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ABSTRACT

Functional LOgic Programming (FLOP) is a non-deterministic rewrite system
which integrates functional programming and logic programming into a single unified
paradigm. FLOP offers the expressiveness of functional notation as well as the declarative
semantics of logic programs. This is accomplished by incorporating unification, non-
determinism, and a flexible reduction strategy in one coherent environment.

FLOP programs are defined by a set of rewrite rules, where each rule is
interpreted not only as a function specification, but also as a logical relationship. Whereas
Prolog goals are simple predicates, FLOP goals are predicates whose truth values are
represented by arbitrary terms. Hence, FLOP is an extention of SLD-resolution with
functional qualities.

As a general programming environment, FLOP offers a number of advantages.
Methodologies for both logic programming, such as in Prolog, and functional
programming, such as in LISP, are directly applicable in FLLOP. Special classes of rewrite
rules, such as Sanjai Narain's LOG(F) and Definite Clause Grammars, are executable in
FLOP with little or no syntactic enhancements. FLOP is an excellent environment for
applications of partial evaluation. Also, lazy evaluation is inherently supported as the
default reduction strategy is thoroughly lazy, i.e., terms are not reduced unless otherwise
specified.

First, the syntax and the semantics of FLOP programs are defined. Next,
comparisons between FLOP and other systems, namely, Prolog, LISP, and LOG(F), are
discussed. An algorithm is then presented for compiling FLOP rewrite rules into Prolog
clauses that correctly simulate the behavior of the rules with no computational overhead.
Numerous examples of FLOP programs are presented throughout the text.
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CHAPTER 1 - INTRODUCTION

Until now, the expressiveness of functional notation has been lacking in most
logic programming systems. At the same time, the computational flexibility of declarative
semantics has been difficult to attain in most functional programming systems. This paper
presents a general programming language called Functional LOgic Programming (FLOP)
in which the advantages of both functional and logic programming are integrated in a
single unified paradigm.

1.1 Functional Programming, Rewrite Systems

For the purposes of this thesis, we will identify functional programming with
rewriting, In functional programming (rewriting), programs are defined by a set of
functions (rewrite rules). Each rule specifies how an expression can be rewritten in a
simpler form, while maintaining the meaning of the original expression. For example,
with the plus (+) function, the expression 1+2 can be rewritten as 3. Note that functions
are directional. For instance, 3 is generally not rewritten as 1+2, because 3 is a simpler
form of 1+2. The process of transforming one expression to another using a rewrite rule is
called reduction (evaluation). Computation with a functional program is equivalent to
evaluating a term using the rules specified in the program.

In this paper, rewrite rules are specified with the following notation:
LHS => RHS.

where LHS and RHS specify arbitrary patterns. A rewrite rule states that if a term
matches LHS, then it can be rewritten as RHS. For example, the notion that the color of
apples is red, and of bananas is yellow, can be expressed with the following set of
rewrite rules:

color (apples) => red.
color(bananas) => yellow.
Here, color is a unary function, i.e., a function which takes one argument.

The semantics of functional programs depend not only on the set of functions
defined in it, but also on the strategy used to apply them in reduction. There are two
components to a reduction strategy: ferm selection and rule selection. Term selection can
be viewed as a function which takes as its input a term T and returns either an indication
that T is fully reduced or a subterm S of T, such that the first step in reducing T is to
replace S with its reduced value S'. Thus, term selection must first determine when a term
is fully reduced. There are a number of possible strategies for this. One possibility is to
designate a special set of irreducible terms, called constructorsl. With this approach all
reductions terminate when they yield constructors. Another method is to always evaluate

1This strategy is used in Sanjai Narain's LOG(F).



a term unless protected by a special quote operator. We call this strategy eager
reduction!. The dual of this last approach is to always not evaluate a term, unless
indicated by a special eager operator. We call this strategy lazy reduction?.

Once it is determined that a term is not fully reduced, term selection must then
select the subterm which must be reduced first. In LISP, for example, the immediate
arguments are evaluated first, unless the function is a special function. For example, in
evaluating the term (cdr (quote (a b))), the subterm (quote (a b)) is evaluated
first. However, in evaluating (quote (a b)), (a b} isnot evaluated because quote is a
special function. Thus, the final result is (b). In lazy reduction, the term selected is the
innermost subterm whose functor is the eager operator. Using the 2 symbol as the eager
operator, in reducing the term £ (2 g(2 x)), the subterm x is reduced first. With both
eager and lazy strategies, term selection is also applied to the RHS of a rule.

Traditionally, functional programming languages have allowed only determinate
functions. In this case, reduction of a term always yields a unique value. LISP, for
instance, is in this category. However, a rewrite system can also be non-deterministic, i.¢.,
allow non-determinate functions, such as:

hair celor({people) => black.
hair coclor(people) => blond.
hair color(people) => brown.

Here, the term hair_color (people) may be reduced to either black or blond Of brown,
depending on which rule is applied. When only determinate functions are permitted, rule
selection is trivial, for no decision is required. However, when non-determinate functions
are allowed, a reduction strategy must define a consistent method of selecting a rule so
that the behavior of non-determinate functions is predictable. Backtracking is one such
strategy. In backtracking, the rules of each non-determinate function are ordered, say,
according to their textual positions in the program. When a selection must be made, the
first rule is chosen. Further, if another solution is desired, it will backtrack and choose the
next in order.

1.2 Logic Programming

In logic programming, programs are defined by a set of propositions, which state
that certain relationships are true. Computation with a logic program is equivalent to
deducing certain facts from the original set of facts specified in the program.

As Prolog is by far the most prevalent logic programming system, henceforth, we
shall timit our discussion to this form of logic programming. Prolog?3 is an SLD-resolution
(or LUSH-resolution) [HILL 74] system. Prolog programs are defined by a set of Horn
clauses which have the following form:

Head :- G1, ...s Gn.

1Eager reduction is the strategy used in LISP systems.

2 azy reduction is the strategy used in FLOP.

3Prolog also contains, for pragmatic purposes, extra-logical (such as I/O ), meta-logical (such as checking
for unbound variables) and backtrack modifying (the cut) predicates; however, these features are not
needed for our discussion here.



where n>0 and Head and G; are predications, each of the form R(ty, ..., ta), m=>0,
where R is a relation symbol and each t; a term. A term is either a variable, of the form
£{s1, ..., Sq),q20, where £ is a g-ary function symbol, and each s a term. When n is
0, the clause is called a unit clause and has the following meaning: the relationship
defined by the Head is unconditionally true. When n is greater than 0, the clause can be
interpreted as follows: the relationship defined by the Head is true, if the relationship
defined by each G; is true. The conjunction Gy, ..., Guis called the body of the clause
and each G; is called a subgoal of Head, or simply a goal.

For instance, the color example in the previous section can be expressed with the
following set of unit clauses:

color (apples, red).
color (bananas, yellow).

Here, color is a 2-ary predicate, i.c., a predicate which takes two arguments. These
propositions state that the color of apples is red, and of bananas is yellow. One may
now ask the Prolog system whether it is true that color of apples is red with the
following query (the actual query is in bold font with system response in regular
font) :

| ?- color(apples, red).
yes

The system responds with yes, stating that from the given the set of facts in the program
the query is found to be provable.

Declarative semantics of logic programs refer to the notion that the set of facts
specified in the program are treated independently from the algorithm or the mechanism
for deducing other facts from it. This is closely related to the "adirectionality” of
predicates. This may be made more clear with a concrete example. When a logical
variable is supplied as an argument of a query, the logic systems attempts to find an
appropriate substitution for the variable for which the query may be made true. The
following example demonstrates this notion:

I ?- color{apples, X).
X=red
ves

| ?- color(X, red).
X=apples
yes

The first query can be interpreted as the question "what color do apples have?" and the
second as "what item has the color red?" The first query is responded to by binding the
variable x with apples, the second by binding x with red. In general, functional
programming can compute the solution of the first question, but not of the second, due to
the inherent directionality of functions.

Deduction strategy in logic programming is analogous to the reduction strategy of
rewrite systems. The two components of deduction strategy are rule selection and goal
selection. Rule selection here is identical to rule selection in a rewrite reduction strategy.



Prolog is a non-deterministic system in which rule selection is accomplished through
backtracking.

Goal selection refers to the order in which the subgoals of a predicate are satisfied.
Goal selection does not change the semantics of a pure logic program; however, it does
affect its efficiency. In Prolog, goals are ordered according to their textual position in the
clause. For example, consider the following program:

£(X) = g{X), hi{X).

g(a).
h{a).
hi{b).

The first clause states that £ (x) is true if both g (x) and h(x) are true. The unit clauses
simply state that g (a), h(a), and h (b) are true. Note that the semantics of the first clause
are not changed if its subgoals are reversed, but its execution is less efficient. To test if
£ (b) is true, it is more efficient to test the subgoal g (b) first, since it will immediate fail,
thereby avoiding the testing of h (b).

1.3 Previous Work

A number of attempts to combine functional programming and logic
programming have been documented in the literature. The most common approach has
been to provide these two programming paradigms as distinct and separate subsystems
with a mechanism for interfacing between them. Included in this category are [BARBUTI
84], LOGLISP [ROBINSON 82], QLOG [KOMOROWSKI 82], [CARLSSON 84], and
Scheme/L [SRIVASTAVA 85]. For these systems, “the integration problem is essentially
the problem of allowing mutual invocation" [BARBUTI 84, p162]. Fundamentally, these
systems differ only in the way the two subsystems are interfaced. LOGLISP, QLOG, and
Scheme/L are LISP systems enhanced with a logic component in which logical assertions
are represented as LISP structures. LISP functions are provided to access the logic
subsystem and visa versa. In [BARBUTI 84], a special module called Logic for
Communicating Agents (LCA) provides an interface between the procedural and
declarative components. Although these system offer both programming environments,
they do not provide a unified environment. Namely, functional notation remains
unavailable in the logic subsystem, and declarative semantics in the functional subsystem.

FUNLOG [SUBRAHMANYAM 84] differs fundamentally from the previous
approach. The basic idea here is to extend logic programming, or more specifically,
extend unification, with function evaluations. This extension of unification is called
semantic unification:

"In trying to unify two terms, say f(t1, ..., tp) and f(si, ..., Sp), suppose there
are subterms t; and s; that are not unifiable in the conventional sense. In
such a case, if s; (or t;) is reducible and the reduced version of it is
unifiable with t; (respectively s;) then we say that f(tq, ..., ta) and f(s1, ey
sp), are semantically unifiable." [SUBRAHMANYAM 84, p145]

Semantic unification offers a number of desirable properties. First, terms are not reduced
if two terms are unifiable. Further, it allows computation on conceptually infinite data
structures. However, there is a fundamental weakness in this approach: the operational



semantics are far too hidden from the programmer. In contrast, Prolog's success can be
attributed to the fact that it provides a clear operational (procedural) semantics, thus
enabling the programmer to gauge the efficiency of a program. With semantic unification,
a combinatorial explosion is easily produced as all possible reductions must be attempted
before determining that two terms are not semantically unifiable. Also, semantic
unification is asymmetrical. In the description above, the number of reductions required
in semantically unifying two terms is highly sensitive to whether ¢; or s; is reduced first.
Consider the following function:

f{N) => f£(N+1).

Here, £ (v+1) and £ (N) are clearly semantically unifiable after a single application of the
rule to the second term. However, if the first term is reduced first, then an infinite loop is
created.

LOG(F) [NARAIN 88] differs from the approaches above in that it rests upon
subsuming rewriting and lazy evaluation within logic programming. In LOG(F), rewrite
rules are compiled into equivalent Horn clauses. Hence, rewrite rules are interpreted as
logical relationships between LHS and RHS, thereby providing a declarative
interpretation to the rewrite rules. For example, the three LOG(F) rules

X => X,
¥y => Y.
f(x) => v.

are represented as the following Horn clauses:

reduce (x, x).
reduce{y, y).
reduce (£(X), ¥) :- reduce(X, x), reducely, Y).

The symbols x and y behave as constructors. Although the LOG(F) rewrite system offers
declarative semantics as a general functional language, it has a restricted reduction
strategy. In particular, the LOG(F) reduction strategy cannot immediately accommodate
the deduction strategy of Prolog.

The approach used to combine functional programming and logic programming in
FLOP has two major components. First, FLOP interprets each rewrite rule not only as a
function specification but also as a kind of predicate. Namely, the {true, false} values of
predicates are represented by the computational properties {reducible, not reducible}.
This is similar to that of Prolog which uses {success, failure}. However, since reducible
terms have a return value, the "truth value" of a predicate is generalized to permit
arbitrary values. -

Second, FLOP provides a highly flexible reduction strategy, namely, lazy
reduction. As a functional language, the lazy reduction strategy is flexible enough to
easily incorporate others, such as the eager reduction found in LISP. However, eager
reduction cannot easily simulate lazy reduction. The deduction strategy of logic
programming is naturally accommodated in the reduction strategy of FLOP. In particular,



lazy reduction is flexible enough to accommodate the goal selection strategy of Prolog.
Hence, logic programming is a special instance of functional logic programming.



CHAPTER 2 - FLOP PROGRAMS

This chapter presents the syntax and the semantics of FLOP programs. A FLOP
program is a set of rewrite rules. The reduction strategy is defined locally within each
rewrite rule. The syntax of FLOP rewrite rules is defined below.

FLOP rewrite rules are by default lazy!. In other words, terms are not evaluated

unless otherwise specified. This lazy default is overridden by two special operators, 2 and
5. Their precise semantics are defined in Section 2.2 (Semantics of FLOP Programs).

2.1 Syntax of FLOP Programs

Many of the syntactic constructs of FLOP are identical to those of Prolog. Where
this is the case, they are noted as such.

Variables. There is a countably infinite number of variables. The syntax of

variables is identical to that of Prolog, including the anonymous variable, '

Function symbols. For each i, i 2 0, there is a countably infinite list of i-ary
function symbols. The syntax of function symbols is identical to that of Prolog. In
addition, two special operators, {2, &)}, are defined. They are called the eager operator
and argument operator, respectively.

The connectives are the set {=>, (,),",'}.

The terminator is the period symbol, ".".

A term is cither a variable, or an expression of the form £(t1, ..., tn), where
£ is an n-ary function symbol, n 2 0, and each t; is a term.

A FLOP program is a set of rewrite rules, where each rule is of the form:
LHS => RHS.
LHS and RHS are terms with the following restrictions:
1. LHS is not a variable.

2. The eager operator is not the functor of LHS . Other than that, it can be
embedded anywhere in LHS or RHS.

3. IfLHSis £(t7, ..., tgn), then the argument operator, if it exists,
can only be the functor of terms t1, ..., tp. The argument operator
is not allowed anywhere else.

1Some have pointed to a strong correlation between the extreme laziness of evaluation in FLOP and the
personality of its author.



The following are examples of valid and invalid rules:
a =>b. valid.

£(X, ¥, Z) => g{a(2), b{y), c(x)). valid

f£(& x, Y) => g{? b, Y). valid.
f(& ? X, ¥) => ? glb, ?Y). valid.
£(X, ?Y, & 2 2) => t. valid.
a=>27?b. valid.
X =>vy. invalid - violates rule #1.
? 1 =>r. invalid - violates rule #2.
£(? & X) => t. invalid - violates rule #3.

We now define some terminology which will be used in the following discussions.
A term which contains no eager operator is called a lazy term; otherwise it is called a
busy term, i.e., it contains at least one eager operator. A term whose functor is the eager
operator is called an eager term. Given an eager term T, its immediate subterm is called
the eager argument of T. For example, the eager parameter of the eager term (?
£(x,y)) is £ (x,y) . Given a busy term T, the left-most and inner-most subterm that is an
eager term is called the eagerest term of T. For example, suppose T is the busy term (2
£(2? x, gly, h(? z)))), then its eagerest term is (2 x). If the eagerest term of a busy
term T is T itself, then T is called a simple eager term. For example, (2 £(x)) isa
simple eager term, while (2 £(? x)) is not.

2.2 Semantics of FLOP Programs

In describing the semantics of FLOP programs, three key terms, lazy reduction,
reduction, and LHS-matching, must be defined. These terms as they are mutually
recursive.

First, a general overview is in order. A FLOP program consists of a set of rewrite
rules. Informally, a rewrite rule states that if a term matches with the LHS of a rewrite
rule, then that term can be rewritten, or replaced, with another term, where the
replacement term is defined by the RHS of the rule. This process of rewriting a term using
a rewrite rule is called reduction. In FLOP, all reductions are lazy by default. That is, a
term is not rewritten unless specifically required by either the eager operator or the
argument operator. The eager operator specifies that the eager term should be replaced
with the reduced value of its eager argument. When there are multiple eager terms, the
eagerest term is reduced first. This process of rewriting a term by successively replacing
each eagerest term is called lazy reduction.

2.2.1 Lazy Reduction and the Eager Operator: ?

Let P be a FLOP program and T a term which may be either busy or lazy. T is
Lazy reducible in P if one of two conditions are true:



1. T is alazy term. Furthermore, T is said to be a lazy reduced value of
TinP.

2. Let T' be an identical copy of T, except the eagerest term of T is
replaced with the reduced value of its eager argument. If this eager
argument is not reducible, then T is not lazy reducible in P.
Otherwise, T is lazy reducible if and only if T' is lazy reducible.
Furthermore, the lazy reduced value of T is recursively defined to be
the lazy reduced value of T".

Note that this definition implies that, if T is a lazy term, then the reduction of T is
equivalent to the lazy reduction of (2 T).

In essence, the eager operator is used to control the inside-out reduction strategy
of a term. The following example demonstrates step by step the reduction order of lazy
reduction of a term with multiple eager operators:

? a(? b{? ¢, ? 4), £, ?g} initial term

? a(? bi{Cc, 2 &), £, ?2q) ¢ =reduced value of ¢

? a({? b(c, D), £, 2g) p =reduced value of d

2 a(B, £, 2 q) B = reduced value of b (C, D)

? a(B, £, G) G =reduced value of g

A a =reduced value of a (B, £, G)

An eager argument may also be an eager term, i.¢., multiple eager operators may
be nested as in the case £(2 ? g). The semantics of this form is consistent with what has
been presented so far. Namely, in the above case, the term g is reduced to produce (? g);
then, the resulting value is reduced once again for (2 2 g).

2.2.2 LHS-Matching and the Argument Operator: &

LHS-matching is a generalization of head unification in Prolog. When a lazy
term T is being reduced, only those rules whose LHS matches with T are used to rewrite
T.Let Tbeftty, ..., ty) andLHSbe £(s;, ..., s,),wherefisa functor of arity
n20, and each t; is a term, for O<i<n. Of course, LHS must meet the syntactic
requirements described in the previous section. Henceforth, t;'s will be called actual
arguments and s;'s formal parameters. T and LHS match if the following conditions
are met:

LHS-reduction. The LHS-reductionof T = £(t;, ..., tn) and LHS =
£(s1, ..., sppareT'=f€(t'y, ..., t'p) andLHS =£¢(s"1, ...,
s'.,), where for each t; and s;, the following conditions are met

AA-reduction. If the functor of s; is the argument
operator, &, then let t ' ; be the reduced value of t; and s*;
be the immediate subterm of s; . Otherwise, let t'; be t;



and s'; be s; . If the functor of s; is the argument operator,
but t; is not reducible, then LHS-matching fails.

FP-reduction. Let s; be the lazy reduced value of s*; . If
s'; is not lazy reducible, then LHS-matching fails.

LHS-matching. T and LHS match if their LHS-reductions T' and LHS'
are unifiable..

Note that if there are neither argument operators nor eager operators in LHS, then
LHS-matching is equivalent to head unification in Prolog.

The eager operator, &, is used to control the outside-in reduction strategy. This
operator indicates whether the actual arguments should first be reduced prior to LHS-
unification.

2.2.3 Reduction

Let P be a FLOP program and T a lazy term. T is said to be reducible in P, if the
following conditions are met:

1. T is not an unbound variable.
2. There is a rule R in P whose LHS matches T and whose RHS is lazy
reducible. In this case, the lazy reduced value of RHS is the reduced
value of T by rule R.
Henceforth, the terms reduction and evaluation are used interchangeably. The
terms reduced value, evaluated value and return value are also used interchangeably.
Furthermore, where it is clear in the context, the phrase "by rule R" will be dropped.

Chapter 6 (Implementing FLOP In Prolog) contains a short FLOP interpreter
written in Prolog. It provides a concrete implementation of the definitions in this section.

10



2.2.4 Examples of Reduction

This section provides some examples to demonstrate the principles defined in the
previous sections. Consider the following FLOP program:

# rule

1. thomas => tom.

2. likes (mary) => Jjohn.

3. likes (& tom) => mary.

4. loves (X) => X.

3. hates (? thomas) => john.

This program produces the following return value for each term:

ferm reduced value
thomas tom

likes (mary) john

tom fail

The reduction of the term thomas succeeds with the rule 1 and likes (mary) with
rule 2. However, the reduction of tom fails because there is no rule for which LHS-
matching is successful.

LHS-unification is attempted after AA-reduction:

term reduced value
likes {thomas) mary
likes (tom) fail

The first case likes (thomas) succeeds because the argument operator in rule 3 signifies
that thomas should first be reduced before LHS-unification is attempted, after which
LHS-matching is successful. However, the second case, likxes (tom}, fails because the
argument tom cannot be successfully reduced. Therefore, the reduction for the whole term
likes (tom) also fails.

The variable bindings made in LHS-matching are visible in the RHS, as
demonstrated by the following:

term reduced value

loves (anything) anything

11



This term succeeds with rule 4, in which the variable x is bound to anything as a side
effect of LHS-matching. Therefore, the return value is the bound value of X, anything.

LHS-unification is attempted after FP-reduction. Consider the following results:

term reduced value
hates (tom) john
hates (thomas) fail

The first term succeeds with rule 5, as FP-reduction modifies (? thomas) to tom before
LHS-unification. Hence, LHS-matching is successful for hates (tom), but not for
hates (thomas).

FP-reduction allows abbreviation of multiple rules in a single rewrite rule.
Consider the following FLOP program:

# rule

1. group => tom.

2. group => Jjerry.

3. likes (?group) => bugs.

In this example, rule 3 can be viewed as an abbreviation of the two rules

likes{tom) => bugs.
likes (jerry) => bugs.

Since the term group is reduced during runtime, introducing additional members to the
group does not invalidate the rule. On the other hand, if an unabbreviated form is used, a
corresponding rule must be added for each additional member of the group.

If the eager operator is present in RHS, the return value is the the lazy reduced
value of RHS. If any of the subterms marked by the 2 operator cannot be reduced, then
reduction with this rule fails. Here is a FLOP program to demonstrate this point:

# rule

1. thomas => tom.

2. jane => bimbo.

3. likes{(?thomas) => mary.

4, likes{john} => ? thomas.

5. likes(?jane) => ? likes(?thomas)
6. likes{mary) => ? tom.
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This program produces the following results:

term reduced value
likes (john) tom

likes (mary) fail

likes (bimbo) mary

The term likes (john) succeeds with rule 4. Note that the return value of the
term is the lazy reduced value of RHS, (2 thomas), which is tom. However, reduction of
likes (mary) fails. Although LHS-matching is successful with rule 6, lazy reduction of
RHS fails.

The trace of the final example, 1ikes (bimbo), is as follows:

» term to reduce; likes (bimbo)
rule chosen: likes(?3ane) => ?likes(?thomas)
» reduce LHS subterm marked by the eager operator
+ term to reduce is jane
rule chosen: jane => bimbo
return bimbo
+ modified LHS becomes likes (bimbo)
» LHS-matching successful.
+ reduce RHS subterms marked by the eager operator
+ term to reduce: thomas
rule chosen: thomas => tom
\/ return tom
» term to reduce: likes (tom)
rule chosen: 1ikes {?thomas) => mary
» reduce LHS subterm marked by the eager
operator
» term to reduce: thomas
rule chosen: thomas => tom
return tom
« modified LHS becomes likes (tom)
» LHS-matching successful.
return mary
Wj return mary
» modified RHS becomes mary
'\( retum mary

2.2.5 Non-determinism in FLOP
The first step in LHS-matching is the selection of a rewrite rule. The non-
determinism of this selection process, as in Prolog, is implemented with backtracking.

Therefore, the order of rewrite rules defined in a FLOP program is significant in
determining the order of the results. For example, the FLOP program

likes (tom) => mary.
iikes (mary) => thomas.

13



produces the following results for each term:

term first result second result third result
likes (X) mary tom fail
likes (tom) mary fail

2.3 Interactive Environment

This section describes the top level interactive environment. As in Prolog, the
interaction is query based. Henceforth, when traces of queries are presented, the user
inputs are displayed in bold font, and system responses in regular font. The default
prompt is the '| ?=' symbol. Each query has the form

| ?= term,.

where term may be either busy or lazy. However, the argument operator (&) is not
allowed.

When a term is entered, the system responds as follows. First, an extra eager
operator is embedded in front of the term to produce (2 term) which is then lazy
reduced. If the lazy reduction fails, the system prints reduction unsuccessful and
produces a new prompt. If the lazy reduction is successful, then the return value is printed
along with any bindings made during the process.

Once the return value is displayed, the system waits for a response. As in Prolog, a
carriage return results in the termination of the query and a new prompt is produced.

t ot

Typing a semicolon, '; ', results in backtracking in search of another solution. Consider the
program:

likes(tom) => mary.
likes (mary) => thomas.

thomas => tom.
The following is a trace of an interactive session with the above program:

| ?= likes(tom).
mary
reduction unsuccessful

| ?= likes (WHO).
mary
WHO=tom ;
thomas
WHO=mary ;
reduction unsuccessful

| ?= ? likes(? thomas).

mary ;
reduction unsuccessful

14



2.4 Some Useful FLOP Functions!

This section presents some useful FLOP functions. All of these functions are
implemented as rewrite rules, as there are no built-in functions defined in FLOP.

One fundamental function in logic programming is unification. In FLOP, as in
Prolog, the = operator unifies two terms:

{(Rslt = Rslt) => Rslt.

This function simply unifies its left and right arguments and returns the resulting unified
term, The use of this rule is straight forward:

| 2= £(X, y) = £(a, B).
fa, v)

X=a

=y
reduction unsuccessful

So far, only reductions of ground terms have been presented. In other words, input
parameters of functions have been fully instantiated. However, this is not a requirement in
FLOP, as function parameters maybe unbound variables. When this is done, the system
attempts to satisfy the query by binding the variables with appropriate values. For queries
of this type, the following function is useful:

(& Rslt => Rslt) => Rslt.

This function unifies its right argument with the reduced value of its left argument. The
return value of this function is the unified term. For example, the following query

{ ?= likes (WHO) => mary.

succeeds if there exists a term unifiable with 1ikes (wno) which reduces to mary. If such
a term does exist, in this particular case, the return value will be the atom mary.
Furthermore, as a side effect, the variable wro will be bound to the appropriate term.

Consider the following rewrite rule
certain_type (OBJECT) => ? {length (OBJECT) => small).
Note that the first => symbol is a function specifier which separates LHS and RHS of the

rule. The second => is an operator within RHS of the rule. This rule states that an oBJECT
is of certain_type if its length is small.

11n context of FLOP, the word "function” is used loosely. Normally, functions refer to relationships that
map each element in the domain to a unique element in the range. In general, FLOP allows mapping to
more than one element in the range. True functional relationships can be implemented by including only
deterministic rules in a program.
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Also, there may be eager operators embedded within its arguments. The semantics
of such expression is consistent with what has been presented so far. For example, the

query
| ?= color(? strange material) => ? reddish colors.

looks for a st range_material whose color is one of the reddish_colors. The order of
evaluation is left-to-right and inside-out. Therefore, first the term (2 strange objects)

is replaced by its return value, say a moon_rock. Second, the term (2 reddish_color) is

replaced by its return value, say pink. Then, the resulting term (color (moon_rock) =>

pink) is evaluated.

As another example, consider the following implementation of append in FLOP:

append([], L) => L
append{[X|Xs], ¥Ys) => [X|? append(Xs, Ys)]

The following trace demonstrates that the behavior of this function is fundamentally
identical to that of Prolog:

| ?= append([a], [b]).
[a,b]
reduction unsuccessful

| ?= append{(a, B) => [a,b].
[a,b]
A=[]
B={arb] H
[a,b]
A=[a]
B=[b] ;
[a,b]
A=[a,b]
B=[] :
reduction unsuccessful

Once again, the first query is one of reducing a ground term. The query is successful and
the return value, [a,b], is printed. However, the second query is not ground. As in the
first query, the return value is [a,b], but there are additional side effects of variable
bindings. The various bindings of the input variables A and B represent the solution space
for the query.
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Although the two functions, = and =>, are similar, in the current implementation
of FLOP, there is a subtle difference in their behavior. Consider the trace of the following

two queries:

| ?= append(a, B) => [].
[]

A=[]

B={] :
reduction unsuccessful

| ?= ? append(A, B) = [].
i
A=[]
B=[] ;
|out of global stack during execution.
% Execution aborted.

The first query behaves as expected. However, the second one falls into an infinite loop.

This is due to a subtle difference of when the unification with the [} term is
applied. There are two main components to these two queries, reduction of the append
term and unification of the return value with []. In the = version, these two components
are completely separate. That is, first the append term is reduced and the return value is
bound to a temporary variable. Then, that term is unified with []. On the other hand, in

the => version,

reduction of the append term is done within the context of reducing the =>

term. As a result, unification with [] is done at an earlier point, during the process of
reducing the append term. Hence, the search tree is pruned at a much earlier stage,
thereby preventing the infinite loop. The relationship between the two queries above is
analogous to the two Prolog queries:

| ?- aPPend(Ar Bl’ [])-
A={]
B=[] ;

ne

I 2= appendtlr B, C), C=[].

A=[]

B=[1]
fout of global stack during execution.
% Execution aborted.

Another useful set of FLOP rewrite rules are conditional functions. The simplest
version is the following:

if then(& _, Rslt) => Rslt.

In this rule, if the first argument is reducible, then the return value is the second
argument, unevaluated. Another possibility is to evaluate the second argument, as in the

next example:

if_ethen(& _, Rslt) => 7 Rslt.
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In this rule, if the first argument is reducible, then the return value is the reduced value of
the second argument.

The next set of rules represents functional conjunction (',") and disjunction (’;').
The term functional here refers to the fact that the return values of these logical operators
may be arbitrary terms.

(&_ , &Rslt) => Rslt.

Here, if both arguments are reducible, then the return value is the reduced value of the
right argument. If either one of the arguments is not reducible, then this reduction fails.

(sRslt ; _) => Rslt.
(_ : &Rslt) => Rslt.

This is a functional disjunction, where only one of the arguments need be reducible. The
return value is reduced value of the reduced argument.

The following rewrite rules simulate some of the well known LISP functions.
Chapter 5 (LISP and FLOP) provides a more in depth discussion of these two systems.

car(& [X [ _J) => X.

cdr(& [ | Xs]) => Xs.
cons{& X, & Xs) => [X | Xs].
eval{g X) => 7?7 X.

quote (X) => X.

The & operator precedes each formal parameter, as LISP normally evaluates actual
arguments. The quote operator is a special exception to this rule.
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CHAPTER 3 - FUNCTIONAL LOGIC
PROGRAMMING

FLOP integrates functional programming and logic programming coherently into
a single environment. We call this functional logic programming. This integration is
accomplished by incorporating into a single system the essential features of logic
programming, namely, unification and backtracking, with a flexible reduction strategy.

When a rule for conjunction is introduced and only predicate functions are
allowed, FLOP amounts to SLD-resolution. In other words, SLD-resolution is a special

case within the FLOP rewrite system. In general, FLOP allows the expressiveness of
functional notation within the framework of logic programming.

3.1 SLD-Resolution in FLOP
Implementing SLD-resolution in FLOP is straightforward. First, note that the
domain of SLD-resolution is predicates defined by Horn clauses. Therefore, all rewrite
rules are restricted to a form equivalent to Horn clauses as described below. An arbitrary
atom, say t rue, is designated as the return value of a successful goal.
For each unit Horn clause of the form
£it1, -..r tm).
we introduce a FLOP rule of the form:
£(t1, ..., tm) => true.
Also, for each non-unit Horn clause of the form
h :- gl, ..., gn.
we introduce a FLOP rule of the form:
h =>7? (g1, ..., gn}.

Finally, a mechanism for simulating conjunction must be devised. This is
achieved by the following rule:

(& true , & true) => true.
Here, both arguments must be reducible and their return values must be true. If this
condition is met, then the return value of the conjunction is also true. Otherwise, the goal
fails.

Consider the following append and reverse relationships expressed as Horn
clauses in FLOP notation:
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append([], L, L) => true.
append { [X|L1], L2, [X|L3]) => ? append(Ll, L2, L3).

reverse([], []) => true.
reverse([X|L], R} => ? (reverse(lL, LR), append(LR, [X], R)).

Their behavior is identical to those implemented in Prolog:

| ?= reverse([a,b,c], R).
true
R =[c,b,al]

| ?= reverse(S, [c,b,a]l).
true
3=[a,b,c]

It is worth noting that conjunction is not a primitive function in FLOP. Conjunction can
be correctly implemented with the matching and reduction primitives; however, this is not
true in Prolog.

3.2 Combining Functional and Logic Programming

One of the restrictions in the previous section is that all rewrite rules must be
defined as predicates. Upon all successful reductions, the return value must be the atom
t rue. What are the ramifications if this restriction is relaxed, so that a successful goal can
return arbitrary values? One interpretation of this relaxation is that the truth value of a
predicate can now be represented by arbitrary terms. Hence, a FLOP rewrite rule serves a
dual purpose, one as a logical relationship and the other as a functional specification. This
is the foundation of functional logic programming.

Many relationships are more naturally expressed in functional notation than in
predicate form. Implementing them in predicate form generally requires introducing
additional temporary variables, which often result in expressions that are less intuitive.
For example, in the second clause of the reverse predicate above, the variables LR is a
temporary variable. Notational limitations of predicate logic require it. However, these
temporary variables can be eliminated when expressed in functional notation. The two
functions above can be expressed in FLOP as follows:

append([], L) => L.
append ([X|L1], L2} => [X|? append{Ll, L2)].

reverse([]}) => [1].
reverse {([X|L]) => ? append(? reverse (L), [X]).

Note that no temporary variables are needed. As a result, functional notation provide a
more comprehensible expression than that expressed in predicate form. Furthermore, the
behavior of the function version is fundamentally identical to that in predicate form:

| ?= reverse([a,b,cl).
[c,b,a]

| ?= reverse(S) => [c,b,a].

[c,b,al
S=[a,b, c]
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With the relaxation of the return values of predicates, the conjunction rewrite rule
presented above must also be generalized to accommodate arbitrary truth values. One
possibility is

(& _, & _) => true.

Here, the comma function returns t rue if both arguments are reducible. The restriction
that the return value of its arguments must be the true atom has been eliminated; now,
their actual return values are unrestricted.

This rule can be further generalized, since the conjunction function, too, can
return arbitrary values. One possibility is to choose the reduced value of the second
argument:

(¢ _, & Rslt) => Rslt.
Here is a demonstration of its use:

| ?= (reverse([x,yl]) => R), append(R, R).
[v,x,y,x]
R=[v,x]

Note that the return value of the conjunction operator is the reduced value of the right
argument, which in this case is append (R, R). However, prior to evaluating this term,
the left argument is evaluated which has the effect of binding r to [y, x].

21



CHAPTER 4 - LISP AND FLOP

This chapter compares two functional programming languages, LISP and FLOP.
Although both employ functional notations for program specification, there are a number
of differences worth noting. Also, a small LISP-like system in FLOP is presented.

The fundamental difference between FLOP and LISP stems from the features of
logic programming incorporated in FLOP. FLOP offers both declarative and procedural
semantics, while LISP only procedural. As a result, LISP programs are strictly uni-
directional. For each function, there are predefined input and output parameters and their
roles are not interchangeable. FLOP's declarative semantics allow greater flexibility.
Also, LISP functions are purely deterministic. On the other hand, FLOP is a non-
deterministic system in general, although deterministic behavior can be obtained where
needed. (See Chapter 6 (Implementing FLOP in Prolog) for a complete description.)
Many runtime errors which produce interrupts in a LISP system, such as attempting to
evaluate an undefined atom, are handled uniformly by the backtracking mechanism in
FLOP.

In terms of their reduction strategies, FLOP is lazy by default, whereas LISP is
eager. That is, in FLOP terms are by default not evaluated, but in LISP they are. Actually,
this previous statement is somewhat misleading, as FLOP employs logical variables and
LISP symbolic variables. When logical variables are bound to a term, they become
indistinguishable from the term. In the framework of LISP programming, logical
variables can be viewed as being automatically evaluated whenever they are bound.
Symbolic variables, on the other hand, are indistinguishable from atoms. Therefore, the
user must explicitly protect each value from being treated like a variable by quoting it.
Since logical variables cannot be confused with terms (values), the quote operator need
not be a primitive function in FLOP.

For logical variables, all bindings are accomplished through the pattern matching
of unification. As a result, destructive assignments, such as provided by LISP's setq, is
not easily simulated in FLOP. However, the absence of this feature is not necessarily a
negative one.

4.1 A LISP-like System In FLOP

As a demonstration of FLOP's reduction strategy, we present a small LISP-like
system, where functions are defined using FLOP rewrite rules. Certain syntactic
restrictions are placed on these rules so that LISP's evaluation strategy is reproduced.
First, a set of FLOP rewrite rules which represents the primitive functions of our LISP-
like system are presented. For notational clarity, generalized structures, not simple lists,
are used to distinguish the functor and its arguments.
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The first set of functions, quote and eval, control the default evaluation sirategy.
The ! symbol is used to represent the quote operator, although the "'" symbol 1s
traditionally used in LISP. The ! operator returns the unevaluated argument, and the eval
operator evaluates its argument twice.

{(1X) =>» X.
eval{s X) => ? X,

Note that, even when they are nested, these two functions behave exactly as they do in
LISP, as demonstrated by the following example:

| ?= eval{(! ! term).
term

There is a fundamental difference between the eager operator and the eval
function. The precedence of the eager operator is inside-out. Hence, all terms marked by
the eager operator are always reduced. On the other hand, the precedence of the eval
function is outside-in. Hence, terms marked by the eval operator is evaluated only on
demand. The following trace demonstrates this point.

| ?= ' eval(! term).
eval(! term)

| 2= 1! 2 ! term.
term

Next is the primitive list functions, car, cdr and cons. Prolog list constructors are
used to represent lists. All of these functions evaluate their arguments, as signified by the
presence of the argument operators.

car (& [X]Xs])

Ul

> X.
cdr(&[X|Xs]) => Xs.
cons (&X, &Xs) => [XIXs].
Here is a demonstration of their usage:
| ?= car([a,b,c]).

reduction unsuccessful

| 2= car(![a,b,c]).
a

| ?= cdr{(![a,b,c]).
[b,c]

| ?= car(edr(!(a,b,c])).
b

| ?= cons{car('[a,b,c]), cdr(lix,y,Zz]}).
[a,y,2z]
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The following operators, equal and true, represent predicates in this system.
Others are easily added. LISP predicates return the atom T for true and ni1 for false. In
this system, predicates are implemented as FLOP predicates. That is, if a predicate is true,
then it succeeds with the return value of the atom t rue; otherwise, it fails.

equal (&X, &X) => true.

true => true.

The equal operator succeeds if the evaluated forms of the two arguments are unifiable.
Like the LISP atom T, the t rue predicate always succeeds. It can be used as the default
case in the cond function described below.

Next is the cond function.

cond{[(Cond, Rslt) | _1) => ? (Cond, Rslt).
cond({_ | More]) => 2 cond (More) .

The cond function takes a list as its argument, where each element of the list is of the
form (cond, Rsit), where cond is a predicate, and Rs1t the corresponding return
value. The cond function returns the evaluated form of the first Rs1t whose
corresponding cond predicate succeeds. The cond function fails if there are no (Cond,
Rslt) pairs that are both reducible.

The following demonstrates the use of all of the above functions:

i 2= cond([1).
reduction unsuccessful

i ?= cond{[ (equal (edr('[a,b,c]), !'[1}, 'incorrect)
{equal (cdr(![a,b,c]), !'[b,c]), !correct)
(equal (car(![a,b,c]), !a), 'too late}]).
correct

| ?= cond([{equal(edz(!'[a,b,c]), '{]1), !incorrect)
(true, 'the default)]).
the default

We now describe the apply function which evaluates a lambda expression with a
set of arguments. This function takes two arguments, a Lambda expression and an
argument list, AAList,

apply (& lambda(FPList, Body}, & AAList) => ? (
apply list (AAList, FPList),
Body
).
apply (& Functor, & AAList) => ? {
(=..{(Goal) => [Functor|aAList]),
Goal
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apply_list ({1, []) => true.
apply_list ([AA|AAList], [FP|IFPList]) => ? {
(AA=>FP),
apply_list (AAList, FPList)
).

The Lambda expression cannot be an unbound variable (first clause). Other than that, it
can be of two forms. First, (second clause) it can be of the form lambda (FPList, Body),
where FpList is the formal parameter list and Body is the body of the lambda expression.
To adhere more closely to a true LISP system which allows only simple variables,
FpList should be a list of unbound variables. However, this is not enforced and arbitrary
terms may be used for unification. With this form, each element of the AAList is
evaluated and unified with the FpList. This is done by the apply_1ist function. Note
that if any of the arguments is not reducible, or if FPList and aaList have different
lengths, evaluation of the apply term fails. Another form of Lambda expression is a
FLOP atom (third clause), in which case it is assumed to be the Functor of a rule. Here, a
Goal header is constructed using the Functor atom and the AaList and then evaluated.
Here is an application of the apply function:

| ?= apply('ecdr, ![![a,b,c]]).
(b, c]

| ?= apply(!lambda([X,Y], cons{car(!X), edr('Y))).,
'[![a,b,ec], !'[x¥y,2]]).
[a,y,rZ]

Note that in the body of the lambda expression, each variable is preceded by the ! mark.
This is necessary as these logical variables are automatically evaluated. Therefore, the !
operator protects them from double evaluation.

We now present a method of defining additional LISP-like functions. These
functions are implemented as rewrite rules, much in the way car, cdr and cons are
defined above. In the function header (LHS of the rule), each formal argument is
preceded by the argument operator to signify that the corresponding actual argument is to
be evaluated. The function body (RHS of the rule) should be a simple eager term whose
eager argument is composed of the primitive functions presented above or other functions
defined in the present manner. Each variable referenced is preceded it by the ! operator to
prevent double evaluation. The following is a recursive concat function implemented in
the manner just described:

concat (&X, &Y) => ?
cond{[ (equal (!X, ![]), 'Y},
{true, cons{car('X), concat{cdr(!X), !'¥)))1).

Here is its execution:

| ?= concat(![a,b,c], '[x,v,Z]).
[a,b,c,%x,¥,2]

| ?= apply(!lambda([X], concat('X, !X)),

'[!'[a,b,c]]).
[afb'cfa’b’c]
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An immediate benefit of implementing LISP functions as our LISP-like functions
is the inherent declarative semantics of FLOP rewrite rules. For example, the concat
function can now be executed in the framework of functional logic programming:

| ?= concat (!X, 'Y) => [a,b].
[a,Db]

X={1

Y=[a,b]

(a,b]

X=[a]

Y=[bl :

[a,b]

X=[a,bl]

Y=[] :

reduction unsuccessful

There are a number of differences between this LISP-like system and a true LISP
system. First, LISP stores functions as lambda expressions, and function names evaluate
to their corresponding lambda expressions. In our LISP-like system, they are represented
as FLOP rewrite rules which have only similar behavior to the evaluation of lambda
expressions. However, this, too, simulated by requiring each LISP-like functions be
defined such that the function header is a simple atom and the body a lambda expression.
Then, an additional layer of interpreter must apply the corresponding lambda expression
to the arguments.

The point of this exercise, however, is not to demonstrate that each and every
detail of LISP can be duplicated in FLOP, but rather that functional logic programming
offers the essential features of functional programming, such as LISP, plus the declarative
semantics of logic programming. As a practical point, it would be unwise to attempt to
duplicate all the details of LISP within FLOP, for each paradigm demands different
programming techniques and styles. For example, it is rather cumbersome and inefficient
to precede each variable reference with the quote operator.

One of the fundamental components of LISP missing from the LISP-like version
is the destructive assignment function, setq. However, reliance on destructive assignment
is generally discouraged This is yet another situation for which different programming
styles may be warranted for a procedural language, like LISP with setq, and a declarative
language, like FLOP.



CHAPTER 5 - LOG(F) AND FLOP

This chapter compares the two non-deterministic rewrite systems, FLOP and
Sanjai Narain's LOG(F) [NARAIN 88]. Appendix I contains a synopsis of LOG(F).
LOG(F) rests upon subsuming within logic programming, both rewriting and lazy
evaluation. FLOP, on the other hand, is based on combining logic programming,
rewriting, and lazy evaluation into a single environment. FLOP can be viewed as a proper
extension of LOG(F), for LOG(F) programs can be simulated in FLOP, but it is not
obvious how to perform the converse simulation. Furthermore, transforming LOG(F)
rules into equivalent FLOP rules is straight forward.

5.1 LOG(F) in FLOP

In translating LOG(F) programs into equivalent FLOP programs, two distinct
classes of LOG(F) function symbols must be considered. First is the set of constructors,
which have the following properties:

1. For an n-ary constructor symbol, n > 0, no restrictions are permitted for
any of its formal parameters.

2. Constructors are deterministic, as constructors cannot be the functor of
LHS of a rule.

3. The actual arguments of constructors are not reduced.

Constructors are easily implemented in FLOP. For each constructor symbol ¢ of
arity n, where n 2 0, introduce a FLOP rewrite rule of the following form:

c¢{C1y .-.y Cn) => clC1y .-.v Cn).

The first property is satisfied as the formal parameters are simply unbound variables ¢,

..+ Cn. The deterministic property is achieved as it is illegal to construct a rewrite rule
whose LHS is a constructor symbol. Finally, the actual arguments of this reduction rule
are not reduced, as no & operators are used.

The second kind of function symbols introduce the LHS of some LOG(F) rule.
LOG(F) reductions are like FLOP reductions, but with two important differences:

1. Actual arguments are always reduced first when their corresponding
formal parameters are non-variables (in which case the formal
parameters must be constructors, with zero or more variable
arguments).

2. Reductions terminate when a RHS of a rule obtained in the reduction

(including the bindings made during LHS-matching) is in simplified,
i.e., its function symbol is a constructor.
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The procedure for converting a LOG(F) reduction rule into an equivalent FLOP
rule is as follows. For each LOG(F) reduction rule of the form:

f(s1, ..., Sm) => rhs.

for m > 0, and where s; and rhs are arbitrary terms, introduce a FLOP rewrite rule of the
form:

flt1, ..., tm) => ? rhs.
where if s; is a variable, then t; is same as s;; otherwise, t; is (& s1).

The first distinction between LOG(F) and FLOP reductions is implemented by the
presence of the & operator for each argument. The second distinction is implemented as
follows. If rhs is not simplified, then all of RHS is reduced by the ? operator. On the
other hand, if rhs is simplified, the implementation of constructor symbols described
previously terminates further reduction of this term.

The two resulting Prolog programs, one compiled with the basic algorithm
presented in [NARAIN 88] from LOG(F) to Prolog, and the other from LOG(F) to FLOP
and then from FLOP to Prolog, produce identical code.

5.2 The Differences

There is a fundamental difference between the intended goals of FLOP and
LOG(F). FLOP is intended to be a general rewriting environment in which various
reduction strategies can easily be implemented. On the other hand, LOG(F), or more
specifically F*, is a special rewrite system which provides a number of desirable
properties, such as confluence and completeness within its framework. In order to attain
these properties, however, a number of restrictions are placed on its rewrite rules and
reduction strategy.

A major component of LOG(F) eliminated in FLOP is the notion of constructor
symbols. Constructors serve several crucial functions in LOG(F):

1. All values returned by LOG(F) reductions are simplified, i.e., their
function symbols are constructors .

2. LOG(F) requires that the formal parameters be constructors or
variables. LHS-unification succeeds by reducing actual arguments to
simplified terms where necessary.

3. Constructors serve as the mechanism for supporting LOG(F)'s lazy
evaluation. Constructors are the analogues of LISP's quote operator in
protecting their subterms from evaluation.

LOG(F)'s strong dependence on constructors imposes several limitations:

1. Values returned by reduction must use the globally pre-defined set of
constructor symbols.

2. Once defined, a constructor cannot be further reduced.
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3. Control of lazy evaluation is limited. Only subterms of constructor
symbols are protected from evaluation. All other terms are evaluated.

In FLOP, the functionality of constructor symbols has been replaced with a
reduction strategy that is by default lazy, and the two operators, ? and &, which override
this default. With the removal of constructors, the return value of a reduction need no
longer be restricted, and reduction termination is locally controlled within each rewrite
rule. Therefore, the evaluation of a term is context dependent, not globally constrained.

FLOP's local control of reduction termination and the eagerness of evaluation
affords greater potential for lazy evaluation. In FLOP, all terms are treated lazily by
default evaluation mode and are evaluated only on demand. In LOG(F), all terms that are
not subterms of constructors must be evaluated.

The implementation of LOG(F) presented in [NARAIN 88] provides one
mechanism for modifying the default reduction strategy, namely eager evaluating. As
with constructor symbols, a special set of terms are globally designated as being eager.
For each eager term, the programmer is required to provided a Prolog clause which
computes the return value of that term. When these eager terms are detected at compile
time, a Prolog goal for computing them is inserted in front of the goal for the reduction of
RHS. Therefore, the eager mechanism in LOG(F) serves a dual purpose: to override the
default reduction strategy; and to interface with the host Prolog environment.

There are three disadvantages to this scheme. First, there is no local control of
eager reduction. That is, once a term is designated as eager, it is always eagerly evaluated.
In FLOP, the eagerness of a term is defined Jocally. Hence, a term may be treated as eager
or lazy depending on the context. Second, since LOG(F)'s eager terms are dependent on
their Prolog substitution at compile time, modification of their definition requires
recompilation of all rules containing those terms. The scheme used in FLOP eliminates
this need (see Chapter 6 (Implementing FLOP in Prolog)). Finally, within each
LOG(F) rewrite rule, alt Prolog goals are eagerly evaluated. However, in FLOP, Prolog
goals, too, are also subject to lazy evaluation.
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CHAPTER 6 - IMPLEMENTING FLOP IN PROLOG

This chapter describes a strategy for implementing FLOP within Prolog. First, a
FLOP interpreter written in Prolog is presented. Second, an algorithm for compiling
FLOP programs into equivalent Prolog programs is described. Third, a2 meta-syntactic
construct for FLOP rewrite rules is presented. These are used to inject optional Prolog
goals directly into the compiled code. This mechanism is used to provide access of the
host Prolog environment within each rewrite rule.

6.1 FLOP Interpreter in Prolog

The following is a Prolog interpreter of FLOP programs. This interpreter properly
simulates the behavior of FLOP programs, as defined in Chapter 2 (FLOP Programs). It
assumes that FLOP rewrite rules are stored in the Prolog data base with the =>/2
predicates.

1: reduce (Term, Rslt) :-

2: var (Term),

3: 1, fail.

4: reduce {(Term, Rslt) :-

S5: red rule(Term, Rslt).

6: red rule(Term, Rslt) :-

T (LHS => RHS),

8: LHS =.. [F | FPListl],

9: makelist (FPList, AAList),

10: Term =.. [F | AAList],

11: lhs matching(AAList, FPList),
12: lazy reduce (RHS, Rslt).

13: lazy_ reduce {Term, Rslt) :-

14; var (Term),

15: Term = Rslt, !.

16: lazy reduce(? Term, Rslt) :- !,

17; lazy_reduce (Term, RTerm},

18: reduce (RTerm, Rslt).

19: lazy reduce(Term, Rslt) :-

20: Term =.. [F | AList},

21: makelist (AList, RAList),

22: Rslt =.. [F | RAListl, !,

23: lazy reduce list (AList, RAList).
24: lazy reduce_list([]1, []) :- !.

25: lazy reduce list([A | AList], [RA | RAList]) :-
26: lazy reduce (A, RA),

27: lazy reduce_list (AList, RAList).
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28: 1hs matching([], [1) := !.

29: lhs matching({AA | ARAList], [FP | FPList]) :-
30: match one arg(AA, FP),

31: lhs_matching (AAList, FPList).
32: match_one_arg(AA, FP) :-

33: var (FP),

34: AR = FP, !,

35: match_one_arg{(AA, & FP) :- !,

36: reduce (AA, RAZA),

37: lazy_ reduce (FP, RAA).

38: match_one_arg(AA, FP) :-

39: lazy reduce(FP, AA).

40: makelist ([1, [1) := }.
41: makelist{([_ | Xs], [_ | ¥s]) :-
42: makelist (X3, ¥s), !.

At this point, some comments are in order. The cuts (1's) on lines 3, 15, 16, 34,
and 35 are essential to the program. For example, the cut in line 3 prevents backtracking
after a successful completion of the first reduce clause. Otherwise, since the success of
the first clause implies that Term is an unbound variable, Texrm would unify with any term
in the first argument of the second reduce clause (line 4). The remaining cuts are "green
cuts", i.e., the semantics of the program are not changed by their presence.

Lines 1 to 5 define the reduce predicate. This is the entry point of the reduction
process. The first parameter corresponds to the term being reduced. The return value is
unified with the second parameter.

Lines 6 to 12 defined the red_rule predicate which handles the actual reduction
of each term using FLOP rewrite rules. This predicate assumes that Term is not a variable,
as this condition is eliminated by the reduce predicate.

Lines 13 to 27 define the lazy reduce and lazy_reduce list predicates, the
heart of the FLOP reduction engine. Here the input term in the first parameter is
recursively traversed. If the term is an unbound variable (first clause, line 13), no
reduction is applied. If the eager operator is detected (second clause, line 16),
lazy_reduce is first applied to its subterm, then the resulting term is reduced. If the eager
operator is not detected (third clause, line 19), 1azy_reduce is applied to subterms;
however, the resulting term is not further reduced. The order of traversal determines the
order of precedence in reducing a term. Here, postorder traversal correctly implements
the left-to-right and inside-out evaluation order of FLOP.

The goal makelist in line 21 is required, because when both rs1t and RAList
(lazy reduced argument list) is unbound, the =. . predicate fails. Therefore, makelist
predicate, defined in lines 40 to 42, simply creates a list of unbound variables whose
length is equal to aList (list of arguments in their original form).

In lines 28 through 39, 1hs_match and match_one_arg predicates are defined.
These routines handle LHS-matching, In match one_arg, if the argument operator is
detected, reduce is applied to the actual argument. In either case, lazy_reduce is applied
to each formal parameter.
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6.2 Compiling FLOP to Prolog

This section describes a method of transforming FLOP programs into equivalent
Prolog programs.This method is based on the process of partial evaluation. The basic
idea behind partial evaluation is the following. Given a program and an interpreter for
that program, many of the decisions required by the interpreter can be handled prior to the
actual execution of the program. These are the goals, or procedures, which depend solely
on the structure of the program, and not the runtime environment. When these goals are
detected, they may be textually replaced by their subgoals. When all of the computation
of a goal can be done a priori, that goal can be completely eliminated. Through this
process the original program can be expanded to include appropriate pieces of the
interpreter code, thereby compiling the program from its original language to the
language in which the interpreter is written.

We can apply partial evaluation of the interpreter of the previous section. The first
step is to locate the point where the FLOP rewrite rules becomes defined first. Line 7 is
used to select a rule within a program. Since this selection process is non-deterministic, a
scheme must be devised to instantiate individual rules. This non-deterministic selection
process within the red rule clause can be eliminated by introducing a separate
red_rule clause for each rewrite rule. Then, there will be only one rewrite rule
associated with each red rule clause.

Actually, for the sake of efficiency, each red_rule clause is mapped to a clause
whose functor is the same as RHS, but whose arity is one larger than RHS. The
additional argument is used for the return value. The advantage of this method is that in
many Prolog systems, head unifications are particularly efficient. Thus, to accommodate
this modification, the reduce predicate must be modified as follows:

reduce (Term, Rslt) :-
var (Term),
', fail.
reduce {Term, Rslt) :-
new head(Goal, Term, Rslt),
call (Goal).

new head (reduce(Term, Rslt), Term, Rslt) :-
var(Term), !.
new_head (Goal, Term, Rslt) :-

Term =.. [F | AList},
det_append (AList, [Rslt], NewAList),
Goal =.. [F | NewAList], !.

In the new_head predicate, if Term is an unbound variable Goal is unified with the
reduce (Term, Rslt). Otherwise, the predicate maps Term into Goal, where they are
identical except an additional argument, rRs1t, is added to the Goal.

Now that the non-deterministic selection process has been eliminated, the
variables LHS and rRuS are fully instantiated within each clause. Note, however, that the
variable Rs1t is unbound as it is runtime dependent. However, since LuS is instantiated,
line 8 is fully deterministic. In other words, the goal can be eliminated by executing it at
compile time. As a side effect of executing line 8, variables F and FPList are now bound.
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For the makelist goal in line 9, there are two possible replacements as there are
two clauses representing the predicate. In actuality, since FPList is already instantiated,
only one of those two clauses can satisfy the goal. More specifically, if FPList is bound
to [}, then the first clause (line 40) is applied, which in this case is a unit clause.
Therefore, that goal is executed and then eliminated. The side effect of this execution is
binding of the the variable AAList to [1. One the other hand, if FPList is bound to a non-
empty list, then the goal is unified with the head of the second clause (line 41) and it is
replaced by the subgoal of that clause (line 42). As a result, the variable xs and vs are
bound to the tails of Aarist and FPList, respectively. A similar process is applied to the
replaced makelist goal, until that goal, too, is eliminated.

This process of partial evaluation can be continued with each clause as long as the
replacement goals can be determined for each goal. There are seven predicates defined in
the interpreter. Of these, except for red_rule and reduce, the remaining five are
deterministic. Also, as partial evaluation is applied, variables will become instantiated to
the point where the clause which must be used to satisfy the goal can be determined at
compile time, as was the case in the makelist example above.

The reduce (Term, Rslt) goal can be evaluated at compile time if Term is
bound. Namely, the goal can be replaced by the call (Goal), where the Goal is defined
by new_head (Goal, Term, Rslt).However, if Term is an unbound variable, it cannot
be determined at compile time whether it will remain unbound at runtime. Therefore, the
reduce (Term, Rslt) goal must be evaluated at runtime. Note that this differentiation is
made in the new_head predicate.

The following is a set of FLOP reduction rules and their equivalent Prolog
predicates:

FLOP rewrite rules Prolog clauses
likes(tom) => mary. likes (tom, mary).
likes (? tom) => mary. likes (Tom, mary) :-
tom{(Tom) .
likes (tom) => ? mary. likes (tom, Rslt) :-
mary{Rslt) .
likes(? tom) => ? mary. likes (Tom, Rslt) :-
tom(Tom) ,
mary (Rslt).

likes{(& ? tom) => ? mary. likes{(AA Tom, Rslt) :-
reduce {AA_Tom, Tom),
tom(Tom) ,
mary{Rslt) .

Appendix II (An Implementation of FLOP) contains a FLOP-to-Prolog
compiler written in Prolog. This compiler handles other features, such as a Prolog
interface, which will be described in the following section. However, the essence of the
compiler is the idea of partial evaluation presented above.
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The process of partial evaluation is basically that of rewriting. This suggests that
perhaps a FLOP-to-Prolog compiler can be implemented in FLOP. This is, in fact, true
and Appendix IIT (FLOP-To-Prolog Compiler In FLOP) contains an implementation
of a compiler written in FLOP. Note that the interpreter presented in the previous section,
the compiler implemented in Prolog in Appendix 11, and the compiler in FLOP presented
in Appendix I share identical structures.

6.3 PROLOG Interface
Consider the following pairs of FLOP rules and their compiled Prolog clauses.

FLOP rewrite rules Prolog clauses

append([], L} => L. append([], L, L}.

append{[X|Xs], L) => append ([Xi¥Xs], L, [XIRslt]) :-
[X|?append{Xs, L)]. append {Xs, L, Rslt}.

Note that the compiled clauses of the append rewrite rule is the usual append predicate
written in Prolog. There are two points worth noting. First, the mapping scheme from
FLOP rewrite rules to Prolog clauses produces efficient code. Namely, once the rules are
compiled, there is little computational overhead introduced in execution. Second, because
FLOP rules are represented in a form identical to usual Prolog predicates, existing Prolog
predicates ( i.e., the predicates written directly in Prolog) with arity greater than zero are
directly executable within FLOP. For example, the append predicate could be
implemented either in FLOP or in Prolog; the two implementations are equivalent.

There are a number of built-in Prolog predicates with non-zero arities which have
interesting interpretations in context of FLOP. For example, consider the following
queries:

| ?= var => T.

_50

T= 50

| ?==..(£{x,¥)).
£, =, ¥yl

In FLOP, var can be viewed as a function which generates a complete set of unbound
variables. In the trace above, the query can succeed only when var generates the unbound
variable T itself, Similarly, the =. . functor returns a list whose first element is the functor
of its argument term and the following elements correspond the arguments of this term.

In addition to accessing existing Prolog predicates in a manner described above, it
is sometimes convenient to include Prolog predicates directly into the compiled clauses.
This is necessary, for example, when Prolog predicates of arity zero must be called. In
particular, cuts can be inserted in the compiled clause to alter the backtracking behavior
of the rule. The following is a description of a meta-FLOP syntax for interfacing between
a FLOP program to its host language Prolog. The basic form is similar to the insertion of
Prolog goals in Definite Clause Grammars [CLOCKSIN 81]. This facility has several
uses, including debugging, Input/Output, and deterministic programming in FLOP.
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A FLOP rewrite rule which is compiled into Prolog predicates has two distinct
components, LHS-matching and RHS lazy reduction. Consider the following rewrite rule
and its compiled form:

lhs (& al, a2) => ? rhs.

ths({Al, a2, Rslt):- % header
reduce (Al, al), % LHS-matching
% post-LHS
rhs (Rslt) . % RHS lazy reduction
% post-RHS

Following the two components, LHS matching and RHS reduction, two regions of the
code have been labelled. These regions are strategic locations for embedding Prolog
predicates as they represent the following points in reduction:

post-LHS - at this point, LHS-matching has succeeded, and the argument
variables are bound to values resulting from the matching.

post-RHS - at this point, reduction for this rule has succeeded and all
variable bindings resulting from the reduction have been made.

The two points specified above are natural locations for optional Prolog goals.
Optional Prolog goals can be inserted in these locations by the following meta-syntax:

LHS => {post LHS}, RHS, {post RHS}.

The Prolog goals must be surrounded by the (} brackets.Variable names are maintained
between the reduction rule and the optional goals by the compiler. That is, all references
to variables with the same name refer, in fact, to the same variable.

Each {} bracketed code is optional, and any combination of them are allowed.

The function name, result, of arity 1 is reserved for the special purpose of
accessing the return value. If this function symbol is detected either in the post-LHS or
post-RHS, its argument will be bound to the reduced value. This is accomplished by
replacing each Prolog goal of the form result (term), where termis an abitrary term,
with the goal Rsit = term, where rRslt is a variable which will be bound to the
reduction value. In post-LHS, this variable may or may not be bound to the return value.
However, this variable is guaranteed to be bound to the return value in the post-RHS.

Here is a sample compilation of a FLOP rule:

FLOP rewrite rules

f(X) =>
{write(X), nl},
? giX).
{result(R),
write(R), nl}.
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Prolog clauses

£(X, Rslt) :-
write(X), nl,
g({X, Rslt),
R = Rslt,
write(R), nl.



6.2.1 Deterministic FLOP

Inserting cuts in FLOP rewrite rules in either the post-LHS or post-RHS will
modify the backtracking behavior of the rules and produce more deterministic behavior.
The following is an example of a deterministic reduction rule:

FLOP rewrite rules Prolog clauses
fix) => a, {!'}. fix, a) := !'.
f(y) => b. fly, b).

The cut in post-RHS prevent backtracking to other clauses once LHS-unification is
successful:

| 7= £{x).
a

| 2= £(y).
b

| ?= £(V).
a

v=x ;

reduction unsuccessful
6.2.2 Lazy Evaluation of Prolog Predicates
Prolog goals which are introduced in the Post-LHS or Post-RHS are always
treated eagerly. However, it is often desirable to treat these in a lazy fashion. This can be
accomplished simply in the following manner:
(Terml == Term2) => {(Terml == Term2}, true.
var(X) => {var(X)}, true.
atom(X) => {atom(X)}, true.
read (X} => {read(X)}, true.
write(X) => {write(X)}, true.
writeln(X) => {write(X), nl}, true.
For each function, if the Prolog predicate succeeds, the function, too, succeeds with the

return value true. If the Prolog predicate fails, the function, too, fails. Note these Prolog
predicates can be treated as normal FLOP functions with lazy evaluation.
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The following rewrite rule generalizes the lazy evaluation of of Prolog goals!:
{Goal} => {call{Goal)}, true.

If the Goal succeeds (in the Prolog environment), then it returns the atom true.

1There is a slight limitation in the way our current syntax is defined. For example, the rule

lhs => {gocal}, rhs.
has two interpretations. The question is whether {goal} should be interpreted as post-LHS, which is treated
eagerly or as a lazy evaluable goal using the generalized Prolog predicate rule. In general, whenever there is
a conflict, { } terms are interpreted as post-LHS or post-RHS. At this point, the reader may wonder why the
post-LHS and post-RHS syntax are not simply eliminated by making all {} terms calls to Prolog predicates
in a lazy fashion. The only reason for this is that introduction of cuts in post-LHS and post-RHS retain the

scope of the cut within each rule. However, if the cut symbols are lazy evaluated, its scope is limited to
within the {} term.
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CHAPTER 7 - EXAMPLES

This chapter presents four sample FLOP programs. The first is list flattening
function which transforms arbitrarily nested list-of-list structures into a single list. The
second implements the quicksort algorithm in two different styles, one in a procedural
style, the other as a functional expression. The third example is a compiler of Prolog
clauses into WAM instruction sequences [WARREN 83]. It is based on the example of
partial evaluation presented in [KURSAWE 86]. Finally, a method of directly evaluating
Definite Clause Grammars are presented.

7.1 Flattening Lists

The following is an implementation of a simple double recursive algorithm for
flattening list of lists. The lists may be nested to arbitrary depth,

flatten(T) => ? if then{var(T), [T1), {!}.

flatten(T) => ? if_then({atomic(T}}, [TI), (!}.

flatten([L | R]) => ? append(?flatten(L), ?flatten(R}), {!}.
And here is a trace of a executing this function:

| ?= flatten([[a, [b,c]],[[e,£]l.g]1]).
[a,b,c,d,e, f,g] :
reduction unsuccessful

Note that the two base conditions, var (T) and {atomic(T) }, are implemented in
two different ways. Both use the built-in function provided by the host Prolog system.
However, the mechanism for obtaining its service is different. The reduction of the term
var (T) is implemented via

var(T) => {var{(T)}, true.

The reduction of the term {atomic (T)} is accomplished through the general Prolog
predicate evaluator:

{Goal} => {call{Goal)}, true.

Though these two styles differ, their effects are identical. They have been implemented in
this manner for pedagogical reasons.
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7.2 Quicksorts

This section presents two versions of the quicksort algorithm. The first is
implemented in a procedural style.

quicksortl([]) => [1].
quicksortl ([X | Xs]) => ? {
{partitionl (X, Xs} => SmallXs/BigXs),
{quicksortl(SmallXs) => Smallls),
{quicksortl (BigXs) => BigLs),
append(Smallls, [X | BigLs])
).

partitionl(p, [1) => [1/1].
partitionl(P, [X [Xs]) => ? {
{X =< P},
(partitionl (P, Xs) => SmallXs/BigXs),
P{[X | SmallXs]/BigXs)
).
partitionl (P, [X |Xs]) => ? {
{X > p},
(partitionl (P, Xs) => SmallXs/BigXs),
'{SmallXs/[X | BigXs])
).

The partitionl function accepts two arguments. The first is the partition
number, and second the list to partition. The return value of this function is two lists
separated by the '/' operator, Its left argument is a list of elements less than or equal to the
partition number, and the right argument the list of elements greater than the partition.
The return value must be quoted, as the conjunction operator always evaluates its
arguments.

The next version of quicksort is implemented as a functional expression!, rather
than procedural, by eliminating the use of the conjunction operator:

quicksort2(([]}) => [].
quicksort2{[X | Xs]) =>
? append(
? quicksort2({? partition2(X, Xs, BigX¥s}),
[X | ? quicksort2(BigXs)]
).

partition2(p, [], []) => [].
partition2 (P, [X [Xs], BigXs) => 2 (
{X =< P},
!'[X | ? partition2({P, Xs, BigXs}]
).
partition2 (P, [X [Xs], [X | BigXs]) => ? (
{X > P},
partition2 (P, Xs, BigXs)

IThe difference between functional and procedural style is actually rather artificial in FLOP, for
conjunction, too, is defined in a functional manner. Nevertheless, the behavior of the conjunction function
can be naturally viewed sequentially, much in the way Prolog clauses can be interpreted procedurally.
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).

In this version, the partition2 function returns the list of elements less than or
equal to the partition number. The list of elements greater than the partition is returned by
side-effect. This list is bound to the third argument.

Though these two styles differ, they produce identical results, as exemplified by
the following execution:

| ?= quicksortl([1l,2,3,2,1]}.
£l 1:2121 31
reduction unsuccessful

| ?= quicksort2([1,2,3,2,1]).
[1,1,2,2, 31
reduction unsuccessful

7.3 WAM

This chapter presents a FLOP program which translates Prolog clauses into an
abstract Prolog instruction set [WARREN 83]. It is based on the example of partial
evaluation presented in [KURSAWE 86]. The basic idea behind partial evaluation is
described in Section 6.2 (Compiling FLOP to Prolog).

The following is an implementation of apm-1 and apm-2 provided in [KURSAWE
86]. The removal of the eager operators in the lines denoted by the comment /* apm-2 */
unravels the source program only down to the apm-1 level. The insertion of eager
operators in these locations cause further evaluation to the apm-2 level. The syntactic
structure of the source code is examined in post-LHS. The cuts in post-RHS are added
mainly for efficiency.

1= op (700, xfx,':=").

unwind (P) =>
{var (P), write('cannot unwind a variable.'), nl, !,
fail},

unwind((H:-G)) =>
{functor{H,F,N), functor (NewH,F,N),
H =..[ |HL], NewH =..[_ [NewHL]l},
{NewH :- ?comma_cat (?unipp_args (HL,NewHL), G}),
{'y.
unwind (H) =>
2unwind({H:-true)),

{1}.
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unipp(S,T) =>
{var(s)},
5 =T,
{'}.
unipp({s,T) =>
{atomic (S) },
? unipp_constant (5,T), /* apm-2 */
{ty.
unipp(S,T) =>
{struct (S}},
? unipp_struct(s,T), /* apm-2 */
{'.

unipp_constant(5,T) =>
{var(T), T:=C; T==C),
('},

unipp_struct(5,T) =>
{functor(S,F,N}, S=..[_|SL]},
{{var{T), functor(T,F,N) ;
struct (T}, functor(T,G,M), F==G, N==M),
T=..[_ITL],
? unipp_args (SL,TL}), /* apm-2 */
{'r.

unipp_args{[1l, []) =>
true,
{1y.
unipp_args ([SISL], [TITL]) =>
{?comma_cat (Punipp(S,T), ?Zunipp_args{SL,TL))),
{'y.

comma_cat (T1,T2) =>
{comma_cat(T1l, T2, R)},

R.
comma cat (Tl, T2, (T1, T2}) :- var(Tl), !.
comma_cat ((T, T1), T2, (T, T3)) :- comma_cat(Tl, T2, T3),

comma_cat (T1, T2, (T1, T2)).

struct (X) :-
novar (X),
functor(¥X, F, N),
N>0, !.
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The unwind rewrite rule converts the initial Prolog clause into a normal form, one
in which there is at least one subgoal of the head goal. Compilation of the two append
clauses is shown below:

| ?= unwind(append([], L, L}).

append{(a, B, C)

{ v
A :=D
| A ==1D
Ve
E := B,
E := C,
true.

| ?= unwind{(append([X|Ll1l]), L2, [X|L3]) :-
append (L1, L2, L3))}).

append{a, B, C) :-

{ var(A),
functor(a, '.', 2)
| struct (i),
functor (A, D, E),
LI B D,
2 == E

Yo

A= [F,G,Hl,

I :=¢G,

Jd := H,

true,

K := B,

{ var(C),
functor(C, '.', 2}

| struct (C),
functor(C, L, M),

1Y == L,
2 == M
Y,
C =.. [N,0,P],
I :=0C,
Q =P,

true,
append(J, K, Q).
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7.4 DCG In FLOP

The relationship between definite clause grammars (DCGs) [CLOCKSIN 81] and
logic programming has been well established. DCGs become executable context free
grammars under SLD-resolution when compiled into Horn clauses by a notational
transformation in which additional parameters are added for input and output. Since it has
already been shown in Chapter 3 (Functional Logic Programming) that SLD-
resolution is a special case within functional logic programming, DCGs are clearly
executable within FLOP if a similar transformation is made. Currently, there is related
work being done at UCLA on functional grammars [CHAU 88].

This section demonstrates that there is a more direct relationship between DCGs
and FLOP than between DCGs and Horn clauses. More specifically, as DCG are a
particular form of rewrite rules, they can be expressed in FLOP such that they are directly
executable with no modifications.

First, a connective for DCG symbols must be selected, say #. This operator is used
to connect the items within each grammar rule. The following grammar represents a
simple sentence structure.

sentence => ? {(noun # verb # object).
object => ? (article # noun).

noun => [tom].
noun => [mary].
noun => [lunchl].
noun => [moviel}.

verb => [saw].
verb => [ate].

article => [a].
article => [the].

Following the usual convention, terminal symbols are represented as members of
a list. Now the rewrite rule for the connective # must be defined. Since each argument
generates a list of atoms, the return value is simply the appenad of these two lists.

{((& TL) # (& T2)) => ? append(Tl, T2).

DCGs can be both generators and parsers. The following execution illustrates the
use of a DCG as a generator using the above grammars:

| ?= object.

[a,tom] ;

[a,mary] ;

[a, lunch] ;

[a,movie] ;

[the,tom] ;

[the,mary] ;

[the, lunch] ;
[the,movie] ;
reduction unsuccessful

43



Note that all possible forms of the object are generated. The next trace demonstrates
DCG as a parser:

| ?= sentence => [tom, ate, the, lunch].
[tom,ate,the, lunch] ;
reducticon unsuccessful

With the definition of # above, each term is fully evaluated before it is unified
with the list to be parsed. This can be improved by employing difference lists. The use of
difference lists allows unification with the list to take place as nonterminal in the
grammar is reduced. Therefore, failure can be detected sooner. To accommodate the use
of difference lists, the # operator is redefined with the following rule:

(& (S0/T) # & (T/S)) => S0/8.

Also, a simple function is added to convert each terminal into a difference list.
This is accomplished by the following terminal function:

terminal (T) => [T|S]/S.

The following is an implementation of the identical grammar above using a
difference list format. Also, in this next version, a parse tree is generated as well:

sentence (sentence (Noun, Verb, Object)) => 7 {
noun (Noun) # verb(Verb) # object (Object)
).

object {(object (Part, Noun)) => ? (
article(Part) # noun (Noun)
).

noun (noun {(tom)) => ? terminal(tom).
noun {noun (mary)) => ? terminal (mary).
noun (noun (lunch)) => ? terminal {lunch).
noun {noun {(movie)} => ? terminal {movie).

verb (verb(saw)) => ? terminal (saw).
verb(verb(ate)) => ? terminal (ate).

article(part(a)) => ? terminal{a).
article(part(the)} => ? terminal{(the).

Now, a simple trace of its execution:

| ?= sentence(X) => [tom, ate,the,lunch]/[].
[tom, ate, the, lunchl /[]
X=sentence (noun{tom), wverb{ate),

object (part (the), noun{(lunch))) ;
reduction unsuccessful

Note that X is bound to the parse tree. Also, the second argument of the => functor is
specified as a difference list.

As in Prolog, arbitrary FLOP goals may also be inserted within each grammar
rule. Since grammar rules are directly executed without a syntactic preprocessor,



however, FLOP goals which are not legitimate items of the grammar rule must also return
some value. More specifically, their return value must be a list to accommodate the #
operator. Furthermore, they must not modify the actual list of terminals generated by a
rule. This can be accomplished if FLOP goals which are not legitimate items of the
grammar return an empty list of terminals. We can designate a special function called,
say, non_dcg! which evaluates arbitrary flop goals. The following rule implements this:

non_dcg{& Goal) => [].
non_dcg{& Goal) => [8]/S.

The first rule can be used for the version of our DCG example, where the list of terminals
are represented as simple lists. The second is for the second version which uses difference
lists. In both versions, the function returns the appropriate representation of a null list if
its argument is reducible, where no restrictions are placed on the return value of the
argument.

1In Prolog, curly braces {} are traditionally used to designate additional goals that supplement the
grammar. This term is not used in FLOP because it is already used for evaluating Prolog predicates within
FLOP rewrite rules.
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CHAPTER 8 - FUTURE WORK

FLOP shows a great potential as a general programming language, as many
problems may be easily and cleanly formulated in a system which offers simultaneously
offers the advantages of functional programming and logic programming. However,
FLOP must now be vigorously tested by using it to write more sophisticated and
demanding programs.

So far, FLOP has been implemented only within Prolog. A direct implementation
of FLOP in a lower level language, such as C, may yield significant improvement in
efficiency. Certainly, it is more reasonable to run Prolog programs in FLOP, as opposed
to the other way around, for it would be trivial to enhance FLOP so that Prolog programs
can directly executable. A prudent approach might to design a low level abstract machine,
one analogous to the WAM [WARREN 83] for Prolog. Further, as there are a number of
common underlying mechanisms between FLOP and Prolog, much of the knowledge
gained in Prolog technology should be directly applicable in implementing FLOP
systems.

There are several issues which must be resolved, however, in order to make a
direct implementation of FLOP feasible. First, a number of features which are currently
handled by the Prolog environment, such as meta-logical and extra-logical predicates,
must be added. Second, a useful debugging environment must be provided. Finally, a
mechanism for modifying the backtracking behavior, one analogous to the cut in Prolog,
must be designed. It is the author's view that elegant solutions for the latter two issues are
far from trivial and will require a spark of ingenuity.

The current FLOP system reflects a design process in which simplicity, uniformity
and generality have been the primary goals. More pragmatic issues concerning
programmability and efficiency have yet to be thoroughly studied. Nevertheless, a
number of areas of enhancement and research have already surfaced.

There are a number of functions, of which conjunction is a prime example, for
which modification of lazy reduction would enhance the programmability and the
usefulness of lazy evaluation. With the conjunction operator, the right argument should
be lazy reduced, if and only if the lazy reduction of the left argument succeeds. Currently,
all of the eager terms within both arguments are reduced first, before the conjunction
operator itself is reduced. A simple solution would be to designate conjunction as a
special case under lazy reduction. However, a more general mechanism may be devised
so that other functors with similar properties may be added.

With respect to the partial evaluation of FLOP rewrite rules into Prolog
predicates, in the current implementation, the process unconditionally terminates when
reduce goals are detected. Perhaps a special class of rewrite rules can be designated for
which further evaluation can be performed. This method may yield significant
improvement in the execution speed of FLOP programs.

Currently, programming languages suited for developing prototypes are in general
inadequate in producing efficient programs. Therefore, programs which require
"industrial strength" efficiency must be reimplemented in a lower level language. It may



be possible to bridge this gap by two methods: 1) by extending partial evaluation of
functions and 2) by incorporating lower level constructs in FLOP. Then, a program may
be incrementally modified in its prototype environment until the desired efficiency is
attained.

Another issue deals with notational convenience. It is often cumbersome to add an
eager operator in front of RHS. One possible solution is to introduce another function
specifier symbol, say ->, which would automatically insert an additional eager operator.

The Prolog interface mechanism may be generalized, such that the insertion of
optional Prolog goals may be less restrictive. Currently, optional goals are limited to two
locations, post-LHS and post-RHS. One possibility is to generalize the current meta-
syntax so that optional goals may be added with each eager and argument operator. This
scheme seems reasonable as additional goals (reduce/2) are introduced solely by the
presence of the two operators. This additional flexibility would provide finer control over
the execution of FLOP programs, especially with respect to modifying its backtracking
behavior with cuts. Note also that, in the current version, there is no mechanism for
inserting cuts prior to the goals generated by the & operator.
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APPENDIX I - LOG(F)

The following is a synopsis of the LOG(F) rewrite system. For a more complete
presentation of LOG(F) refer to [INARAIN 88].

F* is a non-Noetherian rewrite rule system (allows infinite reductions). An F*
program is a set of reduction rules defined as follows:

Variables. There is a countably infinite list of variables.

Function Symbols. For each i, i 2 0, there is a countably infinite list of i-ary
function symbols.

Connectives. The connectives are =>, {, ), ", ".

Constructor Symbols. There is a subset of the function symbols called
Constructors.Each element of the constructors is called a constructor symbol. For each n,
n=0, Constructors contain an infinite number of n-ary function symbols. In particular, o,
true, false, [] are O-ary constructor symbols and | a 2-ary constructor symbols.

Term. A term is either a variable, or an expression of the form £ (t1,...,tp)
where £ is an n-ary function symbol, n=0, and each t; is a term. A term is called ground
if it contains no variables. Unless otherwise stated, by a term we mean a ground term.

Reduction Rules. A reduction rule is of the form Lus=>rHS, where LHS and RHS
are terms possibly containing variables. The following restrictions are placed on rLus and
RHS:

a. 1HS is not a variable.

b. LHs is not of the form ¢ (t1, ..., ty) where c is an n-ary constructor
symbol, n=0.

c. Ifuusis £(ty,...,tn),n20, each t; is a variable or a term of the
form ¢ (x1, ...,Xq), where ¢ is an m-ary constructor symbol, m=0,
and each x; is a variable. Note that => rules with left-hand-sides of
arbitrary depth can easily be expressed in terms of rules with left-hand-
sides of depth at most two.

d. There is at most one occurrence of any variable in LHS.

e. All variables of rus appear in LHS.

E=>pE1. Let p be an F* program and E and E1 be terms. We say E=>pE1 if there is
arule Lus=>RrHS in P such that Lus and E unify with m.g.u. Q and 1 1s RESQ. We also

say that E reduces to E1 by the rule Lus=>rus. If P is clear from the context we write
E=>E1 in place of E=>pE1.
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E->pE1l, E-*>pEl. Letp be an F* program and E be a term. Let G be a subterm of
£ such that G=>pH. Let £1 be the result of substituting # for G in E. Then E->pE1. -*> is the
reflexive-transitive closure of ->. Again, if P is clear from the context we write E->E1
and E-*>E1 in place of E->pE1 and E-*>pE1.

Reduction. Let » be an F* program. A reduction in P is a sequence of £1, E2, ...
such that for each i, when Ei and Ei+1 both exist, Ei->pEi+1.

Simplified Form. A term is said to be in simplified form if it is of the form
c(ty, ..., tn) where c is an n-ary constructor symbol, n>0, and each t; is a term. F is
called a simplified form of & if g-*>F and F is in simplified form.

Successful Reduction. Let p be an F* program. A successful reduction in P is a
reduction E0, . .., En, n20, in p, such that En is simplified.

Reduction Strategy of F*. Let p be an F* program. We now define a reduction
strategy, selectp for p, Informally, given a term E it will select that subterm of £ whose
reduction is necessary in order that some => rule in P apply to the whole of E. Where
£(t1,...,tn) is a term, n=0, the relation selectp is defined using the following pseudo-
Horn clauses:

selectp(f(t1,...,tn), £{t1,...,tn)) if
flty,...,tn) =>p X.

selectp(f(ti,...,tn), X) if
thereisarule £(.y,...,Li,...,Ly) => RHS in P, and
tj does not unify with 1, and
selectp(ti, X).

N-step. Let p be an F* program and E, G, 1 be terms. Suppose that selectp (E,G)
and G=>pH. Let E1 be the result of replacing G by H in E. Then we say that £ reduces to E1
in an N-step in p . The qualification "in " is omitted when p is clear from context. The
prefix N in N-step is intended to connote normal order.

N-reduction. Let ¢ be an F* program. An N-reduction in p is a reduction E1, E2,
.. in p such that for each i, when Ei and Ei+1 both exist, Ei reduces to Ei+1 in an N-
step in p. In particular, the sequence £ where E is a term, is an N-reduction in p. The
qualification "in p" is omitted when P is clear from the context.

Theorem - Completeness of F*, Let p be an F* program and g0 a term. Let £1,
E2, ..., En=c(t1,...,tx), X20, n>0, be a successful reduction in p, for some constructor
symbol c. Then, there is a successful N-reduction DO..., in P.

Compiling F* Into Horn Clauses. A simple algorithm to compile F* programs
into Horn clauses is described. LOG(F) is defined to be a logic programming system
augmented with an F* compiler. The translation of p into Horn clauses proceeds in two
stages.

Stage 1. For each n-ary constructor symbol ¢ in p, and where xy, ..., X, are
distinct variables, generate the clause:

reduce{c(X1,...,Xp},sC(X1s-..,Xn)) .
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Stage 2. Let £(Lq, . .., Ly) =>RES be a rule in P where £ is an m-ary, m20, non-
constructor function symbol and each of rus and Ly, ..., Ly is a term, possibly
containing variables. For each such rule perform the following steps:

a. Leta,,...,Aa,be distinct logical variables none of which occur in the
rule. For any i, if 1; is a variable, let @; be a;=1L;. If L; is
c{X1,...,Xn) Where c is a constructor symbol and each x; a variable,
let 04 be reduce (rj,c (X1, ..., %Xp)).

b. Let out be a logical variable not occurring in the rule and different
from a,, ..., A, Generate the predicate reduce (RHS, Out).

¢. Generate the clause:

reduce{f(&1,...,Bn), Cut) :-
Q1,...¢/0n, reduce{RHS, Out).
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APPENDIX II - An Implementation of FLOP

The following Prolog program consists of a FLOP-to-Prolog compiler, FLOP
interactive shell, and other utility routines. The compilation algorithm employed is
described in the Section 7.2 (Compiling FLOP to Prolog). Each FLOP rewrite rule is
transformed into a Prolog clause whose functor same as the RHS, but whose arity is one
greater than RHS.

The program presented runs in C-Prolog [PEREIRA]. Most of the code, however,
should be readily portable to other systems.

- op{200, fy, '&').
:— op{(200, fy, '2").
- op{1200, xfy, '=>').

flop_to_prolog({LHS => RHS), PROLOG) :-
var (RHS), !,
normal_ flop to_proleg((LHS => RHS),
true ,true, PROLOG).
flop_to_prolog({LHS => RHS, {Post_RHS}}, PROLOG) :-
var (RHS), !,
normal flop to proleog({(LHS => RHS),
true, Post_RHS, PROLOG).
flop_to_prolog{(LHS => {Post_LHS}, RHS), PROLOG) :-
var {(RHS), !,
normal_flop_to_prolog{(LHS => RHS),
Post_LHS, true, PROLOG} .
flop to prolog((LHS => {Post_LHS}, RHS, { Post_RHS}},
PROLOG) :- !,
normal flop to preolog{{LHS => RHS), Post_LHS,
Post_RHS, PROLOG) .
flop to prolog({LHS => [Post_LHS}, RHS), PROLOG) :- ',
normal flop to prolog((LHS => RHS),
Post_LHS, true, PROLOG) .
flop_to_prolog({LHS => RHS, {Post_RHS}), PROLOG) :- ',
normal_flop to_prolog({LHS => RHS},
true, Post_ RHS, PROLOG) .
flop_to_prolog({LHS => RHS), PROLOG} :- !,
normal_flop_to_prolog((LHS => RHS),
true ,true, PROLOG).
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normal flop to_prolog((LHS=>RHS), Post_LHS, Post_RHS,
{Head:-Bedy)) :-

LHS =.. (F | FPList],
makelist (FPList, AAList),
Tmp Head =,. [F | AAList],

new_head (Head, Tmp_ Head, Rslt),

lhs_matching_code (ARList, FPList, Argcode),

lazy reduce code (RHS, Rslt, RHScode),

check_result (Post_LHS, PLHScode, Rslt),

check result (Post_RHS, PRHScode, Rslt),

remove_true { {Argcode, PLHScode, RHScode, PRHScode),
Body), !.

lazy reduce_ code (Term, Term, true) :-
var (Term), !.

lazy reduce_code(? Term, Rslt, {Code, Goal)) :-
lazy_reduce_code (Term, RTerm, Code),
new_ head(Goal, RTerm, Rslt}, !.

lazy reduce_code(Texrm, Rslt, Code) :-

Term =,., [F | AList],
makelist (AList, RAList},
Rslt =.. [F | RAList],

lazy reduce list_code (AList, RAList, Code), !.

lazy reduce list code([], [], true} :- !.
lazy_reduce list_code([A | AList], [RA | RAList],
{(Code, Morecode)) :-
lazy reduce code(A, RA, Code),
lazy reduce_list_code (AList, RAList, Morecode), !.

lhs_matching code({], [], true} :- !.
lhs_matching code({AA | AAList], [FP | FPListl],
{Argcode, Morecode)) :-
match_one_arg_code (AA, FP, Argcode),
lhs_matching_code (AAList, FPList, Morecode), !.

match_one_arg code(AA, FP, true) :-
var (FP),
AA = FP, !.
match one arg code(AA, & FP, {(Goal, FPcode)) :-
new_head(Goal, AA, RFP),
lazy_ reduce code(FP, RFP, FPcode), !.
match one_arg_code(AA, FP, FPcode) :-
lazy_ reduce_code(FP, AR, FPcode), !.

new_head (reduce (Term, Rslt), Term, Rslt) :-
var{Term), !.
new head(Goal, Term, Rslt) :-

Term =.. [F | AList],
det append{AList, [Rslt], NewAList),
Goal =.. [F | NewAList], !.

det_append([], L, L) :- !.

det append([X|Xs], Ys, [X|zZs]) :- det append(Xs, Ys, Zs), !.
makelist ([], []) :- !.

makelist ([ |Xs], [ _ILs)) :- makelist(Xs, Ls), !.
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remove true (Term, Rslt) :-
flatten_commas (Term, FlatTerm),
rm_true(FlatTerm, Rslt}).

m_true({true, Cs), Rs) :-
rm_true(Cs, Rs), !.

rm true({X, true), X) :~ 1.

rm true((X, true, ¥s), Rs) :-
rm_true({(X,Xs), Rs), !.

rm true((X, Cs), (X, Rs)) :-
rm_true{Cs, Rs}), !.

rm_true({X, ¥X) :- !.

flatten_commas {{(L,R), Rslt) :-
flatten commas (L, FL),
flatten commas (R, FR),
link_commas (FL, FR, Rslt), !.
flatten_ commas (T, T).

link_commas ({L, Ls), Rs, (L, LRs}) :-
link_commas(Ls, Rs, LRs), !.
link_commas (L, Rs, (L, Rs)).

check result (T, T, Rslt) :- var{T), !.
check_result ({(X, Xs), (X, Rs), Rslt) :-
var (X),
check_result (Xs, Rs, Rslt), !.
check result({result(T), Xs), ({(T=Rslt, Rs), Rslt) :-
check result (Xs, Rs, Rslt}), !.
check result((X, Xs), (X, Rs), Rslt) :-
check_result (Xs, Rs, Rslt), !.
check result (T, T, Rslt).

/******************************************************/

/* entry point to the reduction process. */
/* these predicates must exist during a flop session. */
/******************************************************/
reduce({T, T} :- var(T), !, fail.

reduce (T, R) :- new head(Goal, T, R), call(Goal).

/***********************************************t******/

/* routine for compiling a rewrite rule and *x/
/* pretty printing it. */
/**************************************t***************[
print_flop{X) :-

nl, nl,

write (*FLOP Rule:'), nl,

\+ \+ portray clause(X), nl,

flop to prolog(X, Y),

write('Prolog Clause:'), nl,

\+ \+ portray_clause(¥), nl, nl, !,
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/******************************************************/

/* for compiling FLOP rewrite rules in the File.

*/

/******************************************************[

compile flop(File) :-
seeing(0ldFile, File),
repeat,
read (Rule),
(Rule == end_of_file ->
see (Oldrile), !
H flop_to_proleg(Rule, Clause},
assert (Clause),
fail

/******************************************************/

/* FLOP shell - an interactive interpreter.

*/

/******************************************************/

flop :-
prompt (014, '*'),

nl, nl,
write('Starting FLOP Interactive Environment.'),
nl, nl,
repeat,
nl, write('| ?= '),

read(Term, Vars),
(Term==end of_ file ->
! ; reduce and_print (Term, Vars),

reduce_and print {(Term, Vars) :-
lazy reduce_code (?Term, Rslt, Code),

{ call (Code)
; nl, write('reduction unsuccessful'), nl,
!, fail

Ve

nl, write(Rslt), write(' '),
print_wvars (Vars),

get_semi, !, fail.

print_vars([]) :- !.
print_vars([V | Varsl) :-
nl, write(V), write(' "),
print_vars(vars), !.

get semi :- get0(N), get semi{N).
get semi{10) :- !.

get_semi (59) :- skip(10}, !, fail.
get_semi (26) :- abort.

get_semi(_) :- get_semi.
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APPENDIX III - FLOP-to-Prolog Compiler In FLOP

The following FLOP program compiles FLOP programs into an equivalent Prolog
program. The basic algorithm employed is one of partial evaluation described in Section
(7.2 Compiling FLOP to Prolog). Each FLOP rewrite rule is transformed into a clause
whose functor is same as the functor of RHS, but whose arity is one greater than RHS.
The Prolog interface mechanism, namely, the insertion of Prolog goals in post-LHS and
post-RHS positions, is not handled by this program.

In this compiler, the ? operator has been replaced by the eop symbol and & by acp
. This is necessary, since these symbols are always interpreted. Namely, there is no way
of quoting them.

:- op (200, fy, 'eop'}.
1— op (200, fy, ‘'aop').

unwind flop{{(LHS => RHS5}) =>
(Head :-
? remove_true((

? (LHS =.. [F | FPList]},
makelist (FPList, AAList),
(THead =.. [F | AAList]),
new head{Head, THead, Rslt),
lhs_matching{AAList, FPList),
lazy reduce(RHS, Rslt)

(R B R VN

1)
be {1},

lazy_ reduce (Term, Rslt) =>
{ ? var (Term),
? (Term = Rslt)
e (V).
lazy reduce({ecp Term), Rslt) =>

{ ?lazy_reduce(Term, RTerm),
? new_head(Goal, RTerm, Rslt),
Goal

Yo {1,
lazy_reduce (Term, Rslt) =>

{ ? (Term =.. [F | AList]),
? makelist (AList, RAList),
? (Rslt =.. [F | RAListl),

? lazy_reduce_list (AList, RAList)
Yo {1},
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lazy reduce_list{([}, []) =>
true,
{'}.
lazy_reduce list([A | AList}, [RA | RAList]} =>
{ ? lazy_ reduce (A, RA),
? lazy_reduce list (AList, RAList)
Y. {11}

lhs_matching([], [1) =>
true,
{1}).
lhs matching ([AA | AAList], [FP | FPListl) =>
{ ? match_one_arg(AA, FP),
? lhs matching(AAList, FPList)
Y. {!}.

match_one arg(AA, FP) =>
( ? wvar (FP),
? (AA = FP)
Y. {11,
match_one_arg(AA, aop FP) =>
{ ? new head{(Goal, AA, RAR),
Goal,
? lazy_reduce (FP, RAR)
Y {11
match _one _arg(AaA, FP) =>
? lazy reduce(FP, AR),
{'}.

new_head{reduce (Term, Rslt), Term, Rslt) =>
{var{(Term)}, true, {!}.
new_head{Goal, Term, Rslt) =>

{ ? (Term =.. [F | AListl),
? det_ append{AList, [Rslt], NewAList},
? (Geal =.. [F | NewAList])

Yo (M)

det_append({], L, L) => true, {!}.
det append([X{Xs], ¥s, [X|Zs]) => ? det_ append(Xs, Ys, 238),
{'}.

makelist ([1, []) => true, {!'}.
makelist {[_ | AList], [_ | RAList}) =>
? makelist (AList, RAList), {!}.

remove_true (T) => ?rm true(?flatten_commas(T)), {!}.

rm_true({true, Rest)) =>

? rm_true(Rest), {!}.
rm_true({(Untrue, true)) => Untrue, {!}.
rm true({(Untrue, true, Rest)) =>

? rm_tzrue((Untrue, Rest)), {!}.
rm_true ((Untrue, Rest)) =>

{Untrue, ? rm true(Rest)), {!}.
rm_true (Notcomma) => Notcomma, {!}.
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flatten commas((L,R)} =>
? link commas (?flatten_commas (L), ?flatten_commas(R)},
{tr.

flatten _commas(T) => T, {!]}.

link commas{{(L, Ls), R) => (L, ?link_commas(Ls, R)), {!}.
link_commas (L, R) => (L, R), (!}.
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