Computer Science Department Technical Report
University of California
Los Angeles, CA 90024-1596

MIRAGE: A COHERENT DISTRIBUTED SHARED MEMORY DESIGN

Brett D. Fleisch April 1989
Gerald J. Popek CSD-890020

Mirage: A Coherent Distributed Shared Memory Design¥

Brett D. Fleisch
Gerald J. Popek

University of California, Los Angeles

Abstract

Shared memory is an effective and efficient paradigm for interprocess communication.
We are concerned with software that makes use of shared memory in a single site system and its
extension to a multimachine environment. Here we describe the design of a distributed shared
memory (DSM) system called Mirage developed at UCLA. Mirage provides a form of network
transparency to make network boundaries invisible for shared memory and is upward compatible
with an existing interface to shared memory. We present the rationale behind our design
decisions and important details of the implementation. Mirage’s basic performance is examined
by component timings, a2 worst case application, and a “representative” application. Qur
experience is that the tuning parameter in our design can improve application throughput for
some instances of page contention. In other cases, we find the effect of thrashing on overall
System performance can be ameliorated using our tuning parameter.

1.0 Background

In this work we describe a protocol for a distributed shared memory (DSM) system and
discuss the implementation of a prototype called Mirage. We have chosen to do a kemei
implementation rather than an analytical or simulation model or library layer, for a variety of
reasons. Some of these include the difficulty in otherwise accurately capturing: 1) the
asynchronous behavior of computer systems, 2) the interactions between scheduling, interrupt
processing, and the user program requests and 3) the host behavior and network loading from the
use of the protocols, and the interaction of all these with applications. Although there has been
some work in these areas, an actual implementation can provide a more substantial statement of
the viability of DSM.

Developing a kernel prototype has its own difficulties. One of the most pertinent is in
testing the prototype using realistic applications that exercise the system’s functonality. It is
also difficult to compare it fairly with previous mechanisms because of the many differences.
Toy programs are often used to demonstrate the effectiveness of a system. However, this
technique calls into question how effective these programs are at benchmarking the functionality
in a realistic way. Standardized single machine benchmark programs may not be appropriate
and we have no standard benchmarks with which to exercise shared memory.

To improve our prospects of obtaining useful applications for performance testing we
built a distributed shared memory system that is upward compatible with the UNIX System V
IPC defined interface{ATT86]. A comparison between single site and multisite performance of
applications used in the research and industrial community should indicate how effective our
proposed distributed shared memory model is in practice.

t This research was sponsored by DARPA Contract No. F29601-87-C-0072

2.0 Communications Approaches

A wide variety of approaches to handling the communication requirements of existing
systems have emerged over the years. One of the most successful and widely used mechanisms
is message passing. In message passing, data is exchanged by placing data in messages and
Tansmitting the message from sender to receiver; synchronization is accomplished because the
sender must have sent a message before the receiver can receive it. The approach is an elegant
one, and perhaps because of the similarity between network packets and messages, has evolved

as a powerful structural tool in the design and implementation of operating systems over the past
three decades.

The message passing approach may not be as well suited for multiprocessors and tightly
coupled processors that have access to shared memory. Using a message passing approach in a
shared memory multiprocessor requires the programmer to use conceptually different primitives
and organize the programmed code in a different way than in a shared memory system, Often
message passing systems impose a significant performance penalty in data copying when passing
a message locally. Further, passing complex data structures may be more convenient using
shared memory than using message passing.

Message passing implementors have begun to explore memory management support for
communication (AccentfRASHS1], Mach{ACCES6)). Memory management is used to pass
messages locally using sharing techniques (copy-on-write). However, at the other extreme, the
exploration of memory management or shared memory in terms of network communications
primitives is relatively new. Qur work focuses on the latter case.

2.1 Past Work

In Appendix I we examine past work related to our distributed shared memory research.
We begin by looking at the work of Kai Li[LI86]. We then examine the Agora work[BISISS,
FORI87} and then a hardware approach to distributed shared memory presented by [RAMASS].
We conclude by reviewing Mach{ACCES86]. Readers interested in past work are directed to
Appendix L

2.2 The System V Interface Model

In this section we describe the System V Model of shared memory. Its selection as the
basis of a DSM prototype is independent of the underlying protocol. In fact, one could develop
other protocols for DSM and adopt the System V interface: conversely, one could use other

interfaces for our protocol.

In Mirage, as in System V, processes access shared memory through the use of a
segment. A segment stores shared memory data, Segments are not meant to store program text
nor System state except as raw data. A process creates a shared segment by defining a segment’s
size, name, and access protection. Segment access protection works similarly to UNIX file
access protection, but is limited to read and write permissions. The name provides a mechanism
by which other processes can locate the segment. In particular, processes atrach the segment
into their virtual memory address space by name. The attaching process can choose the exact
virtual address range. Altemately, the process may elect to place the segment at a first-fit
location in the address space. Unlike other sharing models, processes can share locations at
different virtual address ranges. Once attached, the shared memory c¢an be used like any normal

locations of memory, the only difference being that changes to the underlying memory are also
visible to the other processes that share the segment. When a process is finished with the
segment it may be detached. The last detach of a segment destroys it.

3.0 Goals

The goals of this work are: 1) to present a protocol for distributed shared memory, 2) 10
describe the implementation of Mirage, 3) to measure the performance of Mirage applications.
To accomplish 3) we examine component timings and an important worst case application.
Further, we attempt to characterize average casc performance with a "representative” case. This
latter case provides an evaluation of our tuning parameter.

The following are features of the current implementation:

Transparent Access

The standard UNIX interface is preserved. Access to local memory uses the same interface as
access to remote memory. The interface is used to create, locate, and destroy shared memory
segments. Reads and writes to shared memory function the same in the local case as the remote
case.

Preserved Semantics

The UNIX System V IPC semantics are preserved. Access to memory is made through the same
system V IPC calls and uses the same architectural interface.

Binary Compatibility

Applications written for the System V IPC interface should not need to be recompiled. This is a
consequence of System V interface compatibility.

Performance

Our goal is to minimize the overhead in distributed shared memory access and show effective
performance of the protocols employed.

4.0 Environment

Our prototyping environment consists of 3 VAX 11/750s networked together using a 10
megabit Ethernet{METC76). The VAXs run an carly version of the Locus operating
system{POPE81, WAL K83) compatible with the UNIX System V interface specifications. We
briefly highlight Locus and describe how that system led to the development of our model and
the prototype.

4.1 Locus

The Locus operating system is a distributed version of UNIX that provides a superset of
UNIX services. Support for the underlying network is almost entirely invisible to users and
application programs. The system supports a high degree of nerwork fransparency: that is, it
makes the network of machines appear to users and programs as a single computer, completely
hiding machine boundaries during normal operation,

Locus provides a fully ransparent file system and facilities for distributed processes. In a
Locus network, which may consist of machines of various CPU types, both files and programs
may be moved without effect on correct operation. Local and remote operations appear the same
in Locus. Central to the design of the Locus architecture is the underlying distributed file system.
The file system supports a number of high-reliability facilities, including a more robust facility
than that of conventional UNIX systems, and support for interprocess communication, Process
Creation and migration are fully supported.

The Locus system has been operational for over seven years. Early on, the need for
extending IPC mechanisms became apparent; work commenced in the summer of 1984 towards
this goal. We began by upgrading the System V IPC model. By 1986, results were published
describing new distributed interprocess communication facilities based on System V messages
and semaphores that had been added to Locus(FLEI86]. Work on a distributed shared memory
system began in late 1987. About 8 months later the design and implementation was compiete;
roughly 4 months were spent exploring the design and 4 months implementing. Subsequently,
Mirage's performance was examined.

5.0 Coherence

At the outset of the design we decided that it would be unacceptable for processes to read
stale data. Two approaches to memory consistency control were examined: coherence and user-
level synchronization. In the next secfion problems with the latter approach are described. Like
Li[LI86] we have chosen to maintain coherence at the lowest system level. A coherent
implementation is one in which a write to an address in a given segment is always visible by all
subsequent read operations to the same address, independent of the machine location on which
the read takes place. Further, all writes to an address always preserve the latest value written.
As in a single machine, it is the responsibility of user-level processes to synchronize writes from
different processes.

To implement coherence, fixed size pages of the segment (the same pages as the
hardware memory management) are used as the basis for all intersite consistency. Although only
one site in a network will have a valid writable copy of a given page at any instant, there may be
many sites simultaneously possessing readable copies of the page. In general, a given page will
have either one site acting as writer or multiple sites acting as readers.

There are many situations in which an implementation of shared memory coherence
could perform poorly. A worst case scenario might be an alternating sequences of reads and
writes to the same page issued by different sites. This situation requires that the page be written
and then transferred to the reader for the last write to be visible. The page would be passed back
and forth between sites in alternation. Qur implementation attempts to handle such pathological
cases of thrashing with tunable controls explained in Section 6.1.

5.1 Motivation for Coherence: Synchronization vs. Coherence

An alternate approach to consistency control rcduires that user programs provide all
synchronization. For example, System V IPC provides semaphores that programmers could
select to assure an up-to-date view of shared memory.

Consider the case of two different tasks, each with a critical section that mediates access
to two shared data regions. Suppose these data regions have different virtual addresses on the
Same page. Assume that the programmer uses semaphores as the synchronization mechanism,
that the two critical sections execute at different network sites, and that both critical sections use
different semaphore variables. Strictly speaking, we should be able to interleave these critical
sections, because they have different semaphore variables and access different shared data
regions(see Figure 1). But, since data for the two critical sections is located on the same page,
there is a consistency problem. The system must maintain the correctness of data on the page.

There are a number of approaches to maintaining page consistency. Serialization of the
critical sections is not considered atractive in a distributed environment since the critical
sections could execute at any site in the network and distributed serial scheduling may present
difficulties. Also, the method inherently inhibits parallelism. Locking might be considered, but
one must provide fine grain locks for noncontiguous locations as shown in Figure 1.
Furthermore, it may be difficult to determine precisely which locations to lock because high-
level programs generally do not make their mappings to physical locations visible. We do not
find this approach attractive nor do we find any satisfactory substitute for coherence. Coherence
gives a degree of flexibility and performance for user programs. User programs may employ
higher level synchronization primitives as a layer on top of the low level mechanism.
Applications that do not require synchronization need not be be burdened with their overhead,
but will still be provided with the benefits of page consistency.

6.0 Distributed Shared Memory Protocol Terminology

We expect cooperating processes will use DSM. In Locus as UNIX, user processes are
relatively heavyweight. Lightweight processes are used in the operating system to service
network messages and provide efficient remote access.

Users organize shared memory data in segments which may be attached into the address
space of a process with read-only or read-write protection. Segments attached read-only are
useful in some applications when cross network sharing is required with the restriction that the
data never be written. However, our discussion will, for the most part, focus on segments that
have been attached read-write by at least some of the processes involved in sharing.

A segment is partitioned into a set of pages. Pages are the unit of distribution because of
their fixed size and commonality with the underlying hardware. A Mirage process may read
segment pages, write segment pages, or both. Processes at network sites act as readers or writers
of a given page. Each process records whether or not its Scgment pages are present at the given
site. In addition, the protection of each page is stored in accordance with the hardware
architecture. In many architectures, as in ours, a page may be read-only or read-write.
Colocated processes share the pages that are present using the standard System V IPC
implementation mechanisms augmented for Locus.

Two Critical Sections Accessing a Shared Page

.

-

4 IEntr'y ’

[

LOCI
> Critical Section Locy

Access Loc 1
Access Loc 3

7777777
j Exit

COT TN

Y N B O O i . Y

LOC4

s sssssaoos B

Entry

VTP TITOTIIIr

Access Loc 2
Access Loc 4

> Critical Section

b W Y .

N
N
N
\
N
N
N,
[\
N
\
\
§
]

Y

Exit

PEEIIILIIEN IS Page Frame in Memory

-

Figure 1

There is one distinguished site associated with each segment, called the library site. The
library site is the controller for the pages of a given segment. Requests for pages are sent to the
library site, queued, and sequentiatly processed. Depending on the configuration there may be
several different sites used as library sites for the various segments created by user programs.
This case is envisioned for a network of homogeneous processors of similar power. In an
alternate configuration, one distinguished library site for all segments may be appropriate for a

The library site’s primary function is to service the incoming request queue and record
which sites are storing a given page. The library distinguishes writers from readers; there may
only be one writable copy of a given page in the network at any one time. While there may be
multiple read copies of the page in the net simultaneously, there may not be read copies at the
same time as the write copy. All pages must be "checked out” through the library. To obtain a
page, the requester sends a message to the library site and the requested page is returned directly
from the site which is storing it.

Another distinguished site in our model is the current clock site for a page. The clock
site is the site that has the most recent copy of a page. For example, if there is a writer for the
page on the network, its site is always chosen as clock site. On the other hand, if there are a set
of readers using the page simultaneously, one of the readers is selected and its site chosen as the
page’s clock site. We discuss the purpose of the clock site and why it is named this way in the
next section.

6.1 Distributed Shared Memory Protocol Overview

Segments consist of pages that may be distributed throughout the network to sites that
have had page faults and requested them. Locus interrupt handlers were modified to obtain the
most recent copy of a given page from another site. When a page fault or protection fault
occurs, the interrupt handler checks to see if the page is a shared memory page. If it is, the page
is associated with a segment, the library located, and a network message sent to the library site
queueing a request for the page. The network message indicates whether a read or write copy of
the page is required.

All requests for DSM pages are queued at the library. Write requests are sequentially
processed. Read requests for the same page are batched together and granted to all the readers at -
one time when the request is processed. During a user-level interrupt fault, the faulting process
awaits the library’s request processing by sleeping, the standard way UNIX tasks await the
completion of an /O operation.

A goal of this protocol is to ensure coherence. In order to maintain coherence, when a
process writes to a page, all readable copies of the page must be invalidated before the write
completes. Our invalidation unmaps and discards the page for all processes at all sites. If a
writable copy was outstanding instead of multiple read copies, the page with stale data must be
invalidated before the write to the new page completes. These operations are potentially
expensive because of the number of sites that may be involved and the frequency with which
these invalidations occur.

Our method attempts to: 1) provide fairness for each site using the page in order to
control thrashing that might otherwise ocurr, 2) decrease the number of times we perform
network invalidations, and 3) minimize the amount of network activity required to provide
coherence. To do so, we use a clock mechanism to control when a site may be interrupted from
its read/write processing to relinquish pages it is using. The clock mechanism grants the readers
or the current writer a time window (A) in which they are guaranteed to uninterruptably possess
the page. Much like the traditional time slice used when allocating processes to a central
processor, A is used to apportion time for the page (or the read page set) to the site(s). During
the time window, processes may read or write the page; the page may also be idle during
portions of A. The time window provides a control that allows fairness between processes
requesting page access, the current process using the page, and the library which attempts to0
invalidate the page on behalf of another request. In a sense, A provides some degree of control
over the processor locality, the number of references to a given page a processor will make
before another processor is allowed to reference that page.

To invalidate a given page, the library site sends an invalidation message to the clock
site. Recall the clock site is chosen to be one of the many readers or the current writer. When
the clock site gets the invalidation message, it checks to see if the page’s A has expired. If not,
the clock site replies immediately with the amount of time the library must wait until the
invalidation can be honored. The library waits until A expires and then re-requests the page’s
invalidation.

When an invalidation is accepted by the clock site, typically it: 1) invalidates the local
page, 2) invalidates any other outstanding readers, if the page is a read-copy and 3) distributes
the page to the new writer or any new readers. Table 1 below governs the specific actions of the
clock site depending on the modes of the specific request. The clock site will either be a reader
or a writer. The current state is indicated in the column "Current”. The column "Incoming"
indicates whether the incoming request is for readable copics of the page or a writable copy of
the page. The "Clock Check” column indicates whether the clock check is required. The
column "Invalidation” indicates whether it is necessary to invalidate the current copy of the
page.

Current | Incoming | Clock Check Invalidation
Readers Teadﬁ No No
Readers Writer Yes Yes, possible upgrade if
new writer is in old read set
Writer Readers Yes Downgrade writer to reader
Writer Writer Yes Yes

Table 1: Page Operations for Read and Write Requests

The actual protocol contains two important optimizations:

1. When a reader is upgraded to a writer, a new copy of the page is not sent; a notification
acknowledges the write request.

2. When write access is removed because readers require the page, the writer retains read
access.

T e ——— -“ -]

downgrade period, and the downgraded site requires subsequent write access, an upgrade can
occur. In total, two advisory messages are sent rather than first invalidating the page and then
later, when the process needs to Write, transmitting the complete page to the site. Figure 2 shows
an example of a remote page fault.

Table 1 shows there is only one case where the clock check can be ignored. This is the
case when there are read-copies outstanding and an additional read request for the page is
processed by the library. To assure proper invalidations, the current clock site must be fixed
when additional readers require page access. Further, the clock site must be informed of the
additional reader so that the proper sites are invalidated during the next invalidation phase.

6.2 Implementation Details

Our machine architecture deals with the segments using a page rable. In the architecture
we are using the page table is linearly structured. At a given site, for the processes sharing the
Same segments, and for the entries that pertain to those Segment pages, each process’ page table
entries refer to the same resident page frames. Thus, when a process attaches a Segment into its
address space, a copy of a master shared segment’s page table entries (PTEs) is conjoined with
$ page table entries. The conjunction of these forms the process’ virtual
memory address space. Figure 3 shows two processes sharing common segments. Pages are
512 bytes in the current implementation of Mirage.

In the standard implementation of System V shared memory, segments are part of system
space and are never swapped. In most machine architectures the valid bit indicates whether a
page frame is resident or has been swapped out. For standard System V shared memory the
PTEs are never marked invalid. Mirage needs to mark a page invalid to indicate that a page is
not present at this network site. To do this, Mirage must locate all PTEs in ail processes which
share the page and mark them invalid - not just the current process’s PTE. We discuss the
design alternatives and the solution we use shortly.

Pages whose writable (or readable) copics are not present at a site are marked invalid for
hardware interrupt processing to occur. We use an unused bit in the standard page table entry
which indicates that an awxiliary parallel page 1able should be consulted when a page fault
occurs. Table 2 shows an auxiliary parallel page table entry (auxpte). There is one shared copy
of the complete table for each segment at each site. There are N entries in this table that
correspond to the pages of the scgment. Generally speaking, most architectures do not have
sufficient space in the architecturally provided PTEs for the data stored in the auxpte.

Typed page fault detection is necessary for a reasonable implementation. The machine
architecture must be able to distinguish between a read page-fault and a write page-fault. Even
though some architectures can distinguish between these types of faults many operating systermns
never use this information in their memory management code. We have modified the interrupt
service routine assembly code to examine the VAX hardware bit that indicates the fault type and

have passed this data to the Locus interrupt service routine.

Remote Page Fault

Library Site

4 Request
Invalidate and for Page
Relinquish Page
to Site A Pa

ge _ _
©) Relinquished Requesting Site
Here is the Site A
v page requested

®

Current Writer

If Site A requires a writeable copy, the current
writer is invalidated. |f Site A requires a
readabie copy, the current writer is downgraded
to be a reader.

Figure 2

.......

PPPPP

PPPPP

ppppp

........

........

PPPPP

.........

PPPPP

ppppp

......

PPPPP

Entries

PPPPP

PPPPP

......

nnnnnnn

////

i

&\\\\\

..........

UUUUU

gggggggggggggg

Contents Comment
reader mask | list of sites using this page

writer current writer site
window ticks | number of ticks allocated
for this page
install time instaliation time for this

page at this site

Table 2: Contents of an auxpte entry

We encountered an implementation problem when marking a page invalid at a given site.
The difficulty arises in consistency between the master version of the PTE table and each of the
corresponding PTEs associated with processes that have the page mapped. Although most
UNIX implementations describe each page of physical memory with a table that provides the

incoming network message invalidates a page, the master version of the PTE table is updated by
the network server process. In addition, however, it is necessary to invalidate the page in all
processes which map the page.

There are two broad categories of consistency control design alternatives: active methods
and /azy methods. In an active method once there is a change in the master PTE, all processes
that map the page are immediately notified and updated. The active class of methods is rejected
because it would be expensive and difficult to implement in a UNIX environment. Further,
because the page is mapped, there is no guarantee (especially if the process executes at low
priority) the process would be scheduled before the entry or other entries change again. Even
with a mechanism to postpone the invalidation untl the process is scheduled (a "summary"
mechanism), it would be necessary to queue requests.

Another class of methods are termed lazy methods. This class is the one we selected to
use. Whenever a process is scheduled, we determine if it is using shared memory. If it is, before
the context of the new process is resumed, the appropriate master PTE entry is copied into the
new process’ map. For simplicity in the prototype, we remap all the shared memory pages of
the process using a simple for-loop rather than detecting which specific ones have changed, -
Every time a shared memory process is scheduled, the system must remap its pages. The cost of
this mapping is not a fixed cost; it is a function of the size of the segments being mapped. The
measured cost of mapping one 512 byte page ranges from 106-125 microseconds: the largest
segment allowed in our intersection of memory configurations for the various VAXs is 128K,
We observe that Xenix System V shared memory systems use a similar remapping strategy and
that processes that do not use shared memory pay no penalty.

7.0 Performance

In order to measure the effectiveness of Mirage we examine component timings, a worst
case, and a "representative” application. These component tmings provide a breakdown of the
cost of each operation. The worst case application is useful because it provides an analysis of
what can be expected at the extreme ranges of the performance spectrum. The representative
case illustrates the effect of the time window, A.

There are other approaches to measuring performance. Test programs could be
constructed that cause many fewer faults per second and show better performance than ours.
However, we question how much information we would derive from examining their
performance. It 1s heavily-used applications that are representative of the performance users will
likely encounter using DSM. We would like to obtain these applications from outside sources.

Another measurement approach (taken by Li[LLI86]) is to characterize the system using a
suite of synthetic test programs such as matrix multiply, dot product, traveling salesman, etc.
However, these programs may not be representative of the actual everyday performance these
systems exhibit. Some of the programs are data size or data input sensitive in their fault rates.
For example, the size of the matrix in matrix multiplication could significantly affect the page
fault rate.

Lastly, perhaps a more theoretical approach to assessing performance is to examine
access characteristics of shared memory by comparing it to similar shared data spaces. For
example, there are strong similarities between Mirage’s shared data segments and shared text
segments. Because of these similarities there may be some previous performance studies that
can be applied to our work. Arnold[ARNS6] has observed in shared C libraries that some parts
of the library execute frequently, while other parts execute hardly at all. The C libraries are
reported to exhibit random execution patterns because of the many kinds of applications that use
its routines. However, libraries dedicated to a single purpose (akin to our segments), such as
database or graphics service, are reported to have much different dynamic behavior than the C
library. Taking this information into account, it would be hard to generalize access patterns to
Mirage segments without carefully analyzing the programs which access segments and the types
of segments in use. Mirage’s general purpose nature makes it difficult to capitalize on these
analyses.

7.1 Component Costs

We examined Mirage’s performance by instrumenting the implementation to read the
microsecond clock before and after kenel operations. The measured performance of a short
network message (no buffer) sent round trip between two sites is 12.9 ms. This message is sent
through the protocol layers and in and out of the network interface cards. When sending a
network message with a 1024 byte buffer and receiving a short response message, an average of
21.5 msecs elapsed time was measured.

Table 3 depicts a breakdown of the amount of time required to obtain a checked-in page
from the library site. The items marked with an (*) indicate directly measured values. The other
items were extrapolated from the measured cost of receiving similar messages. For example,
ransmitting and receiving a 1024 byte message one-way in the prototype can be extrapolated

10

Operation Time Total Time (msec) | Time{msec)
Using Site Read Request* 25
Read Request output transmission elapsed 3.2
Page input reception elapsed 7.5
TOTAL 13.2

Server process time for request* 1.5
Read request input reception elapsed 3.2
Page output transmission elapsed 7.5
Processing Time* 2
TOTAL 14.2

TOTAL ELAPSED TIME* 27.5

Table 3: Component Breakdown: Time to obtain an in-memory page remotely
(*) indicates directly measured values

from 21.5 msecs to take roughly 15 msecs.+

There are two significant caveats in the implementation that affect performance. First, an
invalidation which is not honored must be resent later, Because of the overhead in sending and
receiving this (short) invalidation message, if there is less than 12.9 msecs remaining in A, the
invalidation should be honored (or delayed and then honored) rather than requiring the requester
repeat the invalidation later. So, in Mirage it may require two attempts to invalidate a page since
the clock site replies with the amount of time to wait before the library should reuy.
Unfortunately, the current implementation does not support the queued invalidation
optimization. Second, invalidations are processed sequentially rather than using a broadcast or
multicast. Locus supports point-to-point communication. The Locus programmer uses network
messages to communicate between sites, while the Locus system at the lowest of levels,
maintains a form of virtual circuit between sites to sequence network messages and maintain
topology. Although providing multicasting would be a short project in some workstation
environments, the effort to integrate such a facility would be substantial in our system.
Considering the few sites in our experimental network, the investment did not seem warranted.

7.2 Worst Case Description and Analysis

In order to exercise Mirage, a worst case application was constructed. This application
consists of 2 processes that execute at different sites. First, an adjacent pair of memory locations
on the same page is chosen. Process 1 writes a value into the first location and waits for process
2 to write its value into the next. Process 2 waits for Process 1 to write and then writes its value
into the second location. We then choose another adjacent pair of memory locations and repeat
these operations. Figure 4 shows a C version of the application.

t Note that to handle page requests, server processes at both requesting and servicing sites allocate a PTE, map in
the data to be sent or received from the appropriate frame in system space, copy it to or from the network message,
and then unmap and deallocate the PTE.

11

¢ OlS 1e 8po)
{
/. ANAB1q 0§ palWo apoo uoneuIuwg) J
{
' cu_m_ﬂ
SLHIVANOIHD = ++luid,
M+Hud,
YOvAMDIHD == (uid,)) »
Neaiq (TYAQN3I == (ud,)) p
} () 10

/. Aowaw pareys jo vels 7 ‘zippe (, i) = uid
/. 158} buod Bud ;

/« Anaeuq 10§ paliwo apos uonezieniuy /e

+ ambiy

L 8IS JB 8p0))

1+ AuAIq 104 pamILIO @poo uoReUILIS) /T

IVAQNT = ++Ea~
‘++juid
‘Pt (L+IvAMOIHD =i (uid,)) epiym
“IVAMOIHD = ++jud,

} (HESTIVIHINNN>L0=Y) 10

/» hiowsuws paseys 10 ers ,/ ‘zppe (, i) = uid
/. 158} Buod 6uid /

/. A1A8.q 10} paniwo apod uonezirEeniy /e

This application (or its N-site version) is a worst case application for Mirage. For each
read or write to the specific locations, page faults occur which transfer the entire page between
sites. The ratio between accesses to shared memory and the amount of system operation to
support those accesses is very low. Notice that while spatial locality is high in the application, it
executes in a configuration that causes significant System overhead. Such a configuration has
poor processor locality because each processor retains the page for an exceedingly short
duration. This program is an example of a worst case for a network virtual memory system and
in that way is analogous to an application executing on a single site that is thrashing,

Figure 5 shows the modes of the page during the various steps of the program. Read
copies are necessary for page faults that occur during program statements such as "if {(*pint ==
CHECKVAL)." Figure 6 shows a timeline of the exact messages sent and received in the
protocol. By running this program we can observe the system overhead because there are few
application (user-level) operations between required system events. The program provides us
with an intense exercise of the protocol at full speed of the host memory, processor, and network
interface cards. This experiment factors into the measurements the effects of process scheduling
and other operating system services.

To gauge our experiments, we executed the application on a single site. However, our
initial measured throughput was surprisingly only 5 cycles/secondt. We reinspected the
program (a version of Figure 4) for problems and observed that once a process did its write, it
remained in a while-loop waiting for the other process to execute its write. The while-loop
continually read a shared variable waiting for it to change. Obviously what was happening was
that the entire remaining portion of the process’s scheduling quantum was being wasted busy
waiting. To solve the low throughput problem a new system call yield(). was added to our
experimental version of Locus. The call was inserted in the application during all loops that
inspect shared variables. We remeasured the performance of the application locally and
obtained 166 cycles/second or a factor of 35 speedup.

With 2 sites, 9 messages are sent for one cycle of the application. Three of these
message are large responses (1024 bytes of data); the other 6 are shont messages. Based on the
component timings, the raw communications component should be 84 msec, excluding interrupt
processing CPU time. We add 12.5ms for the 5 interrupts that request remote pages. We add
9ms for the 6 input interrupts to install, invalidate, or upgrade the page. Additionally, two faults
are generated locally and serviced by a library colocated with the requester. We add 3ms to
service these two faults. Our total is 109 ms. This total corresponds to roughly 9 cycles/second
in the distributed case. We can do no better than this bound unless interrupts could be serviced
more rapidly or our message passing component times were improved. Further, these
calculations assume that user-level processes are synchronized and ready for immediate
execution after network messages change the underlying segment state. Scheduling overhead
generally does not permit such user-level response.

Lastly, we experimented with the test&set instruction on the VAX. Despite the
application programmer’s reported preference for this instruction over other queueing
interlocked instructionsfAGARS8], this instruction uses busy waiting and did not perform well.
In particular, we found its performance potentially low in the remote fault case. After a locking
writer sets the bit to enter a critical section, the testing reader obtains the page remotely. When
the locking writer completes, it faults on write to clear the lock bit and exit the critical section.
If the locking writer requires use of the page for data access while the region is locked, the tester

t A cycle consists of a write by Process 1 and by Process 2 and subsequent operations performed until Process 1 is
about to write again.

12

Two Site Worst Case Application

Site 1 Site 2

Step 1 Writer\ Invalid
NN
/ DOWNGRADE

Step 2 Reader &&X\\
\

nti
Step 3 Invalid &W\\\

/ UPGRADE

N

UPGRADE /
Step 4 \§>’\\/ Reader
=

DOWNGRADE

Back to Step 1

(Shaded Box indicates active site)

Figure 5

Sequence of Message Events for Worst Case Application

SITE 1
LIBRARY

Downgrade
Send Page

Invalidate
Send upgrade

Request Page
(Page fault)
Send Downgrade

Receive Page
Protection fault
Send Invalidation

Receive Ack
Upgrade

Receive Request
Downgrade
Send Page

{Protection fauit)

®__ —

®

®

(Most Acks not shown)

Figure 6

SITE 2

Request Page
(Page fault)

Time

Receive Page

Request Upgrade

\ 4

Receive Upgrade

Receive downgrade
Send Page

Invalidation
Send Ack

Request Page
(Page Fault)

Receive Page

and the writer thrash the page; the use of A >0 can be helpful to the writer in this situation. In
summary, we recommend that the test&set instruction not be used because of its performance.

7.3 Worst Case Measurements

We measured the performance of the application varying A during each of the

experiments. Our experiments were run on otherwise idle processors when there was little

depicted in Figure 7 is for a version of the application that uses yield() and one curve is for a
version without yield(). Notice that at A=2 there is nearly a 50% improvement in throughput
using the yield() instruction remotely. Observe that the intersection of the two curves (A=6) is
the system’s scheduling quantum.

5 -
4 - Application with YieldQ
3
Throughput

(in cycles/sec) 7

2 — ,
' g Quantum

1 - Application w/o Yiald()

T T T
2 46 8 12 16 24 30
A in 1/60 second

Figure 7: Worst Case Application with two remote processes

We observed that with A = 2, 2.75 sleeps of 33 msecs were added into each cycle for the
yield() version of the program. This additional time adjusts the 109 ms figure to total 200 ms per
cycle. Thus, 5 cycles/second is the maximum rate we could expect. Our observed performance
is 90% of the calculated maximum at A=2. At A=0 we would expect roughly 8 cycles/second.

One reason for the performance degradation is that one site acts as user and library site.
In order to perform these two functions, the site must context switch to perform some of the
library functions and later resume the user process which is reading and writing. At the other
extreme, if a third site were performing only library functions there would be a fixed cost

13

involved in transmitting and receiving messages from a remote library. The tradeoff between
context switches locally vs. remote communications costs to the library in our prototype greatly
favors colocating the library and the requester. For reasonable process loads, our component
costs for remote communication far exceed the system’s rescheduling speed.

Lastly, we observed that the effect of an application that is thrashing on overall system
performance can be ameliorated by adjusting A. By increasing A, although application
throughput is reduced, system performance is improved for other processes.

8.0 Time Window Evaluation

We constructed a simulated application that has a higher degree of processor locality
than our worst case example. This application is intended to be more representative of an
average case. Qur purpose is to evaluate the utility of A rather than to measure performance per
se. The application consists of two process that execute for-loops that decrement separate values
in shared memory on the same page. The loops execute for a fixed period of timet until the
decremented values reach zero. Each time a for-loop is executed the termination condition is

tested. Thus, the for-loops exhibit read faults and write faylts,

Figure 8 depicts throughput as a function of A. The curve has two distinct portions. One
side, A<600, we call the "contention” side. The other side, A>600 we call the "retention" side.
The low throughput on the "contention” side when A<120 is because of page conflicts between
the processes that are reading and writing. When A=600 a maximum of 115,000 read-write
instructions/second are achieved. When A>600 throughput is decreased because one of the
processes retains the page for longer than it needs. Notice the decrease in throughput is more
gradual in slope than the "contention” side when A<120. Also note that the range between
(120<=A<=600) exhibits relatively good performance. Retention is an artifact of a protocol
which uses a time window, but contention is a general problem for most network virtual memory
management systems.

Mirage currently uses As that are uniform for a particular segment. Uniform As are not
intrinsic to the design nor the implementation. The auxpte data structure contains the per-page A
values and the implementation could be easily modified to use different values to tune system
performance and page access. As one example, consider hot spot pages. These pages may
exhibit behavior similar to our worst case application. There are two useful approaches we
considered to organize hot spots. In one approach, hot spots are separated from the remainder of
the segment data. A uniform A for each segment is a possibility in this organization. In another
approach all data is in one segment, including the hot spots. In this organization, per-page As
may be useful.

Our data from Figure 8 suggests general strategies for selecting and tuning A values. It is
best for overall system performance to err by selecting a value for A on the "retention” side of
the throughput curve rather than the “contention” side. Although throughput will be reduced for
the application depending on the degree of error from the optimal selection, the falloff on this
side of the curve is gradual. Also, increased sleep time for the particular application provides
additional processor cycles to other applications. Therefore, overall system performance will be
better than a choice on the "retention” side of the throughput curve. On the other hand, it is best
for application throughput to err by selecting a value for A on the "contention" side. In our
example, there are a wide range of values that give high throughput before the rapid falloff at

f In this example loops execute for 10 seconds. This amount of time is used for easier presentation,

14

120 o

100
Throughput 7]
(read/writes 1000instr/sec) 0
60
| I 1 1
0 500 1000 1500 2000

A in 1/60 second
Figure 8: Two Conflicting Read-Writers

A<120), in this example. However, a choice on the "contention” side would more severely affect
overall system performance.

Lastly, the system itself could assist by increasing or decreasing page As dynamically.
When the library sends an invalidation to the clock site, the page’s A value can be changed
before it is forwarded to the target site and installed. We are evaluating some alternatives for
this dynamic tuning. Currently, the Mirage routine which performs this function is disabled.

9.0 Measuring Time and References

Mirage’s performance is affected by how A is measured. Recall that A provides the
amount of time a given process retains a shared memory page for read or write access. In
Mirage A is measured using real-time. However, site loads can influence a real-time measure
because heavy loads influence scheduling latencies. The load would decrease the effective A.

The time window A could be measured using user-process time. The problem with this
approach is there may be many processes sharing the page on one site. It would be necessary to
sum the individual process’s page usage to accurately calculate when A has expired. Because of
process loads, if one site executes considerably slower than the other sites, user time will not
provide fair time allocations for processes using the page at other sites. Of course, one may be
able to factor the site’s load into the user time, but it may be of limited value because knowing
the exact load does not adequately describe how many processes in the scheduling queue will
reference the page. If few processes in the scheduling queue access the page versus many
processes in the scheduling queue requiring access to the page, a different function may be
required.

15

Lastly, Mirage provides a facility for logging all page requests at the library site. Each
log entry contains the memory location, a imestamp, and the process identifier of the requester.
We envision that a user-level process could analyze these reference strings as the basis for an
automatic process migration facility or for later reference swring analysis. Note, however, that
reference strings from sites with valid page copies are not recorded.

10.0 Conclusions

From our preliminary results we approach DSM with cautious optimism. Mirage’s
component costs in accessing a shared page are no worse than average disk access latencies.
However, in a network with a larger number of sites sharing pages than ours, invalidations may
become expensive. Mirage’s performance can be sensitive to simple application-level
programming constructs. For example, loops that wait for shared variables to change should
make the yield() call so that the remainder of the process’s scheduling quantum is not wasted.
Additionally, we found that the use of test&set can degrade performance substantally if the
process in the locked region writes to the particular page of the lock while a remote test&set
reader is testing. However, our design parameters are meant to ameliorate some of these
difficulties by providing latitude in tuning page access. The time window A is Mirage’s primary
mechanism for doing so.

Mirage’s performance for applications with poor processor locality suggest that A be
small or equal to zero for such cases. However, for our synthetic application which exhibits
substantially improved processor locality, throughput is best optimized with a larger A.
Furthermore, this synthetic application showed the page contention portion of the throughput
curve was worse in terms of performance than page retention side of the curve. The effect of an
application that is thrashing on overall system performance can be ameliorated usinga A > 0 at
the cost of reduced application throughput.

Lastly, implementing Mirage with a more modern machine architecture, faster CPU,
better Ethernet interfaces, and with a more recent version of Locus would improve performance
substantially. Since memory and processor speeds are rapidly improving, our fixed costs will
decrease significantly. These aspects make distributed shared memory a much better performing
and more attractive facility.

16

11.0 References

[ACCES86] Accetta, M., Baron, R., Bolosky, W., Golub, D., Rashid, R., Tevanian, A., Young,
M., Mach: A New Kernel Foundation for UNIX Developement, Proceedings USENIX 1986
Summer Conference, Atlanta, Georgia, 1986.

[AGARSS] Agarwal, A., Gupta, A., Memory-Reference Characteristics of Multiprocessor
Applications under Mach, Proceedings of the 1988 ACM SIGMETRICS Conference on
Measurement and Modeling of Computer Systems, Santa Fe, New Mexico, May 24-27, 1988, pp.
215-225,

[ARNOS86] Arnold, J. Q., Shared Libraries on UNIX System V, Proceedings USENIX 1986
Summer Conference, Atlanta, Georgia, 1986, pp. 395-404.

[ATT86] AT&T. System V Interface Definition, Issue 2, Customer Information Center, P.O. Box
19901, Indianapolis, IN, 1986.

[BACHS86] Bach, M. A., The Design of the UNIX Operating System, Prentice-Hall, Englewood
Cliffs, New Jersey, 1986.

[BALL76] Ball, J. E., Feldman, J., Low, J. R., Rashid, R., and Rovner, P., RIG, Rochester’s
Intelligent Gateway: System Overview, /EEE Transaction on Software Engineering, Vol. SE-2,
No. 4, December, 1976, pp. 321-328.

[BISI®7] Bisiani, R., Forin, A., Architectural Support for Multilanguage Parallel Programming

on Heterogeneous Systems, Proceedings Second International Conference on Architectural

Support for Programming Languages and Operating Systems, Palo Alto, CA, Oct 5-8, 1987, pp.
1-30.

[FLEI86] Fleisch, B. D., Distributed System V IPC in LOCUS: A Design and Implementation
Retrospective, Proceedings ACM SIGCOMM 86 Symposium on Communications Architectures
and Protocols, Stowe, Vermont, August 5-7, 1986, pp. 386-396.

(FORI87] Forin, A., Bisiani, R., Correrini, F., Parallel Processing with Agora, Technical Report
CMU-CS-87-183, Camegie-Mellon University, Computer Science Department, Pittsburgh, PA,
December 1987.

[FORIB9) Forin, A., Barrera, J., Sanzi, R., The Shared Memory Server, Proceedings 1989
Winter USENIX Technical Conference, San Diego, CA, Jan-Feb, 1989, pp. 229-244,

[LEACS83] Leach, P. J., Levine, P. H., Douros, B. P., Hamilton, J. A., Nelson, D. L., Stumpf, B.
L., The Architecture of An Integrated Local Network, [EEE Journal on Selected Areas in
Communications, Volume SAC-1, No. 5, November, 1983, pp. 842-857.

[LANTS82] Lantz, K. A., Gradischnig, K. D., Feldman, JA., Rashid, R. F., Rochester’s
Intelligent Gateway, Computer, October, 1981, pp. 54-68.

(LI86] Li, K., Hudak, P., Memory Coherence in Shared Virtual Memory Systems, Proceedings
5th ACM SIGACT-SIGOPS Symposium of Principles of Distributed Computing, Canada, August,
1986.

17

[METC76] Metcalfe, R. M., Boggs, D. R., Ethernet: Distributed Packet Switching for Local
Computer Networks, Communications of the ACM, July, 1976, Vol. 19, No. 7, pp. 395-403.

[POPES81] Popek, G., Walker, B., Chow, J., Edwards, D., Kline, C., Rudisin, G. and Thiel, G.,
LOCUS: A Network Transparent, High Reliability Distributed System, Proceedings of the
Eighth Symposium on Operating System Principles, Published as SIGOPS Operating Systems
Review, Vol. 15, No. 5, December, 1981, pp. 169-177.

[RAMAS8] Ramachandran, U., Ahamad, M., Khalidi, M., Unifying Synchronization and Data
Transfer in Maintaining Coherence of Distributed Shared Memory, Technical Report GIT-ICS-
88/23, June 1988.

(RASH81] Rashid, R.F., Robertson, G.R., Accent: A Communication Oriented Operating
System, Proceedings of the Eighth Symposium on Operating System Principles, Published as
SIGOPS Operating Systems Review, Vol. 15, No. 5, December, 1981, pp. 64-75,

[WALKS83] Walker, B., Popgk, G., English, R., Kline, C,, Thiel, G., The LOCUS Distributed

Operating System, Proceedings of the Ninth Symposium on Operating System Principles,
Published as SIGOPS Operating Systems Review, Vol. 17, No. 5, October, 1983.

18

Appendix I: Past Work+
Kai Li

. Kai Li[LI86] experimented with a shared virtual memory System on a loosely-coupled
rnulnproccs_sor, the Apollo Domain system{LEAC83]. Shared data is paged between processors,
some of which have copies of the virtual address space pages. The model assumes ownership of

with centralized and distributed managers to locate the page owner. The last Wwriter to a page
becomes the new owner. Unless the local Processor owns the page a managing site must be
inquired before a write can occur.

Li’s system supports a property called coherence. A coherent implementation is one in
which a write to an address within the shared memory is always visible by all subsequent read
operations to the same address from any site. This property provides the guarantee that stale
data will not be read. We believe this property is essential for the correct operation of any
distributed shared memory system and feel it's exploration is one of the most significant aspects

of Li’s work.

Agora is the first implemented mechanism for sharing memory across machines in a
heterogeneous computing environment. Generally, this is difficult to do because of Incompatible

whose semantics can be understood so that data representations can be translated. This would be
expensive. ,

t This section may be omitted in the final draft of the conference paper.

19

at both the requesting site and the server site over the cost of processing a homogeneous read
network messaget. Performance could be even worse depending on the complexity of the
flipping and the size of the data to be flipped.

statement about the recency of data being used, there may be little benefit for many applications,
User level synchronization is an unsatisfactory substitute for coherence.

Distributed Shared Memory Hardware Controller

In this work [RAMAZ8S], the authors propose a distributed shared memory controller that
provides efficient access and consistency maintenance of distributed shared memory. There is

primitives for consistency maintenance. The environment for the distributed shared memory
controller is the Clouds distributed operatng system. This system is ap object-oriented
operatng system that supports synchronization within objects, and atomicity of computation,

The described hardware device has not been implemented but simulations have been
performed to illustrate its effectiveness. The authors claim that their controller is effective
relative to its object oriented environment. However, the object-oriented approach may not to be
the best way to structure our low level UNIX system which is not object oriented. Nor does it

Mach

managed either by the kemel or by user programs through a message interface. Sharing of
memory is provided between tasks running on the same machine or across machines. An
external memory paging task handles the paging duties and is responsible for the memory object.
Mach attempts to deal with multiple page sizes and some aspects of heterogeneity. Coherence is
supported. A substantial difference in philosophy between our work and Mach’s pertains to
overall system structure. In Mach, memory is managed by processes outside of the kemel
including an external Pager and network server processes. In our System shared memory

T A read response message (120 bytes) which returns an inode was used for this measurement.

20

