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Abstract

A preferential semantics for default reasoning
is presented. A partial order is defined over
classes of models which establishes a prefer-
ence for classes with a minimal set of unez-
plained exceptions. Exceptions are explained
in terms of justifications which are syntae-
tically extracted from the knowledge base.
The resulting semantics succeeds in pruning
the spurious models which arise in minimal
model semantics, legitimizing a behavior in
closer correspondence with intuition. Like-
wise, the proposed framework unifies and ex-
tends ideas stemming from work in default
reasoning, logic programming and abductive
reasoning.

1 Introduction

In [McCarthy, 80;86] McCarthy proposed circumscrip-
tion as a simple but powerful second order axiom capa-
ble of endowing first order logic with non-monotonic
features. In model theoretic terms, circumscription
can be understood as replacing the traditional notion
of entailment as truth in all models by a weaker, de-
feasible form of entailment in which only a subset of
minimal models is considered. [McCarthy, 80; Lifs-
chitz, 85; Etherington, 88].

Since then, several studies have analyzed the mathe-
matical properties of circumscription.! Less attention,
however, has been given to the circumseriptive frame-
work as a framework for representing commonsense
knowledge. In this regard, recent work has illustrated
that, more often than not, the inferences sanctioned
by circumscription from relatively simple conceptu-
alizations turn out to be weaker than expected (e.g.
[Hanks and McDermott, 86; Haugh, 88]). Minimal,
unintended models often arise which prevent certain
intended conclusions from being certified.

*This work was supported in part by National Science
Foundation Grant # IRI-8610155.
!See [Reiter, 87] for a relevant bibliography.

This mismatch between intended meaning and the
meaning uncovered by circumseription has recently
prompted Shoham [88) to propose a close alterna-
tive to circumseription i which the notion of minimal
model is replaced by an appropriate notion of preferred
model. Shoham convincingly argues in favor of this se-
mantic shift, and illustrates its convenience by consid-
ering a troubling problem in the domain of temporal
reasoning raised by Hanks and McDermott [86].

More recently, these ideas have been further devel-
oped by Makinson [89] and Kraus et al. [88], who prove
some interesting soundness and completeness results.
Sandewal [88] has also proposed a preferential seman-
tics for non-monotonic entailment, which he defines in
terms of partial interpretations.

Nonetheless, no ‘preferential semantics’ attempting
to capture the tntended meaning of general default the-
ories has yet been proposed. Defining such an account
is the main goal of this paper. Our approach draws on
McCarthy’s [86] suggestion that default reasoning be
formalized in terms of the minimization of ‘abnormal-
ity.” We depart, however, from McCarthy’s minimal
model semantics in two ways. First, the preference or-
dering does not apply directly to models, but to classes
of models, with each class embedding a commitment
to certain set of assumptions. Second, the preference
ordering favors classes of models which minimize un-
ezplained abnormality, rather than plain abnormality.
These explanations are assembled in terms of justifica-
tions which are syntactically extracted from the knowl-
edge base. The result is an account which succeeds in
eliminating the spurious models that arise in minimal
model semantics, permitting a behavior in closer cor-
respondence with intuition. In addition, the resulting
framework unifies and extends ideas stemming from
work in default reasoning, logic programming and ab-
ductive inference.

The paper is organized as follows. In section 2, we
introduce the preference ordering. Such ordering ap-
plies to sets of models, which we call classes. We
define the conditions under which an abnormality is
regarded as erplained in a given class, and the condi-
tions which make a class admissible. In section 3, we
illustrate the appeal of the proposed account by ana-
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lyzing examples from the domains of reasoning about
action, inheritance hierarchies, logic programming and
abductive reasoning, and by comparing the results to
related proposals. Finally in section 4, we summarize
the main ideas, discuss some of the controversial points
and point out some of the remaining problems.

2 A Preferential Semantics for
Default Reasoning

2.1 Definitions

The default theories we shall consider are comprised of
two components: a background context K and an ev-
idence set E. The background context corresponds to
an intensional characterization of the domain of inter-
est in the form of a set of defeasible and undefeasible
rules, while the evidence set corresponds to an exten-
sional characterization of the particular situation of
interest in the form of factual assertions [Geffner and
Pearl, 87].

Among the predicate symbols occurring in the the-
ories of interest, a distinguished set AB of predi-
cates is used to express assumptions and abnormal-
ity conditions. In the context of default reasoning
such set would contain ‘abnormality’ predicates [Mc-
Carthy, 86], while in the context of logic programming
it would contain all the predicate symbols of interest,
For a predicate ab; in AB, we shall refer to atoms
of the form abj(a), where a stands for a vector of
ground terms, as ezceptions or abnormalities, and to
their negations, —abj(a), as assumptions.

The background context K of a given theory is it-
self structured into four components. There is a ter-
minelegicel component given by a set of strict rules
(e.g. ‘penguins are birds’), a default component given
by a set of defeasible rules (e.g. ‘birds fly’), a set of
user-supplied ezplicit exceptions or justifications (e.g.
‘injured birds are abnormal birds with respect to fly-
ing’), and a set of implicit justifications derived from
the defaults in K, in a way to be described below.

Given a theory T, we are interested in character-
izing the set of consequences it certifies. We shall
achieve such characterization by determining the set
of assumptions which can be accepted in 7. For that
purpose, we shall introduce the notion of a class ¢
with gap G, given by a set of exceptions {4,...,4,},
as the non-empty collection of models of T' which val-
idate all the assumptions -4, for § ¢ G.

We shall also say that a proposition holds or is val-
idated in a class when the proposition holds in all the
model members of the class. The set of all the as-
sumptions validated by a class constitutes what we
shall refer as the class support. Thus, in proof theo-
retic terms, a proposition a holds in a class C of T
when the support of C comprises a set of assumptions
AS such that T, AS + .

From the complementarity of gap and support it fol-
lows that a class with a minimal gap will have a max-
imal support, and vice versa. Classes with minimal
gaps will be referred as minimal classes.

As an illustration, consider for instance a theory T
with a default A A —aby = B, an explicit justification
C A —~aby = aby, and a body of evidence £ = {4,¢}.
For such a theory, there are no models which can make
both assumptions —~aby and —aby true simultaneously.
Thus, there is no class of T with an empty gap. There
are, however, two minimal classes C; and C,, with
gaps {aby} and {abg}, respectively. But note that
the two classes of models are not equally meritorious.
Intuitively we would expect the assumption ~abq to be
defeated by the explicit justification C A —aby = aby,
as the latter expresses a condition under which the
default A A ~aby = B is not to be applicable.

Qur task hereafter will be to establish a partial or-
der among classes which will permit us to uncover the
intended models of a given theory. Since each class re-
flects a choice of assumptions, such an ordering can be
usefully regarded as a preference ordering among dif-
ferent assumptions sets. Thus, in the example above,
we would expect the preference ordering to favor the
class Cy, committed to the assumption —abg, over the
other minimal class C,, committed to the inferior as-
sumption —aby. Such preference will be indeed estab-
lished on the basis that the exception abq is ezplained
in the class C), while the exception abg is not ex-
plained in the class C;. Thus, we shall say that C;
is more coherent than C; and is, therefore, preferred
over C3. The conditions under which an exception is
explained in a class are elaborated below.

We regard default instances such as A A -6 = B as
expectations, and exceptions such as § as expectation
failures. Essentially, we assume that an exception such
as § can be explained in a class in one of two ways. Ei-
ther the class validates a proposition C, in the presence
of an explicit justification of the form C = § in K, or
the class validates the propositions A and D and the
assumption —¢’, in the presence of a competing default
expectation DA -6 = B’ in K, where B’ stands for a
proposition incompatible with B in K (fig. 1).

A B

Figure 1: Explaining an exception §

For the purposes of uniformity, however, the second
case will be dealt with in a slightly different way. For
each pair of defaults ¥x.A(x) A —abj(x) = B(x) and



¥x.D(x) A —aby(x) = B’(x) with incompatible con-
sequences in K, a formula of the form
Vx.A(x) A C(x) = abji(x) V abg(x),

referred as an implicit justification, will be added to
K. Such formula is a deductive consequence of the
rules in K, and has no effect on the models of T. Its
addition, however, will permit a simple translation of
the intuitions above into a formal definition.

Consider the ground instances of the rules in K.
Each such ground rule might or might not involve cer-
tain assumptions in its body. For a set of assumptions
AS we shall denote by Kag the set of ground rules
whose assumptions, if any, are among those of AS.
We shall then say that an exception § is explained in a
class C of a context with background K and evidence
E, if there is a set AS of assumptions validated by C,
such that E, K45, ASF 6. In such case, we refer to
the set AS of assumptions as an explanatory support
of 8.

Note that an exception é explained in a class C must
belong to the class gap and, furthermore, it must hold
in (every model of) the class. On the other hand, an
exception that holds in a class, does not necessarily
have an explanation in that class. Indeed, as hinted
above, an exception & can only be explained if there
is a justification rule, explicit or implicit, whose con-
sequent mentions §. By definition, rules whose an-
tecedents include the assumption =6 cannot take part
of the set K45 of rules needed to explain é.

This definition of “explanation” introduces an im-
portant distinction between logically equivalent formu-
las, which can be illustrated by considering the rules
81 = 62 and true = §; V &, for two exceptions §;
and d3. The first rule permits an explanation for 84 in
any class that validates the assumption =64. It does
not permit however, an explanation of 4§, in terms of
=bz; the rule —8; = §,, with assumption —8;, will be-
long to Kas only if —8, belongs to 45. The second
rule, on the other hand, does not involve any assump-
tions in its body and, as a result, permits explanations
for &, in terms of ~6; and for §; in terms of —4;.

Recalling the example above, the reader can ver-
ify that the exception ab, is explained in C; and has
an explanatory support AS = {—-abs}. The excep-
tion aby, on the other hand, is not explained in the
class C3. Thus, C; is the only class with an empty
unezplained gap, and it will therefore constitute the
preferred class. We will make this notion more precise
in the following definition.

Among two classes C and C’ of a theory T, we say
that C is preferred to C’ when the unexplained gap of
C' is a strict subset of the unexplained gap of C’. In
that case, we also say that the class C is more cokerent
than the class C'. If there is no class preferred to C,
we say that C is a preferred class of T. Furthermore,
we say that a proposition « is a consequence of T when
o holds in all the preferred classes of T.

Note that it follows from these definitions that
classes with smaller gaps are preferred to classes with
larger gaps and, therefore, that preferred classes are
always minimal. Furthermore, the preferred classes of
a theory T can be determined by comparing minimal
classes of T only.? Likewise, a class with an empty
unexplained gap is always a preferred class. In these
classes all exceptions are explained. We call these
classes the perfectly coherent classes of T.

Example. Let us illustrate these definitions with the
following example. We consider a theory T with a
background context K comprising the following de-
faults (fig. 2):

L. Vx. A(x) A —abq(x) => B(x)

2. Vx. A(x) A ~absy(x) = C(x)

3. Vx.B(x) A ~abz(x) = D(x)

4. Vx.C(x} A ~abg(x) = —D(x)

Figure 2: Simple diamond example

No undefeasible rules or explicit justifications are
introduced, but the conflict between the last two de-
faults will resuit in the following implicit justification
being added to K:

8. Vx.B(x) A C(x) => abg(x) V abg(x).
Note that, as we said above, such a justification is al-
ready a deductive consequence of the formulas in K.
Its role is not in affecting the models of T, but in
permitting the constructions of explanations for ex-
ceptions abz(x) and abg(z), reflecting the conflicting
expectations in which they participate.

Let us now consider in T a body of evidence E =
{A(a)}. The goal is to determine the preferred classes
of T, There are four minimal classes ¢; in this con-
text, with gaps {ab;(a)} for i = 1,2, 3,4 respectively.
Furthermore, the exceptions aby(a) and aby(a) have
no explanation in the classes C; and C,, as there are
no justifications for these exceptions in K. On the
other hand, the exceptions abz(a) and aby(a) are ex-
plained in C3 and C; respectively, by virtue of the jus-
tification encoded by (5). As a result, we end up with
two preferred and indeed perfectly coherent classes Cs
and Cy, which sanction among other conclusions, B(a)

*This will no longer be true after admissibility con-
straints are introduced in section 2.2.



and ¢(a), and which suspend judgment regarding D(a).
Note that this is indeed the behavior we would expect
from the diamond structure encoded by the defaults
1-4 (fig. 2). A minimal model semantics, on the other
hand, would propagate the uncertainty about D(a) to
the propositions B(a) and C(a) as well.

2.2 Admissible Classes

Before proceeding with more interesting cases, we
‘must address a problem that arises from a tradeoff
between exceptions and explanations induced by the
proposed preference ordering. We can illustrate this
tradeoff by considering a theory T, with a background
comprising a default (fig. 3):

1.  AA-aby =B

and explicit justifications:
2, CA —abg => aby
3. B = abg,

1
A - B J-ab:3
T

C

Figure 3: Spurious behavior and admissible classes

together with a body of evidence £ = {A,C}. Such
a theory gives rise to two minimal classes C and Cs
with gaps {aby} and {abs,abz}, respectively. Fur-
thermore, C) explains aby and C; explains abz. The
exception aby, on the other hand, has no explana-
tion in Cy. It follows then, that C), unlike C,, has
an empty unexplained gap and, therefore, that C; is
the preferred class. This in turn can be interpreted
as indicating, in agreement with intuition, that the
proposition € defeats the default A A —aby = B.
Consider now the case in which the exception abz
is incorporated into the current evidence pool, so that
the total evidence becomes E = {4,C,ab3}. In such a
context, again, two minimal classes C{ and C;, arise;
the former with a gap {aby, abz}, and the latter with a
gap {aby,abz}. As before, aby is explained in C} and
abgy is explained in Cj. Nonetheless, in the current
context, neither class turns out to be preferred over
the other. As a result, unexpectedly, the introduction
of the exception abg has the effect of reinstating the
default encoded by 1, which is no longer defeated.
This spurious effect can be explained in terms of the
abductive bias embedded in the preference ordering,
by which classes capable of explaining their exceptions
are rewarded. In this case, the reinstatement of the as-
sumption ~aby permits the construction of an expla-
nation for the exception abg, but comes at the price

4

of introducing the unezplained exception abs. This
tradeoff can be shown indeed to underlie this and other
forms of abnormal behavior arising from the proposed
preference ordering. In what follows a restriction on
classes will be defined which will rule out such type
of situations. Classes to be considered will have to be
admissible in the sense defined below.

First, let us say that a class C of T with gap G
supersedes a class C' of T with gap G’, when the set
G — G' is not empty and only contains exceptions ex-
plained in C, while the set G’ — G contains exceptions
unexplained in C*.

Thus, the gap of a class C’ superseded by a class
C can be constructed by eliminating some explained
exceptions from C’s gap, and by adding new excep-
tions, not all of them explained in C’. In terms of
the example above, it can be verified that the class C!
with gap {aby, aba} supersedes the class C} with gap
{abg, abg}. The latter gap can indeed be obtained
from the former by removing the explained exception
aby and by adding the unexplained exception ab,.

Finally, a class is admissible when it is not super-
seded by any other class. Hereafter, preferred classes
will be selected by considering admissible classes only.

3 Applications

In the previous section we have laid out a semantic
framework for the characterization of default theories.
Our goal in this section is to illustrate how such a
framework applies to a variety of domains ranging from
problems in temporal reasoning, to problems in inher-
itance hierarchies, logic programming and abductive
reasoning. Special emphasis will be placed on the type
of behavior legitimized by the proposed account. Re-
call that our main goal is to arrive at an interpretation
of the theories of interest which better approximates
the intended interpretation.

3.1 Reasoning about Action

Our appeal to coherence considerations in pruning the
set models of a given theory makes the proposed frame-
work closely related to the proposals of Lifschitz [87],
Haugh [87] and Morgenstern and Stein [88] for for-
malizing reasoning about action. In these proposals,
clippings (persistence exceptions) can only originate
from acting causes. Lifschitz and Haugh then mini-
mize then over these causes, subject to explaining the
clippings. Morgenstern and Stein take a slightly differ-
ent view and select those models in which the actions
are causally ‘motivated’ by the available evidence.

In our proposal, we do not require a cause behind
every clipping, but ‘reward’ those classes of models in
which this is the case and, therefore, those classes in
which clippings are explained. We thus avoid some un-
desirable features of these approaches (Lifschitz’s and
Haugh’s ontologies and Morgenstern’s and Stein’s lim-



itation to accommodate defeasible causal rules), while
obtaining an additional degree of flexibility.

Consider the following version of the ‘Yale Shooting
Problem’ raised by Hanks and McDermott [86]. We
have a theory T with a background context K given
by the following expressions:?

1.¥t.LD(t) = LDD(t+1)

2.Vt.LDD(t) A ~aby(t) => LDD(t+1)

3. Vt. ALV(t) A —mabgy(t) => ALV(t+1)
4.Vt.SHT(t) ALDD(t) A ~abg(t) => —ALV(t+1)
5.Vt. SHT(t) A LDD(t) = abs(t)

Thus, we have that a loading event makes the gun
loaded, that loaded guns remain loaded and that alive
‘animals’ remain alive unless shot with a loaded gun.
Furthermore, due to the conflict between the persis-
tence of ‘alive’ (3) and the shooting rule (4), an im-
plicit justification of the following form is added to K:

6.¥%. SHT(t) A LDD(t) A ALV(t) => abz(t) V aby(t)

The evidence indicates that a turkey called Fred was
alive at time t = 1, that a loading event took place
at time t = 2, and that a shooting event directed
at Fred took place at t = 3. Intuitively, it ap-
pears that Fred should no longer be alive as a re
sult of the shooting. However, as Hanks and McDer-
mott noted, several minimal classes pop up, in some
of which Fred survives the shooting. In our formula-
tion, these are classes in which the gun is mysteriously
unloaded or in which the shooting, for some reason,
misses its target. The collection of minimal classes
of T' thus corresponds to classes with a single excep-
tion among aby(2) (‘mysterious unloading’), abs(1),
abs(2) (‘mysterious death’), aby(3) (‘death by shoot-
ing’), and abg(3) (‘target missed’). It is not difficult
to show that the class corresponding to aby(3) is the
only perfectly coherent class, and is thus the single
preferred class of T. This is due to the fact that the
persistence exception abg(3) can be explained in terms
of the explicit justification encoded by (5). None of the
other exceptions, on the other hand, can be given an
explanation.

An undesirable feature of the above formulation
which is shared by Hanks’ and McDermott’s, is the
need to explicate by means of an explicit justification
(5}, that the shooting rule is supposed to prevail over

*Note that, unlike Hanks and McDermott, we have ex-
pressed the shooting rule (5} as a default rule. Indepen-
dently of whether this is a more appropriate encoding,
such a choice is motivated by the assumption embedded
in the definition of ‘explanations’, by which expectations
are assumed to be encoded by defaults. A slight extension
would be needed to accommodate, for instance, undefeasi-
ble causal rules. We shall not pursue that extension in this
paper. Let us just point out, however, that the shooting
rule could be made undefeasible by simply declaring the
proposition —3t. abj(t) as part of the evidence.
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the persistence of ‘alive’ (3). This is done by declar-
ing the latter persistence to be abnormal in the con-
text of a shooting. In a more realistic setting though,
where a number of events leading to different type of
changes are to coexist, the number of intended ‘clip-
pings’ which must be enumerated could be overwhelm-
ing. Moreover, these explicit exceptions, as we show
below, make theories less modular.

Consider for instance the possibility that Fred was
wearing a metal vest at the time of the shooting, We
could describe the effect of wearing a metal vest by
asserting that the shooting rule is not applicable to
somebody wearing a metal vest:

7.Vt.VEST(t) = aby(t)

Such rule, however, would fail to achieve its intended
effect. While the death of Fred would no longer fol-
low, the justification encoded by (5) would still prevent
proving Fred alive after the shooting. This suggests
that a more flexible means of specifying the intended
priority of rules about change is needed.

Our proposal is a simple one, consisting of two parts.
First, we allow the user to lexically distinguish the as-
sumptions associated with rules about change from the
assumptions associated with rules about persistence.?
We do so by replacing the generic type of normality as-
sumption —ab;{-) with two different types of assurnp-
tions: —cp(-}, read ‘not clipped’, which is used for
assumptions about persistence; and —pv(.), read ‘not
prevented’, which is used for assumptions about the
result of actions. The formulation above would then
be translated into the more concise description:

1. Vt.LD(t) = LDD(t+1)

2'.¥£.LDD(t) A —~cp4(t) = LDD(t+1)

3'. Ve, ALV(t) A ~epa(t) => ALV(t+1)

4'.¥t. SHT(t) A LDD(t) A —pv3(t) = —ALV(t+1)

where the priority of the shooting rule over the alive-
ness persistence rule is not explicated.

As usual, the conflict between the last pair of de-
fault rules results in the addition of a corresponding
implicit justification to K. Recall that these implicit
justifications permit us to explain the failure of certain
expectation in terms of the success of an alternative,
incompatible expectation. Now, however, we have {wo
different types of expectations: we have expectations
of change on the one hand, and expectations of per-
sistence on the other. The two expectations, however,
are not intended to be treated symmetrically. While
it is assumed that a successful change explains a cor-
responding clipping, it is also assumed that a failed

*If we were using a reified temporal notation in the
style of [Shoham, 88)], a single persistence rule would suf-
fice. Nonetheless, in order to simplify the description of
the example, we have found a non-reified notation more
convenient and, therefore, a collection of persistence rules
is needed.



action is not to be explained in terms of the persis-
tence it fails to clip. We incorporate this asymmetry
into our account by defining the implicit justifications
associated with the conflict of a rule about change and
a rule about persistence in a different manner. Thus,
from the conflict between defaults (3') and (4') above,
rather than eliciting the implicit justification:

5".Vt. SET(t) ALDD(t) A ALV(t) = pva(t) V cps(t)

we assert the logically equivalent, but asymmetric jus-
tification:

5'.Vt. SHT(t) A LDD(t) A ALV(t) A ~pv3(t) = cpsy(t)

Thus, we allow the clipping of ‘alive’, cps(-), to be ex-
plained in terms of a ‘successful’ shooting, but preclude
the ‘successful® persistence of ‘alive’ from explaining an
‘unsuccessful’ shooting, pva(-). The reader can verify
that from a theory with the background context de-
fined by the formulas 1’-5/, and given the same ev-
idence as above, the same conclusion about Fred fol-
lows. The difference now is that certain preferences are
handled implicitly, and that the resulting formulation
is more flexible. The metal vest variation, for instance,
would work without modification in this setting.

3.2 Inheritance Hierarchies

Another area in which minimal model semantics falls
short of delivering the intended models of a set of de-
faults is in the context of inheritance hierarchies. In-
heritance hierarchies are convenient devices for orga-
nizing knowledge about prototypical classes of individ-
uals. Rather than explicitly stating the attributes of
each possible individual, individuals are assumed to
implicitly inherit a certain set of attributes by virtue
of the place they occupy in the hierarchy. The key
problem to address in these structures arises when an
object belongs to classes with incompatible attributes.
The typical example goes like this: Tweety is a pen-
guin and, therefore, a bird. Typically birds fly and
typically penguins do not fly. What should be con-
cluded about the flying abilities of Tweety?

It is commonly accepted that there is an implicit
preference among the defaults represented in these
networks. Such preference appears to establish a pri-
ority for defaults rooted in more specific information
[Touretzky, 86]. In terms of the example above, such
preference would favor for instance the belief that
Tweety is likely not to fly, on the basis that penguins
are a subclass of birds. For more complex cases, the
preferences are not always so clear, though significant
progress has been made in recent years, both in the
context of inheritance hierarchies [Horty et al.,87] and
in more general settings (e.g. [Loui, 87; Delgrande, 87;
Geffner and Pearl, 87]).

An important insight into the nature of the in-
tended preferences among conflicting defaults that has
emerged from these proposals is that a default ‘if A

then B’ constitutes a license to infer B when A rep-
resents all the available evidence. In other words, a
default antecedent provides a safe context on which
the truth of the default consequence can be asserted,
We refer to this aspect of defaults as the confer? sen-
sitivity property of defaults.

In the context of the framework we have been devel-
oping, accounting for the context sensitivity of a de-
fault ‘if A then B’ would amount to making B true in
all the preferred classes of A.5 With that goal in mind,
we shall impose a further restriction on the classes to
be considered when dealing with theories, such as in-
heritance hierarchies, where there is an implicit pref-
erence to be uncovered among defaults.

Let AA =6 = B be the ground instance of a default
in K such that K, A J-6. We say that a set of assump-
tions AS = {-§,...,~8,} is in conflict with the as-
sumption -4, if the assumptions in AS compete with
—-¢ upon learning A, ie. if K,AF§vVE V...V,
Since =6 is the intended assumption in such context,
it is reasonable to assume that the user intends to re-
ject some of the assumptions in AS. We say then,
that the set of assumptions AS is dominated by A. A
contert-admissible class C is then defined simply as an
admissible class which does not validate any assump-
tion set dominated by propositions that hold in .5

For inheritance theories, only context-admissible
classes will be considered. Note that in order to test
context-admissibility, it is sufficient to examine mini-
mal dominated assumption sets only.

Example. This example illustrates the type of speci-
ficity preferences entailed by the context-admissibility
restriction. Let T be a theory with a background con-
text K given by the following defaults {fig. 4):

Vx. A(x) A —abq (x) = B(x)
Vx.B(x) A ~aby(x) = C(x)
¥x. B(x) A ~abz(x) = D(x)
Vx. C(x) A —abg(x) = -D(x)
Vx.F(x) A —abg(x) = C(x)

Due to the conflict between the defaults associated
with the assumptions abg(z) and aby(z) (fig. 4), the
following implicit justification will also be part of &

Vx.B(x) A C(x) => abz(x) V abg(x)
We consider a body of evidence E = {A(a),F(a)}.

*Kraus et al. [88] interpret defaults in a similar manner.
Selman and Kautz [88], on the other hand, account for
specificity preferences by intepreting defaults as imposing
an ordering over pairs of models.

®Let us point out that in a pathological net with de-
fault instances AA~§ = B and A A=6' = R, a context-
admissible class would be forced to reject both assumptions
=& and —§' upon learning A. With good reason, such net-
works are inconsistent in the frameworks of Horty et al.

6 (87], Delgrande [87] and Geffner and Pearl [87].



Figure 4: A simple inheritance hierarchy

Intuitively, we would expect the preferred classes of
T to sanction the propositions B(a), €(a) and D(a).
There are however four minimal classes of T', among
which are two perfectly coherent classes C3 and Cy,
with explained gaps {aba(a)} and {abg(a)} respec-
tively. Cjy represents the intended class of models,
while C3, which sanctions —D(a), fails to embed the
right specificity preferences. We show below that Cj
is not a context-admissible class.

Consider the default instance B(a)A—abz(a) = D(a).
It follows from the body of defaults in X that the
assumption set AS = {-abg(a), ~abg(a)} is in conflict
with the assumption ~aba(a), and therefore, that the
set AS is dominated by the proposition B(a). The class
Cs, however, validates both B(a) and AS, and thus is
not context-admissible. This leaves Cy4, the intended
class, as the single preferred class of 7.

Let us remark that even if we add the following ex-
plicit justification to T

Vx.B(x) = abg(x)

a simple minimization of abnormality would still not
yield the expected conclusions in this case. Among
the minimal models of T there would still be models
validating both the abnormality aby (a) and the propo-
sition —B(a).

3.3 Closed World Reasoning

‘The reader may have noticed that the preference order-
ing introduced above does not involve a minimization
of the extension of the (abnormality) predicates in 4B,
but rather, a minimization of the set of truths. In other
words, the gap of a class is not defined in terms of the
exceptional individuals in the domain, but in terms of
a set of ground exceptions. As aresult, and in contrast
to minimal model semantics, a default like ‘birds fly’
allow us to conclude that ‘Tweety flies’ upon learning
that ‘Tweety is a bird’, without ever being committed
to the conclusion that ‘all birds fly’. A model in which
only certain unnamed birds do not fly is as preferred as
a model in which all birds fly, and both models would
be indeed part of the same preferred class.

The same choice also permits jumping to conclu-
sions without the need of unique name axioms [Re-
iter, 80b]. If Tim is a penguin, we do not need to
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prove that Tweety is different from Tim in order to
Jump to the conclusion that Tweety flies. This again
contrasts with the form the same inference would be
certified by a minimal model semantics, in which such
inequality would be required.

Both of these features suggest that, in terms of
jumping to conclusions, the proposed framework bears
a closer similarity to Reiter’s default logic than to Mc-
Carthy’s circumseription. Furthermore, as we shall
see, the framework inherits a difficulty of Reiter’s
logic in handling conclusions regarding unbounded
sets of individuals, pointed out by McCarthy in [Me-
Carthy, 80].

Let us say, for instance, that we want to capture
the type of default behavior found in some relational
database. We might have in the database a collection
of tuples of the form P(a),P(b) and Q(a),q(b),Q(c).
From such database, conclusions like as that “a and b
are the only P’s,” or that “all the P’s are Q’s” would
follow, These are conclusions that non-monotonically
depend on the state of the database, and that can
potentially be defeated by the acquisition of new tuples
(e.g. P(d)).

A minimal model semantics would have no difficulty
in accounting for such behavior. A simple minimiza-
tion of the extensions of P and Q, together with the
appropriate unique-name axioms will do. In our frame-
work however, the straightforward approach of declar-
ing the predicates P and Q as ‘abnormality’ predicates,
members of AB, would not quite work. From such a
declaration, we could derive conclusions such as -p(z),
for any ¢ different than a and b, but not universals
such as Vx.P(x) & x = aV x = b, which involve a
commitment regarding unnamed individuals in the rel-
evant models. In the remainder of this subsection we
show that it is possible to capture this type of closed
world reasoning in the present setting. The key, as
hinted in [McDermott, 82], consists of incorporating
sets into the universe of discourse. We shall not elab-
orate here on the details of how such an extension can
be defined; suffice it to say that any weak set theory
will do.”

In order to illustrate how the behavior of the data-
base described can be captured in terms of defaults
involving reference to sets of individuals, we shall in-
troduce the following two abbreviations:

P[s]
P[s]

where § stands for an arbitrary set of individuals.
Thus, P represents the definition, or as we shall we
say, the ‘closed’ version of P. Having these abbrevia-
tions available, we can capture the database behavior
by a theory with background:

Vx.x € S = P(x)
Vx.x € § & P(x)

"The interested reader might want to consult [Perlis, 88}
for a relevant discussion.



vs. P[s] A —aby(3) = P[5]
vs,s'. P[S]AS D s’ = aby(5')

That is, if the members of a set §' are all instances of
P, then it is assumed that 5’ contains all the instances
of P unless there is a larger set S whose members are
also instances of P. We shall also need a unique name
hypothesis in order to distinguish different sets:

Ve, y. -aba(x,y) > x £y

Notice that this default introduces a set of unexplained
exceptions of the form aby(z,z) in every class. We
refer below to these exceptions as the common excep-
tions.

We can now analyze different states of the database
as well as the conclusions which are sanctioned in each
case.

Case 1. E = 0. Without any tuples in the database,
the preferred class includes no exception in addition
to the common exceptions mentioned above. Thus,
—aby (@) forms part of the support of the preferred
class and, therefore, P{f}] and —~3x. P(x) follow.

Case 2. F = {P(a)}. aby(0) becomes an explained
exception, part of the gap of the preferred class. Still,
the assumption —aby({a}) holds, and the conclusion
Pla] : Vx.P(x) & x = a follows.

Case 3. E = {P(a),P(b)}. Now the gap of the
preferred class is enhanced by two new explained ex-
ceptions aby({a}) and aby({b}). The assumption
—aby({a, b}) still holds, so that P[a,b] : Vx.P(x) &
X =aVx=b follows.

Case 4. E = {P(a) v P(b)}. In this context, the
preferred class includes only the explained exception
aby(0) in addition to the common exceptions. Its
models can be divided into two sets: those in which
P(a) A —P(b) holds, and those in which P(b) A —P(a)
holds. In the first class of models, P[a} holds as well,
and in the second set of models, P[b] does. As a result,
the disjunction P{a] V P[b], which abbreviates the ex-
pression [Vx. P(x) & x = a] V [Vx. P(x) <& x = b], holds
in the preferred class.

These results illustrate that it is possible to capture
in the present framework the form of closed world rea-
soning found in databases. Circumscription will sanc-
tion the same conclusions in each of these cases [Lifs-
chitz, 85]. In other cases, however, the results might
differ. One such case, for instance, would correspond
to E = {3x.P(x)}. Given such a context, circumscrip-
tion would conclude that there is a single instance of P,
i.e. dx.¥y.P(y) & x = y. However, such a conclusion
does not follow from the account presented.

3.4 Logic Programming

The semantic framework proposed can also be applied
to logic programs with negation (see [Shepherson, 88]
for a review). For logic programs, the set AB of pred-
icates whose truth sets are expected to be minimal
is identical to the set of all predicates of interest. A
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logic program is thus a collection of what we have been
calling explicit justifications. In what follows, for ease
of comparison with other proposals, we consider only
Herbrand models.

The first result we show relates the proposed se-
mantics to the stable semantics for logic programs
proposed by Gelfond and Lifschitz [88] and, inde-
pendently, by Kit Fine [88]. Elsewhere [Van Gelder
et al,, 88), it has been proved that the stable model of
stratified logic programs is unique, and that it coin-
cides with the canonical model of Apt et al. [88] and
the perfect model of Przymusinski [88].

Following Gelfond and Lifschitz we assume that each
rule in the program P of interest has been replaced
by all its ground instances. A Herbrand model M of
P is then defined as stable if and only if M is the
minimal model of the program Pj;. P} is the positive
program obtained by removing from P all the rules
whose bodies contain assumptions —§, with § € M,
and by deleting the assumptions (i.e. negative literals)
from the remaining rules.

If M is a model of a program P, we will denote by
Cps the class of models of P with a gap equal to M.
Thus M, as well as models of P smaller than M, will
belong to Cys. The following theorem then holds:3

Theorem 1. M is stable if and only if the
class C)s is perfectly coherent.

In words, the theorem says that M is stable if each
atom of M has an explanation in terms of the assump-
tions validated by M. Note that since a stable model
is always minimal, the class Cps will contain a single
model, namely M.

Still, there are programs which have no stable mod-
els. These programs might nonetheless have a well de-
fined set of preferred classes. One typical example is
the program P, composed of the single clause p < —p.
The preferred class of P has the single unezplained
atom p in its gap.

The correspondence between stable models and per-
fectly coherent classes suggests that the criterion of
stability which is used in defining the stable semantics
of logic programs embeds an abductive bias by which
models capable of explaining their atoms are rewarded.
This feature becomes apparent when we consider the
following two programs:®

P: g&-r Py: q&-r
r<-q P+E=—q
PE-p P < —p
p<-r

In both programs, the clause p <= —p introduces, but
does not explain, the atom p. This leads the stable se-
mantics to produce results in both cases which differ

®Proofs are omitted due to lack of space. They can be
obtained by writing to the author.
® P, is taken from [Van Gelder et al., 88).



from those which would be obtained if this clause were
replaced by the simpler clause p <. The problem is
that our preference ordering, as well as the stable se-
mantics for logic programs, rewards those classes in
which p geis an explanation. Thus in P;, both seman-
tics favors the model My, = {q,p} over the apparently
equally meritorious model M| = {r,p}, while in P,
the apparently superior model M; = {q,p} fails to
receive a better ranking than the model M} = {r,p}.

These examples appear to suggest that a more in-
tuitive preference criterion for selecting the intended
models of general logic programs should have this ab-
ductive bias removed. We discussed the effects of such
a bias when the admissibility restriction was intro-
duced in section 2.2. Recall that an admissible class is
a class not superseded by any other class. Likewise, a
class C’ with gap G’ is superseded by a class C with
gap G when the set G — G’ is non-empty and only con-
tains exceptions explained in C, while the set &' — ¢
contains exceptions unexplained in C’,

In the examples above, the minimal admissible
classes turn out to be in precise correspondence with
the more intuitive models M7, M{ and M;. The class
with gap M3, on the other hand, is superseded by the
class with gap M,, and is therefore not admissible.

Interestingly enough, the perfectly coherent class of
a stratified program is also its unique minimal admis-
sible class. That is, there is a correspondence between
the minimal admissible class of a stratified program
P and the canonical model of P, as defined by Apt
et al., Przymusinski and others. This correspondence
is summarized in the following theorem:

Theorem 2. For a stratified program P,
there is a unique minimal admissible class,
whose gap is the canonical model of P,

Thus we have two alternative semantics for general
logic programs: one based on the preference ordering
formerly introduced, the other which simply selects
the minimal admissible classes. Both semantics coin-
cide for the family of stratified programs, but diverge
outside that family. The examples above suggest that
a semantics based on minimal admissible classes is free
from the abductive bias exhibited by the stable seman-
tics and the preferential semantics here proposed and,
therefore, that it might constitute a more appropriate
basis for identifying the intended model(s) of general
logic programs.

As a final illustration, we will consider a program P
in which none of the minimal classes is admissible and
in which, therefore, the preferred class is non-minimal.
P is given by the following rules:

p&—q
q < ~r
T < p
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The minimal Herbrand models of P are M; = {p,r},
M; = {q,p} and M3 = {q,r}, while the minimal
classes are Cps,, Car, and Cu. It can be shown
that none of these classes is admissible: Cjs, super-
sedes Cyy,, Cyr, supersedes Cyy,, and Cas, supersedes
Chr,. Thus, the minimal admissible class of P which is
also the admissible class favored by preference ordering
turns out to be the non-minimal class Cys, with gap
M = {p,q,r}. Cp stands in this case for a collection
of models; indeed, it represents the set of subsets of M
which are models of P, i.e. Cpr = {M, My, My, M3}.1°
It follows then, that none of p, q, r, or any of their
negations are sanctioned as consequences of P.

3.5 Abductive Reasoning

Work in non-monotonic reasoning has been inspired
by the goal of providing a formal account of some
of the pervasive patterns of inference found in com-
monsense reasoning. Most of this work to date has
been focused on the characterization of what has been
called default inference, a form of reasoning akin to
deductive inference, in which certain assumptions are
adopted in the absence of contrary evidence. Nonethe-
less, other forms of non-monotonic inference, qualita-
tively different from default reasoning, also appear to
play an important role in commonsense inference. One
such form, analyzed in some detail in [Harman, 86}, is
what has been variously referred to as “inference to
the best explanation,” “abductive reasoning” or “con-
jectural reasoning.” This is a form of inference which
attempts to make sense of the evidence by increasing
the coherence of a given set of beliefs. The characteri-
zation of these patterns of inference involves both the
determination of sources of incoherence in a given be-
lief state and the identification of hypotheses capable
of explaining such incoherence away. In this subsec-
tion, we shall attempt to show that the framework we
have so far developed lends itself to a characterization
of this sort.

We assume that the unexplained gaps associated
with the preferred classes of a given context provide
a useful measure of the coherence of such context; in-
deed, they point out ‘what needs to be explained.” For
instance, in a inheritance hierarchy about animals, a
context which mentions a bird Tweety that does not
fly would be slightly incoherent. In such an incoher-
ent state, it might make sense to jump to conclusions
which could explain away the source of incoherence.
We could hypothesize for instance, that Tweety is sick,
or that he is penguin and so on. We shall refer to those
propositions as conjectures. More precisely, a ground

1%Recall from section 2, that for a theory T, a class C
with gap G stands for the non-empty collection of modals
of T' which validate all the assumptions -8, for § g . Car
thus represents the collection of models of P which validate
all the literals ~e, for a € M, i.e. all the Herbrand models
of P included in M.



atomic proposition 4 would be regarded as a conjec-
ture in a context T if its adoption yields a new context
T U {v} more coherent than the original context T

In section 2.1, we defined the conditions that make
one class more coherent than another. Now we must
define a similar order between conierts. For this pur-
pose, we will associate with every context T a co-
herence descriptor H[T], given by the vector of un-
explained gaps in its preferred classes. A context T
with a coherence descriptor [Gi,...,G,] would then
be said to be as coherent as a context 7" with a coher-
ence descriptor [G],...,G},), if each G;, 1 <i < n, is
included in G}, for some j, 1 < j < m. Furthermore,
if T is as coherent as T but 7" is not as coherent as
T, we say that T is more coherent than T".

Recailing, the example above, we obtain then that
the proposition “Tweety is a penguin’ would qualify as
a conjecture in the above context, since its adoption
would lead to a context whose preferred classes are
perfectly coherent. Nonetheless, a proposition such as
‘T'weety is a brown arctic penguin’ would also qual-
ify as a conjecture. In order to rule ocut unnecessar-
ily specific conjectures, we must restrict the space of
admissible conjectures. Let us say that a conjecture
v’ is less specific than a conjecture % in a context T
if o' follows from 7' U {7}, but v does not follow from
TU{7'}. Then, we say that a conjecture 7 is admissible
if there are no less specific conjectures leading to con-
texts as coherent as those resulting from the adoption
of 7. Thus, while ‘Tweety is a penguin’ and “T'weety
is sick” would represent admissible conjectures in the
above context, the proposition *Tweety is a brown arc-
tic penguin® would not.

Note that there is an important distinction between
the set of default conclusions that follow from a given
theory and the set of admissible conjectures legit-
imized by it. The set of admissible conjectures, un-
like the set of default consequences, is not deductively
closed. Indeed, while it is reasonable to conjecture
that Tweety does not fly because it is sick, or because
it is a penguin, it is not so reasonable to conjecture
that Tweety does not fly because it is a sick penguin.
Conjectures, unlike defaults, represent alternative be-
lief changes.

While this account of conjectural reasoning does not
limit the space of admissible conjectures a priori,!! it
may nonetheless be useful to provide the user with
the facility of expressing conditions under which cer-
tain conjectures would be preferred over others. For
instance, following Pearl [87], we might want to ex-
press things like ‘if you are not aware of an expla-
nation for the grass being wet, then conjecture that
it rained’. Thus, if the grass is observed to be wet,
even in the presence of other admissible conjectures,
an explanatory conjecture stating that it rained would

'See [Poole, 87] for a different view.
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be adopted. However, if an alternative explanation
is learned, say that the sprinkler was on, the reason
for having postulated ‘rain’ would vanish, and so the
‘rain’ conjecture. Pearl refers to these defaults as ev-
idential defaults, and convincingly argues that they
require a treatment different from the one given to nor-
mal (causal) defaults. In our framework, evidential de-
faults turn out to be essentially context guided conjec-
tures. The details on how they can be accommodated
as part of the language are elaborated in [Geffner, 89].

4 Discussion

We have presented a framework for characterizing
defeasible inference based on a preference ordering
among classes of models. The ordering favors classes
with a minimal unexplained set of exceptions. We
have shown how such a framework permits to unify
ideas stemming from work in default reasoning, logic
programming and abductive inference. We have also
illustrated how the proposed account elirninates the
spurious models that arise in minimal model seman-
tics, permitting a behavior in closer correspondence
with intuition.

The account presented here is unorthodox in several
ways. First, a preferential ordering is described which
does not apply directly to models, but to classes of
models. The motivation for such a choice originates
from viewing default reasoning in the ‘abnormality’
setting as a labeling problem, in which the set of legit-
imate assumptions in a given context needs to be iden-
tified. Each class of models thus represents a choice of
assumptions, and these choices are evaluated accord-
ing to the preference ordering.!?

The distinction between explained and unexplained
abnormality plays a central role in such ordering. We
have argued that the value of a class is not in inverse
proportion to its abnormalities, but rather to its un.
ezpliined abnormalities. No penalty, for example, we
have maintained should be associated with a class in
which a bird does not fly, if the bird is, say, a penguin.
In that situation, being an ‘abnormal bird with respect
to flying’ is the normal, expected condition. Abnor-
malities are unlikely in certain contexts but likely in
others, and a reasonable preference ordering should be
able to make this distinction.

Our reliance on justifications which are syntactically
extracted from the database and used to construct ex-

'2This view also suggests an alternative, stronger defi-
niticn of default entailment which we have not pursued in
this paper. Rather than defining o to be a default con-
sequence of T when o holds in all the preferred classes of
T (section 2.1), we could require the existence of a set of
assumptions AS validated in all the preferred classes of T,
such that T, AS - &. This stronger definition appears to
bear some resemblance with those semantic accounts based
on partial models (e.g. [Van Gelder et al., 88]), which we
have not yet investigated.



planations is potentially more controversial. We have
assumed that abnormalities represent expectation fail-
ures, and as such, could be either explained by explicit
exceptions which assert that a default is not applicable
in a given circumstance, or by competing expectations.
This choice, however, is not unique and, quite possi-
bly is not the best. It is, however, relatively simple
and intuitive, and as we have illustrated, it can ‘rea
sonably’ account for ‘reasonable’ examples, Further
refinements may still be necessary.

The framework for defeasible inference proposed
here shares several features with the system L pro-
posed in [Geffner, 88]. Both systems represent defaults
in the same way and they appeal to the same distinc-
tion between background and evidence. Both regard
the antecedent of a default as providing a safe context
in which the truth of the consequent can be asserted,
and both attempt to capture the distinction between
defaults and their contrapositives in a similar way.

There are, nonetheless, significant differences be-
tween the two frameworks. First, L has the form of a
natural deduction system whose rules or';ina.te from a
probabilistic interpretation of defaults,!3 This set of
rules is supplemented by an additional, more ad-hoc
rule, which attempts to supply the probabilistic rules
with appropriate assumptions about conditional inde-
pendence. Such an “irrelevance rule,” as it is called,
permits us to infer for instance conclusions like ‘a red
bird flies,” given that ‘birds fly’. These conclusions
would otherwise escape the probabilistic machinery.

The irrelevance rule in L, and an analogous con-
struction in the conditional logic of Delgrande [87],
plays a central role in endowing these systems with
a reasonable inferential power. There has been, how-
ever, a difficulty in justifying and making precise the
form this rule should take. This difficulty has been a
primary motivation behind the work reported in this
paper. The framework we have elaborated here pro-
vides a rationale for identifying the set of assumptions
to adopt in a given context,.

Nonetheless, the proposed semantics does not vali-
date the probabilistic rules of L; indeed, unlike L, the
semantics is not cumulative.* In other words, even if
H defeasible follows from T, the contexts T and TU{Hl
are not guaranteed to yield the same conclusions.!

*Indeed, L comprises a set of rules which define a sound
and complete logic of high probability (see [Adams, 66) and
[Pearl and Geffner, 87]). This probabilistic interpretation,
however, is not essential; Kraus et al. [88] have developed a
system with equivalent power within a prefetential seman-
tics setting,

"*The term “cumnulativity” has apparently been coined
by Makinson [89]. See also Kraus et al. [88].

% Just consider a theory with defaults “if A then B, Hf
A and B then G’ and ‘if C then =B, It is possible to verify
in such a theory that both C and B follow from A. B, on
the other, does not follow from A and C.
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In this regard, two important questions remain to be
answered. The first has to do with whether ‘cumula-
tivity’ is a reasonable property to have in a defeasible
logic, and if so, whether it is possible to embed a cu-
mulative logic within a semantics capable of drawing
sensible assumptions about conditional independence.
A discussion of some of the issues involved in these
questions can be found [Geffner, 89].
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