Computer Science Department Technical Report
University of California
Los Angeles, CA 90024-1596

FLAT CONCURRENT PROLOG SEQUENTIAL ABSTRACT
MACHINE CHARACTERISTICS

Leon Alkalaj April 1989
CSD-890018

Abstract

Our motivation for performance analysis of existing FCP implementations is the design a special-
purpose processor architecture for the efficient execution of FCP. We claim that the implementation
level selected for analysis must yield results that are independent of the abstract machine emulation
janguage and the host machine on which it executes, Therefore, we characterize algorithmic features
of FCP program cxecution at the abstract machine level using an instrumented version of the
existing abstract machine, called Slogiz or Statistics Logix. Empirical results are obtained for a set
of benchmark programs that are representative of a System’s Development Workload currently in
use.

The analysis of the dynamic goal management behavior shows a significantly higher complexity
of goal suspension and activation compared to the previously reported behavior of simpler programs.
In addition to their complexity, goal management operations occur on the average 1.3 times per
goal reduction. These results motivate architectural support for goal management in a special-
purpose environment. Furthermore, our results indicate that the average fraction of redundantly
selected clauses during a goal reduction is 76%. This scriously motivates the need for advanced
compilation techniques for clause-indexing. Other results that characterize goal management and
goal reduction are also presented. '

1 Introduction

Current compiler implementations of Flat Concurrent Prolog (FCP) on general-purpose processors
emulate the execution of the FCP sequential abstract machine described in [8]. The same abstract
machine is enhanced with a distributed unification algorithin and used in a distributed implemen-
tation of FCP [11]. Moreover, it is used as the basis for the design of a special-purpose processor
architecture [2]. Similar abstract machines have been proposed for the implementation of other
concurrent logic programming languages such as Parlog [6] and GHC [13].

Motivation for Performance Analysis

The ability to systematically enhance computer system performance by previously characterizing
system behavior is the main motivation for performance analysis. The motivation may further be
divided into the following two categories:

e Improving a specific machine inplementation.

o The design of a special-purpose implementation.

In both cases, one way of enhancing performance is by providing architectural support in either of
the following two forms:

o General-purpose architectural support is an effective way of improving performance using
general-purpose componeuts, For example, adding a memory cache, floating-point functional
unit or upgrading the existing machine with a faster general-purpose processor is considered
general-purpose support.

o Special-purpose architectural support involves the addition of components that are specifically
designed for the performance improvement of the target language implementation. For ex-
ample, a specialized cache with a cache-policy designed to match the characteristic memory
referencing behavior is considered special-purpose architectural support.

Our motivation for performance analysis is the design of a special-purpose FCP implementation
using special-purpose architectural support. Results of the analysis are used to design a processor
architecture for the efficient oxecution of FCP [i]. Morcover, they provide insight on the operational
behavior of FCP for a specific class of applications. As such, they may be used to unprove system
performance of existing general-purpose implementations.

Implementation Level Analysis Tradeofls

Figure 1 depicts current implementations of the FCP abstract machine emulator on general-purpose
processors. The emulator is implemented using an emulation language which executes on the host
machine. The choice of the emulation language is usually made based on portability, programma-
bility and implementation efficiency. The choice of the host machine is often based on availability
and general-purpose performance.

Analyzing performance characteristics of an implemeuntation may be conducted at various levels
ranging from the very low, machine-level to the higher abstract machine (or even meta-interpreter)

Algorithm

Operational
Ssmantics

l Leer

FCP
Programs

¢ abe. machine

*, ~

Speocial Sequential AN, \ complier

Purpose \ Data Stuctures \ Absatract

Abmtract + \ Machine

Machlne \;\\ Instructions , ‘ emulation
language

Abs Machine
Emuiator
L emulation

< Emulator

SRR ONNONNNNN

tanguage

compiier
Physicnl
Machine

Special
Purpocsase
ProceesBsor

<l SUN 3/50 VAX 780

Figure 1: Abstract Machine linplementation and Emulation of FCP Operational Semantics

level. Selecting the appropriate implementation level to characterize program execution depends
on the objectives of the performance analysis.

If the motivation is to improve the performance of the specific implementation that is being
analyzed, then both low-level and high-level characteristics are meaningful to an optimization
procedure. For example, analyzing the low-level memory reference behavior, one may suggest ways
of reducing the virtual memory page fault frequency which is specific to the measured system.

However, if the objective is to suggest ways of improving the performance of other systems that
are based on the same abstract machine but use different emulation languages or host machines, the
performance analysis must yield results that are applicable to the other implementations as well.
For example, the previously described virtual memory optimization strategy can not be applied to
implementations that do not use virtual memory.

The same argument becomes even more apparent if the objective is to design a special-purpose
processor arclitecture for the efficient execution of the target language. Using an existing imple-
mentation to conduct the performance analysis, one must obtain results that are general enough
and invariant of the lower-level implementation details.

The tradeoff involved is between the amount of detail that one can measure at the specific
implementation level, and the generality of the analysis results. Low level results such as register
allocation performance or processor memory bandwidth are dependent on the physical machine
organization, the selection of the abstract machine emulation language and how it is implemented
on the physical machine (for example whicl emulation language compiler is used). High-level
abstract machine analysis, on the other hand, enables a less detailed performance analysis, but the
results do not depend on any of the previously mentioned features.

Previous Analysis Approaches

Two previously reported performnance evaluations of concurrent logic programming languages are
discussed here. In [5], an approach for the analysis of FCP program execution is described. The
motivation for the analysis is the design of a special-purpose processor architecture for FCP {7).
However, program execution is analyzed at the host machine level using the Unix gprof profiling
tools to determine time consuming events of the emulator. As it was previously argued, these
results depend on the implementation the analysis was performed on (€ was used as the emulation
language exccuting on the Vax). For example, the timing result of a dereference function depends

[SM)

on how it was implemented in C {macro or function call), which C compiler was used and how it
is supported on the host machine (some machines may have an implicit deref instruction mode).

Tn [12], an analysis of AND-parallel committed-choice execution of FGHC is compared to the
OR-parallel uncommitted-choice execution of Aurora, runuing on the same multiprocessor ma-
chine. Program analysis is performed at the abstract machine level but the main emphasis is at
the machine-level. This analysis approach agrees with the implementation level analysis tradeoffs
previously described. Since both FGHC and Aurora are being optimized on the same multiproces-
sor machine, low-level analysis is meaningful. At the end, the raw program execution timings of
the two systems are evaluated and compared.

The main observation is that Aurora has better memory performance characteristics than FGHC.
The reason given is that Aurora makes better use of the more efficient stack-based storage model
compared to the heap-based storage model of FGHC. However, it is noted that FGHC makes better
use of parallelism in single-solution problems.

System’s Development Workload Performance Analysis

Since our motivation is to design a special-purpose processor architecture and given the analysis
tradeoffs described earlier, we conduct our performance analysis by characterizing program execu-
tion at the abstract machine level in a way that is independent of the selected emulation language
and its implementation oun the host machine.

To gather abstract machine level characteristics a new emulator, called Slogiz or Statistics Logix
was developed. Logically, existing FCP programs execute as in the original emulation environment.
Program characteristics are obtained cupirically by executing 7 benchinarks. The programs are
authentic, unoptimized, written by various programmers and exhibit a variety of programming
styles. They were not selected for performance but for their characteristic behavior and use of FCP
paralle]l programming techniques. All programs are real applications used in the Logix environment.
They are large in terms of source code size and execute over lengthy periods of time, thus achieving
a reasonable average of program behavior.

The selected programs are specific of a single environment. That is, due to the lack of a
large spectrum of applications, the selected programs are limited in their scope to applications
for program devclopment. We refer to the selected set of programs as the Sytem’s Development
Workload. Tn Table 1 we show the size of the programs and the number of goal reductions performed.
Programs written using read-only unification arelabeled as fep(?) and those that use implicit input
unification in the guard as fep(:) [10]. Programs executing in interpret mode report failure and can
thus be interpreted and debugged. Programs in trust mode exceute expecting all goals to succeed.

A typical workload is described as follows. FCP programs for system prototyping and simulation

Info FCP Benchmark Programs
Compiler | Simulatorl | Simulator2 | Debug Solver | Distribute Logix
Lang. fep(?) fepl?) fep(?y fep(:) fep(?) fep(:) fep(?)
Mode trust trust interpret trust | interpret interpret frust
Size 3885 2066 20606 1670 G676 6376 10000
Red. 7075380 3009280 TT72237G | 1503286 4090075 250283 | 1481900

Table 1: FCP Benchmark Information

are developed under the Logiz system [14]. For example, two different simulation environments are
being modeled. One is a concurrent, multi-functional unit environment for the execution of FCD,
referred to as Simulator? (a second version called Simulator2is also used). The second is a simulator
of a distributed FCP implementation executing on a ring architecture, called Distribute. They are
debugged using the Debugger program and compiled using the FCP Compiler. Program control
flow analysis using abstract interpretation is performed by the Solver program. The characteristics
of the 7 programs are equally weighed even though they vary in size and execution time.

Our approach for performance analysis differs from the two previous approaches described.
With the work described in [5] we share the motivation but not the approach. Our analysis is only
at the abstract machine level rather than being machine dependent. With the analysis performed
in [12] we share the approach but not the motivation, since we are concerned with a special-purpose
processor architecture.

Our work differs significantly from both approaches in the selection of the workload used for
empirical evaluation. In [5] small applications are used that are not representative of a specific
workload. In [12], larger program applications are used but the author correctly notes that the main
drawback of the analysis is the use of “small symbolic manipulation problems”. We emphasize that
our selected programs characterize a specific workload that is representative of an existing working
environment.

Summary of Results and Outline of Paper

Several features of FCP program execution are given special attention in our analysis. First, we
characterize the dynamic behavior of gouls, including goal creation, termination and asynchronous
communication via goal suspension and data-flow activation. We reaffirm the suggestion made
in [4] that the complexity and frequency of goal suspension and activation is a potential source
of implementation inefficiency. Morcover, we quantify our results using metrics that describe the
frequency and complexity of goal management in general. Our measurements indicate that the
System Development Workload exhibits a degrce of goal management activity significantly higher
than previously observed in simple applications.

The second set of features quantified in our analysis describe the characteristic behavior of goal
reduction. Particularly, we evaluate the degree of redundant clause sclection performed attempting
to unify a goal with a set of potentially matching clauses. Since FCP is a committed-choice langunage,
a goal may commit to only one clause. In the FCP abstract machine clauses are selected sequentially,
in textual order. Quantifying redundant clause selection is important to understand the potential for
performance improvement available if advanced clause-indexing compilation techniques are applied.
For cxample, the decision-tree compiler approach described in [9] performs inter-clause analysis of
argument structures to eliminate redundant srgument checking. Our measurements indicate that
an average of 76% of all clause-tries are redundant in the considered workload. We also investigate
the complexity of other goal reduction features such as argument dereferencing, branching on data
types and clouse-trailing.

In the remainder of this paper we first briefly review the FCP sequential abstract machine.
Following this we present our results and concluding remarks.

2 An Overview of the FCP Sequential Abstract Machine

The FCP abstract machine was significantly influenced by the design of the Prolog abstract machine
(WAM) [15]. General unification is implemented using the same get, put and unify instructions
extended to handle tle unification of read-only annotated variables [8]. Several important features
distinguish the FCP abstract machine from WAM.

s Non-deterministic goal scheduling.
o Goal suspension and data flow activation.

¢ Heap storage model.

As a concurrent logic programming language intended for parallel processing, the program
resolvent is modeled as a set of non-deterministicaﬂy scheduled goals, much like processes in a
multiprocessing system. In the FCP abstract machine, a queue of goals is used instead of the
stack-based control used in WAM.

To model inter-goal communication and synchronization, FCP and concurrent logic program-
ming languages in general, define rules of suspension. A goal suspends if there is insufficient data
to perform successful goal-head unification whereas the reduction may succeed when the data be-
comes available. In the FCP abstract machine, goal suspension is implemented using suspension
lists associated with eacl suspending variable. Data flow activation is implemented by rescheduling
the suspended goals when the suspending variables reccive data from other active goals. In Figure
2, we show goal p suspended on variable X and goal g on variables X and Y. Suspension records
are linked into suspension lists if more than one goal is suspended on the same variable. Single
activation records per suspended goal prevent multiple activation of the same goal.

The third important feature that distinguishes the FCT abstract machine from WAM is the
storage model. FCP uses a heap-based model as opposed to the stack based model, to store both
program and control structures. The common heap is an essential part of the parallel programming
model. It enables the implementasion of asynchronous inter-goal communication using dynamically
allocated logical variables as a continuous comumunication sirearn.

In Figure 3, we show the organization of the FCP abstract machine storage model. Besides
the heap, there are two dedicated stack memory areas. One is the Trail Stack (TS) used as
follows. Since FCP allows destructive assignments during clause-head unification, (this is not the
case in GHC or Parlog), the assignments are trailed in TS. If the clause-try fails, the assignments
are undone, and an alternative clause-try is attempted. The second stack area is the Suspension

Figure 2: Goal Suspension Mechanism

Registers

global reduction clause-try
: H | E F
I E s
:] | E
HPF,HB,QF,OB,GFL,.SFL CQGQ, TS, PC AP,STP FL.TRP.A.SP. M, XI
- Heap o TS SVT

=i}

A\

o HEB HP Max

Program Dauia, Not Reclaimed
Programs, during GC
Control. :

Figure 3: FCP Abstract Machine Storage Model

Variable Table (SVT). A clause-try that does not fail nor succeed but may succeed when more
data becomes available, places the suspending variables’ addresses in SVT. If there is no clause-try
that can succeed and there is at least one address in SVT, goal reduction suspends on the variables
stored in SVT. Also shown in Figure 3 are a set of abstract machine registers addressable by the
abstract machine instructions.

3 Results of Abstract Machine Analysis

We present the FCP abstract machine analysis in two sections. First we discuss the dynamic goal
management behavior followed by dynamic goul reduction statistics.

3.1 Dynamic Goal Management Behavior

The execution of FCP programs results in the creation and reduction of cooperating units of work
called goals. There are several possible outcomes of a goal reduction which we refer to as its
dynamic behavior. A goal may create new goals, terminate execution or reduce by iteration. In the
latter case, a goal reduces without creating new goals or terminating. If there is insufficient data
to successfully complete a goal reduction, the goal suspends and is later activated when the data
becomes available.

In table 2 we show the total number of goals created, terminated and reduced during program
execution. Also shown are the number of goal suspensions and activations. To better characterize
the dynamic behavior of FCP goals we define the following three parameters:

¢ The Average Life Time (ALT) of a goal is the ratio of the number of goal reductions per

Goal FCP Benchmark Prograis

Compiler | Simulatorl | Simulator? Debug | Solver | Distribute Logix
Create 1890235 1133169 2501064 | 573869 | 156491 104799 | 477568
Terminate 1887576 1131614 2499518 1 572005 | 155300 07184 | 474729
Suspend 887590 1892561 2513602 502659 52448 83315 | 306450
Activate 884045 1801022 25121640 300816 51277 75714 | 303625
Reduce 7075380 3009280 7722376 | 1503286 | 409075 259283 | 1481900

Table 2: Goal Management Statistics

created goal.

¢ The Average Suspension Ratio (ASR) is the ratio of the number of suspensions per goal
reduction.

» The Average Goal Management (AGM) activity is the ratio of goal creations, terminations,
suspensions and activations per goal reduction.

In table 3 we show these parameters for the sclected set of FCP programs. An average of 2.9 goal
reductions are performed prior to goal termination. Therefore, in terms of goal reductions, one
can characterize the workload as consisting of light weight or short-lived computations that iterate
on the average 3 reductions prior to termination. No corrclation is made here between the goal
reduction and the actual execution time, which is implementation dependent.

The average goal suspension ratio ASR varies more significantly, with the mean value being 0.29
suspensions per reduction. That is, a goal suspends every 3.4 reductions. The benchmarks used
in [12] recorded a significantly snialler value for the suspension rate, that is, between 0 and 0.09.
Whereas this value is closer to the characteristic behavior of the Compiler workload, the System
Development workload exhibits over 3 times their maximum value.

The average goal management activity per goal reduction, AGM, is similar for all of the pro-
grams. The average value is AGM = 1.3 goal management operations per reductioil.

Active Goal Queue

Since FCP program execution results in the creation and reduction of numerous concurrent goals,
it is interesting to consider the distribution of the number of actively reducible goals. The size of
the active quene indicates the number of goals that could be shared and reduced concurrently in
a parallel implementation. However, since the reducible gouls differ in size and complexity, one
can not simply corrclate the size of the active queue with the degree of parallelism available in the
program.

In Figure 4 we show the distribution of the active queue size for queue size values between 0
and 30. For all programs the maximum value of the distribution is for queue size values less than
10. In Table 4 we show the maximum queuc size, the average queue size value and the percentage
of the queue size distribution not accounted for in Figure 4.

Tt is interesting to note that the Compiler program reached a maximum queue size value of
3195, whereas the other programs had values between 50 and 200. Despite the large number of
spawned goals in all the programs, the average active queue size ranges from approximately 6 for
the Compiler to over 13 for the Selver program. It should be pointed out that the selected FCP
programs are not known for their parallelism nor was the program data chosen to increase the

FCP Denchmark Programs
Compiler | Simulatorl | Simulator2 | Debug | Solver | Distribute | Logix
ALT 3.7 2.6 3.1 2.8 2.6 2.5 3.1
ASRR 0.125 0.628 0.325 0.315 | 0.128 0.321 | 0.206
AGM 0.8 2 1.20 1.3 1.3 1.2 1.1

Table 3: Goal Management Parameters

~F

16 Py

14 +— <

124 = It =]

10 4 0:{- —— 8 \\
(%) 87 -;i-x'h =Ei2;|;|‘.

A A A

O‘TI- T T T T T T "T-.?.:_U:U:UEU__-XXXXIXXXX
1 8 5 7 @ 11 13 15 17 19 21 23 25 27 29 31

v — - A‘-A
W:A!:A"——W:'J"x:xié.v_ o o) ;’2'?2-'&;\(A-,A,A_M_

Active Queue Size

-®- Compiler ‘O- simulator1 ‘M- Simulator2 'H- Debug
-A- Solver -A- Distribute "X- Logix

Figure 4: Distribution of FCP Active Queue Size

Size FCP Benclunark Programs

Compiler | Simulatorl | Simulator2 | Debug | Solver | Distribute | Logix
Max. 3195 V2 56 50 51 148 200
Range 10% 0.2% 0.8% | 1.2% | 2.4% 24% | 20.5%
Ave, G 7 S 11 13 10 7.5

Table 4: FCP Active Queue Size: Maximum and Average

concurrency. The potential parallelisin shown in Figure 4 and Table 4 are only due to the FCP
programming model. The workload average for the active goal queue size is 9.

Goal Suspension Complexity, ¢

In FCP, goals communicate using shared logical variables. Goal suspension occurs as a result
of checking whether certain variables defined in the clause-head and guard, conform with the
suspension rules. If not, a goal may suspend on more that one variable, and similarly more than
one goal may suspend on a single variable, as shown in Figure 2.

The complexity of the goal suspension mechanism is proportional to the number of variables a
goal suspends on, o. For eacl variable, a suspension note is allocated and placed on the suspension
list. In Figure 5 we show the distribution of the number of variables a goal suspends on during
program execution. The results indicate that suspension generally occurs on few variables and
that the average number suspension vaziables per goal suspension for the considered workload is
a=2.1.

This result is higher than expected, as it was often assumned that goal suspension generally occurs
using only 1 variable, and less frequently with 2 or 3 variables. This can be explained as follows.
First, the complexity of goal suspension in large applications of concurrent logic programming
languages was never preciscly evaluated. The assumption that suspension occurs mostly on 1 or
2 variables was made by observing small applications that do not exhibit the program complexity
characteristic of the workload we consider. However, it may be the case that more advanced
compilation techniques will be able to climinate redundant suspensions on more variables. Such
compilation techniques are still a matter of research.

(%)

53

7 8

w
h!ﬁ’.‘sx——in—x

9 10

Mumbar of Yariables at Clause-Suspendg

‘®- Compiler
Q= gimulator1
‘B- gimulator2
-0- Debug
Solver
Distribute

X- Logix

Figure 5: Distribution of the Number of Suspension Variables

Vars FCP Benchmark Programs

Compiler | Simulatorl | Simulator? Debug | Solver | Distribute | Logix
Total 1228145 4340234 8281821 [1590037 | 170657 235213 | BO9S8L
Suspend 886526 1891370 2512452 1 5014G8 | 51355 82122 | 305386
Ave. 1.4 2.3 3.3 3.1 3.3 2.8 2.5
Max. 3 9 12 14 14 10 15
(1-4) Var 97% 92% 87% | 84% 88% 87% 89%

Table 5: Number of Suspending Variables at Suspend: Maximum and Average

In Table 5 we show the total, maximum and average number of suspension variables during
program execution. Note that the maximum value ranges from 8 variables for the Compiler to 15
variables for the Logiz operating system. The fraction of all goal suspensions that occurred with 4
or less variables ranges from 84% for the Debugger to 97% for the Compiler.

Redundant Suspension Note Allocation

A clause-try that suspends does not immediately result in the suspension of the goal since there may
exist another clause that can succeed. Therefore, alternative clauses are tried. The goal suspension
mechanism used in the sequential abstract machine allocates suspension notes as if the clause-try
will suspend. Tf it does not, the allocated suspension notes are discareded.

In Figure 6 we show the distribution of the number of goal suspension variables stored in
the suspension table at clanse commit time. Tle suspension notes allocated in these cases are
redundant. In Table 6 we show the fraction of all clause-comunits that occurred without allocating
redundant suspension notes. In most cases this is between 80% to 98% of all the goal reductions.
One should also note the average nunber of suspension notes allocated (average number of variables)
per redundant clause-suspension. This value is also higher than would be expected, that s, 1.33
for the Compiler and 3.5 for Simulator? and on the average 2.5 redundantly allocated suspension
notes. The maximum number of redundantly allocated suspension notes is high as 7.

In Table 6 we show tle total number of allocated suspension notes, the total number of essential
suspension notes and the total number of redundant notes. Therefore, an average of 16% of all
allocated suspension notes are redundantly allocated. Once again, the essential suspension notes
are those that were allocated during a clause-suspension that actually resulted in a goal suspension.

®: Compiler
70 \
60 \ Q- simulator1
\ - Simulator2
%) 50 O R
40 A, I:I O pebug
30 § X% . A~ Solver
q
20 g - \.a LA A Distribute
10 o .A P .
)(= X-1ggix
o o —-u&)(»
2 8

Number of Suspendlng Variables

Figure 6: Distribution of Goals Suspension Variables at Clause-Commit

FCP Benchmark Programs

Compiler | Simulatorl | Simulator2 { Debug | Solver | Distribute Logix
Empty SVT 93% 21% 93% 80% 97% 95% 97%
Ave. 1.3 3.5 2.8 2.6 2.8 2.5 2.3
Max. 3 G 6 G G 6 7
Total 2374106 74687G7 12349379 | 2710393 | 271794 362952 | 1339904
E 2115735 6232795 10795513 | 2002696 { 223105 318533 | 1116035
i 258371 1235972 2053866 | 617697 | 48689 44419 | 223869
R/(E+R) 11% 16% 16% 23% 18% 12% 17%

Table 6: Suspending Variables at Clause-Commit

A simple optimization of the suspension algorithm allocates suspension notes only after a goal
suspension is determined. This change has already been integrated into the FCP abstract machine
as a result of this analysis.

Goal Activation Complexity, a

Suspended goals are activated upon a successful clause-head unification and guard evaluation, that
is, after the clause commits. When a clause-try succeeds, all variables that received new assigniments
and that have goals suspended waiting for these values, arc activated. The complexity of goal
activation is proportional to tlhe number of goals activated, . In Figure 7 we show the distribution
of the number of activated goals at clause-commit. In most cases, a clause-commit will not activate
any goal. Either there were no new assignments made during the clause-head unification and guard
evaluation, or, if there were assignments made, there were no goals suspended waiting for these
values. Only in the case of the Simulator? program were as few as 50% of the commits empty,
whereas in the other programs as many as 88% and more clause-commits did not activate any goals.

From Table 7 we see that the average nuinber of goals activated per non-empty clause-cominit
is generally slightly over 1. That is, o = 1.2. However, the maximum number of goals activated
may be unexpectedly high. In the Logiz program the maximum number of goals activated at any
time was 142 and in the Compiler as many as 192,

10

Som -
80,:; ‘®- Compiler
70 — - O o
60 4 Simutator1
(%) 500 ‘B- Simulator2
gg ~— ‘0O~ Debug
e A=
122] -....___ -\0 Solver
o} 1 2 3 K- Logix

Activated Goals

Figure 7: Distribution of the Number of Goals Activated at Clause-Commit

Goals FCP Benchmark Programs
Compiler | Simnulatorl | Simulator2 | Debug | Solver | Distribute | Logix
Activate 8849045 1801022 2512160 + 500816 | 51277 75714 | 8582706
Ave, 1.1 1.3 1.3 1.2 1.1 1.2 1.2
Max. 192 12 23 10 4 20 142
Table 7: Activated Goals at Clause-Comumit
3.1.1 Summary of Goal Management Behavior

In geperal, the dynamic goal management behavior of the System Development Workload exhibits
a complexity significantly higher than that reported in previous performance evaluations that mea-
sure simple applications. The following is a brief summary of the recorded goal management
characteristics.

o The execution of large FCP programs such as Logix, compilers or simulators that are char-
acteristic of a System Development Workload, result in the creation of light weight goals that
perform on the average 3 reductions prior to termination.

o Goals suspend execution waiting for data to be communicated by another goal at an average
goal suspension rate of ASR = 0.29. The ASR rcported here is significantly higher than
reported in [12].

o An FCP goal frequently performs goal management operations. The average goal management
activity AGM is 1.3.

o Newly created goals are placed onto an active goal queue from which they are scheduled for
execution. The average size of the queue is 9.

e FCP goals communicate using the goal suspension and activation mechanism. In almost 90%
of the cases, a goal suspends ou 4 or less variables. However, the average number of variables
a goal suspends on is o = 2.7.

e Goal suspension involves the allocation of goal control structures. 16% of the total number
of allocated suspension notes are redundant. This corresponds to those cases wlere a clause-
suspension does not result in a goal suspension.

11

o Suspended goals are activated only at clause-commit. Most clause-commits do not activate
goals. The average number of goals activated at clause-commit is o = 1.2.

It is the above summarized complexity and frequency of goal management operations that
motivates the need for architectural support in a special-purpose environment. In (3], the overlapped
execution of goal management and goal reduction is proposed. The efficient execution of goal
management operations is performed using a special-purpose goal cache.

3.2 Goal Reduction Statistics

Using Slogiz we are able to determine numerous properties of goal reduction. We report here the
following selected results.

¢ The number of redundant clause-tries prior to a clause-commit.

o The average number of arguments in the scheduled goal reductions.

The average length of eaclh arguinent that is dereferenced.

o The distribution of dereferenced data types.

The amount of variable trailing performed during each clause-try.

Redundant Clause Selection

We consider all clause-tries that result in goal reduction and all clause-suspensions that result in
goal suspension as useful clause-trics. Therefore, all clause-failures and all clanse-suspensions that
result in goal reduction are counsidered redundant clause-trics. Since the total number of clause
tries, CT, is equal to the sum of the clause failures CF, clause suspensions CS and reductions CR,
the fraction of redundant clause-tries, FY; is expressed as follows:

] CR GS
c:—l'—(ﬁ‘l'g*f (1)

In Table 8 we show the total number of clause-tries (CT), clause suspensions (CS), clause failures
(CF) and successful clause-tries or reductions (CR). Since a clause suspension need not result in
the suspension of the goal, we also show the total number of goal suspensions (GS).

The rate of snccessful clause-tries per reduction is CR/CT = 19%. The rate of goal suspensions
per clause-tries is GS/CT = 5%. In other words, the average redundant clause-selection rate is as
high as F?, = 76% for the System Development Workload.

It is precisely this issue of the large overlicad of the redundant clause-selection that is addressed
in the decision-tree compilation teclhniques proposed in [9].

FCP Goal Arguments

An FCP goal may vary in size from small sized goals consisting of only a single argument, to more
complex goals with an arbitrarily (but finitely) large nwmber of goal arguments. Lu Figure 8 we

12

FCP Benchmark Programs

Compiler Sim.1 Sim.2 | Debug Solver Distr. Logix
CT || 20144798 | 18045686 | 48098264 | 7408752 | 4525015 | 2595415 | 5856330
CR || 7073380 | 3009280 | 7722376 | 1593286 | 400075 | 259283 | 1481000
CF || 10653572 | 35832901 | 24938066 | 2048379 | 3706276 | 1793187 | 2847440
CS 2413845 | 12353114 | 16337818 | 2927087 | 319664 | 542945 | 15206984

GS 887590 1892561 2513692 | 502659 52448 83315 306450
o 0.35 0.16 0.16 0.21 0.09 0.1 0.25
Fo 0.53 0.19 0.51 0.39 0.84 0.69 0.49
%’—% 0.12 0.65 0.33 .39 0.07 0.21 0.26
%—3 0.37 0.15 0.13 0.17 0.16 0.15 0.20
% 0.04 0.10 0.05 0.07 0.01 0.03 0.05
Fr, 0.60 0.74 0.79 0.82 0.9 0.87 0.69
Table 8 Clause-Try Statistics
40 = A .
a5 n\ A ‘®- Compiler
30 EL. I' ‘O- Simulatord
25 o é { ‘B- Simulator2
(%) 20 1 P\ _l, -0 Debug
15 +—<4J. X A
:?1 A H [EI—H Solver
10T °§§Z }x R -&- Distribute
5/ K=K - i
AN ~ X- Logix
05!@ . : “m_ﬁ AIXax=X% 5'5‘:2::,‘(
12345678910111213 4151617

Number of Goal Arguments

Figure 8: Distribution of the Number of Goal Arguments

show the distribution of the number of goal arguments found in the selected FCP benchmarks. The
goal size indicates the number of program arguments and does not include the program counter (or
perhaps some other system parameters that may be stored as part of a goal).

In Table 9 we also show the total number of allocated arguments, the maximum number of
arguments found in a single goal and the average number of arguments per created goal. From the
distribution of the number of goal arguments shown in Figure 8 we sce that most goals have less
than 7 arguments. Whereas the maximum nwnber of goal arguments is between 14 and 17, they
occur very rarely. The average size is quite similar in all of the sclected programs with an average
of 5 arguments per goal.

Argument Dereferencing

Goal head unification consist of matching arguments in the calling goal with the corresponding
arguments of a called goal. A goal argument is denoted as a reference to a program data structure
or as a reference to another reference. An argument refercnce is dereferenced prior to matching

13

FCP Benchmark Programs
Compiler | Simulatorl | Simulater2 | Debug Solver | Distribute Logix
Total || 39708892 22946514 51438876 | 9773661 | 2154104 1750183 | 8678330
CcT 7961926 12991789 10234840 | 20094761 460433 341405 | 263745
Ave. 4.9 4.5 1.6 4.7 4.7 5 4.9
Max. 14 17 14 14 14 14 14
Table 9: Goal Arguments: Maximum, Average
70 -
=
80 X ®- Compiler
50 O Simulatort
40 H- =
(%) - \A. Simulator2
30 I;'(\ "0+ Debug
201 v\ -A- Soly
. er
10 XF g A Fiatri
% = Distribute
0+ ‘ : ﬁhx X x| ,
0 1 2 3 4 5 e L= Loaix

Dereference Length
Figure 9: Distribution of Dereference Length

with another program data structure.

Argument dereferencing consists of following a chain of reference pointers until a non reference
is encounterced. It is performed not only during goal-licad unification for matching goal arguments,
but also prior to the assignment of a value to a variable. In general, dereferencing is considered a
frequent operation in I'CT.

In Figure 9 we show the distribution of the dereference chain length found in the FCP benchmark
programs. We see that most of the dereference chains are less than 3. In Table 10 we show the
total number of dereference calls D and the total dereference length L. We also show the average
number of dereference calls per goal clanse-try. The average dereference length per dereference call
equal to 1.3.

However, very large dercference chains in FCP programs are not uncommon. For example, the
repeated variable-to-variable nnification used to implement the short-circuit technique of program
termination detection results in lomg dereference chains. In the sampled programs, the maximum

FCP Benchmark Programs
Compiler | Simulatorl § Simulator2 Debug Solver | Distribute Logix
D 86152792 74505920 | 174259360 | 67946270 | 13967005 84092166 | 25679242
L 115424576 | 183747648 | 481510592 | 115292635 | 28474510 1 23250972 | 47494092
Ave. 1.2 1.2 1.2 1.4 1.4 1.4 1.3
s 4.3 3.9 3.6 9.1 3.1 3.3 4.4

Table 10: Dereferencing Statistics

14

Type FCP Benchmark Programns

Compiler | Simulator | Simulator2 | Debug Solver | Distribute Logix
Var 23.2% 32% 32.4% 20.5% 36.7% 37.7% 30.1%
RO Var 4.8% 12.3% 11.2% 5.3% 3.1% 6.7% 8.1%
Int 17% 1.5% 3.8% 3.6% 7.5% 4.7% 10%
Real 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Str 15% 15.6% 16.25% 22.6% 12.6% 13.7% 16.3%
Nil 2.6% 1.3% 1.25% 2.3% 0.8% 1.2% 2.1%
Car Ref 13.3% 5.7% 7.1% 9.9% 3.7% 4.6% 6.8%
Car Int 7% 1% 2.3% 2% 0.7% 0.2% 4.7%
Car Nil 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.01%
Tuple 16.1% 26.4% 24.4% 32% 34.6% 29.7% 21%
Vector 0.9% 1.1% 1.3% 1.9% 0.3% 1.5% 1.1%
Total 86152672 | 74505920 | 174259360 | 67946270 | 13967005 | 8492166 | 25679242

Table 11: Distribution of Dercferenced Data Types

dereference length reached 400 and more.

Branching on Dereference Types

Dereferencing an argument is comnonly followed by a polymorphic operation. That is, further
program continuation depends on the type of the dereferenced object. To sce what is the spectrum
of dereferenced data types, we show in Table 11 their dynamic distribution. The most frequently
dereferenced data structure is in most cases the logical variable (Var), the tuple {Tup), string (Str)
and integer (Int) data types. In all of the selected FCP programs, these four data types accounted
for an average of 79% of all the dereferenced ohbjects.

Clause Trailing

A clause-try may assign values to logical variables. If it succeeds the bindings are correctly visible
to the programming environment and goal reduction commits. However, if a clause-try fails or
suspends, the assighments must be undone so that a new clause-try starts with the same memory
state that preceded the clause-try, It is for this reason that tlie assignments to memory are trailed
during a clause-try. This is commonly referred to as clouse-tratling.

If FCP, trailing counsists of storing the address and previous value of a trailed logical variable
into the Trail Stack. In case of clause-try failure or suspension, the entries are poped from the trail,
and the old memory state is restored.

In Figure 10 we show the distribution of the trail size at clause-commit. Even though the
behavior of the distribution is not the same for each of the selected FCP programs, in most cases
the trail size is less than 7 entries. In Table 12 we show the average and maximum size of the trail,
as well as the total number of trailed entries and clause-commits. The average number of trailed
entries is 5. Note that the maximun number of trailed entries may be high. In the case of the
Distribute prograin as many as 163 entries were trailed.

In Figure 11 we show the distribution of the trail size at clause-suspend. It is quite similar for

“®- Compiter
*O- Simulatar1
(%) ‘B®- Simulator2
‘0- Dabug
5 e A -
= B A- Solver
-) . -§£$§§§§‘%‘:§§; -A= Distribute
o 1 2 a 4 5 & 7 & 8 10 Logix
Trail Size
Figure 10: Distribution of Trail Size at Clause-Commit
FCP Benchmark 'rograms
Compiler | Siinulatert | Simulator2 | Debug Solver | Distribute Logix
Commit 7075380 3005280 7722376 | 1593286 | 409075 259283 | 1481900
Size 23781044 20352652 36312112 | 9740676 | 2322758 1415961 | 6761644
Max. 36 47 22 35 54 163 87
Ave. 3.4 6.8 4.7 6.1 5.6 3.5 4.6

Table 12: Trailing at Clause-Comumit

all the selected FCP programs. In most cases, the trail size is less than 4 entries. In Table 13 we
give the total number of clause-suspension, the total number of trailed entries, and the maximum
and average size of the trail.

The average size of the trail at clause-suspension is 1.4. This is smaller than the average trail
size at clause-commnit. Also, the maximum number of trailed entries is generally smaller.

In Figure 12 we show tlie distribution of tle trail size at clause-failure. In most cases it is less
than 2 entries. In Table 14 we can see that the average trait size is 0.5. However, the maximum
number of trailed entries is also high, ranging from 10 for the Stmuletor? program to 81 in the case
of Logiz.

From the distributions of the trail sizes during a clause-try, oue can note the following. Most
trailing occurs in clause-tries than succeed. In fact, an order of magnitude more than during the
clause-tries that fail. That is, most clause-tries fail before they require imuch trailing, Even though

100 -
-~
90 C
ao XX\ ®- Compiler
7O A\\ '©- Simuiator1
80 “ M- simulator2
(%) 5¢ ‘ O- pebug
40
-A- Salver
ap 4 -
/A\ b Distribute
20 9
A \ L2 L oaix e d
10 4 = X
0 4 _ﬂﬁﬁéx-& x » I oz X iiamann 3¢
1 2 3 4 5 G 7 8 9
Trail Size

Figure 11: Distribution of Trail Size at Clause-Suspend

16

Trail Size

FCP Benchmark Programs

Cowmpiler | Simulatorl | Simulator2 | Debug § Selver | Distribute Logix
C8s 2413845 12353114 16337818 | 2927087 | 3196064 542045 | 1526984
Total 2814496 10467694 29217068 | 5050452 | 500481 1019755 | 2412390
Max. 12 16 18 21 21 26 92
Ave. 1.1 1.1 1.2 1.6 1.5 1.7 1.4
Table 13: Trailing at Clause-Suspension
90 o
[\ A
Boﬁ. —\ '.‘Compilar
70 % A\ '
50 j_ A\\ ‘O Simulatort
50 J M- Simulatar2
(%) 40 4 \\ I- pebug
\ \\ A= Solvar
20 f A= Distribulae
10 f E‘ é X! nnix
a o\\x-sﬁxhx—_-x b4
[a]
Trail Slze
Figure 12: Trailing at Clause-Failure
Trail Size FCP Benchmark Programs
Compiler | Simulatorl | Simulater2 Debug Solver | Distribute Logix
CF 10655572 35083291 24938070 | 2048379 | 3796276 1793187 | 2847446
Total 2762711 1380708 13763503 | 2253906 | 3407264 1624860 | 1811428
Ave, 0.2 0.4 0.5 0.4 0.9 0.8 0.5
Max. 38 10 12 20 46 18 81

Table 14: Trailing at Clause-Failure

17

the average number of variables trailed is generally less than 6, it can be expected that even with
the elimination of redundant clause-tries, the main bulk of clause-trailing would remain during the
clanse-tries that succecd.

3.2.1 Summary of Goal Reduction Statistics

o We refer to all claunse-tries that fail and all clause-tries that suspend but do not result in goal
suspension, as redundant.

In the System’s Development Workload, 76% of all the clause-tries are redundant.

The size of the FCP goals vary considerably in size. The average number of arguments is 5.

The average dereference length of an argument is 1.3.

Following a dereference is a branch_on_type operation. The most frequently dereferenced data
types as: Var, Tuple, String and Integer.

¢ Clause-trailing is mainly performed in clause-tries that result in commit. Clause-tries that
fail trail an order of magnitude less.

4 Conclusion

The motivation for the performance analysis prescuted in this paper is the design of a special-
purpose processor architecture for the efficient execution of FCP. With this motivation in mind,
we emphasize that the analysis performed on existing implementations must yield low-level im-
plementation independent results. We thus conduct abstract machine level performance analysis
that is indipendent of the cmulation langunage and host machine implementation. For this purpose,
an instrumented version of the abstract machine was developed, called Slogiz, (Statistics Logix).
We emphasize in our analysis approach the use of a specific System’s Development Workload that
is empirically evaluated. The workload is representative of an existing working environinent. We
conclude that the complexity and frequency of goal management activity for the specific workload is
significantly higher when compared to previously used benchmarks. Our measurements also show
that there is a high degree of redundant clause-selection performed. This further motivates the
need for advanced clause-indexing techniques.

References

[1] L. Alkalaj. Architectural Support for Concurrent Logic Programming Languages. Doctoral
Dissertation UCLA/CSD 89, University of California, Los Angeles, June 1089.

[2] L. Alkalaj. A Proposal For A FCP Processor Architecture. Technical Report UCLA/CSD
88/0035, University of California, Los Angeles, April 1988.

[3] L. Alkalaj and E. Shapiro. An Architectural Model for a Flat Concurrent Prolog Processor. In
Proceedings of the 5th International Conference/Symposiumn on Logic Programming, pages 1245
— 1323, Aug 1938.

18

[4]

[3]

(6]

(7]

(8]
[9]
[10]

(11]

[15]

I. Foster and S. Taylor. FCP and Parlog: A Basis for Comparison. Technical Report CS 87,
Weizmann Institute of Science, Applied Mathematics Department, July 1987.

R. Ginosar and A, Harsat. Profiling LOGIX: A Step Towards a Flat Concurrent Prolog Pro-
cessor. EE Pub. Technical Report No. 629, Techuion Institute of Technology, Haifa, February
1987.

S. Gregory. Parallel Logic Programming in PARLOG, The Language and its Implementation.
Addison-Wesley, 1987.

A. Harsat and R. Ginosar. CARMEL-2: A Second Generation VLSI Architecture for Flat
Concurrent Prolog. In Infernational Conference on Fifth Gueration Computer Systens 1988,
pages 962-970, November 1988,

A. Houri and E. Shapiro. The Sequential Abstract Machine for Flat Concurrent Prolog. CS
86-20, Weizmann Institute of Science, Applied Mathematics Department, July 1986.

S. Kliger. Towards a Native Code Compiler for Flat Concurrent Prolog. Master’s Thesis CS
87, Weizmann Institute of Science, Applied Matliematics Department, July 1987.

K. Kahn S. Kliger, E. Yardeni aud E. Shapiro. The language fep(:,?). In Proceedings of the
Fifth Generation Computer Systems 1988, pages 763-764, December 1988.

S. Taylor. Parallel Logic Programming Techniques. Prentice Hall, 1989.

E. Tick. Performance of Parallel Logic Programming Architectures. Technical Report TR-421,
ICOT, Japan, September 1988,

K. Ueda. Guarded Horn Clauses. Doctoral Dissertation. University of Tokyo, March 1986.

A. Houri W. Silverman, M. Hirsch and E. Shapiro. The Logic System User Manual. Technical
Report CS 21, Weizmann Institute of Science, Applied Mathematics Department, November
1988.

D.H.D Warren. An Abstract Prolog Instruction Set. Techmical Report 309, Artificial Intelli-
gence Center, SRI International, January 1983.

19

