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ABSTRACT OF THE THESIS

A Comparison of Continuous and Discrete Learning

Through a Geometric Representaton
by

Joseph C. Pemberton
Master of Science in Computer Science
University of California, Los Angeles, 1988
Professor Jacques J. Vidal, Chair

This thesis examines and compares a linear (activation feedback) process for adjusting
the weights in a neural network to a discrete weight adjustment process. This
comparison is implemented through the use of a simple perceptron and an activation
feedback-binary node which is hased on an extension to the generalized delta rule
(Rumelhart ez al, 1986). The extension allows the weight adjustment feedback signal
to be different from the node’s output signal. The learning rules are examined in
isolation from a network. The results and observations are therefore applicable to a

wide variety of network models.

The behavior of both weight adjustment processes is analyzed using an
extension of the geometric interpretation of competitive learning presented by
Rﬁmelhart_and Zipser (1986). In the representation, the node’s weight vector is plotted
onto the weight+threshold space, and the node's functions map to regions of the space.
Weight adjustment thus corresponds to moving the node’s weight vector in response 10

feedback, and the output function implemented by the node changes when the weight



moves from one function region to another. The representation is used to compare the
two weight adjustment processes in terms of their incremental and average effect on the
weight vector. The results show that the lincar weight adjustment process used by the
activation feedback-binary node is superior to the discrete process in a number of

respects including improved representation of the target function and immunity to noise

in the target signal.



Chapter 1
Introduction

In the past few years, the field of artificial neural networks has become one of
the fastest growing areas of research in both academia and industry. This is largely due
to two somewhat independent forces. The first is a desire to better understand the
functional characteristics of the human brain, and the second is driven by the demand
for faster and more powerful computers. These two desires overlap in the field of
artificial neural networks where brain modelers turn to computational theory for insight
and computer architects turn to neural models for inspiration. This thesis is specifically
concerned with comparing two fundamental procedures for adapting the structure of
network interconnections. Adaptation of network interconnection strengths is
recognized as an important mechanism for learning in both artificial and natural neural

networks.

Neural network researchers can be classified as either neural modelers or neural
architects. Neural modelers are more concerned with generating a model that best
describesr and predicts the function and behavior of real neurons or collections of
neurons, which is a difficult task given the complexity of even the simplest neuron.
They, therefore, must decide what level of behavior to explore at an early stage. Once
a model has been proposed, its validity can be measured by comparing its behavior
with some observed Biological, psychological, or behavioral data. The model’s success



can also be measured by its ability to predict as yet unmeasured or unrecorded behavior

of the system being modeled.

Neural architects, on the other hand, are more like neural engineers than neural
scientists. In general, they are concerned with the potential computational advantages
of biologically inspired models. In a sense, they rely on neurophysiology to inspire
their creativity. Neural architects deal more with characterizing the functionality of

their models than with determining their biological plausibility.

Of particular interest to both neural modelers and neural architects is the
observation that humans can out-perform the most powerful and expensive super
computers in many tasks, especially those involving sensory perception and motor
coordination. Although conventional artificial intelligence (AI) research has made
progress in a number of areas (most notably expert systems, advanced search
algorithms and methods of symbol processing), it has shown through a lack of progress
that seemingly easy tasks like vision and natural language are far from simple for
standard computers and conventional programming methods. Even young children
have natural language skills that far exceed the best capabilities of conventional Al
approaches. This has lead many Al researchers to consider computational models

based on the most successful processor, namely the nervous system.

Neural network research itself can be broken down into high level and low level
models. High level modelers are intcrested in the behavior and functional
chﬁracteris_tics of large collections of interconnected units. Low level modelers, on the
other hand, are interested in the behavior and functional characteristics of individual
units or a small collection of units. Ultimately, the high level results and observations

can be described in terms of the low level models.



This thesis deals with low-level neural architecrure research. Although the
biological consequences and high level network implications of this work are of
interest, they are not within the scope of this work and, therefore, will not be covered.
Instead, this thesis will concentrate on an in-depth comparison of a linear network node
and the simple perceptron, which are two common neural network building blocks.
The observations and results will be shown to be applicable to a wide variety of neural

models.

The first three chapters of this thesis are intended to provide background
material for the reader. The basic elements and functions pertaining to neural network
nodes are discussed along with some historical background. Also included is a section
on notation used throughout this thesis. An extension to the generalized delta rule and

the activation feedback-binary network node are presented in section 3.3.

This extended learning rule is illustrated and analyzed through the use of the
activation feedback-binary network node in combinatdon with a geometric
representation which provides a. framework for observing and describing the dynamic
behavior of a network node. Through this model, a linear (continuous feedback)
version of the generalized delta rule is compared with the simple perceptron learning
procedure, and the results and observations are summarized along with suggestions for

future work.

Note that a glossary of neural network terminology is provided in appendix A.
It éontains_ commonly used ncural jargon as well as terms specifically related to this

work. Its purpose is to assist the reader with unfamiliar terms.



Chapter 2
Foundations

This chapter, which is intended to provide background material for the reader,
presents a general overview of ncural networks and a brief history of neural network
building block design. Also included is a description of the notation used to describe

network signals throughout the remainder of this thesis.

2.1 What is a Neural Network?

The term newral network has been used to describe a large class of
computational models that are loosely based on models of the brain. As mentioned in
the introduction, some researchers are interested in the brain modeling aspects whereas
others are interested in the computational advantages. These networks have also been
called artificial neural networks to emphasize the fact that they are not strict
implementations of the brain’s physiology. Other names associated with neural
networks include connectionist models, parallel distributed processing models and

neuromorphic systems.

Regardless of the name used, neural networks typically consist of a large
number of highly interconnected, simple functional units (or nodes). Networks learn

by adjusting (or adapting) their network interconnection strengths in response to



environmental stimuli. At least in principle, this process corresponds to current ideas
on brain functionality. It is believed that processing is distributed throughout the brain,
that memory exists as patterns of activations and interconnections, and that leamning
involves making changes to the interconnections between neurons. From a
computational standpoint, neural networks distribute and intersperse processing and
memory thereby circumventing the problems associated with the classical von

Neumann computer architecture, such as memory and input/output bottlenecks.

The operation of a neural network, as shown in figure 2.1, can be divided into
two distinct modes. The execurion mode views the network as a set of parallel,
asynchronous processing units. Environmental patterns presented to the network inputs
are processed by the input units and sent to other network units (or output directly to
the environment). The signals flow from unit to unit and eventually reach units that
output to the environment. Clearly the processing of a network depends on the
processing of the individual units and the way in which the units are interconnected.
However, in the learning mode, the internal parameters of the network (i.e. the strength
of the weights that connect the functional units) are changed in response to internal

feedback or feedback from the environment.

Neural network models differ in the choice of functional units, the way the units
are connected together, and the methods used for updating the interconnections.
Network nodes will be discussed further in chapter 3. A typical network structure and
sample method used for adapting network interconnections will be briefly described

next.

It is assumed in this thesis that the interconnection weights are internal to the

node. This means that the network configuration is simply a description of how the
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Figure 2.1: Block Diagram of Neural Network Operation

nodes are connected to each other and to the environment. One common configuration
is the layered network (see figure 2.2). In this network, each node in the input layer
only receives input signals from the environment and all other nodes only receive input
signals from nodes in the previous layer. Nodes which don’t directly communicate

with the environment are called hidden nodes.

Layered networks have two advantages. The first is that the layered structure
makes the network function casier to understand. Network processing can be viewed
as a wave of data flowing from the input layer, through the intermediate layers, to the
output layer. The second advantage is that layered structures support relatively simple
methods for updating interconnections (e.g. backward error propagation and

competitive learning).
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Figure 2.2: A Three Layer Network

Neural network leamning involves adjusting the interconnection weights in
response to input and target signals. This can be broken down into node learning rules,
which describe how to adjust the node’s input weights in response to input and target
signals, and target generation schemes, which provide the target signals to nodes which
don’t receive target signals from an external agent (e.g. a teacher or the environment).

Node learning rules will be further discussed in chapter 3.

2.2 Historical Background

The perceptron was one of the earliest network building blocks to be proposed
(Rosenblatt, 1961). It is also a widely accepted name for a general class of devices that
use threshold logic units (TLU’s) and the rules which govern their behavior. Since its
introduction in the late 1950’s, there have been a number of extensions to the original

design including a linear version and a more general building block description. The



original perceptron was not designed to be a detailed model of a neuron, but instead it
was developed to examine the behavior of networks made up of a number of
perceptrons (Rumelhart and Zipser, 1986). In a sense, Rosenblatt wanted to determine
if the behaviora! characteristics of natural systems could be generated by combining the
individual behaviors of a collection of simple functional units. Consequently, much of
his work centered around characterizing the behavior of the perceptron and comparing

it to physiological data.

The threshold logic unit (TLU) forms the heart of the percepwron and many
other network models. It can be viewed as a pattern classifier and/or pattern
recognition system. Also, it can be thought of as an adaptive logic device that makes a
membership decision on the current input patten. Both views are valid and have no
effect on the underlying nature of the perceptron. From a functional perspective, the

output of a TLU is a function of the inputs and its internal parameters.

As illustrated in figure 2.3, the processing components of a TLU consist of input
weights, a summation unit and a threshold function unit. Input patterns are first
multiplied by their associated input weights, and the products are summed to generate
an activation signal. The threshold function then compares the current threshold and

activation to determine a binary output signal.

A TLU can be used to implement a subset of the possible logic functions called
the linearly separable functions. The family of linearly separable functions will be
discussed further in chapter 3. As an example of a TLU function, consider the and
function of two inputs. It can be implemented by setting both input weights equal to
0.5 and the threshold also equal to 0.5. The resulting threshold function is shown in
table 2.1.
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Figure 2.3: Processing Components of a Threshold Logic Unit (TLU)

inputs weighted sum > threshold (0.5) ? | output
(-1, =1) | =D +%A =) =-1 no ~1
(-1, +1) | (=1 +%H1)=0 no -1
(+1, -1) | AED+4A-1D)=0 no -1
(+1, +1) B+ + A =+1 yes +1

Table 2.1 Example TLU Function Implementation (AND)

Minsky and Papert (1969), whose work was largely confined to a one-layer
simple perceptron, presented a formal yet critical analysis of the perceptron’s
computational power. They argued that the perceptron suffers from the same scaling
problems (e.g. only works well for small problem domains) as serial methods of

computation and is unable to identify some relatively simple yet important functions of



the inputs (e.g. XOR and EQUIVALENCE). Their sharp criticism had a very negative
effect on perceptron related research. However, recently Minsky has reconsidered his
position, stating that the perceptron is a powerful pattern recognizer given its design

simplicity (Rumelhart and Zipser, 1985).

In 1960, Widrow and Hoff presented an adaptive linear element (adaline) as an
implementation of an algorithm for solving sets of linear equations (Widrow and Hoff,
1960). The main difference between this model and the simple perceptron is in the
threshold function; the perceptron uses a discrete (binary) threshold function whereas
the adaline uses a continuous (linear) threshold. The weights used in this model are
updated through the Widrow-Hoff rule (later referred to as a linear version of the
generalized delta rule (Rumelhart er al, 1986)). The characteristics of this learning rule

will be explored in detail in chapter 4.

More recently, Rumelhart et a/ (1986) proposed the generalized delta rule as a
general description of learning in neural network building blocks (nodes). Its form is
very similar to the simple perceptron learning procedure (a method of adjusting the
weights of a TLU), but the details of the model (e.g. output function, learning rule, etc.)
can vary depending on the node's design. The simple perceptron learning rule and the

Widrow-Hoff rule are special cases of this learning rule.

10



This thesis presents a more flexible specification of network node design than
currently used with the generalized delta rule. A node based on this specification is
then used to compare the linear learning procedure (as used by Widrow and Hoff) to

the binary learning procedure (as used in the simple perceptron model).

2.3 Network Signal Notation

Neural network research papers contain a variety of signal notations. This
section describes the signal notation format which will be used throughout this work. It
has been designed with the following goals in mind: to be as consistent as possible with
the majority of neural network related research, to be consistent with other scientific
and engineering fields, and to provide a notation which is easily understandable and
adaptive for future applications. This signal naming format is proposed as a standard

signal notation for neural network research.

Figure 2.4 illustrates the notation used in this thesis to refer to internal signals
of the perceptron and other neural network nodes. Node input and output signals are
denoted by an “x” and have subscripts that consist of two letters and an arrow that
describe the direction of signal flow. For example, x;_,; means the output of the it
signal som;ce that is connected to an input of the j* node. A signal source is either 2
network input or node. Note that the input vector for the j* node is x _, j (bold denotes

a vector) and the output of the j™ node is x; _, . These signals can be indexed by time

11



(e.g. x;(#)) or by input pattern (e.g. x;(p) where p is the input pattern number).

< Threshold
12 { el or wej)
| XZ-' j L
n m Activation pra— Qutput
u 1 all (x—» i) Xg -
‘s Summation
Unit Threshold
X, - Function
Unit
Input '
Weights 1™ Network Node

Figure 2.4: Notation for Network Node Signals

Input weights are named in a similar fashion. A particular weight of the j*
node is referred to as w;; where i is the source of the input signal. Note that when two
subscripts are used, the order is always source followed by destination. The entire
weight vector of node j is expressed as w; (without any source subscript). The
activation (the output of the summation unit) of a node is identified by “‘a;” where j
denotes the node. The target or desired activation is referenced in a similar way with
the‘ addition of a “*” superscript to indicate that it is an ideal or target value. Note that
the “*" can be used to indicate the idcallor target value of any node variable (e.g.

a;, x ,-'_, ).t j' is used to refer to a generic target signal. The threshold of the j** node is

12



cither denoted by 6; or we; depending on the implementation. §; (or 8;) is used to
denote the error signal of the j™ node and is equal to the difference between a target

signal (r;") and the corresponding feedback signal.

This notation can be used to describe the TLU implementation example
discussed earlier. The inputs to the j"' TLU from source i and & are x;_,; and x;,;,
the input weights are w;; and wy;, and the output signal is x;_,. These are summarized

in table 2.2 which is equivalent to table 2.1,

(Kimaj Xkosj) | WiGKin)) +wyeo)=a; | >9,05)? | x5
(-1, ~-1) h(=1)+A(=1)=-1 no -1
(~1, +1) h(=1)+ 1A(H+1)=0 no -1
(+1, -1) B+ + %A (-1)=0 no -1
(+1, +1) B+ + 4D =+1 yes +1

Table 2.2 Example TLU Function Implementation Using Signal Notation

The target signal (rj') can be used by the TLU to update its input weights and
threshold. This obviates the need to preset the weights and threshold to the correct

function. Autonomous adjustment of the TLU weights and threshold will be further

discussed in the next two chapters.

13



Chapter 3
Building Blocks for Neural Networks

The design of a neural network consists of specifying the functionality of the
nodes, their configuration (e.g. the number of nodes, the number of layers, which nodes
are input, hidden or output nodes, how the nodes are connected together, etc.), and a
method of generating internal target signals. A network building block is defined to be
a node and its associated input weights. This chapter presents a general description of
a neura! network node along with a detailed description of the simple perceptron which
serves as an example node. Also presented is the activarion feedback-binary node

which is based on an extension to the generalized delta rule node model.

3.1 Neural Network Nodes

A network node’s functional description must include a discussion of its input
and output signal format as well as its logical operation. The logical operation of a

node includes two distinct subcomponents; the processing function governs how a node

14



rransforms input patterns into output signals, and the learning rule determines how the

internal parameters of a node should change in response to the target signal.

3.1.1 Signal Format

The formats of signals entering and leaving a node vary depending on the
particular network model. In the classical perceptron model, for example, the value of
inter-node signals is restricted to the set {0,1}, whereas the inter-node signals in the
adaline model can take on any real value. Note that although the input and output
signal formats can be specified independently, they are typically the same to allow for

cascading the output of one unit to the input of another.

There are three signal format options. The first determines whether the signal is
discrete or continuous. A discrete signal can take on values that are members of a
specific set, such as binary signals which are restricted to the set {0,1}. A continuous

signal, on the other hand, can take on any real value.

The second format choice indicates whether the signal is symmetric or
asymmetric. For example, a discrete signal is symmetric if for every positive member
of the ser of discrete values, there is a corresponding negative member of equal

magnitude. A symmetric binary signal takes on values from the set { — 1, + 1}.

15



The final option determines whether the signal is bounded or unbounded. If a
signal is bounded, its value falls within a prespecified range (e.g. ¢1 < x < ¢y, where
c1 and ¢ are constants). An unbounded signal may take on arbitrarily large values.
Note that binary signals are by definition bounded. A summary of the signal format

choices is presented in table 3.1.

Signal Format Example (x)
discrete symmetric bounded xe{-1,+1}
discrete symmetric unbounded | x (.., -2, -1, +1,+2,..}
discrete asymmetric bounded x &{0, 1}
discrete asymmetric unbounded | x €{0, 1, 2,...}
continuous symmetric bounded -c €£x s +¢
continuous symmetric unbounded | —ee S x £ +o°
continuous | asymmetric bounded -Ccy Sx S+cC2
continuous | asymmetric | unbounded | 0 S x S +eo

Table 3.1 Summary of Node Signal Formats
3.1.2 Node Processing

The node processing (or output) function determines how the node transforms
input patterns into output signals. In the most general interpretation of a neural
network, the output can be an arbitrary function; however, if the processing is based on
a threshold logic unit node (TLU), the output is typicaily a function of the input pattern,
cui'rent weights and threshold. The weights and threshold thus completely determine

the mapping between input patterns and output signals.

16



Although the output of a TLU is determined by the inputs, weights, and
threshold, it is convenient to express the output as a function of the threshold and an
internal state variable (i.e. the activaton). In general, the output function of the j th

node is

xj(8) = f(8;0), a;(t)

where f () is the threshold function, 8,(t) is the threshold of the Jjth node, and a;{1) is
the node activation at time ¢. The activation in turn is a function of the inputs and input

weights:

a;(t) = g(x_,; (), wi(1)) = S wii (1) x; ()
] I 7 i§1 i J (3'1)

where n is the number of inputs to node j.

The threshold function provides a mapping between the node’s actvation and
its output signal. Discrete, linear and sigmoidal threshold functions are shown in figure
3.1. Not shown is a stochastic threshold function which is used in some neural models.
For the stochastic function, the output is binary and depends on a probability

distribudon.-

Other processing models have been proposed. One example is the sigma-pi
model (Rumethart et al, 1986) which applies a threshold function to a combination of a

weighted sums (sigma) and products (pi) of the inputs.

A TLU can only implement functions that are linearly separable. The term
linearly separable has been defined in a number of texts on pattern recognition (e.g.

Duda and Hart, 1970'and Nilsson, 1965). Briefly, a function which divides the set of
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Figure 3.1: Three Threshold Functions

possible inputs into two subsets is linearly separable if and only if a linear function g

exists such that:

g(x5;) 2 0; whenx;, =+1

g(x5)) < 0; whenx;_, = -1

Alternatively, a function is linearly separable if and only if it can be implemented as a
separation of the n dimensional input space into two regions (one forx;_, = +1 and

one forx;, = —1)byann-1i dimensional hyperplane.

Although there is no closed formula for the number of functions that can be
implemented by an n input TLU (Versuacte, 1982), the upper bound on the number of
linearly separable functions of n inputs is 2’ (Winder, 1965). This is significantly less

that the total number of possible logic functions of » inputs (2%"), and means that the
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computational power of a single TLU is limited for a large number of inputs.
Fortunately, this limitation can be overcome by connecting a collection of TLU's

together into a network (e.g. the committee machine (Nilsson, 1965)).

For example, XOR of two inputs is not a linearly separable function and
therefore cannot be implemented by a single TLU. It can, however be implemented by

three TLU’s as demonstrated in figure 3.2.

Figure 3.2: TLU Implementation of XOR

In summary, the node’s output can be any function of the input signals and any
internal state variables. However, if the node is implemented with a TLU, then the
processing design options are reduced to specifying the threshold function. A single
TLU isorily able to implement functions that are linearly separable. Functions which

are not linearly separable can be implemented by a network of TLU’s.
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3.1.3 Nocde Adaptation (Learning)

A learning rule describes how the internal structure of a node should be
changed in response to a target signal. It is assumed in this thesis that the target signal
has been provided; therefore all analysis of leaming rules will be done without regard
to the target signal source. In this way the analysis of learning procedures is applicable
to a wide range of neural network models. The objective of the learning rule is to
change the node’s internal parameters (e.g. the weights and threshold) so as to improve
some measure (e.g. mean squared difference between output and target) of its

performance on future input patterns.

Since the node's processing function can be arbitrary, the leaming rule
associated with the processing function can also be chosen arbitrarily. The learning
rule for a TLU specifies how the input weights and threshold should be modified in
response to the target signal so that either its activation or output signal matches a

target signal as closely as possible.

A number of rules for adjusting the input weights of a TLU have been proposed
and studied. Most, if not all, of these rules are descended from the Hebbian learning
rule. Hebb (1949) was concerned with the firing of neurons; he suggested that if a
(presynaptic) neuron fires and shortly thereafter the postsynaptic neuron fires (possibly
as a consequence of the presynaptic signal), then the path connecting the two neurons
should be strengthened (i.e. the weight should be increased). A more general
inicrpretation of this rule (Rumelhart ef al, 1986) is

Awy = g (xS (0,87 () flxinj (0, wy)

Basically, the change to the input weights is described as a product of two functions,
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one of which depends on the output and target signals (g) and another which depends

on the inputs and input weights (f).

Many variations on this rule have been studied, for example Grossberg’s model

(Rumelhart er al, 1986) uses the following equation for adjusting the input weights:
Aw;j(8) = Nlxio;(8) = wy(O12] ()

where 1] is the learning rate constant (or gain). In this model, the weight vector is seen
as an approximation of the input vector. Here, the target signal is generated using a
competitive learning scheme. The target signal to the unit whose weight vector is the
best approximation of the input vector is set to one whereas the other target signals are
set to zero within a competing region. Each unit thus learns a set of weights that best

represent a set of input vectors.

The analysis that will be presented in chapter 4 is based on another vanation of
the Hebbian learning rule which has been called the Widrow-Hoff rule (Sutton and
Barto, 1981).

Aw; (1) = (@ (1) = a;(0) Xiy;(0)

where a ; (¢) is the target activation signal and a;(r) is the actual activation signal (in
this model the activation is the output signal). This learning rule was first developed as
an iterative method for solving a set of lincar difference equations. It is also referred to
as the delia rule (Rumelhart et al, 1986) because the amount of weight adjustment is

proportional to the difference between the target activation and the actual activation.
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The generalized deita rule (Rumelhart er al, 1985), a further refinement on
Hebbian learning, provides a general framework for specifying the way that the input
weights of a TLU should change in response to a target signal. In its general form, the
change to the weight connecting the output of the i™ signal source to an input of the j th

node is:
Awyi (1) = M@ (0) = x5 () x,j(0) (3.2)

where ¢ j' () is a target signal for the j™ node, x;_,(¢) is the actual output of the node
and x;_,;() is the value of the input to node j from the i th signal source. A block
diagram of the generalized delta rule weight adjustment process is shown in figure 33
The Widrow-Hoff rule is just a special case of the generalized delta rule where

0 (0) = a; (0 x5 () = a;().

Notice that the weight adjustment rule as specified in equation 3.2 is completely
determined by the target, input and output signals and the learning rate constant ().
Since the target and input signals are provided by some external source, the only
controllable parameter is the node’s output which in turn is specified by the threshold
function. "Elns means that once the node’s input and target signal format and threshoid
function have been chosen, the learning rule is uniquely defined within the generalized
delta rule framework. An extension which removes this restriction on node design will

be presented in section 3.3.
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Figure 3.3: Network Node Based on the Generalized Delta Rule

32 The Simple Perceptron

Perhaps the best known variation on Hebbian learning is the simple perceptron
learning rule. A block diagram of the simple perceptron is shown in figure 3.4. The
input, output and target signals are binary. For this discussion the binary signals were
chosen to be symmetric so that the weights can potentially be updated for both input
values. A symmetric representation has been used in other models for the same reason
as well as to remove the inherent asymmetry of zero-one valued outputs (Hampson and

Volper, 1987). The signal format can be summarized as:
X0, x50, 8 @) € (-1, +1)
The processing components of a simple perceptron are the same as that of a

threshold logic unit (see figure 2.2). This means that there is a weight associated with
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Figure 3.4: Block Diagram of the Simple Perceptron

each input, a summation unit, a threshold and a threshold function unit. Because the
output signal format is binary, the threshold function is necessarily discrete. Note that

the transition point for the threshold function is determined by the threshold.

The output (threshold) function for the simple perceptron is:

X () = +1;if a;(6) > 8;(1) (or (a;(1) - ;) > 0) (3.3)

—1;ifdj(!) s 6,-(:) (or (dj(t) - 9,(:)) <0
where 8;() is the threshold value of the j * node. Notice that comparing the activation
to the threshold is equivalent to comparing the difference between the activation and

the threshold to zero. This means that the output can be equivalently defined in terms

of the effective activation:
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X, (1) = +1;'Lfaff(t) > 0

-Lifa@@) <0

where the effective activation is:
n

af(t) = aje) - 0;() = T [wy xins (0] = 8;(0)

i=1
and n is the number of inputs.

Note that the threshold has the effect of shifring the transition point of the
threshold function. There are two other ways to accomplish this shift of the activation
without effecting the node’s functionality. One is to subtract the threshold from the
activation to generate an effective activation which is then compared to an unbiased
threshold function (figure 3.5a). The other is to treat the threshold as a weight whose
input is tied to —1 and add it in with the other inputs (figure 3.5b). The latter method is
useful because it emphasizes the fact that the threshold (8;) can be learned as a weight

(wej)

The simple perceptron's output can be expressed in terms of the inputs, weights,

and threshold by substituting equation 3.1 for the activation in equation 3.3 to yield:

xj (@) = +L i T wy xio 0 > 6;() (3.4)

i=1

n
-1; if ZWU x;_,j(:) < 9,-(:)

i=1
Notice that equation 3.4 separates the input space into two regions. One region

contains those input patterns that generate an activation which is greater than the

threshold. The other region contains the remaining input patterns whose resulting
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Figure 3.5: Two Alternate Implementations of the Threshold
activation is equal to or less than the threshold. A network node that uses a discrete
threshold function is thus a discrete pattern classifier.

The simple perceptron learning rule describes the change to weight w;; as
Awji(t) = M (xj o (0) = X () Xi o (0) (3.5)

where T is a learning rate constant. x;_,(r) has been defined as the output of the i
node and x;-_, (¢) is the target (or desired) output signal provided by some agent
external to the perceptron (xj'(t) =t j' (£)). An asymmetric binary input signal
(i.e. @ {0,1)) would result in no change to the weights half of the time (i.e. whenever

the input is zero). For this reason a symmetric binary signal format was chosen here.

Close examination of equation 3.5 leads to two interesting observations. The

first is that the weights are only updated when the output and the target signals don’t
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match. This means that the perceptron’s output must be incorrect before it can learn.
The second observation is that when the input weights are updated the amount of

adjustment is a discrete step of either +2n or -2n:

Awy(f) = n((x1) - (£1) (D)

= (¥2nor0)

In summary, the node described here, which is based on the simple perceptron,
is a threshold logic unit with symmetric, binary input, output and target signals. It uses
the simple perceptron leamning rule that only updates the weights when the output
differs from the target signal. When the weights are updated, their value is either
increased or decreased by a discrete step equal in magnitude to twice the learning rate.
For the remainder of this thesis, this node will be referred to as the simple perceptron

and will be used for comparison to a new node which is presented in the next section.

3.3 A More Flexible Node Model

As was discussed in section 3.1, the only controllable parameter in the design of
a node based on the generalized delta rule is the node’s threshold function.
Conscquen'tiy, the format of the node’s output and leamning rule are determined by the
same parameter (the threshold function). This section presents an extension to the
generalized delta rule node that allows the format of the output function and learning
rule to be specified independently. An example that demonstrates this extension is an
activation feedback-binary node which has a continuous learning rule and a discrete
output function. This new node makes it possible to compare the simple perceptron’s

discrete learning rule to a continuous feedback learning rule (see chapter 6).
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3.3.1 A General Extension

A general node based on an extension to the generalized delta rule framework is
shown in figure 3.6. Note that this model is more flexible because it allows the output

function and learning rule to be specified separately.

!"'j(Yj' t ) Error Q_—
Generator Yy
_

Figure 3.6: A Node Based on an Extension to the Generalized Delta Rule

The learning rule for this extension is:
Awg (1) = (5 (1) = Y0 %in () (3.6)

where y;(2) is some function of the inputs, the input weights and perhaps some internal
state variables, but it is not necessarily equal to the node’s output (x;, (2)). The choice
for a node’s output and weight update functions can now be made independently. Of
course, y;(¢) can be identical to the node’s output if desired, but this is up to the node

designer and is no longer a restriction of the model.
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This extension adds flexibility by allowing a node to have a binary output but

use a linear weight adjustment process, as presented below.

3.3.2 Activation Feedback-Binary (AFB) Network Node

An activation feedback-binary network node can be described as a hybrid node
that has the output function of a simple perceptron and the learning rule of a linear
node. The node is called “activation feedback” because it uses activation feedback in
the weight adjustment process. It is also called “binary” because the output is a

discrete (binary) function of the activation.

Since the AFB node and the simple perceptron have identical output functions,
the only difference between them is the method used to update their weights. This
makes it possible to compare discrete and linear learning rules through a comparison of

the behavior of these nodes.

The simple perceptron learning rule is a special case of this extension to the
generalized delta rule where the feedback signal is the output of a discrete threshold
function which is identical to the node’s output function (y;(r) = x;_,(¢)). The weight
adjustment in an AFB network node is accomplished using the extension described by

equation 3.6.
Awii() = M (] () = a;(0) Ximsj(2) 3.7

where y;(¢) has been replaced by the node’s activation (@;(s)). Note that this learning
rule is the same as the Widrow-Hoff rule; however, the output function of this node is
discrete rather than continuous. This AFB node is shown in figure 3.7. Note that the

feedback threshold function (g ) has been replaced by a direct connection.
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Figure 3.7: Activation Feedback Binary (AFB) Network Node

The change from output feedback (simple perceptron) to activation feedback
(AFB node) has a dramatic effect on the weight adjustment process. One consequence
of this change is that the weights are updated by an amount which is proportional to the
difference between the target and the current activation. A larger difference causes a
larger weight change. Note that the weights are updated even if the output is correct, as
long as the current activation differs from the target. This is in contrast with the simpie
perceptron leaming rule where the weights are updated by discrete steps and the update

only occurs when the output is incorrect.

A second effect of changing to a linear weight adjustment process is that, when
the input patterns are presented fairly (i.e. a uniform input pattern distribution}, the
iterative weight adjustment process can be reduced to a set of independent linear

difference equations. This will be examined in the next chapter.
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Chapter 4
A Mathematical Analysis of Linear Weight Adjustment

This chapter presents a mathematical analysis of the linear (activation feedback)
weight adjustment process. The results presented here will lay the final groundwork for
the geometric representation to be discussed in chapter 5. It will be shown that an
iterative weight adjustment process can be simplified for a known training set and that
for some training sets, the weight adjustment process reduces to a set of linearly
independent equations. The weight update equations will then be further reduced to
determine how the steady state weight vector depends on the training set. A two input
node is used to simplify the discussion, but the results are extended to nodes with an

arbitrary number of inputs.

4.1 Simplification of the Weight Adjustment Process

This section presents a simplification of the linear weight adjustment process. [t
is assumed here that the leaming mode consists of the following discrete sequential
steps: input pattern and target signal presentation, output generation, error calculaton,
and synchronous weight adjustment. This assumption simplifies the analysis and
makes it possible to analyze each step of the weight adjustment process separately. It
should be noted that the observatons presented here also apply to simuitaneous

learning modes (i.e. all the steps occur at the same time).
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A typical two input node is shown in figure 4.1. It receives the input signals
x1;(¢) and x,_, (1) and generates the output signal x; _, (r). The node has two input

weights, wy; and woj, and a weight associated with the threshold, we;.

I

Figure 4.1: Two Input Network Node
The node’s activation follows from equation 3.1:
a;(t) = [w1;x15;() + wojxz, (0] (4.1)
and the effective activation is:
ﬂﬁf(f) = [wy; X1o,(0) + woj X95,(t) — we;(r)) 4.2)

In order for the threshold weight update equation to mimic the input weight
adjustment process, it must have feedback that includes the current threshold weight
value. For this reason, the activation in the threshold weight equation is replaced by
the effective activation. To simplify the following analysis, it is assumed that the

activation is replaced by the effective activation in all weight equations. The results
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will show that this assumption does not effect the average weight update vectors or the

steady state weight vectors. The weight adjustment equations are therefore:

* 4.3a
Aw,j(t) = n(; () - aT (1) x1;() *.32)
‘ o (4.3b)

Awoi(t) = N (1) — ;7 (1)) X25(8)
(4.3¢)

Awgi(®) = -0t} () - aT (@)

For now this analysis will concentrate on w;. Substituting equation 4.2 for the

effective activation in equation 4.3a yields:

Aw () = NG} () = WX 150 + wo (2, /(1) — wei(ODX 1) (4.4)

The change to the weight is simply the difference between the target signal and the
weighted sum of the inputs, plus the threshold, all multiplied by the current input and

the learning rate.

The time dependence in equation 4.4 is entirely determined by the current input
vector. In other words, the change to the weights depends only on the value of the
target and input signals at a given point and not the time at that point. This makes it

possible to rewrite equation 4.4 in terms of the input vector:

Awyi(xo)) = M@ (xL) = [Wy x5 — weD) X1o; (4.5)

where x_,; is the current input vector, namely (xi_,j, X2;) and w;- X_,; is the scalar

product of the weight and input vectors and is equal to (wy; X3, + Wo; X24/)-

If the input pattern training set is known and the fraction that each input pattern
appears is a constant throughout the training set, or the probability that an input pattern

will be presented in a training set is constant, then it is possible to consider the average
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or expected change to the weights and threshold. The constant fracton interpretation is
used when a node has already been trained or is about to be trained with a known
n-aming set, whereas the probability interpretation is used when only the probability
that an input pattern will be presented at each step in a training set is known and is
constant. Continuing the two input example, the average change to wy; can be
expressed as a sum of the changes that result from each input pattern weighted by the

frequency that each pattern appears. Equation 4.5 becomes:

_ \ " (4.6)
Awlj =1 (a(—l,-l)(fj (_1'_1) = aj (—19_1))x1—>j(—19_1)

+ a1+ (1,41 - af (-1 +)) x1,;(-1,+)

+ a@L, =0 ¢L-1) = g @+HL-0) xy G+ -1)

+ oL+ LD - aF L)) 2L L+D)
where

a(-1,-1) + a(-1,+1) + a@+l,-1) + a+l,+]) = 1
and
x15j(-1x) = -1; X15j(E#1x) = +1

a(p) is the fraction of the total number of input pattern presentations for which pattern
p was presented, or the probability that pattern p will be presented. Note that the
average change to the weight vector, expressed in equation 4.6, depends on the
assumption that the activation function (which depends on the weights and threshold)
does not change after each training pattern. Although this is not necessarily true, it

does not affect the final results, provided that the change is small over the training set.

In general, equation 4.6 can be expressed as:

—_ z
Aw; =M o.(r‘ ) - a’f(p))xm(P)
4 El 1@ - ! 4.7

where
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Figure 4.2: A Node With Local Feedback

provided the input pattern distribution is uniform. This means that the weight
adjustment can be accomplished in parallel and without a global feedback signal (e.g.
the node’s activation). It also verifies the claim that replacing the activation with the
effective activation does not change the average weight update vector because the
threshold weight (added by the change to effective activation) drops out of all but the
threshold weight equation. The general weight adjustment equation for a uniform input

pattern disuribution is:

2 [x,;(0) 1 @) - W)
i

Aw; = T
= 2" (4.10)

where BTV,'j is the average or expected change to w;;, and ¢ j'(p) is the target signal for

input pattern p. (For a two input node, the number of input patterns is equal to 4 24))
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When the input pattern distribution is non-uniform, the weight adjustment
process is not decoupled. The final weight adjustment equations for more than two
inputs resemble equation 4.8 with each input weight and the threshold contributing to

the average change to all other weights.

4.2 Steady State Values for the Weights and Threshold

In general, the steady state values for the weights and threshold are found by

first setting equations 4.8a, 4.8b and 4.8c equal to zero and solving to yield:

wy = [cl't; + Co-uwy; + Cl'IlWej] (4113)

wa; = (e tj' + €1 uwpj + €' U wg;] (4.11b)
t;‘ll

wej = [——7— + cr'uwy; + couwy]

(4.11¢)

Notice that if the input pattern distribution and target vector are known, the adjustment
to the weights is specified by three linear algebraic equations with three unknown
variables. If these equations are linearly independent, then the values of w;, wy; and
wg; are uniquely determined. The final weight and threshold values for an n input node
can thus be determined a priori by solving (n + 1) algebraic equations. When the
weight equations are not independent, however, the final values for some of the weights
are under-specified and can take on a range of values. As with the weight update
eqﬁations,_the linear independence of these equations also depends on the values of ¢g,

4] and ¢;.
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When the input pattern distribution is uniform, the weight update equations are
necessarily linearly independent. In this case the steady state value for wj; is:
— 1 % [ “o)
Wi = X5t @l
»,2 (4.12)
Note that the steady state weight values here depend only on the target and input

signals.

The equations for a two input node’s average weights and threshold when the

input pattern distribution is uniform are:

—_ 1 ] . . .
wi; = — (=t; (=1,=1) = £; (=1,+1) + 1; (+1,-1) + 1; (+1,+1))

1) 4 J J J J (4.132)
- 1 * * * »
Wai = — (=t; (=1,-1) + 1; (=1,+1) = t; (+1,-1) + 1; (+1,+1))

4T g J i i j (4.13b)
— 1 [ ] | L ]
Wej = & (—t; (-1,=1) = t; (-1,+1) = £; (+1,-1) = ¢; (+1,+1)) @13

Suppose, for example, that t;’ is described by the truth table in figure 4.3
{corresponding to the function (A + §), where A is associated with x;_,; and B is

associated with x2.,;). The solution to equation 4.13a becomes:

Wi = S (- (D ED+ D) = 2=

2| =

Similarly, the solutions to equations 4.13b and 4.13¢ become:
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Figure 4.3: Input Space Representation of the Weights and Threshold for (4 + B)

An input space representation of these three values is shown in figure 4.3b. In
the input space representation, the n inputs define an n dimensional hypercube. For this
example the hypercube is a square. The threshold logic unit divides the input space
into two regions using an n — 1 dimensional hyperplane (here a line). The weights and
threshold determine the orientation and location of the separation line. The orientation
of the line is perpendicular to the weight vector plotted onto the input space with each
weight axis lined up with the corresponding input space axis. The threshold determines
how far to offset the line from the origin. Note that the separating linc determined by

the final weight and threshold values clearly implement the desired function.



Table 4.1 contains the final weights and threshold values for a two input AFB
node for each of the 16 possible target vectors given a uniform input pattern
distribution. Notice that the XOR (-1,+1,+1,-1) and EQUIVALENCE
(+1, -1, -1, +1) functions, which are not linearly separable (i.e. there is no way to
divide a square with a line such that two diagonally opposite corners are on one side of
the line and the other two are on the other), have solutions to the weight update
equations even though these functions are not implemented by the learned weights. A

graphical representation of the final weight values for each target vector is shown in

figure 4.4.
target vector Wil Wa,j wa;i function

(-1, -1, -1, -1) 0 0 1 -1
-1, -1,-1,+1) || +% | +% | +» | A'B
~L-L+,-D | +% | -% | +% | 4B
(=1, -1, +1, +1) +1 0 0 A
(-1, +1, -1, -1) N -% | +% | +% | A'B
(-1, +1, -1, +1) 0 +1 0 B
(-1, +1, +1, -1) “ 0 0 0 AxorBt
(-1, +1, +1, +1) + + 14 - AorB
+1, -1, -1, -1) u -% | -% | +% | AB
+1, -1, =1, +1) 0 0 0 A xor Bt
(+1 -1, +1, - » 0 -1 0 B
@1, -1, +1, +1)|| +% | - | -% | A+B
(+1,+1, -1,-D [ -1 0 0 A
1, +, -1, +) || -% + -% | A+B

(&L +1, 41, - | -% - -% | A+B
+1,+L,+L,+) | O 0 -1 +1

(+ XOR and EQUIVALENCE functions are not implemented by the weights and threshold)

Table 4.1 Final Weights for Two Input Generalized Perceptron
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In summary, if the input pattern distribution to a network node is known and the
weight adjustment equations are linearly independent, they can then be solved to
determine the final values for the weights and threshold. If the input pattern
distribution is uniform, then the weight equations are necessarily linearly independent

and the update rules for each weight become decoupled from each other.

+ -
—
. . . - * . *-
-1 AB A(NOT B) A
+ +* + L - -
/
- - - - . * - '+
(NOT A)B B XOR A+B
* -
+ - + . * +* + e
(NOTA)NOT B) PARITY (NQT B} A + (NOT B}
+ - + + + - * +
bl
L4 + +* - + - * +
(NOT A) (NOT A} + B (NOT A) + {NOT 8} +1

(' XOR and PARITY functions are not implemented by the leamed weights and threshokf)

Figure 4.4: Graphical Representation of Final Weights and Threshold
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Chapter 5
Geometric Representation of Node Weight Adjustment

This chapter describes discrete learning (the simple perceptron) and linear
weight adjustment (AFB node) processes using a geometric representation of the
weights and threshold. Of particular interest is the correspondence between the
threshold logic function for a given set of weights and the point that the weights map to '
in a weight+threshold space. Also of interest is the movement of the weight+threshold
(or simply the weight) vector as a way to characterize both learning rules. Section 5.1
presents the weight+threshold space and its relationship to the threshold logic unit
functions. This is followed by a description of the weight vector movement in response
to a single training pattern and the average movement of the weight vector over a
complete training set. In the last section, the steady state position of the weight vector

in the weight+threshold space for different target functions is presented.

This chapter can be seen as a formal extension of a geometric interpretation of
competitive leamning that was proposed by Rumelhart and Zipser {1985) to showcase
the features of their learning mechanism. Competitive learning is a method of
generating -target signals for hidden nodes in a network. As shown in figure 5.1, the
weight vector of each node is represented by a vector whose tip lies on the surface of a
hypersphere. Network learning is described as “roughly equivalent ”* to moving the tip

of a node’s weight vector along the surface of the input space sphere. The following
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sections will describe the formal characteristics of this representation as it applies to

the weight vector of a single node.

Figure 5.1: Geometric Interpretation of Competitive Learning

5.1 The Weight+Threshold Space

For each node, n input weights plus the threshold define an n + 1 dimensional
space referred to as the weight+threshold space. The current weights and threshold of
a node determine a point (Wi, w3, W3, ..., Wn,We), that corresponds to the tip of a
weight vector that emanates from the origin. The position of the weight vector tp
determines the output function implemented by the node. This space differs from the
infmt space representation normally used to describe node leaming (as presented in
section 4.2) by the addition of a dimension associated with the threshold. The function
is no longer associated with a separation of the input space but with regions of the

weight+threshold space.



Associated with a two input node is a 3-dimensional weight+threshold cube
shown in figure 5.2. The 14 linearly separable functions of two inputs (as shown in
table 4.1) carve the cube into 14 pyramid shaped regions, each corresponding to a
different function. The 14 regions consist of 6 square based equilateral pyramids, one
for each face of the cube, and 8 triangle based pyramids, one for each comer of the

cube.

-1,1,-1
=i, i (1,1.-)

- 2
(-1,1, 1) A

1)
Wel

(A, -1, 1)
a,-1,-n W i’ Wy W)

-1,~-1,1

(1,-1, 1)

Figure 5.2: Weight+Threshold Cube for a Two Input Node

Figure 5.3 shows two weight+threshold cubes with the pyramids for the
functions A and A highlighted. All 14 function pyramids for the two input perceptron
are presented in appendix B. It is interesting to notice that two ‘logically opposite’
functions correspond to the physically opposite function pyramids. For example, the
pyramid fo-r the function A (true when A is true, false otherwise) is located with its base
on the right face of the cube. The function pyramid with its base on the left face of the

cube corresponds to the function A (false when A is true, true otherwise).
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Function A Eunction A

Figure 5.3: Example Weight+Threshold Space Function Pyramids

It is also interesting to notice that all function pyramids that share a surface
have truth tables that differ by only one entry (i.e. the, truth tables differ by a hamming
distance of one.) This means that as the weight vector moves from one pyramid to
another, the function will change smoothly (only one wuth table entry will change.)
For example, the functions associated with the pyramids that share a face with the A

function pyramid are (A + B), (A + B), (AB) and (AB).

The origin of the weight+threshold space is of special interest because all
function pyramids are adjacent there. The final weight vectors for the two non-linearly
separable functions (XOR and EQUIVALENCE), which are not associated with a
function pyramid (because they arc not linearly separable), also map to the origin.
Note that the actual function associated with the origin depends on how the threshold
function is implemented. If the threshold comparison uses *>, then the function at the

origin is ‘-1’ or al‘ways off. On the other hand, if the threshold uses 2’ for its
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comparison, then the function at the origin is ‘+1’ or always on.

In the same way, the function associated with a point on the border between two
pyramids also depends on the implementation of the threshold function. If the
threshold function uses ‘>’, then the function associated with a border point is the
function of the border pyramid that has the most ‘=1’ entries in its truth table. For the
case where the threshold function uses ‘2’, the function at a border point is the same as
the border pyramid that has the most ‘+1° entries in its truth table. The implementation
of the comparison in a discrete threshold function, therefore, determines the border

cases (which includes the origin) throughout the weight+threshold space.

5.2 Weight Adjustment for a Single Training Pattern

This section will describe the effect of a single training pattern on a node’s
weights in terms of the movement of its weight vector. Asa reminder, a training phase
consists of four separate sequential steps: input pattern and target signal presentation,
output generation, error calculation and weight adjustment. Also, a single waining
pattern consists of an input pattern and the corresponding target signal. This section
will examine the effects of a single training pattern on both the simple perceptron and

the AFB node.

5.2.1 Simple Perceptron

The weights of a simple perceptron are only updated when the output and target
signals do not match. Recall that when the weights are adjusted, the amount of
adjustment is + 21 where 7 is the leamning rate. The simple perceptron’s weights are

updated using the following equation:
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wit; +1) = wile) + AW () 1] @) 5.1)

where the weight update vector is:

AW; = NS0 = %)
When the perceptron’s output and the target signals match, Aw; is equal to zero. When
the output doesn’t match the target, then the change to each coordinate of the weight

vector is £ 21. In this case, the weight update vector for a two input simple perceptron

is:

AW; = 20(01oj £, Gams 1) (=) (5.2)

which simply reduces to:

Aw; = (t2n,£2n,£2n) = &1, 1. 1) (5.3)

Notice that the direction of the weight update vector is parallel to one of the diagonals
of the weight+threshold cube (see figure 5.4a) and is determined entirely by the input
pattern and the target signal. Also notice that the weight update vector is the vector

difference between two successive weight vectors as shown in figure 5.4b.

In general, the weight update vector for an n input simple perceptron is an n +1

dimensional vector:

AW = MU(E1csj 1] o Fiosj 1] Do G 5= 1)
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Figure 5.4: Weight Update Vector: (a) Direction Choices; (b) Vector Difference

§.2.2 AFB Node

The AFB node’s linear leamning rule updates the weights when the effective
activation is not equal to the target signal and the amount of adjustment is proportional
to the difference between the target and the effective activation. The linear learning

rule can be described as:
wtie1) = W) + Aw;@ Tt @) 5.4)

and the weight update vector for a two input AFB node is:

- Awj = (T SUNTCRRE af’),x;_,_,-(r; -af, - - a) (5.5)

or
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AW, = n(l - t; aff)(xl—v-hj t;v x2—;j tj.v (— f;)) (56)

Since it has been assumed that the target and input signals are either £ 1, the
weight update vector can be rewritten as:

Aw; = nlxafE 1, £1,£1) (5.7)

Notice that, as with the simple perceptron learning procedure, the weight update vector
is parailel to one of eight vectors that connect the origin to the comers of the
weight+threshold cube and that the particular direction of the update vector is

determined entirely by the input pattern and the target signal.

_ Notice that equation 5.6 and equation 5.2 are very similar. The difference
between the two equations is that the magnitude of the simple perceptron’s weight
update vector is constant, whereas the magnitude of the AFB node’s weight update
vector depends on the current value of the node’s activaton. The simple percepton

and AFB node weight update vectors are summarized in table 5.1.

Xioj | X200 t simple AFB

perceptron _node
-1 1 | -1 | 2n+L,+L+0) | n+aD)E1+1L+1])
-1 1 | +1 | 2n¢-1,-1.-D) | nd-af)=1,-1,-1)
-1 1| =1 | 2n+,-L+D) | nQ +aHEl-1+1)
-1 | +1 | 2n(-L+1,-1) | nt-af)-1,+1,-1)
+1 1| <1 | 2n(=1+L+D) | n+afy-1+1,+])
+1 1 |+ | 2ne-1-1) | a0 -afHel-1,-1)
"41 A | =1 | 2n(=1-1,+1) | nd +af)(=1,=1,+1)
+1 +1 1| m@L+L-D | nl—a)El+1,-1)

Table 5.1 Simple Perceptron and AFB Node Weight Update Vectors
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§.3 Average Weight Vector Movement

The average movement of the weight vector, or equivalently the average weight
update vector, depends on the target vector, the current weight values and the fraction
or frequency of input pattern presentation. This section only considers uniform input
pattern distributions. Extension to non-uniform distributions follows from the non-

uniform distribution analysis presented in chapter 4.

5.3.1 Simple Perceptron

Given the assumption that the input pattern distribution is uniform, the average
movement of the weight vector is simply the movement caused by each training pattern
summed up over the training set. For a two input simple perceptron, the average

weight update vector is:

. i
El[’ 1jP)E; (@) =x; 5 (P

— 4 -

Aw; = 141 22,00 ®) - % @]

p:

L_pén["'.(p) - x5 @)]

Consider the case where the target vector is (+1,+1,+1,+1). If the current
output vector is (+1,+1,+1,+1) then the average weight update vector is zero. If the
current output vector is (—1,-1,—1,~1) (the exact opposite of the target vector), then the
average weight update vector is 2n(0,0,—1). The net change to each input weight is
zero and the threshold is reduced by 2n. If the current vector input has some clements
that match the target vector, then only a fraction of the input patterns will contribute to

the average weight update vector. Table 5.2 contains the average weight update vector
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for a two input simple perceptron when the output is such

contribute to the average weight update vector.

that all input patterns

*

t; Aw 1
(-1,-1,-1,-1) 10,0, 1)
(-1,-1,-1,+1) 2n (A, 1A, 1A)
(-1,-1,+1,-1) 2n (Y, - 4, A)
(-1,-1,+1,+1) 21(1,0,0)
(-1,+1,-1,-1) n (=% A %A)
(-1,+1,-1,+1) | 2n(0, 1,0)
(-1,+1,+1,-1) | 2n(0,0,0)

(=1,+1,+1,+1)

211 (%v %1 = 1A)

(+1:—11-11“1)

2N (-4, - %)

(+1,-1,-1,+1) | 2n(0,0,0)
(+1,-1,+1,-1) | 2n(0,-1,0)
(+1,-1,+1,+1) | 2n (A, -%,-%)
(+1,+1,-1,-1) | 2n(~1,0,0)

(+1,+1,-1,+1)

M (=14, -%)

(+1,+1,+1,-1)

M (-, - %, =)

(+1,+1,+1,+1)

2n{0,0,-1)

-

t (assumes thatx;_, =1; )

Table 5.2 Average Weight Update Vectors for a Two Input Simple Perceptron

Note that while the target vector and the simple perceptron’s current output
function are constant, the average weight update vector is also constant. This means
that while the tip of a weight vector is in the same function pyramid, it will move on
thé average along a straight line. When the tp crosses into a different function
pyramid, the average weight vector changes and the movement of the tip is again in a
straight line but with a different direction. The weight vector stops moving once its tip

is just inside the function pyramid that corresponds to the target function which is when

52



the output and target vectors are the same. In general, the average movement of the
weight vector tip follows a series of line segments that end when the tip first enters the

target function pyramid. An example of this is shown in figure 5.5.

Figure 5.5: Movement of Two Input Simple Perceptron Weight Vector

In summary, the simple perceptron’s average weight update vector is constant
for every point within each function pyramid. The magnitude of the update vector
depends on the hamming distance between the target function and the current output
function where only input pattemns that generate an incorrect output contribute to the
average weight update vector. The tip of the weight vector follows a series of line
segments that change direction at the boundaries between the function pyramids.
Weight adjustment stops when the weight vector tp first enters the target function

pyramid.
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If the learning rate (or gain) constant is relatively small, then each adjustment to
the weight vector moves its tip closer to the target functon pyramid. The distance
between the initial position of the weight vector tip and the target function pyramid is 2
finite constant and the average weight adjustment has a finite component in the
direction of the function pyramid. Consequently, the simple perceptron weight
adjustment process will converge on a set of weights that executes the desired function
(provided it is linearly separable) in a finite amount of ime. However, if the learning
rate is too large, the weight vector may initially overshoot the correct target function

pyramid.

5.3.2 AFB Node

The AFB node’s learning rule specifies the average change to the weight vector

of a two input node as:

- ;
):l[xl_,,-cu)(r,-‘cm - a;(pM)
p=
e— 4 L
awj =1 LY @) - a@)
4
T @) - a;e)]
[ p=i |
which is equal to:
. . 1
T x15j@) tj ) — 4wy
p=1
—t— 4 ]
Aw; = % p=lxz—.j(P) t; @) — dwy; 5.8)
4
T -4 @) - dwe
p=l .
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for a uniform pattern distribution.

For the target vector (+1,+1,+1,+1), equation 5.8 reduces to:

Aw; = M(—wy;, —wy;, — 1 = we;)

for all possible target vectors.

t; Aw;
(—1,—1,-—1.-—1) T](-le, = W2j» I—ng)
(-1,-1,-1,+1) nk- Wijs Ve —way, Y2 - wa;)
(-1,-1,+1,-1) n(L-wyj, -2 -wyj, Y2 —we;)

(-1,-1,+1,+1)

N (1 -wyj, = wyj, —wej)

{=1,+1,-1,-1)

n(—‘/&-wu, 1/2—w:j, %—Wej)

(-1,+1,-1,+1)

N (=wy 1 —wyj;, —wej)

(-1,+1,+1,-1)

N (=wyj —waj, —Wej)

(-1,+1,+1,+1)

N (Y= wyj, 2= wyj, =4 = wg;)

(+1,-1,-1,-1)

n (—% ~ Wy, —%—ng, 14— Wej)

(+1,-1,-1,+1)

N (-wyj, = wyj, = Wej)

(+1,-1,+1,-1)

N (—~wyj, —1 —wy;, —we;)

(+1,-1,+1,+1)

N (Y% = wyj, =2 = waj, =2 — we;)

(+1,+1,-1,-1)

N (=1 =w,j, = waj, ~Wpg;)

(+1,+1,-1,+1)

n (-1/2 = Wij A - W2, o ng)

(+1,+1,+1,-1)

n-%- Wi, -4 - wW2j, =14 — Wej)

(+1,+1,+1,+1)

N (=wyj, —wyj, —1 —we;)

(5.9)

Table 5.3 contains a summary of two input AFB node’s average weight update vector

Table 5.3 Average Weight Update Vectors for a Two Input AFB Node

Notice that the direction of the average weight update vector for a given target
vector is constant and depends only on the initial weights and the target vector. For

example, if the target vector is (~1,-1,-1,~1) then the average weight update vector is
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N(=wyj, —waj, 1 —wg;). This is simply 1 times the difference between the steady
state weight vector and the current weight vector (see figure 5.6). The average weight
update movement of the AFB node’s weight vector tip is, therefore, along a straight
line which connects the tip of the initial weight vector to the tip of the steady state

weight vector. An example of this is shown in figure 5.7.

Wj(t)

'""f' w (1) = aw

Figure 5.6: Average Weight Update Vector for an AFB Node

When the learning rate is relatively small (eg. m < 0.1), the average
adjustment to the weight vector moves the tp closer to the function pyramid and,
unlike the simple perceptron, it continues to move when it is inside the target pyramid
until the weight vector reaches its target position. Thus, a linearly separable function
wiﬁ be learned in a finite number of input presentations. The number of input

presentations needed to learn a new output function depends on the learning rate.
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Figure 5.7: Movement of Two Input AFB Node Weight Vector

Of course, once the weight vector has reached its target position, each
subsequent input presentation will move the weight vector away from the target
position by a small amount that is proportional to the learning rate. Provided the input
presentation remains uniform, the tip of the weight vector will stay within a
neighborhood centered around the target position. The size of this neighborhood also
depends on the learning rate (e.g. large rates may cause the neighborhood to overlap

with other function pyramids).

5.4 Steady State Weight Vectors

This section presents a geometic interpretation of the final weight and
threshold values which are dependent on the weight adjustment rule. In the simple
perceptron model, the final weight vector depends on the initial weight vector and the

target vector, whereas the steady state weights and threshold of a two input AFB node
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depend on the target vector and the distribution of the training set.

54.1 Simple Perceptron

When the input pattern distribution is uniform, the tip of the simple
perceptron’s weight vector was shown on the average to move along a series of line
segments. The direction of the line segments depends on the output and target output
signals. Given a target vector, the movement of the weight vector within a function
pyramid can be characterized by a single update vector. The final weight vector
position is determined by the initial dp position and the points where the tip moves
from one function pyramid to another. Consequently, it can be any point near the
surface of the target pyramid. A few final weight vectors for the target vector that -

correspond to the function A are shown in figure 5.8.

- Figure 5.8: Different Simple Perceptron Final Weight Vectors
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54.2 AFB Node

It was also shown that, for an AFB node, the average movement of the tip of the
weight vector is in a straight line that connects the current tip position to the target
point. A target point is a point where the average magnitude of the weight update
vector is zero. When the input pattern distribution is uniform, the target points
correspond to the centers of the bases of the 14 function pyramids. These uniform

distribution target points are summarized in table 5.4.

]

t; target point
(-1,-1,-1,-1) 0,0, 1)
{(-1,-1,-1,+1) (4, ‘A, 1A)
(-1,-1,+1,-1) (‘4, - 4, 1A)
(-1,~1,+1,+1) 1,0, 0
(-1,+1,-1,-1) (=4, A, A)
(-1,+1,-1,+1) 0, 1,0
(=1,+1,+1,~1) ©, 0, 0)

(-1,+1,+1,+1)

(Y4, Y4, = '4)

(+1t_1"'"1’“1)

(=%, %, 'A)

(+1,-1,-1,+1) 0, 0, 0)
(+1,-1,+1,-1) 0,-1,0
(+1,=1,+1,+1) (2, = Yo, = 14)
(+1,+1,-1,-1) (-1,0,0

(+1,+1,-1,+1)

(-%,%,~-%)

(+1,+1,+1,-1)

(-4, - 'A,=A)

(+1,+1,+1,+1)

0,0,-1)

Table 5.4 Target Points for a Two Input AFB Node

Another observation concerns the computational geometry concept of vornoi
separation. A vornoi separation is defined for a set of N points as a division of a space

by hyperplanes into ¥ regions such that each point in the region is closer to the defining
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point within that region than to any other defining point. A two dimensional vomoi
separation is shown in figure 5.9. Note that the lines are one dimensional hyperplanes

that are equidistant from the two nearest points.

Figure 5.9: Two Dimensional Vornoi Diagram

An interesting observation is that the separation of the space by the threshold
logic unit into function pyramids is very similiar to the vornoi separation of the
weight+threshold space determined by the target points of the 14 linearly separable
functions. In both cases, the areas ncar to the target points are associated with that
point. A vornoi-node would have the characteristic that each function would be
associated with a region whose points are all closer to the corresponding target point
than to any other target point. The regions that correspond to TLU functions are
different from the vornoi regions in that the simpler TLU functions (i.e. functions
which depend on only one input such as A, B) correspond to lérger portions of the

space than in the vornoi separation.



5.5 Summary of Observations

This chapter presented a geometric representation that easily demonstrates the
weight adjustment behavior of the simple perceptron and an AFB node. First it was
shown that the movement the weight vector in both nodes, in response to a single
training pattern, is in a direction that is parallel to one of the vectors that connect the
origin to each corner of the weight+threshold hypercube. The particular direction
depends on the current input and target signal. Next, the average movement of the two
input simple perceptron’s weight vector tip was shown to be along a series of line
segments that end at a point just inside the correct function pyramid. The tip of the two
input AFB node was shown to move on the average along the straight line connecting
the current position to the point at the base of the target function pyramid. Finally, the
14 points that correspond to the steady state positions of the AFB node weight vectors

were shown to uniquely determine the function pyramids of a TLU.

These observations can be extended to nodes with more than two inputs. For
example, the response to a single training pattern will still be parallel to a vector which
points to one of the hypercube corners and the tip of the simple perceptron’s weight
vector will still move along a series of line segments while the tip of the AFB node’s
weight vector will move along a line toward its steady state position. The
correspondence between n-dimensional target points and n-dimensional function
regions has not yet been explored. The problems with higher dimensional space are
that it is difficult to conceptualize the correspondence between points, surfaces, and

regions, and that the number of binary functions of n inputs grows as 2?2,
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Chapter 6
A Comparison of Two Learning Rules

This chapter uses the simple perceptron and the AFB node to compare discrete
and linear learning. The linear learning rule has a number of advantages over the
discrete leaming rule including an improved correspondence between the weight vector
and the statistics of the training set, predictable weight movement, and immunity to

noise in the weight adjustment process.

6.1 Improved Representation of the Training Set

One advantage of the linear learning rule is that since it uses a continuous
valued feedback signal (the activation), it continues to update its weights even after the
target function is learned. This provides a better representation of the training set. As
shown in chapter 5, the weight vector (for a two input AFB node with a uniform input
pattern distribution) moves to a target point that is centered within the target function
pyramid; whereas, the simple perceptron’s weight vector stops moving once it reaches
a point which is an adequate representation of the functon (e.g. just inside the surface
of lthe function region). Moreover, if the input pattern distribution is not uniform, the
linear weight vector will move to reflect this bias, whereas the simple perceptron’s
weight vector will stay constant. Thus, the final weight vector for the linear learning

process provides a - better representation of a training set than does the simple
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perceptron’s,

6.2 Predictable Weight Movement

Another advantage to a linear leamning rule is that the weights converge to a
value that can be determined a priori from a set of equations provided that the training
patterns are presented fairly. When the distribution is non-uniform, the steady state
values for the weights can still be precalculated provided that the weight equations
remain linearly independent. It is possible to calculate the final weights for the simple
perceptron, but this requires a serial process that involves calculating the entry or exit

points for each function pyramid.

When the training set is uniform, the average movement of the AFB node’s
weight vector was shown to be toward the target point. This means that the following
algorithm can be used to find the weight vector that implements the target function in
2" weight adjustments. First, start the weight vector at the origin. Next a compiete
training set is presented one at a time. After one cycle through all the training patterns,
the tip of the weight vector will end up inside the correct function pyramid if the
function is lincarly separable. Therefore, the weights that implement the function can
be found in 2" time steps. This puts an upper limit of 2" (where n is the number of

inputs) on the learning time for a linearly separable function.

This algorithm also provides, for a two input node, an O (2" algorithm for
determining whether or not a function is linearly separable. First train the weights as
specified above. Then test to see if the weights implement the target function. If the
weights implement the target function then the function is linearly separable, otherwise

it is not linearly separable.
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It has not been determined if this approach can be extended to nodes with more
than two inputs. One problem with nodes that have more than two inputs is the larger
numnber of potential target functions (2%"). Another problem is the fact that the average
weight vector developed in chapter 4 is based on the assumption that the weights
change only slightly after each training pattern and are therefore relatively constant
over a complete training set. This assumption is valid when the training set is smali,
but may cause problems for nodes with more than 2 inputs since the size of the training
set grows exponentially (i.e. 2"). More work is needed to answer some of these

questions.

6.3 Immunity to Noise in the Linear Weight Adjustment Process

The linear weight adjustment process exhibits an inherent immunity to noise in
the target signal. In contrast, the simple perceptron leamning rule is very susceptible to
target signal noise. This disparity results from the different ways that the two leamning
rules make use of the target input. The simple perceptron compares the target signal to
its binary output signal and updates its weights only if the output is incorrect (i.e. the
weight vector is on the periphery of the correct function pyramid and could be easily
moved out), whereas the AFB node utilizes its activation to update its weights which
results in improved representaton of the training set (i.e. the weight vector tends to
move toward the center of the correct function pyramid). This subte change in the
weight adjustment process has a dramatic effect. The result is that weights leamned
using a hnear learning rule are able to implement a desired boolean function even when

the target signa.l is corrupted with random noise.



The effect of random errors in the target signal on the output signal was
measured for both the simple perceptron learning rule and the linear learning rule (used
in the AFB node). Each trial consisted of initializing the weights followed by the
successive presentation of 10,000 training patterns. After each pattern, the weights
were adjusted according to the learning rule being examined. Output errors were
counted each time that the actual output signal differed from the uncorrupted target
signal. Trials were conducted on a two input network node for each of the 14 linearly
separable functions with varying amounts of target signal error. The output errors for
different amounts of target signal errors were averaged over the 14 linearly separable
functions and are presented in figure 6.1. (Note: The learning rate was kept constant

throughout the testing (n = 0.01).)

Quctput
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Figure 6.1: Average Output Error Rate vs. Target Signal Error Rate.

The results clearly show that a linear weight adjustment process is able to
withstand errors in the target signal while maintaining a consistent output signal,
whereas the simple perceptron learning rule produces output €rrors roughly as often as

it receives target signal errors.
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This difference in behavior can be explained by the difference in the two weight
adjustment processes. The simple perceptron learning rule only updates its weights
when its output is wrong (an output error). Therefore, when there is an error in the
target signal, the simple perceptron’s weights are updated. If the target error does not
cause an output error, then the weights will not be adjusted. Thus, it is likely that an

error in the target signal will lead to an output error.

The AFB node, on the other hand, updates its weights whenever the activation
signal differs from the target signal. When a target error occurs, the input weights are
updated away from their final values. The important observation here is that the next
correct target signal will move the weight vector back toward its final position;

therefore, the weights rebound from the target error before an output error can occur.
When the input pattern distribution is uniform, an expression for the final

weights is

s L (=Bt )+ BT
Wi = 2"p§1[xl"*1 (1 B) g (p)+51’, ®N (6.1)

-
where § is the percent error in the target signal and 7; (p) is target signal error (i.e. the
. . .
logical opposite of the target signal). Note that 7; (p) is equivalent 1o —1; (p). This

means that equation 6.1 can be rewritten as:

R ¢ ! RSP
Wij " pgl[x‘ —=jlj )] 6.2)

The effect of a constant amount of target signal noise is that the magnitude of

the weight vector is reduced by a factor of twice the error rate (see figure 6.2). For
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example, when the error rate is 50 percent, the target signal is comparable to random
noise since half of the time the target is wrong, and the magnitude of the resulting
vector is zero. This make sense because half the time the tip of the weight vector will

move toward the target point and haif the tme it will move away.

1sl.+13 {1, a1} i=1,+1} el +l) (=1, 1) [RETREY)

1=3.=11 iri, =l [EITRI Y] (o, =kt t=1.=1 eloohd

0% Target ErTor 208 Target Exror 508 Target Ermor

Figure 6.2: Effect of Target Signal Error on Linear Weight Vector
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Chapter 7
Conclusions and Future Work

This thesis has shown that a linear learning procedure is far superior to a
discrete learning procedure. The comparison was accomplished using the simple
perceptron and an AFB node which is based on an extension to the generalized delta

rule. This extension provides a more flexible framework for network node design.

The linear (activation feedback) learning rule was first suggested by Widrow
and Hoff (1960) as an iterative method for solving linear difference equations. Their
work was concerned with moving the problem from traditional problem solving
methods to a parallelizable iterative approach. It was shown in chapter 4 that although
the original linear equations can be solved using traditional mathematical techniques,
once they are converted to an iterative process, they can only be reduced to a set of
solvable equations again when the training set guarantees that the equations remain
linearly independent. It was also shown that if the training set distribution is uniform,

then the linear independence condition is necessarily met.

Many advantages of a linear learning rule were presented in chapter 6. These
include improved presentation of the training set statistics, more predictable weight
adjustment and immunity to noise in the target signal. The AFB node made it possible

to directly compare the performance of continuous and discrete feedback learning ruiles
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for varying levels of target signal noise. The geometric representation presented in
chapter 5 makes it possible to visualize the effects of different types of feedback on the

weight adjustment process.

The AFB node incorporates the advantages of a linear (continuous valued
feedback) learning procedure into a node that communicates using binary (discrete)
signals. It is therefore an interesting compromise for actual VLSI implementation
because the continuous valued operations are localized. This node design may prove to

be a useful approach to implementing neural networks using current VLSI techniques.

Future work on this subject will include the extension of this analysis to nodes
with more than two inputs. Although the mathematical extension seems obvious,
initial results have brought up some paradoxes and more work is needed. Of particular
interest is extending the correspondence between weight vectors and function pyramids
to higher dimensional weight+threshold space. Also of interest is the extension of this

analysis to other non-linear threshold functions.

Future work will also include the analysis of other nodes (based on the
extension to the generalized delta rule) that use a signal other than the output in the
weight update process. For example, the effect of non-linear continuous threshold

functions on the learning process can be examined using a similar network node.

The work in this thesis was motivated by the desire to understand in detail the
dynamic behavior of neural network building blocks. It was also motivated by a desire
to éxplore the difference between discrete and linear learning procedures. This led to
an extension to the generalized delta rule and to a geometric interpretation of the
weight adjustment process. It is hoped that this work will help others to understand the

behavior of neural networks through a better understanding of the node learning
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process. Once the behavior of individual nodes is well understood, the behavior of a

network of nodes will be easier to understand, and the process of building neural

models will be elevated to a higher level.
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APPENDIX A
Glossary

The field of neural network research is plagued by the use of poorly defined and
overused terminology (e.g. net activation to mean the activation of the network or the
net amount of activation). Because of this, a few definitions are presented here in an
attempt to reduce confusion, Note that the order of the terms roughly corresponds to

the order in which the terms first appear in the text.

-

Perceptron refers to a class of adaptive logic units whose output(s) typically
result from the application of a thresholding function to a weighted sum of the inputs,

and whose weights are updated according to a prespecified learning rule.

The simple (or classical) perceptron is an adaptive logic based interpretation
of Rosenblatt’s classical perceptron model. Its weights are updated using the

perceptron learning procedure (or rule.)

The generalized delta rule (Rumelhart et al, 1986) specifies a class of rules for
updating the weights in a threshoid logic unit. The different rules are determined by
the form of the internal signal that is compared with the target signal. For example, the
linear generalized delta rule (also called the Widrow-Hoff rule) compares the target
signal to the (linear) weighted sum of the input signals.
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The processing module of the simple perceptron and most neural network

models is a threshold logic unit (see figure 3.1).

The processing unit of a neural network is referred to as a functional unit,

network node, or simply node. The perceptron is a specific type of network node.

A hidden node or internal node is a network node that does not receive signals

directly from the environment.

An input pattern (or vector) is a particular instance of the ordered set of inputs

to a network or to a specific network node.

The target signal is the desired value for some functional unit signal (e.g.
target output, target activation.) It can be provided by the environment as part of a

training pattern or generated by some internal method.

A training pattern consists of an input pattern and the corresponding target

signal.

The training set is the collection of training patterns used to teach a network or

a specific node.

The environment consists of all things external to the network model, but

usually refers to the teacher or other system that generates the training set.

A node’s activation represents its current state. It is the continuous valued
output of the threshold logic unit’s summation module which is equal to the sum of the

product of each input and its corresponding weight.
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The effective activation is defined to be the difference between the node

activation and threshold.

A node’s output is the output of the threshold function unit. To allow for
cascading the output of one perceptron or node to the input of another, the output and

input signals should be in the same format.

The activation feedback-binary (AFB) node is a hybrid node that uses the

activation signal to adjust the weights while also generating a binary output signal.

An input pattern presentation (also called input presentation and target
pattern presentation) is the simultaneous presentation of an input pattern and a target

signal.

An input pattern distribution is fair (or uniform) if each input pattern is-
presented equally often, or equivalently if the probability that each input pattern will be
presented is equal to 1/2" where n is the number of inputs, namely each input pattern

appears equally often. In other words, the input presentation distribution is uniform.

A node’s weight vector consists of an ordered list of the current values of the

input weights and threshold.

The average weight vector is an ordered list of the average values of the

weight vector elements.

The weight update vector consists of an ordered list of the changes to each

input w:ight and the threshold for a given training pattern.
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The average weight update vector is an ordered list of the average values of

the weight update vector clements.

An error or target generation scheme describes how the network model

generates target or error signals for tnternal or hidden nodes.
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APPENDIX B
Function Pyramids

This appendix contains a weight+threshold space representation for each of the
14 function pyramids that correspond to the 14 linearly separable functions of two

inputs.

Function A

Figure B.1: Function Pyramids for (4) and (A)
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Function B Function B

Figure B.2: Function Pyramids for (8) and (B)

Function -1

Function +1

Figure B.3: Function Pyramids for (- 1) and (+1)
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Function A and B

Figure B.4: Function Pyramids for (A or B) and (A and B)

Function A and B Function A or §

Figure B.S: Function Pyramids for (A or E) and (A and 5)
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Function A and B Function A or B

Figure B.6: Function Pyramids for (4 or B) and (A and B)

_ Function Aand B Function A or §

Figure B.7: Function Pyramids for (A or B) and (A and B)
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