopathz-o.-~2€T", thenzkz.

That is, chaining would be allowed in the absence of arguments against the new consequent.
This restriction, however, turns out to be too strong. Often, many of the defaults that
make up the net can be assumed not to be applicable to a given class. For instance, a
default link representing a relation such as ‘birds fly’ is supposed not to be applicable
to ‘penguins.” Thus, in trying to determine what properties penguins can be inferred to
possess, those links or, more generally, those paths, can be safely ignored. We shall define
below, a condition for path or argument defeat, allowing us to identify the paths that can
be assumed to be non-applicable to a given class or individual z. These will turn out to
be the paths defeated by x. Rule 2 then becomes:

Rule 2 {Chaining)
Hzhy, y-2€T and every path z.5.~z € I'* is defeated by 2, then ¢k z .

This rule states that the link y - z can be chained to yield a new conclusion z about z,
whenever all the arguments against z are defeated by z. For easy reference, we will use
the name I to refer to the inheritance account that results from this pair of rules and the
definition of defeat to be introduced below.

2.3 Defeat

Defeat is defined in terms of a dominance relationship, which in turn, is defined in terms
of the derivability relation ‘ &’ introduced above.

Definition (Dominance). A link z -y in I' is said to dominate a path
z-o-~y,if z k z . In such case, we also say that the path is dominated by =.

For instance, from the net depicted in fig. 1 we can infer that the link penguin - ~fly
dominates the link bird - £1y. This is a consequence of the definition above and rule 1,
which permits us to infer bird from penguin. As a result, we can also say that the link
bird-f1ly is dominated by the penguin class. This will imply that, while the link bird-fly
is applicable to birds, it will not be applicable to penguins. To that effect, path defeat is
defined as follows:

Definition (Defeat). A path ¢ -7 - v is defeated by a class or individual z,
if or a consequence w of z, dominates 7.

For the example above, thus, we obtain that paths containing the link bird - f1y will
be defeated by penguin and by any other class or individual whose ‘penguiness’ can be

established.

Example. Consider an inheritance network I given by the following relationships: ‘things
do not fly,” ‘birds fly,” ‘penguins do not fly,” ‘penguins are birds,’ ‘bird are things,” and
‘T'weety is both a bird and a penguin’ (fig. 1). From such a network we can show ‘Tweety
does not fly’ by means of the following derivation:

thing —f=- fly

bird

f

penguin

T

Tweety

Figure 1: A Simple Inheritance Network

1. Tweety b penguin ; Links
2. penguin Pk bird ; Links
3. Tweety b —fly ; Chaining, hine 1, penguin-—fly €T, ...

where the chaining is justified by the fact that Twveety defeats the conflicting paths Tweety-
bird-fly and Tweety : penguin-bird . fly, as a Tesult of being a member of the penguin
class (step 1); a class that dominates the link bird - f1y.

Notice that, by a similar argument — the dominance of bird over the link thing--fly
-1t can be shown that Tweety defeats the link connecting thing to —£1ly as well. Indeed,
the links bird - £1y and thing - ~fly constitute the minimal paths defeated by Tweety.
The removal of these links from I' result into a new net I'" which can be usefully regarded as
the net I" as ‘viewed’ from Tweety. Interestingly, it can be proven that whatever properties
Tweety can be shown to inherit in I by means of rules 1 and 2, are the same properties that
Tweety can be shown to inherit in I, by means of rules 1 and 2’ (conservative chaining).

It should be pointed out that it is not the common view to regard a path such as
Tweety - bird - thing - -fly as defeated, when all its associated properties are true of
Tweety. Horty et al. for instance, would regard such path as supported. Our approach,
however, is based on viewing defeat as a monotfonic extension of the dominance relation.
That 13, if a default ‘things do not fly’ is not applicable to birds, then it is assumed not to

5

be applicable to any type of bird; penguins and Tweety included. The resulting behavior
remains in agreement with mtuition, but its justification, we believe, becomes clearer.

We shall refer to paths of the form z -z, -.-z,, n > 1, where each z; is derivable from
x, as valid paths. However, only those valid paths which are not defeated by z will be
said to be certified. We have seen above an example of a valid but non-certified path. In
the next section, a correspondence between classes y derivable from z and the existence of
certified paths connecting = to y will be established.

3 Properties

In this section, we summarize some of the salient properties of the inheritance scheme
proposed. Proofs are in the appendix; most proceed by induction on the length of the
derivations.!

Definition. A network I' is said to be consistent, if there is no pair of
propositions x and y such that = k y and = k ~y.

Definition. A network I is said to be safe, if for every pair of links z - y and
z-~yin [, z and z are distinct and there is no cyclic path in I' embracing both
z and 2.

A cyclic path that embraces and z is a path of the form ---z---z---2.-.

Theorem (Consistency)
If T is safe, then I is consistent.

Interestingly, a similar sufficient and, indeed, necessary condition for consistency, ap-
pears in Pearl’s account of defeasible inheritance in the context of a probabilistic semantics
({Pearl, 88], Chap. 10). Most work on inheritance reasoning, however, has concentrated
on acyclic networks, in which even negative cycles are ruled out. This theorem indicates,
however, that no inconsistencies originate from negative cycles.

The following result assumes I’ to represent a safe network and it establishes a corre-
spondence between derivations and certified paths. Let us recall that a certified path is a
path of the form « - z, - - - z,, not defeated by z, such that each z; follows from =.

Theorem (Correspondence)
z Ky if and only if there is a certified path z - ¢ -y in I'™.

'For a precise definition of “derivation”, see section 4.

6

It follows, then, that every conclusion has an associated undefeated path. Thus, defeated
paths can be consistently ignored both as potential sources of conflict and as potential
sources of support. This captures the intuition that the virtual network a class or individual
effectively ‘sees’ excludes the paths it defeats.

Both theorems suggest that the notion of defeat introduced does not lead to pathological
behavior in the family of safe networks. In the next section we will further illustrate that
the behavior legitimized by I remains in agreement with intuition and accepts simple
Justifications.

4 Examples

Derivations. In order to provide clear justifications for derivations we will find useful to
replace the chaining rule by an equivalent set of three rules which make explicit mention
of dominance and defeat relations. For that purpose we will use the notation (y|z|z) to
denote that z dominates the paths between y and 2.2 Triplets of the form (y|z|z) will be
referred as domination triplets. On the other hand, triplets of the form (y||z||z) constitute
defeat triplets and are to be understood as asserting that x defeats the paths of the form

01 Y- 0z -z 03, for arbitrary, potentially empty subpaths ;. In words, that those paths
are not applicable to z.

With slight abuse of notation, the original pair of rules can then be rewritten as:

Rule 1 (Links)
Ifz.y€eT, thenzky

Rule 2.1 (Dominance)
IKFzhkyand z-~z €T, then K (ylz|z)

Rule 2.2 (Defeat)
Ife kworz = w,and k (ywle), then k (y]z]2)

Rule 2.3 (Chaining)
Ifzky,y-z€l and for every path z - 0- ~2 € T,
-0~z =0p-w -0y wy- o3 and K (w|lz||w;), then z k 2.

Proofs, hereafter, will proceed according to this set of rules.

2The form of such notation is motivated by the fact that by dominating those paths z separates y from 2
in the corresponding inheritance graph. A similar notation is used in the context of probabilistic networks,
where a graph separation criterion is used for capturing the set of conditional independence assumptions
embedded in a network (see {Pearl, 88], Chap. 3).

Example 1: No coupling. We first consider the network I' = T, depicted in fig. 2. The
derivation for A k F proceeds as follows:

1. Ak B : Links

2. ARC ; Chaining 1, B- C € T

3. K (BJJA|ID) ; Dominance + Defeat 1, A--D €T,
4. AR F ; Chaining 2, 3, C-F €T,

The derivation of F rests on the assumption that the link B - D is not applicable to
A and can therefore be ignored. Note that B, the only parent of A, cannot be shown
to inherit . In terms of Touretzky et al. [87], thus, there is no coupling between the
properties of a class and the properties of its superclasses. Inheritable properties thus
cannot be ‘visualized’ as flowing downwards from parents to sons.

Figure 2. T, - T,

Example 2: Path preemption. In I' = T'; (fig. 2), in a similar way, A can be shown to
inherit ~F as follows:

Ak B ; Links

. By D ; Links

k (D|B|F) ; Dominance 2, B-—~F €T,
ke (D||A||F) ; Defeat 1,3

LAk -F ; Chaining 1,4, B .- € T,

N

Touretzky et al. refer to this net as an example of off-path preemption, as the path
A-C-D . Fis preempted by a literal B which does not lie along the path.

Example 3: No best path. The next example illustrates that it is not necessary for a
single path to be strictly ‘superior’ to all competing paths in order to be certified. Indeed,
in I' = T'; (fig. 2), neither A- G- F is ‘superior’ to A- C - =F, nor A- B - F is ‘superior’
to A.D.-F, Still, as the following derivation shows, the positive paths prevail over the
negative paths:

1. Ak B ; Links

2. AKG . Links

3. BR C ; Links

4. K(C|B|-F) ;Dominance3, B.F T,

5. Gk D ; Links

6. k(D|G|-F} ;Dominance5, G-F cTy

7. K(C||A||-F) ; Defeat 1, 4

8. k(D|A|-F) ;Defeat 1,6

9. AR F ; Chaining 1, 7,8, B- F e ['3

Examples 4: Propagation of ambiguity. The conclusions warranted in the examples
above are all in agreement with those which would be obtained by Horty’s et al. scheme.
We will consider now some examples in which the behavior resulting from both schemes
differ. The first such an example, from [Touretzky et al., 87), is represented by the cascaded
diamonds of I'y (fig. 2). In the ‘skeptical’ scheme of Horty et al., paths of the form z - o - z,
where o comprises classes which z cannot be shown to inherit, are ignored. As a result, in
T4, the path A-B.D.~F is left unchallenged and A inherits ~F. In our scheme, for A to
inherit =F in the presence of the conflicting path A-C .G - F, it is necessary to show that
A defeats such path. Since such defeat cannot be derived, no conclusion about F follows.

Examples 5 — 8: Specificity and Cumulativity. Figure 3 depicts a series of networks
I's — I's. In each network we are interested in determining whether a inherits property F,
a proposition which we abbreviate as F(a). An aspect common to all T's — I'g is that «
defeats the path C'- G - =F by virtue of the dominance of B over the latter. As a result,
it turns out that we can prove both a k., F and etz F. In I'; and I's on the other hand,
the presence of the undefeated path a - G- —=F prevents the same conclusion from being
certified. It is interesting to note that the scheme of Horty et al. would authorize such
a conclusion in all these networks: in I's and T's, on the basis that the parent G of ~F
is not derivable, and in I'; and I's due to the presence of a ‘preemptive’ supported path

a-B.C.QG.

G G G G

c D F D ,@ F /D c F /D c F
a B a B a "B a B
Iy Ty 5 I

Figure 3: I's - I's

The different treatment of networks such as I'; and I's illustrates different views on the
conditions that make an argument prevail over competing arguments. Indeed, it is possible
to show in our scheme that an individual?> member of a subclass z of y has the property

3For our purposes, any literal without incoming links.

9

~y, only when it is also member of a subclass w of ~y, more specific than z. Formally:

Theorem (Specificity)
Ifa-z-y€Tl* and aly ~y, then there must be a link w-~y in T,
such that a hw and w k.

In the context of I's, this property states that a could be shown to inherit F only if B
could be shown to be a subclass of G. Since the latter does not follow, the former does
not obtain. In Horty’s et al. scheme, the appeal to a notion of preemption which depends
on additional characteristics of the particular target individual (g, in this case) does not
allow such a clear cut notion of specificity to emerge. It should be pointed out, however,
that a slight change in their definitions would suffice for that purpose.

The networks depicted in fig. 3 permit to illustrate an additional distinction between
Horty’s et al. scheme and I. This is about a property which has been called cumulativity
by Makinson [89] and stability by Horty et al. . In the context of inheritance hierarchies,
this property establishes that the predicates that an individual a can be shown to inherit
in a network I, formed by adding a link a - = to I, for a class z such that a ez, are the
same as those predicates that a can be shown to inherit in the original network I'. This
property holds in the scheme of Horty ef al. and in systems of defeasible inference such as
[Geffner and Pearl, 87]. As we show below, however, it does not hold in I.

Consider the net I's in fig. 3. In such a network, it is simple to show that a inherits
both G and F. Cumulativity then implies that a should still inherit F when a link a- @G is

added to I's. The resulting network, however, is I's, where we have shown that a does not
inherit F'

Thus, it turns out that any scheme must reject either cumulativity, a kg, G or must be
capable of deriving a k, F. We have chosen to reject cumulativity. Indeed, we are inclined
to believe that cumulativity is not necessarily a’property of ‘correct’ defeasible inference
but a property about belief dynamics, namely a ‘rational’ policy of belief revision in the
light of new information. In other words, we argue that in a context such as Ts, preserving
the belief F'(a) upon confirming G(a), is the reasonable thing to do. Not as reasonable
however, would be to switch to F(a) upon learning ~D(a) in the context of I';. The
system I cannot make such a distinction and, thus, remains uncommitted in both cases.

Example 9: Cycles. In the last example we consider the network I'y depicted in figure 4.
Unlike the type of inheritance networks dealt with in the literature, Ty contains a (negative)
cycle. Such net could represent, for instance, that ‘most university students are around
their twenties’, that ‘people in their twenties are adults’ and that ‘most adults are not in
their twenties.’

The derivation for a , C rests on the fact that B dominates the link D - ~C and thus,
a can be shown to defeat the conflicting path a- D - —~C.

10

B——> C —-g-ID

"\/

a

Figure 4: T'y: A network with negative cycles

5 Complexity and Implementation

In this section we analyze the complexity of the inheritance scheme proposed, which turns
out to be NP-Complete, and propose a polynomial sound but incomplete algorithm which
we claim provides a practically satisfactory approximation.

The main result is summarized by the following theorem which is proved in the appen-
dix:

Theorem (Complexity).
The problem of determining whether 2 ke y for an arbitrary I is NP-Complete.

The proof* relies on a reduction to 3SAT [Garey and Johnson, 79): for an arbitrary
three-satisfiability problem P, anetwork I'p is constructed in which an individual z inherits
a property y if and only if P is not satisfiable. In particular, T'p is such that an undefeated
path connecting z to ~y exists if and only if P is satisfiable.

We would like to point out that we do not regard the intractability of an inheritance
scheme as bearing on its correctness. Complexity and correctness are different matters;

we are inclined to believe, arises in the context of inheritance reasoning. The possibility
of a ‘correct’, general and tractable account of defeasible inheritance seems unlikely to us.
The tractability of Horty et al. for instance, comes at the price of a highly questionable
notion of ‘skepticism.’ In the the rest of this section a different compromise is pursued.

°.1 A Sound Algorithm for Inheritance Reasoning

In this subsection we present a polynomial algorithm which computes some, but not all
of the inferences sanctioned by I. Nonetheless, the resulting behavior appears to be quite
satisfactory. It is indeed sound and it correctly handles the examples mentioned in the
literature, including those in the previous section. Figure 5 depicts what we believe js the

4The proof is a variation of a technique used Ly Selmnan [89] in assessing the complexity of Touretzky’s
[86] inheritance scherme.

11

simplest type of network in which the algorithm fails to draw a conclusion - a t« F' - which
is authorized by 1.5

G

a

Figure 5: An example of a net where the algorithm does not match the power of I

The algorithm computes in polynomial time and space the set of literals that follow
from each positive literal in the net. In other words, it computes a table from which the
answer to any query can be retrieved. Obviously, the key parameter is not retrieval time
but the time it takes to construct the table.® The computation proceeds by iterations
(see appendix). In each iteration 1, the algorithm visits each positive literal z in the
net and attempts to extend its set of consequences C*~1(z) by incrementally computing
AC*z). This is accomplished by chaining, i.e. literals y with a non-empty set of parents
P(y) in C*'(z) U AC¥(z) are selected one by omne, and the existence of undefeated paths
connecting z to ~y is tested. This test is implemented by recursively spreading markers
from z to its neighbor literals, which are absorbed only by literals whose complements are
in C*"}(z) U AC*(z), or by literals in P(y) or one of their consequences. Tt can be shown
that the lack of a mark in ~y at the end of this propagation process is a sound indication
of the absence of undefeated paths between z and ~y.” If so, y can be added to ACi(z),
and other possible consequences of ¢ can be tried. Otherwise, the next attempt to derive
y from z is postponed until the next iteration.

Note that each link in the net is ‘tried’ at most once in each iteration. Taking into
account the complexity of the marker propagation process, we obtain that the complexity
of each iteration is in the order of L?, where L is the number of links in the net. The
fixed point is obtained when an iteration fails to generate a new table entry. Since the
table that corresponds to a consistent net with N positive literals contains at most NV « N
filled entries, no more that N? iterations can occur. In practice, however, the fixed point is
obtained in a few iterations. All the networks considered so far converge to the fixed point
in two iterations, independently of the order in which literals are selected. Inferences which
require a large number of iterations correspond to chains of highly embedded derivations,
where a proof requires a defeat triplet which in turn requires another defeat triplet and so
on. Indeed, we claim that inferences which require a number of iterations, say, greater than
four, will likely not deserve the title of commonsense inferences at all. Thus, in practice,
the complexity of the algorithm will grow in proportion to the square of the number of

Note that I does not draw any conclusions regarding G,

®In practice, however, it makes sense not to maintain a complete table but a partial one, where unfilled
entries can be computed sufficiently fast.

"The presence of a marker in ~y, however, does not necessarily indicate the presence of an undefeated
path between z and ~y. This is the source of incompleteness.

12

links in the net.

This algorithm has been implemented in Common Lisp and a listing appears in the

appendix. A sample run is shown below.

> (define-net clyde ’((clyde african elephant gray)(clyde royal -gray)

(royal elephant)))

ROYAL -> ELEPHANT ; ROYAL -> -GRAY ;
ELEPHANT -> GRAY ;

AFRICAN -> ELEPHANT ;

CLYDE -> ROYAL ; CLYDE -> AFRICAN ;

NIL

> (run clyde)

-%-%- Tteration 1 -%-%-

New
New
New
New

consequencas from ROYAL: -GRAY ELEPHANT

consequences from ELEPHANT: GRAY

consequences from AFRICAN: GRAY ELEPHANT

consequences from CLYDE: -GRAY ELEPHANT AFRICAN ROYAL

—*~-%= Jteration 2 -—%—dk-

DONE

5.2

What does the algorithm compute?

The algorithm discussed is sound but incomplete. We claim, however, that it is sufficiently
powerful to account for most of the reasonable inferences we want to draw from a net. The
question arises as whether it is possible to provide an abstract characterization of what the
algorithm computes and shed some light into the type of sound conclusions which escape its
machinery. It turns out that the algorithm provides a sound and complete implementation
of the slightly less powerful definition of inheritance given by the following rules:

Rule W.1

Ifz.yeTl, thenzlky

Rule W.2

fzlky, y-z€T andforeverypathz-0-~z€™, 2.0~z =0, w07 wy- 03,

13

either z Iz ~w; or for a parent w of z, z Ik w and w dominates the path w; - o5 - w,,
then z |k z

where the dominance relation is to be understood in terms of ¢ Itk ’. This definition generates
a subset of the conclusion of I: the additional condition Ik —w, still implies that all paths
from # to w;, have to be defeated, but defeat is now defined as an exclusive prerogative
of the parents of z derivable from x. The network depicted in fig. 5 is an example of a

situation where such additional condition precludes a derivation which is authorized by
[l?: ,.

6 Discussion

We have proposed a simple but powerful scheme for inheritance reasoning. The inheritance
scheme embodies clear notions of specificity and defeat, which we have illustrated to vield
an intuitive, justifiable behavior in a number of examples.

Inheritance is viewed as a restricted form of chaining. A link connecting a consequernce
y of z to a proposition z, permits us to infer z from z, when all the paths connecting z to
~z are defeated by z. Defeat is defined in such a way that a class z defeats those all paths
dominated by some of its superclasses. The dominance relation itself, under different
disguises, has constituted a basic block of most accounts of multiple inheritance with
exceptions since [Touretzky, 84]. The novelty of the proposed scheme is the introduction
of a notion of defeat which monotonically extends the dominance relation and which renders
a stronger behavior, in closer correspondence with intuition.

The system resembles Horty’s et al. in form, while departing along some important
dimensions. In particular, we have argued that it embeds a different notion of specificity,
a safer approach towards ambiguity, and a capability for dealing with cyclic networks.

We have shown the inheritance scheme to be NP-Complete. A polynomial algorithm
which provides a satisfactory sound but incomplete approximation has also been presented.

The language of networks considered in this paper is quite limited. There seems to
be, however, two extensions that could be accommodated in the proposed scheme and, in
particular, within the scope of the algorithm presented. One is the inclusion of conjunctive
default links: links with multiple positive literals in the antecedent. The second, is the
inclusion of simple strict (undefeasible) links: links which guarantee chaining both forward
and backward (contrapositive). These extensions will be reported elsewhere.®

8A third extension, which is not so simple to integrate within the scope of the algorithm presented, is
reasoning by cases. That is, if a conclusion follows when an individual has a property p and also when it
has the property —p, then the conclusion should also follow when the individual is not known to have either
p or —p. Indeed, it is possible to construct examples where reasonable conclusions fail to be sanctioned by I
due to its inability to reason by cases.

14

Acknowledgments

We would like to thank Judea Pearl for useful discussions about these and related topics.

References

[Delgrande, 87] J. Delgrande. An approach to default reasoning based on a first-order
conditional logic. Proceedings AAAI-87, Seattle, 1987.

[Etherington and Reiter, 83] D. Etherington and R. Reiter. On inheritance hierarchies
with exceptions. Proceedings of the AAAI-83, 1983, pp 104-108.

[Fahlman, 79] S. Fahlman. NETL: A system for representing and using real-world knowl-
edge. MIT Press, Cambridge, MA, 1979.

[Gabow et al., 76] H. Gabow, S. Maheshari and L. Osterweil. On two problems in the

generation of program test paths. JEEE Transaction on Software Engineering, 1976, pp
227-.231.

[Garey and Johnson, 79] M. Garey and D. Johnson, Computers and intractability. A quide
to the theory of NP-Completeness. New York, W. H. Freeman, 1979.

[Geffner and Pearl, 87] H. Geffner and J. Pearl. A framework for reasoning with defaults.
TR-94b, October 1987, Cognitive Systems Lab., UCLA. Also to appear in the Proceed-

ings of the 1988 Meeting of the Society for Ezact Philosophy, Rochester, N.Y., June
1988.

[Horty et al., 87] J. Horty, R. Thomason and D. Touretzky. A skeptical theory of inheri-
tance. Proceedings AAAI-87, Seattle, Washington, pp 358-363.

[Loui, 87] R. Loui. Defeat among arguments: a system of defeasible inference. Computa-
tional Intelligence, 1987. ‘

[Makinson, 89] D. Makinson. General theory of cumulative inference. Proceedings 2nd Int.
Workshop on Non-monotonic Reasoning, Springer Lecture Notes, January 1989.

[Nute, 86] D. Nute. LDR: alogic for defeasible reasoning. ACMC Research Report 01-0013,
University of Georgia, Athens, 1986.

[Pearl, 88b] Pearl I., Probabilistic reasoning in intelligent systems, Morgan Kaufmann,
Los Altos, 1988,

[Sandewal, 86] E. Sandewal. Non-monotonic inference rules for multiple inheritance with
exceptions. Proceedings of the IEEE, vol 74, 1986.

[Selman, 89] B. Selman. The tractability of path-based inheritance. Proceeding of the

Workshop on Formal Aspects of Semantics Networks, Catalina, California, February
1989,

15

[Touretzky, 86] D. Touretzky. The mathematics of inheritance systems. Morgan Kauf-
mann, 1986.

[Touretzky et al., 87] D. Touretzky, J. Horty and R. Thomason. A Clash of Intuitions:
The current state of non-monotonic multiple inheritance systems. Proceedings of the
IJCAI-87, Milano, Italy, 1987.

A Proofs of Main Theorems

In order to prove the consistency result we will need some lemmas and definitions. All
the lemmas below assume an inheritance network I" with literals among z, Y, The
notation « * y is used to indicate the existence of a path connecting = to y in I'™.

The first two lemmas are natural consequences of the inductive definition of ¢ be 7
Lemma 1 If 2 k y then z * y.

Lemma 2 If = k y then all the paths connecting = to ~y are defeated by z.

The third lemnma follows from the definition of defeat.

Lemma 3 If ...y -2z € T and « defeats all the paths connecting z to z, then either »
defeats all the paths connecting to y or there must be a link w-~z in I" such that z kw
and w *x y.

Indeed, if a path #g- -z, is not defeated, but the path ro---z, - 41 is, there must
be a literal w which follows from z, and which dominates a path z;---2,;;. That is, w is
linked to~=,4; and w f z;, for some i € {1,n]. By lemma 1 we get w * z; and w * z,,, from
which lemma 3 follows.

Lemma 4 Let z - 0 be a path in I'* and let y be the literal closest to z along o, such that
all the paths from z to y are defeated by . Then z t ~y.

If there is such literal y, it follows from lemma 3 that there must be a literal w linked
to ~y, such that = k w . The conclusion z K ~y is, thus, a consequence of rule 2 and the
fact that all the paths from z to y are defeated by .

Lemma 5 Let x - o - y be a path in T’ such that = defeats all the paths connecting z to
y. Then, either x k ~y or there is literal w in o such that z & ~w.

If all the paths to y are defeated, either y is the closest such literal to = along ¢ - y or
a literal w in o is. The result then is a direct corollary of lemma 4.

Definition 1 Let D}, be a derivation of a conclusion z & y according to rules 1,2.1-4 in
section 4. We say that ny supports a hiteral w, if there is a line z k w in D’ . We also
say that the derivation D; , supports a link w -z, if w-z is in T and both w and z are

16

supported by D;’y.

Clearly, the set of links supported by a derivation Di,y must cover a path connecting z
to y. On the other hand, not all the links supported are really relevant to the derivation.
We will find it useful to isolate among the supported links, the set of basic supported links
as follows.

Definition 2 A basic supported link is a supported link y - z such that for every other
supported link w - z with w * y, we also have y * w.

Very roughly, the basic supported links which correspond to a derivation Di'y are the
‘most specific’ links supported by D;,y. Note that if is connected to a literal v by a chain
of supported links, = will also be connected to v by a sequence of basic supported links.
This can be shown by first constructing the set of links supported by a derivation and
then by removing, one by one, those links y - z which do not comply with the property of
definition 2. In particular, we get that:

Lemma 6 Let D}, , be a derivation of y from 2. Then there is chain of basic links supported
by D; , which connects z to y.

We are ready now to prove the consistency theorem:
Theorem (Consistency) If I' is safe, then T is consistent.

Proof Assume otherwise that I' is safe and that there is a pair of literals # and y, such
that ¢ ky and z f ~y. We will assume, furthermore, that there is no derivation DL,
of length shorter than wa such that a counter-derivation D¥, ~ Can be constructed. We
prove safeness and inconsistency to be contradictory by induction on the length of D;, . If
the length of D;, , is one, it means that there is a link z - y in I'. Moreover, since z k ~y,
x must defeat the link - y. That is, there must be a link w- ~y such that either w = z or
w fxz and z fx w. In either case, ' must include a cyclic path comprising the antecedents

w and z of two conflicting links, contradicting the assumption that T is safe.

0

Assume now instead that the length of D;,y is n, n > 1, and thus, that no derivation
of length smaller than n can be contradicted. Let Dﬁ'w be a derivation that contradicts
D.y andlet 7 =t -4y---t,, with t; = z and t, =~y, be a path connecting z to~y formed
by chaining basic links supported by D’;,Ny. Since the derivation Df , establishes y from
z, it must defeat the conflicting path 7. That is, D, , must support a literal w such that
a link w-~t;, 1 < i < n,isin T, and where w *#;,_,. On the other hand, Di"w supports ;
and, therefore, must defeat all paths connecting & to~t; and, in particular, those paths of
the form z . o - w- ~t;. Dz,,,,y, however, cannot defeat all paths of the form z - ¢ - w. Due to
the fact that w is supported by Di'y, there must be a path z -0’ w all of whose ¢’ literals
are also supported by D;‘y. If all paths = - o - w were defeated by z, lemma 5 would imply
that either x k. ~w or z kk ~v, for a literal v in o, contradicting the minimality of D .
Thus, there must be a path z - ¢” - w which is not defeated by z. However, since D§.~y
supports t;, it must defeat the extended path z.o" . w- ~%;. D’;,Ny must, therefore, support

a literal £ such that ¢-¢; and ¢ * w. Now, from ¢ * w, w*t;,_y and the fact that the ¢;,_; - ¢,

17

is a basic link supported by D’;,Ny, we obtain that either ¢;_; * ¢ or #;_, must be equal to t.

In either case, we obtain a cyclic path embracing the antecedents of the conflicting links
ti_1 - t; and w-~t;, contradicting the assumption that T is safe. =

Theorem (Correspondence) In a safe network T, z k y if and only if there is a certified
pathz-o-yin I'™.

Proof Let z - 0 - y be a chain of links supported by a derivation D;‘y. If all the paths
connecting = to y are defeated by z, then, by lemma 5, either z k ~y or there is a literal
v along o such that z k ~v. In either case, the network is inconsistent and, therefore, by
the result above, not safe. »

Theorem (Complexity) The problem of determining whether z ky for an arbitrary T
1s NP-Complete.

Proof The theorem is proved by constructing a polynomial reduction from an NP-
Complete problem, 3SAT [Garey and Johnson, 79]. The reduction has two parts, in the
first part we construct an inheritance net I' for an arbitrary instance P of the 3SAT prob-
lem. In the second part we prove that z b5, ¥ holds if and only if P is not satisfiable.

Let P = (v13 VviaVoiz) A(ven Ve Vugaa) A - A (g V tng V vn3) be an arbitrary instance
of the 3SAT problem. P is a conjunction of n clauses, each of which is a disjunction of
three literals. P is satisfiable if and only if there is a truth valuation that makes P true.

The core of the network I' = I'p is formed by n layers L;, i = 1,...,n, of three positive
literals or nodes p,;, j = 1,2,3 which correspond to the literals vi; in the i-th clause of P°
(fig. refproof). Layer ¢, for i = 1,...,n — 1 is fully connected to layer i + 1 by positive
links. Furthermore, we add links = - py; and pnj- ~y, for j = 1,2,3. Additionally, for every
pair of literals v;; and vy in P such that v;j =~vg and 7 < k, we allocate in I two nodes
I(jf';jkl a;1d Piw as displayed in fig. 6. Finally, a path z - ¢ y is added to the resulting net

z. 6).

We will prove the target theorem by showing a series of simple lemmas. We use the fact
that T' is safe and, therefore, consistent. As a result, if z fx w follows, we are guaranteed
that = g ~w does not. »

Lemma 7 & (pi;|p};ulpu) if and only if v;j =~vi and i < k.

Note that the ‘if’ part trivially follows from the placing of p’ nodes in I'. The ‘only
if’ part follows from the placing of p” nodes which guarantee that each p' is involved in a
single domination triplet between p’s.

Lemma 8 & (p;;||z||pw} if and only if v;; =~vy and i < k.

First of all, notice that all the domination triplets in I" of the form {p;;|w|p) have w
equal to either a p’ node or a p” node. Furthermore, from the construction of T, both

°This technique was reported in [Gabow et al., 79] and came to our attention via [Selman, 89].

18

(P!
0\\\

oS Rt esiechetiioldo
sy

Figure 6: z ky if and only if P is not satisfiable

z k plyy and z k ~pi follow, for all Pl and ply; in the net. As a result, we get that
k (pijl|l2|lprs) if and only K (Pi;|Pjna|pr), which together with lemma 7 lead to the target
result,

Definition 2. Let us say that a path is P-consistent if it does not involve p' and p” literals
nor pair of literals p;; and pyg such v;; =y in P.

Lemma 9 P is satisfiable if and only if there is a P-consistent path connecting x to ~y.

A path in ['* connecting z to~y via p;; nodes corresponds to a selection of single literals
vij from each clause Cj i = 1,...,n in P and, vice versa, each such selection corresponds to
a path from z to~y via p;; nodes. A P-consistent path from z to ~4 therefore exists, if and
only if it is possible to select a literal from each clause in P such that no complementary
pair of literals is selected. This is in turn equivalent to the existence of a truth assignment
to the literals in P such that P is satisfied.

Lemma 10 I'* contains a P-consistent path from z to ~y if and only if it contains a path
from z to ~y undefeated by =z.

Let o be a path in I'* connecting z to ~y. ¢ may or may not involve p’ and p” nodes.
In the former case, 0 must include a link of the form Disrt * Piywe- It is therefore easy to
show that o is defeated by z as, indeed, by construction, dominates those links. Thus,
if a path is undefeated it must therefore be free from p’’s and p”’s. Lemma 10 then results
from lemma 8 and the definition of P-consistency.

Since ¢ is connected to = by a direct link, z k y can be derived if and only if all paths

19

connecting z to~y are defeated by z. Since the mapping from P to I incurs in polynomial
time and space, the main theorem thus immediately follows from lemmas 9 and 10. »

20

B Code

i
331 BUILDING THE NET

iid

(defmacro define-net (name paths)

"Defines a net called <name® with the links

in <patha>"

‘(let ((net-paths ,paths))
(setq ,name (make-net :paths net-paths})
(dolist (path net-paths)

(assimilate-path path ,name))

{print-net ,name))})

Vi
333 Data Structures

(%]

(defstruct net
paths
literals)

(defstruct literal
name
parents
sons
complement
status
conseqs)

R
333 Utilities

(defmacro first-name {path)
‘{car ,path))

(defmacro end-path? (path)
‘{null (cdr ,path)))

(defconstant sneg-sign+* #\-)

(Qefmacro negative-sign? (x)
‘{char= ,x *neg-sign+))

(defmacro positive-sign? (x)
‘(not (negative-sign? ,x)))

(defmacro sign (string-name)
¢{elt ,string-name 0))

(defmacro pos-name (name string-name)
‘(if (negative-sign? (sign ,string-name))
(intern (subseq ,string-name 1))
,name))

(defmacro marked? (lit mark)
‘({equal ,mark (literal-status ,1it)))

(defmacro mark-paths (scurce wall)
‘(propagate t ,source ,wall))

(defmacro clean-paths (source wall)
‘(propagate nil ,source ,wall))

(defun assimilate-path (path net)
"4dds the link{s) in <path> to <net>"
{(labels
{{assimilate (parent rest)
(vhen rest
(let ((son
(get-literal (first-name rest) net)))
(push son (literal-sons parent))
(push parent (literal-parents son))
(assimilate son (cdr rest)}))))
(cond ((end~path? path)
{error ""% "S5 not a valid path "% path))
(t
(assimilate
(get-literal (first-name path) net)
{cdr path))))))

(defun get-literal (name net)
"Retrieves literal structure given its <name>"
(multiple-value~bind
(sign pos-name) (sign-and-name name)
(let ((pos-lit
(or
(find pos-name
(net~literals nat)
:key #’literal-name)
(create-pos-literal pes-name net))))
(cond
((poaitive-sign? sign)
pos-lit)
((literal-complement pos-1lit))
(x
(let ((neg-lit
(create-neg-literal name net)))
(setf (literal-complement pos-1it) neg-lit)
(setf (literal-complement neg-lit) pos-1lit)
neg~1it)))))}

(defun sign-and-name (name)
"Returns polarity of literal + atom"
(let {(name-string (symbol-name name)})
(ralues
(sign name-string)
(pos-name name name-string))))

(defun create-pos-literal (name net)
(let ((literal (make-literal :name name)))
(push literal (net-literals net))
literal))

(defun create-neg-literal (name net)
(make-literal :name name))

(defun print-net (nat)

(delist (parent (met-literals net))
(vhen (literal-sons parent)
(let ((parent-name (literal-name parent))
(gon-names
(mapcar #’literal-name
(literal-sons parent))))
(dolist (=on son-names)
(format t "“A -> “A ; " parent-name son))
(terpri)))))

1
i3 RUN TIME

iii

(defun run (net)
"Computes consequences of each pos-literal
in <net> (by iterations)"
(do ({1 1 (1+ i))
(consaeqs)
(new-conseq? t))
((null new-conseq?} >DOKE)
(format t "~¥%"¥%-#-%- Iteration "D —#-#=-%~%u i)
(setq new-comnseq? nil)
(dolist (lit (net-literals net))
(setq conseqs (derive-new-consaqs lit net))
(setq new-conseq? (or new-conseq? conseqs))
(print-nev-consequences lit conseqs)}))

(defun derive-new-consegs (lit nat)
“"Attempts to expand consequences of literal”
(do* ((parent-boundary
(cons 1it (literal-conseqs 1it)))
(parent
(car parent-boundary)
(car parent-boundary))
(new-consequences))
((aull parent-boundary)
new-Consequences)
(pop parent-boundary)
(dolist (som (literal-sons parent))
(when (new-conseq? mon 1lit (wall son 1it))
(push son new-consaquences)
(push son parent-boundary)
(push son (literal-conseqs 1it))))))

(defun naw-conseq? (target source wall)
"Tests whether <target> follows from <source> by
checking whether markers get to ~<target>
from source”
{and
{not (member target (literal-consmeqs source)))
(or
(not (literal-complement target))
(prog2
(mark-paths source wall)
(not (reached? (literal-complement target)))
(clean-paths scurce wall)))))

(defun reached? (1it)
(literal-status 1it))

(defur wall (target source)
"Computes the set of literals that can stop markers
without affecting undefeated paths"

{do=
({poss-parents
(literal-parents target) (cdr poss-parents))
(parent (car poss-parents) (car poss-parents))
(barriar))
({null poss-parents)
(if (literal-complement target)
(pushnew (literal-complement target) barrier)
barrier))
(when
(or
(equal parent source)
(member parent (literal-conseqs source)))
(pushnew parent barrier)
(satq
barrier
(union barrier {literal-conseqs parent))))))

(defun propagate {mark source wall)
"Recursively propagates <mark> from <sourcae)
until hitting <wvall>"
{labels ({prop-mark (lit)
(cond ({or (marked? 1it mark)
(member
(literal-complement 1it)
(literal-conseqs source))
(member 1it wall))
(setf (literal-status lit) mark))
(t
(setf (literal-status lit) mark)
(dolist (son (literal-sons 1it))
(prop-mark son))))))
(prop-mark source)))

(defun print-new-consequencas (lit consequences)
(when consequences
(format t "New consequencaes from “A:“{ "4 -} ~%u
(literal-name lit)
(mapcar #:literal-name consequences))))

