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Abstract

Rapid prototyping and architectural exploration are not possible in typical design
systems due to either the amount of designer effort required or the lack of designer
control over the final design. An FP based VLSI Layout Generator (FLAG) is
presented whose main objective is to provide rapid prototyping and architectural
exploration as part of the design approach. FLAG takes as input a behavioral
description of the circuit, written in an applicative language (FP) and generates
a VLSI layout from it. A number of circuits are created, ranging in complexity
from an exclusive-OR to a carry-save multiplier. For each circuit, a VLSI layout
is created by hand and by FLAG. The FLAG and hand layouts are compared
against each other on the basis of overall layout area, circuit delay and circuit

design time.



Chapter 1

Introduction

1.1 Problem

Typical VLSI design systems take some form of schematic input and convert it
into a physical layout. The schematic input can take the form of a functional
description, block diagram, circuit diagram, behavioral description, or digital
algorithm. The conversion of the schematic input to physical implementation
can either be accomplished by hand or the process can be antomated.

If the schematic conversion is performed by hand, the designer is responsible
for all aspects of the translation of the schematic input into a physical layout.

This approach possesses the following drawbacks:

¢ It is slow and tedious: All aspects of the conversion must be performed by

hand.
¢ It is error-prone: Human error is an unavoidable part of the process.

o It requires VLSI expertise: Since the designer is performing the physical
layout, he must be aware of the various VLSI design issues that may affect

the design.
¢ The scaling and combining of different circuits cannot be done easily.

Because of the drawbacks of this approach, rapid prototyping is not possible and
architectural exploration is too costly in terms of time and effort to include as

part of the design process.



Another method of schematic conversion is to automate the entire process
and minimize the designer’s participation in the design process through the use
of automatic layout tools and silicon compilers. Automatic layout tools take a
description of the circuit in terms of modules and net-lists and generates masks
while silicon compilers generate circuit elements and interconnections from a
behavioral description. Examples of automatic layout tools and silicon compilers
are GAELIC, DELILA, Genesil, MacPitts, CAPRI, SCHOLAR and ARSENIC.
This approach has the advantage that rapid prototyping is now feasible. All that
is required from the designer is a schematic description of the intended circuit.
A drawback of this approach is that the designer often has little or no control
over the structure of the physical layout and there is no way to guarantee that
the final design will correspond to the designer’s intentions. This becomes an
obstacle to architectural exploration since the designer has lost the ability to

specify the structure of the final circuit.
The goal of this thesis is to present a VLSI design approach whose objective

is to provide rapid prototyping and architectural exploration as part of the over-
all design cycle. The approach is based upon FLAG, ( FP based VLSI Layout
Generator ), which takes an algorithm written in a functional programming lan-
guage, FP, as input and automates the generation of a physical layout while still
allowing the designer to retain control over the design of the resulting physical
layout. This work is based upon the theoretical work of [Schi84,5chl86] and upon
her implementation of the symbolic interpreter. Related work has been done by
[Laht81,Mesh84,Pate85,Worl86,Shee84].

The circuits generated by FLAG are meant to be a first approximation of
the hand-generated ones and are not meant to replace them. We restrict our
attention to combinational circuits and systems; sequential circuits and systems

will not be considered here.

1.2 Approach

The goal of FLAG is to allow architectural exploration to become part of the
typical design cycle. The ”philosophy” of the FLAG approach can be stated as

follows.



e Automating the tedious aspects of the design cycle with the intention of

minimizing the designer intervention.

e Providing the designer with control over the overall structure of the final

design.
e Promoting a hierarchical design approach.

e Providing quick feedback about a particular design at various levels of

abstraction.
e Providing an interface to lower-level VLSI CAD tools.

An abstract view of the FLAG design cycle is shown in Figure 1.1. The design

process can be broken down into three steps:
1. System Behavior and Structural Description
2. Symbolic Interpretation & Topological Extraction

3. Physical Layout and Circuit Simulation

1.3 Circuit Description

In Step 1, a description of the target circuit’s behavior and structure is generated
in an applicative language, FP!, that has been modified to facilitate its us as a
hardware description language. The description can be created from an algorithm
or circuit diagram and is written as a series of FP functions. The manner in
which a circuit’s structure is described will be discussed in the next section.
The advantages gained from describing the circuit with an applicative hardware

description language are:2

e Describes the structure and behavior of a circuit at a high-level.

13. Backus, ”Can Programming Be Liberated from the Von Neumann Style? A Functional
Style and Tts Algebra of Programs,” CACM Turing Award Lecture, Vol. 21, No. 8 {August

1978), 613-641.
2Dorab Patel, Martine Schlag, and Milog Ercegovac, "vFP: An Environment for the Multi-level

Specification, Analysis, and Synthesis of Hardware Algorithms,” Functional Programming
Languages and Computer Architecture, J.P. Jouannaud, Ed. Nancy, France: Springer-
Verlag Lecture Notes in Computer Science, September 1985, pp. 238-255.
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¢ The description can be used to simulate the circuit. This permits rapid

testing and preliminary debugging of designs.

e Generic functions can be defined, independent of the size of their argu-

ments; for example; a function which adds two bit vectors of any size can
be defined.

¢ In FP, the combining forms specify precedences and parallelism between
functions. The use of these forms allows various algorithmic structures to

be recognized and exploited.

o The FP combining forms interconnect and instantiate functions yielding
graphs with functions as nodes (see [Schl86]) allowing the structure of the

function to be extracted.

¢ Computations can be viewed, in FP, as consisting of two types of activities:
directing data movement and changes in value. In FP, the delineation
between these two activities is often explicit and can be used to facilitate

the extraction of structural information from an FP function (see [Schl86}).

o The algebraic properties of FP present the possibility of transforming an
algorithm by applying algebraic identities to its FP specification.

1.4 Symbolic Interpretation

In Step 2, the circuit description is symbolically interpreted®, through the use
of symbolic objects, to create a computation graph of the circuit. The symbolic
output object generated by the FP combining forms can be determined from
the symbolic outputs of their sub-functions until only nodes corresponding to
primitives remain. The resulting graph is the computation graph for the circuit.
The replacement of nodes by the structure of their associated functions can be
monitored to obtain a hierarchical representation of the computation graph.
The unit of information represented by a single element (atom) of a symbolic
object can be arbitrary: it reflects the level of abstraction desired in the rep-

resentation of an FP expression. For example, in a decoder each atom would

3Martine Schlag, ®Extracting Geometry from FP for VLSI Layout,” UCLA, Los Angeles,
California, Tech. Rep., CSD-840043, October 1984., pp.8-11.



most likely be a bit, while in a Fast Fourier Transform (FFT), each atom could
represent a complex number. Once the level of representation of the atoms is
fixed, the FP primitives of an FP expression can be classified into one of the

following two categories.

Computational Primitives These functions have the potential to generate
atoms which are not copies of atoms in the input object and/or whose
effect is determined by the value of the input atoms (such as a compara-
tor).

Routing Primitives These functions never create new atoms and their effect
is independent of the value of their input atoms. They merely rearrange
the atoms within an FP object, possibly leaving some out and replicating

others.

Routing primitives can be executed on symbolic objects. Computational
primitives cannot and must be represented as black boxes; their output is a
symbolic object with new labels. Computational primitives whose symbolic out-
put object cannot be determined from a symbolic input object (e.g. iota) can
not be used. Computational primitives are the primitive components of the lay-
out, while routing primitives yield connectivity between intermediate input and

output objects.

1.4.1 Defining the Corresponding Structure of an FP Ex-

pression

The amount of information extracted and retained from the routing functions
and FP functional forms of an FP expression is what defines the term "corre-
sponding structure.” At a minimum, this information includes the connectivity
of the computation graph: the enumeration of the primitives as boxes and their
interconnections by net lists. A net list is generated for each atom occurring in
the computation graph; it is a list of each occurrence of the atom as an input or
output object of a primitive. The connectivity of the computation graph can be

described by a hypergraph®. The primitives of the computation graph are the

4A hypergraph is the generalization of a graph to higher dimensions. It consists of a set
of vertices and a set of "hyperedges.” Each hyperedge is a non-empty subset of vertices. See
Berge,C. Graphs and Hypergraphs, North-Holland 1973.



vertices of the hypergraph and the net lists describing the interconnections of the
atoms in the hypergraph are the hyperedges.

The hypergraph is obtained by traversing the computation graph with sym-
bolic objects keeping track of each atom input to a primitive and each new atom
generated by a primitive. The routing primitives can be executed during this
traversal to remove them as primitives. Only the connectivity generated by the
FP functional forms and routing functions is retained in the hypergraph. How-
ever, FP functional forms and routing functions contain information which can
be used to "layout” this hypergraph. Each functional form implies a spatial (pla-
nar) organization of its components and each routing primitive, a routing pattern.
Thus the "structure” of an FP expression must encompass the connectivity of
the computation graph and may contain additional information extracted from
the combining forms and routing primitives. Figure 1.2 shows a computation

graph and its associated hypergraph.

The structure of an FP function could be defined merely as the connectivity
of the computation graph, but its distance from "real layouts” will require the use
of conventional routing and placement tools. A definition of structure "closer”
to fixed geometry and yet retaining functionality would be more advantageous.
"Relative geometry” or "topology” can be extracted from an FP expression by
using the ordering of the atoms within an FP object and retaining the spatial
organization implied by the FP functional forms. In this type of structure, the
relative placement of elements is specified without specifying their dimensions or

exact coordinates.

Formally, the "topology” of an FP expression can be defined as an embedding
in the plane of a graph corresponding to the hypergraph. This planar graph is
comprised of three types of nodes. The first type is a primitive of the computation
graph or vertex of the hypergraph. The second type is a branch node which is
used in representing a hyperedge (net-list). The third type is a crossing node
which is needed to obtain a planar graph. The crossing node always has four
incident edges, two pairs, each pair belonging to a wire. Examples of these nodes
can be found in Figure 1.3. The edges interconnecting these nodes correspond to
a single atom and thus can be mapped to wires. In essence, each hyperedge of the
computation graph is mapped to a tree whose interior nodes are either branch

or crossing nodes and whose leaves are the original nodes of the computation



Nodes: {A,B,C,1,12,13,4,D}

Hyperedges:
{A,f1,2}
{B,f2}
{C,13}
{f1,f3}
{f2,14}
{f3,f4}
{f4,D}

Figure 1.2: Computation Graph and its Associated Hypergraph



graph belonging to this hyperedge. Figure 1.3 shows the planar embedding for
the computation graph of Figure 1.2

It is possible to define for each FP expression such a planar graph along with
its embedding. In particular, it is possible to use FP objects in representing
this "structure.” To obtain fixed geometry, some type of compaction tool must
be employed. Although the exact positions of elements are unknown, the fixed
geometry obtained will still reflect the "topology” of the FP expression. Thus
algebraic transformations on the FP expressions can predictably affect the po-
sitions in the ”real layout” of nodes of the computation graph. See [Schl86] for

more detailed information.

1.4.2 Intermediate Form Generation

The planar graph created from the FP description of the circuit is translated
into a format, referred to as the Intermediate Form (IF), for representing the
"topological” structure of FP expressions. The intermediate form represents the
planar graph and its embedding created from an FP expression. A planar graph
and its embedding is represented by dividing the plane into horizontal slices
(cross-sections), and for each cross-section, listing the elements of the graph
within or spanning the cross-section from left to right. Figure 1.4 breaks the
planar graph of Figure 1.3 into cross-sections. Absolute vertical coordinates can
be assigned to elements by allowing elements of the graph to inherit their vertical
position from the cross-sections containing them. The horizontal coordinates are
not explicit; clements sharing the same vertical coordinates are only ordered

horizontally.

This IF can be represented by FP objects. The use of FP objects to represent
structure, allows the derivation of structure to be implemented within the FP
framework. The IF is a list of cross-sections with the symbolic output object
(of the FP expression) tagged on to the front. The symbolic output object is
provided for the traversal of the computation graph. As the graph is traversed,
the symbolic output object is removed, new cross-sections are added to the front,

and the new symbolic output object is put on the front.
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Formally, the IF consists of FP objects of the following form®,

<PS C5CS,... CS5,>forn >0,

where PS is an FP object not containing the atoms: $, *, +, A, and ¢ (these

atoms are reserved for use as delimiters) and each C'S; is a cross-section. A

cross-section is a list of FP objects each corresponding to elements of the graph.

CS; =< ) *32... T,, > where z; is one of the following,

Free wire An atom (not §, *, +, A, and t). Elements of this type are wires

which traverse the cross-section without being crossed by any other wires.

Crossing < * w * u; uy ... uy > such that exactly one uy is 4+ and at least

Box

oneis A. This type of element represents the wire crossings and branchings
necessary for realizing the connections of the computation graph. The atom
w is in the position corresponding to '+’ and must be distributed to each
position corresponding to a ’A’. The other atoms are wires which traverse

this cross-section.

< $ level #levels id label $4,42... ix $0,02... 04 § >

Elements of this type correspond to the primitives which are to be drawn
as boxes. The format allows the specification of how many cross-sections
a box will occupy. In a strictly "topological” IF, this is not necessary
since the dimensions of the elements are not relevant. However, if the
cross-sections are used to assign vertical coordinates to these elements, this
format is necessary to allow boxes to have varying sizes. The level is f,
l, i, or b, indicating whether this is the first, last, intermediate or both
(when a box is wholly contained within one) cross-section which the box
occupies; an element of this type is instantiated for each cross-section in
which it appears. The next three atoms are, respectively, the number of
cross-sections occupied by this box, a unique identifier (which can be used
to distinguish a box from others with the same label), and a label to be
displayed with the box. The $ acts as delimiters between these atoms, the

input atoms, ¢y, %2, ...%, and the output atoms, 0y, 0z, ... 0p.

SSchlag, ”Extracting Geometry from FP,” pp.16-19.

12



Refer to [Schl84] for graphical interpretations of these elements and [Liao83] for
a detailed discussion of the process for the assignment of horizontal coordinates

to elements.

1.5 Physical Layout and Circuit Simulation

In Step 3, the IF is translated into ABCD, a circuit description language for
VIVID?, and used as input for the VIVID system to perform the physical layout
and circuit-level analysis. VIVID stands for the Vertically Integrated VLSI De-
sign System developed at the Microelectronics Center of North Carolina [Roge86,
Roge85]. The system is based on a symbolic, virtual-grid design methodology
that greatly reduces the design time of custom VLSI circuits. This methodology
makes it possible to provide, in a single integrated system, several features: tech-
nology independent tools for a wide range of MOS processes (CMOS, nMOS,
SOI); scale independent circuit designs; open architecture that simplifies both
integration with existing tools and creation of new tools; fast layout debugging
using symbolic level circuit simulation; and fully automated mask generation and
automated chip assembly. Figure 1.5 presents a conceptual view of the VIVID
system’. It is divided into two main sections: symbolic layout and physical
layout, The symbolic layout section contains the tools used to generate and
manipulate symbolic, virtual-grid layouts, specified in ABCD (A Better Circuit
Description) Language. The ABCD language provides a direct and well-defined
interface to the symbolic, virtual-grid portion of the VIVID System. In the
physical layout section, the mask descriptions generated by the compactor are
specified in LLAMA (Layout Language for Mask Artwork) Language. Tools are
provided to translate between LLAMA and other mask description languages.

8C. D. Rogers, and S. W. Daniel, and J. B. Rosenberg, ” An Overview of VIVID, MCNC’s Ver-
tically Integrated Symbolic Design System,” IEEE Design Automation Conference, 1985,
pp.62-68

"Rogers, ” An Overview of VIVID,” pp.62-68.

13
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1.5.1 Symbolic, Virtual-Grid Layout

Symbolic, virtual-grid layout® can be viewed as an evolutionary refinement of
physical mask layout. In physical mask layout, the designer specifies the circuit
by drawing a set of polygons that indicate how to create a mask for each layer
in the fabrication process. At the physical mask level, the basic elements of
circnit design (such as transistors or contact cuts) are composite structures. Each
transistor or contact cut is composed of polygons on several layers that are sized
and positioned according to the design rules of the target fabrication process. In
physical mask layout, each time one of these composite structures is needed, it
is re-created from the component polygons. Symbolic layout provides a solution
that eliminates this tedious and error-prone task.

With symbolic layout, symbols are provided to represent the most common
structures. The designer organizes the symbols into a layout and the computer

translates them into the proper mask representation. In its simplest form, the

8Rogers, ”An Overview of VIVID,” pp.62-68.
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translation is done by replacing each symbol with a fixed collection of polygons
that implement the desired structure. A more flexible approach to symbol trans-
lation is to associate parameters with the symbols and to have a program use the
parameters for generating a broad range of structures. For example, the symbol
for a transistor might be accompanied by two parameters that specify the width
and length of the gate region. The transistor generation program would then use
parameters to size the transistor when constructing the mask layout.

Like symbolic design, virtual-grid layout is an extension of physical mask
design. In physical mask design, the layout is usually created on a grid. The
spacing of the grid represents some “real” spacing (for example, 3 u) and the
designer uses the grid as an aid to establish the correct spacing between objects.
The function of the virtual grid is the same as for a "real” grid except that the
spacing between grid lines does not represent a fixed physical spacing. A symbol’s
placement captures only the relative geometry of the circuit. (For example,
transistor A is above and to the right of transistor B) The actual spacing between
two adjacent grid lines is determined by HCOMPACT, the compactor program.
The compactor examines the objects on adjacent grid lines and, based on the
design rules, determines the correct spacing between the grid lines. It does not

perform any optimizations upon the circuit design.

1.5.2 Layout Verification

The VIVID System provides two tools for verifying symbolic virtual-grid layouts;
a symbolic level circuit extractor and an interactive circuit simulator® early in .
the layout process. The symbolic level circuit extraction is performed by the
ABSTRACT (ABCD Circuit Extractor) program. ABSTRACT references the
MTF System to calculate the electrical parameters associated with each circuit
element. The calculated values are, by necessity, estimates since the mask gener-
ation has not been performed. However, these estimates are relatively accurate
for all of the primitives except wires, which are directly dependent upon the fi-
nal size of the layout. Reasonable estimates of wire length can be obtained by
assuming that the spacing between the virtual grid lines will average out over

the design. This average grid spacing parameter is coded in the MTF System

%Rogers, ” An Overview of VIVID,” pp.62-68.
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and can be tuned by the designer according to the technology being used and
the performance of the compactor.

In conjunction with the circuit extraction, ABSTRACT performs error check-
ing and provides the designer either textual or, via ICE, graphical feedback. The
types of errors it can detect are overlapping or improper abutment of cells, un-
connected or short-circuited components, and improperly named signals.

Circuit simulation is performed by the FACTS (Fast Circuit Simulator) pro-
gram. The simulator has been designed for MOS simulations and can be used
with circuits as large as several thousand devices. The speed of FACTS results
from its selection of models and internal structure. Only MOSFET models are
used and FACTS precalculates tables of simulation values before beginning a
simulation. During the simulation, the designer can choose between two types of
current modeling: a simple transistor current model or a more accurate second
order model with saturation, linear, and cutoff regions; channel length modula-
tion; drain and source threshold dependence; and capacitance modeling. FACTS
also monitors all node voltages and, when the changes are small, increases the
time step to avoid redundant or insignificant calculations.

Because of its simpler modeling and the use of symbolic, virtual-grid extrac-
tion , FACTS does not provide the accuracy of a full network analysis program.
However, FACTS fills a gap between such programs and logic level simulators.
It is faster than a detailed circuit simulator but still accurate enough to provide
the waveform information necessary for debugging the analog behavior of a cir-
cuit. FACTS offers interactive features (such as probe capability to interrupt
a simulation and observe any set of circuit nodes) to support its function as a

debugging tool.

1.6 Previous Work

[Laht81] showed that a functional style language could be used to specify com-
binational circuits and investigate their behavior. [Shee84| extended this to se-
quential systems. [Schl84,Schl86] investigated the extraction of topological in-
formation from functional programs. [Mesh84] analyzed timing in functionally
specified combinational and sequential systems. [Pate85] explored a design envi-

ronment based upon functional programs. [Worl86] examined a functional style
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description for digital systems. [Lieb82,Lim65,Mori82,Vieg84| developed various
hardware description languages. [Joha79,Ance83] developed a silicon compiler

and a methodology for silicon compilation.

1.7 Objective

Chapter 2 scrutinizes the design cycle with and without FLAG. Chapter 3 dis-
cusses some circuits designed with FLAG and examines the results. Chapter 4
is the conclusion. A summary of the syntax of FP is provided in Appendix A. A
user’s manual for FLAG is provided in Appendix B.
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Chapter 2

Design Environment

2.1 Conventional Design Cycle

As is shown in Figure 2.1, a conventional design cycle for hand created VLSI
circuits consists of the following 5 steps:

In the System Definition stage, the designer defines the functionality of
the desired circuit from a circuit design, digital algorithm, circuit schematic, ete.
The designer creates a behavioral description of the circuit which describes the
systerm functionality. In the Architectural Definition stage, the architecture
of the circuit is defined. From this architecture, a block diagram of the circuit is
created and the circuit is partitioned into modules. Additionally, the function of
the various modules is defined here. In the Logic Implementation stage, the
modules are created and tested by the designer. Since the designer is responsible
for the creation of the modules, he must be knowledgable about all aspects
of VLSI circuit design. In the System Integration stage, the modules are
integrated into the overall design and the module interconnections are laid out.
Since this is done by hand, the process of system integration is slow and tedious.
Further, errors can be introduced because of human error. These errors are
unfortunately difficult to detect and tedious to correct. Finally, in the System
Test stage, the functionality of the circuit produced is verified to ensure that it
operates as intended. This is a slow process and may not be possible for large
circuits.

In the typical design process, there are two feedback loops. The System

Integration - System Verification loop attempts to uncover and correct any
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Figure 2.1: Conventional Design Cycle

19



interconnection errors that resulted from the System Integration stage. Un-
fortunately, the process of error detection is slow and difficult. The correction
of these errors must be done by hand and can be a rather tedious and possibly
difficult task. The introduction of additional errors by the designer is not beyond
expectation either. In the Architectural Design - System Verification loop,
major design errors are detected and an attempt made to correct them. Possible

errors include
e System functionality errors
¢ Timing errors
e Input-Output errors

These errors generally require a redesign of the circuit and a reiteration of the
entire design cycle.

In the conventional design cycle, architectural exploration can not be intro-
duced as part of the design cycle due to the large amount of time required in
the generation of a single physical layout. Alteration of the system architecture
is justifiable only if a major design error is discovered. It isn’t reasonable for a
designer to invest the time and effort necessary to change the system architecture
unless a major payoff is evident. Therefore, architectural exploration becomes
too expensive an activity to be included as a part of the design process because
the probable gains do not outweigh the costs of the activity.

2.2 Limitations

A typical hand-based design cycle suffers from the following limitations:

¢ The logic implementation and system integration steps are implemented

from the bottom up.

¢ The logic implementation and system integration steps require VLSI design

expertise by the designer.

¢ The logic implementation and system integration steps are tedious and

error-prone.
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o The scaling or combining of circuits requires re-execution of the system
integration-system verification loop thereby requiring a large investment of

time and effort by the designer.

These limitations of a typical design cycle are sufficient to prevent architectural

exploration from being included as part of the design cycle.

2.3 Advantages

A typical hand-based design cycle provides the following advantages:
e The designer has complete control over the layout produced.

¢ The designer can perform some hand optimizations upon the circuit at

design timne resulting in smaller and more efficient circuits.

2.4 FLAG Design Cycle

As is shown in Figure 2.2, the FLAG design cycle consists of the following 3
steps:

In the System Specification and Design stage, the designer creates a be-
havioral description of the digital algorithm or circuit design of interest in an
applicative language, FP. To verify the correctness of the behavioral description,
the description can be simulated functionally by the FP interpreter. Embedded
in the behavioral description is the desired architecture for the physical imple-
mentation. In the Layout Generation stage, a physical layout is created from
the behavioral description by FLAG and the VIVID. In the Circuit Analysis
stage, the VIVID tools are used to examine the physical and electrical charac-
teristics of the circuit for acceptability.

In the FLAG design cycle, there is only a single feedback loop namely the
System Specification - Circuit Analysis loop. In this loop, there is little
designer intervention required. As a result, the translation is quick and no ad-
ditional errors can result from the translation of the behavioral description to a
physical implementation. In addition, a different physical design can be created
by modifying the behavioral description. No additional work is required and the

designer retains control over the physical layout.
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Figure 2.2: FLAG Design Cycle

In the FLAG design cycle, the time required to generate a physical implemen-
tation from a behavioral description is kept to a minimum. Therefore, it becomes
feasible to experiment with various system architectures in order to find the most

efficient design.

2.5 Limitations
The FLAG design cycle suffers from the following limitations:

s Flow of data between modules is in a vertical direction. This is due to
the current mapping scheme between the behavioral description and its

physical realization.

o The designer does not have complete control over the placement of circuit

elements within a layout.

¢ Designs are not as small as possible,
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¢ Module inputs enter only at the top of modules and their outputs appear
only at the bottom.

These limitations are due mostly to the applicative language used to describe
the system and the mapping used to translate the behavioral description into a

physical layout.

2.6 Advantages

The new design cycle provides the following advantages:

¢ Shortens the design cycle. It eliminates the tedious and error-prone portion

of the design cycle and automates it.
¢ Designers are freed from low-level VLSI design issues.

e A correct FP description of the system produces a layout that is function-

ally correct.

o The scaling of circuits can be performed without requiring modification of

the circuit description or additional effort by the designer.

e Different circuits can be combined together by combining their respective
circuit descriptions without requiring a large investment of time and effort

by the designer.
e A hierarchical design style is supported.
e Any given behavioral description corresponds to a single layout.

The advantages of the new design cycle make it possible to include architectural
exploration as part of the design process. They shorten the design cycle enough
that the designer can experiment with different architectures without investing

a large amount of time.

2.7 An Example

The design of a binary decoder will be followed through both design cycles to

illustrate the differences between them. A binary decoder takes N binary inputs
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and generates 2"V binary outputs. For any particular input pattern only ome

output is true.

2.7.1 Typical Design Cycle

System Definition:
Input: < Xy_y,...,X0 >
Output: < Yon_y,...,Yp > where:

N-1 ]
1 ifi=)Y X;x2
3=0
0 Otherwise

Y; =

Architectural Design A block diagram for the decoder design is given in Fig-

ure 2.3. The only modules required are inverters and 2-input AND-gates.

Logic Implementation Trivial since the design for an inverter and an AND-

gate are fairly standard and are probably part of any cell library.

System Integration The modules must be placed by hand according to the
block diagram and the interconnections between them must be laid out.

Unfortunately, this is often done by hand and is quite slow and tedious.

System Verification The design must be simulated in order to ensure correct

operation of the circuit. If any errors are found, they must be corrected by

hand.

2.7.2 FLAG Design Cycle

System Specification and Design:
Input: < XN—I:- .. ,Xg >
Output: < Yyn_q,..., Yo > where:
N-1 .
1 ifi=) X;x2
P = 3=0

0 Otherwise

The function decode takes a vector of arbitrary length and returns a fully

decoded version of the input. The format of the input is < &,y ...2o >.
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Figure 2.3: 3-Bit Decoder Block Diagram: Conventional Design
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The format of the output is < yzn_; ...y >, where

0 otherwise

{1 ifX =k
Y =

The decode! function can be broken into the following steps?.

If (length of input = 1)
1 Perform a decode function upon a single bit

Else

1 Split the input into two vectors
2 Recursively apply decode to each vector to fully decode it
3 Form all possible pairs from the two decoded vectors

4 Reduce pairs to single bit vectors

DEFINE decode
IF (length = 1)
THEN decode_1Q1
ELSE
fandg Q
cross_match @
&decode @
split
ENDIF
END

The function decode_1 takes an input of a single-bit and returns a fully
decoded version of the input. The format of the input is < =z >. The

format of the output is < = T >.

1John Shelby Worley, ® A Functional Style Description of Digital Sysiems?, MS Thesis UCLA
1986, pp. 78-80.
2See Appendix A for a description of the FP language.
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DEFINE decode_1
[id, notg]
END

The function cross_match takes an input of two vectors of arbitrary
length and returns a vector containing all the possible pairs that can be
formed from the input. The format of the input 1s << z,3_,... 20 ><
Y,8_,-- Yo >>. The format of the output is << 3 _, y,3_, > ... <
T3, Yo >< T, o Yyl , > oo < ZofiYo >

DEFINE cross_match
concat @
&distl @
distr

END

Correct functioning of the design can be verified through FP interpreter.

Layout Generation: The FP description is used by the layout generator to
produce a physical layout of the proposed decoder design. A block diagram
of the design is given in Figure 2.4,

Circuit Analysis: The physical layout’s characteristics, area, module place-
ment, delay are examined. If the design is not satisfactory, then another
architecture can be created by modifying the FP description and re-running

the layout generator.

2.7.3 Discussion

In the typical design cycle, the system integration-system verification loop is the
most time-consuming and tedious from the perspective of the designer. A lot of
time and effort is spent in producing the physical realization of a proposed design
since every aspect of the physical layout process must be performed by hand.
Any errors introduced during the layout process must be detected and corrected
by hand. With the FLAG design cycle, the designer is relieved of the burden
of translating the block diagram into a physical layout. The designer only has
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Figure 2.4: 3-Bit Decoder Block Diagram: FLAG Design
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to generate the FP description of the circuit. FLAG creates a physical layout
directly from the FP specification of the architecture without any additional
input from the designer. An advantage of this is that no design errors will be
in the physical layout if the FP specification of the design is correct. During
the creation of the FP specification, the designer can verify the correctness of
the specification with the FP interpreter. Checking the FP specification is a
much simpler and quicker process than laying out an entire circuit and having
to perform a circuit simulation to see that it functions correctly. With FLAG,
once the FP description of the circuit has been created, a simple version of the
circuit can be created and tested. For instance, with the decoder, a 2-bit decoder
can be created and examined. If the resulting circuit is acceptable, a decoder of
arbitrary length can be created without any additional work from the designer. In
the typical design cycle, it is not possible to scale circuits as easily as with FLAG.
Another advantage, provided by FLAG, is that composite circuits can be created
by just combining the the FP descriptions of different circuits.. In the normal
design cycle, the creation of a composite circuit would require at least the re-
execution of the system integration-system verification loop which would require
a lot of work from the designer. The FLAG design cycle frees the designer from
the unimportant activities of module placement and interconnection and allows

him to concentrate upon the more interesting activity of architecture design.
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Chapter 3

Design and Evaluation

Experiments

A number of examples 1s presented here in order to examine some of the features
and drawbacks of FLAG. The examples range from SSI logic networks to complex
LSI logic networks. For each example, a CMOS design is produced by hand
and by FLAG. The CMOS layouts are then compared on the basis of area, the
bounding box of the layout being used as an approximation; percentage of white
space present in the design; delay through the circuit; and design time required.
Design time is defined as the time needed to create a physical layout from an
algorithmic specification of a circuit. Since VIVID translates a symbolic layout
{ABCD) into a physical layout, the design time for the hand-generated circuits 1s
the time needed to create the symbolic layout (ABCD). For the FLAG circuits,
since FLAG translates the behavioral description into a symbolic layout (ABCD)
for VIVID, the design time for the FLAG circuits is the time needed to generate

the correct behavioral description.

3.1 Simple Combinational Circuits

In this section, several SSI-level modules, including an exclusive-OR, AND-OR
network, and a NAND network are designed and a discussion of the results is

given in Sec. 3.1.4.
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3.1.1 Exclusive-Or

The exclusive-OR gate examined here will perform the exclusive-OR operation
of two inputs. A canomnical sum of products expression for the exclusive-OR of
two inputs is: (@b) + (ab). Two approaches can be taken in the design of the
exclusive-OR gate. Either a design based upon logic gates or a design based upon
transmission gates can be used. Designs based upon transmission gates tend to
be smaller in area and faster in terms of delay in comparison to their logic gate
based counterparts. A logic diagram for the transmission gate exclusive-OR gate
is shown in Figure 3.11. The operation of the transmission gate exclusive-OR

gate can be explained as follows:

1. When A is high, 4 is low. Transistor pair 1 and 2 act as an inverter with
B appearing as the output. The pass gate formed by the transistors 3 and

4 is open.

2. When A is low, 4 is high. The pass gate (transistor 3 and 4) is closed,
passing B to the output. The inverter pair (transistor 1 & 2) is disabled.

Vdd

] A xor B

Figure 3.1: XOR Schematic

In the description of the transmission-gate exclusive-OR, it is necessary to
generate functional descriptions for the circuit elements used in the implemen-

tation: n-transistor, p-transistor, and a pass-gate. Functionally, the n-transistor

IN. Weste and K. Eshraghian, Principles of CMOS VLSI Design: A Systems Per-
spective, (Reading, Massachusetts: Addison-Wesley, 1985), pp. 317.
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acts like a gateway, passing its data if the gate input is high and turning itself
off if the gate signal is low. This can be described functionally as an ’AND’ing
together of the gate and data input. The format of the input is < gate, data >
and the format of the output is < out >.

DEFINE n
andg
END

The p-transistor behaves in a similar fashion as the n-transistor except that
it passes its data through when the gate input is low. Therefore, in description
the gate input is inverted before the ’AND’ing is done. The format of the input
is < gate,data > and the format of the output is < out >.

DEFINE p
andg @ [notgQl,2]
END

The pass-transistor has two control signals, cntlA and cntlB, and a data
input. It also acts like a gateway, this time passing its output if cntlB is high
and cntlA is low. Otherwise, the output is turned off. The format of the input is
< cntlA, entlB,data > and the format of the output is < out >. The pass-gate

can then be described as follows:

DEFINE pass
tandg @ [notge1,2,3]
END

In the implementation of the exclusive-OR, the outputs of the various circuit
elements are 'wire-OR’ed together. Functionally, this situation can be described
an 'OR’ing together of the outputs as long as one and only one output is active
at any time. The format of the input is < inAd,inB > and the format of the
output is < out >.

DEFINE wor
org
END
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Now that all the circuit elements have been described, the description for the
exclusive-OR can be shown. In the first line, A is generated. A, A, B are then
routed to the various circuit elements. The outputs of these elements are then
'wired-OR’ed together in the last line. The format of the input is < A, B > and
the format of the output is < A & B >.

DEFINE xor
twor 4
[pass,p@[3,1],ne[3,2]] @
[1,notg01,2]

END

A block diagram of the FLAG design is given in Figure 3.2. The layout that
is produced from this expression is shown in Figure 3.3. The layout for the
hand design is shown in Figure 3.4. A comparison of the designs for a two input

exclusive-OR gate is shown in Table 3.1.
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Figure 3.2: Exclusive Or Logic Diagram: FLAG Design

XOR FLAG | Hand
Area 89 %205 |49 x 72
White Space 66% 44%

Average Delay 43ns | 2.3ns

Maximum Delay | 4.5 ns 2.3 ns

Design Time 1 hour | 3 hours

Table 3.1: Exclusive Or Comparison
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Figure 3.4: Exclusive-OR: Hand layout
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3.1.2 AND-OR Networks

In this subsection, an arbitrary AND-OR network will be designed. The boolean
expression is: f(a, b,¢) = (@b) + (abe) + (b2) The hand implementation of this
expression requires 9 logic gates: three inverters to form the complements of 4,b, ¢,
four 2-input AND-gates to form the product terms, and two 2-input OR-gates
to form the final sums. A logic diagram for the circuit is shown in Figure 3.5.
The functional description of the network follows the boolean expression.
First, the complement of the inputs is generated. Next, the various product

terms are created and then ’OR’ed together in the last line.

DEFINE and-or(a,b,c)
lorg @
[andge[2@1,102] ,andg@[102,203],'andge[1@1,2@2,1Q3]] @
&[id,notgl

END

The layout that is produced from this FP description is shown in Figure 3.6.

For the hand design of the AND-OR network, we have a choice between using
pass transistors or logic gates in the design. Logic gates were selected since an
AND-OR network is being synthesized. The layout for the hand design is shown
in Figure 3.7. A comparison of the designs for the AND-OR network is given in
Table 3.2.

After closer examination of Table 3.2, we see that the FLAG version of the
AND-OR network operated faster than the hand version. At first, this seems
surprising; but upon closer examination of the designs, it becomes clear why this
is so. The reason for the discrepancy in speed between the FLAG version of the
AND-OR network and the hand version is due to the critical path of some of
the product terms of the AND-OR network. Table 3.3 lists the critical paths for
each product term of the AND-OR networks for both layouts. The term (@b) is
the one of interest. In the FLAG layout, the term (@b) had a delay of three gate
delays while undergoing four gate delays in the hand layout. This resulted in the
FLAG circuit operating faster than the hand circuit.
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Figure 3.5: AND-OR Logic Diagram: FLAG design
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Figure 3.6: AND-OR: FLAG layout
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Figure 3.7: AND-OR: Hand layout
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AND-OR FLAG Hand
Area 162 x 288 | 163 x 234
White Space 56% 55%
Average Delay 14.1 ns 16.3 ns
Maximum Delay 16.5 ns 20 ns
Design Time 10 minutes | 21 hours

Table 3.2: AND-OR. Network Comparison

Term FLAG Hand
ab | 3 gate delays | 4 gate delays

abc | 5 gate delays | 4 gate delays
b¢ | 4 gate delays | 4 gate delays

Table 3.3: Critical Paths in AND-OR Network
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3.1.3 NAND Networks

In this subsection, an arbitrary NAND network will be designed. The boolean

expressions were arbitrarily chosen and are:

fila,b,c,d) =dc+bc+d
fa(a,b,e,d) = @b + bed + abed

The implementation of these expressions requires 8 2-input NAND gates. By
performing the following algebraic manipulations upon the expressions f; and
f2, equations are created which are simpler to implement than the original ex-
pressions.

For fi(a,b,¢,d):

Getbetd
(@+b)c+d
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For fi(a,b, c,d):

@b + bed + abed

@b + cd(b + ab)

@b + ad + ¢d(b + ab)

@b + aa(b + b) + cd(b + ab)
@b + aab + aab + cd(b + ab)
@b + aab 4 cd(b + ab)

@(b + ab) + cd(b + ab)

(3 + ab)(@ + ed)

The resulting expressions for f(a,b,¢,d) and fa(a, b, ¢, d) require 9 NAND gates
to implement: three for fi{e,b, ¢,d) and six for fi(a,b,c,d). A logic diagram for
the NAND network is shown in Figure 3.9.

The functional description of the network follows the boolean expression.

DEFINE nand-network(a,b,c,d)
[ lins(nandg)@[1,2,3,4],
nandg Q@ [id,id] @ nandg @
[ linsg(nandg)@[1,2,2], rins(nandg)@[1,3,4] ]
]
END

The layout that is produced from this FP description is shown in Figure 3.8.

For the hand design of the NAND network, we again have a choice between
using transmission gates or logic gates in the design. Logic gates were selected
since a NAND network is being synthesized. In the hand design, a single NAND
gate can be removed since two of the NAND gates make use of the output of the
same gate. This reduces the number of NAND gates required in the design to
eight. The layout for the hand design is shown in Figure 3.10. A comparison of
the designs for the test NAND network is given in Table 3.4.
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Figure 3.9: NAND Network Logic Diagram: Hand design
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NAND FLAG Hand
Artea 125 x 322 | 125 x 241
White Space 54% 52%
Average Delay 11.4 ns 10.3 ns
Maximum Delay 14 ns 14 ns
Design Time 10 minutes | 21 hours

Table 3.4: NAND Network Comparison
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3.1.4 Concluding Remarks

As the three previous examples have shown, the hand layouts are smaller and a
little faster than their FLAG produced counterparts, with the exception of the
AND-OR network. The differences between the hand and FLAG layouts can be
attributed to the fact that the designer was able to perform some optimization
upon the hand versions of the circuits during the design cycle. Additionally,
during the layout process, the designer could place and pack the circuit elements
together in such a fashion as to minimize the total area used by the circuit and
the delay of the circuit. The optimizations were made at the expense of the
designer since additional time and effort had to be expended by the designer in
order to perform the optimizations upon the hand design. In the FLAG produced
circuits, the circuit elements were placed in a top to bottom fashion. This resulted

in circuits that were larger and slower than their hand counterparts.

3.2 MSI Modules

In this section, several MSI-level modules: a full adder, a multiplexor, an encoder,

and a ripple carry adder are designed. The results are discussed in Sec. 3.2.5.

3.2.1 Full Adder

A full adder is a combinational circuit that takes three inputs and adds them

together to produce a 2 bit vector: <carry, sum>. The switching expressions are

Sum = ABC + ABC + ABC + ABC
Carry = AB + A(A + B)

A logic diagram for a full adder is given in Figure 3.11%. A transistor schematic
for a full adder is given in Figure 3.12%. Since the carry out signal (Carry) is
used in the generation of Sum, Sum will be delayed with respect to Carry. This
facilitates the use of such a circuit in a n-bit ripple carry adder where the carry

signal must "ripple” through the stages.

2Weste, pp. 312.
FWeste, pp. 312.
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Figure 3.12: Full Adder schematic
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The FLAG description of the full adder is given below. The function fullad-
der takes a vector of three inputs and returns the sum of the inputs. The format
of the input is < a b ¢ >. The format of the output is < Carry Sum >. The

function can be broken down into the following steps.

1. Connect up all pullup and pulldown transistors to the inputs according to
the transistor schematic for the full adder.

2. Wire-OR the pullup and pulldown transistors together according to the

transistor schematic for the full adder.

3. Connect up the n and p transistors to generate Carry according to the

transistor schematic for the full adder.

4. Connect up the n and p transistors to generate Sum according to the

transistor schematic for the full adder.

5. Complement Carry and Sum.

DEFINE full_adder
&notg @
[ 1, 'wore[ pel1,2], 3, ne[1,4], 5] Je
[ !'wore[ pel[2,pel1,4]1],
pel3,4], nel3,5],

ne[1,6]],
7,
pel3,pe[2,pe[1,711],
8,
n@[3,n0[1,9]]
1e
[ 1,
2,
3,

wor@[4,5],
wor@[6,7],

8,
'wor@[9,10,11],
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lwor@[12,13,14],
15

] @ concat @

[ iq,
&Pupe[1,2],
&Ndnefl1,2,2],
&Pupe[1,2,3],
&Ndne[1,3,2,2]

]

END

Since the design of the full adder makes use of pullup and pulldown transistors,
functional descriptions of these circuit elements must be created.

Functionally, the pullup transistor returns a high signal (1) if its gate input
is low and turns itself off otherwise. This can be described functionally as a
"Not’ing of the gate input. The format of the input is < gate > and the format
of the output is < out >.

DEFINE Pup
notg
END

Functionally, the pulldown transistor returns a low signal if its gate input
is high and turns itself off otherwise. This can be described functionally as an
’AND’ing together of the gate input and a low signal (0). The format of the
input is < gate > and the format of the output is < out >.

DEFINE Ndn
andg @ [J0,id]
END

The function definitions for P, N, WOR can be found on pages 32 and 32.

A block diagram of the FLAG design is given in Figure 3.13 The layout
produced by the FP description for the full adder is shown in Figure 3.14 The
layout produced from the hand design is shown in Figure 3.15. A comparison of
the designs for the full adder is given in Table 3.5. Clearly, the FLAG design is
inferior with respect to the hand design. The reasons for this are discussed in
Sec. 3.2.5.
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Figure 3.13: Full Adder Logic Diagram: FLAG design

52



L L L L

.
N
N
B
N
N
N

Figure 3.14: Full Adder: FLAG layout
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Figure 3.15: Full Adder: Hand layout

Full Adder FLAG | Hand
Area 289 x 594 | 87 x 17
White Space 65% 58%
Average Delay 23 ns 14 ns
Maximum Delay 30 ns 22 ns
Design Time 2 hours | 6 hours

Table 3.5: Full Adder Comparison
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3.2.2 Multiplexor

A multiplexor is a combinational system which performs a selection function. It
takes N control inputs, c=< ¢y_1,..., co > and 2V data inputs, d=< dyn_1,...,ds >,
each of which can consist of either a single bit vector or multiple bit vector. The

output is selected as shown below:

Y =4, g:EfY_._Olc.-xT

In the multiplexor, the N control signals are first decoded. Each of these decoded
control signals is then combined with each bit of the corresponding data vector
and then OR’ed to produce the output.

In the design of the multiplexor, a choice between a logic gate implementation
and a transmission gate implementation can be made. A transmission gate acts
like a gateway; when it is turned on, data can pass through. When the gate
is turned off, the output is in a high impedance state. This allows the output
of multiple transmission gates to be connected together in a wired-OR fashion,
avolding the large AND-OR networks required for the logic gate implementation
of the multiplexor. One drawback of transmission gates is that they require both
the complemented and uncomplemented form of their respective control signals.
The transmission gate design for the multiplexor was chosen. A logic diagram of
the design of a two-input multiplexor is given in Figure 3.16.

The function mux? takes two inputs, a vector of control inputs and a vector
of data vectors and implements a selection function using the control inputs
to choose one data vector to send as the output. The format for the input is

<< Cntly_1...Cntly ><< dpit...df ' > ... < d®_,...d3 >>>. The format
N-1

for the output is < di,_;...dy > ,0<i<m,i= Y Cntl; x 2° The multiplexor
7=0

function can be broken into the following steps.

1la Decode the control signals and generate their complements
1b Insure that the data is in the proper form

2 Boute the decoded control signals to their respective data vectors

4Worley, *Functional Style Description,” pp. 86.
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3a For each data vector, distribute its control signal across all its component
bits

3b Route control and data signals to pass-gates
4 Connect together pass-gate outputs to form output vector

Since pass-gates require both the complement and uncomplemented version of its
control signal, it is necessary to generate the complement of the decoded control
signals. The outputs of the pass-gates are wire-OR’ed together so that the K*
bit of all the data vectors are connected together to form the K'® bit of the
output and this is done for all the bits of the output.

DEFINE mux
Llwor Q@
trans @
& (& (passQapndr)@distl) @
trans @
[ &[notg,id]@decode@l, &(IF (input = atom))Q@2
THEN [id]
ELSE id
ENDIF
]
END

The definition of the function wor can be found on page 32 and the function
pass can be found on page 32.

The function decode takes a vector of arbitrary length and returns a fully
decoded version of the input. The format of the input is < z,,_;...7zs >. The

format of the output is < yan_; ...y >, where

0 otherwise

{1 X =k
Y =

The decode function can be broken into the following steps.
If (length of input = 1)
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1 Perform a decode function upon a single bit

Else

1 Split the input into two vectors
2 Recursively apply decode to each vector to fully decode it
3 Form all possible pairs from the two decoded vectors

4 Reduce pairs to single bit vectors

DEFINE decode
IF (length = 1)
THEN decode_1¢1
ELSE
¢andg @
cross_match @
&decode @
split
ENDIF
END

The function decode_1 takes an input of a single-bit and returns a fully

decoded version of the input. The format of the input is < # >. The format of
the output is < 2 T >.

DEFINE decode_1
[id, notg]
END

The function cross_match takes an input of two vectors of arbitrary length
and returns a vector containing all the possible pairs that can be formed from
the input. The format of the input is << z,3_,...20 ><y,3_, ...y >>. The
format of the output is << z,2  y,2 , > ... <2,2 Yo >< T3 , Y2 , >
e < Zo Yo >

DEFINE cross_match
concat @
&distl @

S7



distr
END

The layout produced from the FP expression is shown in Figure 3.17. The
logic diagram of the hand design of a multiplexor is given in Figure 3.18. The
layout for the hand design is shown in Figure 3.19. A comparison of the designs

for the multiplexor is given in Table 3.6.
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Figure 3.16: 2-Input Multiplexor Logic Diagram: FLAG design
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Figure 3.17: 2-Input Multiplexor: FLAG layout
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Figure 3.18: 2-Input Multiplexor Logic Diagram: Hand design
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Figure 3.19: 2-Input Multiplexor: Hand layout

Multiplexor FLAG Hand
Area 63 x 165 | T4 x61
White Space 57% 53%
Average Delay 2.5 ns 1.3 ns
Maximum Delay 4 ns 2 ns
Design Time 30 minutes | 2 hours

Table 3.6: Multiplexor Comparison
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3.2.3 Encoder

An encoder is a combinational system which performs an encoding function upon
2V inputs X = (23¥_1, ..., Zo) to produce a N-bit output vector, Y = (yx_1, ..., 4o)-
Only one of the 2V inputs can be true at any time and Y represents the index
of the input line that is true as a binary number. A high level description of an

encoder is:
Y =i fz; =1

Y= y2

=0

An encoder is typically implemented as a collection of OR-gates. Each bit of the
output examines a set of 2! of the input lines. If any of the input lines within
a set is true, then the output bit associated with that set is true. The set of
inputs examined by each output bit varies with bit position. An algorithm for
determining the coverage sets is given below.

For the K** bit of the output (0 is the least significant position).

e Divide the inputs into groups of size 2%

e "OR’ together the 1%, 3" 5t 7th . groups starting with the most signif-

icant group.
e Result is the K** bit of the output.
For the (K + 1) bit of the output (0 is the least significant position).

e Pair off the groups created for the K** bit position starting with the most
significant group.

e Concatenate the pairs to form new groups of 2K+ size.

¢ 'OR’ together the 1%, 379 5t 7th eroups starting with the most signifi-

cant group.
¢ Result is the (K + 1)** bit of the output.

A logic diagram for the design of an eight-bit encoder is given in Figure 3.20.
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The function encoder® takes an input of 2V inputs and performs an encoding
function upon them to generate a N-bit output vector. The format of the input is
< &g2n_1...%g >. The format of the output is < yn,_1...yo >. In the functional
description, the input is converted into a collection of vectors if it isn’t already

and the function encode_bits is called.

DEFINE encoder
encode_bits @
&(IF (input is an atom))
THEN [id]
ELSE id
ENDIF
END

The function encode_bits takes a collection of vectors and recursively applies
the encoding algorithm presented earlier to generate the output. The format
of the input is << 2wy > ... < 2zp >>. The format of the output is <
Yn-1--.Yo >. The operation of the function can be broken into the following
steps.

If (length of input = 2)
1 Select the first group and reduce it to a single output
Else
(For the (K + 1) bit)

la Pair off the input and concatenate them together
(For the K* bit)

1b Select the 1%, 374, 5%, . groups and combine into a single vector
(For the (K + 1) bit)

2a Apply encode_bits upon the result
(For the K* bit)

2b Reduce the vector to a single output

5Worley, ” Functional Style Description,” pp. 83-85.
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DEFINE encode_bits
IF (length = 2)
THEN [assoc_or@i]
ELSE
apndr Q@
[ encode_dbits @
Yconcat@pair ,
assoc_or @
concat @ &1@pair
]
ENDIF
END

The function assoc_or takes a vector of elements as inputs and implements
a tree of OR gates to reduce the input into a single result. The format of the

input is < x;_y ... %o >. The format of the output is < y >.

DEFINE assoc_or
IF (length = 1)
THEN id
ELSE

org Q
¢assoc_or @
split
ENDIF
END

The layout produced from the FP expression is shown in Figure 3.21 The
hand design is shown in Figure 3.22 A comparison of the designs for the encoder

1s given in Table 3.2.3.
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Figure 3.20: 8-Bit Encoder Logic Diagram
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Figure 3.21: 8-Bit Encoder: FLAG layout

Figure 3.22: 8-Bit Encoder: Hand layout
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Encoder FLAG Hand
Area 201 x 91 | 201 x 67
White Space 57% 55%
Average Delay 11.4 ns 11.3 ns
Maximum Delay 20 ns 20 ns
Design Time 30 minutes | 2 hours

Table 3.7: Encoder Comparison
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3.2.4 Ripple Carry Adder

A ripple carry adder is an iterative network of full adders that performs the
addition of two n-bit numbers, a = (ap_1,...,20) & b = (bn_1,...,bs). The ith
full adder has inputs: a;, b;, ¢;(carry-in) and produces as output: s;, ¢;41(carry-

out). It implements the following arithmetic expression:®

8 + 241 = ai + b + ¢
Which leads to the following solution:
8 = (ai+ b+ ci) mod 2

ciy1 = [(ai + b + ¢i)/2)
A logic diagram for the design of a typical ripple carry adder is shown in Fig-
ure 3.23.
The function rca takes three inputs, two vectors and a carry-in and re-
turns the sum of the inputs. The format of the input is << X,_;...Xp ><
Y.1...Ys > (i, >. The format of the output is < C,, S,_1...5 >. The

function rca can be broken into the following steps.
1 Form bit pairs from the two input vectors
2 Add carry-in to least signtficant bit pair

3 Perform a sequential add upon the bit pairs

DEFINE rca
seq{nevwfa) @
apndr @
[trans@[1,21,3]

END

The function newfa takes two inputs, a vector of two inputs and a carry-in
and returns the sum of the input. The format of the input is << a b > ¢, >.
The format of the output is < Carry Sum >.

SMilos D. Ercegovac, Tomas Lang, Digital Systems and Hardware/Firmware Algo-
rithms (New York: John Wile & Sons, 1985), pp.239
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DEFINE newfa
[ orgel1,2]1,3 ] @
concat @
[ [1], nae[2,3] ] @
concat @
[ haet, [2] ]

END

The function ha takes a vector of two elements as input and returns their sum.

The format of the input is < a b >. The format of the output is < Carry Sum >.

DEFINE ha
[ andg, xorg ]
END

The layout produced from the FP expression is shown in Figure 3.24. The hand
design is shown in Figure 3.25. A comparison of the designs for the ripple carry
adder is given in Table 3.2.4.
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Figure 3.23: 4-Bit Ripple Carry Adder Logic Diagram
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Figure 3.24: 4-Bit Ripple Carry Adder: FLAG layout

Figure 3.25: 4-Bit Ripple Carry Adder: Hand layout
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Ripple Carry Adder FLAG Hand
Area 409 x 157 | 346 x 114
White Space 0% 58%
Average Delay 39.38 ns 38.12 ns
Maximum Delay 70 ns 70 ns
Design Time 15 minutes 1% hours

Table 3.8: Ripple Carry Adder Comparison
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3.2.5 Concluding Remarks

With the exception of the full adder, the FLAG gencrated layouts compared
pretty much as expected with the hand produced layouts. The FLAG circuits
were a little larger and a bit slower than their hand counterparts but nothing
unexpected occurred. The reason for the poor performance of the FLAG version
of the full adder against its hand counterpart is due to the designer. At the
expense of design time, the designer was able to pack the circuit elements for the
full adder much closer together than FLAG could. This circuit packing by the
designer resulted in a layout that was much smaller and a little faster than the
FLAG version but at the expense of design time.

The carry-out lines of the ripple carry adder illustrate a drawback of FLAG
produced circuits. Ideally, the carry-out lines between the adders should be short
and direct as in the hand layout of the ripple carry adder. Due to the following
constraints, imposed by FLAG, the carry-out lines end up being long and windy.

¢ Data must flow in a vertical direction
e Inputs appear at the top of modules
e Outputs appear at the bottom of modules

These constraints are some of the reasons why FLAG generated circuits end up
being larger than their hand counterparts.

FLAG offers an advantage in the design of "scalable” circuits like the multi-
plexor, encoder and ripple carry adder. Small or simple versions of the circuit
can be created and tested; if acceptable, the circuit can be "scaled” to any ar-
bitrary size without requiring any additional work from the designer. By hand,

the "scaling” of these kind of circuits cannot be performed with the same ease
as is possible with FLAG.

3.3 LSI Modules

In this section, two LSI-level modules, a conditional sum adder and a carry-save

multiplier are designed. The resulting designs are discussed in Sec. 3.3.3.
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3.3.1 Conditional Sum Adder

A conditional adder is a fast adder which reduces the carry propagation problem
by generating distant carries and using these carries to select the true sum outputs
from two simultaneously generated provisional sums under different carry input
conditions’.

An example of the conditional sum algorithm is given in Table 3.9%. In the ex-
ample, addend, augend, and true bits are designated by A, B, and S respectively.
Carries are indicated by C. Subscripts indicate the bit positions and superscripts
"1” and "0” refer to the assumption that there was a carry or no carry into the
lowest-order bit position of a section. The absence of a superscript indicates a
true sum or a true carry. Table 3.9 describes the concept of conditional-sum ad-
dition. S%k) and S'(k) denote two provisional sums, each consisting of multiple
sections with k addend/augend columns per section. There are [n/k] sections in
5%k) or S°%k) for n-bit addition. Simultaneous additions are performed on all
sections independently. Let C%k) and C°(k) be the provisional carry sequences
formed by the carries out of all the sections in S°(k) and S°(k), respectively.

The addition process is completed in ¢ steps, where the integer
t=[logzn ]
At the ith step, S%(k) and §'(k) are formed with section size
k= 2i-1

The grouping of the summand columns into disjoint sections starts from the
lowest-order right end to the left end. When = is not an integer power of 2,
the leftmost section may have less than k columns. The successive section-carry
outputs are used to select the true sum outputs.

In Table 3.9 we have an example for n = 5. Therefore, (t = [ log, 7] = 3)
steps are required to complete the addition. At step one, each section has only
a single column and the five sections in S°(1) and S%(1) are formed by bitwise

modulo-2 addition with corresponding carry sequences C°(1) and C'(1). At step

7]. Sklansky, ”Conditional Sum Adder Logic,” IRE Transactions on Electronic Com-

puters, June 1960, pp. 226-231.
5K. Hwang, Computer Arithmetic: Principles, Architecture, and Design (New York,

New York: John Wiley & Sons, 1979), pp. 78-80.
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A=
B =
$7(1)
Ca(1)
SHEY
Cin(1)
57(2)
Cia(2)
5i(2)
Cin(2)
57(4)
Cin(4)
Si(4)
Cla(4)

Sum

[ Y I -

=~ ol =i~ o
H ol ol =Rl ~

= Ol OS == OO == O

O = OO = OO == SO =D =

Carry

Table 3.9: Example of addition by a conditional sum adder

two, each section contains two columns of addend.augend bits and three sections
are formed in S%(2) and S'(2) each by 2-bit addition with the carry out forming
the 4-bit provisional carry sequences C%2) and C'(2). This process continues
in a similar fashion except the section size doubles for each additional step. The
final step reveals the true sum S and true carry out C as the desired output.

A logic diagram for a four-bit conditional sum adder is shown in Figure 3.26.
Note that the multiplexors used in the implementation of the conditional adder
are not the pass-gate variety discussed in the previous section. The pass-gate
multiplexors cannot be used in multiplexor trees since the pass-gates degrade
the signal passing through them and require restoring logic to return the signal
to its full strength. The logic-gate implementation of a multiplexor is used instead
of the pass-gate implementation due to the problem of signal degradation. The

implementation can be partitioned into 3 stages:
1. Transform input vectors into bit pairs.

2. Generate two provisional sums for each bit pair.
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3. Recursively pair together (1)-bit provisional sums to generate (I 4 1)-bit
provisional sum until the final result is obtained.
Example:
It PSum; =<< ¢j,8] >< 9,87 >>
PSumiyp =<< elp8ty, >< lysd, >>

Then PSumNew; =<< PSumNew!' >< PSumNew® >> where

< PSumNew! >=< c}+2 3}+1 -9.1 > if C}+1 =1
< PSumNew! >=< c?+2 3?_,_1 st > if C}+1 =0

< PSumNew® >=< ¢}, 8}, 8{ > if =1
< PSumNeuw® >=< ¢¥y, 8%, 89> if e, =0

The function cond_sum_adder takes as input, two vectors of arbitrary length
and a carry-in and returns the sum of the input. The addition of the inputs is
performed according to the conditional sum algorithm presented previously. The
format of the input is << Xny_;...Xo > < ¥Yn_1...Ys > Ci, >. The format of
the output is < Cy Sn_1...Sp >. The function cond_sum_adder performs the

addition in the following steps.

1 Arrange the input into bit pairs
2 Generate provisional sums for each bit pair
3 Recursively combine provisional sums until the final result is obtained

DEFINE cond_sum_adder
rec_comb (]
form_sums @

msetup
END

The function msetup takes as input two vectors of arbitrary length and
a carry-in and rearranges the input into bit pairs. The format of the input
is << Xn_1...Xo > < ¥Ynyo1...Ys > Ci, >. The format of the output 1s
<<< Xn_1 Y1 >< Xnog Yoo > ... >< Xo Yo Cin >>. The function
msetup first combines the two input vectors into bit pairs and then appends the

carry-in to the least most significant bit pair.
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DEFINE msetup
[t1rel,apndr@[last@1,2]] ¢
[trans@[1,2],3]

END

The function form_sums takes a set of bit pairs as input and generates
provisional sums for all bit pairs. For the least significant bit pair a true sum
is generated instead of a provisional sum. The format of the input is <<<
Xno1 Yvo1 >< Xnv_a Yvea > ... >< X0 Yy Cin >>. The format of the output
is <<<CK Sh_1><CY Sy _1>> << C 5 >>>.

DEFINE form_sums
apndr ¢
[&cha@l, [newfa02]]
END

The definition of the function newfa is given on page 69.

The function cha takes a bit pair as input and generates both provisional
sums for the input (Ci, €{0,1}). The format of the input is < X; ¥; >. The
format of the output is << CY, S} >< C,, 57 >>.

DEFINE cha
[ [orgel1,2], nxor@[1,2]], hae[1,2] ]
END

The definition of the function ha is given on page 70.
The function nxor takes a vector of two inputs and generates (a @ &). The

format of the input is < a b >. The format of the output is < ¢ >

DEFINE nxor
norg @
[ norge(1,2], norgel2,3]1 ] @
[1, norg, 2]

END

The function rec_comb takes as input a collection of provisional sums and
recursively combines them until a true sum is obtained and returned. The format

of the input is <<< C} Sk_; > < C% SY_, >> ... << C' § >>>. The
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format of the output is < Cy Sy_1... S0 >. The operation of rec_comb can be

broken down into the following steps.
If (length of input = 1)
1 Return the true sum

Else

1 Pair off and combine provisional sums

2 Recursively combine provisional sums together until true sum is ob-

tained.

DEFINE rec_comb
IF (length of input
THEN
id
ELSE
rec_comb @
group
ENDIF
END

1)

n

The function group takes a collection of provisional sums as input and pairs
them off from the right ( least most significant ). Each of these pairs is combined
together as described earlier and returned as the output. The format of the input
is <<< Ck Sh_; > < C% S%_, >> ... << €1 So >>>. The format of the
output is <<< CY Sh_, Sh_2> < C{ S¥_1 Sh_2>> ... << C; 5 >>>.

DEFINE group
IF (length of input is odd )
THEN
apndl @ [first, &reduce@pair@tl]
ELSE
¢reduceQpair
ENDIF
END
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The function reduce takes two groups of provisional sums and combines
them together to form an expanded conditional sum. The format of the input
is <<< C) S, > < C% 8%, >> << Ck_y Sk.2 > < CR_y Sj_p >>>.
The format of the output is << CL SL_; Sk_p >><< C¥ %_, S¥_2 >>. The

operation of reduce can be broken down into the following steps.

1 Distribute the provisional sums for the (VN — 1) position to each provisional

sum for the (N — 2)** position.

2 Create expanded provisional sum for the (N — 1) to the (N — 2) bit positions.

DEFINE reduce
&select @
Lapndr @ distl

END

The function select takes a vector containing two provisional sums and an
intermediate sum. It returns an expanded provisional sum as the output as pre-
viously described. The format of the input is <<< C} Sy_; >< C% Sy, >><
Ci;_, Sy_, >>, 1 €{0,1}. The format of the output is < Ci Si_1 Sh_2>.

DEFINE select
concat @ [ mux@[ [first@last],tlr 1, tlQlast ]
END

The definition of the function mux is given on page 56.
The layout produced from the FP expression is shown in Figure 3.27. The
hand layout is shown in Figure 3.28. A comparison of the designs for the condi-

tional sum adder is given in Table 3.10.
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Figure 3.26: 4-bit Conditional Adder Logic Diagram
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Figure 3.27: 4-bit Conditional Sum Adder: FLAG layout
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Figure 3.28: 4-bit Conditional Sum Adder: Hand layout

Conditional Sum Adder | FLAG Hand
Area 738 x 639 | 649 x 390
White Space 54% 53%
Average Delay 36.6 ns 25.9 ns
Maximum Delay 63 ns 45 ns
Design Time 5 hours | 15 hours

Table 3.10: Conditional Sum Adder Comparison
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3.3.2 Carry Save Multiplier

A carry-save multiplier performs the multiplication of two bit vectors through
the use of a linear array of carry-save adders. A carry-save adder saves the carry
propagation for multiple additions until all additions have been completed and
then takes a number of stages to complete the carry propagation. A high-level

description for the multiplier is:

i=< ETN-1..-Tg >
Y
N-1

Z 2?,'2" X X_
=0

= YM-1---Yo >

The operation of the carry-save multiplier can be broken into 5 stages.
1. Generate 2 X Y
2. Generate 71 X Y

3. Generate 7, x Y. and reduce the three partial products generated into 2

vectors, carry and sum

4. For each remaining bit in X, generate z; x ¥ and incorporate it into the

carry and sum vectors already generated.
5. Add together the two vectors, carry and sum, to generate a single result.

A logic diagram for the FLAG design of a carry save multiplier is given in Fig-
ure 3.29.

The function mult® takes two vectors of arbitrary length as input and re-
turns the product of the input as the result. The format of the input is <<
Tt Tz To >< Ynol Ym_z+--Yo >>, m > 3 & n > 2. The format of the
output iS < Pmin—1 Pmin_z---Po >. The mult calls the function csmult to
generate the partial products and combine them into two vectors. The function

finaladd to generate the final product.

DEFINE mult
finaladd @

9Schlag, ”Extracting Geometry from FP,” pp. 52-56.
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csmult
END

The function csmult takes two vectors as input and generates the partial
products from the input. The partial products are reduced to two vectors through
the use of a carry-save adder network. The function csmult can be broken down

into the following steps.
1 Generate g X Y
2 Generate 1 X Y

3 Generate x; x Y and perform a carry-save addition upon the partial products

in order to reduce them into a partial sum.

4 For each remaining z;, generate z; x Y and perform a carry-save addition to

incorporate the partial products into the partial sum.

DEFINE csmult
ckstage @
stage3d @
stage2 ¢
stagel

END

The function stagel generates zo x Y.

DEFINE stagel
[ tlreil,
concat@&[1,andg]@pairQconcat@[ [102],
concat@distl0{last@1,t102],
[1ast01]

END

The function stage2 generates z; x Y.
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DEFINE stage?2
[1,
concat@[ [1,[andg]]0Q1@2, concat@&[1, [andg0[1,2],3]]0202 ],
3
1¢
[ 1, [102,&[202,1,102]0202], 3] ¢
[ t1lre1,
[ [1¢2,1laste1], distle[last@l,pair@tlrQ@tle2] 1],
[1ast0©2]
]
END

The function stage3 generates z; x Y and adds the existing partial products

together using a carry-save adder approach.

DEFINE stage3
regroup @
csavel @

msetup
END

The function msetup merely rearranges the signals in order to generate the

next wave of partial products and to perform the carry save addition.

DEFINE msetup
[ tlrei, [ [102,lasteil],
£[102,[1,202]]edist10[last@l,pair@tlrQtle2] 1,
apndl@[last@2,3]
]
END

The function csavel generates the partial products and combines them to-

gether into two vectors.

DEFIKE csavel
[1,
concat@[ [1,andglel, [op1@1Q2], &op20t1Q2 le2,
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apndl@[had1,t1]@3
]
EXD

The definition of the function ha is given on page 70.
The function op2 generates a single partial product and performs the addition

of three inputs.

DEFINE op2
[ [ orgeli,102], 31, 202 ] @
[ 101, ha¢[201,2], 3] @
[ haCi, andg®2, 202 ]

END

The definition of the function ha is given on page 70.
The function op1 generates a single partial product and performs the addition

of two inputs.

DEFINE opil

[ [1e1,2], 2¢1 ]e

[ hat[1Q1,andge2], 202 ]
END

The definition of the function ha is given on page 70.
The functions regroup and regp merely rearranges the signals for the next

stage.

DEFINE regroup
[ 1, apndro[ t1re2, [last@2,1@1@3] ], apndl@[201@3, t1@3] ] @
[ 1, regpt2, 3]

END

DEFINE regp
IF (length of input = 2)
THEN id;
ELSE
concate[ [1,[2,101@3]]1, regpGconcate@[[201¢3, 2€3], t1@tlQtl] ]
ENDIF
END
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The function ckstage recursively generates all remaining partial products

and adding them into the partial sum.

DEFINE ckstage
IF (length@l = 1)
THEN laststage;
ELSE
ckstageQnormalstage
ENDIF
END

The function normalstage generates z; X Y and adds the existing partial

products together using a carry-save adder approach.

DEFINE normalstage
regroup @ csave Q msetup
END

The function csave generates the partial products and combines them to-

gether into two vectors.

DEFINE csave

[ 1, concat@[[1,andgl@1,&0p202]1¢2, apndl®[ha@1,t1]@3 ]
END

The definition of the function ha is given on page 70.
The function laststage generates z,_, X ¥ and adds the last set of partial

products together using a carry-save adder approach.

DEFINE laststage
lastregroup @ lastcsave @ msetup
EKRD

The function lastcsave generates the partial products and combines them

together into two vectors.

DEFINE lastcsave
[ concat@[[andg@1],&10op202]02, apndlQ[ha@1,t1]€3 ]
END
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The definition of the function ha is given on page 70.
The function lop2 generates a single partial product and performs the addi-

tion of three inputs.

DEFINE lop2
[org@[1,102],202] ¢ [101,ha0[201,2]] @ [hael,andg02]
EXND

The definition of the function ha is given on page 70.
The functions lastregroup merely rearranges the signals for the final ripple

carry addition stage.

DEFINE lastregroup
concat Q@
[ pair@tlr@apndl@[i,concat@tl]@i,
[ apndl@[ [20last@1,10102],apndi¢[201€2,t1€2] ] ]
]
END

The function finaladd, cfa, fa, ha perform the final reduction of the partial
sums into the final product.

DEFINE finaladd
concat@[ seq(cfa)@concate[tlr,[ [1], 2 ]@i@last], tl@last ]
END

DEFINE cfa
IF (lengthel = 1)
THEN hat([1@1,2];
ELSE
newfa
ENDIF
ERD

The definition of the function newfa is given on page 69 and the definition of
the function ha is given on page 70.

The layout produced from the FP expression is shown in Figure 3.30. A logic
diagram of the hand design for the carry save multiplier is given in Figure 3.31.
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The layout produced from the hand design is shown in Figure 3.32. A comparison
of the designs for the carry-save multiplier is given in Table 3.11.

As is evident from Figure 3.32, the hand layout can be compacted further.
However, the hand layout is good enough to illustrate the differences between
the hand and FLAG layouts. Further compaction of the hand layout would serve
to only increase the design time and reduce the area of the layout while having
a negligible effect upon the speed of the layout. It will not affect the results of

the comparison strongly enough to alter the conclusion.
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Figure 3.29: A 4 x 4 Carry-Save Multiplier Logic Diagram: FLAG design
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Figure 3.30: A 4 x 4 Carry Save Multiplier: FLAG layout
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Figure 3.31: A 4 x 4 Carry Save Multiplier Logic Diagram: Hand design
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I

Figure 3.32: A 4 x 4 Carry Save Multiplier: Hand layout

Carry-Save Multiplier | FLAG Hand
Area 556 x 1159 | 880 x 469
White Space 66% 38%
Average Delay 72 ns 50 ns
Maximum Delay 70 ns 70 ns
Design Time 5 hours 15 hours

Table 3.11: Carry-Save Multiplier Comparison
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3.3.3 Concluding Remarks

The conditional sum adder and carry save multiplier circuits display FLAG’s
ability to create circuits at various levels of abstraction. Note that the FLAG
design for the conditional sum adder and carry save multiplier make use of the
same hand-designed modules that the hand layout does. With FLAG, circuits
can be described at a higher level to make use of previously designed modules.
In the conditional sum adder, for instance, the conditional half adder (cha) and
full adder (newfa) are described only functionally. There is no need to describe
them at a lower level since existing designs for them are to be used in the FLAG
design of the conditional sum adder. Overall, these circuits do not compare that
unfavorably against their hand-generated counterparts. Sure, the FLAG designs
are somewhat larger and slightly slower than the hand versions of these circuits,
but in terms of design time, the FLAG circuits required a much smaller amount of
time to design as compared to their hand counterparts. Additionally, the FLAG
layouts did not need to be tested once the layout had been finished. This is due
to the fact that the FLAG layouts are a direct extension of the FP description
and if the FP description is correct then the layout will also be correct. This is
not the case for the hand layouts, though. The hand layouts must be simulated
throughout the design process to insure that the design functions as intended.
These circuit simulations were quite slow for these complex logic examples and
they did lengthen the design time necessary to complete the hand layouts by a
substantial margin. From these examples we can see that the FLAG layouts do
not generally end up being as small or as fast as their hand counterparts, but

they require much less effort and time to generate than their hand counterparts.

3.4 Composite Circuit

In this section a composite circuit is created. The circuit is an adder based upon
the conditional addition algorithm presented in the preceding section. Instead
of creating provisional sums for each bit pair of the input, the composite adder
splits the input bit-pairs into 4 groups and generates provisional sums for each
group with a ripple carry adder. A logic diagram for the composite adder is given
i Figure 3.33.

The function composite.adder takes as input, two vectors of arbitrary
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length and returns the sum of the input. The addition of the inputs is per-
formed according to the conditional sum algorithm presented previously. The
format of the input is << Xy_;...Xo > < ¥y_1...Yy >>. The format of the

output is < Cnx Sny_1...S0 >. The function composite_adder performs the
addition in the following steps.

1 Arrange the input into bit pairs and divide into four groups

2 Generate provisional sums for each group

3 Recursively combine provisional sums until the final result is obtained
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DEFINE composite_adder
rec_comb @
hform_sums @
hsetup

END

The definition of the function rec_comb can be found on page 79.

The function hsetup takes as input two vectors of arbitrary length and rear-
ranges the input into bit pairs. The bit pairs are then divided into four groups.
The format of the input is << Xn_1...Xo > < ¥y-1...Yy >>. The format of
the output is <<< Xy_1 Ynv_1 >< Xy 2¥n_2>... < XN-[%] YN-[%’-] >> <<
X 2y Yvoqgney > - < Xvoargy Yvoapgn >> - << Xy Yoo e >
... < Xy Yy »>>. The function hsetup first combines the two input vectors

into bit pairs and then divides the bit pairs into four groups.

DEFINE hsetup
concat @
&split@split @
trans

END

The function hform_sums takes the four groups of bit pairs as input and
generates a provisional sum for each group except for the last group, in which a
true sum is generated instead. The format of the input is <<< Xy_; Yn_1 ><
Xnoz Y > o0 < Xy g Yy >> << Xn_(m4y) Yvo ey > -0 <
Xnoory Yy _oryy >> 0 << Xy _gr8iq40) Yo_@rajeny > - < Xo Yo >>>. The
format of the output is <<< CF Sk_y ... Sfl\’—f%] ><CH Sy, ... Sf?’—f%] >
L << C}V_zr%] Sh_ﬁ%]_l S}V_Sf%] >< Cf?f—?f%l S?V-—Q[%]—l Sg,_ﬁ% >><
CN_3F%] SN__3|—11\_r1_1 oo Sp>>. (f N = 16, the format of the output would be:
<<< Cl, 8L, St Sk SY, >< C% 59 89, 5%, 5D, >> ... << C} 57 S5 SES) ><
Cg 82 53 8P 8Y >>< Cy S3 52 81 50 >>).

DEFINE hform_sums

apndr @

[ %condrca@tlr, [hrca®last] ]
END
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The function hrca takes as input a group of bit pairs and returns the true
sum as the output. The format of the input is << X3 Y3 > ... < Xp Yo >>.
The format of the output 1s < Cy 53 Sy 51 Sp >.

DEFINE hrca

apndr @

[seq(newfa)Qapndre[1,1e2] , 202] @ [tlr, haQlast]
ERD

The definition of the function newfa can be found on page 69 and the definition
of the function ha can be found on page 70.

The function condrca takes a group of bit pairs as input and generates the
provisional sums as the output. The format of the input is << X; ¥; > ... <
X._s Yi_s >>. The format of the output is << CL; S} S}, SL, SL; ><
CP ., 5P 82, S), 8 3 >>. The function condrca can be broken down into the

following steps.
1 Generate provisional sums for least significant bit pair.
2 Distribute rest of input to each provisional sum.

3 Generate provisional sums for the rest of the input.

DEFINE condrca
&( apndr@[ seq(newfa)@apndr@[1,1€2] , 202 1) @
distl @
[ t1r, cha®last ]

END

The definition of the function newfa can be found on page 69 and the definition
of the function cha can be found on page 78. The layout for the composite adder
is shown in Figure 3.34.

Table 3.12 compares the delays for a ripple carry adder, a conditional adder
and the composite adder for two 16-bit operands. From Table 3.12, it is clear
that the composite adder outperforms either the RCA or the CA. This example
illustrates the ease with which a designer, using FLAG, can design composite

circuits that outperform already existing circuits. Very little work is needed to
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Figure 3.33: 16-bit Composite Adder Logic Diagram

Avg. Delay | Max. Delay
RCA 75 ns 160 ns
CA 73 ns 145 ns
Composite 65 ns 115 ns

Table 3.12: Adder Delay Comparison

99



el

[ 2ueail 7y beadziiis == |
2 H
Se T TP =i Tt

Figure 3.34: 16-bit Composite Adder layout
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create the composite circuit. The designer merely needs to modify and manipu-
late existing circuit descriptions. No additional work from the designer’s point of
view is required after the circuit descriptions have been created. Without FLAG,
a designer would have to start from scratch or nearly so and create the circuit
by hand. This would involve a considerable investment of time and effort on the
part of the designer and once done can not be altered easily. On the other hand,
with FLAG, only a modification of the circuit description is needed to make a
small change or generate an entirely different circuit. With FLAG, a designer
can play around with different circuits rather easily while this can not be done

quite so readily by hand.
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Chapter 4
Summary and Conclusions

Typical VLSI design systems take some form of schematic input and convert it
into a physical layout. This conversion can be done by hand, which is a rather
lengthy and tedious process or it can be automated, in which case the designer
loses the ability to comtrol the structure of the physical implementation. In
either case, architectural exploration during the design cycle is not feasible. The
idea, then, is to modify the design cycle so that architectural exploration can be
incorporated as part of the design process. A VLSI layout generator, FLAG, is
presented as one possible approach. From a behavioral description of the circuit,
created by the designer, FLAG produces a VLSI realization of the circuit with
no additional input from the designer. Embedded in the behavioral description
of the circuit is the overall topology of the physical layout as dictated by the
designer. This allows the designer to retain control over the overall structure
of the physical implementation of the circuit. Different circuit designs can be
created merely by modifying the behavioral description of the circuit in question.
The designer can then examine different solutions and choose the best from

among them to be implemented by hand.

In order to examine FLAG, a number of circuits of varying complexity were
created in CMOS and compared to hand-produced versions of the same circuits.
These test circuits ranged in complexity from simple combinational circuits, like
an exclusive-or gate to complex logic networks, like a conditional adder and a
carry-save multiplier. For each of the test circuits, a layout was produced by
hand and by FLAG. These circuits were then critiqued on the basis of the total

area used, % of white space present in the design, overall speed of the circuit,
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F;lﬁ‘:f White | Average | Maximum | Design
Area | Space | Delay Delay Time
XOR 517 | 1.5 1.89 2 i
AND-OR 1.22 | 101 0.87 0.83 L
NAND 1.34 | 1.04 1.11 1 L
FA 116.1 § 1.12 1.64 1.36 3
MUX 2.3 | 1.08 1.87 2 3
ENCODER | 1.35 | 1.03 1.01 1 3
RCA 1.62 1.2 1.03 1 2
CA 1.86 | 1.02 1.41 1.4 3
CSM 1.56 | 1.73 1.44 1 3

Table 4.1: Ratios of FLAG vs Hand Design Parameters

and design time required.

In general, FLAG produced circuits did not compare that poorly against their
hand counterparts. The FLAG circuits were not predicted to be as good as their
hand counterparts; but the results were interesting. Table 4.1 lists, for each test
circuit, the FLAG /hand ratios for the various test parameters. From Table 4.1,
it can be seen that the FLAG circuits were generally larger and slower than their
hand counterparts but required considerably less time to develop in contrast to
the hand versions. In general, the lower the level of design for a circuit, the
worse the FLAG version fared in comparison to the hand version. This is borne
out in Table 4.1, the test circuits that FLAG generated the poorest layouts for
were the xor, full adder and multiplexor. Not surprising, these circuits were
designed at the lowest level of design, namely the transistor level. For circuits
that were designed at a higher level, like the encoder and ripple carry adder,
FLAG generated layouts that were closer to their hand rivals in terms of layout
area and circuit speed. This can be attributed to FLAG’s ability to incorporate
hand-designed modules into its designs.

Overall, it seems that the less regular the circuit, the greater the disparity in
design times between FLAG and the hand versions. The hand generated circuits
were, in general, smaller and faster than the corresponding FLAG circuits due
to the optimizations performed upon them by the designer during the layout

process. Unfortunately, these optimizations are made at the expense of design
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time by the designer. Included among these optimizations is the packing of
circuit elements in the horizontal direction and vertical direction as well as the
optimizations that can be done at the logic level for some circuits. The packing
together of circuit elements, by the designer, yields a much more significant
decrease in circuit area at the transistor level than at higher levels of design.
The xor, full adder and multiplexor were designed at the transistor level and had
a much higher (££2%) area ratio than the other circuits which were designed at
the gate level or higher.

What these examples have shown is that a designer using FLAG can gener-
ate circuits that are a reasonable approximation of their hand counterparts at
a fraction of the time and effort required to generate a hand design. For in-
stance, a designer using FLAG can ”scale” circuits to an arbitrary size without
any additional effort. Or the designer can create ”composite” circuits merely
by combining various circuit descriptions together, with greater ease and more
quickly than would be possible by hand. By incorporating FLAG into the design
cycle, a designer can perform architectural exploration and experiment with dif-
ferent circuit designs. This allows the designer to choose the most appropriate

circuit design and implement that design by hand.

Future Work

The future work can be broken up into roughly three areas:
o Improvements to the FP Interpreter
¢ Improvements to the FP language
e Improvements to FLAG

In the FP interpreter, the currently available debugging features need to be
expanded. To help debug the FP programs, the ability to stop, single step or trace
functions should be added. The ability to perform some timing analysis while
inside the FP interpreter should also be added. Another area of improvement
lies within the readability of FP programs. As the FP language stands now, the
FP specifications are rather cryptic, even to the experienced FP user. Having

the ability to symbolically reference inputs and to automate the routing of data
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between functions would go a long way to making FP programs more readable
and easier to write. In order to generate more efficient designs, FLAG must
be expanded to provide the designer with greater control over the placement of
circuit elements within the physical circuit. This includes providing the designer
with control over the vertical placement of the circuit elements as well as the
horizontal control he now has. To facilitate circuit simulation, the automatic
placement of pins in the test circuit by FLAG would be a step toward speeding

up of the process.
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Appendix A

Syntax of FP

A.1 Objects

The set of objects £ consists of atoms and sequences < 1, T2,...Zx > (where
the #; € w). The atoms uniquely determine the set of valid objects and consists of
the numbers, quoted ascii strings ("abcd”), and unquoted alphanumeric strings
(abc3). There are three predefined atoms, T and F, that correspond to the logical
values ’true’ and ’false’, and the undefined atom ., bottorn. Bottom denotes the
value returned as the result of an undefined operation, e.g., division by zero. The
empty sequence, <> is also an atom. The following are examples of valid FP
objects:

4 3.1415 1234567

ab "CD” <«<1,<2,3>>

<> T <a,<>>

There is one restriction on object construction: no object may contain the nnde-
fined atom, such an object is itself undefined, e.g., <1, 1> = L. This property
is the so-called 'bottom-preserving property’[Bac78].

A.2 Application

This is the single FP operation and is designated by the colon (”:"). For a
function ¢ and an object #, o : z is an application and its meaning is the object

that results from applying ¢ to z (i.e. evaluating o(z)). We say that ¢ is the
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operator and that z is the operand. The following are examples of applications:

+:<7,8>=15 tl:<1,2,3>=<2,3>

1:<abecd>=a 2:<abec,d>=0

A.3 Functions

All functions (F) map objects into objects, moreover, they are strict:

g :1l=1,VoeF

To formally characterize the primitive functions, we use a modification of Mc-
Carthy’s conditional expression: [McC60)

P1L = €15---; Pn = €n; €n4l

This statement is interpreted as follows: return function e, if the predicate
';’ is true, otherwise ey if 'py’ is true, ..., e, if 'p,’ 1s true. If none of the

predicates are satisfied then default to eny;. It 1s assumed that z,z;,y, ¥,z € 2.
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A.3.1 Selector Functions

For a nonzero integer, u

pre =
T =< Ty, By, T > ANO< p< k= z,
T =< 21,Tg,..., 2> N —k Sy <0 = Tpps;
L

The user should not that the function symbols 1,2 3, ... are to be distinguished
from the atoms 1,2,3 ...

last : z =
T =<> >
=< T1,22,...,L > ANk>1=
1

first:z =

z=<> <>
T =< T, T2, Tk > ANk 212y
1

A.3.2 Tail Functions

tl:z =
T =< ) >=><>]
L=< L1, Bg,..-, Tk > ANE>2=2< 2oy, Tk >
L

tle : 2 =

r =<2 >=<>;
=< T, Tg,...,20 > Ak22=< 2, , 881 >3
4
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A.3.3 Distribute From Left and Right

distl:z =
=<y, <>>=<>]
T =< Y, < 21,2, 2k SO Y, 21 >y, < Yy 2k D
L
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distr: z =
T =<<>, Y >=<>
T =<< Y1, Y2y Yk 32 DL YLZ 2y, < YRy 2 22
1

A.3.4 Identity

e
5
1]
8

=
=
-
8
]
L

Out is similar to id. Like id, it returns its argument as the result, unlike id it
prints its result on stdout — It is the only function with a side effect. out is

intended to be used for debugging only.

A.3.5 Append Left and Right

apndl:z =
T =<y, <>>>< Y >
T =< Y, < 21,20, .., 2k 22>=< Y,21,22. .., 2k >}
1

apndr:z =

T =<<>,2 >< 2 >y

T =<< Y Y2, Yk > 7 >=>< Y1 Y2 - Yk 2 )
1

A.3.6 Transpose

trans: z

(

=<z, <2
T =< 21, T2y, Tk >=>< YL, Y2, Ym >}
1
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where z; =< Zigy. ., Tim > AY; =< Yjy--- Yk >, 1 S1 Sk, 1S5 Sm

reverse :r =
T =<>=><>;
T =< 1,82y Th > Thyovr 3 TL 2

L
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A.3.7 Rotate Left and Right

rotl:z =
£ =<>= <>
=< 31 >=>< 21 >}
=< T, Ta,..., Tk > NEZ22=2<29,..., Tk, 21 >}
L
rotr:x =
T =<>=> <>
T =<2 >=< T >}
=< T1,T2,..., 8k > NE22=< 2k, 1,y 0y T2, Tho1 25
1
concat : r =
T =< Bi1, ey Tk > e < Typly ey Tmp >> A k,myn,p >0
< Ty ooy L1k 21y - -3 L2ny- -« Tmly- oy Tmp =3
L

Concatenate removes all occurrences of the null sequence:

concat (<< 1,3>,<>,<2,4>,<>,<5>>=<1,3,2,4,5>
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pair:z =
2 =< T1,%2,..,Zk > Ak>0 A kis even
S, L Py, < Bpo1, T >
r=<2,20,...,2: > ANE>0 A kisodd

L Ty, Ty Dyenny < T >
i
split: z =
=< D=L >,<>>)
T=<1T1,22,...,2, > Ak>1
=< T1y- oy TrEy >, < $[.§]+11---,33k >,
1

A.3.8 Predicate (Test) Functions

atom:r =
z € atoms = T
z# 1 =T,
1
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i

eql: z
r=<y,z> Ay=z="T
r=<y,z> Ay#z=>F,
1

Also less than (<), greater than (>), greater than or equal (>), less than or equal
(<), not equal {neql); =" is a synonym for eql.

null:z =
z=<>= T,
z #£1l=>TF,
1
length:z =

T =< T, 22,...,Tp > k5

z =<>=0;

1
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A.3.9 Predicate operators: and, or, not, xor

and < z,y >

=T A ye{T,F} =y
z=F A ye{T,F}=F,

L

or:<z,y> =
z=F A ye{T,F} =y
z=T A ye {T,F} =T,
s

not:z =

z2=T=F,;
z=F =T,
1

xor <,y >

ze{T,F} Aye{T,F} A z=y=>F;
te{T,F} Aye{T,F} Az#y=T,
1

A.3.10 Arithmetic/Logical

+:z =
r =< y,z > A y,z are numbers = y + z;
L

-1z =
z =< y,z > A y,z are numbers = y — z;
1

¥z =

r =< y,z > A y,z are numbers = y X z;

L
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Il

z =< y,z > Ay, 2z are numbers = y + z;

4
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A.3.11 Circuit Primitives

andg :< 2,y > =
z=1A y€{0,1} = y;
z=0 A y€{0,1} =0
L

org < &,y > =
z=0 A y€ {0,1} = y;
r=1Ay€{0,1} =1;
1

xorg < z,y > =
z€{0,1} Aye{0,1} Az=y=0
z€{0,1} Aye{0,1} Az#y=>1
1

nandg < 2,y > =
z=1Aye{0,1} =7
x=0Aye{0,1}=1;
L

norg < &,y >
z=0Aye{0,1} =7
r=1Ay€{0,1}=0;
L
notg:zx =
z=1= 0;

r=0=1;
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A.3.12 Library Routines (Used in Simulations)

sin : z

z is a number = sin(z);
1

asin: x

z is a number A | z |<1 = sin™'(z);

1
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COos . T

acos I &

exp:zr

mod :< 2,y >

sqrt < z,y >

]

Hl

z is a number = cos(z);

1

7 is a number A |z |< 1 = cos~!(z);

L

z is a number = €%;

1

T is a positive number = In z;

L

x
z,y are numbers = = —y X [—J ;
Y

4

z is a positive number = /z;

L

A.4 Combining Forms

Combining forms define new functions by operating on function and object pa-
rameters of the form. The resultant expressions can be compared and contrasted
to the value-oriented expressions of traditional programming languages. The dis-
tinction lies in the domain of the operators; combining forms manipulate func-

tions, while traditional operators manipulate values.

One combining form is Compose. For two functions ¢ and ¢, the form ¢ @

denotes their composition ¢ o ¢ :

(6Qp) : 2= ¢ : (¢ 2),Vreld
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The Constant function takes an object parameter:
%z :y =(y =L=1;z), Vz,y € Q

The function % 1 always returns L.
In the following description of the combining forms, we assume that ¢, &, o,

o;, T, T; are functions and that =z, z;, ¥, v, z are objects.
A.4.1 Compose

(c@Qr):z = o:(7:2)
A.4.2 Construct

[o1,...,00] 2 = <oy:2,...,0,:2>
Note that construction is also bottom-preserving, e.g.

[+,/]:< 3,0 >=< 3, 1>=1

A.4.3 Apply-to-All

Lo:xz =
T =<>=<>
T =L Xy, Ly T > L O 21,0 1 T2y...,0 T >
1

A.4.4 Conditional

(§ —mo;1)i =
(6:2)=T =01
(:2)=F =r71:

124



The reader should be aware of the distinction between functional expressions,
in the variant of McCarthy’s conditional expression, and the combining form
introduced here. In the former case the result is a value, while in the latter
case the result is a function. Unlike Backus’ FP, the conditional form must be

enclosed in parenthesis, e.g.,
absolute_value (isNegative — -@[%0,id];id)

A.4.5 Constant

Y%r:y =
y=1l=1;z Vz € Q

This function returns its object parameter as its result.

A.4.6 Right Insert

loiz =
T =<> =€
r=<I > = I;
T =< T1,80,..., 2> ANE22 =0:<my,l0:<xe,...,2 >3
L

e.g., 4 :< 4,5,6 >=15. If o has aright identity clement e, then lo :<>= ¢y,
g f f

e.g.,
I r<>=0and ¥ :<>=1

Currently, identity functions are defined for + (0), — (0), * (1), /(1), and also
for andg (1), org (0), xorg (0). All other functions default to bottom(L).

A.4.7 Left Insert
lins(o) : 2 =

T =<>=€f. I,

T =< I > = I
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T =< T1,Tg,..., 8k > Nk>2
= o :< lins(o) :< 21,..., 81 >, Tk >;
L
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A.4.8 Right Seq

seq(c):z =
T=<>=€p.I;
=< T > =>< T >
=< 21,29 > = 0:< 21,T2 >
=< Z1,T2,..., 2> ANE>2 < y1,¥2,. -, Uk >
L
where < z3,y3,...,yx >=seq(c) :< 2a,..., 2% > and < y1,Y2 >= 0 :< T3, 22 >.

A.4.9 Left Seq

seqL{c) 1z =
T =<>= 65T
T =< >=< I >
T =< T,Tr > = F:< T1,Ty >
T =< 21,T2,.-., T > AkE>2 < y,¥2,-- - Uk >
1
where < w1,...,Yk_2, zk_1 >=seqL(o) :< z1,...,%x_1 > and

< Yr-1, Yk >=0 1< Zp1, T2 >

A.5 Time Domain Functions and Combining Forms

The functions sopi, posi, invd! are all functions which are equivalent to the FP
function id but correspond to specific constructs in the layout necessary to se-
quentialize or parallelize the communication of objects between functions. There
are time-domain equivalents to the Apply-to-All, the Right and Left Insert
and the Right and Left Seq combining forms. These are denoted respectively
by, tapall, tlins, tseq, tseqL. They are equivalent in terms of meaning to their

1Martine Schlag, "FP Layout Manual,” MS, UCLA, Los Angeles, California, 12 September
1986, pp. 21
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counterparts, however they assume a different implementation of their inputs

and outputs with respect to time and space.

A.6 TUser Defined Functions

An FP definition is entered as follows:

{fn-name fn-form},
where frn-name is an ascii string consisting of letters, numbers and the underline
symbol, and fn-form is any valid combining form, including a single primitive or

defined function. For example, the functions

{factorial (zero?->%1; *@[id,factorial@2e[id,%111)}

{zero? eql@[id,%01}

form a recursive definition of the factorial function. Since FP systems are ap-
plicative it is permissible to substitute the actual definition of a function for any

reference to it in a combining form: if f = 1@2 then
f:z =1Q2:2, Ve e}
References to undefined functions bottom out:

frz=1l,VzeQ,fgF

128



Appendix B

FLAG User Manual

This manual describes how to use FLAG in the generation of circuit layouts from
FP descriptions. Figure B.1 presents an abstract view of FLAG. FLAG can be

broken down into four sections.
e Functional Simulation
e Symbolic Interpretation and Topological Extraction
e Physical Layout and Circuit Simulation
¢ Grapbhical Display

The input into FLAG is a collection of FP functions created by the circuit de-
signer from either a circuit diagram or digital algorithm. The input entered in

by the user is shown in boldface.
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Figure B.1: Abstract View of FLAG
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B.1 Functional Simulation

Functional simulation of the FP circuit description allows the designer to deter-
mine if the description correctly models the circuit of interest. The Berkeley FP

interpreter [Bade83] is used to simulate the circuit description functionally.

B.1.1 Input

The input file consists of

FP functions syntax: { fname fdef }
Comments syntax: # Comments
Example:

# nandg(a,b) (a,b in {0,1})
{nandg (eq@[%1,1]1->-@[%1,2];%1)}
# xorg(a,b) (a,b in {0,1})

{xorg nandg@[nandg@(1,2],nandg@[2,31]e[1,nandg,2]}

B.1.2 Steps

1. Start the Berkeley FP interpreter.
/usr/local/bin/fp

The following should appear on your screen:

FP, v. 4.2, (4/28/83)

2. Load FP functions. Let us say that the file test.fp contains the FP function
definitions.
)load test

The name of each function is printed as it is loaded into the FP interpreter.
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{nandg}
{xorg}

3. Test the functions. See [Bade83] for a list of system commands for the
Berkeley FP interpreter.

)fns
nandg xorg
)pfn nandg
{nandg (eqel¥% 1,11->-@[% 1,21;% 1)}
)pfn xorg
{xorg nandg@[nandg@[1,2],nandg@[2,3]]1¢[1,nandg,2]}

xorg:<0 0>
0

xorg:<0 1>
1

xorg:<1 0>
1

xorg:<1 1>
0

4. Exit the interpreter when done.
cntl-D

B.1.3 Comments

The circuit primitives presented in Appendix A are not available in the Berkeley

FP interpreter and must be created by the designer.

B.2 Symbolic Interpretation and Topology Ex-

traction

The first step in the generation of a layout from a circuit description is to gen-

erate an IF (intermediate form) description of the circuit. The IF is obtained
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by performing a topology extraction upon the results of a symbolic interpreta-
tion of the circuit description using symbolic objects. The interpreter [extractor
(henceforth referred to as the “extractor”) sits within a T interpreter, affording
the full power of the T environment. It is necessary, then, to translate the FP
functions into a series of T commands which define the FP functions for the

extractor before the extractor can be run.

B.2.1 Input

The input file consists of

FP functions syntax: { fname fdef }
T commands syntax: #.T command
Comments syntax: # Comments
Example:

# nandg(a,b) (a,b in {0,1})
{nandg (eq@[%1,1]->-0[%1,2];%1)}
#.(dfbx ’nandg 1 nand 3)

# xorg(a,b) (a,b in {0,1})

{xorg nandg®[nandg@[1,2],nandg@[2,3]]@[1,nandg, 21}

B.2.2 Output

The output file consists of an IF (Intermediate Form}) description of the circuit
in the format presented in (section IF syntax).

Example:

((G00257 G00258)
(600257 (* GOO0258 * + ~ ~))
((* GOO257 * + ~ ~) G00258 G00258)
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(GO0257 G00257 GO0258 G00258)
(G00257 ($ B 1 GO0266 NAND 3 $ GO0257 G00258 $ G00259 $) G00258)
(GO0257 (* GO0259 * + ~ =) G00258)
(G00257 G00259 GO0259 G00258)
(($ B 1 GOO264 NAND 3 $ GOO0257 GO0259 $ GOO0260 $)
($ B 1 GOO265 NAND 3 $ GOO259 G00258 $ GOO261 $)
)
(G00260 G00261)
(($ B 1 GOO263 NAND 3 $ G0O0260 G00261 $ G00262 $))
(600262)

B.2.3 Steps

Suppose the file test.fp contains the FP specification for an XOR gate as pre-
sented above. The steps necessary to perform symbolic interpretation and topol-

ogy extraction upon the XOR are given below.

1. Convert FP functions into T commands by passing it through a filter:
conv. /u/gs8/winthrop/extractor/bin/conv test.fp

The following should appear on the screen:

Reading file : test.fp
Creating file : test.t ... finished.

If there is a syntax error in one of the FP functions, the following will occur.

Creating file : test.t ... syntax error

9. Set the environment variable FPLAYDIR to the directory containing the
layout system. This is achieved in the C shell by:
setenv FPLAYDIR. /u/gs8/winthrop/extractor/bin
or in the Bourne shell by:
FPLAYDIR=/u/gs8/winthrop/extractor/bin ;
export FPLAYDIR
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3. Start the T interpreter.
t -h 3000000

The following should appear on the screen:

2999992 bytes per heap, 131071 bytes reserved

T 3.1 (5) MC68000/UNIX Copyright (C) 1988 Yale University
T Top level

>

4. Load the layout interpreter.
(load *(FPLAYDIR lcmd))
The following should appear:

;Loading ~winthrop/extractor/bin/lcmd.t into USER-ENV
Loading FP Layout Interpreter .

;Loading ~winthrop/extractor/bin/prop.t into USER-ENV
;Loading “winthrop/extractor/bin/clint0.t into USER-ENV
;Loading ~winthrop/extractor/bin/typedefs.t into USER-ENV
;Loading ~winthrop/extractor/bin/cgraph.t into USER-ENV
;Loading ~winthrop/extractor/bin/ghost.t into USER-ENV
;Loading ”winthrop/extractor/bin/aux3.t into USER-ENV
;Loading ~winthrop/extractor/bin/layout.t into USER-ENV
;Loading ~winthrop/extractor/bin/pred0.t into USER-ENV
;Loading ~winthrop/extractor/bin/oper0.t into USER-ENV
;Loading “winthrop/extractor/bin/oper2.t into USER-ENV
[Redefining syntax BINARY-OP] [Redefining syntax UNARY-OP]
;Loading ~winthrop/extractor/bin/oper5.t into USER-ENV
;Loading ~winthrop/extractor/bin/struc0.t into USER-ENV
;iLoading “winthrop/extractor/bin/struc2.t into USER-ENV
;Loading ~winthrop/extractor/bin/struc5.t into USER-ENV
;Loading ~winthrop/extractor/bin/walk.t into USER-ENV
;Loading “winthrop/extractor/bin/arrange.t into USER-ENV
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Loaded.
;no value
>

. Load converted FP functions.
(load ’test)

The following should appear on the screen:

;Loading test.t into USER-ENV
NANDG #{Procedure 1} XORG XORG
>

The file test.t must be in the current directory. If you wish to load a
file from another directory, you must enter its full pathname as well as
its .t extension and enclose it in double quotes. ~ and other shell-meta
characters are not expanded by T.

(load *”/u/gs8/winthrop/thesis/appendix/test.t”)

. Perform symbolic interpretation and topology extraction. The T function
quick-layout requires an FP function and an input. The input for the
FP function is given as a list object ( an FP object with <, >’s replaced
with (,)’s and the *,’ replaced by spaces). It will execute all the commands
necessary to produce the IF file. The name of the IF file will be the name
of the FP function with a .d extension. The layout of the function xorg
for two inputs would be obtained as follows:

(quick-layout ’xorg (1 1))

The following should appear on the screen:

Computation Graph Completed.

Marking of computation graph started .... completed.

Layout started .... completed.
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Writing layout into file xorg.d .... written.

;R0 value

The name of the output file can be specified as a third argument to quick-

layout; the .d extension will be appended to the name provided.

> (quick-layout ’xorg ’(1 1) ’/tmp/junk)}

Computation Graph Completed.

Marking of computation graph started .... completed.
Layout started .... completed.

Writing layout into file /tmp/junk.d .... written.
;no value

7. Terminate T session.
(exit)

B.2.4 Comments

There is one interpreter command which should be mentioned here. The inter-
preter can be instructed to ignore the graphical interpretation of any function
and instead represent the function as a box. You can instruct the interpreter to
do this through the dfbx command. You must provide the name of the function
and the height of the box ( a positive integer ) and a label to be displayed in the
box.

> (afbx ’XO0RG 1 xor)
#{procedure 1}
>
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In addition, you can optionally specify the width of the box as was dome
for the function nandg in test.fp. However, the actual width given to the box
will be at least 1+ max { #inputs, #outputs } of the function. The command
remains in effect during the T session until you redefine the function ( this occurs
if you reload the file containing the definition of the function) or issue another

dfbx command with the same function.

B.3 Physical Layout and Circuit Simulation

After the IF description of the circuit has been generated, the next step is to
generate a physical layout of the circuit from its IF description. The symbolic
layout generator takes the IF description, performs some compaction and wire
straightening, and produces a symbolic layout of the circuit, written in ABCD.
The symbolic layout is passed on to the collection of VIVID tools to perform the

physical layout and circuit simulation.

B.3.1 Input

The input consists of the following set of files.
e IF description of the circuit (typically with a .d extension).
¢ For each predesigned module to used in the circuit:

modulename.ab ABCD description of module. The design for the mod-

ules are subject to the following constraints.
— Vdd & Vss lines must run horizontally and span the entire width
of the module.
— Vdd & Vss lines must extend 1 grid unit past any circuit element.
— Module inputs can only appear at the top of the module and must
be in polysilicon.
— Module outputs can only appear at the bottom of the module and

must be in polysilicon.

— Module inputs and outputs must extend 1 grid unit past any Vdd

or Vss line.
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Figure B.2: Example Layout of a 2-Input NAND
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An layout for a two-input NAND gate is shown in Figure B.2.

modulename File listing positions of all the inputs and outputs for mod-

ule. The syntax for the file is given below.

module_width

distance

distance

distance
distance

distance

distance
distance

distance

distance
-1 (Acts
distance

distance

distance
-1 (Acts

of
of

of
of
of

of
of
of

of
as
of
of

of

as

module_height
1st input from left side of module

next input to right of previous input

next input to right of previous input
1st output from left side of module

next output to right of previous output

next output to right of previous output
1st Vdd line from top of module

next Vdd line below previous Vdd line

next Vdd line below previous Vdd line
delimiter)
1st Vss line from top of module

next Vss line below previous Vss line

next Vss line below previous Vss line

delimiter)

Example: two-input NAND gate

®» N NN
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Figure B.3: Graphical Interpretation of NAND

Example: xor
NAND.ab  NAND xorg.d

Also mention module description files

B.3.2 Output

The output consist of the following set of files.
*.ab Symbolic layout of circuit.

*(000-999).ab Leaf cells of the symbolic layout.

* fa Circuit simulation file.
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* 11 Physical layout of circuit in LLAMA format.

* cif Physical layout of circuit in CIF format.
Example: xor

xor.ab xor.fa

xor.11l xor.cif

x0or000.ab xor005.ab
xor001.ab xor006.ab
xor002.ab xor007.ab
xor003.ab xor008.ab
x0r004.ab xor009.ab

B.3.3 Steps

Suppose the file xorg.d contains the IF specification for an XOR gate as pre-

sented above.

1. Generate a symbolic layout of the circuit from its IF description.
/u/gs8/winthrop/bin/generate xorg.d xor

The following should appear on your screen.

generating graph
generating constraints
calling compaction routine
straightening wires

creating output files

xorg.d is the name of the file containing the IF description of the xor gate.

xor is the name of the symbolic layout generated.

2. Create a circuit simulation file from the symbolic layout.
/s/s1/VIVID/bin/abstract -t scmos xor
The circuit simulation will be in the file xor.fa. The -t scmos option
indicates that a scalable CMOS technology was used in the design of the
circuit. The value of the -t option will depend upon the technology actually

used in the design of the circuit.
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3. Run the circuit simulator.
/s/s1/VIVID/bin/facts xor

4. Generate a physical layout in LLAMA.
/s/s1/VIVID/bin/hcompact -t scmos xor
The physical layout created will be in the file xor.ll The -t scmes option
indicates that a scalable CMOS technology was used in the design of the
circuit. The value of the -t option will depend upon the technology actually

used in the design of the circuit.

5. Translate the physical layout from LLAMA into CIF.
/s/s1/VIVID/bin/atoll -t scmos xor.ll xor.cif
The file xor.cif will contain a description of the physical layout in the CIF
(CalTech Intermediate Format) format. The -t scmos option indicates
that a scalable CMOS technology was used in the design of the circuit.
The value of the -t option will depend upon the technology actually used
in the design of the circuit. A hardcopy of the physical layout cam be
produced from the CIF file by executing the following command.
cifp xor.cif | Ipr
This command will produce a Postscript version of the file which can be

printed.

B.3.4 Comments

Refer to [VIVID] for more detailed information about the various VIVID tools
and ABCD and LLAMA syntax.

B.4 Graphical Display

The ability to graphically display the IF description has also been provided. The
program Xplot takes an IF circuit description as input and generates a graphical
representation of the FP function which can be displayed on the terminal or a

hard copy can be generated.
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B.4.1 Input

The input file consists of an IF description of the circuit as generated by the
extractor.

Example(xorg.d):

((G00257 G00258)
(GO0257 (* GOO258 * + = ~))
((* GOO2B7 * + -~ ~) GO0258 G00258)
(600257 600257 G00258 G0O0258)
(G00257 ($ B 1 GOO266 NAND 3 $ G00257 G00258 $ GOO259 $) G00258)
(GO0257 (* GOO269 * + ~ =) G00258)
(G00257 GO0259 G00259 G00258)
(($ B 1 GO0264 NAND 3 $ GO0257 G00259 $ GOO0260 $)
($ B 1 GO0265 NAKD 3 $ GO0259 G00258 § GOO261 $)
)
(G00260 G00261)
(($ B 1 GO0263 NAND 3 $ GO0260 G00261 § GO0262 §))
(G00262)
)

B.4.2 Output

The output consists of either a graphical display in a X window or a file of TEX

commands which create a graphical representation of the circuit.

B.4.3 Steps

Suppose the file xorg.d contains the IF specification for an XOR gate as pre-
sented above. The steps necessary to generate a graphical representation of the

XOR are given below.

1. Start /u/gs8/winthrop/extractor/bin/Xplot
Xplot xorg.d
The following should appear:
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sesoksiokokokok HELLQ ks

Processing file : xorg.d

10 LINES 34 NODES 67 EDGES

END OF FILE

number of ops 4

Compacting

Tracing wires

Tracing wires completed
*#kx*k Compaction completed

12 wires to be fixed
Fixing wires completed

Command(q = quit, d = draw, p = psfilt, t = tex)?

2. The IF has now been compacted, the wires straightened and a graphical
representation of the circuit can be (d)isplayed in a X window, or a hard
copy generated can be obtained by generating a TEX file. In the following,
a TEX file is produced by typing t and then providing responses following
the ’s. The dimensions are in inches. The default name of the output file
is obtained by removing the .d extension from the input file name (if it
ended with .d) and appending .tex. The default file name is displayed and

will be used if return is hit in response to the file name prompt.

Command(q = quit, d = draw, p = psfilt, t = tex)?t
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xsize (max = 7.5) : 5.75

ysize (max = 10.0) : 5.75

labels (y or n) : y

point size (6-12) : &

labels on, point size : 6
iy=5.750000 height=21 yscale=0.264286,
ix=5.750000 width=7 xscale=0.821429

Everything ok (y or n) : y

Enter file name (xorg.tex):

Writing ’xorg.tex’ . File ’xorg.tex’ written.
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3. Exit Xplot

Command(q = quit, d = draw, p = psfilt, t = tex)?q
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