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Abstract

With the need for storing time-varying information in databases and the availabil.
ity of cheap storage units, building temporal databases becomes more attractive and
realistic. In this paper, we consider query processing and optimization for temporal
databases; an area that is seldom discussed in the literature. As storing temporal
information in databases is a new application area, it is not surprising that it imposes
new requirements for effective query processing techniques. Conventional relational
systems are often inefficient for temporal queries because these requirements are not
taken into consideration. As an example, a temporal join often contains a conjunc-
tion of several inequalities involving timestamps. This type of query is conventionally
processed using the nested-loop join algorithm, which may not be the most efficient
method for this type of qualification. A query having a conjunction of a number of
inequalities as the join condition can be processed much more efficiently using new
processing strategies,

We discuss a stream processing approach for temporal query processing. Given
properly sorted data, the implementation of temporal joins and semijoins as stream
processors can be very effective. We also discuss the tradeoffs between sort orders,
the amount of local workspace and multiple scans over input streams:; particularly,
we are interested in the effect of sort ordering on the local workspace requirement.
We present stream processing algorithms for various temporal joins and semijoins, and
their workspace requirements for various data sort orderings. We note that the optimal
sort ordering for a query may depend on the statistics of data instances. Finally, we
point out that semantic query optimization can play an important and natural role in
temporal databases.

“This work was done under the Tangram Project, supported by DARPA contract F29601-87-C-0072.
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1 Introduction

strategies.

The third area is the logical modeling of temporal data [Ben82, Cli85, Sno8s, Sho86,
Seg87, Sno87, Gad88]. Many of these studies emphasize extending the relational data model

attributes (such as ValidFrom and ValidTo attributes [Sno87)) which store the relevant times-
tamps. New temporal operators are also defined in these extended data models, based upon
traditional relationa] algebraic operators [Uli82], to allow users to query temporal attributes
but not update them directly. Recently some studies Propose using non-first normal form
relation technology to model temporal data [Tangs].

a topic which is seldom discussed in the literature, We observe that there are several in-
teresting characteristics which are peculiar to temporal queries: (1) a temporal query often
contains a conjunction of several inequalities and no equality conditions; (2) temporal data

as in conventional relational systems, can result ig poor performance.

Join and semijoin operations are the most common and expensive computations in
database systems. In this paper, we discuss processing various temporal join and semijoin
operations using a stream Processing approach which takes advantage of data ordering. As
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temporal data often has certain implicit ordering by time, the stream processing approach,
as we demonstrate, is a good alternative. We should emphasize, however, that the stream
processing algorithms that we present in this paper are merely additional strategies that
a query optimizer should consider, and are by no means substitutes for traditional query
processing methods.

The idea of stream processing has also appeared in [Bent79, Pre8s, Oress). [Oreg8]
focuses on processing spatial image data stored using pixel representation which is not ap-
propriate in many proposed temporal data models. Its implementation relies on a special
transformation, called the z-transform, and consequently there is only one interesting order-
ing, namely the z-order (lexicographical ordering of z-transformed values.) [Bent79, Press)
discusses a main memory algorithm, called the plane sweep algorithm, which can be used to
report all intersecting pairs of planar line segments. Although temporal attributes (Valid-
From and ValidTo) can be thought of as the endpoints of horizontal line segments, the
algorithm is primarily designed to find all line segment pairs which intersects at a single
point, and therefore it is not directly applicable to temporal query processing. Moreover,
only a single sort ordering of data items is considered by this algorithm while in our tem-
poral data model, tuples can be sorted on the attribute ValidFrom or ValidTo. Nonetheless,
these researches share the basic principle of the stream processing paradigm which is that
input data should be in a certain order before the processing commences. In this paper,
we are more concerned with (1) the impact of various data ordering on performance issues,
mainly memory workspace requirements, and (2) efficient processing algorithms for join and
semijoin operations. As we show, the optimal sort ordering for these temporal operators
may depend on the statistics of data instances as well as the operator itself.

Semantic query optimization has been discussed in the literature [Kin81, Cha84, Jar84,
She87] but apparently has not been widely used in conventional systems. Undoubtedly
semantic constraints in temporal databases occur more naturally and are more plentiful, and
consequently a temporal query optimizer should profitably exploit the semantic constraints.
In this paper, we discuss a new type of semantic constraint — chronological ordering of data
items and how it can be used to optimize a temporal query.

The remainder of the paper is organized as follows. Section 2 gives an overview of the
temporal data model that we adopt from [Sho86, Seg87] and discusses the basic categories
of temporal queries. We illustrate, in Section 3, the conventional approach to processing
a complex temporal query. In Section 4, we discuss a stream processing approach for the
implementation of temporal operators. We informally discuss the role of semantic query
optimization in Section 5, and finally conclude with directions for future work.



2 Temporal Data Model

In our temporal data model, we consider time as a sequence of discrete, consecutive, equally-
distanced points, i.e. Time = {%,, t;, -+, now} which are totally ordered. The sequence of
time points can simply be treated as isomorphic to the natural numbers, and therefore we
do not specify the time unit.

We adopt a modified version of the Time Sequence concept in [Sho86, Seg87)! as
the basic data construct in our temporal data model. A temporal data value is a 4-tuple
<8§,V,ValidFrom,ValidTo>? where S is the surrogate or the identity of the object, V is a time-
varying attribute of concern, and [ValidFrom,ValidTo) represents the lifespan of the tuple.
Naturally, within a tuple the ValidFrom value is always smaller than the ValidTo value.
Semantically, the object S has attribute value V during the period [ValidFrom,ValidTo)®. A
temporal relation is a set of temporal data values (i.e. a set of 4-tuples).

An example of a temporal relation is Faculty(Name,Rank, ValidFrom,ValidTo)*. To-
gether with the following integrity constraints and assumptions, this example is used in
subsequent sections for illustration purposes. Name is the identity of a faculty member. For
attribute Rank, we consider only three different ranks — ‘Assistant’, ‘Associate’ and ‘Full’,
Suppose we assume in this example that an assistant professor can be promoted only to an as-
sociate professor and then to a full professor. In other words, there is a chronological ordering
among the data values that the Rank attribute can assume. For the same faculty member,
e.g. “Smith” as illustrated in Figure 1, “ValidTo, <ValidFrom,” and “ValidTo,<ValidFrom;"
must hold. The period [ValidFrom,ValidTo) in a tuple is the time during which the faculty
holds the indicated rank. We also assume that a faculty member is at exactly one rank at
any time between becoming an assistant professor and termination as a full professor. As
we mentioned above, for any tuple t, “t.ValidFrom<t.ValidTo” always holds.

'A Time Sequence is a totally ordered sequence of temporal data values <Surrogate, Attribute-value,
Time>. The attribute value of an object between any two time points (i.e. between consecutive temporal
data values} can be computed using an interpolation function.

2We consider only the valid times in TQuel temporal database taxonomy {Sno85]. Also, for simplicity,
we often use TS and TE to abbreviate ValidFrom and ValidTo respectively.

3A stepwise-constant interpolation function is applied between the time points ValidFrom and ValidTo.

‘Borrowed from [Sno87].
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Figure 1: A sample Faculty relation

Explicit Constraints

X.TS=Y.TS A X.TE=Y.TE
X.TE=Y.TS

X.TS=Y.TS A X.TE<Y.TE
X.TE=Y.TE A X.TS>Y.TS

X.TS>Y.TS A X.TE<Y.TE

X.TS<Y.TS A X.TE>Y.TS
A X.TE<Y.TE

X.TE<Y.TS

Integrity Constraints: X.TS<X.TE A Y.TS<Y.TE

Figure 2: The 13 possible temporal relationships



3 Conventional Approach

In this section, we describe how conventional relational database systems generally process
temporal queries. Using a running example, we illustrate deficiencies in conventional systems,
which motivate our investigation of more eficient processing strategies for temporal queries.

Allen [AlI83] presents thirteen elementary temporal operators of time-intervals which
are listed in Figure 2. These temporal operators are actually just syntactic sugar for the
“explicit” constraints (i.e. query-specific constraints) which are given in the right hand
column of Figure 2, and can be easily incorporated into query languages like SQL and Quel.

Temporal queries using these extended constructs are usually processed in the following
way. First, they are translated into equivalent queries in a relational language such as Quel.
The translated queries will then be optimized and processed by conventional relational query
processors. This ‘syntactic sugaring’ approach, as we will demonstrate below, is in general
not effective for temporal query processing.

Suppose we have a relation Faculty(Name,Rank,ValidFrom,ValidTo) as described in
the previous section. Consider the following Quel query modified from [Sno87]%: Superstar
— Who got promoted from assistant to full professor while at least one other faculty remained
at the associate rank?

range of fl is Faculty
range of {2 is Faculty
range of {3 is Faculty
retrieve into Sta.rs(Na.me:fl.Name,ValidFi'om=ﬂ.ValidFrom,ValidTo:f2.Va.1idTo)
where f3.Rank=%“Associate”
and fl.Name=f2.Name and f1.Rank=“Assistant” and f2.Rank=*“Ful]”
and (f1 overlap {3) and (f2 overlap £3)¢

These “overlap” operators are translated directly into equivalent clauses involving inequali-

*The original TQuel query in [Sno87] is:

range of fl is Faculty

range of f2 is Faculty

range of a is Associate

retrieve into Stars(Name=fl.Name)
valid from begin of f1 to begin of £2
where f1.Name={2.Name and f1.Rank=%*Assistant” and f2.Rank=“Full”
when (fl overlap a) and (f2 overlap a)

SThis overlap operator defined in [Sno87] is different from “overlaps” in [AlI83]; it is defined in a general
sense and therefore it may also mean the “equal”, “start”, “finishes” or “during” relationships in Figure 2.
For the sake of exposition, we follow [Sno87].



ties. That is,

(f1 overlap £3) = f1.ValidFrom<{3.ValidTo A £3.ValidFrom<fl.ValidTo
{f2 overlap {3) = 2. ValidFrom<{3.ValidTo A £3.ValidFrom<£2.ValidTo

The corresponding relational algebra expression for the Superstar query is:

71 (06 (Facultyy x Faculty, x Facultyy))

where L is f1.Name, f1.ValidFrom, f2.ValidTo
8 is f1.Name=£2.Name A f1.Rank="“Assistant”
A f2.Rank=“Full” A f3.Rank="%Associate” A §
& is f1.ValidFrom<f3.ValidTo A 3.ValidFrom <f1.ValidTo
A £2.ValidFrom<£3.ValidTo A £3.ValidFrom<f2.ValidTo

This algebraic expression can be represented as a parse tree [UlI82], as depicted in
Figure 3(a). The parse tree can then be ameliorated by applying well-known traditional
algebraic manipulation methods; e.g. the selections and projection are pushed as far down
the parse tree as possible (see Figure 3(b)).

There are several interesting observations about the “conventionally optimized” parse
tree in Figure 3(b):

1. The first join in the parse tree can be efficiently implemented as an equi-join using a
conventional approach such as nested-loop join, merge join or hash join. The second
join operation, a so-called less-than join, is a Cartesian product followed by a selection
with the condition being a conjunction of inequality predicates — #’. Traditionally, the
best strategy for processing less-than joins appears to be the conventional nested-loop
join method. With only a single inequality as the join condition, we have no choice
but the nested-loop join method. Since time is assumed as a sequence of toally ordered
points, one would wonder if there are any more efficient processing alternatives for a
conjunction of several inequalities involving temporal attributes.

In the past, little attention has been given to this form of qualification because:

¢ in traditional database applications, queries seldom contain less-than joins, and

o when they do, in most situations the join condition has only a single inequality
predicate; for example, in an Employee/Department database, we might want to
retrieve employees whose salary is higher than his/her manager.

When we consider temporal databases, the situation is quite different:
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e less-than joins appear more frequently and naturally, and therefore need to be
optimized,
# the less-than join condition usually contains a conjunction of several inequality

predicates (e.g. in the Superstar example) which indicates that optimization
might be possible.

Optimization of this form of query in snapshot databases was essentially ignored but
for temporal databases this can result in severe performance penalties. In the following
sections, we explore a number of efficient processing alternatives.

2. Recall that there is an integrity constraint in the Faculty relation: a chronological
ordering of data values — ‘Assistant’, ‘Associate’ and ‘Full’. This ordering implies
that being an assistant professor must occur before being promoted to a full professor,
i.e. “f1.ValidTo<f2.ValidFrom” always holds in the presence of (fl.Name=f2.Name).
These constraints, together with the “intra-tuple” integrity constraints,

fi.ValidFrom<fi.ValidTo for i=1,2,3,

imply “f1.ValidFrom<f3.ValidTo” and “f3.ValidFrom<f2.ValidTo”. Therefore these
inequalities in §’ are redundant — i.e. they are subsumed by other inequalities. The
important point is not so much this particular case; rather it is the process of semantic
query optimization. We argue in more detail later that semantic query optimization is
much more applicable in temporal databases than in conventional shapshot databases.

3. There are three references to the Faculty relation in the parse tree implying that it is
joined with itself twice — conventional systems would scan the relation several times,
If we view the query as a “Superstar” pattern matching in the Faculty relation, one
might wonder if we are able to answer this query with only a single scan of the relation.
Roughly speaking, the pattern that we are looking for is “an assistant professor followed
by a full professor and then an associate professor” (which also satisfies other conditions
such as the assistant and full professors are the same person.) That is, instead of
performing multiple joins, a single scan might be possible by recognizing this query
qualification as describing a pattern in the data.

The above observations suggest new requirements for temporal query processing algorithms.
These new requirements in turn suggest that, in addition to traditional set-oriented relational
operators, we may need other alternatives to process temporal queries. In subsequent sections
we will present and discuss a number of such alternatives.
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Figure 4: A stream processor to sum all employees’ salaries in each department: emp; is the

employee, dept; is the department that the employee works with, salary; is the employee’s
salary.



4 Stream Processing Approach

We discuss a stream processing approach for temporal query evaluation in this section. Algo-
rithms that implement temporal operators are presented. The tradeoffs among sort orders,
the amount of local workspace and multiple passes over input streams are discussed. For
properly sorted streams of tuples, we show that temporal operations can often be carried
out with a single pass of input streams and the amount of workspace required can be small.

4.1 What is stream processing?

Abstractly, a stream can be defined as an ordered sequence of data objects. Stream processing
is a paradigm which has been widely studied [Abe85, Par89] and used in languages such as
Lisp; it is very similar to list processing in which elements of a list are sequentially processed.
Stream processing also appears naturally in database systems; it closely resembles the notion
of dataflow processing. In the functional data models [Shi81, Bat88, Ore88] a function,
which is implemented by a stream processor, is a mapping from input stream(s) into output
stream(s). Furthermore, function composition can be viewed as “connecting” a network of
stream processors through which data objects flow.

A classical example of stream processing operations is the merge-join. When we merge-
join two relations sorted on their key attribute, at any point we need only one tuple from
each table as the “state”. The join is efficiently implemented as both tables are read only
once. Moreover, the output from this join operation is also sorted on the key attribute so that
subsequent operations on this output can then take advantage of this ordering [Smi75, SelT9].

There are several intrinsic characteristics of stream processing in database systems.
First, a computation on a stream has access only to one element at a time and only in
the specified ordering of the stream. Second, the implementation of a function as a stream
processor may require keeping some local state information in order to avoid multiple readings
of the same stream. The state represents a summary of the history of a computation on the
portion of a stream that has been read so far; the state may be composed of copies of some
objects or some summary information of the objects previously read (e.g. sum, average,
etc.) Using the local state information, the implementation of a stream processor can be
expressed in terms of functions on the individual objects at the head of each input stream
and the current state. That is, a stream processor takes an object from each input stream
and, depending on the current state, it can change the current state to a new state and at
the same time output some objects on its output stream(s).

Let us consider a simple stream processor which lists all the departments and computes
the sum of all employees’ salaries in each department, as shown in Figure 4. If the stream of



tuples are grouped by the department name, the local workspace simply contains the partial
sum and a buffer for the tuple just read. The point here is that the state contains summary
information and the function (i.e. sum) is expressed in terms of the current state and an
input object.

The third characteristic of stream processing is that there are often tradeoffs among
the following factors:

1. the size of the local workspace which depends on the function itself, the statistics of
specific instance of data streams, and the garbage-collection criteria,

2. sort order of input streams, and

3. multiple passes over input streams (i.e. the number of disk accesses),

Very often stream processing requires input streams to be properly sorted in order to perform
the computation while only read the input streams once. In addition, the sort ordering of
input streams greatly affect the size of local workspace required. Conversely, suppose there
is enough local workspace to keep all data objects. Then only a single pass over the input
streams is required and (theoretically) the sort ordering would not be important.

For many practical situations in query processing, it is important to make use of the
ordering of tuples so that we can minimize the amount of local workspace and the number of
passes over input streams. As we mentioned earlier, temporal data implies ordering by time;
treating temporal relations as ordered sequences of tuples {i.e. streams of tuples) therefore
suggests that stream oriented strategies for temporal query processing could be especially
effective. In the next section, we discuss the application of stream processing algorithms for
implementing temporal queries. In these discussions, the sort ordering of streams plays a
major role.

4.2 Sort Orderings

Suppose we have temporal relations X(S,V,TS,TE)? and Y(S,V,TS,TE). We are interested in
the effect of various sort orderings on the efficiency with which it is possible to implement the
temporal operators (listed in Figure 2) in the stream processing paradigm. We concentrate
only on “inequality-temporal” operators such as the “during” operator; that is, the operators
that have only inequalities in their explicit constraints®. We focus on how various sort

"Recall that TS and TE stand for ValidFrom and ValidTo respectively.

3For non-inequality constraints, an obvious stream processing method appears to be sorting both relations
on attributes that are involved in the equalities followed by a conventional merge-join (and perhaps combined
with filtering using inequality constraints.)
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orderings would affect the size of local workspace required for the operations.

Before we proceed, we should note that the temporal operators listed in Figure 2 are
in fact join and semijoin operations. Because of this, the only form of state information we
need consider is subsets of the tuples previously read and not any summary information such
as sum, max, avg, etc.

4.2.1 Contain-join

Contain-join(X,Y) outputs the concatenation of tuples X and Y if the lifespan of X contains
that of Y; that is, “X.ValidFrom<Y.ValidFrom A Y.ValidTo<X.ValidTo” — the “during” re-
lationship in Figure 2. Note that Contain-join(X,Y) and Contain-join(Y,X) are not logically
equivalent unless X and Y are the same.

The join algorithm assumes that (1) there is an input buffer for reading tuples from
each stream (denoted as <Buffer-x, Buffer-y>, and the tuples as z; and y3), (2) on the
average, the ValidFrom (and ValidTo) values of two consecutive X tuples differ by 1/
units of time (similarly, 1/, for Y tuples.) The algorithm for the case when both relations
X and Y are sorted on the attribute ValidFrom in ascending order as shown in Figure 5(a)
is:

1. Initially there is no state tuple and the first tuple from each stream is read and stored
in the buffer.

2. Read phase: copy z; and y, into the state space. Reading tuples from both streams
depends on the ValidFrom values of z; and y;. The first case is when “y;.ValidFrom
<zs.ValidFrom” as shown in Figure 5(b). As all Y tuples read so far do not join with
Ty, more Y tuples should be read such that “y,.ValidFrom >z ValidFrom?”.

The second case is when “y;.ValidFrom>z,.ValidFrom” as shown in Figure 5(c). The
state of the current computation is:
{X tuples whose lifespan span y;.ValidFrom}
U {Y tuples whose ValidFrom value lies in {}.

A tuple from an input stream which allows more state tuples to be discarded will be
read. To estimate the number of disposable state tuples, 1/, and 1/}, are used. If
the next X tuple is read, disposable Y tuples are those which satisfy “z;.ValidFrom
<Y.ValidFrom<¥ ", where the expected value of ' (denoted as ¥) is (zs.ValidFrom
+ 1/A;). Likewise, disposable X tuples are those which satisfy “y;.ValidFrom <
X.ValidFrom<t" ” when the next Y tuple is read, where 7 is (y.ValidFrom+1/A,).

3. Garbage-collection phase: discard X tuples in the state if “X.ValidTo<y.ValidFrom”.
Also discard Y tuples if “Y.ValidFrom<z;. ValidFrom”. The garbage-collection condi-
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tions must guarantee that the Y (and X respectively) tuples being discarded do not
satisfy the join condition with any subsequent X (and Y respectively) tuples.

4. Join phase: output X and Y tuples if they satisfy the join condition.

5. The algorithm terminates if either stream has been exhausted and there is no corre-
sponding state tuple. Otherwise, go to Step 2.

Note that the separation of this join algorithm into several phases is primarily for the sake
of explanation; it is possible that Steps 2, 3 and 4 can be merged together to gain better
performance. Also, the state can be characterized as follows: (1) When there is no Y tuple
in the state, the maximal set of X tuples that are required to be kept in the state consists of
all overlapping X tuples at time point y.ValidFrom. (2) Conversely, when there is no X state
tuple, the maximal set of Y state tuples that is required consists of those whose ValidFrom
value lie in the lifespan of z.

For the case when the relation X is sorted on the attribute ValidFrom and the relation
Y is sorted on ValidTo in ascending order, the algorithm is similar to the above with the
following exceptions:

1. Read phase: the Y tuples that can be discarded if an X tuple is read would be the
same as above, but the disposable X tuples if the next Y tuple is read are those which
satisfy “yp.ValidTo<X.ValidTo<ys.ValidTo+1/A,”.

2. Garbage-collection phase: dispose of X t.uples if “X.ValidTo>y;.ValidTo”, and dispose
of Y tuples if “Y.ValidFrom<z;.ValidFrom”.

3. The state is {X tuples whose lifespan span y;.ValidTo} U {Y tuples whose lifespans
are contained within /}.

We summarize the state information requirements of processing the Contain-join for
other sort orderings in Table 1 along with the following remarks. Firstly, it is generally
inappropriate to have one relation sorted in ascending order and the other in descending
order. Secondly, sorting both relations X and Y on attribute ValidTo in descending order
would have the same effect as sorting them on attribute ValidFrom in ascending order because
of symmetry (although the ValidFrom and ValidTo attributes exchange their roles); the lower
half of Table 1 is therefore the mirror image of the upper half. Because of this, we only show
the upper half portion in subsequent tables.

12
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Sort Orders Contain Contain Contained
Relation X Relation Y || -join(X,Y) -semijoin(X,Y) | -semijoin(X,Y)
ValidFrom | T | ValidFrom [ T (a) (c) (c)
ValidFrom | | | ValidFrom | | - - -
ValidFrom [ { | ValidTo |1 (b) (d) -
ValidFrom | | | ValidTo || - - (d)
ValidTo [ 71| ValidFrom | T | - - d
ValidTo | | | ValidFrom | | (b) (d) -
ValidTo [T | ValidTo |1 3 . 3
ValidTo | || ValidTo || (a) (c) (¢)

T Sorting the corresponding attribute in ascending order.

| Sorting the corresponding attribute in descending order.

- The sort ordering is not appropriate for stream processing — no garbage-collection cri-

teria.

(a)

(b)

(c)

state = {X tuples whose lifespan span vs. ValidFrom}

U {Y tuples whose ValidFrom value lie in I}

state = {X tuples whose lifespan span ys. ValidTo}

U {Y tuples whose lifespans are contained within / }

state C {X tuples whose lifespan span z;.ValidFrom}

U {Y tuples whose ValidFrom values lie in {}

(d) local workspace = <Buffer-x, Buffer-y>.

Table 1: Effect of various sort orders on Contain-join, Contain-semijoin & Contained-semijoin
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4.2.2 Contained-semijoin & Contain-semijoin?

Contained-semijoin(X,Y) selects X tuples if there ezists a Y tuple such that the lifespan of
Y contains that of X. Contain-semijoin(X,Y) selects those X tuples whose lifespan contains
that of any Y tuple. In a later section, we show that these semijoins can be used to reduce
the local workspace required for join operations, and in particular, Contained-semijoin may
be used to efficiently process the Superstar query.

For semijoins, a stream processor can output a tuple as soon as it finds the first
matching tuple. Because of this, we devise an optimized algorithm which requires just one
buffer for each input stream. Suppose the relation X is sorted on attribute ValidFrom and
the relation Y is sorted on ValidTo in ascending order as shown in Figure 6. The algorithm
for Contain-semijoin(X,Y) (and Contained-semijoin(Y,X) respectively) is as follows:

1. Read an X tuple and store it as z;.

2. Read the next Y tuple and store it as y, (the previous y is discarded) uatil one of the
following holds:

o “ry. ValidFrom<ys. ValidFrom A y3.ValidTo<z,. ValidTo” — i.e. zy and y, satisfy
the semijoin condition, or

o “yp.ValidTo>z;.ValidTo”, or
e all Y tuples have been read.
If “yy.ValidFrom<z;.ValidFrom”, immediately go to Step 2. On the other hand, if

the semijoin condition is satisfied between z, and y;, output z3. (For Contained-
semijoin(Y,X), ys is output if the condition is met and go to Step 2).

It can be easily verified that only one Y tuple needs to be kept in the workspace. In
Figure 6, when =, is fetched, the local workspace contains <z, y2> and for z, it is
<Zj3, Y42

3. Go to Step 1 unless the termination condition is met.

The local workspace requirements for other sort orderings are listed in Table 5.

®Similar to “restriction” operator in [Seg87].

15



Sort Orders Overlap-join(X,Y) | Overlap-semijoin(X,Y)
Relation X Relation Y

ValidFrom | T | ValidFrom | T (a) (b)

(*) Other sort orderings are not appropriate and therefore they are not listed here.

(a) state = {X tuples whose lifespan span . ValidFrom} U
{Y tuples whose lifespan span z;.ValidFrom} U
{Y tuples whose ValidFrom value lie in i} if yy.ValidFrom > z,.ValidFrom
{X tuples whose ValidFrom value lie in [} if z;.ValidFrom > y,.ValidFrom.

(b) local workspace = <Buffer-x, Buffer-y>.

Table 2: Effect of various sort orders on the Overlap-join and Overlap-semijoin

LSort Orders on X || Contained-semijoin(X,X) | Contain- semuom(X X) |

ValidFrom | T | (a.) ~ (b)
ValidFrom | | (a)

(a) the state is {z,} and Buffer-x for z,.

(b) state(z;) C {z; |j > i and z; overlaps with z,}.

Table 3: Effect of various sort orders on the Contained-semijoin(X,X) and Contain-
semijoin(X,X)

TS TE
X(s,v,TS,TE): T .
xz ttt——
T3 L
x4 —vet—

Figure 7: Relation X is sorted on attribute TS in ascending order
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4.2.3 Contained-semijoin(X,X) & Contain-semijoin(X,X)

We discuss these semijoins again for the special case in which the two operands are the
same stream of tuples. If we directly apply the semijoin algorithms presented previously,
the operand stream may be scanned twice even when it is properly sorted. We are therefore
interested in devising an efficient algorithm to avoid this inefficiency. It turns out that there
is a stream processing algorithm which implements these operations by scanning the operand
relation once and only two buffers are required (see Table 3). In the next section, we discuss
the circumstances under which this algorithm could be used for the Superstar query.

We now present the algorithm for implementing Contained-semijoin(X,X) which can
be modified slightly for Contain-semijoin(X,X). Recall that Contained-semijoin(X,X) selects
each X tuple whose lifespan is contained within any other X tuple. Suppose the relation
X has primary sort ordering on the attribute ValidFrom and secondary sort ordering on
ValidTo in ascending order as shown in Figure 7. The algorithm is:

1. Read the first tuple from the stream and store it as the state tuple (denoted by z,).
2. Read the next X tuple (z4) and do :

if “z,.ValidFrom=ax;.ValidFrom”, replace z, with z;, as the state tuple
else (i.e. “z,.ValidFrom<z;.ValidFrom”)
if “z,.ValidTo<z,.ValidTo”, replace z, with z, as the state tuple
else (i.e. z4's lifespan is contained within that of z,) x; is output
and z, remains as the state tuple.

3. Repeat Step 2 until all tuples have been read.

Referring to Figure 7, the semijoin algorithm starts by reading tuple z; which is kept as the
state tuple. When z; is read, it becomes the state tuple, and similarly for z3. Then z, is
read which satisfies the join condition and therefore is output; x3 remains in the state. This
process stops when there are no more tuples in the stream. The maximum number of state
tuples remains at most one. That is, the local workspace contains the state tuple (z,) and
a buffer of the tuple just read (z;).

It is interesting to consider using a semijoin algorithm as a preprocessor for a join
operation. Intuitively, the advantages are: (1) the output stream from a semijoin operation
bas the same sort ordering as the input stream — order-preserving; (2) with proper sort
orderings, the semijoin algorithms scan input streams only once, and a number of "dangling”
tuples may be eliminated, which may reduce the size of workspace for join operations.
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4.2.4 Overlap-join, Overlap-semijoin, Before-join & Before-semijoin

In this section, we briefly consider Overlap and Before operators to complete our discussion
on “inequality-temporal” operators. Again, we consider the overlap operator used in the
Superstar example. The effect of various sort orders on the overlap operator are listed in
Table 2, which shows that the only cases in which stream processing is efficient are when
(1) both operands are sorted on the attribute ValidFrom in ascending order, or (2) both
operands are sorted on the attribute ValidTo in descending order.

We mentioned earlier that the best approach for implementing Before-join appears to
be the nested-loop join. It is easy to verify that there is no sort ordering that would signifi-
cantly limit the amount of state information required when the Before-join is implemented
by a stream processor. However, we do not mean to imply that sorting is useless for nested-
loop joins; with proper sort orders, nested-loop join can avoid scanning the inner relation in
its entirety. For Before-semijoin, one can easily devise a simple algorithm which scans both
operand relations only once and is independent of any sort orderings; we omit the detail for
brevity.

5 Semantic Query Optimization

Semantic query optimization techniques have been introduced and shown to be potentially
useful in many studies [Kin81, Cha84, Jar84, She87). However the technique has not been
widely used in conventional systems. The reason, we speculate, might be that conven-
tional application domains are seldom rich enough in semantics, i.e. they contain only a
few useful semantic constraints which the query optimizer can profitably exploit. For tem-
poral databases, time is unarguably rich in semantics and many temporal semantic prop-
erties/constraints do occur naturally. It is therefore our belief that, unlike conventional
applications, semantic query optimization can play a significant role in temporal databases.
In this section, we discuss informally the significance of semantic query optimization in
temporal query processing; its formal treatment is now underway.

Earlier we mentioned an interesting integrity constraint in the Faculty relation, namely
the chronological ordering of data values which the attribute Rank can assume — ‘Assistant’,
‘Associate’ and ‘Full’. For every faculty, being an assistant professor must occur before being
promoted to an associate professor, which must then occur before becoming a full professor.

There are two consequences if the database system does not capture and use this
constraint. First, and most important, the optimizer would not be able to recognize that the
less-than join in the Superstar example is in fact a Contained-semijoin. The less-than join
operation shown in Figure 3(b) can be described pictorially using Figure 8. The equi-join on
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“f1.Name=f2.Name” (in Figure 3(b)) concatenates those f1 and f2 tuples corresponding to
those assistant professors promoted to full professors. The less-than join then selects those
f1 and f2 tuple pairs which satisfy the less-than join condition (#') as shown in Figure 8(a).
With the above semantic constraint, it is not difficult to see that

f1.ValidFrom<£3.ValidTo and 3.ValidFrom <f2.ValidTo

are redundant and the less-than join condition can be reduced to a Contained-semijoin
condition as shown in Figure 8(b). Being able to recognize a Contained-semijoin allows the
database system to make use of sort orderings and therefore the stream processing technique
mentioned in the previous section.

Taking this example one step further, suppose that there is no re-hiring of faculty
members, e.g. no assistant professors left the university and then later were re-hired as full
professors. That is, in Figure 1 “ValidTo;=ValidFrom;” and “ValidTo,=ValidFrom,” are
always true. In addition, suppose that all faculty members are hired as assistant professors.
With this continuous employment assumption, the Superstar query can be transformed into:
List associate professor X if there exists another associate professor Y such that X is promoted
from assistant professor level later than Y, but X is promoted to full professor rank earlier
than Y. The relational algebraic expression for this query can be simplified into:

o i_Nme.j_v&]derom'i_deTo( Cont a.ined-semijoin(O' g (Faculty'i) y Tgn (Faculty,-) ) )

where §” = ‘Rank=Associate’. As shown in Figure 8(b), the period [f1.TE, f2.TS) is actually
the time during which the faculty member is at the associate professor level. When the
associate professor tuples are sorted on the ValidFrom attribute in ascending order (or we
explicitly sort on this attribute), the algorithm discussed in section 4.2.3 can be used to
perform the semijoin which requires only a single scan of tuples (i.e. all associate professor
tuples) and the local workspace is composed of only a state tuple and an input buffer. For
this particular query, the stream processing algorithm can be extremely efficient.

The second consequence of the constraint on the Rank attribute is that we are able
to eliminate two redundant inequalities in §’; their presence makes it harder to recognize
the join as Contained-semijoin and there is also some overhead due to testing redundant
qualification. Eliminating redundant qualifications is indeed a by-product of semantic query
optimization.
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f1.Name=f£2, Name

TS f1 TE TS £2 TE " £1.TE £2.TS
Assistant ‘ r“m__—_ !__—
—_ 13 : " £3 :
e Amsociate TE Tg Associste - TE
(a) (®)

Figure 8: (a) The less-than join in the Superstar query, and (b) its equivalent Contained-
semijoin condition after semantic optimization

6 Conclusions & Future Work

We have illustrated deficiencies of conventional systems for temporal query processing using
the complex Superstar query. This example leads to several observations which suggest new
requirements for temporal query processing strategies. The most interesting and important
observation is that less-than joins occur more often and naturally in temporal queries, and
usually contain a conjunction of a number of inequalities. For the Superstar example, it may
be more efficient to implement the less-than join using Contain-semijoin instead of using
nested-loop join algorithm especially when tuples are properly sorted. These observations
motivate our investigation of the stream processing strategies, opening up many new avenues
of research in temporal query optimization techniques.

We have considered stream processing techniques for processing various temporal join
and semijoin operators. Given data integrity constraints and a temporal query, we discussed
the effect of various sort orderings of streams of tuples on the efficiency with which the
operator is implemented and the local workspace requirement in the stream processing envi-
ronment. In particular, we note that the optimal sort order may depend on the query itself
and the statistics of data instances.

We have also discussed semantic query optimization in temporal databases. In tempo-
ral databases like TQuel [Sno87], relations are augmented with temporal attributes such as
ValidFrom and ValidTo. Users are not allowed to update these attributes directly although
a set of temporal operators are provided for data manipulation. From an algebraic manip-
ulation point of view, these system-defined attributes are the same as any user-defined at-
tributes. The main difference becomes evident when the semantics of ValidFrom and ValidTo
attributes are utilized in the semantic query optimization process. As we can see from the
Superstar example, the system might not be able to evaluate the query using Contained-
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semijoin without knowing the “intra-tuple” integrity constraint. We note that time is rich
in semantics and temporal data often implies ordering by time, it is not surprising that
semantic optimization can play a significant role in temporal databases.

There are many directions for future research. We are currently pursuing the following
areas: a complete temporal data model, statistical information gathering and formalizing
semantic query optimization in temporal databases. In this paper, we rely on the concept of
a Time Sequence as our basic data construct. In the TQuel data model {Sno87), two other
temporal attributes (TransactionStart and TransactionStop) can be augmented to relational
tables to capture the ‘rollback’ capability. Moreover, a temporal relation may naturally
have multiple time-varying attributes such as Rank and Salary. We are extending our data
model to incorporate these features so that queries can be evaluated effectively in the stream
processing paradigm.

Statistical information about the database is known to be important in query optimiza-
tion. For temporal databases, it appears to be more critical. In addition to conventional
statistical information such as relation size and image size of indices, estimating the amount
of local workspace becomes necessary. There is also a question of how this information can
be obtained efficiently and summarized in a suitable form for the optimizer.

As we mentioned earlier, we are now working on formulating the semantic optimization,
particularly formalizing the role of chronological ordering of data items in query optimization.
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