Computer Science Department Technical Report
University of California
Los Angeles, CA 90024-1596

STREAM DATA ANALYSIS IN PROLOG

D. Stott Parker January 1989
CSD-890004

Stream Data Analysis in Prolog

D. Stott Parker

Computer Science Department
University of California
Los Angeles, CA 90024-1596

ABSTRACT

Today many applications routinely generate large quantities of data. The
data often takes the form of a time series, or more generally just a stream — an
ordered sequence of records. Analysis of this data requires stream processing
techniques, which differ in significant ways from what current database query
languages and statistical analysis tools support today. There is a real need for
better stream data analysis systems.

Stream analysis, like most data analysis, is best done in a way that permits
interactive exploration. It must support ‘ad hoc’ queries by a user, and these
queries should be easy to formulate and run. It seems then that stream data
analysis is best done in some kind of powerful programming environment.

A natural approach here is to analyze data with the stream processing paradigm
of transducers (functional transformations) on streams. Data analyzers can be
composed from collections of functional operators (transducers) that transform
input data streams to output streams. A modular, extensible, easy-to-use library
of transducers can be combined in arbitrary ways to answer stream data analysis
queries of interest.

Prolog offers an excellent start for an interactive data analysis programming
environment. However most Prolog systems have limitations that make
development of real stream data analysis applications challenging.

We describe an approach for doing stream data analysis that has been taken in
the Tangram project at UCLA. Transducers are implemented not directly in
Prolog, but in a functional language called Log(F) that can be translated to Pro-
log. With Log(F), stream processing programs are straightforward to develop.

A by-product of this approach is a practical way to interface Prolog and database
systems.

This work done under the Tangram project, supporied by DARPA contract F29601-87-C-0072.

Table of Contents

1. Stream Data Analysisccccvvvvecininninnncnnniiseisnens

2. Basics of Stream Data Analysisc.corvecmicinncmnnnensnnnn.
2.1. Basic Stream ProCessing ...
2.2. Kinds of TTanSAUCETSc.ccvmiisriisiinnissmmnemiinssssesessssnsssssissssse
2.3. Composing TIANSAUCETS .c..evereieuiiirmiieneiisnnnsesiessesstsasessssssssasassamsssssasstensasamsssssrssessstasas
2.4. How Stream Processing Differs from List Processingc.vevene
2.5. A Brief Survey of Stream PrOCESSINGcccoiiveiinnenicsiniinncinsse s ssssssasssssessenes
2.6. The Stream Data Analysis Paradigmcooeeenmieneiinennninennnns

3. Limitations of Using Prolog for Stream Data Analysiscccovvnincnnennnnicinnnnees
3.1. Prolog Requires Lots of MEMOTYcccvvvniniirmiiicniimmnensiiosssnsns s ssssens
3.2. Prolog Implementations of Atoms are Inadequatecoveevinermrrvnesissncnienicnncenenne
3.3. Stream Processing Requires Stack Maintenanceccceveoiveriisnneinnninnensinssonns
3.4. Prolog’s I/O Mechanisms are Inadequate ..o, -
3.5. Prolog’s Control Mechanisms are Inadequateccccimcninninininniiiiimeniennssnn.
3.6. Prolog has an Impedance Mismatch with Database Systemsc.ccccovveenicnniennennnne.
3.7. Summary: Problems and SOIUtIONScccvcivesrirmriserismmssesinmninenssssss s sssssensssssssessssssennes

4. Log(F): A Rewrite Rule Language in Prolog ...,
4.1, Overview of F* and LOZ(F) ...cccooiviiiininiorenerniesonnineessiesssssaessssssiosssssssssassisssesssssssssas
4.2. F* — A Rewrite Rule Language ... s snae s snnenns
4.3. Log(F): Integrating F* with PIOlOgcccovimivmnnnmmninniminsi st snenessenses
4.4, Stream Processing Aspects of LOZ(F) ..o s

5. Stream Processing in ProlOg ... sssaens
5.1. Implementing Transducers in LO(E) ..o
5.2. The General Single-Input, Single-Output Transducervvmmninniinnninsiecnnienenee.
5.3. Basic Statistical Time Series ANalYSiScoccorrceveenmrennsniniiinineisesiissssssenisess
5.4. Aggregate COMPULAIONS ...cccciiriniiiiniiisiiiissiisinestsseressasssrsaesssssssssssnsessessasssssns
5.5. Computing Medians and Quantilescccevniinseninniinseniiosnnne
5.6. Pattern Matching against Streamsc.ccoccivviiiniiininenninns

6. Connecting Prolog with Databasesc.ciiinmiencnncnnne.

6.1. Stream Processing as a Common Model for Prolog and DBMS

.....................................

.....................................

.....................................

.....................................

....................................

00 th W W

10

13

15
15
16
17
19
22
23
24

26
26
27
29
31

33
33
34
36
37
39
42

R E

i -

6.2. Coupling Prolog and DBMS through Stream Processingocovveiimmmnscnscsncscnnnenne.
6.3. Implementation of Prolog-DBMS Couplingueeiimieeiinissisiniinisnnsssinsesnnnns

7. Final R ks
. Final REMATKS ..ottt s srsnsesssnesssssssassssssssacssss s

Stream Data Analysis in Prolog

D. Stott Parker

- Computer Science Department
University of California
Los Angeles, CA 90024-1596

1. Stream Data Analysis

Most people spend a significant amount of their waking existence reflecting about what has hap-
pened to them. The human mind is very effective at recalling, replaying, and editing past events.
It seems that hindsight is a natural part of survival, and it always will be. It would be nice if
computers could somehow be enlisted to help shoulder some of this burden of reflection, or at
least help process it more efficiently! In the following pages we will investigate how Prolog can
help us.

Consider the following scenario. Suppose that we have recently acquired a great deal of cash,
and wish to invest it in the stock market. Wary of stockbrokers, since they do not really seem to
have our best interests at heart, we seek some kind of objective advice about which stocks really
offer the potential for high returns. Of course, many kinds of publicly-available statistics exist
about companies. However, an important summary of how a company is doing is the history of
its stock price quotations. One approach to investment, known as the ‘technical’ approach, is to
analyze this history in an attempt to gain some insight about the future behavior of the stock.
Variations on this approach have made at least some people wealthy [25].

There are many ways to go about this analysis, but one important field to know about is time
series analysis, which is concerned with mathematical techniques for investigating sequences of
data [30]. Time series analysis provides methods for discerning different components of
behavior in sequence data, including:

» real long-term trends
* seasonal variations
* non-seasonal cycles
» random fluctuations.

As stock investors we are basically interested in detecting long-term upward trends in prices.
We certainly do not want to be distracted by random (short-term) fluctuations, and do not want
to be fooled into mistaking cyclic behavior for long-term trends.

How can we discern trends in a history? A popular strategy is to compute moving averages of
the history. The m-th moving average of a sequence of numbers S is just the sequence whose i-
th element is the average of elements i, i+1, ..., i+m—I in S. Moving averages smooth out
fluctuations, and thereby (hopefully) expose real trends. They are simple, and are used very

widely. For example, when its weekly closing price is above the 40-week moving average, the
stock market is called a bull market, and otherwise a bear market.

-2.

Therefore, to decide if we want to invest in AT& T we might want to ask a query like
show the 5-day moving averages for AT&T stock in 1989

and have the answer displayed quickly in a graphic format. If there seemed to be an upward
trend, we could follow up with other queries.

Unfortunately, the stock market does not stay in indefinite upward trends, but follows very pro-
nounced cyclic patterns. Between 1929 and 1977 there were nine major bull markets, and nine
major bear markets, so the average bull-bear market cycle is 5.3 years. Bear markets tend to last
about two years, and bull markets about three years, so the probability being in a bull market has
been about 60% for the past fifty years [27]. Cyclic components of behavior require more
sophisticated techniques than moving averages, and require fairly powerful tools for effective
analysis.

The stock investment scenario discussed here is an instance of the following general problem:
we have an ordered sequence of data records that we wish to analyze. We call this ordered
sequence a stream for the moment. At the very least, we want to get more *‘intuition’” about the
structure of the data. Generally we want to do much more, however, such as compare it with
other streams or check its agreement with a model we have developed. We call this general
problem stream data analysis.

Amazingly, today there is not nearly enough in the way of software to deal with this problem.
Database management systems (DBMS) permit certain kinds of analysis of data. In modern
DBMS users can use a query language (typically SQL) to ask specific questions. DBMS cannot
yet handle stream data analysis, however.

We do not mean to imply that there is no software today that supports stream data analysis. We
are now entering a period where powerful data analysis tools are being combined with external
data sources. For example, DBMS are being combined with statistical analysis packages. This
combination should support ‘exploration’ of the data in the way that exploratory data analysis
systems do, like the § statistical analysis system of AT&T {6]. Also, time series analysis pack-
ages have grown in importance recently, as more applications of event data (historical data, tem-
poral data) have developed [57].

Given all these developments, it is natural to ask about Prolog’s potential for addressing this
problem. Below, once we are armed with some clever techniques, we will see that it is possible
to use Prolog very effectively for stream data analysis.

2. Basics of Stream Data Analysis

Stream processing is a popular, well-established AI programming paradigm. It has often been
used in languages such as APL and Lisp, although it has certainly been applied in other
languages. In this section we review basic stream processing concepts, and how they may be
implemented naively in Prolog. This is enough to introduce the stream data analysis paradigm.

To keep our investigation simple, we begin with list processing. Although list processing is not
the same as stream processing, it is similar, and a good place to start. Stream processing can be
grasped with only a few extensions to list processing concepts.

2.1. Basic Stream Processing

A stream is an ordered sequence of data items. As Prolog users, we can initially conceptualize a
stream as a list of terms. For example, the list

4

quote('F', ‘Nov 04 1988’, S0+3/8, 49+5/8, 495+5/8),
quotae{ ‘IBM’/, ‘Nov {4 1988¢, 121+3/8, 120+1/4, 120+41/4),
quote{ 'TUA’, 'Nov 04 1988‘, 29, 28+3/8, 28+45/8),
quote('X’, 'Nov 04 19887, 28+1/8, 27+7/8, 27+7/8)
]

represents a stream with four items. Later on, it will be important that the stream contain only
ground terms (terms with no variables), so to keep things simple let us assume from now on that
all streams contain only ground terms.

A stream transducer is a function from one or more input streams to one or more output streams.
For example, a transducer could map the stream above to the stream

[4945/8, 12041/4, 28+45/8, 27+7/8]

by selecting the final value from each quotation. This definition includes transducers that imple-
ment translations from streams to streams, aggregate computations, and other functions.

The figure below shows a simple products transducer that takes two streams of numbers as
input, and produces a stream of products as output:

49+5/8. 120+1/4, 28+5/8. 27+7/8, ...]

80, 72, 16, 320, .. |

products

L 3970, 8658, 458, 8920, ...

As transducers are functions, they may be composed in arbitrary ways to form new transducers.
For example, the definition

portfolio valua => sum{ products(closings(quotaes), quantities(holdings))).

uses an expression involving the composition of several transducers. (When single-input,
single-output transducers are combined in sequence, we get pipelining.) Stream processing is
then just the paradigm in which compositions of transducers are used to both define and to mani-
pulate streams.

Although we present them simply as functions, transducers actually relate closely to a number of
other important programming paradigms, including:

¢ automata

* objects (as in object-oriented programming)
* actors

* parsers.

Automata, objects, and actors all accept a sequence of inputs which they use to change their
internal state, while possibly issuing a sequence of outputs. Parsers take a sequence of symbols
as input and produce a summary describing patterns they have recognized. These paradigms are
important precisely because we use them frequently.

While transducers have features of each of the paradigms just mentioned, they are really more
general. For example, since transducers can take parameters, and need not have only a finite
number of states, it is not accurate to think of them as just automata. Perhaps a better way to
look at transducers is as a generalization of automata, objects, actors, and parsers.

For the moment, then, let us define stream processing to be the programming paradigm in which
transducers are composed to define or manipulate streams.

2.2. Kinds of Transducers

Certain kinds of transducers appear frequently, and are worth studying. Abelson and Sussman
[11 point out four kinds of transducer: enumerators, maps, filters, and accumulators.

Enumerators

Enumerators (or generators) produce a stream of values. In Prolog, an enumerator could gen-
erally look as follows:

enumerate (Stream} -
initial state(State),
enumerate (State, Stream) .,

enumerate (S, [X|Xs]) :—
next_state and value(S,NS,X),
I
~r

enumerate (NS, Xs) .
enumerate(_, []).

Here the state variable can be viewed as a parameter, or collection of parameters. For exam-
ple, the following enumerator generates all the integers in a given range:

% intfrom(M,N,Stream) :- Stream is the list of integers [M, ..., M+N].

intfrom(_,0,[]) :- !.
intfrom(M, N, [M|L]) :-
M1l is M+1,
Nl is N-1,
intfrom(M1,N1,L) .

The parameters Mand N can be thought of as state variables.

Maps

Maps transform an input stream to an output stream by applying a specific function to each ele-
ment. We can write maps in Prolog directly as follows:

map f£([X|Xs],[Y[Ys]) = £f(X,Y), map f(Xs, Ys).
map £([1,({]).

A generic version, which applies to any mapping, is as follows:

maplist ([],F, []).

maplist ([X|Xs],F, [Y|¥s]) :-
apply (F, [X, ¥] ,FXY),
call (FXY),
maplist (Xs, F,Ys) .

apply(F,Vs, FVa) :-
F =.. FL,
append (FL, Vs, FVsL),
FVs =,., FVsL.

-6-

This implementation, however, is expensive since =../2, append/3, and call/1 are expensive
primitives. Prolog does not encourage this kind of coding, but instead encourages with transduc-
ers that do explicit tasks like the following:

% squares(L,NL) :- NL is the raesult of squaring each member of L

squares([X|Xs], [¥|Ys]l) :- Y is X*X, squares(Xs,Y¥Ys).
squares{[], [1).

$ project(I,L,NL) :- NL is the atream of I-th arguments of terms in L
project (I, [X[Xsa], [¥|¥a]) :- arg{I,X,Y), project(I,Xs,Y¥Ys).
project (_, [1,[1).
Map transducers arise constantly in practice, since people tend to want to view any given data in
many different ways. For example, note that the result of the Prolog goal
7= L= [

quota('F’, ‘Nov 04 19887, 50+5/8, 49+5/8, 49+5/8),
quote(/IBM/, 'Nov 04 19887, 121+3/8, 120+1/4, 120+1/4),

quote(‘TUA’, 'Nov 04 15887, 29, 28+3/8, 28+45/8),
quotae(‘X', ‘Nov 04 1988’, 28+1/8, 27+7/8, 27+7/8)
1,
project (5,L,NL).

is the binding

NL = [49+5/8, 120+1/4, 28+45/8, 27+7/8]

giving the stream that we wanted earlier.

Filters

Filters transmit to the output stream only those elements from the input stream that meet some
selection criterion. Filters are easy to write in Prolog:

filter({X|Xs],Ys) :- inadmissible (X}, !, filter(Xs,Ys).
filter([X|{Xs], (X]Ys]) :— filter(Xs,Ys).
filter((1,({]).

A specific example of a filter is a transducer that, given a fixed integer q, lets only non-multiples
of @ pass to the output stream:

% non_multiples(L,Q,NL) :- NL is thae sublist of L of nen-multiples of Q.

non _multiples([X|Xs],Q,NL) :- multiple(X,Q), !, non_multiples(Xs,Q,NL).
non_multiples([X|Xs],Q, {XINL]) :- non _multiples(Xs,Q,NL).
non _multiples([],_,[]).

multiple(A,B) :- (A mod B) =:= 0.

We can also develop a generic filter called select/4 that is something like £indal1/3 in Pro-
log, but which works on streams. Its output consists of those elements in the input stream that
simultaneously match a given template pattern and satisfy a given condition:

% select (L, Template,Condition,NL) :- NL is thae sublist of L of all
% terms matching Template and also satisfying Condition.

select([x'xs]'T’c'Ys) - \+ (x:T' Call(C))f !, SQIQCt(xs,TfoYs)-
select ([X|Xs],T,C, [X|¥s]) :- select(Xs,T,C,Ys).
select ((),_,_,[]).

For example, with this transducer the goal

- L =[

quote('F’, ‘Nov 04 1988’, 50+5/8, 49+5/8, 49+45/8),

quote(‘IBM', 'Nov 04 1988‘, 121+3/8, 120+1/4, 120+41/4),

quote(‘TUA’, 'Nov 04 1988’, 29, 28+3/8, 2845/8),

quote(‘X', ‘Nov 04 1988", 28+1/8, 27+7/8, 27+7/8)

1,

select (L, quote(Symbol,Date,High,Low,Close), ((High-Low) > 1), NL).

yields the binding
NL = [quote(’IEBM’, ‘Nov 04 1988’, 121+3/8, 120+1/4, 120+1/4)]

of all quotes whose High and Low values differ by at least one point.

Accumulators

Accumulators compute ‘aggregate’ functions of the input stream. That is, they accumulate or
aggregate all the elements in the stream into a single value. Generically, they might be written
in Prolog as follows:

accumulate(List,Value) :-
initial state(State)},
accumulate (List, State, Value).

accumulate ((X|/Xs},S5,Value) :-—
next_state (X, S,N5),
accumulate (Xs, NS, Value) .
accumulate({}], s, Value) :-
final state value(S,Value).

Perhaps the simplest example of an accumulator is a sum. Using the state variable to be the
partial sum, we get the program below:

% sum(List,Sum) :- Sum is the result of summing the elements in List
sum(List,Sum) :- sum{List,0,Sum).

sum([],V,V} :- |,
sum([X[Xs],01aV,V) :- NewV iz X+01ldv, sum{Xs,6 NewV,V).

Other Kinds of Transducers

It is important to realize that the four kinds of transducers above give only an important class,
and do not make up all possible transducers. For example, the moving averages transducer
below is not an enumerator, map, filter, or accumulator:

% moving avg(M,L,NL}) :- NL is the list of Mth-moving averages of L
% i.e., item [i] in NL is the average of items [i],...,[i+M-1] in L.

moving_avg (M, [1,[1).

moving avg(M, [X|Xs], [Y|Ys]) :-
prefix avg(M, [X|Xs],Y),
moving avyg(M,Xs,¥s).

prefix avg(M,L,A} :-
prefix sum(M,L,0,S8),
A is S/M.
prefix sum(M, ,8,8) :- M =< 0, !,
prefix sum(_, [],S,8) :- !.
prefix sum(M, [X]|Xxs],S0,8) :-
81 is X+80,
Ml is M-1,
prefix sum(Ml,Xs,S1,8S).

There are many different kinds of transducers, just as there are many different paradigms in pro-
gramming,

2.3. Composing Transducers

Transducers can be combined with logical variables in Prolog. Given two transducers £/2 and
g/2, we can easily form their pipeline composition f£g/2 with a single rule:*

fg(s0,58}) :- £(50,51), g(s1,S}.

Displaying these compositions pictorially can often be suggestive. If we use boxes to represent
transducers, then rg can be displayed as follows:

fg

The arrows in these diagrams represent either streams or single parameters. Sometimes these
displays are called dataflow diagrams, or ‘Henderson diagrams’ [1].

*Notice that this rule is the result of expanding the Definite Clause Grammar rule fg --> £, g.
This is not a wild coincidence. We mentioned earlier that there is a close relationship between
transducers and parsers. Much of the transducer code given in the previous section can be rewrit-
ten as DCG rules.

-9-

This much is really pretty obvious to anyone that has programmed in Prolog. What is perhaps
not so obvious to the Prolog programmer is the power of combining transducers from a library,
or ‘kit’, Through composition, we can build up large numbers of useful transducers. This kit
concept is one of the main advantages of the stream processing paradigm: sophisticated trans-
ducers can be built up from simpler existing ones. For example, the transducer below computes
standard deviations using the sum/2 and squares/2 transducers we developed earlier.

% stddev(List,Stddev) :- Stddev is the standard deviation of List

stddev{List, Stddev) :-
length (List,N),
sum(List, Sum),
aquares {List, SqList),
sum (SqList, SumSquares),
variance (N, Sum, SumSquares, Variance),
sqgrt (Variance, Stddev) .

variance(N, , ,0) - N =<1, !.
variance (N, Sum, SumSq, Variance) :-
Variance is (SumSqg - (Sum*Sum/N)) / (N-1).

Diagrams can display the composition of transducers nicely. The figure below shows the com-
position of transducers in stddev:

length
\/ Sl CEBC e o

squares b+ sum stddev

This is not the fastest transducer to form the standard deviation. A faster way would be to write
a single transducer to accumulate the length, sum, and sum of squares of the list simultaneously:

faster stddev(List,Stddev) :-
count_sum sumsq{List, 0,0, 0,N, Sum, SumSquares),
variance (N, Sum, SumSquares, Variance),
sgrt (Variance, Stddev).

count_sum sumsq([],N,S,Q,N,S5,Q).
count sum sumsqg([X|Xs], N0,850,Q0,N,8,Q) :-

N1l is NO+1,

S1 is 804X,

Ql is QO0+X*X,

count sum sumsg(Xs,N1,S81,Q1,N,S,Q).

The point, however, is that new transducers can be constructed quickly by composing

-10-

transducers developed already.

Transducers can also be combined recursively. A classic example of recursive composition is in
the computation of primes via Eratosthenes’ method of sieves:

% primes(M,List) :- List is the list of primes not larger than M.
primes (M, Primas) :- N is M-l, intfrom{2,N,6 Ints), sieve(Ints,Primas).

sieve([X{Xs], [X|R]) :- non multiples(Xs,X,L), sieve(L,R}.
siava([], [1}.

non multiples{[Y¥}¥s],X,NL) :~ multiple(¥,X), !, non_multiplaes(¥s, X,NL).
non_multiples ([Y|Ya] X, [Y|INL]) :- non_multiples(Ys, X ,NL).
non_multiples([],_,[1).

multiple(A,B) :- (A mod B) =:= 0,

This defines the enumerator primes/2 to be a combination of an enumerator intfrom/3 and a
recursive filter sieve/2. Displaying sieve diagrammatically requires some innovation. The
diagram below of Henderson [38] represents the recursive use of sieve with a dashed box, and
the breakdown of the stream into its head and tail (through use of the ‘cons’ functor [_|_1) with
a triangle.

intfrom | non_multiples |+ sieve

primes

2.4, How Stream Processing Differs from List Processing

We have treated streams like lists above to introduce the ideas of transducers and stream pro-
cessing. Two important things differentiate stream processing from list processing.
(1) Infinite streams.
A stream may represent an infinitely long (non-terminating) sequence of values. For exam-
ple, the following sequences are infinite streams:

[1,1,1,1,1,...] % the stream of ones
[1,2,3,4,5,...] % the stream of positive integers
[2,3,5,7,11,...] & the stream ¢f prime numbers

In Prolog, some infinite streams can be constructed as infinite lists, by exploiting features of
Prolog’s unification. For example, executing

?- Onas = [1|Ones].

quickly creates a structure representing infinite list of ones.* However, this is not a general

*Using unification to create such ‘circular terms’ can be dangerous, unfortunately, so we have to
discourage it. First, printing the results of executing this goal (its bindings) will never terminate in

-11-

way to create infinite lists, since it cannot be used to produce the stream of prime numbers,
for example.

(2) Lazy evaluation.
Stream processing includes the use of lazy evaluation, a ‘demand driven’ mode of compu-
tation in which elements of a stream are produced by a transducer only on demand.
Although programs are written as though the stream is completely available, actually the
elements of the stream are produced only incrementally. (This permits us to use infinite
streams.) Thus we integrate a view of the stream as a single object with a view of it as a
sequence of objects. Lazy evaluation is a computation scheme in which goals are evaluated
only on demand.

By contrast, eager evaluation is a mode of computation in which elements of a stream are
produced immediately. Most programming languages, including Prolog, normally act in an
eager way. That is, normal behavior is to evaluate a goal to completion when it is given to
the Prolog interpreter.

Lazy evaluation permits us to apply some algorithms that are difficult to use otherwise. For
example, lazy evaluation can be used with the algorithm above to compute the infinite list of all
prime numbers. Each time a new prime number is demanded of sieve, it produces a new call
to itself and a call to the filter non_multiples, which eliminates all multiples of the head of the
stream that was passed to its sieve. All computation can be done on demand.

The list processing programs above cannot handle infinite streams, and do not implement lazy
evaluation. For example, if we tried to compute the stream of all prime numbers with the Prolog
program above, we would never get past the intfrom/3 subgoal! Instead, we would spend our
lives developing some prefix of the infinite list of integers.

Although list processing can be accomplished easily in Prolog, it is not so obvious how stream
processing can be accomplished in Prolog. We will come back to this problem shortly.

2.5. A Brief Survey of Stream Processing

Stream processing is a technique that has traditionally been used in languages such as APL and
Lisp. Itis a powerful paradigm that can be viewed in several different ways. The reader review-
ing the literature is at first struck by the number of approaches that have been taken towards it:

(1) Streams are lists, whose successive elements are evaluated lazily (i.e., evaluated only
on demand).

many Prolog systems, Second, unification without the occur check can lead to unsound infer-
ences. For example, with the program

less_than(X, 1+X).
surprise :- less_than{l+N, N).

the goal ?- surprise will succeed quietly, giving us the impression that there exists a number
such that 1+n is less than N, Third, and most seriously, in goals such as

?2- X = {1]X], ¥ = [1]¥]), X =Y.

the third unification will loop without halting in many Prolog implementations. We need an ap-
proach for representing infinite streams that avoids these problems.

-12-

(2) Streams are functions yielding a pair, whose first element is a value and whose second
element is a closure (a functional expression to be evaluated, and a context or environ-
ment in which to evaluate it).

(3) Streams are just sequences of values. Functions that operate on streams iteratively can
be composed and optimized using existing compiler optimization techniques.

(4) Streams are special instances of infinite objects. These infinite objects require special
computation strategies, including lazy evaluation.

(5) Stream processing is a kind of coroutining, allowing different parts of a computation
to be suspended and resumed as necessary.

(6) Stream processing is a kind of dataflow processing, in which the objects being pro-
cessed are sequences.

(7) Sweam processing is a kind of ‘normal-order reduction’, in which computation
proceeds by repeatedly evaluating the outermost, leftmost subexpression of a larger
expression.

These points of view are equivalent, but they have different emphases that can lead to very
different implementations.

One of the first presentations of stream processing was explored by Burge [16], an elegant tour
of examples showing the potential of the paradigm, which appeared in more expanded form in
[17]. Burge viewed streams as functions, using the second approach above. He drew directly on
the presentation of Landin in [43] (cf. in particular p.96), and Burge credits Landin as being the
first to formalize the notion of a stream in 1962.

In 1976 the concept of lazy evaluation was popularized as an alternative evaluation scheme for
functional languages [29, 37]. In chapter 8 of his book on functional programming [38], Hender-
son summarized basic material on lazy evaluation known at the time, and showed how it
corresponds directly to coroutining among function evaluations. This has the benefit that certain
computations in networks of processes [41] can be shown to be evaluated neatly with lazy
evaluation. An extended presentation of the material in Henderson’s book, emphasizing stream
processing programming techniques, is in section 3.4 of [1]. A recent summary of work on lazi-
ness and stream processing can be found in Chapters 11 and 23 of Peyton-Jones’ book [60],
which among other things discusses the implementation of Miranda, a lazy functional language.
Today lazy evaluation is part of a number of functional programming languages.

A rather different view of stream processing is offered by Goldberg and Paige [33]. The authors
take the point of view that ‘stream processing is a technique that seeks to avoid intermediate
storage and to minimize sequential search’. From this perspective, stream processing amounts
basically to loop fusion, an optimization technique presented by Allen and Cocke for combining
consecutive Fortran do loops into a single loop in [2]. Goldberg and Paige give a history of
stream processing from this perspective, including applications that have been proposed for it in
file processing, data restructuring, and above all database query processing. This point of view
is echoed by Freytag for database query processing in [28].

Independently, stream processing in databases has been proposed a number of times in the past.
First, streams naturally arise in functional data models, and a number of important functional

-13-

models have been developed in the past decade [47,62,63]. Buneman’s functional query
language FQL, reminiscent of Backus’ FP language, included lazy evaluation [13,15]. Recent
proposals for including lazy evaluation in databases include [35, 36].

2.6. The Stream Data Analysis Paradigm

In stream data analysis, we put all of our data in the form of streams, and all of our analysis tools
in the form of transducers. Just as in a functional programming environment, these transducers
should be viewed as basic building blocks that can be accessed whenever necessary by data
analysts.

A sample list of transducers is presented below, using functional syntax. Although they seem
insignificant individually, as a group they become quite powerful.

Expression Result

agg(Op,S) result of applying infix (binary) operator Op to stream S
Opcanbe +, *, A, v, min, max, avg, sum, count, etc.

append($1,52) concatenation of 51 and 52

avg(S) average of terms in stream S

comparison(Rel,$1,52) stream with ith value 1 if (S1[i] Rel S2[i]), otherwise O
Rel can be =, <, », =<, >=, ==, \=, =\=, \==, el¢.

constant_stream(C) infinite stream of constant C

constant_streamn({C,N) stream of constant C of length N

length(S) number of terms in stream S

difference($81,52) difference of 51 and §2

distribution(D) streamn of values following distribution description D

first{N,S) stream of the first N elements of stream §

intersect($1,52) intersection of S1 and §2

intfrom(N) mfinite stream [N, N+1, N+2, ...]

intfrom(N,M) finite stream [N, N+1, N+2, ..., M]

keysort(S) result of keysorting stream S

lag(S,N) stream with constant 0 repeated N times, followed by S

maplist(F,S) stream of results F(X) for each term X in stream S

max(S) maximum value of terms in stream §

merge(51,82) interleaving of 81 and S2

min(8) minimum value of terms in stream S

moving_avg(M,S) M-th moving average of stream S

naiuraljoin(S1,52) join of 51 and 52

project{N,S) stream of Nth arguments of each term in stream §

repeat{S,N) stream with every element of S repeated N times

reverse(S) reversal of stream 8

select(T,C,S) stream of terms in 8 that match T and satisfy C

sort(8) result of sorting stream S

stddev(S) standard deviation of terms in stream $

sum(S) sum of terms in stream S

sumsq(S) sum of squares of termis in stream §

union(§1,82) union of S1 and §2

This list resembles that of the S data analysis system [6]), which extends it only with a few statist-
ical operators. Collections like this one can be useful in many surprising contexts. Waters [68]
showed that sixty percent of the programs in the Fortran Scientific Subroutine Package can be
viewed as single-input, single-output stream transducers of the kinds we discussed earlier.

It is important to mention that any ordered sequences of data items can be treated as a stream,
For example, arrays of data can be treated like streams. Thus many matrix algebra operators

-14 -

also can fit in the stream data analysis paradigm. This is sometimes cited as a grounds for suc-
cess of the APL programming language, NIAL [46], and the Nested Array model of data upon
which both are based [48,49]. These languages include not only matrix algebra operators and
the list of operators above, but also the ability to define higher-order operators on streams, such
as aggregate operators (min, max, sum, etc.), APL’s reduction operator, maplist, etc.

The stream data analysis paradigm has proven itself in both statistical and scientific areas. It is
now migrating to other fields, as increasingly better understanding of data is required by all

applications in science and business. Thus, it is important to be able to capture this paradigm in
Prolog.

-15-

3. Limitations of Using Prolog for Stream Data Analysis

At first glance, Prolog seems to be an excellent starting point for stream data analysis. There are
at least two reasons for optimism:

(1) Today, Prolog is arguably the best existing candidate for a language combining data pro-
cessing with ‘intelligent’ analysis functions. It integrates relational database functionality
with complex structures in data, and its logical foundations provide many features
(unification and pattern matching, logical derivation and intensional query processing,
backtracking and search, and more generally declarativeness) important in high-level
analysis. It naturally supports ‘expert system’ techniques for interpretation of data.

(2) Prolog is flexible. It is an outstanding vehicle for rapid prototyping, and permits access to
systems that perform computationally intensive tasks better than it. Much of data analysis
is of a ‘rapid prototyping’ nature — one wants to ‘get a feel’ for the data, without spending a
great deal of time doing it.

Nevertheless, Prolog has real limitations for large-scale applications such as stream data
analysis. A number of complaints have been leveled against today’s Prolog systems for stream
processing (and other applications), including:

* Prolog requires lots of memory

+ Prolog implementations of atoms are inadequate

Prolog requires stack maintenance

Prolog’s I/O mechanisms are inadequate

Prolog’s control mechanisms are inadequate

Prolog has an impedance mismatch with database systems.

*

*

We will see how most of these problems can be circumvented. Some of the problems may be
only transitory, and will disappear with better Prolog implementations, cheaper memory, and
new operating systems. Also, some of these problems are not Prolog-specific at all, but rather
problems that arise in most high-level languages. In any case, programmers that are interested in

stream processing applications should be aware that the problems exist, and they are VETy Serious
problems in some systems today.

3.1. Prolog Requires Lots of Memory

Prolog systems today consume a relatively large address space. Every Prolog image is built with
the following areas:

(1) The Control Stack (sometimes called the ‘local stack’)
Like most programming languages, Prolog uses a stack to manage calls to predicates.
When a predicate call occurs, a frame is pushed on the stack to record the call and the argu-

ments passed. The control stack is also commonly used to hold ‘choice point’ frames to
implement backtracking.

(2) The Heap (sometimes called the ‘global stack’)
Prolog goals will create structures as a result of unification against program clauses. These

structures are created by allocating cells incrementally from the top of the heap. Since the

structures can be freed as soon as the goal that created them fails, the heap can be imple-
mented as a stack that is popped on failure.

-16-

(3) The Trail
All bindings that are made in the process of executing a goal must be undone if the goal
fails. The unification routine uses the trail as a stack to hold information that tells how to
undo these bindings when failure occurs.

(3) The Atom Table (sometimes called the ‘name table’)
The names (character string representations) of all atoms in Prolog are stored in a large
table.

(4) The Database (sometimes called the ‘code space’)
All asserted clauses are stored as data structures in an area called the database.

These areas can each grow to be quite large. As a consequence, moderately large Prolog pro-
grams run as processes with a memory image of several megabytes. Even though Prolog pro-
grams do show locality in their memory references [66], machines without substantial amounts
of memory may produce poor Prolog performance due to swapping overhead. A related problem
is that since most Prolog implementations do not share text among processes, it can be very
difficult to run several large Prolog processes on one machine. Parallel Prolog systems may
eventually eliminate this problem.

3.2. Prolog Implementations of Atoms are Inadequate

Prolog systems typically operate without a string datatype. Instead, atoms are used to represent
strings in most situations. An atom is essentially a pointer to a string in the atom table. As new
atoms are introduced into the Prolog system, they are interned, i.e., entered into the atom table
and replaced by a pointer. The main benefit of this implementation is speed: checking whether
two atoms unify can be accomplished very quickly with just a comparison of pointers (one
machine instruction), while checking whether two strings are equal requires calling a subroutine
on most machines. This implementation of atoms is basic to most Prolog implementations
today, and cannot really be changed.

Usually, when string manipulations must be performed in Prolog, lists of integers (representing
ASCII codes) are used to hold strings. The name/2 predicate is used for conversion between
atom and list representations. This approach to string manipulation is, of course, quite elegant.
String processing is accomplished with only minimal extension of the language, resting on the
existing atom mechanism and list processing capability. However, one problem with this
approach is that it is extremely inefficient. A more serious problem is that it makes Prolog
unable to cope with large-scale data processing, since Prolog systems can store only a modest
amount of string data in the atom table.

If we connect a stream of data with Prolog, the strings in the stream will not be in the Prolog
atom table when they are encountered. The question is: should strings in the input stream be
converted to Prolog atoms as they are encountered? If the answer is no, we will pay a price in
unifying Prolog atoms with these strings, and at the very least will have to extend the internal
unification primitives to handle strings. If the answer is yes, we run the risk of overflowing the
Prolog atom table. (And: when the stream is large, this risk is not just a risk, but a certainty.)

To appreciate this problem, consider the following very simple program:

-17 -

% print stream(Filename) :- all terms in file Filename are printed

print_stream(Filename) :-
open (Filename, read, Dascriptor),
read (Descriptor, Term),
print_stream term(Term,Descriptor}.

print_ stream term(end of file,D) :-
! r
close (D).
print_ stream texm(T,D} :-
print (T),
nl,
raad (D, NT),
print_ stream term(NT,D).

This innocuous-looking program will not work for most large files. Whenever the terms it reads
contain enough atoms to overflow the atom table, it will abort in failure.

Many approaches have been proposed to answer the question above. They include adding a
string datatype to Prolog, and adding periodic garbage collection of the atom table. These
approaches require significant amounts of work, unfortunately, and are unavailable in most Pro-
log systems [55].

3.3. Stream Processing Requires Stack Maintenance

Stream processing programs are basically iterative: the program repeatedly accepts a new input
from a stream, does something with it, and incorporates the input into its current ‘state’ and/or
produces some output stream element based on the input and its state.

Unfortunately, it turns out that iteration in Prolog (and Lisp, for that matter) can cause stacks to
overflow. Specifically, when iterative programs read streams that are arbitrarily long, it is likely
that Prolog stack overflows will occur before the program finishes. To guarantee a program will
work for arbitrarily long streams requires some understanding of stack maintenance.

There are basically two ways to write iterative programs in Prolog:

* recursion
* repeat-fail loops.

Recursion is the natural way to perform iteration. The following simple program sums a list
recursively:

% sum(List,Sum) :- Sum is the result of summing the elements in List
sum([],0) :- !.
sum{[X|Xs],Sum) :- sum({Xs,XsSum), Sum is X+XsSum.

Unfortunately this program has a serious problem: when the input is a very long list, the pro-
gram can overflow the control stack. Each time a list member is inspected by the sum predicate,
its recursive call allocates a new control stack frame. This recursion will lead to control stack
overflows when the input list is very long.

~18 -

Happily it turns out that we can avoid control stack overflows by using tail recursion. A tail
recursive version of the program above looks as follows:

% sum(List,Sum) :- Sum is the raesult of summing the elements in List
sum({List,Sum) :~ sum(List,0,Sum)}.

sam({[],V,V) :=- 1.
sum{[X|Xs],01dV,V) := NewV is X+0ldV, sum(Xs,NewV,V).

This program is ‘tail recursive’ in sum/3. In other words, the last goal in the last clause of
sum/3 is a recursive call to sum/3. The importance of tail recursion is that the control stack
frame for a tail recursive predicate is re-used by the recursive subgoal. With the program above,
this means that we can sum an abitrarily long list with only one control stack frame for sum/2,
one for sum/3, and whatever is needed by is/2. This reclaiming of control stack frames is
called Tail Recursion Optimization (TRO).* TRO thus solves some problems of control stack
usage.

Generally speaking, it is a good idea to write iterative programs as tail recursive programs.
Unfortunately these programs can still have storage use problems. Tail recursive programs can
allocate cells on the Prolog heap for data structures constructed at each step of the recursion.
When the stream being processed by a tail recursive program is very long, we run up against the
problem of heap overflows.

For example, the program

squares([X|Xs], [Y|¥s]) ;- ¥ is X*X, squares(Xs,¥Ys).
squares{([],[]).

creates a list of squares of length as long as the first. But both lists remain in their entirety on the
heap until the goal that called squares/2 fails.

To avoid heap overflows, we must use a Prolog system with Garbage Collection (GC). Where
TRO permits re-use of control stack frames by iterative programs, GC permits storage structures
allocated by previous iterations to be reclaimed. Basically, it looks through the heap for data
structures that are no longer actively pointed to by variables, marks their cells for reclamation,
then compresses the heap by reclaiming all marked cells.

Not all Prolog systems provide complete GC and TRO. (In fact, Prolog interpreters can defeat
TRO and GC even though the underlying system supports them for compiled code.) But without
them, stream processing cannot be done with recursive programs.

*More accurately, it could be called Last Call Optimization, since the control stack frame for a

goal can always be reclaimed when calling the last subgoal in the last clause for the goal. For ex-
ample, with the program

P :-q, r.
p - s, £, u.
P oi- ¥V, W.

if in executing the goal ?- p we get to the subgoal w, then the control stack frame allocated for p
can be re-used as the frame for w. At that point, execution of p is complete except for executing
%, 50 p's control stack frame can be used by w.

-19-

There is an alternative to recursion that can be used successfully when we are reading the stream
from a file: repeat-fail loops. The sum program above can be written with a loop that repeat-
edly reads a number and adds it to the current sum.

% sum(Sum) :- Sum is the result ¢of suming all numbers read.
sum({Sum) :-
assarta(’ ¥¥sum’ (0)),
repaat,
read(X),
add (X},

X == end_of_ file,
retract (' $%sum’ (Sum)),
r.

add({Xx) :-
numberx {X),
retract (/ $¥sum’ (OldSum)),
NewSum is X+0ldSum,
asserta (’ $%sum’ (NewSum)),
'

add().

Repeat-fail loops are inelegant, to say the least. Worse than this, they are usnally awkward to
write, and require the programmer to use assert and retract (or other primitives with side-
effects) to save information obtained in the loop. Both assert and retract are extremely
slow, requiring milliseconds to complete in most Prolog systems. Repeat-fail loops do have one
important feature, however: they will not overflow the Prolog stacks. The only storage danger
is that a program may overflow the database area provided for asserted clauses.

So, for doing iteration on streams we have a choice. If we wish to write our programs as recur-
sive list manipulators, then they must be written tail recursively, and we must use a Prolog sys-
tem with Tail Recursion Optimization and Garbage Collection. Alternatively we can write pro-
grams as repeat-fail loops around either I/O calls, asserts and retracts (or some other primi-
tives with side effects). These choices are not attractive.

3.4. Prolog’s I/O Mechanisms are Inadequate

Real data streams often come from files and external devices, sometimes available over com-
puter networks. Therefore, real stream processing requires a comprehensive set of I/O primi-
tives. No Prolog standard currently exists for these, and many Prolog systems have little in the
way of I/O support. This means that, first of all, [fO primitives must be added as needed to the
Prolog system as ‘foreign functions’.

For example, if we wanted to perform database I/O, at minimum we would need to add some-
thing like the following primitives:

open_relation(Relation/Arity,Cursor)

-20 -

Opens the database relation Relation/Arity for sequential retrieval, retuming the
descriptor Cursor for subsequent accesses.

retrieva {Cursor, Term)

Retrieves a tuple from the database relation indicated by cursor. The tuple is
returned in Term, and takes the value end of £ile If no further tuples remain. This
predicate does not backtrack. Although cursor does not change after the call, subse-
quent retrievals will obtain the next tuple in the relation.

close_relation (Cursor)
Terminates retrieval from the relation indicated by Cuzsor.

An interface like the one provided by these predicates accomplishes basically what we need for
database 1/O, but hardly resolves the problem.

An unfortunate problem is that I/O managers expect client programs to manage their file descrip-
tors and cursors, while Prolog’s control model permits it to forget about them completely.
Specifically, a Prolog goal’s control frame can be popped off the stack before all choices of
records in the table have been exhausted, leaving the cursor or file descriptor ‘dangling’.
Prolog’s stack-oriented implementation makes it difficult to figure out when to close a cursor or
file descriptor that has been opened.

For example, consider the following program.

my portfolio_value (Date,Value) :-
quote ('F’ ,Date, , ,FPrice),
quote (' IBM’ ,Date,_,_,IBMPrice),
quote (' TUA’ ,Date,_,_,TUAPrice),
quote(’X',Date, ,_ ,XPrica),
Value is FPrice*80 + IBMPrice*72 + TUAPrice*1l6 + XPrice*320,
|

% transparent interface to relational database from Prolog
quote (Symbol,Date, High, Low,Close) :~
open_relation(quote/5, Cursor),
repeat,
ratrieve (Cursor, Term),
{
Term = cquote(Symbol,Date, High, Low,Closa)

hil

Term = end of file,
close relation(Cursor),
!

).

Although this program runs correctly, every time we use portfolio value/2 we create four
cursors and leave them open!* After computing a several portfolio values we can use up all the

*This concern over cursors might seem unimportant, but it can be deadly serious. In shared data-
base systems, the act of opening a relation for read access will obtain a read lock for the relation.
Forgetting to close the cursor is then the same as forgetting to unlock the relation, which will

-21-

cursors provided by the database interface.

Improved Prolog technology has provided a solution to this problem. When the SICStus Prolog
goal undo(G) is executed, G will be executed whenever the goal’s control frame is popped off
[18]. Thus if we change the definition of quota/5 above to the following program, cursors will
be reclaimed as soon as the goal that initially called quote/s5 fails:

quote (Symbol,Date, High,Low,Close) :-

open_ralation (quote/S, Cursor),
undo (close_relation{Cursox)),
% this close relation goal is executed when the
% current quote/5 goal is popped off the stack.
repeat,

ratrieve (Cursor, Term),

(

Texrm = quote (Symbol,Date, High,Low,Close)

Term = end of file,
!

).

The undo/1 primitive is very useful, and will find its way into more Prolog systems in the
future.

Another serious problem is that I/O primitives like read typically cannot be used directly by
nondeterministic programs, because they have side effects. Each read from a cursor modifies the
cursor. There is usually no way to ‘unread’ what one has read, so backtracking programs such as
nondeterministic parsers will not work with primitives like read.

The problems just mentioned can be summarized in a more general way: the concept of cursors
has not yet been cleanly integrated into Prolog. Only recently have open-read-write-close
primitives been added to the language, supplementing the simple see-read-seen and tell-
write-told primitives that were available. However, this extension is incomplete. For exam-
ple, in Prolog there is still no cursor-oriented interface to the Prolog database [56]. The only
direct interface to the database is through the clause primitives. Since this interface works
only by backtracking, it is not possible to implement predicates like bago£/3 and findall/3
without using primitives like assert that have side effects. These problems could be avoided if
we had an interface like the one above for external database relations that could be used for
predicates:

opan_pradicate (Predicate/Arity, Cursor)
retriaeve (Cursor,Clausa)
close (Cursor)

We are not arguing that the interface should look precisely like this; we are pointing out only
that no such interface exists, and that Prolog should be extended with one,

prevent anyone from modifying the relation, and probably cause deadlocks.

-22-

Most Prolog systems lack other important I/O features. Specifically, they have no interrupt han-
dling mechanisms or asynchronous I/O primitives. These features are especially important in
stream applications where high performance is critical. Fortunately, Prolog systems may permit
these extensions without serious changes.

3.5. Prolog’s Control Mechanisms are Inadequate

General stream processing programs must selectively read data items from multiple input
streams, process these items, and then selectively write multiple output streams. To do this
requires the ability to coroutine among stream processing goals. That is, the execution of pro-
ducers of streams must be interleaved with the execution of their consumers.

It is not obvious how to achieve coroutining in Prolog. In ordinary Prolog systems, backtracking
is the only control mechanism for clause selection, and this prevents interleaved execution of
goals.

An example will make this point clear. Suppose that stock/3 and quote/S5 are relational data-
base predicates whose clauses are stored in sorted order by their stock symbol, and we wish to
find all results of the Prolog goal

?- atock (Symbol,Name, Addrass),
quote (Symbel, 'Oct 19 1987’ ,Price,_,Price).

This will give us the stocks whose closing price matched its high price on Black Monday. Find-
ing all results with backtracking will require looking through all of the clauses of the quote
predicate for each clause in the stock predicate. This takes time proportional to the product of
the number of clauses of the predicates.

A much better way to perform this query is by performing what in the database field is called a
merge join. A merge join of two predicates with clauses in sorted order works by interleaving
(i.e., coroutining) a sequential scan through the clauses of the two predicates, in precisely the
same way that a merge sort interleaves scans through two sorted files. It takes time proportional
to the sum of the number of clauses of the predicates. For the goal above, a merge join would
work by repeatedly:

(1) retrieving the next clause stock (Symbol,Nama,Address) from the stock predicate;

(2) given the symbol value obtained in step (1), retrieving (scanning for) the next clause
matching quote (Symbol,’Oct 19 1987',Price,_,Price) and yielding it as a result;

(3) on backtracking, resuming the scan for quote clauses as long as further results are found;

(4) as soon as the quote scan fails to match, however, resuming the scan for the next stock
clause in step (1) above.

The specific problem we are pointing out is that Prolog is currently not capable of performing
merge joins for predicates in its database. Fortunately, Prolog can be extended to do so by
adding a cursor-like interface to the database [56], like the one described in the preceding sec-
tion. The more general problem we are concerned with is that coroutining is not an easy thing to
do in Prolog. Shortly we will see how coroutining can be implemented by developing a stream

-23.

processing meta-interpreter with better control mechanisms.

Prolog systems supporting coroutining as a basic feature have been proposed [24], but these sys-
tems are complex and are not generally available. Also, many stream processing extensions of
Prolog have been proposed in the past few years. For example, many parallel logic program-
ming systems have been developed essentially as stream processing systems. Typically, these
systems fall into one of several camps:

(1) They resemble PARLOG [23] and the other ‘committed choice’ parallel programming
systems {Concurrent Prolog, GHC, etc.).

(2) They introduce ‘paraliel and’ or ‘parallel or’ operators into ordinary Prolog [44].

(3) They are extended Prolog systems that introduce streams by adding functional pro-
gramming constructs [26,42,45,50,65]. The thrust of this introduction is to make
Prolog more like either Lisp or Smalltalk or both,

Our approach is like that of the third camp, but is more conservative in that no real change or
extension is made to Prolog. We present this approach in section 4,

3.6. Prolog has an Impedance Mismatch with Database Systems

It is difficult to interface Prolog systems with DBMS because they seem inherently mismatched.
The control model of Prolog is one of finding a single ‘proof’, selecting one clause at a time and
backtracking when necessary to consider alternatives. The DBMS control model, by contrast, is
one of batch processing: large queries are run at one time, and all alternatives are considered
simultaneously. The fundamental question is how one can interface a ‘set-oriented’ system like
a DBMS with a ‘single-clause-oriented’ system like Prolog.

The query shown above illustrates some of the issues here. Let us assume, for example,
quote/5 is indexed on its first argument and date together and has 100,000 clauses, but
stock/3 is not indexed and has 1000 clauses. Then the query above

?- stock (Symbol, Name, Addrass),
quote (Symbel, 'Oct 19 1987 ,Price,_ ,Price).

will take enormously less time than the ‘equivalent’ query

7~ quote (Symbol,‘Oct 19 1987’ ,Price,_ ,Price),
stock (Symbol, Name, Address) .

If the first query were to take one minute to find all solutions, the second query would take more
like 70 days (100,000 minutes).

A DBMS may run this query query efficiently. If we issue a query to the DBMS as

?- sql _query(’'select *
from stock, quote
where stock.symbol = quote.symbol
and quote.date = "Oct 19 1987"
and quote.high = quote.close’).

then the DPBMS can, and will, optimize the query in the most advantageous way possible, and
retum the results much more quickly than the Prolog approach. (The results obtained by this

-24 -

goal are understood to be asserted in the Prolog database.)

Many attempts have been documented over the past few years in connecting Prolog with Rela-
tional DBMS, but for the most part they amount to ‘glue jobs’ (in the all too accurate words of
Mike Stonebraker). These connections are inefficient and not practical for large-scale stream
processing applications. Later, we will show how stream processing provides a way to integrate
Prolog and DBMS in an elegant way.

3.7. Summary: Problems and Solutions

We have shown that, without changes, Prolog has many limitations that make its use in stream
processing a challenge. We have also shown that these limitations can be circumvented with
modest improvements in Prolog technology or adroit programming techniques:

Prolog implementations of atoms are inadequate

The atom table used in almost all Prolog implementations has the serious flaw that it can
overflow. Introduction of a string datatype will mostly eliminate this problem, although
overflow will then still be a possibility with poorly-written programs.

Currently, processing of very large streams can be done by restricting the data analyzed to
be numeric, with perhaps a bounded amount of string data (e.g., all stock symbols). This
numeric restriction is annoying, but permits a great deal of useful analysis.

Prolog requires stack maintenance

Restricting stream transducers to be deterministic, tail recursive predicates avoids most
problems in processing of large streams in Prolog systems with Tail Recursion Optimiza-
tion (TRO) and Garbage Collection (GC). TRO eliminates the danger of stack overflows,
and GC also avoids the problem of heap overflows that transducers can encounter in
transforming large streams.

Prolog’s I!O mechanisms are inadequate

Prolog should be augmented with new primitives, including more comprehensive 1/0O inter-
faces, the undo/1 primitive of SICStus Prolog, and some cursor-like mechanism for
accessing the Prolog database [S6]. Also, it is desirable to develop {(expensive) versions of
I/O primitives like read that are side-effect-free, i.e., that can back up in their streams, so
that nondeterministic programs can be applied to those streams that are accessible only
through 1/O (streams that will not fit entirely in the Prolog heap, for example).

Prolog’s control mechanisms are inadequate
Prolog’s poor control seems at first to be the biggest impediment to its use in stream pro-
cessing. Some problems are avoidable by adding new primitives. For example, the

cursor-like mechanism for accessing the Prolog database just mentioned can be used to per-
mit Prolog implementation of merge joins in particular, and coroutining in general.

With a little cleverness, we can overcome most control! problems with no change to Prolog.
In section 4, especially 4.4, we will see how Prolog can be extended with a meta-interpreter
that permits general stream processing.

Prolog has an impedance mismatch with database systems

-25-

Prolog and DBMS work with different models of data processing. Where Prolog operates
on single sets of bindings at a time, DBMS work on whole predicates at a time. In section

6, we will see that both of these models can be integrated under the model of stream pro-
cessing.

Thus most problems can be solved without sweeping changes, but some problems cannot. In
particular, there is no simple solution to the problem that Prolog requires lots of memory. For-
tunately, this does not seem to be a long-term problem, but rather a consequence of current
memory prices, so it may be a problem that advances in technology will permit us to ignore.

-26 -

4, Log(F): A Rewrite Rule Language in Prolog

We pause here to study Log(F), the language we will use shortly to write stream transducers that
run in Prolog. Log(F) is a combination of Prolog and a functional language called F*, developed
by Sanjai Narain at UCLA [52,53]. Log(F) is the integration with Prolog of a functional
language in which one programs using rewrite rules. This section reviews the major aspects of
Log(F), and describes its advantages for stream processing,.

4.1. Overview of F* and Log(F)
F* is a rewrite rule language. In F*, all statements are rules of the form

LHS => RHS

where ras and RdAs are structures {actually Prolog terms) satisfying certain modest restrictions
summarized below.

A single example shows the power and flexibility of F*. Consider the following two rules,
defining how lists may be appended:

append([],W) => W.
append([U|V],W) => [Ujappend(V,W)].

Like the Prolog rules for appending lists, this concise description provides all that is necessary.
The two F* rules are essentially equivalent to the usual Prolog definition

append([], W, W) .
append([U[V],W, [U|L]) :- append(V,W,L).

Log(F) is the integration of F* with Prolog. In Log(F), F* rules are compiled to Prolog clauses.
The compilation process is straightforward. For example, the two rules above are translated into
something functionally equivalent to the following Prolog code:

reduce (append{A,B), C) :— reduce(A, [1), reduce(B,C).
reduce (appand{A,B), C) :— reduce{A, [D|E]) + raduce([D]|append(E,B)], C).
reduce([},]).

reduce([X|¥], [X|¥]).

Unlike. t_he_ rules in many rewriting systems, the reduce rules here can operate non-
deterministically, just like their Prolog counterparts. Many ad hoc function- or rewrite rule-
based systems have been proposed to incorporate Prolog’s backtracking, but the simple imple-

mentation of F* in Prolog shown here provides nondeterminism as a natural and immediate
feature,

An important feature of F* and Log(F) is the capability for lazy evaluation. With the rules
above, the goal

?—- reduce(append([1,2,63],[4,5,6]1), X).
yields the result

X = [1)append{([2,3],1[4,5,6])1.

.27 -

That is, in one reduce step, only the head of the resulting appended list is computed. (Try it!)
The tail, append([2,3], [4,5, 6]), can then be further reduced if this is necessary.

In order for the xeduce rules above to work properly, we need the two rules for] and [_|_1:

reduce({1, []1).
raduca({XiY], [X|Y]).

In F*, the function symbols (functors) like [1 and [_|_1 of terms that reduce to themselves are
called constructor symbols. Below we will call any term whose functor is a constructor symbol
a simplified term. Simplified terms reduce to themselves. Constructors are the things in F* and
Log(F) that implement lazy evaluation, since they terminate reduction.

Where F* computations are naturally lazy because of their implementation with reduction rules,
Log(F) permits some eager computation as well. Essentially, eager computations are invoca-
tions of Prolog predicates. Thus, in the Log(F) rule

intfrom({R) => [N|intfrom({N+1l) 1.

the subterm N+1 is recognized by the Log(F) system as being eager, and the resulting code pro-
duced is equivalent to

reduce(intfrom(N), X) :— N1 is N+l1l, reduce([N|intfrom(N1l)], X).

Programmers may declare their own predicates to be eager. By judicious combination of eager
and lazy computation, programmers obtain programming power not available from Prolog or F*
alone. For a number of useful examples of this combination, see [53].

4.2, F* — A Rewrite Rule Language

In this section we present F* a bit more carefully. F* rules have the form rHs => RaS where
rHs and RHs are terms. These terms are made up of variables and function symbols, which may

or may not be constructor symbols. Certain restrictions are made on r#s and Rrus. After
defining terminology, we list these restrictions below.

Constructor symbols are special function symbols that are not reducible by F*. Examples of
predefined constructor symbols are true, false, [1, [_|_1. Rewrite rules give reduction
relationships between terms. Examples of Log(F) rules are as follows:

if (true,X,Y) => X.

if (false,X,Y) => Y,

and({X,¥Y) => if (X, Y, false).
or(X,Y) => if(X,true,Y).
not {X) => if (X, false,true).

F* rules raS => Ris satisfy the following restrictions [52]:
(a) rHSIis not a variable.

=28 -

{b) rasisnotofthe formc(Ty,...,T,) where ¢ is an n-ary constructor symbol, n 2 0.

() If zusis f(Ty,...,Tp), n 20, then each T; is either a variable, or a term of the form
¢(Xy,...,Xp) where ¢ is an m-ary constructor symbol, m 2 0, and each X; is a variable.

(d) There is at most one occurrence of any variable in rss.
(e) All variables of ras appear in Las.

An F* program is a collection of F* rules. Below is an example of an F* program, provided that
s/1 is a constructor symbol:

aqual{0,0) => tzrue.
equal (s (X),s({Y)) => aqual(X,¥).

lessEgq(0,X) => trua.
lessEq(s(X),s(Y)) => lessEq(X,Y).

sum (0, X) => X.
sum(s (X),Y) => s(sum(X,¥)).

A reduction using an F* program begins with a ground term G produces a sequence of rewrites,
or reductions, of G, and terminates in a term whose function symbol is a constructor. That is,
given a term G, a reduction is a sequence of ground terms Gy, G1, ..., G, such that

(1) G=Gg
(2) Foreachi,0<i <n-1,thereexistsarule f(T'y,...,Tn)=>T such that
(a) Gl' =f(sl9 e :Sm);

(b) Foreach j, 1< j<m,§; is either a variable or recursively has a reduction to T;. If
S; is a variable, we construct the binding 8; = { §; «~T; }. Otherwise we let 6 ; be the
bindings obtained recursively in the reduction of §; to T};

(c) If we let @ be the accumulated bindings 6, ' - - 0,,, then G;4; = T9, where T is again
the right hand side of the rule.

(3) The function symbol of G, is a constructor, i.¢., G, is simplified.

For example, with the program
aqual (0, 0) => true,
equal {s{X),s(¥)) => equal(X,Y).
sum{0,X) => X.
sum{s {X) ,Y) => s{sum(X,¥)).

the term equal(sum(s(s(0)), s{0)), s{s(s(0))) } has the reduction

-29.

equal (sum(s(s(0)),s(0)), s(s{(s(0))))
equal{s(sun(s(0),s(0))), s(s(s(0))))
equal{sum(s(0),=(0)), s(s(0)))

equal (s (sum{0,s(0))), s(s(0)))

equal (sum(0,s(0)), s(0))

equal(s(0), s(0))

equal (0, 0)

true.

In this reduction we alternated applications of the fourth and second rules in the first 6 steps, and
used the first rule in the last step.

The restrictions above are carefully designed to be sufficient for proving soundness and com-
pleteness properties of F* reductions [53]. However, they also have intuitive practical
justifications:

1. F* programs are understood to be used only in rewriting ground terms, terms that do not
contain any variables. That is, if we try to reduce a term T using an F* program, then T
should contain no variables. Restriction {(e) then guarantees that whatever T is rewritten to
will also contain no variables.

2. Restrictions (d) and (e) above mean that F* programs use only pattern matching (matching
of terms with no duplicated variables against ground terms), and not the full power of
unification. Restriction (d) is sometimes called a ‘linearity’ restriction, and avoids
unification. This is actually an advantage! It leads to fast implementations, and in many

situations causes no loss in power. Note that the program above defines equality of terms
without using unification.

3. Restriction (c) is the main restriction on F* rules. It requires that the head of a rule be of
the form

JFTy,....Ty)

where each T; is either a variable, or a term whose functor is a constructor symbol. This
restriction guarantees efficient implementation. Rather than requiring a general equality

theory for pattern matching of arguments, all that is needed is binding to variables, or
reduction to simplified terms.

These restrictions are really very natural, and are easily grasped once one has written a few F*
programs.

4.3. Log(F): Integrating F* with Prolog

Because constructor symbols in F* terminate reduction, we call F* a lazy rewriting language.
Constructors terminate reduction (evaluation) of a term; for further evaluation the constructors
must be removed. Since Prolog has no delayed computation per se, we tend to think of Prolog
computations as eager by contrast with F*,

Log(F) is the integration of F* with Prolog. It therefore combines both lazy F* computations
with eager Prolog computations. This combination has many practical applications. For exam-
ple, in the Log(F) code

-30-

count ([X|S8],N) => count (S,N+1).

the subterrn N+1 is recognized by the Log(F) compiler as being eager, and the resulting code
produced is something equivalent to

raeduce {count {A,N),2Z) :— reducelA,[X|S]), M is N+l1l, reduce{count(S,M),Z).

Arbitrary Prolog predicates can be declared to be eager. Among other predicates, we can intro-
duce a general eager Prolog interface called success/1 that yields the value true if its argu-
ment succeeds when called, and the value false otherwise:

succass (G,true) :- call(G), !.
success (G, false) .

Another eager predicate that can be useful in writing Log(F) rules is reduce itself. With it we
can write rules like

list_ values({H|T]) => [reduce(H) | list_ values(T)].

that force eager evaluation of Log(F) terms when necessary.

With this interface to ‘eager’ Prolog predicates we can develop significant programs with com-
pact sets of rewrite rules. For example, the following is an executable Log(F) program for com-
puting primes:

primes => sliave (intfrom(2)}).

intfrom(N) => [N|intfrom(N+l)].

siave ([U|V]) => [U|siave(filtar(U,V))].

filtex (A, [U[V]) => if(success{U mod A =:= 0), filter(A,V), [U|filter(A,V)]).

The intfrom rule generates an infinite stream of integers. The rule for £ilter uses the eager
Prolog interface succass.

Compilation of Log(F) rules to Prolog is easy to implement in principle. Following the
definition of reductions above, the F* rule

£(r1,...,Tn) => T
can be compiled to the Prolog reduce clause
reduce(f£(Al,...,An), 2) :-

reduce (A1, T1),

‘e
reduce (An, Tn),
reduce (T, Z2).

provided that each of 71, ..., Tnand 7is a nonvariable term. If any of 71, ..., Tnor T
is a variable, the reduction for it in the body of this clause is eliminated. The compilation of
rules with eager primitives, like +and success, is only mildly more complex.

Using this compilation algorithm extended for eager predicate calls, the Log(F) primes program
above would be compiled to the following Prolog rules:

-31-

reduce (primea, 2} :-

reduce (sieve (intfrom(2)),2) .
reduce (intfrom(N) ,2} :-

N1 is N+1,

reduce([N|intfrom(N1)],6 7).
reduce (sieva(dA),2) :-

reduce (A, [U|V]),

reduce{[U|siave(filtar(U,V))],2).
reduce (€illter (A, B),2) :-

reduce (B, [U|V]),

success ((U mod A =:= 0),8),

reduce (if (S, filtex (A, V), [Ulfiltar(A,V)]), B).
reduce (if (A, X,Y),2) :-

reduce (A, true),

reduce (X, Z) .
raduce (1£{A, X, Y),2) :-

reduce (A, false),

reduce (Y, 2) .

raduca { [TV}, [U]V]).
reduce([],[1).
reduce {true, true) .
raduce (false, false) .

success (G, true) :- call(G), !.
success (G, false) .

As an example of execution, if we define the predicate

reducePrint (X) :- reduce(X, [H|T]), write(H - T), nl, reducePrint(T).
then the goal

?- zreducePrint (primeas).
produces the following (non-terminating) output:

2 - siave(filter(2,intfrom{3)))

3 - sieve({filter(3,filter(2,intfrom(4))))

5 - sieve(filter(5,filter(3,filter(2,intfrom{6)))))

7 - siave(filter(7,filter(5,filter(3,filter(2,intfrom(8))))))

4.4. Stream Processing Aspects of Log(F)

The example above shows that Log(F) naturally provides lazy evaluation. Functional programs
on lists can produce terms in an incremental way, and incremental or “‘call by need’’ evaluation
is an elegant mechanism for controlling query processing.

-32-

Furthermore, Log(F) is a superior formalism for stream processing, and thus apparently for
stream data analysis. From the examples above, it is clear that the rules have a functional flavor,
Stream operators are easily expressed using recursive functional programs.

Log(F) also has a formal foundation that captures important aspects of stream processing:

1. Determinate (non-backtracking) code is easily detected through syntactic tests only. A
benefit of the F* restrictions is that deterministic computations are easily detected. If the
heads of rules for a symbol do not unify, and only ground terms are reduced, then the
reduction will be deterministic. For example, with the rules

sum(0,X) => X.
sum (s (X),¥Y) => s(sum(X,¥Y)).

in reducing terms like sum(s(s(0)), s{0)) only one rule can be chosen at any point.
Determinate code avoids the overhead of ‘‘distributed backtracking’ incurred by some
parallel logic programming systems,

2. Log(F) takes as a basic assumption that stream values are ground terms, i.e., Prolog terms
without variables. This avoids problems encountered by parallel Prolog systems which
must attempt to provide consistency of bindings to variables used by processes on opposing
ends of streams.

These features of Log(F) make it a nicely-limited sublanguage in which to write high-powered
programs for stream processing and other performance-critical tasks. Special-purpose compilers
can be developed for this sublanguage to produce highly-optimized code. Log(F) compilers can
be much more sophisticated than the compiler described above. Among other things, they can
ascertain the determinacy of Log(F) rules and prevent multiple reductions of common subex-
pressions.

In section 3 we grappled with the problem that it is not so obvious how to perform stream pro-
cessing in Prolog. Specifically, it is not obvious how to implement control strategies like
coroutining.

Log(F) offers a solution to this problem, since lazy evaluation gives us a method to implement
coroutining. Recall that coroutining basically requires programs to suspend their execution tem-

porarily while the executions of other programs are resumed. The result of lazy evaluation can
be, for example, a term

[partial result | computation_to_resume_ later]

whose tail is a kind of ‘closure’, representing an unfinished computation. Designing transducers
to yield this kind of result is precisely what we need to implement coroutining. In fact, as we
will illustrate with further examples in the next section, Log(F) naturally provides enough to
implement (even recursively-defined) networks of coroutined transducers, and thus demand-
driven stream processing.

-33.

5. Stream Processing in Prolog

The Tangram Stream Processor is an extensible stream processing system that uses Log(F) to
implement stream processing in Prolog. This section develops techniques for stream processing
in Log(F) through a sequence of examples.

5.1. Implementing Transducers in Log(F)

Let us first review how the four basic kinds of single-input, single-output transducers can be
implemented in Log(F). It is remarkable how much simpler they are than their Prolog counter-
parts.

Enumerators
Enumerators in Log(F) are typically very compact:

enumerate => enumerate(initial state).

enumerate (§) => [next value(S) [enumerate (next_state(S})].
enumerate() => [].

The enumerator of integers is easy to develop, and the infinite stream version is even simpler:
% intfrom(M,N) => the list of integers [M,...,MIN].

intfrom(M,N) => if(N=<0, [], [M|intfrom(M+1l,N-1)]).

% intfrom(M) => the list of integers [M,...1].

intfrom(M) => [M|intfrom{(M+l)].

Maps
The generic map transducers for the function £ can look as follows in Log(F):

mapstream([X[Xs]) => [f(X)|mapstream(Xs)].
mapstream({]} => [].

It is easy to develop the higher-order version of mapstream which takes a function as an argu-
ment,

mapstream(F, [1) => [].
mapstream(F, [X|L}) => [apply(F,X) |mapstream(F,L)].

The Prolog examples given earlier can be adapted to Log(F) as follows:

-34 -

% squares(L) => the result of squaring each member of L
asquares { [X|Xs]) => [X*X]|squares(Xs)].

squares{[]) => [1].

% project{I,L) => the list of I-th arguments of terms in L

project (I, [X|Xs])) => [arg{I,X) | project(I,Xsa)].
project{_, [1) => [].

Filters
Filters in Log(F) are like maps, but involve an if-then-else construct.

filter([X[Xs}]) => if(inadmissible (X}, filter(Xs), [X|filter(xs)] }.
filter(f}}) => [].

A good example of a filter is provided by the generic selection transducer.
% select (S, T,C) => the stream of terms in 8 matching T and satisfying C

salact ([X|Xs],T,C) =>
if({ success(\+(X=T,C)), saelect(Xs,T,C), [X|selact{Xs,T,C)]).
select ([],_,) => [].

Accumulators
Thanks to the functional notation again, accumulators are also easy to develop in Log(F):

accumulate (List) => accumulate (List,initial state).

accumulate([X|Xs],5) => accumulate (Xs, next state(X,S5,NewS)}.
accumulate({],S) => final state value(S).

A simple example is the sum transducer.
% sum(Stream,Sum) => Sum is the result of summing the elements in Stream

sum(Stream) => sum(Stream,0).

sum([X|Xa],0ldSum) => sum(Xs, X+0ldSum) .
sum({[], Sum) => Sum.

3.2. The General Single-Input, Single-Output Transducer

The four kinds of transducers above are all special cases of a general single-input, single-output
transducer. An advantage of using Log(F) is that the functional nature of the transducer — a
sequential mapping between input stream items and output stream subsequences — comes out.
Consequently, we can generalize nicely upon the four kinds, A general transducer can be
defined by an initial state and three functions:

A single-input, single-output stream transducer T is a 4-tuple

-35-

(initial state, output, next_state, final_output),

where:
(1) initial state is the state of the transducer when it is invoked;

(2) output maps the current state and current stream input(s) to new stream output(s).
Stream inputs can be ignored. A stream output can be {1, specifying that output
stream is not to be changed;

(3) next_state maps the current state and current stream input(s) to the next state;

(4) final_output specifies the final output(s) to be written on streams when no input is
left.

transduce (Stream) => transduce(Stream, initial state).

transduce([], State) => final output (State).
transduce ([Input [Stream], State) =>
append (
output (Input, State),
transduce (Stream, next_state (Input, State})
}.

Note that although the third rule uses append for the sake of generality, in many cases it is pos-
sible touse only [_|_1.

To grasp how a single-input, single-output transducer can be written with this generalization in
mind, let us consider one example in detail, which we take from temporal database query pro-
cessing. Consider the following temporal database:

holdings ("IBM’, 250, 9/81)
holdings (' TUA’, 230, 9/85)
holdings (TIBM/, 330, 12/86)
holdings (FY, 250, 9/87)
holdings(' IBM', 440, 11/87)
holdings (fTUA’, 0, 12/87)
holdings (L L 400, 12/88)

From this database a cumulative holdings history can be derived with a stream transducer:

holdingsHistory(Holdings) => holdingsHistory(Holdings, []).

holdingsHistozy([], CurrentHoldings) => CurrentHoldings.
holdingsHistory([holdings(S,Q,D) |H], CurrentHoldings) =>
append (

holdingsRecord (S, (,D, CurrantHoldings),
holdingsHistory(H, reduce(nawHoldings (CurrentHoldings,S,0Q,D)))
y.

This transducer is defined by the 4-tuple
([]1, holdingsRecoxd, holdingsHistory, identityMapping)
where identityMapping is the identity mapping:

-36 -

identityMapping(X) => X.

To complete the definition of the transducer, we must give the transduction mappings hol-
dingsRecord and holdingsHistory. These can be defined as follows:

holdingsRecord{ S,Q,D, [])} => [1.
holdingsRecord{ 8,Q,D, [holdings(0lds,01dQ,0ldD,_) |Holdings]) =>
if(olds==s,
[holdings (S, 014Q,014D,D)],
holdingsRecord (S, Q,D,Holdings)

newHoldings([]1, S,Q,D) => [holdings(S,Q,D,_)].
newHoldings ([holdings(S1,Q1,D1,)} |Holdings], 8,Q,D) =>
if(Sl==8,
[holdings(5,Q,D,_) | Holdings],
[holdings (81,Q1,D1,) | newHoldings (Holdings,S,Q,D}]
).
Let holdings be a Log(F) term that yields a stream of the tuples from the 3-column relation

holdings. The output stream obtained by reducing holdingsHistory(holdings) is as fol-
lows: :

holdings (rIBM', 250, 9/81, 12/86)
holdings (' IBM', 330, 12/86, 11/87)
holdings (' TUA', 230, 9/85, 12/87)
holdings ('F’, 250, 9/87, 12/88)
holdings ('IBM', 440, 11/87, _)
holdings (fTUA’, o, 12/87, _)
holdings (g, 400, 12/88,)

5.3. Basic Statistical Time Series Analysis

Many basic time series analysis procedures can be formalized now as stream transducers. First,
the standard deviation predicate we wrote in Prolog earlier can also be written in Log(F) as fol-
lows:

stddev (Stream} => sqrt(variance{count_sum sumsq(Stream,0,0,0))).
varlance ([N,8,Q)]) => 1f(N =< 1, 0, (Q-(S*S/N))/(N-1)).

count_sum sumsq([],N,S,Q) => [N,S,0].
count_sum sumsqg({[X|Xs], N,S,0) => count_ sum sumsq(Xs,6 N+1, S+X, Q+X*X) .

This program assumes the existence of an eager square root function.

A transducer for moving averages is also straightforward to develop:

-37-

moving avgiM, []) => 0,
moving avg({M, [R|T]) => {prefix avg(M, [HIT]) | moving'_avg M,T)].

prefix avg(M,S) => prefix avg(M,M,0,8).

prefix avg(M, ,V,[]) => V/M.
prefix avg(M,N,V, [R|T]) => if(N=<0, V/M, prefix avg(M,N-1,V+H,T)).

Simple linear regression gives a good final example. Given two streams of values, X and Y, we
can find the simple linear regression coefficients by and b that minimize the mean square error

of the approximation Y = b+ bX. Since the mean square error is g ;i —(bo+b1 X)) /n,
=

where n is the number of elements in each of the streams, the coefficients minimizing this turn

out to be
) (é&nwwgﬁngnwn
(3 x2) — (£ Xi)2/n

bo = (R ¥:)in = bi(EXi)/n
i= =
These can be computed in essentially the same way we computed standard deviations.

Log(F) permits us to expand upon conventional statistical time series analysis as we wish. With
the power of Prolog at our disposal, we can build ‘rule-based’ analysis tools. Rather than blindly
performing a simple linear regression, for example, we can write a transducer that decides first
how best 1o fit X against Y, Such a system is described by Gale in [31].

5.4. Aggregate Computations

Aggregate operators can be of several kinds. Aggregate reductions, which apply an associative
operator to among elements of a stream, are very easy to define:

count (S) => count(S,0).
count ([], N} => N,
count ([_ |8],N) => count (8,N+1).

sum(S) => sum(S,0).
sum([],T) => T,
sum({[X|8],T) => sum(S,X+T).

avg([1) => 0.
avg([X|8]) => sum([X[5]) / count([X]|S]).

Aggregate operators may also act as stream transducers, placing partial aggregates in the output
stream as each input item is tallied. Snodgrass and Gomez define many interesting stream

-38-

aggregation operators for TQuel [64]. Here we investigate the operators for forming counts.
The input stream may be taken as containing items of one of two forms:

insert (Identifier, Value, Time)
dalata {Idantifiar, Valua, Tima).

The history of these insertions or deletions of Identifier-Value pairs, with corresponding times-
tamps, can be queried with four stream aggregate operators. The operators transform the input
stream to an stream containing the following information:

Operator Output stream items

count total number of Identifier-Value pairs inserted, but not
deleted, up to the present

countC total number of Identifier-Value pairs inserted up to the
present

countU total number of unique Identifier-Value pairs inserted, but
not deleted, up to the present

countuc total number of unique Values inserted, but not deleted, up
to the present

These count aggregation operators can be conveniently defined. We first define some construc-
tor symbols: insert(I,v,T), delete(I,V,T), count, countC, countVU, and countuC.
We then define the TQuel stream count aggregation operators:

tquel count {(Type, 8} => tquel count (Type, S, [0]}.
tquel count (Type, [], [Count|List]) => [Count].
tqual_ count (Type, [Input|S], [Count|List]) =>
[Count | tquel ccunt (Type, S, newCounter(Type, Input., [Count |List]))].

newCounter(C, insert(I,V,T), State) => insert(C,I,V,T,Stata).
nawCounter {(C, delate(I,V,T), State) => delete(C,I,V,T,6 Stata).

insert (count, I,V,T, [Count|List]) => [Count+l | [(I,V)|List] 1].

dalaeta{ count, I,V,T, [Count|List]) => [Count-1 | Alff(Lisat,[(I,V)])].
insert{ countC, I,V,T, [Count]) => [Count+l].

delete(countl, I,V,T, [Count]) => [Count].

insert(countU, 1I,Vv,T, [_|List]) => lengthList(insertCount ([(I,V)],List)).
delete(countU, I,V,T, [_|List]) => lengthList{ delaeteCount ([(I,V)],List)).
insert (countUC, I,V,T, [_|List]) => lengthList{ insertCount([V],List)).
delete(countUC, I,V,T, [_|List]) => lengthList{ delateCount ([V],List)).

lengthList (L) => [reduce{listLength(L)) | reduce(lL)].

listLength([]) => 0.
listLength([X|L]) => 1 + listLength(L).

-39-

insertCount (X, [1} => [(X,1)].
insertCount (X, [(¥Y, N) IL]) => if(¥ == X,
[(X,N+1) |L],
[(¥Y,N) jinsartCount (X, L))
).
daeletaCount (X, [(¥,N) |L]) => if(¥ == X,
if(N==1, L, [(X,N-1)]|L]),
[(Y,N) |deleteCount (X, L)]

diff([]1,¥Y) => Y.
diff ([XIL],Y) => if{ X==¥,6 L, [X|diff(L,Y)}]).

This definition is instructive; from it one sees immediately that count¢ is fast and easy to com-
pute, requiring only the current count for its state, while countu is quite expensive to compute,
potentially needing to store the entire input stream in its state.

In this situation there seems to be no way to avoid this expense: if we really want all the infor-
mation the counts provide here, we must pay for it. The following section shows, however, that
cleverness in writing stream transducers can pay off enormously in performance.

5.5. Computing Medians and Quantiles

A useful way to capture the distribution of the values in a stream is to compute certain quantiles
of the stream. The g-th quantile, 0 < ¢ <1, of a sream § = [X,X5,....X,,] is the value X; such
that |gn | members of § are less than or equal to X;. For example, the %-th quantile of a stream
will be its median. Also, some students submit to years of training now in order to reach the
0.98 quantile (i.e., the 98-th percentile, or top 2 percent) of college entrance examination results.

Quantiles are sometimes called order statistics. They are important, since in many cases they
give us more basic information than other measures, such as averages or standard deviations.
Quantiles characterize the shape of the distribution of values we have, without requiring assump-
tions about its shape or basic nature.

There is one unfortunate problem: quantiles can be expensive to compute. To see this, consider
the following approach for computing all m-th quantiles (so when M=2 we get the median and

the largest value, when mM=4 we get all quartiles, etc.), where sort and length are eager primi-
tives defined elsewhere:

- 40 -

quantiles(S,M} => averyNth{ sort(S), length(S)/M).
evaryNth(s,N) => if(N=<1, S, everyNth(s,[],1,N,N) }.

everyNth ({X|Xs],_, I,Limit,N) =>
if(I>=Limit,
[X|everyNth(Xs, [], I+1,Limit+N,N}],
averyNth({Xs, [X], I+l,Limit,N)
).
everyNth([],Last,_, ,) => Last.

The problem with this approach is that it is very expensive. The sorting will generally take time
O(n log n), where n is the length of the stream s, and in addition we need to know the length of
the stream before we compute any actual quantiles. Better algorithms for computing quantiles
have been developed [9], and the time bound above can be reduced to O(n), but at the cost of
requiring all # members of the stream to be accessible in memory for comparisons. When the
input stream is large, this approach will not be reasonable.

Fortunately, efficient approaches are now known for estimating quantiles. We present a surpris-
ing and simple technique developed by Pearl [59], who noticed that quantiles of a random
sequence are estimated by the values of specific minimax (or maximin) trees of the sequence.
Specifically, if d1 and d; are positive integers and ¢ is the unique positive root of the polyno-
mial (1 - (1 =(1 —x)%)?), then it turns out that the value of a maximin tree whose max nodes
have branching factor ¢, whose min nodes have branching factor d5, and whose leaves are the
members of a stream s, is an estimate of the g -th quantile of s.

To implement Pearl’s approach we can first develop some stream operators that produce
minimax values of a stream, assuming that minimum/2 and maximum/2 are eager primitives
defined in Prolog:

min({X|Xs],N) => min(Xs,1,N,X).
min([],N) => [].

min ([X|Xs],I,N,B) => if({ I<N, min(Xs, I+1,N, minimum(B, X)), [Blmin([X|Xs],N}]).
min([],I,N,B) => [B].

max([X|Xa],N} => max(X¥Xs,1,N,X).
max([],N) => [].

max{[X|Xs}],I,N,B) => if(I<N, max(Xs, I+l,N,maximum(B, X))}, [B|max([X|Xs],N)]).
max([],I,N,B) => [B].

maximin (S,D1,D2) => max({ min(S,D1l), D2 }.

minimax(S,D1,D2) => min(max(S,Dl), D2 }.

With these, an estimate of medians is easily obtained. When d;=5 and d,=3 we have
g =0.511, which is fairly close to 4. Thus we can produce a median estimate from a maximin

-41-

tree obtained by recursively taking maximins with this d, d:

medianEstimates (S) => maximin(S,5,3).

madian ([X|Xs]) => if(Xs==[], X, madian (medianEstimates([X|Xs])) }.
median([]1) => [].

This estimate is simple and cheap. Pearl points out that better estimates can be obtained by
using d;=11, d;=4 (which gives g =0.495575) or d;=44, d;=6 (which gives
q =0.500034).

A more general stream transducer to find the g -th quantile could be implemented with a similar
transducer that first begins operation with some kind of search for the right parameters d 4, d5 to
obtain g. The transducer below does just this; the eager Prolog predicate quantileParame-
ters/2 performs a search through its available table of parameters looking for the best match to
a request for a quantile value. Once the best dy, d, values have been found, a simple maximin
recursion can be used again.

quantile(S,Quantile) => approxQuantile(S,quantileParameters(Quantile)).

approxQuantile{[X|Xs], [D1|D2]) =>
if(Xs==[],
X,
approxQuantile (quantileEstimates ([X|Xs], [D1|D2]), [D1|D2])
).
approxQuantile{f],_) => [].

quantileEstimates (S, [D1|D2]) => maximin(S,D1,D2).

This ransducer needs the following eager quantile parameter selection code:

-42.

quantileParamataers (Quantile, [D1]|D2]) :-
quantileTable (Tabla),
bestMatch(Table,Quantile,1.0,2,2,D01,D2).

bastMateh([],_,_,P1,D2,D1,D2).
baestMatch ([q{(D1,D2,Q) |T],Quantile,BestDiff, BestDl, BestD2,FinalDl,FinalD2)
absDiff (Q,Quantile,Diff),
(Diff >= BestDiff ->
bestMatch (T, Quantile,BeatDiff, K BestDl, BestD2,FinalDl,FinalD2)

bastMatch (T, Quantile, DifE, D1, D2,FinalDpl,FinalD2)

absDiff(A,B,X) :~ D is (A-B), ((D > 0) -> (X ia D) ; (X is -D)).
% The table q(P1,D2,0) below, for positive integers D1 & D2,

% gives values of Q -- the unique positive root of the polyncmial
% (L - (3 - (1 ~ x)"D1)"b2).

quantileTable ([

q(2, 2, 0.618), q(2, 3, 0.848), q{ 2, 4, 0.920), q(2, 5, 0.951),
q(3, 2, 0.389), q(3, 3, 0.683), a(3, 4, 0.805), q{ 3, 5, 0.866),
q(4, 2, 0.282), q(4, 3, 0.579), q(4, 4, 0.725), q{ 4, 5, 0.803),
q{ 5, 2, 0.220), g(5, 3, 0.511), q(S, 4, 0.665), q(5, 5, 0.749),
q{ 6, 2, 0.180), q(6, 3, 0.461), q(6, 4, 0.622), q(6, 5, 0.717),
q(7, 2, 0.153), q(7, 3, 0.412), q(7, 4, 0.580), q(7, 5, 0.687),
q(8, 2, 0.133), q(8, 3, 0.392), q(8, 4, 0.558), q(8, 5, 0.661),
q(9, 2, 0.117), q(9, 3, 0.367), q(9, 4, 0.533), q(9, 5, 0.640),
q(10, 2, 0.105), q(10, 3, 0.347), q(10, 4, 0.533), q(l0, 5, 0.621),
q(11, 2, 0.095), q(11, 3, 0.329), q(1l1, 4, 0.496), q(ll, 5, 0.605)

1.

Of course, this program could be extended to find roots of the polynomial to any desired preci-
sion.

5.6. Pattern Matching against Streams

So far we have illustrated how Log(F) makes a fine language for expressing transductions of
streams. In this section we show how, when extended slightly, it also makes a fine language for
pattern analysis against streams.

It is not difficult to write transducers that detect patterns. For example, the transducer

-43 -

bump (S) => t1(S).
tl{[up|S]) => t2(8).
t2((up|8]) => t2(8).
£2(8) => t3(8).
t3([down|8]) => t4(S).
té([down|S]) => t4(s).
td(s) => s.

successfully recognizes all streams containing sequences of one or more copies of up followed
by one or more copies of down. In short, the bump transducer recognizes the regular expression

([up] +, [down] +)

where + is the postfix pattern operator defining the Kleene plus, and , defines pattern concaten-
tation.

An interesting feature of our approach is that we can write transducers to implement parsers by
specifiying patterns with grammars. For example, we can specify regular expressions and, more
generally, path expressions, with grammar rules something like the following:

(X+) => X.
(X+) => (X, (3X+)).
(x*) => [1].

(X*) => (X, (X*)}.

(X:Y) => X.

(x;Y) => Y.

([]1,.x) => X,

([X|¥],2) => [X]|(Y,2)].

These rules behave just like the context free grammar rules they resemble.

Pattern matching can be enforced with a match transducer, which takes its first argument a pat-
tern describing the starting symbol(s) of some grammar used for the match, and as its second
argument a Log(F) term that produces a stream. This transducer is defined as follows:

match([],8) => S.
match({[X|L), [X{8]) => match(L,S).

With this definition, for example, the following definition for bump is equivalent to the one
given earlier:

bump pattern => ([up]+, [down]+).
bump (8) => match(bump pattern, §).

These grammars have many promising uses. For further examples in stream pattern analysis, see
[21,22].

6. Connecting Prolog with Databases

We mentioned earlier the widely-held belief that Prolog has an impedance mismatch with data-
base management systems (DBMS). In this section, we show how stream processing can
remove this mismatch.

6.1. Stream Processing as a Common Model for Prolog and DBMS

In Prolog systems, an ‘inference engine’ naturally works on single clauses at a time, with a par-
ticular control strategy (depth-first-search with backtracking). In DBMS, by contrast, an entire
query is processed at once, by a query evaluator that selects among a variety of sophisticated
algorithms. Since both systems go about work differently, it is difficult to connect the two sys-
tems in an efficient or easy-to-use way.

The key to the mismatch is that Prolog and DBMS follow different models of data processing:

(1) Where the Prolog system can be said to be ‘search oriented’, seeking a single proof, the
DBMS is viewed as ‘set oriented’, computing all proofs at once.

(2) A DBMS provides a limited model of computation that it guarantees to handle well, while
Prolog strives to provide a general model of computation or inference with neither real lim-
itations nor blanket guarantees of performance.

In the past, attempts in coupling Prolog and DBMS have adopted one model of data processing
or the other [12,54]. Tuple-at-a-time solutions (particularly Prolog-DBMS interfaces)
[51, 61, 69] follow the Prolog model. Query-at-a-time solutions that store the results of the query
in the Prolog system workspace [20, 32,40] follow the DBMS model. It is well known that
tuple-at-a-time solutions are inefficient, and query-at-a-time solutions can overwhelm the Prolog
system with data. A variety of combinations of these strategies have therefore been proposed
[19,39]. The EDUCE system, for example, provides complete tuple-at-a-time and query-at-a-
time capabilities [10, 11].

We can reduce or eliminate the mismatch if we can find a common model that will fit both sys-
tems. There is such a model: stream processing. We have now shown that we can introduce
stream processing into Prolog in a clean and natural way. The main issue might appear to be in
combining stream processing with DBMS models. In fact, this is not as difficult as it might
seem, since databases naturally produce streams of results to queries [58]. Below we will sketch
how a stream-based connection can be implemented.

6.2. Coupling Prolog and DBMS through Stream Processing

The Tangram project at UCLA has integrated Prolog and relational DBMS. Although the
integration can be used for ‘tight coupling’ of Prolog and DBMS, it can also be used for ‘loose
coupling’. By a loose coupling we mean a combination in which each system keeps its own
identity, and both communicate through a well-defined interface. We see loose coupling not
only as necessary because of economic, political, and other forces, but also as a desirable divi-
sion of labor in many situations. One system does bulk data processing well, while the other
performs arbitrary analyses on the results.

The stream processing approach for coupling a DBMS with Prolog is basically to have the

-45 -

DBMS yield a result stream in response to a query, and have Prolog applications analyze the
stream using the stream processing paradigm:

batch query

Database
System

Prolog
System

result stream

Roughly, execution under the approach is as follows:

(1) A DML (Data Manipulation Language) request can be sent from the Prolog system to the
DBMS. Naturally, many extensions suggest themselves here, such as piggybacking of
requests, translation from nice syntax to DML, semantic query optimization, and so forth.
These requests can (and in our impression, should) be made with full knowledge of what is
available in the DBMS, such as indices or other access paths.

(2) The DBMS produces the result of the DML request.

(3) The Prolog system consumes the result tuples incrementally (i.e., lazily), as it needs them.
Important extensions here include eagerly fetching more than 1 tuple at a time performing
unification or other pattern matching at the interface level, selectively retrieving only the
needed fields from tuples, etc.

The diagram above shows the Prolog system and DBMS coupled directly, but in fact an interface
between the two can improve performance. Such an interface can implement buffering and flow
control, and sorting of results when this is not available in the DML, since stream processing
often requires sorted streams.

This general approach avoids many problems in traditional couplings between Prolog and
DBMS. Couplings that offer only access method tuple-at-a-time retrieval from Prolog sacrifice
the bulk query processing power of the DBMS, and make very heavy use of the Prolog/DBMS
interface. High-level-query-at-a-time couplings that assert the entire query result in the Pro-
log database are slow since assert is very slow, and potentially dangerous since they can
overflow Prolog data areas. A stream processing approach permits us to take advantage of the
best performance aspects of both systems, tune the granularity of data blocks transferred from

the DBMS to Prolog, and give the Prolog system access to the data without requiring it to be
stored in the Prolog database.

6.3. Implementation of Prolog-DBMS Coupling

To couple Prolog with a DBMS for high-level queries, we can use something like the code
below:

- 46 -

reduce(aql query(Query), Stream) ;-
start_query(Query,Cursor),
reduce {query stream(Cursor), Stream).

reduce (query stream{Cursor), Stream) :@-
next query result (Cursor, Term},
query stream(Term,Cursor,Stream).

query_ stream({end of file,Cursor, (]} :- end query{Cursor), !.
query stream(Term,Curscr, [Term|query stream(Cursor)]}.

The interface predicates that we must provide are start_query/2, next_query result/2,
and end query/2. The first sends a full SQL query to the DBMS, the second retrieves result
tuples from the DBMS, and the third terminates processing of the query.

Consider the following scenario. In a relational DBMS we have both a relation of stocks, giving
stock names and stock symbols and other relevant data, and a relation of daily high/low/close
prices for stocks over the past few years, With the moving_avg transducer defined above, and a
print_stream transducer for displaying data, we can quickly implement the query

show the 5-day moving averages for AT&T stock in 1989
by evaluating the following:

print_stream(
moving avg(5,
sql_cuery(
'salect quote.close
from stock, quote
where stock.name = "AT&T"
and stock.symbol = quote.symbol
and quote.date >= 89/01/01
and quote.date =< 89/12/31’

)

The sql_query expression yields a stream, just like any other expression. This stream is then
averaged and displayed.

The point here is not the syntax, since we can certainly translate from whatever-you-please to
this representation. The point is that the DBMS and the Prolog system both work on the same
model of data.

Some high points of this example:

(1) We have done a brute force join query solely with the DBMS. This join might have been
more expensive in Prolog.

(2) We have performed some intelligent digestion of the result with a straightforward, easy-to-
write transducer. (This would have been impossible in ordinary SQL.) The transducer
takes definite advantage of the fact that the data is ordered.

-47 -

(3) Even display primitives can fit the stream processing paradigm.

One of the beautiful things of coupling via stream processing is that it permits us to use an low-
level access method interface to obtain a stream from the DBMS as well as a high-level query
interface. Access methods provide the sequential retrieval we need to implement streams. For
example, we can define a tuple-at-a-time connection to the relations stock and quote with the
following code:

raduce{ stock, Stream) :-
open_relation(stock/3,Cursor),
reduce (tuple_stream(Cursor),Stream).
reduce(quote, Stream) :-
open_relation(quotae/5,Curacr),
reduce {tuple_ stream(Cursor), Stream).
reduce(tuple stream(Cursor), Stream) :-
retriave (Cursor, Tuple),
tuple stream{Tuple, Cursor, Stream).

tuple stream(end of file,Cursor,[]) :- close_relation(Cursor}), !.
tuple stream(Term,Cursor, [Term{tuple stream(Cursor}]).

Here the predicate open_relation/2 sets up a cursor on a relation from which we can retrieve
tuples by using retrieve/2. With these definitions we can implement the same query handled
above with something like the following code:

print_ stream(
moving avg(5,
project(9,
join(
selaect { stock, stock(_,"AT&T",_,), true),
select{ quote, quote(_,_,_,_ ,Date),
{notLater (89/01/01,Date), notLater (Date,B89/12/31)) }

The point to see here is that we can allocate processing responsibility as we please to Prolog and
the DBMS. Stream processing allows us to couple either via a high-level query-at-a-time inter-
face, or a low-level tuple-at-a-time interface.

There is one final remark worth making here. Just as we have used streams to get data from
databases, we can use streams for getting results from files, or any other source of data. The fol-
lowing code implements streams from files:

-48 -

reduce(file terms (Filename)}, Stream) :-
open (Filename, read, Descriptor),
reduce (file stream(Descriptor),Stream).

raduce(file stream(Descriptor), Stream } :-
read (Daacriptor, Term),
file stream(Term, Descriptor, Stream}.

filae stream(end of fila,Dascriptor, []) :- close(Descriptor), !.
file stream(Term,Descriptor, ([Term|£file_ stream(Descriptor)]).

With similar code we could retrieve data across a network, or from some other specialized
source. In other words, stream processing gives a simple technique for implementing tran-
sparency among data sources. Transparency will always be a very powerful capability for data
analysis.

- 49 -

7. Final Remarks

We have seen how to implement stream data analysis in Prolog elegantly, even though an
elegant implementation is not obvious at first. In fact, we have shown how many problems in
using Prolog for stream processing can be overcome.

This raises a point: Prolog can be what you want. People may say Prolog ‘cannot’ do something,
while in fact with a little ingenuity it is not only ‘possible’ to do what you want, it is natural.
Prolog is a very powerful assembler for building larger systems.

After some experience with the tuple-at-a-time and whole-query-at-a-time Prolog/DBMS inter-
faces that have been developed to date, we feel the best way to integrate Prolog and databases is
through streams. Minor extensions to Prolog are sufficient to provide efficient stream processing
[56). Stream processing is also a natural approach for applications like data analysis. It is pecu-
liar that stream processing has not been emphasized more heavily for temporal query processing,
as well as for basic relational query processing.

The goal of the Tangram project is to provide a powerful environment for modeling. Probably
the most challenging aspect of this goal is in supporting exploratory data analysis in a way that
has not been accomplished before. Not only is it necessary to support an increase in the quantity
of data that can be effectively analyzed, but also to support analysis of symbolic and structured
data. Besides the influence of the Log(F) system described at length earlier, The Tangram sys-
tem has drawn on the designs of a number of previous systems which have included stream con-
cepts. These include FAD [3], FQL [13, 14, 15], various dataflow database systems [4, 5, 8, 34],
and LDL [7, 67].

In the past, query languages have been limited to the scope and flexibility foreseen by their
designers. We have now reached a period where applications such as modeling and temporal
data processing demand flexibility and expressiveness above all else. At the same time, it is
important that a query language introduce some structure, or paradigm, that helps it maintain
coherence in the user’s mind. Stream processing with transducers is one possible paradigm.
Clearly there is much more work to be done here, but the approach we have sketched leads to
extensible, expressive data analysis systems.

Acknowledgement

The author is grateful to Cliff Leung, Brian Livezey, Dick Muntz for improvements they sug-
gested on the manuscript.

-50-

References

1.

2.

10.

11

12.

13.

14,

15.

16.

Abelson, H. and G. Sussman, The Structure and Analysis of Computer Programs, pp. 242-
292, MIT Press, Boston, MA, 1985.

Allen, F.E. and J. Cocke, ‘A Catalogue of Optimizing Transformations,”” in Design and
Optimization of Compilers, ed. R. Rustin, pp. 1-30, Prentice-Hall, 1971.

Bancilhon, F., T. Briggs, 8. Khoshafian, and P. Valduriez, ‘‘FAD, a Powerful and Simple
Database Language,’” Proc. Thirteenth Intnl. Conf. on Very Large Data Bases, Brighton,
England, 1987.

Batory, D.S., ‘‘A Molecular Database Systems Technology,’”” Tech. Report TR-87-23,
Dept. of Computer Sciences, Univ, of Texas at Austin, Austin, TX 78712, 1987.

Batory, D.S., T.Y. Leung, and T. Wise, ‘‘Implementation Concepts For an Extensible Data
Model and Data Language,”” ACM Trans. Database Systems, vol. 13, no. 3, pp. 231-262,
Sept. 1988.

Becker, R.A. and J.M. Chambers, S: An Interactive Environment for Data Analysis and
Graphics, Wadsworth, Inc., Belmont, CA, 1984.

Beeri, C., S. Nagvi, R. Ramakrishnan, O. Shmueli, and S. Tsur, ‘‘Sets and Negation in a
Logic Database Language (LDL1),”” Proc. Sixth ACM Symp. on Principles of Database
Systems, pp. 21-37, San Diego, March 1987.

Bic, L. and R.L. Hartmann, ‘‘AGM: A Dataflow Database Machine,’’” Technical Report,
Dept. of Information and Computer Science, Univ. of California at Irvine, February 1987.

Blum, M., R.W. Floyd, V.R. Pratt, R.L. Rivest, and R.E. Tarjan, ‘‘Time Bounds for Selec-
tion,”” J. Comput. System Sci., vol. 7, pp. 448-461, 1972.

Bocca, J., ““EDUCE — A Marriage of Convenience: Prolog and a Relational DBMS,"”’
Proc. 1986 Symposium on Logic Programming, pp. 36-45, Salt Lake City, UT, September
1986.

Bocca, J., “‘On the Evaluation Strategy of EDUCE,”’ Proc. ACM SIGMOD Intni. Conf. on
Management of Data, pp. 368-378, Washington, D.C., May 1986. Appeared as ACM SIG-
MOD Record 15:2, June 1986.

Brodie, M. and M. Jarke, ‘‘On Integrating Logic Programming and Databases,’” in Expert
Database Systems: Proceedings from the First Intnl. Conference, ed. L. Kerschberg, pp.
161-208, Benjamin/Cummings, 1986.

Buneman, P. and R.E. Frankel, ‘‘FQL ~ A Functional Query Language,’” Proc ACM SIG-
MOD Intnl, Conf. on Management of Data, pp. 52-57, Boston, MA, May-June, 1979.

Buneman, P., R. Nikhil, and R. Frankel, *‘A Practical Functional Programming System for
Databases,’” Proc. ACM Conf. on Functional Languages and Computer Architecture, pp.
195-201, 1981.

Buneman, P., R.E. Frankel, and Rishiyur Nikhil, ‘°‘An Implementation Technique for Data-

base Query Languages,”” ACM Trans. Database Systems, vol. 7, no. 2, pp. 164-186, June
1982,

Burge, W.H., “‘Stream Processing Functions,”’ IBM J. Res. Develop., vol. 19, no. 1, pp.
12-25, 1975.

17.
18.

19.

20.

21.

22.

23.

24,

25.

26.

27,
28.

29.

30.

31

32.

33.

34.

35.

36.

-51]-

Burge, W.H., Recursive Programming Techniques, Addison-Wesley, Reading, MA, 1975.

Carlsson, M. and J. Widen, ‘‘SICStus Prolog User’s Manual,”’ Research Report SICS
R88007, Swedish Institute of Computer Science, P.O. Box 1263, S-16313 Kista, SWEDEN,
February 1988.

Ceri, S., G. Gottlob, and G. Wiederhold, ‘‘Interfacing Relational Databases and Prolog
Efficiently,”” in Expert Database Systems: Proceedings from the First Intnl. Conference,
ed. L. Kerschberg, pp. 207-223, Benjamin/Cummings, 1987.

Chang, Cl.. and A. Walker, ‘“‘PROSQL: A Prolog Interface with SQL/DS,”’ in Expert
Database Systems: Proceedings from the First Intnl. Conference, ed. L. Kerschberg, pp.
233-246, Benjamin/Cummings, 1986.

Chau, L. and D.S. Parker, ‘“Executable Temporal Specifications with Functional Gram-
mars,”’ Technical Report CSD-880046, UCLA Computer Science Dept., June 1988.

Chau, L. and D.S. Parker, ‘‘Functional Logic Grammar: A New Scheme for Language
Analysis,”” Technical Report CSD-880097, UCLA Computer Science Dept., December
1988.

Clark, K. and S. Gregory, ‘‘Notes on the Implementation of PARLOG,”’ J. Logic Program-
ming, vol. 2, no. 1, pp. 17-42, 1985.

Clark, K.L. and F.G. McCabe, ‘‘Control facilities of IC-PROLOG,”” in Expert systems in
the microelectronic age, ed. D. Michie, Edinburgh U. Press, 1979.

Darvas, N., How I Made 2,000,000 Dollars in the Stock Market, Lyle Stuart, Inc., 120
Enterprise Ave., Secaucus, NJ 07094, 1986.

DeGroot, D. and G. Lindstrom, Logic Programming: Functions, Relations, and Equations,
Prentice-Hall, 1986.

Fisher, K.L., The Wall Street Waltz, Contemporary Books, Inc., Chicago, 1987.

Freytag, J.C., ‘‘Translating Relational Queries Into Iterative Programs,”” LNCS 261,
Springer-Verlag, New York, 1987,

Friedman, D.P. and D.S. Wise, ‘“CONS Should Not Evaluate Its Arguments,’’ in Automata,
Languages and Programming, ed. S. Michaelson and R. Milner, eds., Edinburgh University
Press, Edinburgh, 1976.

Fuller, W.A., Introduction to Statistical Time Series, John Wiley & Sons, 1976.

Gale, W.A,, “REX Review,”’ in Artificial Intelligence & Statistics, ed. W.A. Gale,
Addison-Wesley, 1986.

Ghosh, S., C.C. Lin, and T. Sellis, ‘‘Implementation of a Prolog-Ingres Interface,”” SIG-
MOD Record, vol. 17, no. 2, June 1988.

Goldberg, A. and R. Paige, ‘‘Stream Processing,”” Proc. 1984 ACM Symposium on Lisp
and Functional Programming, pp. 53-62, Austin, TX, August 1984.

Golshani, F., ““The Basis of a Dataflow Model for Query Processing,”” Proc. Eighteenth
HICSS, Honolulu, January 1985.

Gray, PM.D., Logic, Algebra and Databases, Ellis Horwood, Lid./Halsted Press/John
Wiley & Sons, 1984,

Hall, P.A.V., ‘“‘Relational Algebras, Logic, and Functional Programming,’’ Proc. 1984
ACM SIGMOD Intnl. Conf. on Management of Data, pp. 326-333, Boston, MA, June 1984,

37.

38.

39.

40.

41.

42,

43.

45.

46.

47.

48.

49,

50.

SI.

32,

53.

-52-

Appeared as ACM SIGMOD Record 14:2, 1984.

Henderson, P. and J.H. Morris, Jr., ‘‘A Lazy Evaluator,”” Proc. Third ACM Symposium on
Principles of Programming Languages, pp. 95-103, 1976.

Henderson, P., Functional Programming: Application and Implementation, Prentice/Hall
International, 1980.

Ioannidis, Y.E., J. Chen, M. A. Friedman, and M.M. Tsangaris, ‘‘BERMUDA - An Archi-
tectural Perspective on Interfacing Prolog to a Database Machine,”” in Expert Database
Systems: Proceedings from the Second Intnl. Conference, ed. L. Kerschberg, pp. 229-256,
Benjamin/Cummings, 1989.

Jarke, M., J. Clifford, and Y. Vassiliou, ‘‘An Optimizing Prolog Front-End to a Relational
Query System,”’ Proc. 1984 ACM SIGMOD Intnl. Conf. on Management of Data, pp. 296-
306, Boston, MA, June 1984. Appeared as ACM SIGMOD Record 14:2, 1984.

Kahn, G. and D. McQueen, ‘‘Coroutines and Networks of Paralle! Processes,’” IFIP 77,
North-Holland, Amsterdam, 1977.

Kahn, K., “‘A Primitive for the Control of Logic Programs,”’ Proc. Symp. on Logic Pro-
gramming, pp. 242-251, IEEE Computer Society, Atlantic City, 1984.

Landin, P.J., ‘A Correspondence Between Algol 60 and Church’s Lambda-Notation, Parts
Iand I1,”’ Communications of the ACM, vol. 8, no. 2 and 3, pp. 89-101, 158-165, 1965.

Li, P-Y.P. and AJ. Martin, ‘““The Sync Model: A Parallel Execution Method for Logic Pro-
gramming,”” Proc. Symp. on Logic Programming, pp. 223-234, IEEE Computer Society,
Salt Lake City, 1986.

Lindstrom, G. and P. Panangaden, ‘‘Stream-Based Execution of Logic Programs,’”’ Proc.
Symp. on Logic Programming, pp. 168-176, IEEE Computer Society, Atlantic City, 1984,

McCrosky, C.D., LJ. Glasgow, and M.A. Jenkins, ‘‘Nial: A Candidate Language for Fifth
Generation Computer Systems,”” Proc. ACM’84 Annual Conference, pp. 157-166, San
Francisco, October 1984.

McLeod, D., ‘A Semantic Data Base Model and its Associated Structured User Interface,”’
Ph.D. Dissertation, Dept. EE&CS, MIT, Cambridge, MA, 1978.

More, T., ‘‘Axioms and Theorems for a Theory of Amrays,”’ IBM J. Res. Develop, vol. 17,
no. 2, pp. 135-175, 1973.

More, T., ‘“The Nested Rectangular Array as a Model of Data,”” Proc. APL79, pp. 55-73,
May 1979.

Naish, L., ‘‘All Solutions Predicates in Prolog,”’ Proc. Symp. on Logic Programming, pp.
73-77, IEEE Computer Society, Boston, 1985.

Napheys, B. and D. Herkimer, ‘‘A Look at Loosely-Coupled Prolog/Database Systems,”’ in
Expert Database Systems: Proceedings from the Second Intnl, Conference, ed. L. Kersch-
berg, pp. 257-272, Benjamin/Cummings, 1989.

Narain, S., ‘“‘LOG(F): A New Scheme for Integrating Rewrite Rules, Logic Programming
and Lazy Evaluation,”’” Technical Report CSD-870027, UCLA Computer Science Dept.,
Los Angeles, CA 90024-1596, 1987.

Narain, S., “LOG(F): An Optimal Combination of Logic Programming, Rewrite Rules and
Lazy Evaluation,”’” Ph.D. Dissertation, UCLA Computer Science Dept., Los Angeles, CA
90024-1596, 1988.

54.

35.

56.

57.

38.

59.

60.

61.

62.

63.

64.

635.

66.

67.

68.

69.

-53-

Nussbaum, M., ¢‘Combining Top-Down and Bottom-Up Computation in Knowledge Based
Systems,’’ in Expert Database Systems: Proceedings from the Second Intnl. Conference,
ed. L. Kerschberg, pp. 273-310, Benjamin/Cummings, 1989.

Page, T.W., “Prolog Basis for A Data-Intensive Modeling Environment,”’ Dissertation
Prospectus, UCLLA Computer Science Dept., Los Angeles, CA 90024-1596, March 1988.

Parker, D.S., T. Page, and R.R. Muntz, ‘‘Improving Clause Access in Prolog,”” Technical
Report CSD-880024, UCLA Computer Science Dept., Los Angeles, CA 90024-1596,
March 1988.

Parker, D.S., R.R. Muntz, and L. Chau, ‘“The Tangram Stream Query Processing System,”
Proc. Fifth Intnl. Conf. on Data Engineering, pp. 556-563, Los Angeles, CA, February
1989,

Parker, D.S., ‘“‘Sweam Processing: An Effective Way to Integrate AT and DBMS,’” Techni-
cal Report CSD-890005, UCLA Computer Science Dept., Los Angeles, CA 90024-1596,
January 1989.

Pearl, J., “‘A Space-Efficient On-Line Method of Computing Quantile Estimates,’” J. Algo-
rithms, vol. 2, no. 2, pp. 164-177, 1981.

Peyton-Jones, S.L., The Implementation of Functional Programming Languages,
Prentice/Hall International, Englewood Cliffs, NJ, 1987.

Sciore, E. and D.S, Warren, ‘“Towards an Integrated Database-Prolog System,’’ in Expert
Database Systems: Proceedings From the First Intnl. Workshop, ed. L. Kerschberg, pp.
293-305, Benjamin/Cummings, Menlo Park, CA, 1986.

Shipman, D.W., ‘“The Functional Data Model and the Data Language DAPLEX,’> ACM
Trans. Database Systems, vol. 6, no. 1, pp. 140-173, March 1981.

Sibley, E.H. and L. Kerschberg, ‘‘Data architecture and data model considerations,’’ Proc.
AFIPS National Computer Conf., pp. 85-96, June 1977,

Snodgrass, R. and S. Gomez, ‘‘Aggregates in the Temporal Query Language TQuel,”’
Tech. Rep. TR86-009, Computer Science Dept., Univ. of North Carolina, Chapel Hill,
March 1986.

Subrahmanyam, P.A. and J-H. You, ‘‘Conceptual Basis and Evaluation Strategies for
Integrating Functional and Logic Programming,”” Proc. Symp. on Logic Programming, pp.
144-153, IEEE Computer Society, Atlantic City, 1984.

Tick, E., Memory Performance of Prolog Architectures, Kluwer Academic Publishers,
Norwell, MA, 1988.

Tsur, S. and C. Zaniolo, ‘‘LDL; A Logic-Based Data Language,’”” Proc. Twelfth Intni.
Conf. on Very Large Data Bases, pp. 33-41, Kyoto, Japan, 1986.

Waters, R., ‘‘A Method for Analyzing Loop Programs,”’ JEEE Trans. Software Engineer-
ing, vol. 5, no. 3, pp. 237-247, 1979.
Zaniolo, C., ‘‘Prolog — A Database Query Language for All Seasons,’ in Expert Database

Systems: Proceedings From the First Intnl. Workshop, ed. L. Kerschberg, pp. 219-232,
Benjamin/Cummings, 1986.

