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ABSTRACT OF THE THESIS

A Very Large Scale Integration Design of an Online Algorithm for the

Computation of Rotation Factors
by

Stephen George Faris
Master of Science in Computer Science
University of California, Los Angeles, 1989
Professor Milos D. Ercegovac, Co-Chair
Professor Tomas Lang, Co-Chair

A VLSI design of an onliné algorithm for the computation of rotation factors is
presented. The purpose of this design is to show that an integrated online approach can
result in a modular, expansible, and high-speed VLSI implementation, and therefore is
particularly well-suited to the hardware design of special-purpose algorithms. The
algorithm is broken down into a series of sub-algorithms, each of which is realized in a
separate hardware unit on a single chip, allowing highly parallel and efficient computation
while minimizing overall complexity. A generalized design for an online arithmetic unit is
developed, followed by an in-depth analysis of each individual unit and unit
interconnections. Area, speed, and simulation results, as well as a fully-integrated testing

scheme for the chip, are presented at the end.




CHAPTER 1
INTRODUCTION

The purpose of this design is to show that an integrated online approach can result
in a modular, expansible, and high-speed VLSI implementation, and therefore is
particularly well-suited to the hardware design of special-purpose algorithms. In addition,
a generalized design of an online unit is developed and shown to have broad applicability to
the hardware design of a class of functions whose algorithms are describable in an online

fashion.

Online arithmetic methods are characterized by digit-serial consumption of input
digits and production of result digits in a most-to-least significant order, one digit per
algorithmic step.1.23 An online delay of p steps exists such that the jth digit of the result is
produced after j + p digits of the corresponding operands have been input, where p is
determined by speed-complexity tradeoffs in the design process. Figure 1.1 illustrates this
relationship. A typical online algorithm uses a recurrence equation to generate a residual
qQuantity as a function of all previous result digits produced plus arriving operand digits.
New result digits are selected (one per step) from a redundant digit set based upon the
residual value. The final result may be converted to conventional form (if needed) by an
on-the-fly conversion* of the redundant-digit results into the desired number base and

format,



Single Online Unit Timing Relationship

input digi j+p output digi:j I—H+'I—|—H—|—|—|—|—| input digit stream
—_— - steps »
s ] o dis

stream

Figure 1.1 - Input Digit Consumption/Output Digit Production: Single Unit

A particularly complex algorithm may be broken down into a number of online sub-
algorithms, each of which advances the process of computation from consumption of the
original operand digits to production of final result digits. Each sub-algorithm may then be
realized in a separate hardware unit functioning in parallel with all others. The challenge to
the designer consists of determining how to decompose the algorithm into individual sub-
algorithms and then how to integrate the digit consumption and production of each to
provide for coordinated communication between predecessor and successor units. Figure
1.2 details how concurrent consumption of input digits and production of result digits

occurs when multiple units are employed.

Multiple Online Units ~ Overall Timing Relationship
input digit . initial input
i+P "
o(1) step digit stream
L unit #1 output

ul — digit
p(2) steps git stream
U2 < ;I!ll}:l}:}l: unit #2 output
—l [Tt Y T digits

LUn—1 p(qm_s‘:p_'_FH_H_._H_‘_l mm

P =p(l)+p(2)+ ... +p(n)
= total online delay

output digit i

Figure 1.2 - Input Digit Consumption/Output Digit Production: Multiple Units



The characteristics and properties of an online algorithm for the computation of
rotation factors are outlined in a previous paper by Ercegovac and Lang5, which also
describes potential application areas (namely matrix transformations) for such an
implementation. The chip described in this thesis is based upon the design described
therein with noted modifications. Detailed design information covering every aspect of the
resulting chip's architecture, operation, and performance can be found in a separate
document entitled Detailed Design Specification - A VLSI Design of an Online Algorithm

for the Computation of Rotation FactorsS.

1.1 THE COMPUTATION OF ROTATION FACTORS

The algorithm in question computes the rotation factors of the Givens matrix

transformation’, defined as

G H
(G2+HHI2 5= (G2 +HH112 (LD

where G =g« 268, H=h+26h, C =+ 2¢¢, and § = 5 » 265. For this implementation a
precision of 8 fractional binary digits was selected, corresponding to =8 in the foundation
paper by Ercegovacl. G and H are normalized floating-point numbers with 8-bit fractions
in sign-and-magnitude and 4-bit exponents in 2's complement format, while C and §
consist of a single integer digit (as explained later) and 8 fractional digits in sign-and-
magnitude and a 4-bit exponent again in 2's complement format. The signs of all input
operands are assumed positive, and the chip by definition produces strictly positive results,

but it is possible to maintain the signs of G and H externally for signed operation. The



special cases G = 0 (producing C =Qand S=1)and # = 0 (producing C = 1 and § = 0)

are neither permitted nor discussed. Figure 1.3 summarizes operand and result formats.

G=g*2eg g=.gl1g2g3 84858687 g8 (normalized sign-and-mag.)
eg =eg3 eg2 egl egl (2’s complement)
H=h*2%h  h=.hl1h2 h3 k4 hS h6 h7 h8 (g=0 and h#) guaranteed)

eh =eh3 eh2 ehl eh0
C=c*2c c=c0.clc2c3cdcSc6c¢7c8
ec=ec3 ec2 ecl ecO
S =5% 205 §=50.sI 52 53 54 55 56 57 58
es=es3 es2 esl esO

Figure 1.3 - Operand and Result Number Formats

The original algorithm called for the production of normalized C and $ as the result;
however, it was discovered during design that in fact ¢ (of C) and/or s (of S) may possess
a single integer digit under two separate sets of circumstances. The first occurs when the
absolute exponent difference leg - epl is so large that either ¢ (of C) and/or s (of S) should
equal exactly 1. Here, a result magnitude of 1.00000000 may be obtained. The second
derives from the use of the original magnitudes g and A in off-line or full-paralle] form in
the division units of the final implementation. In fact, the proper quantities for use in the
division unit should have been x and ¥, which represent the magnitudes g and A after
shifting to equate their exponents €g and ej; to the larger of the two values. The net effect is
that whenever the larger of the original operands g or 4 is paired with the smaller exponent
€g Or ep, a non-zero integer digit may appear in ¢ (if g was larger and €g smailer) or s (if &
was larger and ep smaller), depending on the actual values of g and A and the absolute

exponent difference leg - epl.




Result digits are produced in a digit-serial manner, meaning that additional online
units may be connected to use chip outputs for the computation of even more complex
algorithms having the equations of (1.1) as subcomponents. For this particular
implementation, in fact, the serial outputs of all individual units comprising the computation
are available to external units for further computation or testing purposes. In addition, chip
inputs and outputs are received and transmitted in full-parallel form, with circuitry included

for interface to a standard 32-bit CMOS microprocessor bus.

1.2 THE INTEGRATED ALGORITHM FOR COMPUTATION OF
ROTATION FACTORS

The derivation of a single-step online algorithm for the production of final result
digits was not undertaken, because the complexity of the resulting algorithm would lead to
an implementation having an unacceptably long cycle time. Rather, the algorithm was
decomposed into a series of sub-algorithms with a specialized unit assigned to execute
each. The execution of each sub-algorithm is initiated sequentially, after a pre-determined
online delay punit, which is fixed by the designer and based upon internal design
characteristics and speed considerations within all unit. The individual chapters on each unit
provide a full discussion of these issues. The breakdown of the full algorithm into sub-

algorithms is given in Figure 1.41;



-algorithm Range of Result i nit

1. Computation of exponents e, and e 8<e.,e.<0 Alignment (Arithmetic §)
Computation and bit-serial production of the 05<x<1 Alignment (Shifting §)
aligned fractions x (from g) and y (from k) 05<y«<l _

2. Computation of z = x2 + y2 025<2<20 Sumn-of-Squares (All §)

3. Computation of d = z1/2 S<d<21/2 Square-Root (Al §)

4. Computation of ¢ = g/d and s = h/d 0.5<c,5<2 Division (x 2 units, All §)

Figure 1.4 - Algorithmic Breakdown into Sub-algorithms and Assignment to Units

Although the initiation of each unit's operation is sequential, once a unit has begun
to operate it continues to produce result digits in parallel with the production of previous
units as well as subsequent units whose operation has begun. During certain stages of
execution, every unit is operating in parallel, consuming and producing result digits at the
rate of one per step, and maximal parallelism is achieved. This particular implementation
utilizes 8-bit mantissas (n=8 for the algorithm); an implementation corresponding to, say,
n=16 would realize maximal parallelism for a longer time, and overall computational

efficiency would be higher,

Each stage described above is realized in a single corresponding unit on the chip,
with the exception of the division stage, which requires two identical units to compute the
two result values. Because the range of possibilities for the base, format, and digit sets of
each is so varied, the choices made must lead to the formation of an integrated algorithm
where the outputs of any predecessor unit are produced in a form acceptable as inputs to its
successor unit, and where overall chip input and output formats are compatible with the

external world.



To arrive at an integrated algorithm, the representation format, range, and time
availability of both input and outputs digits arriving and leaving a unit must be selected to
achieve a balance between the performance of that unit and the requirements imposed by the
intermediate role it plays in the computation, as well as the performance of the overall chip.
Representation formats for input and output digits may include signed and unsigned binary,
signed-digit, binary-coded, etc. Further, the formats used on and off-chip may vary
depending on the characteristics of the system in which the chip operates. The range of
input and output digits may be extended into the negative integers in the case of a redundant
digit set. Finally, result digits must be produced at the point in time when they can be used
immediately by a successor unit, else delay or conversion circuitry must be introduced that

may slow throughput.

1.3 AN INTEGRATED ARCHITECTURE FOR COMPUTATION OF
ROTATION FACTORS

In concert with the above statements, the division of labor on the chip closely
matches the division of the algorithm into sub-algorjthms, with each executed in a separate
unit. The input and output digits sets for each were chosen to achieve interconnection
compatibility with predecessor and successor units, and the online delay punit of each was
chosen to minimize the total online delay pchip. Figure 1.4 (see earlier) provided an

overview of this division of labor.

The resulting calculation consists of 4 separate sub-algorithms which are then
realized in 5 VLSI hardware units in a single-chip implementation. The alignment sub-
algorithm is the only one of the four which does not operate in an online-fashion; rather,

conventional arithmetic and shifting methods are sufficient to describe its operation. All



other units have a sub-algorithm which can be described in a standard online manner that

leads naturally to a generalized online unit architecture.



CHAPTER 2
THE GENERALIZED ARCHITECTURE OF AN ONLINE UNIT

2.1 GENERAL STRUCTURE OF THE ONLINE ALGORITHMS

In general, the structure of the online algorithms found in this implementation can

be described by the following model:

Algorithm General

1. Initialization Section: INTTIALIZE registers to 0, or load their initial values
2. Recurrence Section: GENERATE the residual recurrence value W/[jJ;
SELECT a result digit for this step, and
UPDATE locally-held on-the-fly converted values,
where:
W(j] =2« W[j-1] + g(converted previous input digits, converted previous
result digits, and inputs during step ).

Figure 2.1 - General Structure of the Online Algorithms

During the high-level register-transfer design process for an algorithm of this form,
one must select from two alternative approaches to the design of internal arithmetic and
operand storage structures: the signed-digit and carry-save methods. Each method
provides the major benefit of carry-free addition which is sought to minimize cycle times.
The signed-digit approach leads to a more complex implementation because of the necessity

to provide special hardware for operand storage and arithmetic operations. By contrast, the



carry-save approach minimizes the complexity of these structures, at the cost of having to
include special hardware for internal on-the-fly conversion of previous result digits and
perhaps arriving input digits. Arithmetic is then done in conventional manner. The carry-
save approach was chosen for its overall simplicity and the perceived area savings of its

structures.

Further, one notes that the computation can be divided into three separate tasks.
First, a set of registers and logic is required to carry out the on-the-fly conversion, storage,
and preparation of values to appear in the operand g of the recurrence equation. Online
algorithms typically dictate that either arriving input digits, previous result digits, or both be
locally on-the-fly converted and stored in registers to be used in the computation of
subsequent residuals. The paper by Ercegovac and Lang provides details conceming on-
the-fly conversion schemes. Further preparation logic is then added to combine these on-
the-fly converted values with the value(s) of the current input digit(s) and produce the

actual operands required in g.

Second, a set of registers and summing logic is required to execute the addition
forming the residual W/} by carrying forward a portion of the previous residual W(j-1] as
2« W{j-1}, and combining it with the input g. This is best realized by integrating a set of
registers into a carry-save adder structure and introducing a feedback loop such that 2

W{j-1] is re-combined with the newly-produced g at every step.

Finally, summing and selection logic are necessary for the selection of result digits
from a redundant digit set based upon the residual value or an estimate of it. Throughout
the chip, residual values are computed using carry-save adders; thus, the residual contains

both a partial-sum and a carry-save component. If result digit selection required knowledge

10



of the residual's exact value, then a 2-1 reduction along the entire length of these
components would be necessary preceding selection, introducing delay into the step time of
the algorithm. The sub-algorithms used in this implementation require only an estimate of
the residual value, meaning that a 2-1 reduction of only a few of the most significant bits of
the partial-sum and carry-save components of W{j] is necessary. Selection logic connects

directly to the reduced residual estimate.

2.2 DESIGN OF A GENERALIZED ONLINE UNIT

By dividing the hardware architecture of an online unit into three separate sections
corresponding to the three tasks outlined above, a generalized model emerges having broad
applicability to the class of algorithms used in this implementation. In the sections below,
this architecture is described and the general functions of the Selection, Arithmetic, and

Operand sections are discussed.

Logical Design of a Generalized Online Unit

Figure 2.2 details the spatial arrangement of the Operand, Arithmetic, and Selection

sections that results when inter-unit connection and intra-unit data flows are taken into

consideration.

11



serial
input
digits

> Operand
Section

¢ 4 g recurrence operands

Arithmetic ] W{j] feedback
Section 1 (internal)

W/j] estimate

Selection
Section

serial
output
Y digits

Figure 2.2 - Logical Design of a Generalized Online Unit

Logical Design of an Operand Section

The Operand section is generally responsible for producing all the operands
appearing in the recurrence equation for W{jJ except for that portion dependent upon the
previous W/j], namely 2 « W/j-1], that is stored and fed back internally within the
Arithmetic section. The functionality of the Operand section is logically divided across
three different sub-sections, each of which contributes to operand production. Figure 2.3

details the arrangement of these sub-sections.

12
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Figure 2.3 - Logical Design of an Operand Section

A shift-register across the top comprises the first sub-section; its purpose is to carry
either a travelling bit pair or a bit train across the unit in order to mark those positions
where on-the-fly converting should take place. In some cases, the input digit set for a
value to be on-the-fly converted is non-redundant, and conversion degenerates into a
simple appending of the arriving digits onto the end of the converted value. Here, a single
conversion register and a bit pair are sufficient, with the pair marking the position where
appending should take place. In other cases, the input digit set is redundant, and
conversion may require all or any number of digits of previously converted values to be
swapped between two conversion registers. Here, the bit train marks those positions

where parallel-loading should take place.

Clocking logic and the actual converters comprise the second sub-section. Figure
2.4 details the operation of each of two conversion methods used assuming a two-phase
clocking scheme. In the first example, only a single traveling bit pair is needed, because

on-the-fly conversion requires only an appending operation in position i after step i of the

13



algorithm. In the second example a bit train is necessary, since on-the-fly conversion
requires that all previous bit-positions be loaded between two conversion registers. In this
case, the appending position is marked by logic which detects the forward edge of the train,
while loading positions trail behind. Both markers are then added to the appropriate load-
triggering signal and synchronized by clocking logic to a system clock. The converters
thernselves consist merely of flip-flops; where only an appending operation is required,
simple resettable flip-flops are adequate, while flip-flops with multiplexed inputs are

required for the case where parallel loading occurs.

Note that the logic as shown in the diagram will deliver a clock to a particular
position in either register of the converter subject to two situations. When a full parallel
load from the opposite register is required, the load signal will be active, and all positions
will receive a clock. In this case, the end-detection logic is ignored. However, in the case
when only an append operation takes place, no load signal will appear, and the end
detection logic provides the only clock activation signal, namely to the latch in position j of

the converter.

14
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Figure 2.4 - Bit Pair/Bit Train Usage Methods

Finally, some additional logic is required to produce the operands which comprise g
in their final form. This typically involves modifying the on-the-fly converted values or
appending additional digits to them according to a set of rules to factor in the contribution
of arriving input digits. This logic accepts the input digits and the output of the converters
above, modifies the converted values to produce the operands of g, then passes the result
down to the Arithmetic section,

15



Logical Design of an Arithmetic Section

The Arithmetic section is responsible for actual calculation of the residual value
W/j], and consists of a set of registers and summing logic, specifically carry-save adders.
Internally, 3-2 and 4-2 reductions are continually performed, producing the carry-save
form of the residual from the carry-save form of the previous residual plus the two newly
introduced operands from the Operand section above. This is accomplished through a
feedback loop which re-introduces the previous residual W/(j] and multiplies it by 2 as
required by the recurrence equation. All reductions are performed using two levels of

cascaded 3-2 carry-save adders. Figure 2.5 details the resulting structure.

16
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Figure 2.5 - Logical Design of an Arithmetic Section

Logical Design of a Selection Section

The Selection section is responsible for the selection of result digits based upon an
estimate of the value of W/j] and (in some cases) a current input digit. The section is
comprised of summing logic, which reduces the input and the carry-save form of W/j] to
straight binary, and selection logic, which assigns digits based upon the value obtained. In
one case, only the two parts of the carry-save form of W/ Jj] need be reduced, and a simple
carry-propagate adder is adequate for the task. When an input digit is assimilated into the
selection quantity at this point an additional addition operation may be required. This is

accomplished by inserting a carry-save adder to reduce the three operands (the input digit,

17



plus the partial-sum and carry-save forms of W/jJ) to two, which the carry-propagate adder

can then reduce to straight binary.

Figure 2.6 details the resulting structure. Note that the section is positioned under
only a few of the most significant digits of W/ 71; the full precision reduction of W{j] is not
required. Instead, only an estimate of the true value of W{j] is used; the extent to which the
section extends into lower-order digits is a measure of the accuracy of the estimate of W{;}
needed. As a rule, lesser accuracy in the estimate decreases the step time yet requires a
greater online delay punit. Hence, a tradeoff exists between the increasing the online delay
of the unit, a one-time delay incurred before result digit production begins, and increasing

the step time of the algorithm, which must be paid in every cycle of the chip's operation.

T Carry-Save Form
. of W{j]
1 { Arithmetic Section
ssible _——l = = = — - -
asggnﬂaﬁon . KX Selection Section
of input digits ! Possible 3-2 reduction

Carry-Propagate Adder

Digit Selection Logic

result digits for
internal feedback &
transmission to next unit

Figure 2.6 - Logical Design of a Selection Section
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CHAPTER 3
HIGH-LEVEL FUNCTIONAL DESCRIPTION OF THE CHIP

3.1 INPUT, INTERMEDIATE, AND OUTPUT OPERANDS

The complete functionality of the chip is divided into 5 different units, each of
which advances the progress of computation from consumption of the original input digits
to production of the final result digits. Figure 3.1 gives a high-level logical description of
the resulting architecture, which includes an Alignment Unit, a Sum-of-Squares Unit, a

Square-Root Unit, and two identical Division Units.
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chip outputs, serial & parallel

Figure 3.1 - High-level Logical Organization of the Chip

The chip receives operand inputs and transmits result outputs in full-parallel form,
consistent with its use in a 32-bit CMOS microprocessor-based system. All internal
transmission, however, occurs digit-serially in online fashion. The Alignment Unit is
responsible for the initial translation of g and A in parallel form to Xj and yj in bit-serial
form, as well as for the production of e; and es in full-parallel form, while the Division
Units output both a digit-serial and a full-parallel form of their outputs ¢j and ¢, and 57 and

s, respectively. No provision for serial inputs to the chip was made.
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3.2 SYSTEM SIGNALS AND THEIR RELATIONSHIP

In addition to the operands mentioned above, 11 system-wide signal lines are
utilized to manage all activities that take place on the chip. These lines are comprised of
power and ground leads, 4 clocking inputs, 4 system reset and initiation lines, and finally

an output sampling line.

The four clocking inputs supply true and complement forms of a two-phase non-
overlapping clock, and are designated @1, @lbar, @2, and @2bar. The barred inputs
could have been generated from the true inputs on-chip; however, for simplicity we decided
to generate these externally, where greater flexibility exists to ensure that any skew or
overlap are avoided. The final implementation includes full-buffering of all clock inputs

on-chip to completely eliminate the possibility of skew.

The two-phase clocking scheme was chosen for this implementation for several
reasons. First, designs based upon a two-phase scheme guarantee a race-free
implementation where the designer need not worry about the relative length of logic delays
between latches. Second, a two-phase scheme permits use of level-triggered flip-flops,
which are relatively smaller and faster than edge-triggered, master-slave ones. Finally,
each step in the online algorithms implemented, as well as in the operation of the Alignment
Unit, which is non-online, divides naturally into two different sets of tasks, one of which
must be completed before the other. One of the clocks is used to initiate the operation of
each set, and hence a full algorithmic step for each unit consists of a pulse from both @1

and @2.
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Next, the system calculation initiation lines, ENABLE and ENABLEbar, are used
to time the input of the original operands into the latches of the Alignment and Division
Units. In the Alignment Unit, the operands just input are used immediately in the
production of result exponents, as well as in the production of x; and yj from g and A,
while in the Division Unit g and £ are stored for a number of steps (= pdiv) before use.
The next pair of lines, GRESET (for Global Reset) and GRESEThbar, are used to preset all
latches on the chip to all zeros, corresponding to the initiation sections of each online sub-

algorithm.,

The final system input, READ, is used to trigger output of the full-parallel results of
the chip's calculation, ¢ and ec of C, and s and e5 of 5. The usual time to do so would be
after the chip has fully completed the calculation; however, the READ signal can be used at
any time to sample the exponent outputs e¢ and eg, or the mantissa outputs ¢ and 5. One
possible advantage of this capability is for testing, where ¢ and s could be sampled at

intermediate points to determine their values during any step of the algorithm.

Figure 3.2 below shows in detail the relationship between the system clocking,
calculation initiation, and reset lines. For brev_ity, only their true forms are shown, the
complement forms are easily deduced. Note that all activity in the system is synchronized
to one of the two system clocks, even the behavior of ENABLE and GRESET. ENABLE
is defined to rise and fall in sync with the leading edge of @2, while GRESET is similarly
defined with respect to @1. The interspersed lines are meant to indicate that any period of
time may elapse with system signals held at that level before calculation begins. ENABLE
and GRESET are only active for this brief period of time at the beginning of a calculation,

thereafter they have no function and remain at the 0 level.
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Figure 3.2 - System Signal Line Relationships

3.3 FUNDAMENTAL DESIGN APPROACH

Fundamentally, the designs used for all units on the chip (with the exception of
Alignment) are based upon the generalized model for an online unit outlined in Chapter 2.
In every case, these designs were implemented in a bit-sliced manner, to facilitate
customization of the resulting units to whatever precision desired of the chip's outputs. In
the case of this implementation, a value of n=8 was adhered to, meaning that the results of
all units can be guaranteed to have an accuracy of 8 fractional digits after conversion to

conventional form by the on-the-fly method.

The bit-sliced methodology used brings several valuable advantages to the
processes of design and customization. First, from a designer's point of view, a bit-slice
approach is ideal because it allows design changes to be implemented with only a few
changes to a single module, and causes a minimum of disruption to the remainder of the
design. The units of this implementation lend themselves very naturally to this approach,
because in most cases a consistent amount of hardware, connected in a consistent manner,
is devoted to each slice. The logical design presented in Figure 2.2 is simply sliced

vertically, with each slice roughly corresponding to one of the n positions required to
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produce results with an accuracy of »n fractional digits (in some cases, an extra position or

two may be required). Figure 3.3 displays the resulting structure.

A B B BB BBGB C

R

1 L} 1 ] ] 1 L} L}

o Operand
A = leftmost slice type Coe o o Section
B = middle slice type .y
C = rightmost slice type Coa o .
D = Selection Section I ' Arithmetic

o Section

1 [} L} 1 ) L} [ ] )

1 L] 1 1 1 [} 1 ]

D Selection
Section

Figure 3.3 - Bit-slice Design of Online Units

In terms of implementation, a bit-sliced approach is of great benefit for the
customization capabilities it offers. Theoretically, any number of digits of accuracy
required in the result can be achieved by simply extending the internal accuracy with which
each online unit operates. In a bit-sliced design, this is accomplished by simply inserting
more of the type B slices into the design of each unit. Of course, a practical limit exists as
to the number of slices which can be inserted, primarily due to electrical considerations

such as the ability of busses to meet current supply requirements, eic.

Taking this approach one step further, it is theoretically possible for the type A, B,
and C bit-slices of all online units to be incorporated into a single type A, type B, and type
C slice (3 total), with the differing Selection sections incorporated into the type A slice.

This would have resulted in a tall, thin rectangular implementation. This approach was not
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chosen primarily because the resulting dimensions do not fit practically onto the project area
available on a typical-sized chip, which is usually roughly square. Another objection raised
was that the width of each of these "mega-slices” would be dominated by the width of the
widest slice from among all units, and lead to inefficient use of project area in the thinner

contributions from other units.

3.4 FUNDAMENTAL BUILDING BLOCKS OF THE IMPLEMENTATION

At the circuit level, the fundamental building blocks of the implementation consist
of a set of logic, arithmetic, flip-flop, shifting, and buffer cells which together comprise the
standard cell library. Figure 3.4 summarizes these cells. The physical and electrical
characteristics of each are discussed in a later chapter - they are introduced here to facilitate
the circuit level descriptions of all units in succeeding chapters. For convenience, the delay
and area (in lambda2, so as to be technology-independent) are provided also. The actual
implementation was done using a 3 micron CMOS p-well process, and strictly static

designs were used to accomodate the capabilities of the simulation tools at our disposal.

Type Name Descripion Delay(ns)  Area (lambda2)

logic inv simple inverter 1.5/1.25 752
nand2 2-input nand gate 2.0/2.5 1175
nand3 3-input nand gate 2.75/4.75 1551
nor2 2-input nor gate 3.5/1.75 1175
nor3 3-input nor gate 7.0/1.5 1551
mux 2-1 multiplexor 6.75/1.5 3975

arithmetic fad full adder 8.25/8.25 4872
inv.fad simple inverter (same height 1.25/1.0 1740

as a fad)

flip-flop daf D-type flip-flop 6.0/3.0 2440
st resettable D-type flip-flop 8.25/7.75 3264
sff settable D-type flip-flop 6.5/1.75 3944
muxff D-type flip-flop with 2-way na/na 6283
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multiplexed input

rsmuxff rescttable version of the above
shift rshift resettable master-slave flip-flop

sshift seltable master-slave flip-flop

muxshift master-slave flip-flop w/ 2-way

multiplexed input

buffer buff inverting buffer

na/mna
na/na

na/na
na/na

5.75/5.5

Figure 3.4 - The Standard Cell Library Summarized

7590
7216

8036
11700

1175

The functionality of each cell is self-explanatory. One point that should also be

mentioned here regards the flip-flop and shift-type celis of the library. All flip-flop cells

were designed to be level-triggered, as opposed to edge-triggered, and utilize only one of

the two system clocks, plus its complement, as the strobe input.

The shift cells are

composed of two simple flip-flops in a master-slave configuration, and hence require both

clocks plus their complements to operate,
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CHAPTER 4
ALIGNMENT UNIT ARCHITECTURE

The Alignment Unit is the first major unit in the calculation chain and performs two
main tasks. First, it calculates the result exponents e¢ and e, given the original operand
exponents eg and ep. Second, it aligns the original mantissa values g and 4 by delaying the
introduction of either one into the Xj and y; digit streams, respectively, (inserting zeros) to

equate the exponents eg and ey, to the larger of the two values.

4.1 ALGORITHMIC ANALYSIS

Calculation of the exponent difference is performed in bit-parallel manner usin ga

conventional two's complement adder:

algorithm Align (Result Exponent Calculation)

ediff = eg - ep;
if (ed,-ﬁca 0) then
{ec=0;
es = -ediff} 4.1)
else
{ec = eqjfy,
es =0}
endif
end Align
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The alignment of g and 4 to form xj and yj is similarly simple, although an iterative

algorithm is required to produce two values at every step J.

algorithm Align (Alignment Operation)
forj=12,..,n=8

if ediff 2 0 then

{xj =g

if j < egjff then yi=0

else yj = h(j-eqim} (4.2)
else

{yj=hj;

if / < legjf then x; = 0;
else xj = g(j-legif))

end Align

4.2 LOGICAL AND PHYSICAL DESIGN OF SUB-SECTIONS

The Arithmetic Section

The Arithmetic section of the unit contains all the circuitry needed to calculate result
exponents, and in addition executes the iterative algorithm for alignment of the mantissas.
Shift control signals are fed to the shift registers of the Shifting section below, where
mantissa values g and 4 are initially latched in parallel, then shifted out as xj and y;. Figure
4.1 details the logical structure of the Arithmetic section.
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Figure 4.1 - Logical Structure of the Arithmetic Section: Alignment

At the beginning of the chip's operation, the ENABLE signal is used to direct the
inputs of egreg and ehreg to accept the initial inputs eg and eh . A constant 1 is forced at
the right end of cpa-l, expressly for the purpose of forming -eh = ehbar + 1. eg and -¢p
are then added in c¢pa-l to form €temp = €djff = eg - ep. ediff receives only a single clock
pulse, because it's only function is to store the original exponent difference for computation
of eg and ;. To accomplish this, cpa-r first generates -ediff = egjffbar + 1. Immediately
thereafter, es-gen selects either e = - ediff (ediff20) ores =0 (ediff < 0), while ec-gen

selects e =0 (ediff20) orec = ediff (ediff < 0).

After the initial computation, the tasks turns to counting the original exponent
difference, now stored in etemp, either down to (etemp > 0) orup to 0 (etemp < 0) by
one, while supplying the proper shift signals to the Shifting section. Counting down is
accomplished by continually adding -1 to the difference in cpa-l until 0 is reached, while

counting up is done by continually adding 1. Since a constant 1 is fed into the right end of
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cpa-l, we must form either -2 or 0 which, when added to this constant 1, will form the -1
or 1 desired. The inputs of egreg and ehreg are re-directed, and these registers are now
utilized as a temporary intermediary register and as a source of either the -2 or 0 as
required. During the ensuing steps of the algorithm, the value in etemp is continually

added to this -1 or 1 value until 0 is reached; at this point, clocking of etemp ceases.

The shift signals shiftG and shiftH are formed in shiftX-gen by ORing the
ENABLE signal (to parallel load the original mantissas), z4 (a signal that becomes valid
when €temp = 0 is reached), and either passG or passH. passG is valid immediately iff the
original exponent difference (edjff) was positive, while passH is valid iff the difference
was negative. shiftG is synced to a system clock to produce a shift operation in gshift,

and shiftH is applied to hshift in the same manner.

Physically, both egreg and ehreg are implemented using muxff's, since their
inputs must be switched from the original exponents eg and e, to their inputs when used as
intermediate registers. cpa-l and cpa-r are comprised exclusively of fad's, and etemp
and ediff immediately following are implemented using plain dff's. Both ec-gen/es-gen

and shiftX-gen are composed of logic gates.

The Shifting Section

The Shifting section of the unit contains all the circuitry needed to store the initial
mantissa values at the beginning of a calculation, and thereafter to shift out g and h as xj
and yj, respectively, depending on the shift signals received from the Arithmetic section
above. The section consists of two shift-registers, gshift and hshift, composed of

muxshift's. Initially, the ENABLE signal is used to trigger parallel loading of the
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mantissas; thereafter, the section relies on signals from the Arithmetic section to ensure that

valid x;'s and y;'s are shifted out of gshift and hshift, respectively, at their proper times.

Figure 4.2 details the logical structure of the Shifting section.

shift G/ shiftHy}
shiftGbar  shifitloar

!

gshift
l_ hshirt
buffers
v
xjf yi

xjbar.hold  yjbar.hold

Figure 4.2 - Logical Structure of the Shifting Section: Alignment

In addition to xj and ¥j» two additional serial outputs, xjbar.hold and yjbar hold, are
produced in this section. These two signals represent the inverted values of xj and y;
delayed for a half cycle to arrive at the proper point in time for use in the next unit. This
delay circuitry was included here for convenience only - it could as well have been

incorporated into the Sum-of-Squares unit.

4.3 THE RESULTING STRUCTURE

No attempt was made to design the unit in 2 bit-sliced manner, although in fact the
Shifting section naturally lends itself to a bit-sliced design, with each slice corresponding to
a single bit position in both g and #. The Arithmetic section, unfortunately, consists mostly

of ad-hoc register, arithmetic, and logic circuitry, and a bit-sliced design would have been a
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much more difficult task. In view of this, a standard design was undertaken, with
¢xponent widths chosen at 4 bits so that €xponent differences from -8 to +7 could be
represented, as mentioned earlier. This range of allowable exponent differences provides
for maximum flexibility in delaying significant bits of either mantissa in the formation of Xj

and y;.

The physical structure of the entire unit consists of the Arithmetic and Shifting
sections stacked one upon the other and aligned at the left. In the vertical dimension, the
height of the unit was determined by the heights of both sub-sections, The width of the

unit is dominated by the width of the shift registers required to hold both mantissa values.

In the final implementation, the Arithmetic section measured 932 microns high by
1131 microns wide, while the Shifting section measured 656 microns high by 1662
microns wide, yielding dimensions for the entire unit of 1588 by 1662 microns. With
respect to the Arithmetic section, one can only estimate how these figures would change in
a larger implementation; however, expansion would only be required in the horizontal
direction, and approximately 530 microns of excess area exists there already on the right-

hand side of the unit.

With respect to the Shifting section, an additional pair of stacked muxshift cells
would be required for every 1-bit increase in fractional length », each of which measures
150 microns in width, and hence the entire unit would increase 150 microns in width (to

the right) for every bit added.
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Figure 4.3 - The Alignment Unit (Diagram)
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Figure 4.4 - The Alignment Unit (Plot)
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CHAPTER 5
SUM-OF-SQUARES UNIT ARCHITECTURE

The Sum-of-Squares Unit computes the sum of the squares of the aligned fractions
x and y, whose digits are received serially as xj and y; from the Arithmetic Unit above.
The design of this unit is based upon the generalized model of an online unit outlined in
Chapter 2. The unit's output consists of a digit stream zj, 0 < z; < 6, such that the equation

z =x2 + y2 is satisfied, with n=8 fractional digits of precision.

5.1 ALGORITHMIC ANALYSIS

This algorithm is the first of three to be discussed whose structure matches that of
the generalized model of an online algorithm outlined in Chapter 2. In this case, W[j] is the
residual whose value is repeatedly generated at every step, zj represents the result digit
produced during step j, and X{j] and ¥/j] represent the full parallel, on-the-fly converted
values produced from x; and yj, respectivél‘y., after every step. Since the range of input
digits found in xj and yj is [0,1], and no negative digits are possible, on-the-fly conversion

defaults to a simple appending operation.

For the sake of brevity in the discussion that follows, the algorithm is annotated at
right and some quantities that appear in the recurrence equation are given pseudonyms.
Later, when the process by which these quantities are produced is detailed, the

pseudonyms are used to avoid repeating unnecessary complex formulae.
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algorithm Sum-of-Squares (5.1)

X{0] = .000000000; /* INITIALIZE internal registers */
Y{0] = .000000000; /* for online operands */
W[0] = 00.00000000; /* INITIALIZE the residual value */
forj=12, .. ,n+1 =9 { /* GENERATE recurrence value */
Wijl = 2« csfract W[j-1] +

2e (X[j-1] +xj+ 20D yo s ¢ /%24 {Qx} * xj ¥/

2 (Y1 +yje 2D y oy %2+ (Qy}+yj %/
zj = esint W[jJ; /* SELECT result digit */
X[j] = convert (X[j-1], xj); /* UPDATE online operands */

Y[j] = convert (Y[j-1], y});
}

end Sum-of-Squares

5.2 LOGICAL AND PHYSICAL DESIGN OF SUB-SECTIONS
The Operand Section

The Operand section of the unit contains all the circuitry required to generate those
operands of the recurrence equation, namely {Qx} * x; and {@y) ¢ yj, whose values
depend upon the input digit streams x; and yj received from the Alignment Unit. In effect,
this task can be reduced to producing the binary bit patterns that represent these quantities,
then ensuring that they are fed into the Arithmetic section aligned at the proper position with
respect to the binary point. Because these quantities depend upon the on-the-fly converted
values of previous input digits xj and yj, namely X[j-I] and Y/j-1], the converters are
physically placed in the Operand section also. Figure 5.1 details the logical structure of the

Operand section,
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Figure 5.1 - Logical Structure of the Operand Section: Sum-of-Squares

The section operates as follows. At the beginning of the chip's operation, the
GRESET signal is used to preset all latches to 0, except for the leftmost master flip-flop in
shift-register, which is seeded with a 1. This one is the source of a bit pair that travels
across the section, moving one position per step of the algorithm, and marking the current
position j. A bit pair is required because each stage of the shift register is composed of two
flip-flops in a master-slave configuration, with all masters using one system clock and all
slaves the other clock. This bit pair marker is used during every step of the algorithm to

mark where operations in the jth and J+1st positions should take place.

The section’s first objective is to produce the bit patterns corresponding to Qy =
< X[j-1],0, Xj(j+1) 0,..,0>and Qy =<Y[j-1],0, Yi(i+1)» 0, ..., 0 >. However,
rather than forcing the values of Xj and yj into the j+1st positions as dictated, a 1 was
forced, producing Qy = <X[j-1], 0, 1j+1,0, ..., 0> and Qy =<¥Y/[j-1],0, 1j+1.0, ., 0

>. Forcing in this fashion was mathematically equivalent for this case, where the range of
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xj and yj is [0,1], because the next step involves an ANDing operation with the true xj and
Yj anyway, yielding x; AND 1 (= xj AND xj), yj AND 1 (= ¥j AND yj;), respectively, in
position j+1. The ANDing operation applied across the entirety of Qy and Qy produces
{Qx} * xj and {Qy} * yj, and operation generation is complete. Both of these operations
take place in Qx-low and Qy-low, respectively. Since X{[j-1] and Y{j-1] are stored in X-
latch and Y-latch, they flow directly into these logic levels.

Note that the bit patterns produced have not included a multiplication by 2, since
such multiplication can be accomplished by introducing the patterns into the Arithmetic
section shifted one position to the left. Thus, the outputs of the Arithmetic section, which
consist of 9-bit fractions with no integer magnitude, arrive in the Operand section as a

single integer digit and 8 fractional digits.

On the next half cycle, the Operand section is responsible for the on-the-fly
conversion of X/[j-1] and xj, Y[j-1] and yj to form X/j] and Y/j] for use in the next step.
Since the range of the input digits of x; and ¥j is [0,1], on-the-fly conversion amounts to
simple appending of the arriving input digits onto their converted quantities in position j.
This is accomplished by feeding the value of the input digits xjbar.hold and yjbar.hold,
held over for a half cycle in the Alignment Unit, to all positions in their respective latches,
then strobing only the proper position j, which is marked by the bit pair traveling across the

top of the section.

Physically, the Operand section is divided into bit-slices, with each slice containing
a single cell or a pair of cells to accomplish the tasks of every register/latch and logic level.
The composition of every slice is consistent with the exception of the leftmost one, where

extra circuitry is necessary for two reasons. First, buffers for system signals and arriving
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input digits are located in this slice, where their signal levels are restored and strengthened
for ransmission across the width of the unit, Second, an extra position is added to the
shift register in this slice to delay the beginning of the unit's operation until the proper
moment in time. Figure 5.2 details the resulting physical structure of the Operand section

portion of a bit-slice, with shaded cells representing the extra hardware required in the

leftmost slice.
@2 ] shift-register masters/slaves
(rsff’s for both)
1 —>
iy R— 5 append-clock (nand2/inv)
xjbar.hold ——> E X-latch (rsff)
yibar.hold @ Y-latch (rsff)
x) : Qx-low (nor2/nor2)
i | ] Qy-low (nor2/nor2)

Figure 5.2 - Physical Structure of the Operand Section: Sum-of-Squares

The Arithmetic Section

The Arithmetic section calculates the residual value W/jJ, and consists of a set of
registers and summing logic as detailed in Figure 5.3. The carry-save form of 2 » csfract
W{j-1] is formed by routing the fractional portions of its partial-sum and carry-save
components, held in W-latch.ps and W-latch.sc respectively, up and to the left one bit
position to accomplish the multiplication by 2. Qx<xjand Qy ¢ yj are introduced from the

Operand section above, and are shifted one position to the left to form 2 « Oy xjand 2«

39



Qy * yj as called for in the recurrence equation. A 4-2 reduction of these quantities in csa-

levell and csa-level2 then produces W/, Jj] for use in result digit selection.

2% QOx*xj, 2*Qy*yj

F A 4 . 1 XL W-hOld.pS
¥ ¥
csa-levell
F Y 4 ces "4’ W-hold.sc
) : 3
2 * csfract W[j-1] e csa-level2
¥
A 4 v P W-latch.ps
‘e W-latch.sc
v ¥
csint W(j],

to Selection section

Figure 5.3 - Logical Structure of the Arithmetic Section: Sum-of-Squares

Physically, the Arithmetic section is also divided into bit-slices, with each slice
containing 6 individual cells to accomplish the tasks of the four register/latch structures and
two 3-2 carry-save reduction levels. The composition of every slice is consistent with the
exception of the leftmost one, where extra circuitry is required for system signal buffering.
Further, an extra position is added at the left end of the W-latch.ps and W-latch.sc
structures to allow for two potential integer digits in the carry-save forms of W/j]. Figure
5.4 details the resulting physical structure of the Arithmetic section portion of a bit-slice,

with shaded cells representing the extra hardware required in the leftmost slice.
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Figure 5.4 - Physical Structure of the Arithmetic Section: Sum-of-Squares
The Selection Section

The Selection section is responsible for the selection and latching of result zj digits
from the integer portion of the residual W{j] such that zj = csint W/j]. Figure 5.5 details
the logical structure that results. This involves a simple 2-1 reduction in cpa of the integer
portions of the partial-sum and carry-save components of W/j], each of which contain two
integer positions. Because each of these integer portions can have a minimum value of 0
and a maximum value of 3, the result digit selection range is 0 < zj £6. In this case, no
additional logic is required after the reduction to select digits, and hence only a register z-
latch is included to hold the result. An inverting buffer level placed immediately after z-
latch inverts the sense of the unit's outputs, which are actually transmitted as z2/bar,

z1jbar, and z0jbar.
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Figure 5.5 - Logical Structure of the Selection Section: Sum-of-Squares

5.3 THE RESULTING STRUCTURE

The physical structure of the entire unit consists of the Operand, Arithmetic, and
Selection sections stacked one upon the other and aligned at the left. The functions of the
Operand and Arithmetic sections were integrated into type-A, type-B, and type-C bit-slices,
with a single type-A slice running along the leftmost edge of the unit, 7 type-B slices
inserted along the width, and finally a single type-C slice capping off the right end. The

Selection section forms the type-D portion and fits snugly below the leftmost slice.

In the final implementation, a type-A bit-slice measured 1445 microns high by 290
microns wide, a type-B slice had the same héight and was 123 microns wide, and a type-C
slice again had the same height and was 126 microns wide. The extra width of the type-A
slice is due to the extra circuitry incorporated therein and described earlier. The type-D

Selection section measured 327 microns by 341 microns.
In the vertical dimension, the height of the unit was 1772 microns, dominated by

the height of a bit-slice. In the horizontal dimension, the width of the unit was 1277

microns for this n=8 implementation. To accommodate a larger precision n, an additional
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type-B slice, at a width of 123 microns, would be required for each additional fractional
digit of precision desired.
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Operand
Section

Arithmetic
Section

Selection
Section

P

z2jbar, z1jbar, z0jbar

Oybar.hold, xjbar.hold,
yj, and xj
enter at left of Operand Section)

Figure 5.6 - The Sum-of-Squares Unit (Diagram)
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Figure 5.7 - The Sum-of-Squares Unit (Plot)

45

~
\
N ~ N
i H i | I~d
hids
= N
) . -
ar - N ) X N )
fa—"] -
—-— -
s 3 g3 ~
~
-4 P‘ N \ ~
et ‘ hd “
—==
b 5 Y
“
7y
v
L B %
M
N
| \
<
~
] !
p i
R R < 19 2 :
LI n +) Lk i .
. n x
P b 1I ! a Al
i1 o : 1 ) : 1. !
= . - g AR i
. 4 K F ?
=
z T
- ~ ¥
> pFH . ~
I~ ‘T i £ N
- N ki
3
.
!
N i N
J : ai ] ] ny ] nyl
; ] IELC] ] X
. kR ! b WRE o1 a3 i SifiE
5 J -T ' M iy S b
) ~ i ! [ N T b3
~7 e — "
= ;
—ie =i
TN L= 3
~ —'i 3
:/*\ { N I
——
e
-
= R
a "
- \ -
)
|
T LT
e
- e
i) P
-
k-4
& ol =
. =Y




CHAPTER 6
SQUARE-ROOT UNIT ARCHITECTURE

The Square-Root Unit computes the square root of z = x2 + y2, whose digits are
received serially as szbar, zl jbar, and szbar from the Sum-of-Squares Unit above, The
architecture of this unit is also based upon the generalized mode! of an online unit outlined
in Chapter 2. The unit's output consists of a digit stream dj, dj € [-1,0,1], such that the
equation d =z1/2 is satisfied, with n=8 fractional digits of precision. Further, the
algorithm used in the immediately succeeding Division Units requires in every step the full
parallel form of the on-the-fly converted value D{j], which is produced from dj and stored

internally in the Square-Root Unit.

6.1 ALGORITHMIC ANALYSIS

The structure of this algorithm also matches that of the generalized model of an
online algorithm outlined in Chapter 2. In this case, R/j] is the residual whose value is
repeatedly generated at every step, dj represents the result digit selected during step j, and
D{j] represents the full parallel, on-the-fly converted value produced from the djresult digit
stream. Since dj e [-1,0,1], dj may assume a negative value, and true on-the-fly

conversion involving two registers representing D{j] and D*[j] is required.
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Again, for the sake of brevity, the algorithm is annotated at right and some
quantities that appear in the recurrence equation are given pseudonyms which are used later

to avoid repeating complex formulae,

algorithm Square-Root (6.1)
g£ [2 5 7-:08000000000, ; /* INITIALIZE conversion regs */
dj=0; /* INITIALIZE result digit stream */
R[-5] = 000.0000000; /* INITIALIZE the residual */
forj=-4,3 . nl1=7 { /* GENERATE recurrence valye */

if (/ <-2) then
R(]=2«R[j-1] +
{Zj+q4+2-4 * {Qz) ¥
else

{Rljl=2<Rfj-1] +
{zj+4+24) + _ /* {Qz) %
2¢{-dj*D[j-1] +dR2 + 2-G+1) }; /* 2{04} ¥
Rhav-star[j] = Rhatfjj + zj+5°2°5;  /* SELECT result digit */

dj+] = dsel Rhat-staryjj.
{j] = convert (D{j-1 1.dp}; /* UPDATE local values */

end Square Root

While this algorithm may appear at first to differ from the generalized model due to
the if ... then ... else construct, from an implementation standpoint only the statements in
the else clause, which do match the standard form, are actually executed during every step.
While j < -2, the value of Qd, and hence of 2 « { Qd}, is held at 0, and the recurrence

equation defaults to the form given in the if clause. The values of the digits dj prematurely
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selected during these steps are ignored, and on-the-fly conversion to produce D({j] does not

commence untii after the first valid digit is produced.

6.2 LOGICAL AND PHYSICAL DESIGN OF SUB-SECTIONS
The Operand Section

The Operand section of the unit contains the circuitry required to generate those
operands of the recurrence equation, namely {Qg)} and {Q;], that are newly-introduced at
every step. Their values depend upon the on-the-fly converted value Dy, J-1] of the previous
result dj digits produced and the zj input digit stream received from the Sum-of-Squares
Unit,‘ respectively. Again, this task can be reduced to producing the binary bit patterns that
represent these quantities, then ensuring that they are fed into the Arithmetic section aligned
at the proper position with respect to the binary point. Converters are physically placed in
the Operand section, and a feedback loop from the Selection section returns result d; digits

here for conversion. Figure 6.1 details the logical structure of the Operand section.
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shift-register
end-bit/force-bit
dljbar hold, @1 —» D-clock
d0jbar.hold —»| D-latch
d0j.hold — Dstar-latch
d2jbar.hold, P1 —>» b 4 Dstar-clock
dljlaich —» Qd-multiplex
djlaich —1 . Qd-low
22jbar ... 20jbar —> Qz-hold

7 :

output to the Arithmetic section

Figure 6.1 - Logical Structure of the Operand Section: Square-Root

The section operates as follows. At the beginning of the chip's operation, the
GRESET signal is used to preset all latches to 0. The input to the leftmost master flip-flop
in the shift-register is wired directly to a 1, and hence a bit train is seeded that advances
across the section at the rate of one position per step of the algorithm. A bit train is used,
rather than a traveling bit pair, so that position j, at the forward edge of the train, as well as
all positions < j can be discerned from each other and from uncrossed positions further

ahead.

The section's first objective is to produce the bit patterns corresponding to Q4,
subject to two sets of constraints. First, it was necessary to ensure that the value of Qg
remained equal to O for the first three steps of the algorithm, to ensure that the recurrence

equation given in the else clause would default to the form given in the if clause. To do
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$0, it was necessary to suppress on-the-fly conversion and production of D[j] to maintain
its value at 0, and also to ignore the premature dj values received from the Selection
section. Both tasks were accomplished by introducing delay stages into shift-register,
since both on-the-fly conversion and dj insertion were dependent on the presence of the bit

train in slice j.

Second, the Qg bit pattern must be formed, where Qd may take on one of three
different values (and hence one of three different patterns) depending upon the value of the
dj input. All of the hardware found in the Operand section that was not dedicated to on-the-

fly conversion was required to produce these bit patterns. Figure 6.2 details these patterns

as a function of the dj input.

[}
—

Qd= [Dbar ,1,14+1),0,0,...,01 if  dy
Qd= (0,..,0,0641,0,0,...0] if  d(j)
Qd= (Dswr,1,1¢:1,0,0,..,0] if dj)

oo
—_ o

Figure 6.2 - Bit patterns produced as a function of dj: Square-Root

For the dj = 1 case, the bit train across the top of the section is used to selectively
invert the bits of D{j-1], held in D-latch, to form Dbar (= Dfj-1] logically inverted) as
shown. The bit train covers the positions which have already been crossed, and hence
marks exactly those positions of D-latch which contain significant on-the-fly converted
digits to be inverted. Any trailing zeros in D{j-1] which lie to the right of significant digits
are passed through unaffected. For the dj = -1 case, D*{j-1], held in Dstar-latch, may be
used directly as Dszar (= D*{j-1] true). The logic required to select either D{j-1] or D*/[j-1],
and further to invert the significant bits of D/ j-1] as required is contained in Qd-

multiplex. To complete the pattern, logic in force-bit detects the forward edge of the bit
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train corresponding to position j, and the two low order bits of Q4 in positions j and j+1 are

forced to 1.

As in the Sum-of-Squares case, the Q4 bit pattern produced is introduced into the
Arithmetic section shifted one position to the left to accomplish the multiplication by 2.
Thus, the Q4 output, which consists of 2 integer and 8 fractional digits, arrives in the
Arithmetic section as 3 integer and 7 fractional digits. The binary point of the Arithmetic

section falls one position to the right of the binary point maintained in the Operand section.

Production of the other major operand of the recurrence, 05, consists of latching
the zj4 4 digits arriving from the Sum-of-Squares unit in Qz-hold in the proper position to
accomplish a multiplication by 2-4, while all other positions are latched with a constant .
These are then held across the same half cycle as Q4 for production of the next R/j] in the

Arithmetic section.

On the next half cycle, the Operand section is responsible for the on-the-fly
conversion of D/j] using the result d; digit from the previous step in the algorithm. Since
this dj value may be negative, true on-the-fly conversion using two registers is required.
D-latch and Dstar-latch, respectively, are used to convert Dfj] and D*[j]. Parallel
loading between the conversion registers is triggered according to the value of d; when
non-zero. When dj = 1, positions 0 .. j-1 of D*[j-1] are loaded with the values residing in
the same positions of Dfj-1], and when dj = -1, loading takes place in the reverse direction.

Regardless of loading, a digit must be appended onto both quantities in position j,
which is marked by the logic in end-bit that detects the forward edge of the bit train. When
dj=1or-1, alis appended onto D/fj-1] and a 0 onto D*[j-1], and when di=0a0is
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appended to Dfj-1] and a 1 to D*[j-1]. This completes preparation of D{j] for use as Dfj-1]

in the next step of the algorithm.

Physically, the Operand section is again broken into bit-slices. More complex
circuitry is required in each slice than in the Sum-of-Squares Unit because of the extra logic
required for bit train mapping, true on-the-fly conversion, and more complex bit-pattern
generation. Figure 6.3 details the physical structure of the Operand section portion of a bit-
slice, with shaded cells representing the extra circuitry required in the leftmost slice.

@1 —={ | shift-register masters/slaves
(rsff's for both)

D end-bit/force-bit (inv/nor2/nor2)
dljbar hoid, @1 -{ | D-clock (nor2/nor2/inv)

, g
djbar hold » D-latch (rsmuxff)
2 L]
&0j hold g -{ I Dstar-latch (rsmuxff)
Q2jbar hold, @1 ~{ | Dstar-clock (nor2/nor2/inv)

dijlatch -D_D Qd-multiplex (nor2/mux)
j latch -D_.D Qd-low (nor2/nor2)
2jbar ... 20jbar, I ___, -D_.D Qz-low (rsff)

Figure 6.3 - Physical Structure of the Operand Section: Square-Root

shift-register is responsible for carrying the bit train across the entire section.
Note the extra delay stages included in the leftmost slice; these are required to delay on-the-
fly conversion until valid dj digits are produced by the algorithm. end-bit/force-bit
contains the logic required to detect the leading edge of the bit train for use in conversion

and Qg production, respectively. D-clock and Dstar-clock contain the logic required to
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trigger and synchronize parallel loading between the conversion registers D-latch and
Dstar-latch. Qd-multiplex and Qd-low select either D{j-1] or D*[j-1] from D-latch
or Dstar-latch, then append a pair of 1's to produce the Qd bit pattern. Finally, Qz-hold
holds the Zj+4 value arriving from the Sum-of-Squares Unit across the next half cycle,

when R{j] is produced.

The Arithmetic Section

The Arithmetic section is responsible for actual calculation of the residual valye
R[j], and consists of a set of registers and summing logic as detailed in Figure 6.4. The
carry-save form of 2 « Rfj-1] is formed by routing its partial-sum and carry-save
components, held in R-latch.ps and R-latch.sc, respectively, up and to the left one bit
position to accomplish the multiplication by 2. Q4 and Q; are introduced from the Operand
section above, with Qg shifted one position to the left to form 2 « {Qd). A 42 reduction in
csa-levell and csa-level2 then produces R[j]. Because Q: only extends to the 2-4
position, that portion of csa-levell to the right of Q; is actually not required. However,
since the cells composing csa-levell in the bit-sliced design were still present, they were

included and one input of the full-adders in these positions was wired to 0.
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{4 4 coe | A2 R-hold.ps
: cee csa-levell
l £ 4 e |44 R-hold.sc
2% Rij-1] ; esalevel?
" : { ves 4| R-latch.ps
P . R-latch.sc
v

bits -2 ... 4 of R[],
to Selection section

Figure 6.4 - Logical Structure of the Arithmetic Section: Square-Root

Physically, the Arithmetic section is divided up into bit-slices in exactly the same
manner as for the Sum-of-Squares Unit with the exception of the leftmost slice. Here,
extra circuitry is required both for system signal buffering and to provide an extra integer
bit position to cover the entire range of Rfj] values possible. In total, three integer and four
fractional positions are transmitted to the Selection section, Figure 6.5 details the resulting
physical structure of the Arithmetic section pm:tion of a bit-slice, with shaded cells

representing the extra hardware required in the leftmost slice.
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01 ——>| | R-hold.ps (rsff)
csa-levell (fad)

o1 é — R-hold.sc (rsff)
é csa-level2 (fad)

@2 5 R-latch.ps (rsff)
02 N R-latch.sc (rsff)

Figure 6.5 - Physical Structure of the Arithmetic Section: Square-Root
The Selection Section

The Selection section is responsible for the selection and latching of result dj digits.
Selection is performed on the quantity Rhatstar(j] which represents the sum of a low-
precision estimate Rhatf 71 of R[j} plus a factor Zj+5 2-5 (see the algorithm 6.1). The
number of fractional bits ¢ of R{j] which must be included in the estimate RAat[j] varies
according to the online delay Psqr that the designer is willing to tolerate. For this
implementation, an estimate Rhatfj] having t = 3 fractional bits was chosen, which

corresponds to an online delay of Dsqr =4.

The selection function dsel that determines result dj digits operates on the value of
Rhatstar[j] and is given in Figure 6.6. The range of Rhatstar[j] is [-2.5, 3.5], requiring
three integer digits of Rhatstar[ /] (and hence of R/[j]), while dsel requires precision to

1/4's, mandating that two fractional bits and therefore a total of 5 bits be examined for

selection. The selected dj's are represented in binary as dJ J and d0j. In addition, another
specially-defined binary digit 42 is produced for convenience and is set equal to 1 in the dj

= 1 case only.
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Range: Range R P3tSEr (5 15 53 6} therefore 3 integer bits needed for selection

Precision; to 1/4's, therefore 2 fractional bits needed for selection
dsel o 1 1 1 0 Rhat-star * dzi . N
Selectdon: ) ] o U 4 _ A i doj
Table 90 0o 1 20 1 = 1 0 1
0 0 o 0 0
1 1 1 1 1 =-1/4 0 = 0 0 0
1 1 1 1 0
1 1 1 0 1 <-122 -1 = 0 1 1
1 01 |1 o

Figure 6.6 - The dsel Selection Function: Square-Root

The resulting logical structure of the Selection section is detailed in Figure 6.7.
First, a 3-2 reduction in 3-2 reduce of Rhat[j] (equal to R-latch.ps + R-latch.sc to t=
3 fractional digits of precision) and zj+5 * 2-5 is required to include the current input digit.
The resulting carry-save forms are then assimilated in ¢pa into a single binary value equal
to thfsm"[j]. d-latch contains the selection logic as well as the latch structures required
to select and hold dj as d2j.latch, dlj latch, and d0j.latch. Finally, d-hold serves as a
delay larch to hold the dj value produced for feedback to the on-the-fly converters of the

Operand section during the next half cycle.
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bits -2 ... 4 of R-latch.ps R-latch.sc

RS ———
3-2 reduce
y ¥
cpa
¥
B —»i d-latch
dijbar latch,
dljlatch, *—
feedback to dbj.laich 02 d-hold
Section d2jbar hold,
dljbar.hold, *— ]
dOjbar hold, ,
N ol dljbar.hold,
) dlihold,
d0j.hold

Figure 6.7 - Logical Structure of the Selection Section: Square-Root

6.3 THE RESULTING STRUCTURE

As was the case in the Sum-of-Squares unit, the physical structure of the entire unit
consists of the Operand, Arithmetic, and Selection sections stacked one upon the other and
aligned at the left. The Operand and Arithmetic sections were integrated into type-A, type-
B, and type-C bit-slices, with a single type-A slice running along the leftmost edge of the
unit, 7 type-B slices inserted along the width, and finally a single type-C slice capping off

the right end. The Selection section again fits snugly underneath the leftmost slice as the

type-D portion.
One difference in this case was that 3 special type-B slices, corresponding to bit

positions 2, 3, and 4 of the R{j] residual, were required in order to laich and properly align

Qz immediately above the Arithmetic section. These slices differed from the others in that
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the flip-flops corresponding to these positions were wired to accept as inputs z2j, z1j, and
205 of zj+4, shifted to correspond to the multiplication by 2-4 as called for in the algorithm.
The other slices, by contrast, had their flip-flip inputs wired to 0.

In the final implementation, a type-A bit-slice measured 2028 microns high by 597
microns wide, all type-B slices had the same height and were 147 microns wide, and a
type-C slice again had the same height and was 213 microns wide. The extra width of the
type-A slice is due to the extra circuitry incorporated therein and described earlier. The

type-D Selection section measured 701 microns by 1248 microns.

In the vertical dimension, the height of the unit was 2729 microns, dominated by
far by the height of a bit-slice. In the horizontal dimension, the width of the unit was 1839
microns for this n~=8 implementation. To accommodate a larger precision s, an additional
type-B slice, at a width of 147 microns, would be required for each additional fractional

digit of precision desired.
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(from Sum-of-Squares Unit)

DO[j}bar ... D8{j]bar (to Division Units)

!

1——— 22jbar, z1jbar, z0jbar

Operand
Section

Arithmetic
Section

Selection
Section

1 l

1

dljbar.hold, d1j.hold, d0j.hold
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Figure 6.8 -
The Square-Root
Unit (Diagram)
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CHAPTER 7
DIVISION UNIT ARCHITECTURE

The twin Division Units, the final major units in the calculation chain, are charged
with computation of the quotents ¢ = g/d and 5 = h/d. Inputs to the units consist of
dj.hold’s, whose digits are received serially as dljbar.hold, dlj.hold, and d0j.hold, D{j]'s,
received in full-parallel] as DOfjlbar ... D8[j}bar and representing the on-the-fly converted
value of all d; digits, and the initial values of & and . Both quantities are produced in and
obtained from the Square-Root Unit, with the -hold suffix indicating that a half-cycle delay
was ‘introduced between the production of these dj's in the previous unit and their
consumption here. The division algorithm is unique in that it calls for a non-zero initial
condition in one of the variables involved. For the ¢ = g/d unit, g is pre-loaded into a
register within the Arithmetic section, and likewise for the s = h/d unit A is pre-loaded in an

Arithmetic section register.

For the purpose of describing a unit's operation, the s = A/d case in particular will
be used since the operation of the unit producing ¢ = g/d is analogous. For this case, the
unit's output consists of a digit stream §j» 5j € [-1,0,1], such that the equation 5 = /4 is
satisfied, with » = 8 fractional digits of precision. Also, because this is the final unit in the
calculation chain, the full parallel on-the-fly converted value S/;] of the 5j's produced is

routed to output pads and may be sampled at any point during the chip's operation.
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7.1 ALGORITHMIC ANALYSIS

The structure of this algorithm similarly matches that of the generalized model of
Chapter 2. In this case, Wfj] is the residual whose value is repeatedly generated at every
St€P, 5 represents the result digit selected during step j, and S} represents the full parallel,
on-the-fly converted value produced from the sj result digit stream. Since sie[-1,0,1], sj
Mmay assume a negative value, and trye on-the-fly conversion involving two registers
representing S/j/ and S*/jj is required. In addition, an internal Quantity P{j] is kept within
the unit and is used during the opposite half cycle to assist in the production of W{j].

One caveat in the algorithm below is that internally, rather than producing s = h/d as
dlctated by inputs from the external world, the value of s = 2-3 + h/d is produced. This
reflects a choice of an online delay pgiy = 3, and the 2-3 factor is incorporated into the
initial loading of A as k « 2-3. To compensate for this multiplication, the S{j] value routed
off-chip is shifted left three bit positions, and thus the true s = 4/d is communicated to the

outside world.
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algorithm Division (7.1)

S/0] = 00.00000000000; /* INITIALIZE conversion regs */
$*{0] = 00.00000000000;
So=0; /* INITIALIZE result digit stream */
P[0] = 00.000 A1 ... h8; /* INITIALIZE the residual */
D[0] = dy; /* INITIALIZE other inputs */
forj=1,2,..,n+3=11 { /* GENERATE recurrence value *f
(Wijl =2+ Plj-1] +
[;gj'S[J-H ki /* {Qs} %/
sj = qsel W{jI; /* SELECT result digit */
PLI=Whi+ /* UPDATE local values */
(-sj*Dfj]} % * {Qd) */

S{j] = convert (Sfj-1], 55);
}

end Division
7.2 LOGICAL AND PHYSICAL DESIGN OF SUB-.SECTIONS
The Operand Section

The Operand section of the unit contains the circuitry required to generate the O
operand of the recurrence equation. The value of Qg depends upon the dj.hold digit
received from the Square-Root Unit and the on-the-fly converted value S{j-1] of previous
result s digits produced within this unit. Since dj.hold € [-1,0,1], the task of producing
the binary bit pattern representing Qs reduces to multiplying Sfj-1] by 1, 0, or -1.
Converters are physically placed within the Operand section again, and a feedback loop
from the Selection section returns result s; digits here for conversion. Figure 7.1 details the

resulting structure of the Operand section.
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shift-register
Y ¥ ¥ 3 3 33
sljbar, 32 S-clock
Y ¥ ¥V ¥ 3 3 3
sOjbar ~—»{ S-latch
50j =] Sstar-latch
s B G T )
s2jbar, 2 —»q P 4 ¥ o Sstar-clock
dljbar.hold, _ ) Qs-multiplex
dlj.hold, d0j. hold

output to the Arithmetic section

Figure 7.1 - Logical Structure of the Operand Section: Division

The section operates as follows. At the beginning of the chip's operation, the
GRESET signal is used to preset all latches to 0, except for the leftmost master flip-flop in
shift-register, which is seeded with a 1. This 1 is the source of a bit pair that travels

across the section marking the current position j exactly as in the Sum-of-Squares Unit,

The section's first objective is to produce the bit pattern corresponding to Q5. This
is accomplished by multiplying S/j-1] by 1, 0, or -1 corresponding to dj.hold values of -1,
0, or 1, respectively. Figure 7.2 details the patterns that result as a function of the dj.hold

input.

Qs= [Skar,1,.,1,..,1)] d(j)hold = 1 (1 inserted)
Qs= {0,0,..,0,..,0) dj).hold = 0
Qs= [5,0,..,0,..,0) dij).hold = -1

Figure 7.2 - Bit patterns produced as a function of dj.hold: Division




On the next half cycle, the Operand section is responsible for the on-the-fly
conversion of S{j] using the result 5j digit selected during this step of the algorithm. Since
this 57 value may be negative, true on-the-fly conversion using two registers to convert SfjJ
and $*{j] is performed. Parallel loading between these registers is triggered by the value of
§j if non-zero and operates exactly as between the registers of the Square-Root Unit's

converter.

Physically, the Operand section is again broken into bit-slices. Figure 7.3 details
the physical structure of the Operand section portion of a bit-slice, with shaded cells

representing the extra circuitry required in the leftmost slice.

02 —a | shift-register
) masters/slaves
D] (rsff's for both)

sijbar, @2 S-clock (nor2/morlfinv)
j ) ]
SOjbar  sm— § ‘{ I S-latch (rsmuxff)
s0j = -= I Sstar-latch (rsmuxff)
12jbar, @7 ——— -{ , Sstar-clock (nor2/nor2/inv)

o -multiplex (i 2
d1j.hold, d0j hold ) m Qs-multiplex (inv/mux/nor2)

Figure 7.3 - Physical Structure of the Operand Section: Division

shift-register is responsible for carrying the bit pair across the entire section.
Seven delay stages are included in the leftmost slice; these are required to delay on-the-fly

conversion until valid sj digits are produced. S-clock and Sstar-clock contain the logic

required to trigger and synchronize parallel loading between the conversion registers S-
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latch and Sstar-latch. Finally, Qs-multiplex selects S[j-1] from S-latch, then
multiplies it by 1, 0, or -1 to produce the Qg bit pattern,

The Arithmetic Section

The Arithmetic section is responsible for actual calculation of the residual value
W(jl. Inthe Sum-of-Squares and Square-Root Units, this task consisted of reducing three
operands of a single recurrence equation to produce the carry-save form of the residual.
However, in the case of the Division Unit, this task consists of reducing a recurrence
equation having two operands to produce the carry-save form of the residual W/jJ during
the first half-cycle, and then reducing the value so produced along with another operand,
Q4. to form P{j] (an internal quantity) during the next half-cycle. P/j] serves in turn as Plj-
1] in the production of W{j] during the next step of the algorithm. Equations 7.2
(excerpted from 7.1) detail the events that transpire during each half phase of an algorithmic

step.

Wijl=2+P[j-1] + /* first (B2 -> B1) phase */
(-djS[j-1]); * Qs *
5j = qsel W[j}.
(7.2)
Pj] = W{j] + /* second (@1 -> &J2) phase */
(-sj*Dfjl ); > Qa ™

S{j] = convert (5/j-1], ik

Figure 7.4 details the logical structure of the Arithmetic section. During step /, the
partial-sum and carry-save forms of Pfj-1}, held in P-latch.ps and P-latch.sc, are
routed up and to the left one position to accomplish the multiplication by 2. They are then
combined with Qg in csa-levell to form the partial-sum and carry-save forms of Wyjj,

kept in W-latch.ps and W-latch.sc. In the next half-cycle, Q4 is formed (according to
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the value of the 5j selected) in Qd-multiplex in the exact same manner as Qs was formed
in the Operand section. Q4 and the partial-sum and carry-save forms of W/j] are then

combined to form P/ ] in P-latch.ps and P-latch.sc.

Qs (from Operand section, above)
: 1

b 9
. csa-levell
3
P . ¥ 4 W-latch.ps
‘e Woelatch.sc
2*Pfj-1] 1 1 =+ |1 1] Qd-multiplex
¥ ')
‘e csa-level2
‘! ‘n .o ‘v ‘r P-ellablef
P-clock
* cae P-latch.ps
r‘ A' L") P-latCh.SC
v 3

bits -1... 4 of P[j},
to Selection section

Figure 7.4 - Logical Structure of the Arithmetic Section: Division

The P-enable/P-clock level is included to provide gated clocks to the latches of
P-latch.ps and P-latch.sc. Normally, the clocks to these registers are allowed to run
free. Because latch inputs typically remain zero until a unit begins to produce significant
digits, no added clocking logic is required. However, a special condition forces the
inclusion of gated clocks in this case. The P-latch.ps register is utilized during the first

step of the algorithm to latch and hold the initial value of 4 input from the external world,
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and a single clock pulse must be applied at the proper moment to accomplish this.
Thereafter, clocks must be inhibited unl the global time step during which the first valid
result digit is selected, otherwise the value held in P-latch.ps would be churned through a
number of invalid iterations of the Division algorithm, producing erroneous s digits in

advance of the proper moment.

Physically, the Arithmetic section is divided up into bit-slices in the same manner as
for both previous units. As usual, the leftmost slice contains extra circuitry for system
signal buffering, and in addition provides two extra integer bit positions to cover the entire
range of P{j] values possible. In total, two integer and four fractional positions are
transmitted to the Selection section. Figure 7.5 details the resulting physical structure of
the Arithmetic section portion of a bit-slice, with shaded cells representing the extra

hardware required in the leftrost slice,

[ csa-levell (fad)
o1 W-latch.ps (rsff)
21 ——ag W-latch.sc (rsff)
?}, Qd-multiplex (inv/mux/nand2)
’ csa-level2 (fad)
ENABLEbar, P-enable/P-clock (rsff/logic)
@lbar, @2bar — 7
P-hold.ps (rsff)
P-hold.sc (rsff)

Figure 7.5 - Physical Structure of the Arithmetic Section: Division
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The Selection Section

The Selection section is responsible for the selection and latching of result sj digits
and implements the selection function gsel. According to the algorithm, selection is
performed on the value of the W[j] residual produced during the ﬁrst half-cycle of an
algorithmic step. However, it was noted that based upon the range and precision
requirements of gsel, a low-precision estimate What{j] of W{j] could be used for selection
instead, where Whaf[j] requires only the values of Pfj-1} and dj, and not S/ j-1]. Figure
7.6 details the operation of the selection function gsel based upon the value of Whatf;].

Note again that a specially-defined binary digit s2j is produced for convenience and 15 set
equal to 1 in the §j =1 case only.

Range: Range W hat 01=1-23/8,23/8), therefore 3 integer bits needed for selection
Precision: to 1/8's, therefore 3 fractional bits needed for selection
qsel 0 1 01 1 1 w hat |5 s $2j sl soj
Selection; L ] ] U g 4 ] 4
Table 000 010 11 > 1/4 1 = 1 9
0 0 0 0 1 ¢
0 0 0 0 0 1
0 0 ¢ 0 0 o
1 1 1 1 1 1 [-1/4,1/8) 0 = 0 0 0
1 1 1 1 1 0
1 1 1 1 0 1
1 1 1 1 0 0 <-3/8 -1 = (] 1 1
1 01|90 o i

Figure 7.6 - The gsel Selection Function: Division

The derivation of the estimate What[;] from the recurrence equation for Wy/jj is

straightforward and depends upon two factors. First, the value of S J-1] in the recurrence
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equation is guaranteed to be positive and further to be less than 2-Pdiv = 2-3, Second, gsel
only requires precision to 1/8's, or 3 fractional bit positions. Therefore, addition of Qsto02
* P(j-1] in the recurrence equation affects gsel only in the positions above and including 2-
3. Hence, the equation What[j] = 2.« P[j.1] + (sign(d)) - 1) + 2-3 is adequate to represent
an estimate of the value of W/j] to the three fractional bit positions required by qsel.
Elimination of the S/j-1] term leads to a much simpler implementation requiring less

internal routing and addition circuitry than would be necessary otherwise.

The resulting logical structure of the Selection section is detailed in Figure 7.7.
First, the binary point of the Selection section is placed one position to the right with
respect to the binary points of P-latch.ps and P-latch.sc, effectively multiplying them
by 2 to form 2 « P{j-1]. Next, these are combined with (sign(dj) - 1)+ 2-3in 3-2 reduce
to produce the carry-save forms of What{j). The forms are then reduced to straight binary
in cpa, and finally s-latch contains the selection logic as well as the latch structures

required to select and hold s; as s2j, sIj, and s0j.

2+ bits -1 ... 4 of P-latch.ps , P-latch.sc

(sign(d) - 1)  24-3) — i' j'
3-2 reduce
¥ ¥
cpa
v

eedbach O1 —» s-latch
Cgpamda:fi s2jbar,
Arithmetic SIjb.ar' slj, ¥
Sections s0jbar, 0 s1j, sOj

Figure 7.7 - Logical Structure of the Selection Section: Division
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7.3 THE RESULTING STRUCTURE

The physical structure of the Division unit consists of the Operand, Arithmetic, and
Selection sections stacked one upon the other and aligned at the left. The Operand and
Arithmetic sections were integrated into type-A, type-B, and type-C bit-slices, with a single
type-A slice running along the leftmost edge of the unit, 9 type-B slices inserted along the
width, and finally a single type-C slice capping off the right end. The Selection section
again fits snugly below the leftmost slice as the type-D portion.

As in the Square-Root Unit case, 2 special type-B slices, corresponding to bit
positions 2 and 3 of the P{j] residual, were required in order to accept O as an initial
condition during the loading of 4 into P-latch.ps at the beginning of the chip's operation.
These slices differed slightly from the others in that the flip-flops of P-latch.ps
corresponding to these positions were wired to ground. The other slices, by contrast, had

their flip-flip inputs wired to the proper bit among Al ... h8.

In the final implementation, a type-A bit-slice measured 2024 microns high by 723
microns wide, all type-B slices had the same height and were either 167 (positions 2 and 3)
or 179 microns wide (positions 4 ... 10), and a type-C slice again had the same height and
was 222 microns wide. The type-D Selection section measured 581 microns by 1137

microns.
In the vertical dimension, the height of the unit was 2604 microns, dominated by

far by the height of a bit-slice. In the horizontal dimension, the width of the unit was 2528

microns for this n=8 implementation. To accommodate a larger precision a, an additional
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type-B slice, at a width of 179 microns, would be required for each additional fractional
digit of precision desired.
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DO{jlbar ... D8{j]bar (from Square-Root Unit)

i

dijbar.hold, d1j.hold, dOj.hold
(from Square-Root Unit)

r

Operand
Section

Arithmetic
Section

gt;__y_;

Selection Al ...

Section

b

sij, s0j

Figure 7.8 - The Division Unit (Diagram)
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CHAPTER 8§
ARCHITECTURAL, PERFORMANCE, AND FUNCTION AL EVALUATION

8.1 CHIP FLOORPLAN AND AREA CHARACTERISTICS

The 5 units of the final implementation were placed within the project area
according to several sets of constraints. Calculation-dependent factors dictated that units be
placed for smooth flow of operands between predecessor and successor units. Practically-
oriented considerations included the need to attach units to a single, system-wide bus
carrying power, clock, and contro] signals. Expansion-oriented considerations suggested
that units be placed to accomodate the addition of interior bit-slices to increase the accuracy
of their results in future implementations. When taken together, these considerations
attempt to provide the fastest Possible operation, most efficient use of project area, and
greatest expansive flexibility while accommodating the unique input/output constraints
imposed by each unit within the integrated arghitccture. Figure 8.1 details the resulting
logical structure of the implementation, and Figﬁre 8.2 provides the corresponding plot of

the finished rotation chip.

First, unit-to-unit distances between those units which produce and consume a
particular result digit stream were optimized to minimize the delays incurred in
transmission. From Alignment through Division, communicating units are placed adjacent
to each other, resulting in a clockwise flow from upper right to upper left of inter-unit digit

streams. Result Xj and y; digits flow from the Alignment Unit directly into the Sum-of-
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Squares Unit, whose zj output flows in turn to the Square-Root Unit, whose dj and D{j]

results flow finally into the twin Division Units.
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Alignment Unit = 1100 transistors
Sum-of-Squares Unit = 1700 transistors
Square-Root Unit = 2865 transistors
Division Units =2 * 3482 = 6964 transistors

Entire Chip (+ pads, etc.) = 14,000+ transistors

eg.eh  ec,es

{11

c g clj, cflj

Alignment
Unit

Upper Division
Unit

System Signal Linesg

Sum-of-Squares
Unit

Lower Division
Unit

b

slj, s0j

Figure 8.1 - The Online Rotation Chip (Diagram)
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Figure 8.2 - The Online Rotation Chip (Plot)
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Second, three of the units, namely the Alignment and twin Division Units, present
unique circumstances because they receive and transmit inputs and results in full-parallel
from the external world, and hence needed to be placed within close proximity to their
appropriate bidirectional input/output pads. The Alignment Unit receives exponent inputs
eg and ej and transmits exponent outputs e and eg directly from pads located at the upper
right. The mantissas g and h, however, are received from pads located at the upper and
lower left, and must be bussed to the shifters of the Alignment Unit's Shifting section.
Such placement was motivated by the fact that the Division Units required the original
mantissa values as initial conditions for their operation, and as well produced the final
mantissas ¢ and s for output through the same pads. The final arrangement minimized the

total amount of bussing required considering the needs of both units.

Third, all units required access to a common set of system power and signal lines,
and by centralizing these the amount of area devoted to non-computational circuitry could
be reduced. The bit-sliced design of every unit provides for the horizontal distribution of
system power and signals from leads that extent to the edge of the leftmost (type-A) slice.
Hence, a "signal highway" running through the center of the chip and feeding units to the
left and right was used, distributing Vdd, GND, clocks, enabling, and reset signals. It was
necessary to flip the orientation of the Division Units in the horizontal direction, and further
to flip the top Division Unit upside down, to facilitate distribution while maintaining the

ease of routing signals on and off chip.
Fourth, since the Division algorithm calls for transmission of the full value of Dfj]

produced within the Square-Root unit at every step, a separate parallel data path had to be

placed in a manner minimizing as well as equalizing the transmission delay incurred. Both
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goals were accomplished by routing these lines up and out of the top of the Square-Root
Unit, then horizontally to the left between the twin Division Units where individual lines

were connected to the appropriate bit-slices therein.

Finally, placement was influenced by the potential for future expansion of the
chip's precision via addition of extra bit-slices to each unit. As detailed in the chapters on
individual units, extension of precision to greater than the n = 8 fractional digits provided
by this implementation is easily accomplished by adding a single type-B bit-slice per unit
increase in n desired to every unit. Because all units of the final implementation are
oriented to expand away from the centrally-located signal highway, extension of any single
unit in no way affects the placement or orientation of any other unit. Expansion, then,
amounts simply to extending the horizontal dimensions of the project area, adding the
appropriate bit-slices, and including extra input/output pads. See the last sections of the

chapters on individual units for additional information regarding expansion,

The project area was divided into those zones encompassing the internal circuitry
only (50% of the total chip area), the internal circuitry + the surrounding wire channel
(71% of the total), and finally the entire chip (= internal circuitry + the surrounding wire
channel + pads, 100% of the total). Of the 50% devoted to internal circuitry, 3.9% went to
the Alignment Unit, 3.3% to Sum-of-Squares, 7.4% to Square-Root, and 19.3% to the
twin Division Units, with the remaining 16.1% of the area dedicated to the system signal

highway and routing lines.
Because the control structures required by the implementation were so simple, it

was possible to optimize the use of the available chip area for computational structures that

directly determine the precision that can be accomodated. Furthermore, the addition of bit
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slices to the units to increase precision does not require any additional control circuitry, and
therefore any additional area is used as efficiently as is possible. What little control there is
consists of extensions to the shift registers that span across the tops of the Sum-of-
Squares, Square-Root, and Division Units. These were extended to accommodate the

online delay of each unit.
8.3 TIMING ANALYSIS: ONLINE DELAY AND CYCLE TIME

According to theory, the online delay (defined as the number of algorithmic steps
between loading of the original operands and production of the first result digit) and latency
(defined as the number of steps between loading and production of the final result digit) of

the entire chip should be given by the equations below.

Pchip = (Pah'qn + 1)+ @sos + 1) + (psgr + 1) + (pgiv + 1)
=0+D+O0O+D+@+D+G+ 1
= 11 time steps, theoretically
(8.1)
latencychip =pchip + (n - 1)
=11+(8-1)
= 18 tme steps, theoretically

However, two implementation-related factors led to an an actual online delay of pchip =
11.5 real time steps and a latencychip = 19 real time steps. First, an extra time step was
required at the beginning of the chip's operation for input of the original exponent and
mantissa operands and was not included in the theoretical calculation. Second, given that
the time steps of this implementation were divided into atomic half-cycles, it was found that
a single half-cycle could be shaved off of the online delay Psqr- Finally, an extra half-cycle
is required at the end of the chip's operation to allow for the mantissa outputs to stabilize in

their latches. Equations (8.2), representing the implementation, are given for comparison
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to those of (8.1), while figure 8.3 gives a pictorial view of the online delays and
overlapped operation of individual units as well as the online delay and latency of the entire
implementation.

Pchip =Pinput + Palign + 1) + Psos + 1) + (psqr + 1 - .5) + (pdiv + 1) + pour

i
S+O0+D+O0+D+@+1-5+@B+D+.5
11.5 time steps, actually

(8.2)
latencychip =pchip +(n- 1)
=115+@8-1)
= 18.5 time steps, actually
Time=0 1 2 3 4 5 6 7 8 9 10 11 2 13 415 16 17 8 9 20
, R I T U T T S T S T T S
Algnment | { g 1D DD E D
P I L - R
N L M oo v
Sum-of-Squares e —————— | S S R
A EE N B T A
1 S-S S S-SRI T S S-S N SN S S S S SN S
Square-Root ! 1 ! 1 ] ! jeee————— 111
SR S A A R A A D B
AT S R A A Y S R R Y
Division @ 1 1 1 ' 1 v b1 ) ———— l N
S S S S A A S :
input operands } * * ‘ *
received L L
first significant first significant full parallel S[j}
x(Jy(§produced d(j)produced available from chip
first significant ) first significant
Z(j) produced ‘. s())produced

Figure 8.3 - Timing Analysis: Individual Unit and Chip-Wide Online Delays

The cycle time of the implementation was derived by locating the critical paths in
both the @1 -> B2 and @2 -> B1 half cycles, then simulating them using worst-case inputs
under SPICE to,obtain accurate estimates of their delays. Worst-case inputs consisted of

those input combinations leading to the longest propagation delays through buffers, gates,
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flip-flops, and full-adders within any one unit. Note that the cycle-time of any
implementation depends directly upon the technology used for the underlying circuitry; in
this case, a 3 micron CMOS process was utilized. For this implementation, both critical

paths are found in the Square-Root Unit.

In the @1 -> B2 half cycle, the critical path consists of three operations. First, D/j]
and D*{j} are generated in the on-the-fly converter of the Operand section, with loading
between the conversion registers triggered by the @1 pulse. Next, Q4 is formed by
appending the pair of one's to the end of the converted value as detailed in chapter 6.
Finally, a 4-2 reduction in the Arithmetic section forms Rfj]. The signal path consists of a
single buffer, 2 logic gates, a flip-flip, 4 more logic gates, and finally 2 full-adders, and the

entire computation may take up to 50 nanoseconds.

For the @2 -> @1 half cycle, the critical path consists of two operations. First, a 3-

2 reduction of the contents of R-latch.ps, R-latch.sc, and Q;, is performed. This is
then followed by a 2-1 reduction of the results prior to selection, which determines the
result d; digit. The signal path here consists of a buffer, a flip-flop, 2 more buffers, a 7-bit
carry-propagate adder (composed of full-adders), and finally 3 logic gates. A worst-case

delay of 55 nanoseconds was computed for this half-cycle.

Given the delays of each half-cycle in the two-phased operation of the chip, the total
step time can be expressed simply as the sum of 50 and 55, or 105 nanoseconds, and
correspondingly the expected speed of operation is about 9.5 megahertz. This implies that
the total latency of this implementation is about (19 time steps) » (105 nanoseconds/step),

or about 2 microseconds per calculation. Therefore, from a system point of view the chip
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could be expected to calculate at the rate of 1/2 » 10-6) or about 0.5 MRPS (million

rotations per second).

The best way to achieve faster execution speeds within this technology is to reduce
the delay of each of the two critical paths. This can be done by replacing the carry-
propagate adders present in both with higher-speed adder structures. The benefits of a
faster cycle time may be multiplied by the number of steps involved in each calculation to
determine the total time savings that may be realized. Since the carry-propagate portion of

each critical path is fairly significant, substantial savings are possible.
8.3 OPERATIONAL TESTING MECHANISMS

In recognition of the difficulties involved in testing such a large chip, a number of
built-in testing mechanisms were included to assist in the identification and isolation of
non-working units. Although the functionality of the entire chip is lost if a non-working
unit is present, it is still possible to test the other units individually for functionality.
Because this is a "testbed" implementation, it was important that maximum flexibility to test

individual units or groups of units be available.

The testing scheme incorporated into the design of the chip accomplishes these
objectives by routing all unit-to-unit serial communications lines to a pad, where they can
be sampled at desired points during the chip's operation to determine if any or all units are
working properly. In fact, an override mechanism is also included, so that in addition the
inputs to any one unit can be logically disconnected from the outputs of the previous unit
and connected to off-chip input sources. Should any one unit be found defective, it can be

bypassed and the integrity of the other units can still be established.
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To assist in testing, extremely detailed records of the functional testing of the design
were kept and compiled in a separate document8. Extensive switch-level simulation was
done, with the goal of verifying the accuracy of every intermediate value ever produced
within any unit. Test cases were chosen such that any and aij boundary conditions that
may be encountered by any single unit and the chip as a whole were checked to confirm
that correct results were produced. For operational testing purposes, these results will be
extremely valuable because they provide the exact 0 and 1 values expected at any point in

time both within and at the output pads of the chip.

85



REFERENCES

1. Ercegovac, M.D., On-line arithmetic: An overview, Proc. SPIE 1984, Vol. 495, Real
Time Signal Processing VII, 1984, pp. 86-93.

2. Ercegovac, M.D., and Lang, T., On-Line Arithmetic: A Design Methodology and
Applications in Digital Signal Processing, VLSI Signal Processing 111, Brodersen,
R.W., and Moscovitz, H.S.. editors, [EEE Press, 1988, pp. 252-263.

3. Irwin, M.J., and Owens, R.M.,, Digit-pipelined arithmetic as illustrated by the paste-up
system: A wtorial, /EEE Computer (April 1987), pp. 61-73.

4. Ercegovac, M.D., and Lang, T., On-the-fly conversion of redundant into conventional
representations, /EEE Trans. Comput. (July 1987), pp. 895-897.

5. Ercegovac, M.D. and Lang, T., On-Line Scheme for Computing Rotation Factors,
Journal of Parallel and Distributed Computing 5, 1984, pp. 209-227.

6. Faris, S.G., Detailed Design Specification - A VLSI Design of an Online Algorithm for
the Compuzation of Rotation F, actors, available from the UCLA Computer Science
Department.

7. Golub, G.H., and Van Loan, C.F., Matrix Computations, The Johns Hopkins
University Press, Baltimore, 1983,

8. Faris, S.G., Esim and Spice Simulation Results - A VLSI Design of an Online

Algorithm for the Computation of Rotation Factors, available from the UCLA
Computer Science Department,

86






