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ABSTRACT OF THE DISSERTATION

o Performance Modeling of Concurrency Control
by

Farid Mehovi¢
Doctor of Philosophy in Computer Science
University of California, Los Angeles, 1989

Professor Leonard' Kleinrock, Chair

An analytical approach to performa.nce,model.ing of concurrency control in
databases is given. Systems where all concurrent transactions conflict are mod-
eled first. The results obtained are then mapped to the realistic cases where
concurrent transactions do not necessarily conflict. In some cases the mapping is
exact, and in others it is approximate and gives results which in certain domains
closely match those obtained through simulations.

The above approach simplifies the analysis and understanding of sharing com-
mon resour'ces: i;1 p-a..rticular. database granules.

The mean transaction response time and “power”, defined as system load
divided by mean transaction response time, are found for seven different concur-
rency control scheme models. These are silent-redraw, silent-noredraw, silent,/-

broadcast-redraw, silent / broadcast-noredraw, broadcast-redraw, broadcast-nore-

draw, and locking. The first six belong to optimistic concurrency control, while

Xxv



locking belongs to the class of pessimistic schemes.

The models considered have an infinite number of servers. This corresponds to
a database system accessed by workstations, provided the database server has a
sufficiently high capacity. The transaction service times consist of a deterministic
part and an exponential part. This type of service time distribution includes pure
deterministic and pure exponential service times as special cases. Transactions

a7

have static data access requirements.

-
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CHAPTER 1

Introduction

1.1 Motivation

There has been much research done in the field of concurrency control in
databases, as ;iisc&ssed in Chapter 5. The results given in the literature are
typically obtained through iterative numerical calculations. Those few results
that have a somewhat simpler form are often found for models that are 1;ot truly
realistic.

It would be useful to have exact analytic results for some realistic models. It
would also be helpful to find out if it is possible to separate queueing problems
from problems of conflict due to overlapping resource demand patterns of trans-
actions. Doing so would very much simplify the complex analysis of concurrency
control. Would the gain through such a separation be large enough to leave us
satisfied even ‘t;ith. approximate results? If so, would the future refinements of
the same approach give us better, and perhaps exact, results? And finally, could
we use the results for simpler models to select the concurrency control scheme

" that would give us the best performance for a given realistic system?

Before we attack concurrency control in databases, we will try to deal with



the problems of sharing common resources in the general case. The database

problem per se will be dealt when we reach Chapter 5.

1.2 The Model

1.2.1 Systems with Independently Shared Resources

Consider a system with a number of resources, such as System One shown in
Figure 1.1 containing resources A through G. Different shapes of resources drawn
in System One represent the possibility of having different types of resources in

a system.

Customers arrive to such a system each demanding exclusive access to a sub-
set of the system resources for a given amount of time. Such a subset of the
resources we call a demand set, and the time for which the access to the de-
mand set is requested we call service time. Let Ci, Cy, and C; be customers
arriving at System One at times t1, tz, and t5, demanding access to subsets
S - {4,D}, $={B,C,E}, and S, = iC;G}, for periods of time X, .X;, and
X, respectivelj_(. _In the systems considered here, customers demand resources
ind;;)endentl'y from each other. In addition to customers’ demand sets being mu-
tually independent, so too are their service times. Such systems we call systems
with independently shared resources, or ISR systems. The ISR systems can also

be called systems with specific resource demands.

Any customer C; in an ISR system we can describe as a triplet C,(¢;, Si. X,).

2



Svstem One

Figure 1.1: System with Independently Shared Resources



The number of resources in a demand set we call demand set size. The number
of resources in a system is the system size,

Concurrent customers are those that happen to be in the system simultane-
ously. Those concurrent customers that demand access to the same resource(s)
conflict. In other words, any two concurrent customers conflict if the intersec-
tion of their demand sets is nonempty. Assuming that all three customers in
Figure 1.1 are concurrent. customers C’; and C, conflict since 52NSy = (D} #0,

while customer C, does not conflict with Cior Cysince 5,NS, = @ and SiNS; = 0.

1.2.2 Partial versus Full Conflict Systems

If the nature of the demand sets is such that any two concurrent customers
always conflict, we ca.ll.such a system a full conflict system. If it is possible that
two concurrent customers in a system do not conflict, but other conflicts may
occur, the system is a partial conflict system. If no two concurrent custoiners
ever conflict. the system is a no conflict system. System One in Figure 1.1is a
partial conflict system since C, and C3 conflict, but C, and C, do not. Suppose
that the demand sét.s in System One always include resource B. Sysf‘em One
would then be a full conflict system. We would also have a full conflict svstem
if every demand set included either {4, B}, {B,D}, or {4, D}. If demand sets

- were always empty,. we would have a no conflict system.

Note that the G/G/1 queue is a full conflict system, where the common

resource is the single server. Since in a G/G /o no two concurrent customers



ever demand the same server, G/G/oo is a no conflict system.

Figure 1.2 shows examples of full conflict, no conflict, and partial conflict
systems in queueing models.! A G /G/m queue, 2 < m < o0, hpwever, we cannot
represent as an ISR system since servers are assigned to customers on the ba,sis'
of availability.

ISR systems that have only one resource, such as System Two in F igure 1.2,
we call single resource systems. Systems_iwhere every customer requires only
one resource, such as System Two and System Four in F igure 1.2, we call single
request systems. Assuming that demand sets contain at least one resourc.:e. except
for no conflict systems, all single resource systems are also single request systems. _

Figure 1.3 shows the different types of ISR systems described in this section and

their overlap.

1.2.3 Conflict Resolution and System Parameters

Since conflicting customers demand- ezclusive access to resources from their
demand sets, more than one such customer cannot use the resources successfully
at the same t_;i;;n;e. -Let us consider several conflict resolution schemes, or concur-
rency control schemes, that may be used to guarantee customers exclusive access
to their demand sets.

The silent conflict resolution scheme, or silent CRS, denoted as S, allows every

customer to access its demand set right away, with no waiting. Consider customer

! The oval in Part b) of Figure 1.2 represents infinite servers.
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Figure 1.2: Three Types of Systems
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t in the system. If, at the end of its service time, any customer conflicting with
custoget t has left the system. the customer i again ldemands exclusive access to
its demand set. In this case, we say that customer i restarts. If no conflicting
customers have left the system, customer i leaves the system at the end of its
service time. We say that customer i finishes successfully and departs. If the
system broadcasts a message about the departure to all the customers conflicting
with the departing customer, then they all restart right away. Such system is a
broadecast CRS. denoted as B. Suppose now that the broadcast CRS is modified so
that every cﬁstomer completes its ﬁrst serjrice entirely, regardless of any broadcast
messages. Such a system is a silent/broadcast CRS, denoted as sB. Considel; a
database under a database management system (DBMS). Customers in such a
system are transactions. If a transaction leaves the system, then the DBMS may
notify all other transactions about the departure, so that transactions conflicting
with the departing one may restart right away.

We distinguish between customers’ first (initial) service and restarted services.
The average length of a restarted service equals the average length of the initial
service mulﬁp-li'eci b.y r, the restarted to initial service ratio, or just restart to
initial ratio. Depending on whether the service times of restarted customers
remain the same or are redrawn from another distribution, silent, broadcast. and
"silent/broadcast CRS’s can be redraw or noredraw. For noredraw systems. all

restarted service times of one customer are the same, and equal to r times the

initial service duration. For redraw systems, restarted service times are drawn



from a different distribution whose mean equals r times the mean of the (initial)

service time distribution.

A'lso considered is a combination of silent a.nd broadcast, in which the first
(initial) service of a customer is not interrupted by system broadcast messages,
while their restarted services are. In other words, the system is broadcast ex-
cept for the first service of every customer which is “silent”. We call this system

silent/broadcast and denote as sB. Specifications for restarted services above ap-

ply to this system, too.

Silent and broadcast schemes are known as optimistic concurrency control
schemes, since the customers are allowed access to their demand sets rigiat away,
hoping that they won’t conflict.

A CRS that is pessimistic, is the locking CRS, denoted as L. In this scheme
every arriving customer waits for all customers conflicting with it to depart, and
only then is it granted access to its demand set. The conflicting customers are
served in a first-come-first-serve fashio,n.(FCFS).

An ISR system model is fully deﬁnec’l by the total set of resources, T, the
CRS model, one of the seven described models, SR, SN, sBR, sBN, BR, BN. or
L, the distribution of customers' interarrival times, ; —t,_;, the distribution of
customers’ service times, .\;, and the distribution of their demand sets, S;. The
size of S; we denote as |S;| or s;. The system size is IT| = t. Index i above
represents any customer C;.

The mean response time, also called the mean system time, of a customer is



defined as the time it spends in the system. This is the time from the moment
it arrives until it departs from the system. Power is defined as system load
djvidea by the mean response time. The system load, or system utilization factor,
2, is defined as the average arrival rate, )\, times the average éervice time, 7.
Service times are modeled as consisting of a deterministic and an exponential
component. This distribution we denote as DM, where 0 < ¢ < 1 represents the
deterministic fraction of the average service time. The D,M distribution includes

pure deterministic and pure exponential distributions as special cases.

1.3 Summary of Results

The systems analyzed in this dissertation have an infinite number of servers.
We first analyze the performance of full conflict systems, in terms of normalized
average response time and normalized power. In order to calculate these values,
we also find the distribution of the number of customers in the system.

Once we have obtained results for the full conflict systems, we map the results
to partial conflict systems. 'fhe mapping is based on the nature of the resource
demand pat‘térhg of customers. Two types of resource demand patterns are more
extensively used. The random resource demand pattern assumes that resources in
the demand sets are chosen randomly from the common pool of system resources.
The sequential resource demand pattern assumes that the set of system resources
is an ordered set, and any demand set then is a sequence of adjacent resources.

In both cases, the demand set size is kept fixed.

10
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Figure 1.4 gives an overview of the results we obtain for ISR systems with
different characteristics. Each row in Figure 1.4 represents a different model
for conflict resolution. éolumns represent different service time distribuFtions:
memoryless; DM, for 0 < ¢ < 1; and deterministic. As the table shows, some
results are calculated numerically through exact or approximate expressions for
transition probabilities, while other results are analytic.

With respect to the level of conflict, results from Figure 1.4 are exactly
mapped from full conflict systems to single request partial conflict systems, while
mapping to other partial conflict systems are approximate. This is shown in
Figure 1.5. No-conflict systems have trivial results and require no mapping. Re-
ferring to Figure 1.3, the shaded tegion represents the “only” systems for which
the mapping is not exact. However, most of the realistic systems belong to that
region. Approximations for those systems give results close to the simulation in

some realistic domains of system load and level of conflict.

We apply results obtained for partial conflict systems to databases with static
data access. Onuly simple winner queues and locking queues are used. The
results obtz—a.iﬁ;d‘ a.x:e exact for some systems and approximate for others. The
approximate results give very small errors for a wide range of system load and
probability of conflict.

The D,M nature of the service time distribution and partial restarts may be

used as modeling tools to analyze concurrency control overhead, useful fraction
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of transaction processing, and communication and interactive delays.

1.4 Structure of the Dissertation

The model, the parameters, and the performance measures are described in
Chapter 2.

Chapter 3 contains the analysis of full conflict systems. The performance of
some of the CRS models are recognized as being equivalent to the performance
of regular queues, such as G/G /1, in the case of full conflict. For other models
we first define special types of queues, “winner queues”, which are equiv:alent to
the full conflict case of those CRS models.

Partial conflict systems are covered in Chapter 4. A mapping from full to
partial conflict systems is given. based on the level of conflict, which is given
through the conflict measure defined in the same chapter. The cases for which
the mapping is exact, and those for which the mapping is approximate. are also
given. Finally, the domains of high and small errors are discussed.

Results from full conflict systems and mapping to partial conflict systems are
applied to database concurrency control in Chapter 5. After a brief survey of
results given in the kiterature, different database systems are described which can
be modeled using the analysis given in the previous chapters as modeling toois.

‘Then we show performance curves for different concurrency control schemes and
resource demand patterns. We also discuss the possibility of selecting the concuz-

rency control scheme that would give the best performance for a given database

14



system,
The conclusion is given in Chapter 6. There we summarize the results and

give pros and cons of the method of analysis. Areas and perspective of further

research are then specified.
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CHAPTER 2

Model

2.1 Input Parameters

The parameters used for the analysis of the IRS systems are given in Table 2.1.

Conflict resolution schemes are described in Section 1.2.3. Th-ey are: silent-re-
| draw (SR), silent-nonredraw (SN), silent/broadcast-redraw (sBR), sile;x_t/ broad-
cast-nonredraw (sBN), broadcast-redraw (BR), broadcast-nonredraw {BN), and .
locking (L).

Arrivals are assumed to be Poisson, i.e.. the intera.rfiﬁ.l time probability
density function is a(t) = le—*t, ¢ 2 0. Distributions of initial and restarted

service times consist of deterministic and exponential components. It is given as

J 0, 0<z2<q7
z) = (2.1)
_ Ee_(l‘:-q)/P1 r> qf
\ D
J 0, 0<x<rgzT
ba(z) =
H e-(u:—rq.-)/(rpp)’ z>rqT

\ f‘pr

where ¢ + p = 1. The above distribution type is described in Section 2.4.
Demand set distributions considered here are random (Rnd) and sequential

(Seq), with the size of demand sets kept fixed at s = |S|. In the random distribu-
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[nput Function Parameters
1 | Conflict Resolution Scheme | CRS & {SR,SN,SBR,SBN.BR,BN.L}
2 | Poisson Arrivals alt) A20
3 | Distribution of (Initial) b(z) u=>0 p= /\/;Lg
Service Times D,M B(z) 0<¢<1 p=1l-gq
4! | Distribution of Restarted br(z) 20
Service Times D, M | Ba(z) |0< ¢ <1 po=1—gq,
5 | System Set T - t=|T|
6 | Demand Set Distribution o(S) o € {Rnd,Seq}
0<s=|5<t

=1

Infinite Number of Servers

Table 2.1: Input Parameters
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tion all s resources are chosen independently from the system set. In the case of
sequential distribution, we assume that the System set of resources is an ordered
set. The resources in every demand set are adjacent to each other, forming a
sequential array. The first element of the array is randomly chosen from the

system set.

Finally, we consider only systems with an infinite number of servers.

2.2 Utilization Factor

The utilization fac‘tor. or system load, in ISR systems is defined as the ratio
of the average service time ¥ and the average service interarrival time 7, p =T/t
With the definition of the average arrival rate A = 1/7, we can write p = AT
[t may seem unusual to define the utilization factor like this in a system with
an infinite number of servers. Ig G /G/oc queues, Kleinrock [12] defines system
load to be p = limm_.s(AT/m), where m is the number of servers, and p is the
load per server. It is obvious that such-a definition of p agrees with the fact that
G/G/oo queues are always stable, i.e., p never reaches 1. In the ISR systems.
however, due 'tc; cénﬁicts of customers accessing the same r.;:sources, there are
any number of interarrival and service time distributions for which ISR systems
become unstable, i.e., p equals or exceeds 1, for a finite \. The simplest example
is the single-resource ISR system with locking, which is equivalent to G/G/1. as

described later in Section 3.4.4. Instability, or queueing itself, of a G /G/1 queue

is caused by sharing the same server, while in the single-resource ISR system it
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is caused by sharing a resource other than the server.

qu. the redraw ISR systems. due to resampling service times upon restarts,
the average service time of the departing customers, T, may become smaller
than the actual average (initial) service time 7. This may cause the redraw ISR
systems to remain stable for values of A larger than 1/7. In particular, those
systems will be unstable for A > 1 /Fw 2 1/Z. Our definition of pis AT for all

the ISR systems analyzed here.

2.3 Performance Measures

We are interested in the average time a customer spends in-' the system -
average response time T. Using Little's result, we can represent the average
response time as T = N/X, where N is the average number of customers in the
system. The performance graphs will contain normalized average response time

and normalized power, described below.

2.3.1 Normalized Average Response Time

Normalized a:ve'r.'age response (system) time is defined as T}, & T/T = N/p.
The normalized response time of a customer in an empty system equals unity,
T imin) = 1, and that is the best achievable performance. Graphs of the nor-
malized average response time will show “perfect” performance as a dashed line.
T, = 1. However, there will be systems with performance better than perfect, as

shown in Chapter 3. Those systems, of course, are not realistic.
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2.3.2 Normalized Power

Normalized power P is defined as the ratio of the utilization factor and the
normalized average response time, that is, P = p/T, = p*/N. Since the average
response time of a customer in an empty system is unity, the notmali;ed power
then equals load, and that is the best achievable performance. Graphs éf the

normalized power will show “perfect” performance as a dashed line, P = p.

2.4 Probability Distribution D.M

Consider a random variable Y defined as the sum of two random variables.
Yo and Yy;. Y will have a mean equal to 7. Let Y.D be deterministic with the .
value Yp = ¢q7, where 0 < ¢ £1, and 7 is an arbitrarily defined value. Let Yy
be drawn from the exponential distribution with the mean equal to PY, where
¢+ p = 1. Then, the following hoids: }" = Yp+Yy,and ¥ = 7. The probability
distribution of the random variable Y is shown in Figure 2.1. We say that such
a distribution is ¢-deterministic and p-memoryless, and we denote it as D,M
distribution.

The following defines D,M analytically.

0, 0<y<qy
PlY <y] =
1 —e-wv=aie o 5 q7
d 0, 0<y<gqy
dy

-g-»e‘("""'”fp, y>qy



L
P

%P[Y <y

0 qy v

Figure 2.1: D,M Probability Distribution
where 4 = 1/7. The D,M distribution includes two of the often utilized distribu-

tions as special cases. For ¢ = 0 we have a pure exponential distribution. while

for ¢ = 1 we have a pure deterministic distribution:
PlYSylemo = 1=  y>0

P[Ysy]qel =
1. y>7

The D,M probability distribution is used for modeling service time require-
. ments of tl;ercustomers. Consider a database system where transactions need a
fixed amount of time for communication and database access, and an additional
time of random length for the computation which is application dependent. The
service time requirements of the such transactions may be modeled by the D M-
distribution, \a;here 4% is the fixed part, and (1-¢)7 is the average computation

time.



CHAPTER 3

Full Conflict Systems

3.1 Introduction

Full conflict systems are those ISR systems in which any two concurrent
Customers necessarily conflict. This chapter contains results of simulation and
analysis for the seven different conflict resolution schemes. Some of ti1‘e results
are analytical. some are obtained numerically by solving a set of linear equations,
and some are obtained numerically using an integral formula. Several systems
are found to be equivalent to M /G/1 queues with different scheduling disciplines.
Other systems are equivalent to a special class of queues, called winner queues,
whose description and analysis are given in Section 3.2. More general winner
queues, winner queues with partial restarts, are given in Section 3.3. Section 3.6

summanzes the results on full conflict systems.

3.1.1 Notation

We adopt the following notation for full-conflict ISR systems. The types of
interarrival and (initial) service time distributions, and the number of servers are
specified in the same manner as for the regular G/G/m queues. In addition, next

to the specification of the initial service time distribution, separated by a dash we



also specify the distribution type of the restarted service times. Following that.
in pa;entheses we specify the conflict resolution scheme and the initial to restart
ratio r. For example, a full-conflict ISR system with broadcast-redraw CRS, Pois-
son arrivals, memoryless (initial) service time distribution, and g,-deterministic .
restarted service time distribution is denoted as M/M-D, M(BR,r)/o0. Since we
are going to deal only with systems with infinite servers, we will omit the spec-
ification of the number of servers. Thus, system M/ D,M-D(SN,0.5), specifies a
full-conflict ISR system with Poisson arrivals, g-deterministic initial service time
distribution. deterministic service time distribution with the mean edual half
lof the mean of the initial service time distribution, and silent-noredraw CRS.
The above definition of the notation for the full-conflict ISR systems is given in

Figure 3.1.

If the restart-to-initial ratio equals 1, it may be omitted. If the restarted
service time distribution is of the same type as the initial service time distribu-
tion, it may be omitted as well. For example. both service time distributions
in system M/Dy sM(sBR,r} are 0.5-deterministic; however, the average restarted
service time is‘ s-till-r times the average initial service time. M/M-D(BN) is an
ISR system with Poisson arrivals, memoryless initial service times, deterministic
restarted service times with the mean equal to that of the initial service times
(r = 1), and broadcast-noredraw CRS. System M/M(L) has Poisson input, mem-

oryless service times, and locking CRS. In the case of locking CRS we specify

neither r nor restarted service distribution since there are no restarts.
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Arrivals, Poisson (M)
Restarted Service Times (M, D, M, D),0<q,<1

Second Part of Conflict Resolution Scheme (R, N

¥
M/M-D(SR, r)
3 k

Restart-to-Initial Ratio (N r>0

First Part of Conflict Resolution Scheme (S, sB. B. Ly

Inidal Service Times (M, DM, D) 0<q<1

Figure 3.1: Notation for Full-Conflict ISR Systems

If we want to specify more general cases of certain CRS's. we may omit part
or cntire specification of CRS. So. M/M(sB) specifies both redraw and nore-
'Iraw silent/broadcast full-conftict ISR systems. M/M(R) specifies all redraw
{ull-conflict ISR systems, while M /)I() srpétiﬁes all full-conflict ISR svstems with
Poisson arr}'va.ls and memoryless initial and restarted service time distributions.
Note that the systems where both service time distributions are deterministic.
redraw and noredraw cases are equivalent. Thus. M/D(S.r) is egivalent to both

M/D(SR,r) and M/D(SN.r).
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3.2 Simple Poisson Winner Queues
3.2.1  Definition and Structure

Consider a regular G/G queug, with an arbitrary interarrival time density
a(t), and an arbitrary service time density b(z). Assume now that each of the
customers accesses the same resource. Let a given customer i start his service
at time ¢, with service time X. If during the time interval (t,,t;+X) none of
the other customers leave the system, then, at time ti+.X, customer 7 will finish
lis service successfully dand leave the system. In this case we s;;xy that customer :
wins. If. on the other hand, some other customer j leaves the system in (ti X)),
say at time ¢, + X, where t, < t;+ Xy < ¢,+.X, then customer 7 loses. In the
former case. customer i is called a winner, while in the latter case. customer ;
is called a loser and customer J is a winner, Every time a customer loses, hLe
restarts his service, and he does that over and over ;‘g.ain until finally wins. A
queue with this discipline we call a winner qu;uc.

We differentiate between two types of systems, depending on the behavior
of the system upon.the departure of a wingner. Considel.:'a‘\ga.in that customer ;
starts his service at time ¢,, with service time .Y, and that customer ; wins at
time t,+Xw,t; < t,+Xw < t;+X. If. at time t;+.Xw, the system notifies all the

. other customers about the departure of customer 7, then, customer ¢ learns that

he lost right away, and restarts his service immediately, i.e., at time t; + Xw.

In this case we say that the system broadcasts that a departure took place. We



call this queue a broadcast winner queue. If the system does nothing upon a
depgrture of a customer, i.e.. if it remains silent. then all other customers do not
learn that they lost until they finish their present service. This means that our
loser i from the above example will restart not at time ti+Xw, i)ut at time ¢,+X.
A winner queue with this behavior we call a silent winner queue.

In addition to winner queues being silent or broadcast. the properties of
service times upon restart of losers divide all winner queues into redrew and
noredraw Wwinner queues. In the redraw systems a service time of each restart is
redrawn from the same service time distribution, B(z), with density 5(::). Our
loser. customer i, from the above example, will, then, be scheduled to finish his
restarted service at time t;+Xiy+X". in the broadcast case, or at time ¢, +X+ X",
in the silent case, where both X and X are drawn from the same distribution.
B(z). In the noredraw systems, service times upon each restart are equal to the
initial service time (they are not redrawn). So, the loser i, in such a system, will
be rescheduled to finish his restart at time ;+Xw+X, in the broadcast case. or
at time ¢t,+2.X, in the silent case.

The wihnc;r -quéues that are considered have infinite number of servers. They
have the same notation as the full-conflict ISR systems. In fact, the winner
queues are the full-conflict ISR systems with optimistic CRSs. However, the
winner queues described in this section only cover ISR systems with restart-

to-initial ratio 1 and identical initial and restarted service time distributions.

We shall refer to those queues as simple winner queues. Other, more general,
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ISR systems are analyzed through the winner queues with partial restarts in

Sectiog 3.3.

3.2.1.1 Why Winner Queues?

The winner queues may be used to analyze optix_r:git_ic concurrency control in
databases. Let database transactions be the customers, and let the database be
the resource shared by the customers. Let every customer have his own processor.
such as in the case where every' user executes his pi'bgram on his own personal
computer, and all PC’s access the same database residing on a mainframeé. Such a
system can be modeled with a winner queue, if every customer accesses th;: entire
database. Even in the case where customers access only part of the database.
winner queues can be the basis for analysis of concurrency control. Such analysis
is carried in Chapters 4 and 5.

Another type of queue, “with a precedence-based queueing discipline”, used

for the analysis of static locking is described in (36].

3.2.1.2 Structure

Here we study winner queues with Poisson arrivals, Poisson winner queues,
with DoM-distributed service times, M/D,M(CRS) queues. We define an embed-
ded Markov chain at (winner) departure instants in time, and represent states
by the number of customers in the system left by departures. Due to the memo-

ryless arrivals, the average number of customers in the system left by departures



equals the average number of customers in the system .V. Using Little’s result.
we find the normalized average service time as T, = T/ = N/p, and then we
calculate the normalized power as P = p/Ta = p*/N.

The D,M distribution of service times allows us to investigate how the deter.
nunicity of service times affects the performance of the system. We vary q from
0 to 1, re., we vary the distribution of service times from purely exponential
to purely deterministic. Ve shall see that the level of determinicity, ¢, affects

redraw and noredraw systems differently.

In Section 3.2.2 we first describe and discuss simulation results for four types
of simple winner queues: silent-redraw, silent-noredraw, broadcast-redx:a.w, and
broadcast-noredraw. In Section 3.2.3 we explain the analytical approach and in
Section 3.2.4 through Section 3.2.6 we give numerical results for winner queues
M/M(SR), M/D(S), and M/DeM(BR). A summary of the simple winner queues
is given in Section 3.2.7. In that section we s_pecify what systems from Figure 1

are covered with the simple winner queues analyzed in this chapter.

3.2.2 Simulation Results

In the four simulation runs, results for the queues specified in Table 3.1 are
obtained.

Figures 3.2 and 3.4 show that redraw systems with service times more deter-
ministic, i.e., with higher ¢, perform worse than redraw systems with lower g.

In redraw systems pure exponential service times give the highest power, while



System Parameters

| M/D,M(SR) | ¢ =0,0.1,02,...,0.9,1
M/D,M(SN) | ¢ =0,0.25,0.5,0.75,1
M/DM(BR) | ¢ =0,0.1,0.2,....0.9,1

M/DM(BN) | ¢ =0,0.25,0.5,0.75, 1

Table 3.1: Simulation Runs for Poisson Winner Queues

pure deterministic give the lowest power. Quite the opposite is the situation with
the noredraw systems, as illustrated in Figure 3.3 and 3.5. Here. the worst per-
formance is in systems with g = 0 {pure exponentiai). The initial service times
are independent of whether the system is a redraw or a noredraw one. [t is the
service times upon restarts that affect the performance differently. In redraw sys-
tems service times upon restarts tend to be smaller and smaller with decreasing ¢
due to the nature of service time probability distribution. In noredrasw systems.
however, the customers with long initial service times will negatively affect the
average response time because they have a small chance of winning and their
service times upon restarts will stay fixed at the initial high value. Furthermore.
the smaller ¢ is, the higher the probability of service time being long. And so.
the noredraw systems with less deterministic service times perform worse than
those with more deterministic service times.

From Figure 3.2 through 3.5 we see that redraw systems perform better than
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Figure 3.2: Simulation Results for M/D,M(SR)
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Figure 3.3: Simulation Results for M/D,M(SN)
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noredraw systems. This is. again, due to the nature of the service times. Fig-
ure 3.2 shows that a redraw of service times will cause shortening, probabilisti-

cally speaking, of service times, and. thus, will result in better performance of

the redraw systems.

Since in broadcast systems unsuccessful services are terminated even before
their prescheduled completion, these systems perform better than silent systems.
Broadcast systems have superior performance compared to silent systems.

[t is interesting to note that for the M/M(SR) system(s) the normalized power
oes not drop with an increase in e. In fa.ct'. as shall be seen in Section 3.4.1. the
bower approaches a constant as p goes to infinity. Such behavior of tht; system
is due to the redraw of service requests upon restart and to the memoryless
- nature of the service time distribution. Successful service times are shorter than
the requested service times. and for high p they tend to zero. The queue never
becomes unstable for finite p. The average system time grows linearly with p.

From Figure 3.4 we see that M /M(BR) system gives performance values close
to “perfect”. In Section 3.4.2 we will see that M/M(BR) indeed gives perfect
performance. =

Having the simulation results shown in F 1gure 3.2 through 3.3, and under-
standing the differencies in the behavior of four types of Poisson winner queues

(with a D,M service time distribution), we analyze some of the systems in the

following section.
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Figure 3.4: Simulation Results for M/D,M(BR)
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Figure 3.5: Simulation Results for M /D M(BN)
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3.2.3 Analysis

In order to find the normalized power in Poisson winner queues. we use the
embedded Markov chain to calculate the distribution of number in system left
by departing customers. We define di to be the probability of k customers left in
the system by a departure, i. e., dp ¥ P[k customers left behind in the system],
Once we have calculated all de,k =1,2,..., we can find average time spent by a
customer in the system. since the arrivals to the system are memoryless. Thus.

we can find the normalized average system time as

u
HII -

o -] V .
; - = (3.1)

where A is the arrival rate of the customers into the system, and N is the average

‘number of customers in the system. The normalized power P is calculated as

= ”_2 (3.2)

_ L
P-T

‘e define states of embedded Markov chain to be the number of customers
in the system left by departures. We divide the time axis into intervals between
successive departures, as shown in F igure 3.6.

The shaded areas in Figure 3.6 represent the (successful) service of departing
customers, and arrows represent the departures from the system. In Table 3.2

we define random variables X, X, X,,V,and V.

In Table 3.3 we further define p;;’s, the transition probabilities between the

£

states.
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U X,

Figure 3.6: Two Successive Departures

Symbol ’ Definition

X length of initial service

X, length of service upon restart

X, length of successful service

1% interdeparture time

U tixﬁe between previous departure and the beginning of the next

U=V -X,

Table 3.2: Definition of the Basic Random Variables

Pi;

Symbol | Definition
——

Pla departure leaves j customers in the system, given the
previous departure left ; customers in the system],

4,j=012...

Table 3.3: Definition of P
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In the following section we analyze the behavior of -random variables U. V.

X, in order to find the transition probabilities, Having found the transition

probabilities, we can calculate the distribution of the number of customers in the

system left by departures from the following equation.

de = Y dipix, k=0,1,2,... (3.3)

=0

Knowing that p;x = 0, k < i—1, as shown in the following section, we get

the recursive formula

1

k=1 '
de = ——I{disy = Y dipiny), k=1,2,... . (3.4)
Phk=1 1=0

The probability dy we calculate from the probability conservation law

do=1-Y% d; (3.5)

The numerical procedure for finding the normalized response time and power
is as follows. For an arbitrary A7 reasonably large, we calculate all the transition
probabil.ities_ Pijy 0S¢ <M, 0<j < M=2 Topreserve the conservation of the
probabi]jties,iw:e as‘:lgn the fo.ilowing value to the p;pr_,, 0<7i < M.

' M=-2
piMar=1-3 pij, 0<i<M (3.6)
1=0 o

We assign the value 1 to the probability dy, and from the recursive For-
mula (3.4) we find all the probabilities dx, 1 < & < M. Let the sum of allvthe
de, 0 <k < MbeC. qu we divide every di, 0 < k < M by C. From the d;'s

we find the number of customers in the system N. We shall refer to number M
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Figure 3.7: Poisson Winner Queue State Traasition Diagram

below as the precision of the numerical solution. Through Equation (3.1) and
t3.2) we use .V in obtaining the normalized average response time I, and nor-
malized power . The numerical method to go from the transition probabilities

to the performance measures is shown later as the top part of Figure 3.10.

In the sections below we concentrate on finding the transition probabilities.

3.2.3.1 Finding the Transition Probabilities

The embedded Markov chain. with the arcs representing transition probabil-
ities. is shown in Figure 3.7.

Since at most one customer may leave between two successive departures. we
have

pi;=0. j<i—-1 (3.7)

and thus those transitions are not shown in Figure 3.7

In Table 3.1 we define probability p;,(v).
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Definition

pij{v} | # P[a departure leaves J customers in the system. given the
previous departure left i customers in the system, and

the corresponding interdeparture time v < V < ¢ + dv],

,j=012.. v>0

Table 3.4: Definition of pij{v)

Once we find the probability p; ;(v), we may find p;, as

pi; = '/;mpi.,(v)dv : (3.8)

Consider any departure D from the system. Reltive to the departure D, we
call all the customers left in the system at the departure of D old customers.
and any customers that arrive after the departure of D new customers. The first
departure after departure D can be made by either an old customer or by a new

customer. Figure 3.8 shows transition graphs for the two cases.

The way the transition graph a) in F igure 3.8 is drawn is as follows. The
graph repre—sents a transition from state i to state j. We draw two rows of boxes.
The first row is associated with the state ;. One of the boxes represents old
customers, and we write “i” in it. The other box represents new customers that
rrived before the transition to the state j. We leave that box empty for now.
The second row of boxes is associated with the state J. In the box that represents

W

old customers we write “;”, and in the box that represents a winner we write
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Figure 3.8: Poisson Winner Queue Transition Graphs




“1”. We now draw arcs from the boxes in the first row to the boxes in the second
row. The labels on the arcs represent number of customers that are transferred
from one box to another. Since we know that the winner is an old customer (for
the case a) we draw an arc labeled “1” from the top old customer box to the
winner box. We know that all other old customers remained old, and so we draw
an arc labeled “i-1” from the top old customer box to the bottom old customer
box. Next we know that all other 7=i+1 old customers at state 7 must have
newly arrived. and so we draw an arec labeled “j —i+1" from the new customer
box to the bottom old customer box. Ve have now completed dra.wing'arcs since
the sum of the labels on the arcs equals the sum of the bottom row of boxes. .
Now we take the sum of the labels of all the arcs that leave the new customer
box. and we write that number in the box, i.e., we write *j—i+1". In the similar
way we draw the transition graph for the case b) in Figure 3.8.

Let us consider again a departure D from the system. Let it leave i customers
in the system and let the time be equal zero when departure D takes place. In

4

Table 3.5 we define four probabilities, Py, Pow, Py, and Pyw.

Given the pl;ol)-ability that an old customer won, all the new customers lost.
and the interdeparture time approaches v, is given by Pow (i, v)Pyr{j—i+1, v}, as
can be clearly observed from the part a) of Figure 3.8. From part b) of the same
figure, we see that the probability that a new customer won, all the old customers

lost, and the iﬁterdeparture time approaches v, is given by Pp;(i, v)Pyw(j—~i+
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Symbol Definition

m

Por(i,v) | P[i old customers finish their next service after time v,

given : old customers in the system]|

Fow(i.v) | 7 Pli—1 old customers finish their next service after
time v. and one old customer finishes his next service
in the interval (v, v+dv), given i old customers in the

system]

Pyr(k.v) | P[k new customers arrive before time v and they all

finish their service after time v}

Pyviv{k, v} ;‘; Pk new customers arrive before time v, k=1 of them
finish service after time v, and one of them fimishes in

~- - | the interval (v, v+dv)

Table 3.5: Definition of Py, Pow, Pyr, and Pyy



- 1,v). We can now write

pi'j(v) = Pow(i1 U)PNL(j-i+1,U) + POL(i,U)PNW(j—i+1,U),

L1220 ' (3.9)-

Since we know that

_ dP[Vyg < v] . d d ,
Pow(t,v) = l—"—ds—-—]P I[Vdd > U] = —IE;P [Vold > U] = —B;POL(Z,U)

(3.10)

where V4 is as defined in the next section, we only need to find probabilities
~For(iiv), Pyp(k,v), and Pyw(k.v) in order to find the pi;’s. This process is as

the middle part of Figure 3.10.

3.2.3.2 Finding the POL(i,v) and .Pow(i,v)

Consider an old customer left in the system by a departure at time zero, We
define U,y to be a random variable representing the time until the end of his
present unsuccessful service, and V,; = Usta+X, to be a random variable repre-
senting the time until the end of his restarted service. Let Zq(v) represent the
probability di;t;ib;ztion function of the random variable Usd. Let Vyg(v) repre-
sent probability distribution function of the random variable V,;;. The following

holds.}

P[Vold S U] dér V,,‘d(v)

= Uoa(v) @ br(v) , (3.11)

'® represents convolution.
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= jo‘ulldd(u)b..(v—-u)dv

Por(i:v) = (P{Viyg > v])' = [1-Vyy(v))’ (3.12)

The restarted service time PDF B.(z) is given as a parameter of the system.
For the simple winner queues it is also the distribution of the initial service times.

We now only need to find Uya(u) in order to find Por(i,v). For all broadcast

systems U,4 = 0, and thus we have
Uad(u) =1, u>0

which gives us. in the broadcast case

Por{i,v) = (P[X, > v])' = [1-B,(»))" (3.13)

For the broadcast redraw system with a D, M service time distribution defined

in Equation (2.1), we have:

1, v < qT
Por(i,v) = , (3.14)

e—i.(“u-q}/p1 U qf
where 4 is defined as u & 1/T and p = 1 — q. Using Equation (3.10) we get

10, v<gqT )
Pow(i,v) = (315

iﬁe-i(“v—q)/p, v > qf
P
For the silent redraw systems with memoryless restarted (and initial) service

times we have

Unia(u) = B (u) (3.16)
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since for the systems at hand b.(z) = b(z). Using Equation (2.1) and (3.11) we

get

Vaia(v) = [ e (1 - emto=] gy (14 p)emsm

and thus, using Equation ( 3.12)

Por(i,v) = (1+uv)‘e""‘°, v>20

and from Equation (3.10)

Pow(i,v) = iu%(l-{-pv)"'e"“", v>0

(3.17)

(3.18)

For the silent winner queues with deterministic restarted {(and initial) ser-

vice times we will make an approximation by assuming that the arrivals of old .

customers are memoryless within the time interval [0,F], i.e.. they are exponen-

tially distributed but also forced to arrive in [0,%]. This gives us the following

approximate expression for Uy (u).

1—e—uy
0 u<T
uold(u)= 1—1;8

For deterministic service times we have

and thus, from Equation (3.11) and (3.12) we have

POL(£$ U) = <

[

.

(3.19)
1, u>z
0, <7
B.(z) =
l, z>7%
1, 0fv<Tori=0
1~ P
(e 4‘""—1 e) , T <USE,£2 1 (320)
1-1/e
0, v>27,1 21
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From the last equation and Equation (3.10) and we get

iy l—uv _ =1
. z1E:'17'e'(cl-11ee)- » v T
Pow(i,v) =

0, otherwise

(3.21)

In this section we found the exact values for the probabilities Porli,v) a.nd.
Pow(t,v) for M/D,M(BR) and M/M(SR) systems, and approximations for sys-
tem M/D(S). We point out that for the M/DyM(SR), ¢ > 0, systems we cannot
vet find the probability distribution of the random varjable Uxd, and so, we are
unable to find Py (i, v). For all noredraw systems, except for the approximation
- M/D(S), not only do we not have the distribution of Und, but we al's.o do not
have the distribution of random variable -\, since, in general, it differs from the

given (initial) service time distribution, i.e.. b,(z) £ B.(z).

3.2.3.3 Finding the Pyr(k,v)

Figure 3.9 shows the time axis with & new customers arriving in the interval
(0.v). Interarrival times of the customers are: V=¥, ¥1—Y2,-. . Ye-1—Yx. Referring

to the definition of Pyr(k,v) in Table 3.5, and defining 3(z) &' PIX > 1] =

1—B(z), we can write

v W ]
Prni(k,v) = /‘)/\C'A("'”‘)B(yl)fo /\C'A“‘"'“)B(yz)fo

fy"" Ae~Mva—y '“*)B(yk)e"\y"dyk < - dypdyy
0

= x> [ gy 17 8w L7 [ Bwdye - dyady,
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If we define

Yz

Yk

)

Figure 3.9: New Arrivals

y(v) & /Ouﬁ(z)dz =f0"[1_3(z)]dz‘

then we have

Puak,oy = At [0 /% 17 ™ ) - dvya)dntn)

and finally

Pua(k, ) = X0 oo,

ki

For a D,M service time probability distribution we have

- B(z)

¥(z)

Pyr(k,v)

;o

L,

e—(u:—q)/p’

1
L

4( A—:!)kc'“'

r <47

z>qT

1. B[1 — e~ luz=a)/p]
7

\ k!

47

i[l _.pe—(uv-q)/p}k oA
1

T < gqF

T > gr



where p = AT = Alu. For g =0 ¢

converts to

memoryless service times) Equation (3.26)

ki _ o—uurk
R-VL(k,U) - p (1 = )

5 eM >0 (3.27
and for ¢ = 1 (deterministic service times) Equation (3.26) converts to
k
(’\T)) e-—n\v’ u S 7
Pyvp(k,v) = ,‘;:' (3.28)
%e“‘", v>TF
In this section we found the probability Py (k,v)

for the general Poisson win-
ner queue M/G(CRS), and gave expressions for the special case, queue M/D,)\-
(CRS).

3.2.3.4 Finding the Py (k,v)

We define probability Pyw,(k,v),i

=1,2,..

.,k the same as Pyw(k.v) in
Table 3.5. with the restriction that the i-th customer is the one that wins. We
Canl now write

| v . 'y w2
Pywilk,v) = /\‘e"‘”fo 3(y) A Jj(y,)/o (3.29)
. . Yioi v Y=l
- /0 b(y.-)/0 fo Fye)dys - - - dyady,

where 5(z) is the probability density of the service times. We find Puvw(k.v) as

k
Pyw(k,v) = Z Pywi(k,v) (3.30)
=1
Equations (3.29) and (3.30) are as far as we can go for a general Poisson

queue. For the M/D;M(CRS) system we derive Pyw(k,v) as follows. From
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-t

Equation (2.1) we get

Q, T <T
bz) = (3.31)
Ee—(uz-q)’ z>qT

From Equation ( 3.24) and (3.31) we have the following relation between o(z)

and 3(z):

0, r <qT
b(z) = , (3.32)
g,a(x), z>qF

From Equation (3.29) and (3.32) we see that Pyw,i(k,v) = 0 for 0 < v <47

For v > F we have

Pyw.i(k, = Ak -l U’_ " 3 w--- e -

vwi(k.v) e p/qri(yl)/ﬁ (yz)/ﬁ jq? i)
/y.‘ B(y,-.,_l)/yiﬂ .“'/-m.'_; 3(yk)dyk o dygdyl v > gF

0 0 4] ?

e D J S [ 30w [ [ s

kmg=]
vy i -
(_k'T'_(f_)?dy‘ codpdy, v >3

RNWJ(k~ U)

We now define -

r<q7T
e G

3z), = >q7

o(z) g‘/:;ao(z)dz

The following holds

1@) = [7 80z +70(2) = 7(g7) + 20(2)
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and from Equation (3.22) we get

2) = 9% + vo(z) - (3.33)

Pvw.i(k,v) becomes now, for v > qT

Puwi(k,v) = Ake=tE j‘j“f /‘“'-‘ QI'+—7c; E,)l]’;"‘

dyo(yi) - dvolm1), v > ¢z
which gives us

U MK A k
Powikov) = =223 Q) (a4 "43(v), v > gz

n=\y

Using Equation (3.30) we find Pyw(k.v) as follows.

k

b
L

k
U —Av N\ =\k=n_n
Puw(k,v) = ZEF€ YT T3 (w)
=1 N n=i
‘U'A —- Ay L-—n ,n
= Eensn (v)
p k! ; fo
#’\k —-Av d - —
= ;Ee */o(v)d%(u)[q.l: -l-'\,ro(v)]k, v > qT
And finally,
k-1
. B g i) -
P k,v) = =A%~ v, .
vwik,v) > ’O(U)(k—l)!e v>(qT (3.34)

After including the expressions for v{v) and vo(v) from Equation (3.25) and

(3.33), we get

-lrl_pe-(uv-q)/P]k-l A
- AU F L >
k=1)1 e™, v>qgT, k21

k
/\[1 _c—(mr—q)/p] 2
R\’W(ka U) =

0, otherwise
(3.35)



For memoryless service times. ¢ =0, Equation (3.35) becomes

k=1 EPEYTTRY
£ ((kl__le)! L

Enw(k,v) = (3.36)
0, otherwise
For deterministic service times, ¢ = 1, Equation (3.35) becomes
A pk-l A
e, v T hk>1
Puw(k,v) ={ ~(F=T]! (3.37)
0, otherwise

In this section we found the probability Pyw(k,v) for M/D,M(CRS). It is
possible to find Pyiy(k, v) for other service time probability distributions starting
from equations (3.29) and (3.30), and using a technique similar to the‘one used

here for M/D,M(CRS).

3.2.3.5 Derivation of Results in Short

The summary of notation used in the analysis is given in Table 3.6,

Figure 3.10 shows the numerical process of obtaining the performance values
T, and P. starting with given densities b( z') and bg(z), which are identical for the

systems at hand, and ending with T, and P at the top of the derivation graph.
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Function | Defined in

b(z) Section 2.1
br(z) Section 2.1
Unta( ) Section 3.2.3.2

Voa(u) Section 3.2.3.2

¥(z) Equation (3.22)
Yo(z) Equation (3.25)
Por Table 3.5
Pow Table 3.5
Pyp Table 3.5

Pyw Table 3.3

Pi{v) | Table 3.4

Pi; Table 3.3

di Section 3.2.3
T, Section 3.2.3
P Section 3.2.3

Table 3.6: Notation for Poisson Winner Queues



Figure 3.10: Derivation Graph for Simple Winner Queues



3.2.4 System S1: M/M(SR) with Exact pi;’s

By substituting Formula (3.17), (3.18), (3.27), and (3.36) into (3.9), we get

the following expressions for an M/M(SR) system.

N +1)uL1—e t) At

+1)| e” a I=01120,U20
o) = | #lU+Duv+j—i+1)(1+po)-?
Piglv) = (3.38)
o1 —ememyj—it e=(A+iuy : LS
G=rF1) # 121, j2i=-1,v>0
| 0, otherwise

which after integration according to Equation (3.8) gives

[ et (<D™ 41
P Eimao m!i(J+1—m) p+m’
- il (-1)™

o ! Z:n=0 m! (j+1'-m?

Di.; :J 1=-1 (2—1)' 1

S E-1=-Mlorivmp?

i=0,;>0

(3.39)

G+ D)+ (p+i+m)(j-i+1)], i1, j>i-1

[ 0, otherwise

Following the process of numerical calculation depicted in Figure 3.10. we
calculate the normalized power P and normalized response time 7T, versus load p

in Figure3.11 and 3.12. In the same figures we also show the simulation results

for M/M(SR) given previously as one of the curves in Figure 3.2.

For high p, power for M/M(SR) seems to be approaching a constant. Fig-
ure 3.13 shows numerical calculations for different values of M, and the dotted
curve represents the approximate solution. The explanation is that successful

service times approach zero for high p, and average service time grows linearly
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Figure 3.12: Normalized Average Response Time for M/M(SR)




with p.
A two dimensional Markov chain that models \’I/ M(SR) system is given in

(13] and described in Section 3.4.1. The results shown in Figure 3.13 are in

agreement with results obtained by simulation in (14].

3.2.5 System S2: M/D(S) with Approximate Pi;’s

By substituting Formula (3.20), (3.21), (3.28), and (3.37) into (3.9), we get
the following expressions for the M /D(S) system.

[ pk-l Av

/\me . = 0. J' 2 0, v 2 Fd
HU+Del =~ (j=it1)/e) ,
pij(v) = ¢ (w1 /eyt et (3.40)

(1=1/e) G—Fine . 2L Jj2i-1, FT<v<rT

0, otherwise

which after integration according to Equation {3.8) gives

[}ie"’, 1=0, ;>0
p,l—'+l e {etl) ik
pii = J '—-l-f-l)_[(l 1/6) Za-o L ) ( 1/3)
.7 —
'{[9—‘3_(9“)]10—-{-'%1' - [1_3—(p+k)].1;_:_+1}’ i>1, 5 >io1
0, otherwise

.

(3.41,
Following the process of numerical calculation depicted in Figure 3.10, we
" calculate the normalized power P and normalized response time T, versus load
p in Figure 3.14 and 3.15. In the same figures we also show the simulation

results for M/M(SR) given previously as one of the curves in Figure 3.2 and 3.3
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Fig'ure 3.13: Normalized Power for M/M(SR) with High p




(M/D(SR) is equivalent to the M/D(SN) due to deterministic service times).
Note the two tails of the power plotted in Figure 3.14. The lower tail is the
power calculated with higher precision, i.e., M is higher. This is due to &rrors
caused by numerical calculations., The exact power for the M/D(S) should drop
to zero for p=1. It is interesting that the shape of the normalized power for
M/D(S), as Figure 3.14 shows. looks very much like the normalized power for
the queue M/M/1, given as Py = p(1 - e)! At this point we do not know if

it actually 1s the same as for the M/M/1.

3.2.8 System S3: M/D,M(BR) with Exact p;,’s

By substituting Formula (3.14), (3.15), (3.26), and (3.35) into (3.9), we get

the following expressions for an M/D,M(BR) system.

(1 — pe—{6v~ai/p)s
r A[l—e‘(uu-q)/p]pj[l Pej. ] e"‘”, V> qF im0 i
e—'uv—q)/p A P""[l—pe“(“v-q?/p]J-i
pis{v) = J J—t (J=1)!
{ig/p+(7 +1)[1 —e~tue-alip]}e-20. N T
& otherwise

. - -

(3.42)
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Figure 3.14: Normalized Power for M/D(S)
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Figure 3.15: Normalized Average Response Time for M/D(S)
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which after integration according to Equation (3.8) gives

( 41 ,~q0 ¢ ("_P)m [ 1 _ 1 ] . S
P". e Em:om!(]—m—)[ p+m/p p+(m+1)7§’ t=0, ;>0
-p_)-.l+l. J— i (_p}m
p.‘_J J=i+1 =0l (== m)!
1.y = . . .
.[J‘f‘-'_l'*'EQ/P LD ] i>1 P>t
p+(+m)/p ~ p+(i+m+1)/p) =hJ=2
\ 0, otherwise
(3.43)

Following the process of numerical calculation depicted in Figure 3.10. we
calculate the normalized power P and normalized response time T, versus load p
in Figure 3.16 and 3.17. In the same figures we also show the simulation results

" for M/D,M(BR) given Previously as one of the curves in Figure 3.4.

Figure 3.16 shows that M /M{BR) system gives a “perfect” performance. Also,
for g=1 we get the same normalized power as for an ordinary M/D/1 queue. We
will discuss those cases later in Section 3.4

Figure 3.18 and 3.19 plot the normai.i';ed power and the average response
system time, respectively, for M/D¢M(BR) in three dimensions. The dimensions

are p; ¢, and P (T;,).

3.2.7 Summary

In Sections 3.2.4 through 3.2.6 we have obtained results for the winner queues
M/M(SR), M/D(S), and M/D,M(BR), respectively. The queues M/M(SR),
M/M(BR), and M/D(BR) will be considered again in Section 3.4. Figure 3.20

shows graphically what systems are solved through the analysis of the simple
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Figure 3.16: Normalized Power for M/D,M(BR)
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Figure 3.17: Normalized Average Response Time for M/D,M(BR)
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Figure 3.18: Normalized Power in 3-D for M/D,M{(BR)
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Figure 3.19: Normalized Average Response Time in 3-D for M/D,M(BR)
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winner queues.

3.3 Poisson Winner Queues with Partial Restarts
3.3.1 Definition and Structure

Winner queues with partial restarts are more general than the simple winner
queues M/D,M(CRS). In these systems, the initial-to-restart ratio r may be
less or greater than 1. In addition to that, the distribution of the restarted
service times may be different from the imtial service time distribution. The
most general case of the winner queues with partial restarts considered here is
the queue M/D¢M-Dg, M(CRS.r), where CRS is one of the previously defined

conflict resolution schemes.

3.3.1.1 Structure

Here we study winner queues with Poisson arrivals and partial restarted ser-
vice times. Poisson winner quenes with partial restarts, with D,M-distributed
im'tia.i service_times, D, M-distributed restarted service times, M/D,M-D, \-
(CRS,r) queues.r ;Ve define an embedded Markov chain at (winner) departure
instants in time, and represent states by the number of customers in the SYS-
tem left behind by departures. Let d; and N, represent distribution and average
number of customers left behind by departures, and let px and N represent distri-

bution and average number of customers in the system. Due to the memoryless
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Figure 3.20: Overview Table of Results for the Simple Winner Queue
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a.rnva.ls di =pi and Ny = N [12]. Using Little’s result, we find the normalized
average response time as 7}, = N/p, and then we ca.lcu.late the normalized power
as P =p/T, = p?/N.

In the winner queues with partial restarts we will vary g in t.he initial service
time distribution D,M, and find the behaviour of the system similar to the simple
winner queues. While in the simulations we will vary both ¢ and ¢, simultane-
ously, in the numerical results we will show how the performance s affected when
we vary ¢ at a constant ¢,, and vice versa, when we vary ¢, at a constant g. In
both the simulation and the numerica} results we will show the effect of cha.ngmg
the initial-to-restart ratio r on the performance of the systems.

In Section 3.3.2 we first describe and discuss simulation results for six types of
winner queues with partial restarts: silent-redraw, silent-noredraw, silent /broad-
cast-redraw, silent/broadca.st-noredraw, broadcast-redraw, and broadcast-nore-
draw. In Section 3.3.3 we explain the analytical approach and in Section 3.3.4
through Sectic:P 3.3.10 we give numerical results for the winner queues with par-
tial restarts M/M(SR,r), M/M-D(SR,r), M/D-M(SR,r), M/D(S,r), M/M-D, M-
(sBR,r), mf/D:b,,ir(sBR,r), M/D(sB,r), and M/D,M-D,, M(BR,r). Summary
of the winner queues with partial restarts js given in Section 3.3.11. In that sec.
tion we specify which systems from F igure 1 are covered with the simple winner

queues analyzed in this chapter.

69



System Parameters

M/DM(SR.r) | ¢=0,05.1. r =0,0.25,0.5,0.75.1
M/DM(SN.r) | g=0,05.1, r =0,0.25.0.5.0.75.1
M/DM(sBR,r) | ¢ =0,0.5.1, r = 0.0.25,0.5,0.75. 1
M/DoM(sBN,r) | ¢ =0,0.5.1, r = 0,0.25,0.5.0.75. 1

M/D,M(BR.r) [q=0,051, r= 0,0.25,0.5.0.75.1

M/D,M(BN.r) {¢=0.05, l, r=0,0.25,0.5,0.75. 1

Table 3.7: Simulation Runs for Poisson Winner Queues with Partial i{estarts

3.3.2 Simulation Results

In the six simulation runs, results for the queues specified in Table 3.7 are

obtained.

Figufe 3.21 through 3.35 shdw that, for a given r, we have the same behavior
as the corresponding M/ D,M(CRS) queues.” This means that redraw systems
perform better than noredraw systems, broadcast systems perform better than
silent systems, and that systems with smaller q perform better for redraw svs-
tems, while for noredraw systems higher q gives better results. The above be-
havior is depicted in Table 3.8. where arrows represent direction from worse to

better systems.

Further observations from Figure 3.21 through 3.35 concern the effect of dif-

ferent values of r. Smaller » means that service times upon restarts are smaller.



Systems Compared Better | Worse
@
Silent
vS.
Broadcast v
—.'——._’-"-—'l_w-—-_-__*-_——_
Redraw v
Vs,
Noredraw v
%—_‘J
Redraw/Memoryless v
vs.
Redraw/Deterministic

|

Noredraw/)Memorvless
vs.

Noredraw/Deterministic
0
Small r ' v

vSs.

<~

Vv
e Large r v
_‘_'__-_-_'_'-—_..._":-—______

Table 3.8: Effect of System Parameters to the Performance
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Figure 3.27: Simulation Results for M/DqsM(sBR.r)
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resulting in better performance. For r — 1 we have the same results as for
M/DeM(CRS) queues presented in Section 2.1. In fact, those queues are the
speéia.l case of M/D,M(CRS,r) queues, Le., .\I/D,,M(CRS) = M/D,M(CRS.1).
For r = 0 we have “perfect” systems, where every customér's first service is’
completely useful, and the custome.rllea.ves after that whether the service was
successful or unsuccessful. For BR and BN protocols we have a non-realistic
situation. where power gets better than “perfect” for small r. This happens be-
cause the system time of a loser is shorter than his assigned service time, which
results in the average svstem time being smaller than the average service time
T. To make the broadcast protocol more realistic, we modify this rule ;nd force
each customer to complete his first service entirely, regardless of any broadcast
messages from winners. [n other words. their first service is silent, or, better vet,
“deaf”. We denote these protocols sBR and sBN. Figure 3.31 through 3.35 show
that even for r = 0 the power is not better than “perfect”. Queues M/D,M(sB.r)

do not have any of the M/D¢M(B) queues as a special case,

In the following sections we analyze some queues that are even more general

than the ones presented in this section.

3.3.3 Analysis

As for the simple Poisson winner queues, we also define d, as d;, & Pk
customers left in the system (by a departure)],

We use Equations (3.1) and (3.2) to calculate the normalized average system

82



1.5

1.4 M/M(BR.r)
p r=0
- - - Perfect System
1.2 <+ee Simuiation Results
Ar=0.25

l

0.8
r=1
0.6
0.4
0.2
[ l ' '
0 0.2 0.4 0.6 0.8
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time T, and the normalized power P. Definitions of r.v.’s X v Xey, X,, V.and U
from Table 3.2 are used here again. The variables are shown in Figure 3.6.

The first service time in Poisson winner queues with partial restarts has a
different distribution from the service times upon restarts. Therefore, we dis-
tinguish between two types of customers with respect to a target departure D.
Initial customers are those being served for the first time when departure D
occurs. Old customers are those being served upon restart when departure D

occurs.

We now define d,, , to be the probability of m old and n initial customers left

in the system by a departure. i.e.. A = P[m old and n initial customers left

in the system]. The following holds.

k
de= 3 dniem, k=0,1,2,.. (3.44)

m=0

In order to find dp, . we use a two dimensional embedded Markov chain, where
one dimension is the number of old custorﬁers left in the system, and the other
dimension is the number of initial customers left in the system. In Table 3.9 we

further define p, s ;/’s, the transition probabilities between the states.

In the sections below we find expressions for Pik.,1, from which we can calcu-

late probabilities dmm . by solving the following equations.

m -
Z 1.k Pikomns mqn=0,1,2,... (340)
k=0

Ma

[
=}
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Symbol * Definition

Dikji P(a departure leaves J old and ! initial customers in the

system, given the previous departure left ; old and & initia]

customers in the system|, i, k,7,1 =0,1,2, ...

Table 3.9: Definition of Dik.ji

0 o0
1= Z‘];d,ﬂ,n ‘ E (3.46)

The numerical procedure for finding the normalized response time a;xd power
15 as follows. For reasonably large M (i.e., M >> 1) we calculate all the transition |
probabilities Pikjl, 1L,k j,120,0< i+ 4 SM, 0<;+I< M. To preserve the
conservation of the probabilities, we assign the following value to the Pik Ao, 0 <
i+ k< M:

M-1M-;

Pikmo=1—=3" 3" piiit, i,k>0,0<i+k <M (3.47)
=0 I=0

We use (M +1)(M +2)/2 Equations (3.45) where m+n < M. Thus, from
Equation (3.45) and (3.46) we find dmpn for 0 < m+n < M, and, using Equa-
tion 3.44, we calculate d), for k = 0,1,...,M. From the d.'s we find N, the

_ average number of customers in the system. We refer to the number M below
as the precision of the numerical s. .ation. Through Equation (3.1) and (3.2) we

use V to obtain the normalized average response time T, and normalized power
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old

Figure 3.36: Poisson Winner Queue with Partial Restarts State Transition Dia--

gram

P. The numerical procedure from the transition probabilities to the performance
measures is shown later as the top part of Figure 3.39.

In the sections below we concentrate on finding the transition probabilities.

3.3.3.1 Finding Transition Probabilities

The exﬁbé;icied‘llarkot' chain. with the arcs representing transition probabil-
ities. i1s shown in Figure 3.36.

There are several situations where transition probabilities equal zero. We
know that old customers cannot become initial. while initial customers can be-
come old between two successive departures. The number of old customers cannot

decrease by more than one, and the same holds for the total number of customers.
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Thus we have
Pikji =0, (j<i-1l)or(j+i< i+k-1)

On the other hand, new customers can only become initial, not old. Thus we

have
Pikju=0, j>i+4+k

Now we can write that for given j,! > 0 we have

Pikss =0, (i > j+1) or (i+k > j+1+1) or (i+k < j) (3.48)

In Figure 3.37 we show. in the shaded closed region, those pairs of values

(¢, k) for which there may ezist a traasition to state (j,1).

In our calculations for dmn we will use Equations (3.45) and (3.46), where
appropria.té transition probabilities Pikma will take on zero values according
to their formulas given in the s;ections below. However, we here give a more
restrictive formula for d,, , based on Equation (3.48).

m mengl=g n .
dm.n = ZO kZM. di.kpi.k,m,n +;§ dm+l.kpm+l.k.m.n, m,n= 0; 1,2,... (3-49)

Similar to the probability pi;(v) defined for the simple Poisson winner queues

in Table 3.4, we define probability density p;; ;(v) in Table 3.10.

Knowing the probability density p; s ;i(v), we find Pik.ji as

Pikji = fu Pik,ji(v)dv (3.50)
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Figure 3.37: Transitions to State (J, )

Definition

Pik.yi(v) EIE P{a departure leaves J old and ! initial customers in

the system. given the previous departure left ; old and
k initial customers in the system. and the
corresponding interdeparture time v < | < v +dv],

Lk j, =017 v >0

Table 3.10: Definition of Pik. (V)



A transition in the Poisson winger queues with partial restarts occurs when
an old customer, an initial customer, or a new customer wins, Figure 3.38 shows
the t.ransition graphs for the three different cases.

We draw the transition graph a) in Figure 3.38 as follows. The graph rep-.
resents a transition from state (i, k) to state (j,1). We draw two rows of boxes,
The first row is associated with the state (i,k). The first box represents old
customers, and we write “;” in it. The second box represents initjal customers,
and we write “k” in it. The last box represents new customers that arrived after
we entered state (¢, k) and before the transition to the state (j,1). We i'ea.ve that
box empty for now. The second row of boxes is associated with the state (7, [). _
In the first box, which represents old customers, we write “ 7", and in the second
box representing initial customers we write “J”_ In the last box, which represents
a winner, we write “1”. We now draw arcs from the boxes in the first row to
the boxes in the second row. The labels on the arcs represent the number of
customers that are transferred from one box to another. Since we know that the
winner is an old customer (for the case (a)) we draw an arc labeled “1” from
the top old ét;s;or;ner box to the winner box. All other old customers remain
old, since they cannot become initial, so we draw an arc labeled “/ 1" from the
top old customer box to the bottom old customer box. Next, all other j —i+1
old customers in state (j,!) must have come from initial customers which have

finished their (first) service before the transition occurs. (Note that new arriving

customers cannot become old in the first transition.) Thus we draw an arc la-
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Figure 3.38: Poisson Winner Queue with Partial Restarts Transition Graphs
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beled “j—i+1” from the top initial customer box to the bottom old customer box.
The rest of the initial customers remain initial, and so we draw an arc labeled
“h—j4i—1" from the top initial customer box to the bottom initial customer
box. All other initial customers in state (7,!) must have newly arrived. We thus
draw an arc labeled “/—f+ j—i+1" from the new customer box to the bottom
initial customer box. We have now completed drawing arcs since the sum of the
labels on the arcs equald the sum of the bottom row of boxes. Now we take the
sum of the labels of all the arcs that leave the new customer box, and we write
that number in the box, i.e., we write “l=k+j—i+1". In the similar way we
draw the transition graphs for the cases (b) and (c)'in Figure 3.38.

Let us consider again a departure D from the system. Let it leave ; old and
k initial customers in the system and let the time be equal zero when departure
D takes place. In addition to the probabilities Pyy, Pow, Py, and Pyw defined

_Jin Table 3.5, we define two other probabiﬁtieg, Py and Py, in Table 3.11.

The probability density that an old'cu;tomer won, all the initial and new cus-
tomers lost, and the interdeparture time equals v, is given by Wo(v)=Pow(i,v)-
Prr(k, j—i—i-lr, ;)).PN.L( {—k+j—i+1, v), as can be clearly observed from part (a) of Fig-
ure 3.38. From part (b) of the same figure we see that the probability density that
an initial customer won, all the old and pew customers lost, and the interdepar-
ture time equals v, is given by Wiv)=Por(i, v) Prw(k, j—i+1, v)Prnp(I—ktj—i+1, v).
From part (c) of Figure 3.38 we see that the probability density that a new cus-

tomer won, all the old and initial customers lost, and the interdeparture time
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Symbol Definition

rﬁy\

Pri(k,m.v) | P[m initial customers come before v and finish
their next service after v. and k—m initial
customers come after v, given k initial customers

in the system]

Pry(k,m,v) 317 P[m—1 initial customers come before v and finish
their next service after v, and A —m initial
customers come after v, and one initial

customer comes before v and finishes in the

interval (v, v+—dv),-gjven k initial customers in

the system|

Table 3.11: Definition of Py and Pt
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equals v, is given by WN(v)=Poz.(i,v)PIL(k,j—i,v)PNW(I—k+j-i+1,v). We

can now write the following.

Piksi(v) = Wo(v) + Wi(v) + Wy(v)
= Pow(i,v)PrL(k,j-i+1,v)PNL(l—k+j—i+1,v)+ (3.51)
Po[,(i,v)PIw(k,j—i+1,v)PNL(I—k+j—i+1, v) +
Porli, v)Pro(k, j—i,v)Prw(l~k+j —i+1,v),

Lk j,1>0

The éxpressions for Por(i, v}, Pow(i,v), Pyi(k.v), and Pyw(k,v) ax:q already
given in Section 3.2.3.2, 3.2.3.3, and 3.2.3.4. However, since the distribution of .
the service times upon restarts differs from the distribution of the initial service
times, in the following section we rewrite the formulas obtained for Por(i,v) and
Pow(i,v) with g, replacing ¢, p, replacing p, r¥ replacing 7, and u/r replacing
.

In the subsequent sections, the three different parts of the right hand side of
the Equation (3.52), Wp(v), Wi(v), and Wx(v) are found separately. We then

calculate p,':k, ;i as

o
[ 3]

Pinsi = /OmWo(v)dv-l- L Wity do + [ W @

= Wo+ W+ Wy
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3.3.3.2 Rewriting the Py.(i,v) and Pow (i, v)

Equations (3.14) and (3.15) give us, for the broadcast redraw systems with a

D, M distribution of the service times upon restarts, and X,

Por(i,v)

POW(ia U)

/

-

e-i(uu—rq.-)/(rp.-]’

0,

\ Dy

i L e=tluv/r=ae)/pn

v<rgT or 1 =0
v2reF, i>1
v<rqT or i=0

v2rqT, 121

= r7, the following,

(3.53)

(3.54)

Formula (3.17) and (3.18) give us. for the silent redraw systems with memo-

ryless service times upon restarts, and X, = rZ, the following.

Por(i,v)

Pow(i, v)

(L+pv/r)etuvlr

b

Hu/rYe(l+puv/ry

—le—u.w/r,

i20,v>0

120, v20

{3.56)

For the silent winner queues with deterministic restarted service times. we

will make the assumption analogous to the one in Section 3.2.3.2, i.e.. that the

arrivals of old customers are memoryless within the time intervil [0,7Z}, i.e.. they

are exponentially distributed but also forced to arrive in [0, rZ].

Pop(i,v)

Pow(i,v)

v<TFTorit=20

o
IN
IA

H|
N

v

IA

T2

v>27T,i>21

iuel—HY (e"“" -

1-1/e

0,

98

1-1/e

-1
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otherwise
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The probabilities specified in this section can be used for calculating ex-
act transition probabilities in queues M/G-D,, M(BR,r), M/G-D,, M(sBR,r), and

M/G-M(SR.,r), and an approximation for M/G-D(SR,r).

3.3.3.3 Finding the Pi;(k,m,v) and Pry(k, m,v)

Consider an initial customer left in the system by a departure at time zero.
We define U, to be a random variable representing the end of his present unsuc-
cessful service, and Vi, = U,,+X, to be a random variable representing the time
until the end of his restarted service. Let Uin(v) represent the probability distri-
bution function of the random variable Uin. Let Vin(v) represent the prc;ba.bility

distribution function of the random variable Vi,. The following holds.
PV <o} ¥ (o)
= Uin(v) ® b.(v) (3.59)
= '[)vu.',.(u)b.-(v--u)dv
Pro(km,v) = —(A)PUn < v A Vin > o]"(P[Usn > o]y *-m

= (W) {PWin > o] = PUin > o]}™ (P[U;, > o) #-m

) flin(0) = Vin(0)]™ [1 = Upn(0)]*~™ (3.60)
Prw(k,m,v) = m(;)i.pw,-,. SvAD < Vig < v+ du]
PUin S v A Vin > o)™ Y(P[Uip > v])+-m
= m(,‘:.)d—lvP[v < Vin < v+ dv| {P[Viy > v] = P[Ui > o]}

(P{Uin > v])*-m
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dV.—,,(u)

= m(X Uin(v) = Vin(w)]™ 1 [1 = Uin(v)]*™ (3.61)
dv

The restarted service time probability distribution function B,(z) is given as
a parameter of the system. We now only need to find Uin(u) in order to find

Pir(k,m,v). For pure broadcast systems U;, = 0, and thus we have

Un(u) =1, u>0

which gives us, in the broadcast case

1, k=0
Prelkomov) = §(PIX, > o)™, m=k>1 " (3.62)
\ 0. otherwise
' 1, k=20
= {=-Bw)™, m=k>1 (3.63)
\ 0. otherwise
( mo(v)[1-B.()]™™", m=k>1
Puy(k,m,v) = { (3.64)
0. otherwise

For the broadcast redraw system with a D, M restarted service time distri-

bution defined in Equation (2.1), we have

1, (v £rg.T) or (k =0)
Prp(k,m,v) = e~muv=ra)flroe) ) gT, m=k > 1 (3.63)
0, otherwise
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u

mg-e""“"’"q')/("'), v >reE, m=k>1

Prw(k,m,v) = " (3.66)

0, otherwise

def

where u is defined as 4 = 1 /Z.

For the silent and silent /broadcast systems with memoryless initial service

times we have

Uinu) = B(u) = 1 — e (3.67)

For the silent and silent/broadcast redraw systems with memoryless initial

service times and D, M distributed restarted service times from Equation (2.1)

¥

(3,67), and (3.59) we get

01 v S rqri
Vin(v) = (3.68)
—(uv=rge)/{rps) _ —(uv—rg.)
1% B¢ v>rqF

rpr—1 '

and thus, using Equation (3.60) and (3.61)

[1, k.=0

{rp,e"(“""‘?") —fp.lt;!""' ~ e~{uv=rar)/(rpe} _  -pv }"'

Pr(k,mv) = /{ Pl

- - . (:‘) e—(k-"I)m', v > rq.7F, k >1

o 0, otherwise

\

(3.69)

101



4

(k) p{rp,)2e=(sv=rar) _  o=(uv=rq,)/(rp.)
m

e~ (k-muv
rp(rp. ~1)
_ ' {rp,e"‘”""'q')—rp,c‘“" ~ e~ {uv=rae}/(rpe) _ o ~uv }""1
P;w(k,m,v) = rp,.—-l

v>reT, k>1

0, otherwise

(3.70)

For the silent winner queues with deterministic initial service times. we as-
sume that the arrival of old customers is memoryless within the time interval
[0.7], i.e.. they are exponentially distributed but also forced to arnve in {0. ).

" This gives us the following approximate expression for i, (u).

—pTHY
Ilﬁel—. OSuSq'f
Uin{u) = -t/

—

1, U > qT

{3.71)

For the silent and silent/broadcast redraw systems with deterministic initial
service times and D, M distributed restarted service times from Equation (2.1).

(3.67), and (3.59) we get the following approximation for Vin{v).

0, | 0<v<rgZ
‘ 1 e=(Wv=1ar) _ oy o=(uumrar)/irp) -
Vi = - r . < r
n(V) 1=1/¢ (l—l/e)(l—rp,.) y T@RT < v ST+rgz
e~(uv=ra.)/(rp,) treE
. , Y>> THrg.I
=1/e)1-rp,) !

1— [e-1+1/(fp.-)__1] ’(I
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and thus, from Equation (3.60) and (3.61) we have

( 1—e-mvy\k
(m) y m=k, OS. v < T T
[e-—#u(el"%___1+rp'_)_rpre-(#"—f?r)/("PP) k
=1/e)Trp) '

m=k rgT<v<zE
e Hv=rar (1 —rp..)/e—rp,e““"""""’/(”" k
(T=1/eXT=rp,) ’
m=k T<uv L T+rq, T
TDr (e(l—'PP)/(”PP)_
(1‘"1/3)(1—"pr)

P[L(k, m, U),-q'_sq = J

k
1 } e-k(uv-rqr)/(rpr)’

m=k, v > T+rq,T

0, otherwise
{3.73)
( k
l—e#¥ -
(£57e) - m=k0svsa
1, T S r‘IrE
e“‘”"“"—(1—rp,)/e—-rp,.e'(“"“'"")/(""') k
T=1/e)T=rp,) ’
P;L(k,m,v)..q,>l = < m=k, rq,T<v< T+re,T
k
(L=rpe)f(rpe) _
o TPr (e 1) c-&(uu—rq-)/("ﬂr)’
T-1/e)1=7p,)
m:k, v > -f+7'Qr§:-
0, otherwise
{3.74)
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[ k.p e-{,uu--'qv-) —g={uv=rg:}/(rp,)
(1-1/e)*(1=rp, F

' {e"'“(e’q' ~1+4rp,) = rp,e-(uv=rar)/(rpr)] =~ .

m=k, rq,F < v <7
e-(uv-"qv-)__c—(#"-”?r)/('l’r)

(1-1/e)*(1~rp,)F

' [6"“"“""’ —(1=rp,)/e—~rp,e—{sv=rar)/(rps) k- .

Prw(k,m v)gc1 =

m=k, T<y S T+re,T

(J"P.- )k-l (e(l-rpr)/(rp,) - l)k
(1-1/e)*(1 —rp, ¥

. e~ k(uv=rge)/(rp.)

ku

.m=k,v> T+rq T

0, otherwise
(3.75)
( kp [e—(w-"qr}_e-(uv—'q—)/(ﬂ’-?
(1-1/e)*(1-rp, ¥
' [e"“’""" ~(1=rp,)/e—rp,e-tuv=rar)/(ron)] 571
) m=k, rgT<v < T+re.F
Prw(k,m,v),,, = ,
”’V( ) qr>1 (rpr)k-l ‘(cfl—rPrJ/(rPr)_l)k
(1-1/e)*(1 =rp,)F
. . e-k(utr—rq-)f(rpr), m=k, v > T4rq. T
0, otherwise
(3.76)
. In this section we found the exact values for the probabilities Py (k,m, v)

and P (k, m,v) that can be used for M/D,M-D, M(BR,r), M/M-D, M(sBR.r),

a

M/M(SR,r), and M/M-D(SR.r) systems, and approximations which can be used
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for systems M/D-D,,,M(sBR,r), M/D-M(SR,r), and M/D(S,r).

We point out that for other winner queues with partial restarts we have not
yet found the probability distribution of the random variable Uin, and so, we are
unable to find Pri(k,m,v) and Prw(k,m,v). For all noredraw systems, except
for the approximation M/D(S,r), not only don't have the distribution of U,,,, but
we also don’t have the distribution of random variable X, since, in general, it

differs from the given initial service time distribution, i.e., be(z) # B.(z).

3.3.3.4 Use of the Prny(k,v) and Pyw(k,v)

Equation (3.26) through (3.37) are valid for Poisson winper queues with par-
tial restarts as well as for the simple Poisson winner queues. For convenience. we

rewrite them here as Equation (3.77) through (3.82). For the D,M service time

probability
(’\v)k -Av _
e, vEqT
Pyr(k,v) = J ore _(“u_q)/p’; (3.77)
‘ £ [1—pek' - | e, v >4¢F
( | k=1f) __ po={uv—~q)/plk=~1 a
A[lqe-(uv-q)/P]p [ (;Z.'e—l)! ] e—A :
P&W(k.v) = J v> T,k > 1 (3.78)
0, otherwise
For memoryless initial service times
Pk(I—e‘"u)k A B
PNL(]C,‘U) = —-T——e' u, v 2 0 (3.79)
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k-1 PRYYIIRY 3
2 ((kl_f), Le-™ u3>0k>1
Pyw(k,v) = ‘ (3.80)

0, otherwise

For deterministic initial service times

( k
(—/\5)_6"’\"’ v _<_ T )
Pyi(k,v) = ¢ . (3.81)
{ m-e"“’, v>7F
( p*-1 A
A e v>TFTk>1
BT 1 A
Pyw(k,v) = | ~(F=TJ (3.82)
0, otherwise

3.3.3.5 Derivation of Results in Short

The summary of notation used in this analysis is given in Table 3.12.

Figure 3.39 shows the numerical process of obtaining the performance values
T, and P, starting with given densities b(z) and bp(z) at the bottom and ending

with T, and P at the top of the derivation grciph.

3.3.4 System P1: M/M(SR,») with Exact Pik,ji's

We first substitute Equation (3.53), (3.56), (3.69), (3.70), (3.79), and (3.80)

into (3.52j. Then, after integration. according to Equation {3.52), we get the

following expressions for the M/M(SR.r) system, 2

For convenience, a field in a domain table is left blank if it has the same contents as the field
above it.
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Function Defined in

b(z) Section 2.1
br(z) Section 2.1
| Uin(u) Section 3.3.3.3

Vin(u) Section 3.3.3.3

Ueig(u) Section 3.2.3.2
Voial w) Section 3.2.3.2
~{r) Equation (3.22)
~ol2) Equation (3.25)
Por, Table 3.5

1 Pow Table 3.5
Py, Table 3.11
Py Table 3.11
Py, Table 3.5

Py Table 3.3
e Dik,i(v) | Table 3.10

Dik.ji Table 3.9

dm.n Section 3.3.3
di Section 3.2.3
T, Section 3.2.3
p Section 3.2.3

Table 3.12: Notation for Poisson Winner Queues with Partial Restarts
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(3.45)
(3.46)

&)

(3.50)

Pi.k.;..r(l’)
«(3.52)

Py
3=(3.31)
(3.10}
Por Py @\D ~ol )
C p(s.so&
(3.12) (3.23) (3.23)
Voia(v) @z}
3.11)=K~ -]~ -
(3.11) (3.59) (3.22)

Uni( ) Ua(w) | ()

Figure 3.39: Derivation Graph for Winner Queues with Partial Restarts
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4)

Domains for W, in Equation (3.83)

1 r=0 1>1 ij—i-f-l Jj=i=1 12k—j+i—1
2 0<r'=/-'l J=2i-1
3 r=1
4 otherwise
I’Vo = 1
i ( _ )pl kdp—itdi =1
W = jmitl 1 h 1)
° r? (l=k+j—i+1) (1/r—1)-+1 Z(") (1/r)'(h+1)!
J=i41 —kdy—i+] l-k+1-—l+1 -1
ORCHSICE D i L vaah L
n=0 m=0 [p+k+m-n+(z+n)/r] +

ob) ptrin

) W) (A4 —i+2)!
Yo = (I=k+j—i+1)! Z( ) (h+j—i+2)
l=ktj=i+1 (:au,‘_.ﬂ) (~1)m
| m=0 (P+k+m+i)f‘t+1—i+3

Wo = 0

Domains for 1V} in Equation (3.84)

1{ »=0 |i=0 k>j—i+1] j=i [2k-j4+i-1

2|0<r#1)i>0 j>i-1
3 r=1
4 otherwise
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1} Wy
2) Wy
3) W
4w
Domain
1) Wy
2) Wy

k pl—k-c-l k4t (I—I::i) (_l)m
m=0 p+k+m
Goidh) () gttt

(I—k41)

r(I=k+j i+ 1) (1/r =1y é (%) (1/r)" A

il

n=0

(j=—i+1)

l—ktj~i+1

IR IC Ly

m=0

k I~k+j—isl
J—H-l) P ’

({=k+j—i+1)
l—k+j—itl (l-k+j-|‘+l

m ) (=)™

m=0

(l-lz+£ﬂ-i+1 ) (_1)m

[p+k+m-—n+(i+n)/r]"+1

2 () (h+j=i+1)

(p+k+mi)itr

+2

(3.84)

Domains for Vy in Equation (3.85)
Ll r=0 |i=0(k>j~i|j=i|i>kejti
210<r#1{i>0 j>
3| r=1
4 otherwise

pl-k+1 {=k+1 (l-f"+1) (—1)y

(I=k)!

k
It

m=0 p+k+m
) pl—k+j—i+1

(I=k+j =0l (1/r—1p=

F ]

DI

n=0

J=1
n

I—k+j—i+1

S () (/) R
h=0

(f—k-{-#—iﬂ ) (—1)"‘

NG VD

m=0
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(_k_) pl-k+j—i+1 i ‘
= = : —i)!
l—k+j—itl (l-h+.rfn—-‘+l) (—1)"'

m=0 (P+k+m+i)h+1-—i+1

4 Wy = 0 ‘ (3.85)

Following the process of numerical calculation depicted in Figure 3.39, we
calculate the normalized power P and normalized response time T, versus load p
in Figure 3.40 and 3.41. In the same figures we also show the simulation results
for M/M(SR.r) given previously as one of the curves in Figure 3.22.

The performance of the system gets worse with an increase of the restart-to-
initial ratio r. Note that the results match the simulation results very closely.
The numerical error causes the artifact of rising power curves and falling response

time curves for greater values of r and p.

3.3.5 System P2: M/M-D(SR,r) with Approximate Pik;i's

We first substitute Equation (3.57), (3.58), (3.69), (3.79), and (3.80) into
(3.52). Then, after integration according to Equation (3.52) we get the following

expressions'for the M/M-D(SR.r) system. 3

3For convenience, a field in a domain table is left blank if it has the same contents as the fieid
above it.
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1.5

0.5

M/M(SR,r)
Exact Pikj! 's

- - - Perfect System
ooo Simulation Resuits
Numerical Resuits

Ar=10.25
M=15
| 1
r={
r=1
_/
%
[ l |
0.5 1 1.5
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M/M(SR.r)
Exactp; 'S

- ~ - Perfect System
ooo Simulation Resuits
—— Numerical Results

Ar=025
M=15
10 ; ,
T,
8| 4

0 0.5 1 1.5 p 2

Figure 3.41: Normalized Average Response Time for M/M(SR.r)
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Domains for W, in Equation (3.86)
1r=0ft21}k>j—-i4+1 J=i—1 I=k
21r>0 j2i-1 lzk—j+if1
3 otherwise

Domain

1) Wy = 1
_ ‘ I=kty=itl (or _1yj=i+l

D Wo = (k) (=]

rl=k+j—i41) (1-e)p

=1 f—k4j=tl
. Z (i;l) (—82)h+1 Z (l-k+j—i+l) (_
h=0 m=Q
e~rlotk+mi(hsl)/r) — e~ r(o+k+mb(hil)/r)
' p+k+m+(h+1)/r

3) W, = 0

Domains for W; in Equation (3.87)

lir=0}i=0]k>;—-i+1 J=t [{2k-j+i-1
12[r>0 j2i-1
3 1>1
4 otherwise
Domain

1)

k pl—k+l l=k4+1 (Il—::-l)(__.l)m
(I—k+1)! = p+k+m
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pl—k+j—i+l er(er - I)j—i

2)  W; = (j—i+l)(. *
) ! U ) (v (I=k+j—it+1)!
e I=kdj—i -
% +l(;_1,+j_.'+1) (‘—1)’"6 (p+k4+m)
m=0 " p+k+m
l—kdhf—idl _p r_l)J—i
3) W = (joi+1)(. F V2 e .
: ! U= G (I=k+j—it1) (1=e)
i {—ktjmitl o
-2 (h) (=et)h 2 (MY (o
h=0 m=0
e~ rlptk+mihjr) — e—ir{ptkem+h/r)
' p+k+m+h/r
4) Wy = 0 (3.87)
Domains for IVy in Equation ( 3.89)
1fr=0]i=0{k>j—i|j=i|l>kejti
2|r>0 =i
3 121
4 otherwise
Domain N
L lmkl I~k+1 floksl -1y
D e = P (-5 (=1

(I=k)! = o+k+m
plmksizort fl-kt2i i l=k42j-2i+1
£ (bsasmeny (g
(I—k+j7-=i) { ggo g

2) Wy = (;5)

i—=

1 = e=rlptk—j+it+g)

— + (e"=1)""
Prh—j+i+g ( )
I—k+jmist ~r{p+k4m)
I—kti—iti m ¢
m=0 : p+ m
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3) Wy = (,'f. z (l—k+2&f-2i+1)(_1)g

plmktimrl (1-k425-2i41
(I—k+j=i)

g=0
1= e—r(p+k-j+|+g) (cr__l)g-i i ]
. - - + 1 —al h
Prk—j+itg (1-e) ,a (&) (=%
.’_Hiiﬂ(‘-kw-u-l) (-1)™ e~rlotkbmih/n) _ o-trlotkemnsn)
m=0 ™ p+k+m+ h/r
i} Wy =0 (3.88)

Following the process of numerical calculation depicted in Figure 3.39. we
calculate the normalized power P and normalized response time T, versus load
o in Figure 3.42 and 3.43.

The performance of the system gets worse with an increase of the restart- -
to-imitial ratio ». The system performs better than M/M(SR,r). Note that the
results match the simulation results very closely. The numerical error causes the
artifact of rising power curves and falling response time curves for greater values

of » and p.

3.3.6 System P3: M/D-M(SR,r) with Approximate p;; ,;’s

We first substitute Equation (3.53), (3.56), (3.73) or (3.74), (3.73) or (3.76)..
(3.81), and (3.82) into (3.52). Then, after the integration according to Equa-

tion (3.52) we get the following expressions for the M/D-M(SR.r) system. *

-

4For convenience, a field in a domain table is left blank if it has the same contents as the feld
above it.
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M/M-D(SR.»)

Approximate p; x ; ;s

- - - Perfect System
eoo Simulation Results
Numerical Results

Ar=0.25
M=15
2 T
P
{5
[ b=
0.5+ - r=0
r=1
r=2 = S | |
0 0.5 1 1.5 P

Figure 3.42: Normalized Power for M/M-D(SR.r)
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M/M-D(SR.r)
Exact pi.k.j,l‘S

- - - Perfect System
ocoo Simulation Results
Numerical Results

Ar=0.25
M=15

0 0.5 1 1.5 0 2

Figure 3.43: Normalized Average Response Time for M/M-D(SR.r)
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Domains for W, in Equation (3.89)
1] r=0 li>1 k>j—-i+1 j=i-1 l=k—-j+i-1
200<r#1 k=j—i+1j2i-1|I>k=jsi1
3 k>7—i+1
4| r=1 k=j—i+1
5 k>j—i+1
6 otherwise
Wo 1
3% Lo v &) 5 () (—1p-n (I+-g+1)!
° T TASTeFA-1rF 2 e | & o |
, 1 ~ e-lptk=n(itn)/r]
[p+k—n+(i+n)/ri+erz
I+g+1 1 . y
- +(1=¢e'/r= +1)
g b! [p+k-—n+(z+n)/r]’+9‘+2‘b ] ( (g
. e=lp+(3+1)/r} Z . }
bmo Ol [p+(j+1)/r]o+2-0
. ki =1 (i=1y Jjoitl
Wo- - z(j—fﬂ) p’ b=+l : (g ) Ji (3-:»-1)

(l—k+J—l+1)! (e_l)k(l—l/r)',-”.l ggo rgt+i n=0
keji-t o
Z (k—]l::-l) (_l)k—n-m eJ~l+l+m (l—k+]—l+g+2)'

m=0

1
' { [p+j —i+1 ‘n+m+(i+n)/r]l—k+1-n+g+3

— e—lPti~i+1=ntmy(itn)/r]

{=k+j—itg+2 1 }

Fyrs B [p+j—i+1—n+m+(i+n)/rfi-F+i-itg+3-b
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4)

1)

Wo-

Wo

Wo

Wy

il H 1
= ! (l—l/e)k gg ( gl) {(f+k+y+1)! [(p+j+1).r+h+g+2

{+k+g+l 1
— elerity) J

i=o b! (p+j+ 1)i+k+g9+2-5

( 1 g+1 1 -
+ e (g4 1) :
(g+1) a=zo o (p+j+1)9+2-b

: k {=kay—idl - ke jdi=1
1 (j--+i) p =1 i=1 J4+i

(I—k+j—i+1) (1-1/e)* Ej -(";‘) 2

n=0

(=7

(=D (k2 21 g 4-3)

. 1 — g=iobn+jti)
(p+ n +J + i )‘—k+23—2l+g+"

{—k+2)-2i+g+3

1
b=0 Bl (p+n+j+1)i~k+2i=tivgri-sb }

= 0 | (3.89)

Domains for IV, in Equation {3.90)
1 r%o t=0k2>j—i+1|j=3 I2k—j+i=1
210<r#1{i20|k=j~-i+1]j>i
3 k>j—i+l
4| r=1" k=j—-i+41
5 > —~i+l
6 otherwise
kol k— 1 —e—{otg+1)

(45 (=1/e)s=1s

N(1-1/e)* : p+g+1
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. W k of () &
) W= g (I=1/eF(1-1/rp {Z ;3‘1112(9 (=1 (I+9)

g=0
. [ 1 i
[p+k—n+(i4n)/rivert ~ € nH{i+a)/r]
I+g
‘ Z - 1/r=11k
b=o ¥ [P+k—n+(z‘+n)/,.]:+g+;_b + (1—el/m 1)
> —(g:)T e~lerli+1)/r) ‘Vg_: 1
9=0 T b= O [p+(j+1)/r)e+1=5
3) W, = (j_—i+1) (J'-?i-l) piki=i+t d (;) J=i+l
([—k+J_‘1+1).’ (e_l)k(l—l/r)J-l+l Z r9+1 z (J—:‘+l)
g=0 n=0
k—jtial
k—j+iei kene —itlem o
mz:=o ( m ) (-1) M gi—i+l+ (l_'k+j'-l +g+1)1
_ { 1
[P+J —i+1—n+m+(i+n)/r]l-k+,_.+g+2
- e‘{P+J—l+l—n+m+(|’+n)/f}
lekdy—itgtl
. ¢ I 1
b=0 b! [P+j*i+1-—n+m+(i+n)/rll-k+,_,+g+2_b }

4) [V[ = W g;ﬁ(g) {(l+k+g)' {(p+j+:)l+k+g+l

b (p4j+1)i+k+a+1=b

lvk+g 1
b=0 ]

+ e~(ptitl) i -1
b=0 b! (P+j+1)g+l"b

(F=i+1) (. * ) pl-ki=iel k=jgi-1
.= . =141 K
. (I=k+j—i+1)! (1-1/e)* ggo () z

n=0

()

(S (k4 2j 221 4 g 4 2)!

. 1 ~{p+n+j+1)
(P+n+j+1)-s+2-249+3 ¢ !
{~k+2j~2i4+g+2 1 }

bl (p4n+j+1)~k+2i-2i+g+3-5

b=0

6) W, (3.90)

i
o
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Domains for Wy in Equation (3.92)

1] r=0 |i=0D k=37~ j=i Izk—jﬁ-t'

2|10<r#1{i>0 j>
3 r=1
4 otherwise

Domain

!
1) Wy = %e*ﬂ

I+1 _pl/r=1 L i
2) Wy = & 1-¢ ) (_a)_g! Ry
! (I—I/c)(l—l/r) au0 77

2 1
& TG

b=0
{41 ' i g
p {g) ~ 1
3) Wy = —2 vl e L
) N I (1-—1/6)‘ ggo re g. € gﬂ B (p+j)g+1-b
4 Wy = 0 (3.91)

Following-the process of numerical calculation depicte—d in Figure 3.39, we
calculaté the normalized power P and normalized response time T,, versus load
p in Figure 3.44 and 3.45.

The performance of the system gets worse with an increase of the restart-to-
initial ratio r. For higher r the distribution of the restarts is more significant to

the system performance than is the distribution of the initial service times, since
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restarts are more frequent. Thus, the system M/D-M(SR,r) performs better than
M/M-D(SR,r). Note that the results match the simulation results well. The fit

is not as good as for the M/M(SR,r) and M/M-D(SR.r} systems due to the

values of r and p.

3.3.7 System P4: M/D(S,r) with Approximate Pikji's

We first substitute Equation (3.57), (3.58), (3.73) or (3.74), (3.75) or (3.76),
-( 3.81), and (3.82) into (3.32). Then, after integration according to Equation

(3.52) we get the following expressions for the M/D(S,r) system. S

Domains for Wy in Equation (3.92)
1 r=0 I21{h25~i+1]j=1i-1 l=k—j+i-1
2l0<r<1/2 21> k—j4ia1
3[1/2<r<t k=j—i+1
4 1_'>1
5 1/2<r<1 E>j—i+1
6 otherwise

SFor convenience, a fieid in a domain table is [eft blank if it has the same contents as the fieid
above it.
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M/D-M(SR.r)
Approximate p; , S

- - - Perfect System
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Figure 3.44: Normalized Power for M/D-M(SR,r)
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M/D-M(SR.r)
Exactp;;,'s

- - - Perfect System
ooo Simulation Results
Numerical Results

Ar=0.25
M=10
10
T,
3+ -
6 -
Q
3 r=1.75
] ! |

Figure 3.45: Normalized Average Response Time for M/D-M(SR.r)
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1) Wo =1
ipl-k+j—i+1 (er__l)j—H-l -1 k=jiiml

r{l—1/e)i+k '.z::o("',;l) S (ke

n=0

2) W, =

+(=1/e)¥+k=s=2~h-n {e—r(ﬁ-:--'-o-un}

l=k+jmitl -

meo ™ [p+j—i+1+n+(A+1)/rfFrr-vi-m

_ e-{z"(ﬁj-i+l+n)+h+1]

bk jmi :
. i * (2r)m
m=o ! [P+f--i+1+n+(h+1)/,.]l-k+1-s+2-m }

1
B Wo W{(e S S (30 (1o

A=0

~r(p+k) rm
[ mZ-Om [p+k+(h+1)/,.]:-m+1

— e-lprk+(A+i)(1/r-1)) Z 1
ma0 m! [p+k+(h+1)/,~]f-m+l

-1

u 2 () 2 (g) (=1/e)i*4-1-h=s
-[o+(h+l){1/r-l)+g(l-r)] - e—(:rﬁm-t-_uy) ‘
p+(h+1)/r+g , }

l

- Wo = T (1 1/6).4.& 2 ) Z (*)( l/e)ﬁ*'l'h"’
) e="f _ —{2rp+h+l+gr)

+(h+1)/r+g

(3.92)
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z‘pl—k-#j--'-i-l (er__l)j—H-l i—~1 k=jdi=i

8y Wo = r(1=1/e)+ ’E("Zl) 2. (FEn

n=0

. (__1/6)2“"!—}-2-'!-!1 {e—r(p+j—£+l+n}

I—kty—i+l .
J=1 - pm

)

meo Mo+ —it1+n+(h+1)/r-briri-m

_ E_[,.-+»J'-u’-¢»1+n+(6‘|+1){llr—l)l

l—kjmidl !
. rnZ:cl m! [p+j-i+1+n+(h+1)/rll—k+1—s+2-m }

6) Wy = 0 (3.93)

Domains for W, in Equation (3.93).

Vhor=0  i=0lk2j—itl|j=ilI>kojti]

(V)
o
A
b |

A
[ ]

k=j—it1]j>i

51 0<r<l [i=0]k>j—i+1

6/0<r<1/2 k>j—i+1

7 otherwise

DRomain

kpf = kotog 1 — elotatD)
Vo= e SO et e
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ko
2) W = (—1-_'_12/8—)1;{(6'—1)*-1

. [c-ffﬁk-l) I rm
_——p m! (p+k)l—m+l
]
— e-loth=r) 1
mao M! (p+k)i-m+1

k=1

1T () <1/

el DAY _ o~ [(14riote(ge)] }

p+g+1
A=17eyes | (=D 3 G (~1/e)*
h=Q
. [e-"(o-bk-[) ! rm
m=o 7! (P+k+h/r)‘-rn+1

_ g~(ptk+hjrohor) i 1 ] :

mao M! (p+k+4h/r)i-m+l
k=i

1 .
R LR X5 (<1 eyrhtohs
LE g=0
e={pH{g+1)(1wr)4h/r-h) — e~[r{2p4g+1)+h]
p+g+1+h/r }

{

4) W, —.__.'2___
(1-1/e)+* ¢

i

. k=1
() 2 ¢7Y
0 =0
(=1/e)i+h-1-h-s e="? — o~{(147)o4g+1+h/r)
' - PYg+1l4-h/r
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5 W, = (F=i+1) pt=k+i=it1 (; 5) (€ =1)mi

(1- 1/e)l+k
k=jti=l
Z(h) Z (k""'"‘ ( 1/6)254-&-;—1-'&..,.
h=0 n=0
. {e-r(ﬁj-i-q-n) -
o A=kdjmitd -

meo M {p+j~i+14nth/ri-*tmiti-m

— e~ (PHI~itlinth/r—hor)

{mkdymipl

1
m=0 ! (P+.f'-t'+1+n+h/r)‘-k+1-'+2-m }

- {mko pumy
6) w, o UmiHD R e e
(1 l/e)l+k

P o k—j4im '
. Z (;:) Z (k-_p:i-l) (_l/e)2i+k—1—1—h—n
h=0 n=0
. {e-r(ﬁj—ﬂ-n)
I—k4j=itt m

r

m=0 m! (,0+j—i+1+n+h/r)f-k+1--+‘2-m

— e~[3ro+i=14n)+htr]

lakdioisl

(2r)™
m=o M {p+j—itldnth/r)-ktrmriom }

{3.94)
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| Domains for Wy in Equation (3.95)

1 r20 [i=0lk=j-i|j=i|i>0

21 0<r<i i>1

4[1/2<r<1|i>0 j=i
S r>1 J=1
6 otherwise
Domain
ol

1) IVN = l—!e"'
k
2 Wy o= B S by (L1/e)s
T(1-1/ef &'

e=lota(i=r)] _  —[(1+r)o4g]

Pty
{ pl+1 :

P -p —rp i
Tle e )+I!(1—1/e)‘+" ,,go(")

3) Wy

S (k) (<1 hobs £70 eIt
- ) (=1/e)tE-h- ' :

g

- . ‘p+h/r.+g

41 i
o't

\ |
i thk—h-g
Ta-17e77 & ®) X G) (<1/e)*

g=0
e~lpth/r=htg(i-r) _ e—(3ro+htgr)

p+h/r+g
{ 141 i ]
E_ - - -rp p ] _-1 i-h
e=rh e—(2rp+h|

p+h/r

4y " "W

5) Wy

6) Wx (3.95)

I
o
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Following the process of numerica] calculation depicted in Figure 3.39, we
calcqla.te the normalized power P and normalized response time T,, versus load p
in Figure 3.46 and 3.47. In the same figures we also show the sxmulatlon results
for M/M(SR.r) given previously in Figure 3.23.

The performance of the system gets worse with an increase of the restart-to.
initial ratio ». For =0 the system behaves as an M/D(S,0). Every customer gets
served once and leaves regardless of the eventual conflict with other customers.
This is an M/D/co system, for which P — p and T, = 1. Thus, results plotted
for r =0 are trivially analytic (and were not obtained through the 'n_umerica.l
computation).

Note that the results match the simulation results well. The fit is not as good
as for the M/M(SR,r), M/M-D(SR.r), and M/D-M(SR,r) systems due to the
approximation of the arrivals of both initial and old customers. The numerical
error causes the artifact of rising power curves and falling response time curves

for greater values of r and Q.

3.3.8 Systém PS5: M/M-D, M(sBR,r) with Exact Pikji's

We first substitute Equation (3. 53), (3.54), (3.69), (3.70), (3.79), and {3.80)
into (3.52). Then, after integration according to Equation (3.52) we get the

following expressions for the M/ M-D, M(sBR.r) system. ©

SFor convenience, a field in a domain table is left blank if it has the same contents as the field
above it,
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- - - Perfect System
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Numerical Results
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Figure 3.46: Normalized Power for M/D(S.r)
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M/D(S,r)
Exact Pikji’s

- = = Perfect System
ooo Simuiation Results
Numerical Results
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Figure 3.47: Normalized Average Response Time for M/ D(S,r)
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(3.96)

Domains for Wy in Equation (3.96)
110¢, L1 [r=0|i21|k>j—i+1 J=i=1|1>k—j+i~1
210<¢,<1|r>0 jz2i-=-1
3] ¢ =1
4 otherwise
Domain ‘
1) Wy = 1
P (k) piotrimi J=itl
2) Wo = jmial _ J=iHy (_q1yn
) ° rpe (I=k+j—i+ 1)l (1/r—1)=i+1 Ea R
l—k+j=i —=rqr - njr
% v (kS (_pym e "ar(ptk—nimin/r)
m=0 ™ p+k—ntm+n/r+i/(rp,)
k t=ktjmi —r —i+1
3) IVO (J"I+1) p +J + e_r(P+k—j+i-l) e '_1/8 ]
(I—k+j—i+1) 1/r—1
. (l_e—r)l—k+j-i+l
4) Wo = 0
. Domains for W; in Equation (3.97)
HO0<Sq <1|r=0[i=0|k2j—i+1] j=i [I{>k—j+i-1
210<€¢, <1 {r>01i>0 j2i—-1
3l ¢ =1
4 otherwise
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Domain

1 W = =kl lm _
) ! (I=kF1)! Z( ) (=1 ptk+m—1  p+k+m

(J-2+1)( —ia1) TR
rl=k+j—i+1) (1/r=1)=1
mitl I=k+j—i+1

. Z: (J-‘:‘+l) (_1)n . Z (f—k-{-,;,':id-l) (_I)ru

n=0 m=0
1 — e—rar(otk=ntm+n/r) e~Tr{p+k=ntm+n/r)
+ :
ptk—n+m+n/r p+k—n+m+n/r+z/(rp,)}

) (J_E-{hl) - ‘+1)pt—k+j—-'+l s TR n
I rI=k+j—i+ 1) (1 r=1p- L (=

n=0

I—k+4j—1+1 1 =~ e—r(p+k—n+m+n/r)

—k4j—it1 —1ym
,,,Za.o ( =) (=1) p¥k—n+m+n/r

4) Wr = 0 (3.97)

Domains for Wy in Equation (3.98)

110<q,<1|r=0li=0 k>j—ilj=1 I>k—j+i
210<¢,<1|r>0|i>0] - j>t
3| ¢ =1
4 otherwise
Domain

pl-k+1 {~k+1 (l—fn+1) (—1)"‘

1) Wy = Y R

m={
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_k_) pf-k'+j—l'+l J=v

2) Wy = —— (="
2) N (I—k+j=0) (1/r—1)— Eo(r” b
[—k+j=itl
Z (1—k+j-i+l) (_l)m
m=0
1 — e~rarlptk—ntm+n/r) e~rer(prk=nimin/r)
p+hk—n+m+n/r +p+k—n+m+n/r‘+i/(7‘pr)
jf.') pl=k+isitl j=i
VW st 2 ) -y
l—kdj—itl —r =n+m+4n/r
i+ (I—k+j—i+l)(__1)m1_e (otk=ntmn/r)
= " ptk—n+m+n/r
4) Wy =0 (3'98)

Following the process of numerical calculation depicted in Figure 3.39. we
calculate the normalized power P and normalized response time T, versus load .
p in Figures 3.48 through 3.53.7

The performance of the system gets worse with an increase of the restart-to-
initial ratio r. T system performs better than M/M-D(SR,r) due to the broad-
cast nature of restarts. The results match the simulation results well, especially
for memoryless restart service times {system M/M(sBR,r)). For non-memoryless
restart servi;g times, as r increases, the truncation of the state space gives us

results somewhat better than those obtained through simulation.

3.3.9 System P6: M/D-D, M(sBR,r) with Approximate Pik,yi's

We first substitute Equation (3.33), (3.54), (3.73) or (3.74), (3.73) or {3.76).

(3.81), and (3.82) into (3.52). Then, after integration according to Equation

"Curves for r = 1 are not plotted due to instability in the numerical calculations.
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Figure 3.48: Normalized Power for M/M(sBR.r)
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Figure 3.49: Normalized Power for M/M-DosM(sBR.r)
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Figure 3.50: Normalized Power for M/M-D(sBR.r)
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Figure 3.51: Normalized Average Response Time for M/M(sBR.r)
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Figure 3.52: Normalized Average Response Time for M/M-DosM(sBR.r)
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- - - Perfect System
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(3.52) we get the following expressions for the M/D-D, M(sBR,r) system. 8

Domains for Wy in Equation (3.99)
110€¢,<1{r=0]i>1{k=j—i+1]j=i—1{I=0
2|0<¢.<1|r>0 JZi=1120|1<rq |[1#£rp,
3 l=rp,
4! ¢ =1
5/0<g¢- <1 127rq-t 1#7p,
6 l=rp,
T k>j—i+1 1#rp,
8 l=rp,
91 ¢ =1 k=j—-i+1

10 k>j—i+1
‘11 otherwise
Domain
1) Wp = 1
i -
2 Wo = 3 rpr(1— 1/5)* —rpe )t { E,( ) (=rpe)? g(g

fg €7TTP e—l(14rae)otet(i+hk=g)/(rp.)]
“{rpr—=1)/e]97° (—rp, Y9 -
[(rpr~1)/e]*~¢ (—rp.) Py Sy
=[(1+rgr)o+(i+k}/(rpr)] }
p+(i+k)/(rp.)

3For convenience, a field in a domain table is left blank if it has the same contents as the field
above it.

+ {rpelem i+ _qp 2
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- ) g
) Wo = TFEITJJ?{Z” (=1/e)*9 3~ (9) (1 = rg. )5~ !

c=0
e d
- {eTrrf (rgr) — =[(14rar)ptitg]
{ Ey d! (pFitg)e-dri ~°
i (1+ rq, )d e—l(1+rar)otivk]
i=0 4 (p+itg)e-d+ p+it+k }
{
4) WO — %e“"hﬁ
5 W, i of SN
0 = rdr __ g (_ k—g
rpe (1-1/e)}*(1-rp, )* E;(g) (e =1+rp)? (=rpr)
!
e=rarlptg) (rg-)™

meo M [o+g+(i+k—g)/(rp,)[f-m+1

— g-lorgtlitk=g)(1=rqr}/(rpe)]

1 1
mz=:0 m! [p+g+(i+k—g)/(rp,))=m+ ]

1 X g
+ 5 2 @) (=rp) Y () [(rp~1) el

=0 c=0
e~ {pr(-randet(itk—g)/(rpr)l} _ o-[(1+rar)otct(i+k=g)/(rpr)]

pte+(i+k—g)/(rp,)

+ .]; {?‘p [c-1+1/(rp,)_1]}k e —l{1+rar}o+(i+k)/(rp, )]
nver —
p+(i+k)/(rpr)

- ip‘ k ) ] ’ g
6) Wo = ?‘(1——1/';)_*{ E) (o) e (=1)7 CF:; (3) (1=rg " (1+0)!

i+c ’ (rWQr )m

B [ e_quﬁ

I+
_ e~loHill=rar)] Z 1 J

m! (pi)iteti-m

m=0

k g
+ 3 () (=1/e)¥77 3 (9) (1=rq, )9 o

g=0 c=0
1

. [e-lﬁ"'(i'i-g)(l-fqv-)l i .
= d! (p+t+g)°'d+1

— e~[(1+rar)otitg] i (1+rq. ) e=l(1+rar)ot+itk)
oo 4! (pt+itg)e—d+t o+i+k
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Lk Lkt jmi -
1 (juigy) pimiHIH Eheian g

7 W = 3 r
) ° rpr (1=1/e)*(1—rp, a-+i Zﬂ () (e —14rp, )
g=
it k=jbi=l
(—rpytti-e Z (k'J:"l)(;l/g)"‘j+“1-" {e—rq»(p+n+y)
n=0
I—k4j—it] :
E (rg.)™
m=o M [p+ntg+(j+1-g)/(rp,)JFri-rrom
~ e-lotntgr(G+1-9)(1=rq.)/(rp,))
wktjmi
ii’l 1
m=o ™! [ptn4g+(+1-g)/(rp, )JFri-rti-m
(. k [~k+j—i+1 Joitl
8) WO = : (J'_H'l) P fam g1 rqr g ] -
([_k+j_i+1)] Tp.-(l—l/e)k 9_20 (J g )egq (_1)1 +1 ‘g
g k=jtim1 o
2 (@) (L=rg)9m¢ 37 (k-rkiniy (Lq gykmrtizion
c=0 n=0

C(I=k4j—it14c)

I—k+j—itlte
(rg.)™

m=0 M (p+j+1+n—irg )i~ktr=i+2tcm

. { e'rQF(ﬂ+k+c)

— e~ l0+ra)o+jti4nairg,]

1
m=0 m! (p+j+1+n—irg, )l-k+i-i+2+c=m

[—k4j=it14¢ }

il 1-1/e

10) Wo = (J'-.E-H)("'q"!f:’)l_k-'-j-i*'r1 rar
T (=R i) (11 )k (e -1)

. g~ rerloti-it1)

i ~rge\ K -
9) T/Vo B (T'Qrp) (l_e q) e'—rqrp

J=i+1 (e—"QP _ l/e)knj+i—1

) Wo =0 (3.99)
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g=0

(2) [(rpr =1)/€]?¢ e=rare

n

1 — e~loteti+k—g)/(rpr)]

ptetl+{i+k—1—g)/(rp,)

[ — g—(ptet1+(ivk=1-g)/(rps)]

+ (rpr)k-] [e-l+l/(rpr) _

pte+(i+k—g)/(rp.)

1]
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i € [(1+rq-)p+(i+k)f(rpr)l}
o+ G+ R)/(rpr)

Domains for W; in Equation (3.100)
110S¢- <1 r=0(i=0{k>j~i+l|j=i{l<k-j+i-1
210€¢: <1 |r>0|i20k=j=i+1 j>i 1<rq. {1#rp,
3 l=rp,
41 ¢ =1 t=0
510<¢- <1 i20 12rg |1#rp,
6 l=rp,
7 k> ~i+1 L#7p,
31 7 l=rp,
9| g =1 i=0lk=j—it+1
10 k>j~i+1
11 otherwise
Domain
. l-kdl k-1 k-1-
1) TV (tfl/e)‘ Z ( pl_g_:ll;)uzg
g=0
HE {l—e“(p+g+l) l—gfl (_P+QT-+'-1.)..".:}
{ i k-1 |
» = T o )‘{Z(k"-l)(_rp')k_l-g

|




3) W ko SN ,
) b T(1—1/ep Z (53") (=1/e)*-1-9 T (9) (1=rg )< ol

g=0 ce=0
c+1 d
. c-p (c+1) '(T'q,)
[ E?: d! (p+i+1+g)+2-d

- e ?rq i (re.)?
= A (p+it+1l4g)eti-d

—_ e‘[(l+rq-)p+i+l+g] (C+1)‘ 'f (1+rqr)"
d=0 d! (P+i+1+g)c+z_d
. c d
+ e~[(4rariotividgl o0 2 0 (1_+T'Qr)
d=0 d! (p+1+1+g)c+l-d
g~ (pHi+k)
p+i+k }
-1) W; = k p‘ Lil (,{-_1) ( 1/ )k—l-g e-rq.-pﬂe—[(1+rq,.}p+g+1]
= —_— /e
Bd-1/e)t g=0 7 p+g+l
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k p‘ k-1
5) - W[ = k=1 rar et
d J =1 g (_ l1-¢
(1-1/e>*u-rp,)*{§‘ ) (€ =1 ) (=rp)
{
e—Ta{o+g) (rqr)"‘
m=0 m! [p+g+1+(3+k-‘1"9)/(’"%)]""““
‘ .
_ emranters (rg.)"

m=o M lo+g+(i+k~g)/(rp, )=+

~ e~ lPrgt 1+ (i+k=1=g)(1~rg.)/(rp,)]

!

. Z 1

m=o M [p+g+1+(i+k=1—-g)/(rp,)J-m+T -

+ e-lpta+{i+k=g)(1~rq.)/(rp,)]

oy 1 ]

moo ™ [p+g+(i+k—g)/(rp,)]-m+1

1 k=1 i g
#1530 (' @) -/

e—{P+(1—rQP)[c+l+(l'+k—l-9)/(rps-)]} _e‘[(1+"¢')9+c+l+(t'+k—l-g)/(rp,.)]

P +R=1-7)/(7p)
e~ {pHl-rar)le+(i+k=g)/(rpr)l} _ o—[(14rar)otet{itk=g)/(rp.)]
pte+(i+k—g)/(rpr) ]
e‘{(1+'qr)9+(i+k)/(rp,.)] }

1 .
+ — (T‘p,.)k-l e“+‘/("Pr)_1 k
. [ S F
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W kgl = e
L= g ) 2 () e (=g e <110 (14 gy

g=0
4941

: [(1+g+1) g~ rar{otk-1) S

m=0

(rge)™
m! (p+i+k)i+ati-m

[+
_ r'q,e""("""‘“) g (rq;-)"'
m=o ™! (p+itk)tori-m
l+g+1 1

- (I+g+1) e—lpHitk=(i+1)rg,] Z
meo M (p+itk)i+eti-m

1+
+ rg,ePritk=(i+re] 4 1
m=o ™! (P+i+k)f+g+l—m

k=1
+ (5 (=176} 3 (@) (1mrg e o

g=0 c=0

c+l
1

_[p+(.'+1+g)(1_,q,)](
‘ c+1) |
dZ=;J d! (P+l+1+g)C+2-d

— e=lo+(i+i+g)(1-rq.)) - 1
e rar '
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Following the process of numerical calculation depicted in Figure 3.39. we

calculate the normalized power P and normalized response time 7T,, versus load

o in Figure 3.54 through 3.59. °

The performance of the system gets worse with an increase of the restart-to-
imttial ratio r. Note that the results match the simulation results well. For r=0
the system behaves as an M/D(S.0). Every customer gets served once and leaves
regardless of the eventual conflict with other customers. This is an M/D/xc
system, for which P=p and T, =1. Thus, results plotted for r =0 are trivially
analytic (and were not obtained through the numerical computation).

For smaller r, the distribution of the initial service time has more effect on
the performance of the system. Since the rearrival of the initial customers are

approximate, we have higher errors for smaller r.

3.3.10 System PT: M/D,M-D, M(BR,r) with Exact Dik.ji’s

We first substitute Equation (3.53), (3.54), (3.65), (3.66), (3.77), and (3.78)
into (3.52). Then. after integration according to Equation (3.52) we get the

following ex’préséioris for the M/D,M-D, M(BR,r) system. 1°

*Curves for r = | in M/D-M(sBR,r) and for r = 2 in M/D-Do.5M(sBR.r) are not plotted due
to instability in the numerical calculations.

'9For convenience, a field in a domain table is left blank if it has the same contents as the field
above it.
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Figure 3.54: Normalized Power for M/D-M(sBR.r)
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Figure 3.55: Normalized Power for M/D-Dg sM(sBR.r)
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Figure 3.57: Normalized Average Response Time for M/D-M(sBR.r)
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Figure 3.58: Normalized Average Response Time for M/D-Do sM(sBR.1)
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Figure 3.59: Normalized Average Response Time for M/D(sBR.r)
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Domains for Wy in Equation (3.104)
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Following the process of numerical calculation depicted in Figure 3.39, we
calculate the normalized power P and normalized response time 7}, versus load
p n Figure 3.60 through 3.77.

The perfo_rgng.nqe of the system gets worse with an increase of the restart-to-
initial ratio r. The system performs better as the distribution of either the initial
or restart service time becomes more deterministic, i.e., for higher q or ¢ = r.
For higher p the n;':tture of the restart service times has far more effect than does
the distribution of the initial service times since restarts become very frequent.

The numerical results match the simulation results very well.
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Figure 3.60: Normalized Power for M/M(BR.r)
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Figure 3.61: Normalized Power for M/M-Do sM(BR.r)
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Figure 3.62: Normalized Power for M/M-D(BR.r)
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Figure 3.64: Normalized Power for M/Dg sM(BR.r)
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Figure 3.65: Normalized Power for M /Do sM-D(BR.r)
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Figure 3.67: Normalized Power for M/D-Dy sM(BR.r)
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Figure 3.68: Normalized Power for M/D(BR.r)
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Figure 3.69: Normalized Average Response Time for M/M(BR.r)

175



M/M-D osM(BR.7)
Exact p,-.hj.;'s

- - - Perfect System
coo Simulation Results
Numerical Results

Ar=0.25
M=15
10 | | ]
T,
S+ _

0 0.5 1 1.5 p 2

Figure 3.70: Normalized Average Response Time for M/M-Dy sM(BR.1)
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Figure 3.72: Normalized Average Response Time for M/DosM-M(BR.r)
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Figure 3.73: Normalized Average Response Time for M/DgsM(BR.r)
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Figure 3.75: Normalized Average Response Time for M/ D-M(BR.r)
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Figure 3.76: Normalized Average Response Time for M/D-Do sM(BR.r)
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3.3.11 Summary

In Sections 3.3.4 through 3.3.10 we have obtained numerical resuits for the
winner queues with partial restarts M/M(SR,r), M/M-D(SR,r), M/D-M(SR.r).
M/D(S,r), M/M-D, M(sBR.r), \M/D-D, M(sBR,r), M/D(sB,r), and M/D,M--
D,.M(BR.r). respectively. Figure 3.78 shows graphically what systems are solved

through the analysis of the winner queues with partial restarts.
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3.4 Other Approaches and Other Systems

In this section we try to find analytic results for some of the full-conflict

systems using different approaches.

3.4.1 System Al: M/M(SR) as a 2-D Markov Chain

Consider the M/M(SR) system at some point in time ¢. Let all the cus-
tomers that can still win at time ¢ be called alive customers. (Those are the
customers that have restarted or have arrived since the last departure.) Let all
the customers that will lose for sure be called dead customers. (Those are the old
customers that haven’t restarted yet since the last &epa.rture took place.} Every
restart of a customer converts it from dead to alive. Every departure kills all the
alive customers left in the system. Every arrival increases the number of alive
customers by one. Figure 3.79 shows the model of the system. Customers arrive
to the system and leave the system at the average rate A. From the “ALIVE"
box. bulks of customers move into the “DEAD” box at the average rate \. The
average rate of customers moving from the “ALIVE” box to “DEAD” box and

vice versa is denoted v (messages/sec).

We now consider a two-dimensional Markov chain with states defined as the
number of alive and the number of dead customers. Figure 3.80 shows a portion
of the tramsition rate state diagram of such a system, as used in (13]. [18] solves

numerically a truncated version of a similar Markov chain. In (18] states represent
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M E A
SR.r DqM
D A A
Sys | Sec Equa Figure
SN.r A
tem | tion tion
M E A
P1 3.3.4 | {3.84) | 3.40 thru 3.41
sBRr 1D, M|| E A P2 | 333 | (3.87) | 3.42 thru 3.43
D E A P3 | 3.3.6 | (3.90) | 3.44 thru 3.43
sBN.r A P4 | 3.3.7 | (3.94) | 3.46 thru 3.47
M ITEIEIE P5 | 3.3.8 | (3.97) | 3.48 thru 3.53
Brr (D, M|[E|[E]I[E P6 | 3.3.9 |(3.100) | 3.54 thru 3.39
P7 |3.3.10 | (3.103) | 3.60 thru 3.77
D E E E
BN.r E
L -

numerical results

O analytic results

E exact transition probabilities
A  approximate transition probabilities

Figure 3.78: Overview Table of Results for Winner Queues with Partial Restarts
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DEAD

Figure 3.79: Dead/Alive Model
the number of alive customers and total number of customers in the svstem.

In this section we derive equations for the complete (infinite) Markov chain
from Figure 3.81 which accounts for all the special cases of the Markov chain.

From parts a), LY. ¢). and d) of Figure 3.81 we write the following four
vquauions. respectively. The probability of the system being in state (/. ). (i.e..

having ¢ alive and j dead customers), we denote as d, ;,i.j =0.1.2. ..

dogd = digu. i=0.=0 (3.105)
diglA +iu) = di_{o\+ diciap. >0 =0 {3.106)
dij[N L+ ] = disi )\ +¢!,_.il.1+1(j + Dy, >0, >0 {3.107)
doj{A +ju) = zj: diwryoilk+ D, (=0, >0 {3.108)

k=0

We now try to find the double transform of the state probabilities d{7. /),:.] =
0.1.2..... The transform is defined as P(y,z) = ¥, T, di;y'z’. To find the

transform. we multiply Equation (3.105) through (3.108) by appropriate powers
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Figure 3.80: Dead/Alive Transition Rate State Diagram

of y and =. to obtain the following.

‘IO.OI\ = (fl'oj.l. (3109)

x k-]

Zdi.ﬂ()\ + "',H)yl = Z(l,‘_l_oi\yl + Zd'-l'l“y' (3110)

sz‘-J['\ + ¢+ july'= =

=1 g=1|

p—

g il

NE

diy,A\y's? +

1]
-
A

i
-

dicyy+(J + Duy' (3.111)

[~
[]8

i
-
L.

]
-

3
M-

Dodos(N+ju)s =

J=t

desryoilk + Dp=t (3.112)

L
1}
-
fd
I
-

The sum of all the terms with A on the left hand side of Equation (3.109)

through (3.112) gives

dooh + Y diody' + 305 diAy's + 3o dohe? = AP(y, 2)
i=1

=1 =i =1

The sum of all the terms with iy on the left hand side of Equation (3.109)
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Figure 3.81: The Four Cases in Dead/Alive Transition Rate State Diagram
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through (3.112) gives

o0 ) oo oo o
Z d; oipy’ + Z Z dijiny's? = S digipy' + 3.5 dijiny's

i=]1 =1 3=t 1=0 1=0 j=1
3 o0 oo
= wg Zd.oy g sz.,yz-'
s-.O I—O j=1

= #ya—yP(y, z)

The sum of all the terms with ju on the left hand side of Equation (3.109)

through (3.112) gives

S diiny'd + Y. dojinz = Yo S dijiuy's + > dojjuz
1=1 3=1 =1 =i j=0 1=0
a & ;
= uz xggd.Jya +[Jza—§d012
3
= uzg-Ply,2)

The sum of all the terms with A on the right hand side of Equation (3.109)

through (3.112) gives

2_diciody' + 33 pici, M2 = My Py, 2)

i=1 1=13=1 .
The sum of all the terms with u on the right hand side of Equation (3.109)

through (3.112) gives

Y diiouy' + Z > Picrjeilf + Vuy'2
=1 =1 =1

a0

= yY dipy’ +yzzpa.ﬂuy2’ -t

1=0 1=0 y=2

= uy Z E pijjy'z !

i=0Q j=0

= 88 (yvz)
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The sum of all the terms with u on the right hand side of Equation (3.109)

through (3.112) gives

] . % J .
diok + 3D prrrjoa(k + Dpzd = 2D digr ik + 1)z
1=1 k=0 J=0k=0
= 22 derryoa(k + 1)pzd*k
k=0 3=k
= Z(k+1)z de+1J’J
=0 =0
= u Z Z dk'jkzk-l;"’
k=0 j=0
= li'a—yp(y, ’y=:

We now sum Equation (3.109) through (3.112) and write

b5 %]
AP(y. = —_— = — Pt
(y,z) + uyayP(y, )-i-»uzazP(y,Z)
= WP(.) + s Py.) + Py, )|
- y ¥, < .uyaz y!" uay yy“ y=z

which is equivalent to

%) a a
#ygy-P(y, z) = #3—yP(y1 ) ly=e +p(z - y)aP(y,«) = My — 1)P(y,z) (3.113)

From Equatien (3.109) and (3.113) we derive the following.

Zd@J(A +j[.t).".’j = /\ZdUJZJ +Zdo_,j#2')

i=0 1=0

a 3
AP(0,z) + ,uzaP(O, ) = ,ua—yP(y, 2) |y=z (3.114)
After plugging y = z into Equation (3.114) we have

3 a
12go P D) lyms — w5 P, 2) lme = Az = 1P(2,2)
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u(z = 1)3—?@, Hlyme = Mz =1)P(z,2)

a
nua_yp(yaz) Iy—'-s = )\P(z,z)

]
M@P(y, 2) |y=s AP(y,2) ly=s (3.115)

From Equation (3.115) the following holds only for y = z.

)
#a—yP(y,~) = AP(y,z)

dP(y, z) _ /\d
Ply,z) — n™

A
InP(y,z) = L-y+C

Ply, =) Kes? (3.116)

For y = =, we have

P(z,z) = Ked*
Because P(1,1) = 1, we have that I = e'%, and so

P(z,z) = en(*) (3.117)
If we use Equation (3.117) in Equation (3.116), we get

3 -
P ﬂggp(y,z) lyms = AePls=1) (3.118)
where p = A/u. We can now use (3.118) in (3.115) as follows.
8 g (2=1)
M Ge P 2) + u(z=y)5-Ply,2) = My—1)P(y,2) + Ae?

which gives us the main equation:

y%P(y,Z)Hz—y)‘%P(%ZJ = py-1)P(y,2) + pe*  (3.119)
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Solving partial differential equation (3.119) requires the solution of an integral
of the form [ a*z**¢dz, for which no closed form solution has been found. From
Equation (3.119) we obtain the following two results. After substituting y =

R
- =

1 we get

3 .

B“P(yv Z) |y=z=1 = Iv; =p (3120)

Y

where N4 is the average number of alive customers in the system. We can find
V4 using simpler arguments as follows. Refer to Figure 3.79. Let Pk Tepresent
the probability of & alive customers in the system, i.e., the probability of k cus-
tomers being in the *“ALIVE” box. When there are k customers in the "ALIVE”
box, then the rate of leaving that box is ku. Upon every departure exactly one
customer leaves the system. Arrival rate of customers into the system is A. We

can now write the following relation

oo
A=) lhkupe = uN; (3.121)
k=1

which is equivalent to Equation (3.120).

For y = z = 0, Equation (3.119) gives

P(0,0) = dyg = " (3.122)

3.4.2 System A2: M/M(BR) is a Perfect System

Figure 3.16 shows that the M/M(BR) system gives “perfect” performance.
Consider that an arrival finds k customers in the system. Because the systemis a

broadcast system, the system will always do useful work on exactly one customer
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while there are customers in the system. Thus the length of a busy period equals

that of a regular M/M/1 system where service times are distributed as successful

service times X, in M/M(BR) system. Since the average system time in an

M/M/1 system does not depend on the scheduling discipline, the average system

time is always equal to that of a FCFS discipline. Thus we can find the average

system time in M/M(BR) as

T = PN = 0% + 3 PV = HkXos
k=1

where IV is the number of customers in the system, and X, is the length of

a successful service given % customers in the system. If we define Y

minimum of % service times, then we can write

- ]0 " 2dP(X i > 2]
--'/om xd{P[X > z}*}

— [ ad(eruny

_f” 2dP[X > k]
0

1/u F

ko k
. acd - F
PN =07+ > PN = k]k;

=1

T

Thus, for M/M(BR) system we have the normalized power as

P=p
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3.4.3 System A3: M/D(B) is an M/D/1 Queue

For the M/D(B) system we get the same normalized power as for an ordinary
M/D/1 queue. In an M/D(BR), service time is never wasted (i.e., the service for
exactly one customer is always useful, given at least one customer in the system).
As soon as a customer leaves, the customers left in the system will restart. It is

obvious that the system behaves as an M/D/1 queue. Thus we should get

P =2p(1-p}/(2-p) (3.124)

for ¢ = 1, and this is plotted as dashed curve in Figure 3.16.

3.4.4 System A4: M/D,M(L) is an M/D,M/1 Queue

A full-conflict locking ISR syateﬁ. G/G(L) is equivalent to a corresponding
regular queue G/G/1. The only difference is that in the G/G(L) systems, cus-
tomers wait for the common resource, while in the G/G/1 they wait for the
common server to be assigned to them.  Qnce the resource in the G/G(L) system
is assigned to a customer, the rate of service is the same as the rate of service
in the corre—sﬁca.n;iixl.g G/G/1 queue. While we find the power for a wide range
of arrival/service time distributions. we only use it here for Poisson arrivals and
D,M distributed service times.

The known expression for an M/G/1 queue gives us [12]

A2z2

3.125
2(1-p) ( )

N=p+

195



The second moment for the DM distribution is

=7 = (7)*(2p* +2pg+4°)

and thus
N = p+p2312iiq_2_
2(1~p)2
T, = 1+p2—2'zf‘-’_+§ (3.126)
P = 5% (3.127)

Figures 3.82 and 3.83 show the normalized power and the normalized response

time. respectively, for the M/D,M(L) system.

3.4.5 Summary

In Sections 3.4.1 through 3.4.4 we have analyzed the full-conflict systems
M/M(SR), M/M(BR), M/D(B), and M/DM(L). Figure 3.84 shows graphicaly

the systems analyzed in Section 3.4,

-

3.5 Departure Processes in Winner Queues

Consider again the joint probabilities of the transitions between the states
and the interdeparture time density, pi ;(v) and p;x;i(v), defined for the simple
winner queues and the winner queues with partial restarts, respectively. The
above probabilities allow us to take a closer look at the departure processes. The

distribution of the random variable V' (the length of the interdeparture time) we
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get as follows.

v(v) & :};P[v <V < v+dv

= i d; ipi.j(v)dv (3.128)

=0 =0
Let us look at the M/M(SR) system once again. The distribution of the
random variable V' we get as follows. After including the value for p; ;(v) from

Equation 3.38 in Equation 3.128, we get the following.

viv) = dg)\e““'(1 - e—l‘")ep(l-e“')

id.- M1+ p0)(1—emm) + uziv] (3.129)

i=1
(1_Hw)i-.le-(A+iu)uep(1-e-~')
The probability density function 3.129 differs quite a lot from an exponential.
This shows that Morris and Wong in (19,20] and Ryu and Thomasian in [25,34]
were making a big approximation by assuming the transaction commit process
to be Poisson, even though the systems they analyzed were closed systems with
the number of transactions in the system 'kept fixed.

We can -writé yét another relation among the transition and state probabilities

as follows.
=T = d S vpiy(v)dv (3.130)
/\ =0 =0

As shall be pointed out later, complicated expressions for transition probabilities
in some systems result in simple expressions for the average number of customers

in the system. Equation 3.130 is another equation with a simple value on one
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side, and an expression including complex transition probabilities on the other.

3.6 Conclusion

In order to be able to study the performance of optimistic concurrency control
schemes in databases, we have studied special types of queues, winner queues and
winner queues with partial restarts.

In these quenes we have investigated the a;rerage response time of customers.
The results obtained by simulation and analysis were shown in terms of the
normalized average system time and the normalized power defined as utilization
factor divided by normalized average response time of customers.

We first showed simulation results for four different classes of winner queues:
silent-redraw (SR), silent-noredraw (SN), broadcast-redraw (BR), and broadcast-
noredraw (BN). The results showed the power curves with varying ¢ from 0 to 1.
Later, we show simulation results for six different classes of winner queues, silent-
redraw (SR), silent-noredraw (SN), silent /broadcast-redraw (sBR), silent /broad-
cast-noredraw (sBN), broadcast-redraw (BR), and broadcast-noredraw (BN).

We were ét;le to. calculate the normalized power for the simple winner queues

~>/M(SR) and M/D,M(BR) and for the winner queues with partial restarts
M/M(SR,r), M/M-D,,M(sBR,r), and M/DM-D, M(sBR,r). We also did an
approximation for the simple winner queue M/D(S) and for the winner queues
with partial restarts M/M-D(SR.r), M/D-M(SR,r), M/D(S,r), and M/D-D,. M-

(sBR,r).



Further Studies of Winner Queues

1 | Research on noredraw winner queues.

2 | Closed formulas.

Table 3.13: Further Research in Winner Queues
Using other approaches we also analyzed simple winner queues M/M(SR),
M/M(BR), and M/D(B), and the full-conflict system with locking M/D,M(L).
Figure 3.85 shows graphically the systems analyzed in Chapter 3.
Further studies of winner queues, as shown in Table 3.13, would include re-

search on noredraw winner queues and closed formulas for all the queues, starting

from the formula for normalized power for M/D(BR) queue P = 2p(1-p)/(2—p).
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CHAPTER 4

Partial Conflict Systems

4.1 Introduction

Partial conflict systems are those ISR systems in which any two concurrent
customers may or may not conflict. Database systems in which the resources
are database granules are, in general, partial conflict ISR systems. In partial
conflict systems we are also interested in performance in terms of the normalized
response time and power,

Our approach is to map the results already obtained for the full conflict
systems into the pa.rtiél conflict case. The mapping is shown in F igure 4.1. For
some partial conflict systems the mapping is exact, while for others the mapping

1s an approximation.

In Section 4.2 we describe the conflict measure used in the mapping. Sec-
tion 4.3 giv;as_ ::a:ses in which the mapping is exact, while Section 4.4 give cases
in whjcﬁ the mapping is approximate. The error in mapping is described in Sec-
tion 4.5. The graphs showing the mapped results for different schemes are given
in Chapter 5, where we apply full-to-partial conflict mapping to database sys-

tems. It is those data which are used to show the error of mapping in Section 4.5.
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Finally, the conclusion on partial conflict systems is given in Section 4.6.

4.2 Conflict Measure

We define the conflict measure ¢ to be & measure of interference ‘among con- -
current customers due to conflicting resource demands. Such a measure has value
0 for no confiict systems, and value 1 for full conflict systems. Figure 4.2 shows
all the systems with shared resources and associated conflict measure. Note that
single conflict systems can be full conflict systems (when there is one system
resource to which access is demanded by everythstomer).

For partial conflict systems. the conflict measure varies between 0 and 1,
¢ € (0,1). In this work we define the conflict measure ¢ to be the probability
that the demand sets of two customers overlap. Thus, if S, and S, are demand

sets of two arbitrary customers, then
C=P[51052 7&0]

Assuming that demand set size of every customer is fixed at § = s, the following
two sections describe the two data access patterns used herein. random and

sequential.

4.2.1 Random Resource Demands

Every customer demands exactly s resources. If the demand for any subset of

size s of the total set of resources T is equally likely, we call this random resource
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Figure 4.2: Conflict Measure in ISR Systems




demands. The conflict measure, as defined above, is given as

1—%2, s <t/2

C = L]

(4.1)
1, 3>t/2

where ¢ is the size of T.

4.2.2 Sequential Resource Demands

RRARERRE 2 .

Let us assume that the total set of resources is an ordered set in a wrap-
around fashion (the last resource is followed by the first one). Then, if every
demand set is a sequence of s ad Jacent resources, we call this sequential resource
demands. We will also assume in our sequential case that the first resource in _
a demand set is chosen equally likely from the system pool of resources. The

conflict measure, as defined above, is given as

e me o o
.(.i_ll, s <t/

c= t (4.2)
1, s> t/2

4.3 Exact Mapping

For single request systems. the mapping gives us exact results. We use the
mapping as follows. Let T,.(p) and P.(p) represent normalized response time
and power, respectively, as functions of p in a system with conflict measure .

From the definition of the conflict measure, it follows that for the full conflict

systems ¢ = 1, and so their response time and power we denote as T,,(p) and

208



Pi(p), respectively. The mapping we propose is as follows.

Tnc(P) = Tnl(Cp) : (4-3)

Pp) = =Pi(cp) (4.4)

Except for the special cases of “better-than-perfect” systems (such as M /M-
(BR,0)) it is clear for silent and silent /broadcast systems that Pi(cp) < cp and

so P(p) = Picp)/e < cp/c = p; thus the power P:(p) is properly less than P

(the ideal case).

To show that Equations 4.3 and 4.4 give exact results for the single request
systems, refer to Figure 4.3. Consider Just one resource from the pool of ¢ re-
sources. Let us imagine an ISR system for that resource only, and we denote
the symbols referring to that system by the subscript s. The average response
time of the “small” ISR system equals the average response time of the origi-
nal system. Since the arrival rate to all thew resources are the same, and equal

Ps =TA, =TA/t = p/t, we have that

I Toe(p) = Tnc.s(p/t) = Tnl(p/t)

On the other hand, expressions for the conflict measure for both random and

sequential resource demand patterns give us for the single request systems

c=1/t
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and thus
Tnc(P) = Tnl(CP)

and also

Pc(p) _""p—

In the case of the single request ISR systems we have the exact mapping for
more general resource demand patterns as well. Consider the IRS system where
demands to the resources are non-uniformly distributed. We define ¢ classes -
of customers as follows. All the customers that access resource Ry € T, Lk =
1,2....,t belong to class k. The normalized response time and power for the
customers of class k we will denote as T{¥)(p) and P®), respectively. Let r. be

the probability that a customer belongs to class k. The following holds.

Te(p) = Tulrep) (4.5)
- PMNpy = %Pl(rkp) (1.6)
Tlp) = ;rmc(up) - (47
Plp) = Tn:’(p) (4.8)
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4.4 Approximate Mapping

We explain the mapping given by Equation 4.3 and 4.4 for the multiple (non-
single) request systems as follows. Consider the system given in F igure 4.4.
Suppose that a demand set § is requested by customer C. Without loss of gen-
erality we assume in Figure 4.4 that the s resources are adjacent to each other.
The fraction of the arriving customers whose demand sets overlap set S5, assum-
ing uniform resource demand distn'bl;tion, is equal the conflict measure ¢, which
follows from our definition in Section 4.2. Since the average response time of the
customer C is affected by all transactions that conflict with C, we could define a
full conflict ISR system around the set of resources .§' . The average response time -
of that “small” system equals the average response time of the original system.
The arrival rate to the “small” system equals ¢p, and thus, we may write the

mapping given in Equation 4.3 and +4.4.

The response time of the customer C also depends, indirectly, on the cus-
tomers whose demand sets do not overlap S. Consider customer B whose de-
mand set § B Is adjacent to S. Let another customer, customer A demand a set
that overlaps both § and S 8- Let all three customers be concurrent. Then. the
customer C is dependent on the customer A, and A is dependent on the customer
B. Thus, C depends on B even though their demand sets do not overlap. This
explains why the mapping above is only an approximation for the multiple re-

quest systems. Note that in the single request systems no two customers may be
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indirectly dependent, and, thus, the mapping is exact for those systems. The fol-
lowing section calculates the quantitative error made in the mapping, specifying
the domains in the system load, the service time distribution, and the conflict

resolution scheme for which the mapping gives a close approximation.

4.5 Error in Mapping

In Figures 4.5 through 4.7 we show the error in mapping for silent, broad-
cast. and locking schemes, with random resource access for varying 0 < p < 1.

Figures 4.8 through 4.10 display the error in mapping for silent, broadcast, and

. R e E T
Lk > . . Tt -

locking, in the case of sequentié.l access. In Figures 4.11 through 4.16 we show
the same error plotted against the conflict measure ¢, 0<e<l.

For both normalized power and response time, the errors represent the nor-
malized difference between the re_sults obtained from mapping and the results ob-
tained through simulation. Let Ps and Py represent the power obtained through
simulation and numerical calculation. respectively. Analogously, let T,s and T'.c
represent the normalized service time obtained by simulation and numerical cal-
culations, résp:ec‘tiv;-:ly. The exror plotted in Figures 4.5 through 4.16.is defined

as

Error 4 Fc=Ps T~ Ts _ Tas—Tuc
B P 8 B £ TnC
TnS

The results are obtained for both uniform random and uniform sequential

(4.9)

resource demand patterns. The total number of resources was ¢t = 100. For the



Random Sequential

38 t c 3 t c

2100 | 0.040 100 | 0.0%0

o

41100 |0.153 {10 { 100 | 0.190
6 | 100 | 0.317 157 100 | 0.290
8 | 100 { 0.500 || 20 { 100 | 0.390

10 | 100 [ 0.670 || 25 ! 100 | 0.490

12 (100 | 0.804 || 30 | 100 | 0.590

14 | 100 | 0.897 |{ 35 | 100 | 0.690

16 | 100 | 0.953 || 40 | 100 | 0.790

18 | 100 { 0.981 || 45 | 100 | 0.890

20| 100 [ 0.993 || 50 | 100 | 0.990

Table 4.1: Conflict Measure Values
random case, the demand set size waé varied from 2 to 20 with step As = 2,
For the sequggtja.l_ca.se, the demand set size was varied from 5 to 30 with step
As = 5. Table 4.1 shows the values for the conflict measure for those values of s.
Figures 4.5 through 4.10 show that in both random and sequential access
the error is very small for the silent and broadcast schemes when the service

time distribution is memoryless. Even half-deterministic service time distribution

shows very small error for the broadcast case. Pure deterministic service times
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show larger error (over 10silent and broadcast, but only for p > 0.6.
For the locking scheme the situation is reversed. Only deterministic service

times give small error, while half-deterministic and memoryless give larger error

for p > 0.7.

From Figures 4.11 through 4.16 we see that the error of mapping is small for
small and high conflict measure ¢. The error is highest for 0.6 < ¢ < 0.9. For
silent and broadcast with memorviess and half-deterministic service times the
error is very small for the entire range of 0 < ¢ < 1. The same goes for locking

with deterministic service times.

4.6 Conclusion

Performance results for the partial conflict systems are obtained by mapping
from the results for the full conflict systems. The mapping is done using the
probability of conflict between any two customers as the conflict measure. For
the single request systems the mapping is exact, while for the other partial conflict
systems the mapping is approximate.

Finding'ah‘e:'ca.c;t mapping for all the partial conflict systems is complex. It
is this mapping that is the core of the difficulty in modeling the well known and
widely researched concurrency control schemes in databases. In this work, how-
ever, we explicitly pinpoint the problem of mapping. It may be possible to find

the mapping in the simplified case of infinite servers. Since the problem is sepa-

rated from queueing, we would be satisfied even with some close approximations.



10

or M/M(SR), Rnd
Cl r=100,A5 =2
0
- 10 i I ! 4
0 0.2 0.4 0.6 0.8 c i
10 e 1 . e —
o M/D(S), Rnd \
(o]
t=100,As =2
0 —
- 10 L L I 1
0 0.2 0.4 0.6 0.8 c

Figure 4.11: Error versus ¢ for Silent/Random

(S
[\
(7]




10

% M/M(BR), Rnd . 7
t=100, A5 =2
0 %“q
-10 | . . ,
0 0.2 04 0.6 0.8 ¢ 1
10 , . : :
. M/D 3 sM(BR), Rnd
7 =100, As =2
0

'10 | ] ] |
0 02 0.4 0.6 0.8 ¢ |
0 . | /_\\
M/D(B), Rnd \
%
t=100,As5 =2 — g
O e —————— ——
-10 ! L | !
0

0.2 04 0.6 0.8

Figure 4.12: Error versus ¢ for Broadcast/Random

"~
[ &
Yy



o | M/DasM(L), Rnd
=100, As =2

10 —— : : ,
% M/D(L), Rnd
=100, As =2
0
'10 L L L 1
G 0.2 0.4 0.6 0.8 ¢ l

Figure 4.13: Error versus ¢ for Locking/Random

2
[
o



10

o | M/M(SR), Seq '
, =100, A5 =3
o—%
-10 i | | \
0 0.2 0.4 0.6 0.8 c i

Figure 4.14: Error versus ¢ for Silent/Sequential

(3
2
[+



10

o | M/M(BR), Seq
t=100,A5 =5

-10 ] | R ,
0 0.2 04 0.6 0.8 c 1
10 T 11 4 I
% M/D 0.5 M(BR). Seq
t=100,A5 =3
0 ———————— @_
-10 L L ] L
0 0.2 0.4 0.6 0.8 c 1
IO . T T T lj ——— \
o | M/D(B), Seq
t=100,As=5
0
_10 i ] ] L
0 0.2 0.4 0.6 0.8 c 1

Figure 4.15: Error versus ¢ for Broadcast/Sequential

12
[ 0]
Q




10

a | M/M(), Seq
°l 1=100,A5=5 : %
'10 1 1 1 1
0 02 0.4 0.6 W c
10 , | | [
2 M/D 0.5 M(L), Seq
' t=100,A5=35
0
.10 . ! .
0 02 0.4 U-W ¢!
10 - T ; |
o | ML), Seq

l L L L

0.2 0.4 0.6 0.8 c \



More straightforward improvements to the analysis of the partial conflict sys-
tems would include arbitrary resource demand patterns, which include variable

demand set size and non-uniform resource demand distribution.
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CHAPTER 5

Concurrency Control in Databases

5.1 Introduction

Concurrency control must be enforced in order to preserve consistency of a
database. Concurrency control algorithms are based on the notion of serializ-
ability [11). The correctness of various proposed concurrency control schemes is

well understood (8,10.37). However, the performance of those protocols is not.

5.1.1 Terminology

A database is a collection of data that may be shared by m~ny users who
update the database with transactions. A centralized database resides only on
one computer, while a distributed database resides on the network of computers.
We are concerned here with centralized databases.

A tranéac;it;n .is an execution of a computer program that accesses, and pos-
sibly updates, the database. A transaction. run alome against the database.
produces results that are correct, i.e., results that are expected. Thus, a number
of transactions run serially produce correct results, i.e., they do not violate data

integnity in the database. However, we want transactions to run concurrently

in order to obtain results faster. The concurrent execution of transactions may



produce incorrect results, and so a database management system must control
the timing of the read and write operations against the database,

Dt.u-ing the the concurrent execution of the transactions, the read and write
operations from different transactions are interlenggl. The specific order of the
execution of those operations we call a schedule. If the result of a schedule is
equivalent to fhe result obtained by any serial execution of the transactions, then

we call that schedule a serializable schedule. Since a serial execution gives correct

results, so does a serializable schedule.

The purpose of concurrency control can. therefore, be defined as making sure
that the operations of the concurrent transactions are executed in a serializable
schedule. The three major types of concurrency control algorithms are locking,
timestamp ordering, and optimistic concurrency control.

The use of locking implies that every transaction must lock a resource in
shared (exclusive) mode before reading (updating) it. An example of such a
protocol, called two-phase locking, appears in [11]. In two-phase locking, for each
transaction there is a first phase duﬁﬁg which new locks are acquired (growing
phase) and a Séc;)n& phase during which locks are only released (shrinking phase).
The serializability in timestamp ordering algorithms is achieved using unique
sequence numbers, called timestamps, assigned to each tramsaction. A typical
timestamp ordering algorithm is the basic timestamp ordering described in [6].

Optimistic schemes are based on the idea that concurrent updates of the same

data elements are infrequent and, therefore, appropriate actions to preserve data



integrity should only be taken when they occur. Examples of mechanjsms along
this line can be found in 18] for centralized databases and in (5} for distributed
ones. These different algorithms can be combined, as described in [6]. In this

dissertation we analyze optimistic concurrency control schemes.

5.1.2 Database Model

A computer system is usually modeled as one which is multiprogrammea.
consisting of one or more CPU’s ( processors) and one or more IO devices (discs).
A database is a set of data items which transactions read and write. All items
read (written) by a transaction form a read set {write set) of that transaction.
We assume here that the read set is equivalent to the write set. and we call it a
data set. The number of items in the database represents the database size. The
number of items in the data set represents the transaction size.

In the analysis below, we are given the arrival process of the transactions.
usually taken to be Poisson. and the tré;nsa(-:tion service time distribution. The
transactions in optimistic concurrency control have a read. a validation. and
{possibly) a commit phase. During ﬁvxe read phase a transaction reads and up-
dates data items. The updates done in the read phase are stored locally in our
model. In the validation phase, the data set is checked for a possible conflict
(which might result in violating data integrity) with some other transaction(s).
For example, the data set might be reread and compared with the earlier read.

If there was no conflict, the transaction commits, making all the updates per-
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manent (i.e., the update is written into the centralized database). If there was a

conflict, the transaction aborts and restarts.

T;'ansactions may read all the items in their data sets at the beginning of
their execution. We call this a static data access scheme. Iﬁ a dynamic data’
access scheme, transactions read items from their data sets during the execution,
as the need arises.

Upon the commit of a transaction, the system may tell all the other transac-
tions about the commit. In that way, those transactions that are in conflict with
the committing transaction can abort and restart immediately. We call this a

.broadcast scheme. In the non-broadcast scheme, the system remains silent upon
commits, in which case all other transactions always proceed with the execu-
tion, even if they will eventually conflict with the committing transaction. This

scheme is called a silent scheme.

5.1.3 Previous Work

~ There has been considerable research devoted to evaluating the performance
of optimisfic 'cc;ncixrrency control [18,23,25,34,19,20,16,17,7,30]. Manasce and
Nakanishi presented the analysis of the Static/Silent system using a two-level de-
composition method, which used iteration between the two levels and required the
_ solution of a t.\\wo-dimensiona.I Markov chain [18). A decomposition method which
obviated the need for iteration and required the solution of a one-dimensional

birth-death process was developed by Ryu and Thomasian in [23,25]. Morris and



Wong presented an analytic solution method in [19,20], which is based on a cor-
rection applied to a result appearing in [18]. They considered the Static/Silent
scheme (non-exclusive accesses are allowed in [20]); Thomasian and Ryu, in [34],
generalized that approach to the case of multiple transaction classes and applied
it to Static/Silent. Static/Broadcast, Dynamic/Silent, and Dynamic/Broadcast.
They also allowed a general distribution of processing time requirements for
transactions, while only the exponential distribution was considered in [19.20].
In [34] the assumption was made that the conflict process was Poisson. A nice
critical investigation of the assumptions made in the models used in past studies

and their implications is given in {1],

5.1.4 Infinite Servers

The model analyzed herein has an infinite number of servers, i.e., there are
an infinite number processors. The database access time is considered negligi-
ble. The transaction arrival process is Poisson. The processing time required by
transactions are distributed according t'o the D,M distribution defined in Sec-
tion 2. )

In the remainder of this chapter we describe databases as ISR systems and
give results for the seven different concurrency control models obtained through

mapping. We also give examples of the use of the winner queues in modeling

transactions.’



Condition

1 | The data access is static.
2 | Every transaction has its own processor.
3 | The database server has very high capacity, compared

to the capacity of each individual processor.

Table 5.1: Conditions for Databases as ISR Systems

5.1.5 Databases as ISR Systems

A database is a system with independently shared resources with infinite
servers, defined in Chapter 1, if the conditions listed in Table 5.1 are met.

Table 5.2 contains the equivalent terminology when considering databases as ™

ISR systems.

5.2 Modeling Database Systems"

Consider a database system running under a server with high processing
capacity. The database is accessed by workstations. In the following subsections
we describe database examples of the concurrency control schemes and their

overhead, with g-deterministic service time distributions and partial restarts.



Database ISR System

1 | DBAMS ISR system

2 | record resource

3 | database size system size

4 | transaction customer

5 | data access resource demand
6 | data set demand set

7 | transaction size | demand set size
81 CCS CRS

Table 5.2: Equivalent Terminology in Databases and ISR Systems

5.2.1 Silent Scheme

The database server processes three types of requests submitted by transac-
tions that are running on the workstations. The requests are open-transaction.
close-transaction, and abort-transaction. With the open-transaction request. a
transaction- svfpi)lié; the list of the database record keys which specifies what
records the transaction is going to update. Upon receiving the request. the
server gives a unique identification number. tid, to the transaction. saves the

contents of the records requested into a data buffer, oldbufftid]. ' The server

'In addition to the record ID, a version number. vid, may be associated with every record
in the database which increments every time the record is updated. In this way we can tell if
the contents of a record has changed by comparing that record’s present and old vid's instead of
comparing the actual present and old contents of the record.



then responds with transection.started, giving the tid and the contenté ot; those
records and telling the transaction that it may start processing the data.

V\./'ith- the close-transaction request, a transaction supplies its tid and the new
contents of the records. The server first checks whether thé present contents
of the records is identical to the contents of the buffer oldbufftid]. * If so, the
server updates the database changing the contents of the records to the new
contents, replies transaction-committed and then releases the buffer oldbufftid/.
If the present and old contents of the records differ, the server releases oldbufftid]
and replies transaction-aborted.

With the abort-transaction request, a transaction supplies only its #id, and the |
server releases oldbufftid], replying transaction-aborted. The server may abort a
transaction even before it receives the close-transection or the abort-transaction
requests. If the concurrency control scheme is such that the server can tell if a
transaction is going to be aborted even before it receives any of the two above

requests, the server then sends transaction-aborted.

5.2.2 Broadcast Scheme

The database server processes three types of requests submitted by transac-
tions that are running on the workstations. The requests are open-transaction.
close-transaction, and abort-transaction. The server also maintains a list of tid’s

associated with each database record. The list includes all those transactions

2See Footnote 1.



that are presently accessing the corresponding database record. With the open-
transaction request, a transaction supplies the list of the database record keys
which specifies what records the transaction is going to update. Upon receiving
the request, the server gives a unique identification number, t:d, to the transac-
tion. Then, the server appends the tid to the lists of every record specified by
the open-transaction request. After that, the server responds transaction-started.
giving the tid and the contents of those records and telling the transaction that
1t may start processing the data.

With the close-transaction request, a transaction supplies its tid and the new
contents of the records. The server updates the database changing the contents
of the records to the new contents, removes the tid from the lists of the records
updated. and replies transaction-committed. Then, the server compiles the list
of all the transactions presently accessing the just updated records, and sends

transaction-aborted to those transactions.

5.2.3 Locking Scheme

The ddtagage .server processes three types of requests submitted by tran;ac-
tions that are running on the workstations. The requests are open-transaction.
close-transaction, and abori-transaction. The server also maintains a queue of
tid’s associated with each database record. The queue includes all those trans-
actions that are presently accessing the corresponding database record, queued

in the order of arrival of open-transaction requests.



With the open-transaction request, a transaction supplies the list of the data-
base record keys which specifies what records the transaction is going to update.
Upon receiving the request, the server gives a unique identification number, t;d,
to the transaction. Then, the server appends the tid to the queues of every record
specified by the apen-tmmactic;r; request. After that, the server does not reply
until all the transactions that were ahead in any of the queues have committed.
The server saves the list of records keys requested by the transaction. Only when
the tid moves at the head of the queues of all the records requested will the server
respond with {ransaction-started, giving the tid and the contents of those records
and telling the transaction that it may start processing the data.

With the close-transaction request. a transaction supplies its tid and the new
contents of the records. The server updates the database changing the contents
of the records to the new contents, removes the tid from the queunes of the records
updated. and replies transaction-committed. Then, the server compiles the list
of all the transactions presently in the -bead of the queues of the just updated
records. The server checks for tid of each of those transactions whether the tid is
in the head o-f'e-acl; of the records the #d is accessing. To all those transactions

for which the above is true, the server sends transaction-started. This locking

scheme is deadlock free.



5.2.4 Modeling Finite Servers with Extended Mapping

Consider a system with an infinite number of servers, uniform data access.
and with a total of t database records. Let the transactions always access exactly
one record, in which case we are talking about a single-request ISR system. The
conflict measure for such a system is cyy = 1/t.3

Let us now replace the infinite server assumption in the above system with a
finite number of servers, say m. Furthermore, let the transactions access those
m servers independently of each other (imagine a random switch routing the
transactions to the servers), and let the probabilities of access be the same for all
the servers. Then. we can identify this system to be another infinite-server system
where the servers become the resources in addition to the database records. In
such a system the total number of resources increases to t+m, the transactions
demand exactly two resources (the system is not single-request any more), and

the conflict measure becomes

1 m—=1

Crew = —

m

5.2.5 Modeling Random Delay with Redraw

Suppose that every time a transaction runs, it encounters delays of different
length. Those delays may be the communication delays, or they may be the

delays due to interactive execution of the transaction. A typical interactive delay

3Note that for the single-request systems it is irrelevant whether the resource demand pattern
is randomn or sequential.



- would be making airplane ticket reservations in a database of an airline company.
The random delay upon every transaction run may be modeled by redrawing the

service time upon every restart of the transaction.

5.2.6 Modeling Useful Work with Partial Restarts

Consider again an airline company’s database system. In the process of mak-
ing a change of the ticket reservation, the clerk first accesses the database record
which appears displayed on the screen. Then the clerk talks to a customer and

‘corrects the incorrectly spelled name of the customer in the record. and then
the change is submitted and sent to the remote database server. If the data-
base aborts the transaction, it is unnecessary to go back to the interactive mode |
and force the clerk to manually correct the spelling of the name. Instead. the
process of aborting the transaction and resubmitting the update request is kept
transparent to the user (clerk). So, while the first processing of the transaction
took a relatively long time due to the interactive delay, every one of the restarts
take a much shorter processing time. We can say that the interactive delay was
“useful work” since it will not be repeated even though the transaction run was
unsuccessful. This difference in the length of the initial and restarted transaction
service time may be modeled my making the restarts of the transaction partial.
with » < 1. Furthermore, while the first service time has a specific distribution
according to the length of the interactive delay, the restarts may have a different

distribution. Thus, in addition to the restarts being partial, they could be drawn



from another distribution. Such cases may be modeled with a D,M distribution

for the first service, and a D,, M distribution for the restart.

5.2.7 Modeling Concurrency Control Scheme Overhead with D,M

Distribution

Assuming the overhead of a concurrency control scheme per transaction is
fixed and equal to & = b/u, the overhead may be modeled by adjusting the
q-deterministic service time distribution with a mean T = 1/u as follows.

We define a new system with zero overhead. The average service time of the

new system, ' = 1/4', is greater than the average service time of the initial

system. T. by the amount of overhead, 5. Thus

1+

I re—

7]

1
— =

L

4+

o
| o

The service of every customer in the new system is greater than in the old

system by the amount of overhead. %. and thus

We now define the load for the new system as

A
L

!

pr===(1+b)p

If P, 4(p) represents some performance measure of the system with ¢-determi-

nistic service times and fixed amount of overhead per transaction equal to b/pu.



then the following holds.

Poslp) Parolp”)

= Par,[(1+b)0] | (5.2)

5.2.8 Modeling Restart Overhead with Partial Restarts

The overhead caused by restarting an unsuccessful transaction may be mod-
eled by making the restarts of the transaction require more processing than the
first transaction run. This can be achieved by using partial restarts, in which
the restart-to-initial ratio is greater than one, r > 1. In addition to that, since
the distribution of the restarts due to the restart overhead changes, we may also '
use a different distribution of the restarts. For example, if the initial service
of the transaction has a Dg,)M distribution with mean T, and if every restart
requires additional time equal 0.17F. then the restarts will have mean I, = 1.1F,
a Do s;1.1M distribution. This is similar to changing the deterministic portion of
the service time distribution in order to model the overhead of the concurrency

control schemes, described in Section 5.2.7.

5.3 Results for Concurrency Control Schemes

In Figures 5.1 through 5.8 we show results obtained from mapping for silent.
broadcast, and locking schemes, with random resource access for varying 0 <
p < 1. Figures 5.9 through 5.16 display results for silent, broadcast, and locking,

in the case of sequential access.
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The total number of records is ¢ = 100. For the random case, the transaction
size is varied from 2 to 20 with step As = 2. For the sequential case, the
trans;':u.ction size is varied from 3 to 50 with step As = 5.

Figures 5.1 through 5.16 show that in both random and sequential access the
results are very close to the simulation results for the silent and broadcast schemes
when the service time distribution is rnem'or_vless. Even the half-deterministic ser-
vice time distribution gives results close to the simulation results for the broad.
cast case. However, pure deterministic service times differ considerably for both

silent and broadcast. but only for p > 0.6.
For the locking scheme the situation is reversed. Only deterministic service
times give results close to the simulation results, while half-deterministic and

memoryless clearly differ from the simulation for p > 0.7,

5.4 Concurrency Control Scheme Selection

In this work we do not try to propose “the best” concurrency control scheme.
However, we here compare the results obtained for the different concurrency
control sch:em;:s-. 'I;he results show that the locking scheme gives the best results.
if the optimistic schemes are no-redraw. However. there are certain service time
distributions for which broadcast gives better results than locking for certain
ranges of system load [15]. In the case of a pure deterministic service time

distribution, the results for the broadcast-no-redraw scheme are not worse than

the results for the locking. The above comparison does not include for the effect
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of overhead caused By the concurrency control schemes. If the overhead of locking
is higher than the overhead for the broadcast scheme, then broadcast will give
bettez; results for certain ranges of the system load. The same can be said for the
silent scheme if it were to have the lowest overhead. The schemes described in
Section 5.2 have highest overhead in the locking scheme and lowest in the silent

scheme.

5.5 Conclusion

Concurrency control must be enforced in order to preserve consistency of
a database. In this cl.m’.pter we viewed a database system as a partial-conflict |
systetn with independently shared resou;;és. The results for the partial ISR
systems. in turn. were obtained through mapping from the results obtained for
the full-conflict systems.

The mapping showed for both random and sequential data access that the re-
sults are very close to the simulation results for the silent and broadcast schemes
when the service time distribution is memoryless. Even the half-deterministic
service time di;t;'ib;.xtion gives results close to the simulation results for the broad-
cast case. Howex;ér, pure deterministic service times differ considerably for both
silent and broadcast, but only for high load.

For the locking scheme the situation is reversed. Only deterministic service

times give results close to the simulation results, while half-deterministic and

memoryless clearly differ from the simulation for high load.
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CHAPTER 6

Conclusion

The motivation to the research described in this dissertation was to find
a simple and different approach to modeling the performance of concurrency
control in databases. In order to achieve that, we considered resource sharing

systems with customers accessing one or rmore of the system resources. We

" defined and described those systems giving the analysis of the special case where

customers access in a way that any two concurrent customers always conflict (full
conflict systems). The results obtained were then mapped to realistic cases where |
concurrent customers not necessarily conflict (partial conflict systems). In some
cases the mapping was exact, and in other it was approximate and gave results
which in certain domains closely matched t-hose obtained through simulation.

The response time and power, defined as system load divided by response
time, were found for six different optimistic concurrency control scheme mod-
els, silent-redraw, silent-noredraw, silent /broadcast-redraw, silent/broadcast-no-
redraw, broadcast-redraw, and broadcast-noredraw, as well as for locking, a pes-
sim.istic: concurrency control scheme.

The models considered have infinite number of servers. The service times of

customers were modeled as consisting of a deterministic part and an exponential



part. This type of service time distribution includes pure deterministic and pure
exponential service times as special cases.

In. this chapter we give review of the results. Then we give pros and cons of
the approach described in the dissertation, and finally give f)ossible directions

for further research.

6.1 Review of the Results

Figure 3.85 gives a review of the results found for ISR systems with different
characteristics. Each row in Figure 3.85 represents a different model for the
.conﬁict resolution scheme. Columns represent different service time distributions:
memoryless, D;M. for 0 < ¢ < 1, and deterministic. Resource demand patterns
are specified in the lower left corner of the table, in a third dimension. R and
S stand for random and sequential resource demands, respectively. As the table
shows, some results are calculated numeric‘ally through formulas for transition
probabilities. some results are found numerically through an integral expression
for response time, and other results are analytic.

In both ra;lciort;l and sequential access the results are very close to the simu-
lation results for the silent and broadcast schemes when the service time distri-
bution is memoryless. Even the half-deterministic service time distribution gives
results close to the simulation results for the broadcast case. However, pure de-

terministic service times differ considerably for both silent and broadcast. but

only for p > 0.6.



For the locking scheme the situation is reversed, Ounly deterministic service
times give results close to the simulation results, while half.deterministic and

memoryless clearly differ from the simulation for p > 0.7.

6.2 Pros and Cons of the Approach

Table 6.1 contains pros and cons of the approach to modeling concurrency
control given in this dissertation. The pros are as follows. The approach seﬁarates
the issues of queueing from the issﬁes of overlapping data access Patterns of
transactions. It simplifies the view of concurrency control issues, narrowing it
down to a single value of conflict measure. The separation of the queueing
and data access issues leaves room for applying different measures of conﬂici
in the future, as well as easy introduction of other data access patterns. The
DyM distribution of the transaction service times gives possibilities of simplified
modeling of the concun-enc]-r‘ control overhead. The systems with redraw allow
modeling of random delays in transa.c‘tion restarts. The partial restarts allow for
simplified modeling of useful work and. restart overhead,

The ISK §ys£em§ were considered in the full conflict case. Intuitively, we
expect that systems Performing better in the full conflict case will probably do
so in the partial conflict case as well. This can be used to compare realistic
partial conflict systems by comparing their full-conflict counterparts, which are

much simpler to analyze.

The cons of the approach are as follows. The error of mapping is bigh for
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Pros of the Approach

Separation of queueing from data access.

Simplicity of the approach.

Possibility of different conflict measures.

Easy introduction of other data access patterns.

Simple modeling of finite servers. !

Simple modeling of CC overhead with DM distribution.

Simple modeling of random delays with redraw systems.

Simple modeling of useful work with partial restarts.

Simple modeling of restart overhead with partial restarts,

10

Simplified comparison of different systems.

Cons of the Approach

1 | The error of mapping in some cases.

2 | Infinite servers only. ?

3 | Static data access only.

4 | Lack of results for noredraw systems.

. Table 6.1: Pros and Cons of the Approach

' Assuming independent access to the servers,
?Assuming access to the servers on the basis of availability.
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some concurrency control schemes and domains of system load. The model covers
only the systems with infinite servers and static data access. We have no results
for noredraw except for deterministic service times in which case redraw and

noredraw are equivalent.

6.3 Further Research

The issues of further research are grouped in two areas. The first covers the
cons of the approach. This would include looking for a more accurate mapping
and/or a more suitable measure of conflict, obtaining results for the noredraw

| systems, and considering both finite servers and dynamic data access.

The other area of further research would use the pros of the approach. This
means to consider finite resources, assuming independent access to servers, to
introduce other data access patterns, to actually xﬁodel concurrency control over-
head with the D,M distributioﬁ and random delays with redraw systems, as well
as useful work and restart overhead with partial restarts. The modeling of other
data access patterns would include variable transaction sizes and non-uniform

record access. i

An il;vestigation on the behavior of the conflict measure should be carried out.
One of the data access pattern of interest would be hybrid random/sequential
access, in which the data set of size s is divided into A groups. The data items in

each group are sequential, while the groups themselves are randomly scattered

over the database.
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Aside from the approach, it may be possible to find closed forms for some
of the results for the winner queues. and to take a closer look at the departure

processes in winner queues. as specified in Table 2 and suggested in Section 2.
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