Computer Science Department Technical Report
University of California
Los Angeles, CA 90024-1596

THE ASPEN DISTRIBUTED STREAM PROCESSING
ENVIRONMENT

Brian Kevin Livezey December 1988
CSD-880102

UNIVERSITY OF CALIFORNIA
Los Angeles

The ASPEN Distributed

Stream Processing Environment

A thesis submitted in partial satisfaction of the
requirements for the degree Master of Science
in Computer Science
by

Brian Kevin Livezey

1988

© Copyright by
Brian Kevin Livezey

1988

The thesis of Brian Kevin Livezey is approved.

{Oagvocla

Rajive Bagrodia

DTN VM

D. Stott Parker

Lo 27

Richard R. Muntz, Committee Cliatr

University of California, Los Angeles
1988

ii

TABLE OF CONTENTS

page
1 INTRODUCGTION ...ooiiieeieieeieceieestessssssisssssissessssnssssssssassasssssssasassssasassssasess 1
1.1 SITEAMIS .ioviiiiiiiierisriietestrssreesreetssstassstissaessanssnesanassasansasentansssssses sassonne 2

1.2 User-Specified CONCUITENCYcvverireinerarrcsisiisesnsennssssasii st s 2

1.3 Purpose of ThesiSocccomimreniesiirisiiessin et e 3

1.4 TheSiS PIAN couiiviceicrticreie e setereet e st s e s sasne s sssnsss e s st sas e 4

2 STREAM PROCESSINGooicevirieniinenminiiniissansrinssssssssssssssseestesassssssssnss 5
2.1 SITEAIMS vvecvrvvreriersesierrisseesaeasemsessaessassasasssssssssssasnsessmessassasssnsssnssesssanss 5

2.2 LOZE) revernrerrensecrississs st st s s e b s s i aesn et sa s s s s 6

2.3 TEANSAUCETS .ovveeriererenseeerersversessiessessnessmsostronessnssmnstanssssrsansessessssss ssasssnase 7

2.4 Concurrency in Stream Processing Languages ..., 10
2.4.1 Stream Parallelismocoovciininrinmmnnmnencn e 10

2.4.2 Concurrent Reduction of ATgUmentsvveieciimieniincennnens 11

2.4.3 Merge Parallelism ... 12

3 ASPEN PROGRAMMING TECHNIQUEScocoiiiniiiininsninenncnntsnions 13
3.1 Achieving Concurrency Through Annotations ..., 13

3.2 Extending LOZ(F) oottt sssens st snsas 15
3,2.1 Common SubeXPressionscoeciirmmmmmseessesaesieses 16

3.2.2 Multiple QUIPULS ooviiiriereerinisssnr e s 18

3.3 Increasing Merge ParalleliSm ... 22

3.5 SUIMIMATY .oooveereireeremrreeeneeresbittrssssstsssasssessssesaesemasasasasenssnessassssteassssasinss 31

4 IMPLEMENTATION ...ooooeiirieeeresseicseserssstanssmsssese st nsssssassassassesasesessessssnsonsen 32
4.1 Server MOAEL ..veoiiiceirceriiecrissntesiseseniessaessnssssbastesssssnsessasansssasor s sssson 32
4.1.1 SEIVEIS .irerrrerrcrmiarsemessessensomissssssassssssssnssnssssnsnsssessasssssssssosatssnnssns 33

4.1.1.1 Forwarding Requestsccciverieairseniesneiecnisisniniiiee 33

4.1.1.2 Managing Pool Size ... 34

4.1.2 WOLKETS .iorvreereerrerieerecensseassransinnessnessssssnnesbasssbessss s esssssssns snasess 35

4.1.2.1 Single QUIPUL it 35

4.1.2.2 Multiple OUtPULS ..covvviirarerrncrenresnasrisien s 36

4.2 Specifying the Number of CONSUMETSc...covieiimeveneieniniieininonses 37

4.3 Implementation of Where/2 ... 40

4.4 Cancelling SIEAMS ...cocceeemivrieiierireeesesmrsnesse s ettt es 40

4.5 Implementation of Remote ANNOtAtIONScoovciiivsririraninsninsniivnes 42

4.6 Implementation of COMMON/3 .ccooiiiininci s 45

4.7 Implementation of cancel/l ... 48

4.8 Constrained EAZErNesscviiieimmnssiniisssmssiimisines s e 49

4.9 Implementation of SEIECH L oo 56
A,10 MOGUIES cveeieieeneerireasreessrraseeesreeasstasssisssassssassassssnestassasissassssssransssesss 57
4.11 Dedicated WOTKEIS ...ccccccviiiiimmsiinimiimriiieiines s et esissssssnanssnnasns 60
4.12 Enhancements to the Prolog Environment ... 65

5 RELATED RESEARCHcotiiviiiiirncetsissinsss e nmnsesissessss s seassisssasssssesns 67
5.1 Flat Concuurent PIOIOZ ..cccccovermviiisineinrisess sttt sssnseess 67

5.2 PAIlOf ceoeeereivorseeierinetisianinsssssss i st st saessbsasa s s sa e sttt s 69

5.3 Kahn and MacQUEEN ..cc.iceemicciiiimeienisnensestansenosss s snsnsssssnnssessssansssns 70

i

5.4 Sream MAaChINE ..coevreeeeieeeeeiitrieeisssiinsssnrasresersansenrestssssssrenssensssrsssanssess 72

E FUTURE WORK ..ot iieeceenrreresissssesis s inses s sn s s sbas srss sssssssssesunsatshssasss 75
6.1 MEIAPTOZTAITIS .covveriivireicmiisisursersssssnrstsnsssrssssassatssssessaneessssss shsssnsbsnsasens 75
6.2 INSIUMENIATION .ioeeceiecterecvesecasseaeorsisessrrranesbbastasssasbasnsnssessesnnsssbssnsosen 77
6.3 Selecting EXECUtION SIES .ccveriivenireiiiiiniesnisseisnssee i s 78
6.4 Workspace Managementcoocoiiveeneeinsenenissnesinssiisss s sssassaasnas 78
6.5 THIETTACES iveiirierieiieeeirnerineesieesssetsceresasanessba s s bt s et ba s s sbnssasne e s ss dssrstsnssns 78
6.6 FAIEIS ooeeicieiiiiiieeecreeseneasersesces e ctsssssaas s sesraesn s e nnsn st ate abtcencs s e sanssnnn et 79
6.7 DEDUZEET ..veeirremiirrei it er s st se e ettt e s s s 80
6.8 Automatic OptMIZationcoiiiiirenieiinrns e s g1
7 CONCLUSTIONS oottt rererseesscsee s essss s sas s er s s e st ssse st seesresnsasssassssssssannes 83
Appendix A ASPEN COMPILER ..ot 85
Appendix B CLIENT IMPLEMENTATION ..o 97
Appendix C WORKER IMPLEMENTATIONcocoiininmiinine i 107
REFERENCES ...c.oiiteeirierietireeeisssterssserssestsscsssassssessssassassesstassessessasnanssssssansssassss 119

iv

LIST OF FIGURES

page
Pipeline ParalleliSm ..ottt s cesnanes 10
Concurrent Reduction of ATZUMENLS ...cccviiiviiniiiieinnems e sssssissnsasss 11
Merge Parallelism ... s s 12
Merge Parallelism via Stream SPHEUNZ ..ot 22

ACKNOWLEDGEMENTS

I would like to thank Dick Muntz and Stott Parker for their guidance. Many
thanks to Jon Edwards for his help in implementing several parts of the system. I'd

also like to thank the other members of the Tangram group who offered lots of advice

and support.

vi

ABSTRACT OF THE THESIS

The ASPEN Distributed
Stream Processing Environment
by
Brian Kevin Livezey
Master of Science in Computer Science
University of California, Los Angeles, 1988
Professor Richard R. Muntz, Chair

Stream processing is an ideal paradigm for data-intensive applications. The
solutions to a rich and varied set of problems that are, at best, awkward to express in
other paradigms, can be expressed elegantly within the stream processing paradigm.
Furthermore, stream processing presents an execution model in which such problems

can be solved efficiently.

This thesis describes ASPEN, a stream processing environment. A program-
ming language called Log(F) is extended to make it an appropriate language for
expressing stream Processing programs. The thesis focuses on those extensions that

provide support for concurrent processing and access to distributed data.

The approach is novel in that the programming model allows the determina-
tion of the granularity of concurrency to be separated from the actual coding of the
program. The degree of concurrency 1o be exploited is not fixed by the program
specification or by the underlying system. Simple annotations allow the programmer

to specify varying degrees of concurrency. Increasing or decreasing the degree of

vii

concurrency exploited during execution does not require rewriting the entire program,

but rather, simply re-annotating it.

Several examples are given to illustrate the varying types of concurrency
inherent in programs written within the stream processing paradigm. Examples are
given which demonstrate how programs may be annotated to exploit these varying

types and degrees of concurrency. The implementation of ASPEN is also described.

viii

CHAPTER 1
INTRODUCTION

As computer applications grow in number, complexity, and size, there is a
growing need for mechanisms which provide access to distributed data and allow con-
current processing. These mechanisms should provide increased performance in a
transparent manner. Declarative programs should remain declarative even after being

augmented with these mechanisms.

Future systems will require very high bandwidth access to data. Data may be
stored in a database, generated on demand, or generated in real time. However the
data is stored or generated, programmers should be allowed to access it in an identical
fashion. When the required bandwidth exceeds that provided by current I/O devices,

distribution of data and processing can greatly improve performance.

While many applications are data-intensive and benefit from the distribution of
data as described above, other applications are more computation-intensive. They can
often be divided such that individual portions may be computed independently. The
performance of such applications may be improved greatly through concurrent pro-

cessing.

Access to distributed data and concurrent processing, can both be provided in a

uniform manner through the use of streams.

1.1 Streams

Streams represent ordered collections of data which are accessed in a sequen-
tial fashion. Streams can be produced and operated upon in a manner that is either

lazy, eager, or some combination of the two.

Lazy production of a stream amounts to the production of a single data ele-
ment and a stream continuation, a method for producing subsequent elements. When
a consumer requests another data element, the stream continuation is reduced to pro-
duce a new data element and a new stream continuation. Thus, programs can process
very large (or even effectively infinite) streams of data without requiring large

amounts of memory to store the entire stream.

Eager production of a stream occurs when successive elements are appended
to the end of the stream by the producer. When consumers request more data, they

either receive it immediately or suspend until the producer supplies it.

Generally, lazy evaluation is used in sequential computations so that consump-
tion of buffer space is reduced. Eager evaluation is useful in distributed computations
to exploit parallelism. Eager and lazy evaluation can be combined to provide finer

control over the flow of data through a network of processes.

1.2 User-Specified Concurrency

The degree of concurrency that can be exploited during the execution of a pro-
gram should not be fixed by the structure of the program itself. Nor should it be fixed
by the underlying system or language in which the program is written. These factors

should determine only the maximal degree of concurrency that can be exploited.

Automated optimization in a distributed environment is an open problem.
Currently, the only realistic way to attain real concurrency is through the use of pro-
grammer annotations. Eventually compilers with the capability to determine the
degree of parallelism that can be effectively exploited within a given application may
be developed. The output of such compilers will be annotated programs. As such, a
language and environment such as ASPEN which supports annotations for parallelism

is certainly a necessary first step toward supporting automated optimization.
1.3 Purpose of Thesis

This thesis describes ASPEN, a stream processing environment in which pro-
grammers can easily specify the degree of concurrency that is to be exploited in the
execution of their programs. Programmers use simple annotations to indicate how to
properly combine eager and lazy stream evaluation, concurrent processing, and distri-
buted database access in order to achieve high performance for data-intensive applica-

tions.

Existing implementations of concurrent stream processing systems [2,6]
require programmers to structure their programs so as to reflect the degree of con-
currency that is to be exploited during execution. It is much more natural for pro-
grammers to write their programs first, and later insert annotations which indicate the
concurrency to be exploited. These practices allow the same program to be executed
in different configurations with only minor changes to the annotations, thus exhibiting
different performance characteristics, but producing identical results. The execution
characteristics of a program can be changed without altering the program itself. Only

the annotations need to be changed.

As stated earlier, lazy evaluation within a single process is very desirable.
Buffering requirements are significantly reduced and partial results can be produced
much more quickly than if eager evaluation is used. However, strictly lazy evaluation
prevents the exploitation of a very important form of concurrency. By using annota-
tions, the programmer can define process boundaries and introduce eager evaluation in

order to exploit this form of concurrency.

In this thesis, the types of concurrency attainable in a distributed stream pro-
cessing system are described. Annotations that allow a programmer 10 indicate when
extra processes should be used to exploit each of these types of concurrency are
presented. The implementation of ASPEN, a stream processing environment which
supports such annotations, is also described. A prototype system has yielded

encouraging results.

This research is part of the Tangram project [10, 14] at UCLAT whose goal is
to develop a Prolog-based distributed modeling environment which combines DBMS

and KBMS technologies with a variety of modeling tools.
1.4 Thesis Plan

This thesis is organized as follows. Chapter 2 provides necessary background
information including a characterization of streams and stream processing. The third
chapter describes how the concurrency inherent in ASPEN programs can be exploited
through the use of annotations. Chapter 4 describes the implementation of ASPEN.

Chapter 5 relates this work to work done previously by other authors. Chapter 6 pro-

poses areas of future research. Finally, Chapter 7 contains concluding remarks.

tTangram is supported by DARPA contract F29601-87-C-0072.

CHAPTER 2
STREAM PROCESSING

This chapter contains some background information necessary for understand-
ing the rest of the thesis. A characterization of streams and transducers, the opera-
tions on streams is presented. Log(F), a language for composing transducers is
described. Finally, the three types of concurrency inherent to stream processing pro-

grams are described.

All of the code in this thesis is specified in Log(F) and Prolog. See [16] for an

introduction to Prolog and logic programming.
2.1 Streams

Streams, at the highest level of abstraction, can be viewed merely as ordered
sequences of data objects which are accessed in a sequential manner. Thus, they
could be implemented as Prolog lists. However, implementing streams as lists
severely limits the power inherent in stream processing. Performing successive
transformations on a list produces intermediate lists and a complete copy of the
wransformed list must be stored for each step. This storage is expensive or intractable

for large streams.

Such storage problems are avoided by providing an implementation which per-
mits lazy evaluation within a single process. When lazy evaluation is used, an ele-
ment of the stream is only produced when it is needed. Transformations can be corou-

tined so that one element of the input stream moves through a succession of operators

until it is completely transformed. Only then is the next element of the input stream
requested. Thus, one can avoid storing intermediate streams and one can write pro-

grams that manipulate potentially infinite streams.
2.2 Log(F)

This section presents a brief overview Log(F) [11, 12], a rewrite rule language
developed by Sanjai Narain at UCLA. Log(F) provides lazy evaluation. With the
extensions described in the next chapter, Log(F) is an excellent base language for
expressing ASPEN programs. Log(F) allows programmers to €xpress computations
with a very fine degree of potential parallelism where each transducer potentially
represents a process. ASPEN, as described in the next section, allows programmers to

annotate these programs to indicate the desired amount of concurrency.

The following example illustrates how one composes Log(F) rules and how
they are translated into Prolog for interpretation by a standard Prolog engine. The
rules below describe how to append two streams.

append([1, C) => C.

append([A | B], C) => [A | append(B, c)l.

Prolog list notation is used to represent streams. In the term, [A | B], A

represents the first element of the stream, and B represents the stream continuation.

Log(F) rules are easily translated into Prolog reduce rules. The corresponding

reduce rules for the above Log(F) rules are:
reduce (append (A, B), E) -
raduce (A, D),
append (D, B) => C,
raduce(C, E).

append([1, C) => C.
append([A | B], C} => [A | append(B, C)].

reduce([1, [1).
reduce([H | T], [E]| T]).
The symbols [] and [H|T] have reflexive reductions; that is, they reduce to them-

selves. Such symbols are referred to as constructor symbols.

When executed by a standard Prolog engine, reduce rules can be made to
behave in a lazy fashion. If append([a,b,¢], [d,e]) were reduced once, the
result [a|append({b,c], [d,e])] would be obtained. Further reduction of
the tail would yield the result [b]append([c], [d,e1)]. Thus, one can see

that the computation is demand-driven; that is, no result is computed until it is needed.
2.3 Transducers

The elementary unit of computation in a stream-based language is the trans-
ducer. Abelson and Sussman [1] recognize four basic forms of transducers: enumera-

tors, mappings, filters, and accumulators.

Enumerators take zero or more parameters and generate a stream of output.
An example of an enumerator is a transducer which generates a list of all integers
greater than some N given as input.

intsfrom(N) => [N | intsfrom(N + 1)}.

Note that this transducer produces an infinite stream. Another example of an

enumerator is a relation stored in a database. The relation is viewed as a stream of

tuples.

In the example above, +/2 is an eager operator. By default, all operators in
ASPEN are lazy, that is, they are not computed until their results are needed. Some
operators, arithmetic operators in this case, are defined to be eager. There is nothing

to be gained by delaying their evaluation.

A mapping takes as input one or more streams and performs some sort of
transformation on its input to produce an output stream. An example of such a trans-
ducer is the one below, which takes as input a stream of numbers and produces as out-
put a stream consisting of the squares of the numbers on the input stream.

sq(l[1) => [1.

sq([A | B]) => [A*A | 3q(B)].

The first rule, the boundary condition, specifies that the square of all of the numbers
on an empty stream is simply an empty stream. An example mapping from the data-
base domain is a transducer that performs projections. For each input tuple, a new

output tuple containing only the projected fields is produced.

Filters reduce the amount of data on a stream. Below is a transducer which
filters odd numbers from a stream of numbers, producing a stream consisting solely of
even numbers.

even([1) => [1.

even([A | B]) =>

i€(is_even(a), [A | even(B)], even(B)).
Here, is_even/l is a transducer which rewrites to true if the argument is even and
rewrites to false otherwise. if£/3 rewrites to its second argument if the first argu-

ment rewrites to true and rewrites to its second argument otherwise. Note in the

above example that if A is odd, even([A|B]) rewrites to a term that must be

further rewritten before an output can be produced. Rewritable terms are rewritten
automatically until a constructor symbol is produced. Constructor symbols are terms
which rewrite to themselves. Common constructor symbols are [, [1, and

numbers.

Accumulators perform aggregate functions on streams. They take a stream as
input and generally produce a stream consisting of a single output. The example
below produces the sum of the numbers on its input stream.

sum(S) => sum(S, 0).

sum([], PS) => [PS].

sum([A | B], PS) => sum(B, PS + A).

Aggregate functions are common database operations; sums, averages, etc. occur quite

frequently and can be expressed easily as transducers.

Hybrid transducers are quite common. For example, the transducer below,
which produces a running total for a stream of numbers, is a hybrid of a mapping and
an accumulator.

running total(S) => running_total(s, 0).

running total([1], PT) => [PT].

running total([A | B], PT) =>

[PT+A | running_total (B, PT+A)].
Transducers which both filter their input and perform mappings are also common.
The transducer below takes as input a stream of numbers and produces as output a
stream consisting of the square of every even number on the input stream.

sq even([1} => [].

sq even([A | B]) =>

if(is_even(aA), [A*A | sq_even (B)], sq_even(B)).

This transducer could, in fact, be written as the composition of a filter and a mapping.

sq_even_comp{(S) => sg(even(S)).

The above example shows that multiple transducers (of the same or differing forms}
can be easily composed to form more complex transducers as in other functional pro-
gramming languages. This mode of programming is common in ASPEN. Program-
mers define elementary transducers or obtain existing transducers from libraries and

use them to compose more complex transducers.
2.4 Concurrency in Stream Processing Languages

Three basic types of potential concurrency are inherent in stream processing
programs. They are stream parallelism, concurrent reduction of arguments, and merge
parallelism. In this section, each type of concurrency is described and examples in

which they arise are given.
2.4.1 Stream Parallelism

Stream parallelism is equivalent to pipelining. The potential for stream paral-
lelism arises in stream processing programs when transducers are nested. It is illus-
trated by the example from the previous section which took a stream of numbers,
filtered out the odd numbers and produced a stream consisting of the squares of the
even numbers. The transducer was specified as sq(even (S)), where S was a
stream of numbers. This transducer can be represented as the pipeline composition of

two transducers as in Figure 1.

Loven) L)
S even sq —» sq(even(S))
_/ _/

Figure 1 Pipeline Parallelism

Concurrent execution of both stages of the pipeline could potentially double the

10

throughput of this transducer. Obviously, as the number of stages in the pipeline

increases, the potential parallelism also increases.

Note that no parallelism is achieved if strictly lazy evaluation is used. How-
ever, if each of the transducers behave eagerly and run concurrently, parallelism is
achieved. In the absence of multiple processes, lazy evaluation in this case yields an

efficient use of storage as there is no need to store intermediate values.
2.4.2 Concurrent Reduction of Arguments

The potential for parallelism via the concurrent reduction of arguments arises
in stream processing programs whenever transducers have multiple stream inputs. An
example of this is a transducer which computes the sum of the squares of two streams,
expressed as add {sq(A), sq(B)). Decomposition of this transducer yields the

graph in Figure 2.

» —(
@ add(sq(A), sq(B))
O

Figure 2 Concurrent Reduction of Arguments
Since the two inputs to add are independent, they can be produced concurrently.

In this case, concurrency can be achieved even when lazy evaluation is used.
Multiple inputs to a transducer can be produced in parallel while remaining within the

framework of lazy evaluation.

11

2.4.3 Merge Parallelism

Merge parallelism can be achieved if the task of producing a stream can be
shared by multiple transducers. Consider a transducer which produces a stream that
represents the relation, R, which is comprised of fragments, R1....Rn. This can be
expressed as select ([tuples(Rl), ..., tuples(Rn) 1) . Decomposition
of this function into its component transducers yields the graph in Figure 3.
select/l is a transducer which accepts as input a list of transducers whose outputs
are to be interleaved in some unspecified manner to form one stream. tuples/l1 is
a transducer which produces a stream of output tuples corresponding to the relation

name that is given as an argument.

Figure 3 Merge Parallelism

12

CHAPTER 3
ASPEN PROGRAMMING TECHNIQUES

This chapter describes several of the constructs used when writing ASPEN
programs. A single mechanism for achieving the basic types of concurrency
described in the previous chapter is proposed. Additional mechanisms to improve the
performance in cases in which this mechanism works, but yields poor performance are

proposed.
3.1 Achieving Concurrency Through Annotations

Parallelism is achieved when different portions of a computation are per-
formed concurrently on different processors. However, having every node in a trans-
ducer network represented by a different processor would result in too much overhead;
the communication overhead would far outweigh the concurrency gained. Instead, a
computation must be judiciously partitioned over the available processors. One must
consider not only the potential concurrency in a given program, but also the overhead
introduced by exploiting that concurrency. One must consider the computation costs
of various portions of the program as well as the communication costs involved. Such
factors are often determined by the nature of the input data as well as the structure of

the program itself.

This section describes the primary concurrency annotations used by ASPEN
programmers. The prefix annotation, #, is used by ASPEN programmers to indicate

that it would be cost-effective to reduce the annotated term in parallel with the rest of

13

the program. All three types of parallelism mentioned in the previous chapter can be

achieved through the use of the # annotation.

Stream parallelism is achieved in the example of Figure 1 by annotating it as
follows: sq(#even(S)). Such an annotation indicates that the filter even is to
operate in a pipelined fashion with the mapping sq. Even integers are filtered out of
the stream $ on some remote site and streamed to the local site where they are
squared as they arrive. Aliermatively, the program could be annotated as
sq(even(S) @ ipswich) to specify that reduction of the term even (S) isto

take place on the site whose name is ipswich.

Concurrent reduction of arguments is achieved in a similar manner. The trans-
ducer add(sq(A), sq(B)) isannotated as add(¥sq(n), #sq(B)) to indi-

cate that the two input streams are to be produced concurrently.

Finally, merge parallelism is achieved in the example of Figure 3 by annotat-
ing it as follows: select ([#tuples(R1l), ... , #tuples(Rn)]). The
exact interleaving of elements on the stream produced by select/l is determined
by the availability of data elements from each of the concurrent processes. The imple-

mentation of select/1 is discussed fully in Chapter 4.

Decisions about how to annotate ASPEN programs may be guided by several
different factors. The programmer may have knowledge of the expected data and how
it might affect computation costs. Some transductions may be known to be computa-
tionally expensive, while others are comparatively inexpensive. Many other factors
may determine the best way to annotate a program, but regardless of how the program
is annotated, the underlying program is not changed. Only the annotations are

changed. Thus, the original specification of the transducer is the same regardless of

14

whether it will be executed concurrently or sequentially.

ASPEN supports the annotation of rule invocations rather than the annotation
of rule definitions for several reasons. Some invocations of a rule warrant the use of a
separate process while other invocations of the same rule do not. The same rule may
be invoked once to solve a problem which the programmer feels is likely to be expen-
sive, while another invocation might be to solve a rather trivial problem. Secondly,
since transducers are quite often defined in an iterative manner, annotation of rule
definitions could cause excessive process creation. Recall the definition of
intsfrom/l from Chapter 2.

intgfrom(N) => [N | intsfrom(N + 1)].

If the definition of intsfrom/1 were annotated, a new process would be created for
every iteration, or for every output element produced. By annotating invocations, one
can specify that the entire stream represented by intsfrom/1 is to be produced by a
single process. Finally, the effect of annotating definitions can be achieved by anno-
tating invocations. For example, if one really wanted intsfrom/l to create a new
process for each element it produces, one could easily achieve that behavior by re-
writing intsfrom/] as follows:

intsfrom(N) => [N | #intsfrom(N + 1)].
Thus, annotating invocations is more general than annotating definitions.
3.2 Extending Log(F)

While the # annotation is sufficient for expressing all three types of con-
currency, there are a number of important cases in which its structure is not entirely
appropriate, In the following sections, those situations in which the # annotation

alone is insufficient are described and alternatives which greatly improve performance

15

are proposed. These language extensions are necessary for the efficient execution of

sequential programs as well as concurrent programs.
3.2.1 Common Subexpressions

Pure functional programming languages allow programmers to construct only
programs whose data flows are trees. Tree dataflows disallow the optimization of
common subexpressions; if an expression is used in several places throughout a com-
putation, it must be recomputed each time it is used. Allowing dataflows which are
directed acyclic graphs (DAGs) rather than restricting the dataflows to be trees would
permit optimizations such that these common subexpressions need only be computed

once.

This section introduces a mechanism that allows common subexpressions to be
optimized. This mechanism is available to the programmer so that he can specify
when common subexpression is allowed. Common subexpression optimization could
be done automatically by a compiler. However, programmers may not want this
optimization to be applied to all common subexpressions. In some cases, the common
subexpression may represent computations that are inteded to produce different results
upon different invocations. They may be dependent upon side-effects or timing. In
such cases, optimizing common subexpressions may alter the behavior expected by

the programmer.

Henderson [5] describes the introduction of local definitions into a functional
programming language to allow the optimization of common subexpressions. ASPEN
provides a mechanism which appears to the programmer very similar to local
definitions. However, local definitions in ASPEN programs must guarantee not only

that the same initial value is assigned to all occurrences of a common subexpression;

16

they must also guarantee that whenever one occurrence of a common subexpression is
reduced, the result of that reduction will be visible to all occurrences of the common

subexpression. Thus, common subexpressions are never reduced more than once.

By using the infix operator, where, programmers can express transducers
with optimized common subexpressions. The where operator is used to place con-
ditions on terms. The right hand side of a rule defining a transducer will often be of
the form: Term where Condition. Statements within Condition may bind

one or more variables which occurin Term,

Consider, for example, the following transducer:

sq_plus_dbl(S) => add(sq(s), dbl(s)).

Each instance of $ is treated as a separate stream. So, each element of 8 is calcu-
lated twice, once for each consumer. This overhead could be quite significant if 8
represented a complex transduction. By rewriting the transducer as follows:
sq_plus_dbl(s) => add(sq(R), dbl (R))

where

R <= S,
the overhead may be significantly reduced because the expression § is evaluated only
once. Thus isolating common subexpressions in the where portion of a transducer

guarantees that when any instance of the common subexpression is reduced, all

instances will be reduced.

In order support the optimization of common subexpressions in distributed
executions, ASPEN supports another use of the # annotaton. By annotating a com-
mon subexpression with a # annotation, the programmer can specify remote reduc-

tions whose results are consumed by multiple processes. As with the in-line use of #.

replacing # annotations with @/2 annotations in the where portion of a transducer

17

allows the user to explicitly specify the site to be used for reduction.

With this use of the # annotation, the above transducer could be annotated for
parallelism as follows:
sq plus_dbl(S) => add(#sq(R), #dbl(R))
whara
R <= #S.
The generation of the input stream, R, the sq mapping, the dbl mapping, and the
addition of the resulting streams can all take place in parallel. Here again, the expres-

sion 8 is evaluated only once, though the resulting stream will be replicated so that it

may be consumed concurrently by the two transducers, sqand dbl.
3.2.2 Multiple Outputs

Pure functional languages make the expression of functions with multiple out-
puts very awkward. One method for allowing a transducer to produce multiple out-
puts would be to have the transducer produce structures as output. These structures
would have one argument for each of the multiple outputs that the transducer is to pro-

duce. Two options are available here.

First, one could represent the output of a transducer as a stream of structures.
This is acceptable when, any time one output is produced, all outputs are produced.
Such is the case for diw/2, which produces as its output, a stream of structures which

contain the quotient and the remainder derived from the two input streams.

div(f 1, I D => [1.
div([a | B], [Cc | DP]) =>
[t(A // C, A mod C) | div(B, D)].

Such a technique is awkward and inefficient when the outputs are produced at

different rates. One of the elements of the structure must represent a term that has not

18

yet been computed.

The second option, which deals more effectively with differing output rates,
represents the output of a transducer as a single structure whose elements represent the
multiple output streams of the transducer. Narain [12] proposed such a scheme for
rewrite rules in Log(F). A rewrite rule, partition/4, which takes a single input
stream and partitions it into two output streams based upon a pivot element, is
expressed as follows.

partition(Pivot, [], L, R) => ¢t(L, R).

partition(Pivot, [A | B], L, R) =>

if (A =< Pivot,
partition(Pivot, B, [A | L], R),
partition(Pivot, B, L, [A | R]}).
The output of such a rewrite rule might be consumed by a rewrite rule to quicksort a
stream as follows.
quicksort([1) => [1].
quicksort([H | T]) =>
quicksortl (H, partition(H, T, [1, [1).
quicksortl (R, t(L, R)) =>
append (quicksort (L), [A | quicksort(R)]).
This option is unacceptable for several reasons. First, the syntax is very awkward; the
third and fourth arguments to partition/4 are not intuitive and the need for
quicksort1/2 is not intuitive. More importantly, partition/4 produces no out-

put until the entire input stream has been consumed; such behavior which fits very

poorly into the stream processing paradigm.

ASPEN supports an altemnative approach in which all transducers produce a
single stream of output. Elements of the stream are tagged to indicate the logical out-
put stream to which they belong. Consumers merely filter out elements with the

proper tag. The problem of representing and implementing transducers with multiple

19

outputs is now reduced to that of representing and implementing common subexpres-

sion optimization.

To solve the multiple output problem in sequential executions, one makes use
of the common subexpression optimization techniques described previously. The
transducer for quicksorting a stream illustrates their use. In the following example,
o1/1 and ©2/1 are assumed to be constructor symbols and thus are not rewritten.

quicksort ([1) => [1].

quicksort ([H | T]) =>

append (quicksort (first (S)),
[H | quicksort (second(S))])
where
S <= partition(T, EH).
partition([], P) => [].
partition([H | T], P) =>
if(H =< P,
[01(B) | partition(T, P)],
[02(H) | partition(T, P)1]).
Note that partition/2 produces a single stream of output. Each element of that
output stream is specified as either the first output (o1) or the second output (02).
This syntax is much more intuitive than that proposed by Narain. There is no need for
the extra arguments required by Narain’s implementation of partition/4. There
is no need for the extra rule quicksortl1/2. Most importantly, output elements are
made available as soon as they are calculated, rather than being buffered until the

entire output stream has been calculated.

The transducers first/l and second/l simply filter the appropriate output

20

from the stream. They are defined below.
first([1) => [1.
first([E | R]) =>
if(E = ol(T), [T | first(R)], first(R)).
second([]) => [1.

second({[E | R]) =>
if(E = 02(T), [T | second(R)], second(R)).

This set of filters is easily extended to allow functions with many outputs.

The quicksort transducer for distributed execution is shown below.
quicksort([1) => [].
quicksort([H | T]) =>

append (#quicksort (first (S)),

[H | #quicksort(second(S))])
where
S <= #partition(T, H).
The partition transducer need not be changed. The same filters that are used in

the sequential case can also be used here.

In the distributed execution of quicksort/l, partition/2 produces two
copies of its output stream. Both consumers receive all elements on the stream,
regardless of the tag. Each stream is filtered as it arrives at its consumer. An obvious
optimization is to force the filtration to take place at the producer, thus reducing the
total amount of data that must be transmitted and buffered. For context-free filters
like first/l and second/l, this is a trivial optimization. For more complex
filters (e.g. filters that maintain state), the optimization may be more difficult. Both

cases are discussed in Chapter 6.

21

3.3 Increasing Merge Parallelism

Given the previously described mechanism for dealing effectively with trans-
ducers that have multiple outputs, another form of merge parallelism may be
exploited. This form of merge parallelism arises when a node in a pipeline is replaced
by a graph of processes which is capable of processing multiple elements of the

stream concurrently. This situation is illustrated in Figure 4.

@ I

Figure 4 Merge Parallelism via Splitting

In this example, A is split into two streams, the sqrt mapping is applied to each,
and the two streams are merged back into one stream. In this case, it is important that
the stream ordering be maintained across the splitting and merging so that the result is
guaranteed to be identical to that produced by a transducer which does not split the
input stream. In other cases, the ordering constraint may be relaxed to increase poten-

tial concurrency.

Several possible methods for splitting and merging streams are enumerated
below. Each has advantages and disadvantages both in terms of complexity and ver-

satility.

If the split transducer and the merge transducer agree upon the method by

which streams should be split, no mechanism is required to ensure proper synchroni-

22

zation of data. The transducers below illustrate such a simple method of splitting and
merging streams.

split([1) => [1.
split ([X | Xs]) => [01(X) | split2(Xs)].

split2([1) => [].
split2([X | Xs]) => [02(X) | split(Xs)].

merge{[], B) => B.
merge([A | As], B) => [A | merge(B, As)].
Note that the split transducer alternates production, first producing o1 (X), then
producing ©2 (X). The merge transducer consumes from its two input streams in a
similar fashion, alternating between the two streams. This alternation is achieved by
simply reversing the arguments on subsequent calls, As an illustration of how this set
of transducers might be used, consider how one would annotate the program for the
graph above. The filters, £first/l and second/l were described previously.
t(A) => merge(fisqrt(first(B)), #sqrt(second(B)})
where
B <= #split(A).
ordering is maintained automatically if all transducers between the split and merge

operations perform one-to-one mappings.

A second method by which streams may be split and re-merged is to simply
ignore ordering altogether. This method is similar to the use of select/1 described
in section 3.1.3. The split transducer decides arbitrarily how to split the stream and
the merge transducer simply accepts input from whatever stream has bindings avail-
able. This method perhaps offers better performance than the previous method since
the merge transducer can consume whichever input is ready rather than having to wait
for a specific one. However, this method is applicable only in cases where stream ord-

ering is irrelevant.

23

If a standard ordering is maintained on the streams involved, another method
may be employed. The split transducer takes as input a stream that is ordered
according to some characteristic, e.g. ascending numeric order. The transducers that
operate on the streams created by split must preserve order on the streams.
Assume that the input to split is [X4,...,X,]. Foreachi<n, X; is sent on one of
the two output streams where it is mapped by a sequence of transductions to
Yi 10 Yim» mi20. For each i,j<n,i#j, if X; <X}, then ¥; x <¥;, for all k<m;, I1<m;.
This technique, while perhaps quite efficient for a limited set of applications, is useful
only in cases where the sort criterion is maintained across all transductions which take

place between the split and merge operations.

Another method of extracting merge parallelism is through cooperation
between the split transducer and the merge transducer. In addition to producing
streams of data, the split transducer also produces a stream of control information.
This control stream is used by the merge transducer to assure that the streams are
merged in the proper order. The ASPEN code for such a merge transducer is given
below. The first argument to merga is the control stream. Each element, E, of the
control stream indicates whether to accept input from the first stream (E = 1) or the
second stream (E = 2).

merge([1, X, ¥) => [

merge ([1 'I Cs], X, Y)
|

1.
=> x merge(Cs, X, Y).
mergea([2 Cs], X, YY) =>

y_merge(Cs, X, Y).
x_merge (C, [X | Xs], ¥) => [X | merge(C, Xs, Y)].

y_merge(C, X, [Y | Ys]) => [Y | merge(C, X, ¥Ys)].

One can now construct a transducer that splits its input stream based upon some

characteristic of the elements. Such a method is very useful when intermediate

transformations differ based upon the split characteristic. Each stream that is

24

generated by the split transducer can be operated upon by a unique transducer,
rather than trying to collapse the functionality of several transducers into one. Such a
method is used in the Stream Machine [2] for an application in the field of oil explora-
tion. Three streams of measurements are used to calculate the volumetric percentage

of hydrocarbons in the rock formations at various depths in a borehole.

These measurements are lithology (the type of rock), electrical resistivity, and
transit time (the time for a sound wave to propagate through the formation). The
difference between the porosity of the rock and the percentage of water in the forma-
tion yields the volumetric percentage of hydrocarbons in the formation. The percen-
tage of water is computed directly from the resistivity. The porosity is computed from
the transit time, but different calculations are selected based upon the type of rock. It

is for this calculation that the split/merge technique is applicable.

Program 1 shows a re-implementation of this example in ASPEN. The param-
eter Rw is the resistivity of water and is constant for each borehole. The
selectModel transducer produces three output streams, ol, 02, and ¢. ol
and o2 are consumed by sPorosity and lPorosity, respectively. The stream
¢ is used by merge to assure that the output streams of sPorosity and

1Porosity are merged in the proper order.

This example introduces a new filter, control, which extracts control mes-
sages from a strearnT. The transducer case is also introduced to allow the program-
mer to construct case statements as in other high-level programming languages. The

code for each of these new transducers is given below.

TNote that the control stream could have been represented as the third output (03) of
selectModel and used the filter third rather than introducing a new filter.
Often, however, the meaning of a program is clearer if the filters are given meaningful
names.

25

hydrocarbons (Rock, Time, Resistivity, Rw) =>
subtract (#porosity(Rock, Time),
#$water (Resistivity, Rock, Rw)).

porosity(Rock, Time) =>
merge (control (R), #sPorosity(first(R)),
#lPorosity(second(R)))
where
R <= j}iselectModel (Rock, Time).

selectModel ([1, [1) => [1.
salactModel ([Rock | Rs], [Time | Ts]) =>
case(Rock, [
sandstone: [0l (Time), c(1)
| selectModel(Rs, Ts)],
limestone: [02(Tima), c(2)
| selectModel(Rs, Ts)]
]

).

water([1, [], Rw) => [].
water ([Resistivity | Rs], [Rock | R2s], Rw) =>
case (Rock, [
sandstone : [sqrt(0.8 * Rw/Resistivity)
| water(Rs, R2s, Rw)]
limestone : [sqrt(Rw/Resistivity)
| water{Rs, R2s, Rw)]
1

).
1lPorosity([J) => [1.
lPorosity([Time | Ts]) =>

[(Time - 47)/142 | lPorosity(Ts)].
sPorosity({]) => [].

sPorosity([Time | Ts]) =>
[(5/8) *(Time - 55)/Time | sPorosity(Ts)].

Program 1 Qil Exploration Example

26

control([1) => [1.
control ([X | Xs]) =>
if(X = c(E), [E | control(Xs)], control (Xs)) .
casa(Switch, []) = [1.
case (Switch, [Case : Term | S8]) =>
if (Switch == Case,
Term,
if(Switch == default,
Term,
case(Switch, 8))).

The split/merge technique is very useful when the operations to be performed
on the streams are complex and are intended to be executed in parallel. Perhaps even
more significant is that this technique allows better software engineering of ASPEN
programs. Note that the porosity models in the above example are defined indepen-
dently of each other as transducers. Without using split/merge techniques, they would
have had to be collapsed into one transducer or they would have had to be defined as
operations on individual elements rather than streams, a severe restriction on their

potential power as well as the degree of parallelism which may be exploited.

All of the above methods have the advantage of not requiring any
modifications to the transducers that process the split streams. These intermediate
transducers need not be aware that they are participating in a split/merge operation.
The same code is used for the transducers whether they are participating in a
split/merge operation or not. However, several of the options require that the inter-
mediate transducers perform one-to-one mappings; otherwise, ordering cannot be
maintained. An option which allows one-to-N mappings while stll maintaining order
on the stream introduces synchronization markers into the stream that is to be split.
The Sync Model [8], a parallel execution model for logic programming, uses a similar

technique to achieve parallelism in the all-solutions evaluation of logic programs.

27

A single synchronization marker precedes each term sent on the stream. Each
synchronization marker on a stream has associated with it a number which is unique
within the stream. These numbers are generated and introduced into the stream by the
following transducer.

mark(X) => mark(X, 0).

mark([], N) => [].

mark([E | T], N) => [sync(N), B | mark(T, N + 1)].
Any method of splitting the stream may be used as long as a data element and its asso-

ciated synchronization marker are placed on the same output stream.

Transducers that encounter synchronization markers must be modified to echo
them onto their output stream. In order to preserve determinism, “catch-all” rules
which do not transform their input must be left unchanged. Such rules are character-
ized by having no formal parameters which force the reduction of their corresponding
real parameter to a structure of the form [A | B]. Thus, only those transducers
with one or more arguments of the foorm [A | B] need to be modified. Such rules
must be modified so that, if A is a synchronization marker, it will be echoed onto the
output stream. For each transducer, f/n, that participates in a split/merge operation,

the following transformation must be performed.

28

1. if no arguments are of the form [A { B], do nothing

2. if m arguments with indexes i; through i, are of the form [A | B]:
- rename all rules for f /nto f,,/n
- for the first argument of the form [A | B], add the following rule:
fALALLIX 1Y LA 1,e0A,) =>
if(X == sync(SN),
[sync(SN) | f (A 1, Ai 1Y Ajyr1seeAn)),
AL GAi X 1Y LA 4, 0A0))
- for the jth argument of the form [A | B], add the following rule:
fi-1A 1 Ap L X 1Y LA 410 AR) =>
if(X == sync(SN),
[SYNC(SN) 1 £51(A 1rerAiy-1.Y igatsreAn)l,
£ (A LAt X 1Y LA 1,00 AR).

If each of the transducers participating in a split/merge operation is thus transformed,
synchronization markers will be maintained in their proper order and determinism will

be preserved.

Synchronization markers can now be used to merge the transformed streams
in the proper order. The following transducer achieves this ordered merge.

merge([A | B], [C | D]) =>
if(A == sync(M),
if(C == sync(N),
if(M < N,
merge (B, [C | DP]),
marge([A | B], D)),
) [C | merge([A | B}, D)]

[A | merge(B, [C | D]}]

29

Note that merge removes all synchronization markers from the stream and thus,
disallows the nesting of split/merge pairs. This limitation can be eliminated through

the use of labelled synchronization markers as shown below.

Labelled synchronization markers permit nesting while still maintaining order.
The labelled forms of mark and merge, called lMark and 1lMerge, respec-
tively are given below.
1Mark (Label, X) => 1Mark(X, Label, 0).
IMark([], Label, N) => [1.
1Mark([H | T], Label, N) =>
[sync(Label, N), H | 1Mark(T, Label, N + 1)].
lMerge(Label, [], [1]) => [1.
1Merge (Label, [A | B], [C | D]) =>
if (A == sync(Label, M),
if(C == sync(Label, N),
if(M < N,
1Merge (Label, B, [C | P]),
1Merge (Label, [A | B], D})
[C | 1Merge(Label, [A | B], D)

),
[A | 1Merge(Label, B, [C | D]l}]

Transducers that echo synchronization markers must be modified to echo this new
type of synchronization marker. A common label must be agreed upon by

1Mark/1Merge pairs.

There are several options available when using split/merge techniques to
exploit merge parallelism. The choice of which to use is dependent upon the applica-
tion. One must consider whether ordering on the stream is important and, if so,
whether the ordering can be exploited by the merge operation. Furthermore, one must
consider whether all of the mappings are one-to-one and whether a simple method

may be used or whether one of the more complex methods must be used.

30

3.5 Summary

This chapter has described how each of the three forms of concurrency
inherent ASPEN programs may be exploited. Stream parallelism is achieved by pipe-
lining nested transducers. Concurrent reduction of arguments allows multiple input
streams to a transducer to be produced in parallel. Merge parallelism is achieved by
having several transducers working in parallel to produce different portions of the
same input stream to a transducer. Merge parallelism can be increased by splitting a
single stream into multiple streams, allowing several transducers to operate on that
stream in parallel and merging the resulting streams back together again. Most of the
merge transducers given in this chapter merged two streams. Transducers which
merge many streams may be expressed in an analogous manner. The next chapter
describes the underlying system that has been implemented to support all of these

types of parallelism.

31

CHAPTER 4
IMPLEMENTATION

This chapter describes the implementation of the ASPEN execution environ-
ment. The server model is described. The main topic of the chapter is the discussion
of how worker processes provide service to clients. The extensions to the Prolog

environment necessary to support this implementation are also detailed.
4.1 Server Model

This section discusses the only part of the implementation of ASPEN that is
dependent upon aspects of Sun UNIX, the operating system on top of which ASPEN
is currently implemented. If ASPEN were re-implemented on top of an operating sys-
tem for which different cost assumptions were more appropriate and different features
were available, the necessary changes would be isolated to the server model presented

in this section.

Process creation in UNIX is a rather expensive operation. Since Prolog
processes tend to be very large, their creation cost is especially high. It is unaccept-
able to pay the price of process creation every time one wishes to reduce a term
remotely. Therefore, ASPEN provides pools of pre-existing processes which are
capable of performing reductions. In order to further reduce the overhead of perform-
ing distributed computations, the ASPEN architecture facilitates efficient communica-

tion with these processes and efficient configuration of transducer networks.

32

Programmers construct transducer networks by sending service requests to
remote machines. Programs that make such requests will be referred to as clients and
processes on remote sites which accept those requests will be referred to as servers.
Servers actually delegate work to members of a pool of processes called workers.

This delegation of work is transparent to the client.
4.1.1 Servers

Each site that provides service allocates a service port to which clients can
send service requests. A server process is allocated to wait for requests on that port.
Servers are designed to have minimal impact upon performance. Their primary tasks

are assigning work to worker processes and managing the size of the worker pool.

In order to reduce the overhead of communicating via a server, servers do not
read incoming messages. They instead wait for an indication that a message has
arrived and select a worker process to read the message and satisfy the request. This
reduction in overhead is especially significant when satisfaction of the request
involves relatively little processing as may be the case with some trivial database

queries.
4.1.1.1 Forwarding Requests

All of the workers in a pool are descendants of the server that manages the
pool. Thus, the server and all of the workers can share a file descriptor which
identifies the service port. The server listens for connection requests on that file
descriptor. When a request arrives, the server selects a worker to process that request.
The server maintains the following semaphores in order to select an appropriate
worker (one that is idle) and assure mutual exclusion on the service port. These sema-

phores are also accessible to all of the workers in the pool.

33

sem_idle indicates the number of idle workers; incremented by
workers when they finish processing a request; decremented
by the server when a worker is selected for a task

busyli] indicates status of the ith worker; incremented by

the server when the ith worker is selected; decremented
by the ith worker when it finishes a task

4.1.1.2 Managing Pool Size

ASPEN is capable of adjusting to varying workloads. If the server realizes
that all of its workers are busy and there are still connection requests queueing up, it
can increase the size of its pool by creating another worker. Careful consideration
should be put into the decision of whether to increase the pool size. If the currently
allocated workers are suspended waiting for input, then it may indeed be beneficial to
create another worker process that can satisfy requests while the other workers await
input. If, however, requests are queueing up because all of the allocated workers are
actively satisfying previous requests, creating additional workers may actually

degrade performance by creating more contention for resources.

Likewise, if the server realizes that some of its workers are constantly idle, it
can remove wotkers from the pooi by killing processes and marking the appropriate
semaphores to indicate that those processes are no longer available. This may be

desirable if there is contention for swap space.

Decisions about pool size management can be quite complex. They can be
based upon request queue length, average service time, average waiting time,
throughput, or any combination of a host of other parameters. Making effective
management decisions requires access to many performance parameters. The neces-

sary instrumentation to measure such parameters is discussed in Chapter 6.

34

4.1.2 Workers

Workers are descendants of the server. As such, they are able to share a file
descriptor for the service port. After creation, a worker’s process image is overlayed
with a Prolog image. The worker then consults a Prolog file which contains the code

necessary for providing ASPEN service.

When a worker’s semaphore is signaled by the server, it wakes up and accepts
the connection request on its input port. Then it reads the reduction request from the
established socket. The worker expects one of five message types. After reading the
message and satisfying the associated request, worker i increments sem_idle and

decrements busy/fi], making itself available to process further requests.

This section describes how worker processes handle the two most basic mes-
sage types. Discussion of the other message types is deferred until sections 4.8 and
4.11. A message of the foorm single (Term) is received when a remote client
wishes for the worker to reduce Term (an ASPEN expression, which, when reduced,
will yield a stream of output) and send a single stream of results directly back to the
client. A message of the form multiple(Term, N) arrives when a remote client

wishes for the worker to reduce Term and produce output for N consumers.
4.1.2.1 Single Qutput

When the message single (Term) arrives at a worker on socket S, the
goal makeStream(Term, S),whichis defined by the Prolog code in Program 2,
is invoked. makeStream(Term, Socket) eagerly reduces Term and sends
the results on Socket. When Term reducesto [], a writeStream fails,
perhaps because the client has closed the stream, or a reduction fails, Socket is

closed and the worker becomes idle.

35

% makeStream(Term, Stream)

% the stream resulting from the reduction
% of Term is sent on Stream

% if, at any point, the reduction fails,
% an error message is sent and

% Stream is closed

makeStream{Term, Stream) -
raduce (Term, ReducedTarm),
1
r
sendTerm (ReducedTerm, Stream).
makeStream(Term, Stream) 1=
writeStream(Stream, ’S$error’),

closeStream(Stream),
]

makeStream(Term, Stream) HE
closeStream (Stream).

sendTerm({Term, Stream)
if Term = [], write ’'$end of_ stream’ and
close the stream
if Term = [H | T], send H on Stream and
and continue reducing T and sending
the results on Stream

dP dP df JP aP dP

sendTerm([], Stream) M
writeStream(Stream, ’$end of stream’),
closeStream(Stream) .

sendTerm([H|T], Stream) -
writeStream(Stream, H),
makeStream (T, Stream).

Program 2 Creating Output Streams

4.1.2.2 Multiple Outputs

When the message multiple (Term, N) armrives at a worker on socket 8,
the following Prolog goal is invoked.
handle_request (multiple(Term, N), S) :-

initialize(Term, N, S, Buffer, ServicelD),
eagerLoop (Buffer, ServicelD).

The Prolog predicate initialize/5 establishes network service, passes the port

36

for that service back to the client and allocates a buffer structure to handle the reduc-
tion of the input term. The Prolog predicate eagerLoop/2 reduces the input term
and sends results to all consumers until all consumers have either quit or received all
of the results of reducing the input term. The Prolog specifications of initial-
ize/5 and eagerLoop/2 are given in Program 3. establishService/2
returns a local port number and a service identifier to be used for accepting connec-
tions from remote clients. The goal getHostName/l simply returns the name of

the host on which it is executed.

Reduction of Term begins immediately. If connection requests from some of
the consumers have not yet arrived, reduction results are buffered for them. Buffered
results are disposed of when they have been sent to all consumers. The buffer manipu-
lation predicates, newClients/3, reduceTerm/2, and sendOutput/2 are

given in the specification of the worker process in Appendix C.
4.2 Specifying the Number of Consumers

The worker processes described in the previous section expect to be told how
many processes will consume their output. As seen in Chapter 3, programmers
merely annotate transducers to indicate that they are to be executed remotely, and
place terms in the where specifications so that they may potentially produce output
for multiple consumers. Programmers are not, however, expected to explicitly specify

the number of consumers.

The ASPEN compiler translates rules of the form

LHS => RHS where W.

37

initialize(Term, N, Stream, Buffer, ServicelD)
initialize a buffer structure for the
reduction of Term with N consumers
Stream is connacted to initial client.
Buffer structures take the following form:
buffer (T, Tail, List, C, N)
- T is the term being reduced
- Tail is a pointer to a variable
in the buffer which represents
as yet unproduced elements
List is the buffer with a wvariable
last entry pointed to by Tail
C is the list of consumers and
their associated offsets
into the buffer
N is the number of clients who
have not yet sent connection
requests
ServiceID is the address at which the worker
will receive connection requests
from clients

oP OP 90 dP JF dP 0P P I° dP dP dP JP P J° JP OP OF JP JP JP
1

initialize{Term, N, 8§,
buffer(Term, T, T, [], N), SID) e
establishService (Port, SID),
getHostName (Host) ,
writeStream(S, streamDescriptor(Host, Port)),
closeStream(S).

% eagerLoop(Buffer, ServicelD)

% until Buffer is empty:

% - accept new clients on ServicelD
% - reduce the term in Buffer

% - send results to clients

eagerLoop(buffer([1, [1, [1, [], 0), SID) :-
1

shutdownService (SID) .
eagerLoop{(Bufferl, SID) :-

newClients (SID, Bufferl, Buffer2),

reduceTerm (Buffer2, Bufferl),

sendOutput (Buffer3, Bufferd),
!

éégerLoop(Buffer4, SID).

Program 3 Supporting Multiple Consumers

38

to rules of the form

LHS => RHS’ where W.

in such a way that W’ and RHS’ use only the primitives presented in this chapter. For
each term of the form T <= #Sin W, there is a goal of the form remote(S, N,
T) in W where N indicates the number of processes in RHS or in W in which T
occurs. If T occurs multiple times within a single process in RHS or in W, common
subexpression optimization is performed. Terms of the form T <= Term @ Host
are treated in an analogous manner, being replaced by goals of the form
remoteSite(Host, Term, N, T). For each term of the form T <= S
(where S is neither #Rnor R @ H)in W, common subexpression optimization is
performed. Whenever T occurs N times (N > 1) within a single process, it is
replaced by a term of the form common{(CV, S, L) where CV is an uninstan-
tiated variable and L is a list of N uninstantiated variables. The significance of these
variables is explained in the description of the implementation of common/3 which

appears in section 4.6. If N =1, 8 is substituted directly for T.

The following examples illustrate how the compiler modifies a user’s code.
Given the following input
sq_plus_dbl(s) => add(sq(R), dbl(R))
whera
R <= S§.
the compiler would produce the following code.
sq plus_dbl(sS) =>

add (sq(common(T, S, [A, Bl)),
dbl (commen(T, S, [A, Bl))).

As discussed in section 4.6, the sharing of the variable T assures that when one

instance of the common subexpression is reduced, the result will be seen by all

39

instances. If the above program were annotated for parallelism as follows:
sq plus_dbl(S) => add(¥#sq(R), #dbl(R})
where
R <= #S.
the following code would be produced by the compiler.
sq_plus_dbl(S) => add{#sq(R), #dbl(R))
where
remota(S, 2, R).
The Prolog goal remote(S, 2, R) binds R to a descriptor for the stream pro-

duced by the process selected to reduce S. The implementation of remota/3 is dis-

cussed further in section 4.5.

Extensions to the compiler are described in Sections 4.4 and 4.6. The code for

the ASPEN compiler is given in Appendix A.
4.3 Implementation of where/2

Many of the rules in this chapter use the transducer where/2. where/2is
defined by the following reduce rule.
reduce (whera (Term, Condition), NewTerm) :-
call (Condition),
reduce (Term, NewTerm).
Here, Condition may be an arbitrary Prolog goal. The execution of Condi-

tion may bind logical variables which occur in Texm, as with the variable Rin the

example of the previous section.
4.4 Cancelling Streams

Transducers do not always consume all of their input streams entirely. Fre-

quently, transducers consume only part of a stream and then stop. Another common

40

case is that a transducer never reduces one of its arguments. Unfortunately, these
transducers never notify the producers of their input streams that they are no longer
being consumed. The worker processes that produce multiple output streams expect
that all of their consumers will eventually request input. If one or more of the consu-

mers never request input, the worker will block forever.

Consider the following examples.
foo ([found the term I wanted(X) | Xs]) => blah(X).

foo([last_term I care about | Xs]) => [].

In both cases, it is known that foo will not consume any more of the input stream.
The streams’ producers must be informed of this fact. In order to do so, one must be
able to express the fact that certain rewritings cause certain actions. ASPEN therefore
supports the infix operator, causing/2, which has the following definition.
reduce (causing (Term, Action), NewTerm) :-

reduce (Term, NewTerm),

call (Action).
Here, Action is an arbitrary fragment of Prolog code. Note that causing/2 is
similar to the whera/2 transducer introduced earlier. The Action hereisseenasa
result of the reduction, while the Condition in where/2 is seen as a prerequisite

for the reduction.

Using this new transducer, one can express the above examples as:
foo([found the_term I wanted(X) | Xs]) => blah (X)
causing
canceal (Xs) .
foc([last_term I care about | Xs]) => [1]

causing
cancel (Xs) .

cancel/l is a Prolog predicate which cancels any remote streams that occur within

41

its argument. Its implementation is described in section 4.7.

Cases in which streams may be cancelled can be detected syntactically at com-
pile time. Any stream which is mentioned in the lefi-hand side of an ASPEN rule but
is not mentioned again in the right-hand side should be cancelled. Using this simple
rule, unused streams can be detected as in the following transducer.

£(1, A, B, C) => g(A).

£(2, A, B, C) => h(A, B).

f£f(3, A, B, C) => 3j(A, B, C).

This transducer is translated into the following form.

£(1, A, B, C) => g{(A)

causing
{(cancel {(B), cancel(C)).

£(2, A, B, ¢) => h(A, B)

causing
cancel (C).
£(3, A, B, C) => Jj(aA, B, C).
The compiler can easily detect syntactically which streams must be cancelled for each
rule of £/4. It is not necessary to determine which arguments are streams as cancella-
tion of a non-stream argument has no effect. Transducers may be expressed without
using causing/2 and cancel/l and they will be compiled into transducers which

cancel useless streams. The implementation of this compilation process is presented

in Appendix A.
4.5 Implementation of Remote Annotations

Two basic types of distributed processing annotations were described in the
previous chapter and earlier sections of this chapter. They were the # annotation for
remote evaluation of a term with a single output, and those that translated into the Pro-
log goal remote/3 for remote evaluation of terms with multiple cutputs. Each of

these had a coinciding version which allowed the programmer to explicitly specify

42

which remote site to use. The implementation of these annotations is described

below.

When no site is specified, the selaectSite/l transducer is used to select
one. selectSite/l takes as input the term to reduce and rewrites to the name of
the site that should be used to reduce the term. Currently, selectSite/l simply
selects sites in a round-robin fashion from a list of sites that are known to provide ser-
vice. Suggestions for how selectSite/l might make more informed choices of
execution site (i.e. based upon loads, type of term to be reduced, stored relations men-

tioned in the term, etc.) are given in Chapter 6.

The host name selected by selectSite/l is used to extend # to @/2 as
shown below.

#T => T @ selectSite(T).

The ASPEN rule for @/2 is:

Term @ Host =>
if (Host = local,
Term,
remote_stream(Socket)
where
(reduce (Host, HostR),
connectServer (HostR, Socket),
writeStream(Socket, single(Term))
)
).

The remote/3 goal is defined as follows, using the selectSite/l trans-
ducer to decide which site to use for the remote reduction.
remocte (T, N, 8) -

reduce (selactSite(T), H),
remoteSite(H, T, N, 8).

43

remoteSite/4 is defined by the following Prolog predicate.
remoteSite(local, Term, _, Term) :- !.
remotaSite (Host, Term, N, StreamDescriptor) :-
connactServer (Host, Socket),
writeStream{Socket, multiple (Term, N})},
readStream(Socket, StreamDascriptor),
closaStream(Socket).
connectServer (Host, Socket) uses 4.3 BSD Unix socket calls to establish a
connection, Socket, between the calling process and a server process on site,

Host. writeStream(Socket, Term) simply writes Termto Socket.

With both # and remote/3, if the local site is chosen for the reduction, no

new process is created and there is no overhead beyond the unannotated case.

The message single(Term) informs the server that Term is to be
reduced and that the single consumer of the resulting stream will be the client who
sent the message. The message multiple(Term, N) informs the server that

there are to be N consumers of the stream produced by reducing Term.

When @/2 is used to perform a remote reduction, the following reduce rules
are used to access the resulting stream.

reduce (remote_stream(Socket), Stream) :-
readStream (Socket, Term),
[

L 4
remoteStream(Socket, Term, Stream).

remoteStream(Socket, ’$erroxr’, _) :-
]
- r
closeStream(Socket),
fail.

remoteStream (Socket, ‘S$end of stream’, []) :-
!

éiosestream(Socket) .
remoteStream(Socket, Term,
[Term|remote stream(Socket) 1.

The programmer is provided with a stream of bindings that is accessed exactly as if it

44

were produced locally. Successive reductions of the stream yield successive elements

without requiring that the programmer know that the stream is produced remotely.

remotaeSite (Host, Term, N, S) produces a stream descriptor, S,
which identifies the stream which will contain the results of reducing Term. The
client specifies the parameter N to indicate to the server that the stream will be shared
by N consumers. This sharing is achieved by having the client pass the stream
descriptor to all of the other consumers. The following reduce rule is used to further
reduce stream descriptors.

reduce (streamDascriptor(Host, Port), Stream) :-

connectStream (Port, Host, Socket),

reduce (remote_ stream(Socket), Stream).
Note that this reduce rule is used only for establishing the initial connection. Subse-
quent reductions of the stream use the rules defined above for reducing remote
streams. In the above reduce rule, connectStream(Port, Host, Socket)
establishes a connection, Socket, between the calling process and a process which

is listening on the host-port pair, <Host, Port>.
4.6 Implementation of common/3

The optimization of common subexpressions within a single process requires
the introduction of a new structure. The common/3 structure guarantees that each
time one instance of of a common subexpression is reduced, the reduction will be seen
by all other instances. To optimize a rule, R, which contains common subexpres-
sions, occurrences of the common subexpression, say X, in a rule are replaced by
common (T, X, L). Lis a listof variables with the number of elements equal to
the number of clients and is used by cancel/l; its use is described in section 4.7.

The significance of the logical variable T will be apparent after considering a simple

45

example. As seen earlier, compilation of the rule
sq_plus_dbl(sS) =>
add(sq(R), dbl(R))
whare
R <= 8.
yields a rule of the following form.
sq_plus_dbl(S) =>
add(sq(common (T, S, L)), dbl(common(T, S, L)).
When the first occurrence of common (T, S, L) is reduced, the logical variable
T is bound to the result of the reduction. When the second occurrence of

common (T, S, L) isreduced, the variable T is found to be bound, so its value is

immediately returned as the result of the reduction.

common/3 is implemented by the following Prolog code.
reduce {(common(T, S, L), R) :-
nonvar (T),

1
r

R=T,
raducea (common(R, S, L), R} :-
reduce (S, U),
common (U, L, R).
common([A|B], L, [A|lcommon(_, L, B)]) :- !.
common(T, L, T).
The first attempt to reduce common/3 finds the first argument uninstantiated. Thus,
the second reduce rule is used. The reduction is performed and the common logical
variable, T in the above example, is bound to the result of the reduction. When the
second instance of the common/3 transducer is invoked, the logical variable is found

to be bound and the first reduce rule is invoked returning the reduction result obtained

previously.

46

Narain proposed a similar method for common subexpression optimization, in
which every Log(F) rule is extended with an extra variable which serves the same pur-
pose as the first argument to common/3. All rules are implemented in a similar
manner to common/3 as described above; they first test to see if the extra variable is
instantiated before actually performing the reduction. The implementation using
common/3 has several advantages. First, the overhead of the extra variable and the
extra rule (the one that checks to see whether the reduction has already been per-
formed) is only incurred for those terms that occur as common subexpressions.
Narain’s method incurs the overhead for every occurrence of every term. The second
advantage is that tracing ASPEN programs with comm~n/3 is more intuitive.
Finally, the common/3 approach provides support for stream cancellation by indicat-
ing how many copies of a common subexpression are in existence, and therefore,
when remote streams can actually be closed. This point is discussed further in section

4.7.

A trace of the execution of sq_plus_dbl/l through a few iterations
demonstrates the behavior of common/3, f sq_plus_dbl/1 were called with

intsfrom(0) as its input, the following behavior would be observed. Only those

47

steps relevant to the understanding of common/3 are shown.

1. attempt reduction of sq (common (T, intsfrom(0), L)}
initially : T is unbound
- the 2nd reduce rule for common/3 is chosen
to reduce intsfrom(0) to [0 | intsfrom(l)]
- thus, common (T, intsfrom{0), L) isreduced
to [0 | common(A, intsfrom(l), L)],
where A is the new logical variable which
will be shared among the common subexpressions
finally: T is bound to this result
2. attempt reduction of dbl (common (T, intsfrom(0), L))
initially : T= [0 | common(A, intsfrom(l), L}]
as a result of step 1 above
- the 1st reduce rule for common/3 is chosen
and the value of T is returned immediately
3. attempt reduction of sq (common (A, intsfrom(l), L))
initially : A is unbound
- the 2nd reduce rule for common/3 is chosen
to reduce intsfrom(l) to [1 | intsfrom(2)]
- thus, common (A, intsfrom(1l), L) isreduced
to [l | common (B, intsfrom(2), L)]
finally: A is bound to this result
4, attempt reduction of dbl (common (A, intsfrom(l), L))
initially : A=[1 | common(B, intsfrom(2), L)]
as a result of step 3 above

Each time intsfrom/l is reduced (as opposed to using a previously reduced copy),

a new logical variable (A in the above trace) is chosen to communicate reduction

results between the instances of intsfrom/l.

4.7 Implementation of cancel/1

The Prolog predicate cancel(S) is responsible for cancelling remote

streams mentioned in 8. However, care must be taken not to cancel streams that are

shared by other transducers within the same process. Such streams are indicated by

the common/3 annotation and are thus easily detected. cancel/l decomposes its

48

input term looking for streams that require cancellation. All terms and subterms are
recursively decomposed until an atom, a variable, or one of the following types of
terms is encountered on each decomposition. If a term of the form
remote_stream(S) or remote_stream(S, N, M) is found, a cancel
message must be sent on the socket S. Upon encountering a term of the form
streamDescriptor (Host, Port), aconnection is established with the worker
process waiting at <Host, Port>and a cancel message is sent. This is neces-
sary so that the worker will not end up waiting forever for a connection request.
Another type of term that may be encountered is the common/3 term. When this
term is encountered, its third argument is examined. If it contains more than one
uninstantiated variable, one of the variables is instantiated to cancelled and
decomposition stops. The existence of more than one uninstantiated variable indicates
that another copy of this common term is still active. Note that instantiation of a vari-
able in a common structure causes the same variable in all copies of the common
structure to become instantiated. If there is only one uninstantiated variable in the
third argument, then it is known that this is the last active copy of the common term
and that it can be cancelled. This is done simply by continuing the decomposition on

the second argument. The Prolog code for cancel/l is given in Program 4.

4.8 Constrained Eagerness

Workers, by default, behave in an eager manner. That is, after they have
reduced a term, they continue to reduce the stream continuation without waiting for
the client to request such action. A worker stops producing output on its output

stream(s) only when one of the following events arises:

- the transducer has produced the last element in the stream

- all consumers have closed their connections

) 49

% cancel (Term)

% all streams mentionaed in Term are closed

% unless they are annctated as common

% subexpressions and not all occurrences
% ara within Term

canceal (X) t-
var({X), !.

cancel (X) O
atom(X), !.

cancel (remote_stream(sS)) :- !,
closeStream(S).

cancel (remote_stream(S, _, _)) - 1,
closaeStream(S) .

cancel (streamDescriptor (Host, Port)) -,
connactStream (Port, Host, Stream),
closeStream(Stream) .

cancel (common(_, 8, L)) - 1,
mark_ocne(L),
cancel if last (L, s).

cancel(l 1) := !.

cancel([A | B]) :=- I,
cancel (4),
cancel (B) .

cancel (Term) R
Term =.. [_ | Args],
cancel (Args) .

mark one([]).
mark_one([A | _]) :-
var(hd), !,
A = cancelled.
mark_one([_ | B]) :-
mark one(B) .

cancel if last(L, 8) :-
all marked(L), !,
cancel(S).

cancel if last(_, _).

all marked([A | B]) e
nonvar (A),

all marked(B).
all marked([1).

Program 4 Cancel/1

50

When the normal stopping condition for a transducer has been reached (i.e. the
stream continuation term has reduced to []), the worker writes an
‘$end _of_ stream token to each output stream. The streams are then closed and

the worker makes itself available for further requests.

When a consumer closes a stream that is produced by a worker, that action is
detected by the worker. The worker closes the stream. If there are no more consu-
mers associated with that worker, the worker informs the server that it is ready for
more work. Otherwise, the worker merely removes the closed stream from its output

set and continues producing output for the other consumers.

Though eager reduction of a term provides maximum parallelism, more
efficient execution can often be achieved when the eagerness is bounded. Clients may
decide, after seeing a portion of the stream, that they do not need to see any more. If
the producer has eagerly produced the entire stream, much computation power may
have been wasted. This situation will not arise if bindings are produced and con-
sumed at the same rate. Very few bindings will ever be outstanding on the stream and
when the consumer closes the stream, the producer will stop, having produced very

few, if any, useless bindings.

If, on the other hand, data elements are produced at a greater rate than they are
consumed, a large backlog of data elements may accumulate. Worse still, many
processes may be created as the producer runs ahead of the consumer. If the consu-
mer decides to stop consuming at some point before the end of the stream, the creation
of these processes may have been entirely unnecessary. In such situations, much com-
putation may be saved without sacrificing parallelism by producing the stream in a
constrained fashion. Kahn and MacQueen [6] recognized this fact and introduced an

anticipation coefficient, which was an integer that specified the maximum number of

51

unconsumed items that may reside on a channel at any given time. This section
presents a generalization of the anticipation coefficient which allows the programmer

even more flexibility in controlling execution.

Specification of the production mode, lazy(N, M) (where N must be 2 M), indi-
cates that a stream is to be produced in bursts. The first burst is to contain N elements,
the maximum number that the consumer wishes to be outstanding at any time. After
producing this first burst of bindings, the producer awaits a message from the consu-
mer instructing the producer to continue. Such messages (called a resume mes-
sages) are sent by the consumer after the consumption of every Mth term. After

receipt of such a message, the producer produces a burst of length M.

All modes of production along the continuum from completely lazy to com-
pletely eager can be achieved through the use of lazy(N, M). By specifying lazy(0, 1),
completely lazy behavior can be achieved. A behavior in which bindings are pro-
duced on demand, N at time, can be achieved by specifying lazy(N, N). A behavior in
which the consumer is kept busy any time there are fewer than N bindings on the
stream (equivalent to the anticipation coefficient above) can be achieved by specifying
lazy(N, 1). By specifying lazy(e, =), completely eager behavior is achieved. Note
that specification of lazy(es, oo} is equivalent to specifying no constraint at all. The
choice of values for N and M will be governed by the relative speeds of the producer
and consumer and the amount of buffer space available between them as well as the
expected behavior of the consumer. If it is expected that the consumer will terminate
after consuming some relatively small number of bindings, then it may be desirable to

keep the producer from running too far ahead and doing unnecessary work.

52

ASPEN provides a concurrency annotation which allows the specification of
constrained reductions. The annotation lazyRemote{(N, M, Term), where N
and M have the same meaning as described for lazy(N, M} is the constrained counter-
part of #. Just as the # annotation may be translated by the compiler to the Prolog
goal, remote/3, to handle common subexpression optimization, the
lazyRemote/3 annotation can be extended to the Prolog goal, lazyRemote/5, for
the same purpose. The selectSite/l transducer is used to translate the
lazyRemote/3 annotation into the lazyRemotaSite/4 annotation, as well as to
translate the lazyRemote/5 goal into the lazyRemoteSite/6 goal. Program 5
shows the implementation of the lazyRemoteSite/4 annotation as well as the
lazyRemoteSite/6 goal. In Program 5, reduction of lazy remote{Socket,
N, M) causes N terms to be read off of Socket. After N terms are read, a
resume message is written. Then, reduction of lazy remote(Socket, M,

M) is requested.

At any time, a consumer can substitute a cancel message for a resume
message. Such action would cause the stream to be closed. The worker will be deallo-
cated if the consumer issuing the cancel message was the only consumer that the
worker was serving. Otherwise, the worker merely removes the stream from its out-
put set and continues producing output for consumers that sent resume messages
rather than cancel messages. Note that the consumer could simply close the

stream and achieve the same effect as that achieved by sending a cancel message.

Requesting the default production mode and simply closing the stream when
the client does not wish to see any more input would achieve the same results as the
scenario described above, but the performance would be much worse in those cases

where the producer produces much more output than the consumer requires. While it

53

% lazyRemoteSite(Host, N, M, Term) => Stream

% Stream is the result of rewriting Term on Host
% Term is rewritten in lazy(N, M) fashion;

% initially N results are produced;

% thereaftaer, each time more results

% are desired, a resume message is sent,

% resulting in the production of a burst

% of length M

%
1

azyRemoteSite (Host, N, M, Term) =>
lazy remote(Socket, N, M)
wheraea
(reducea (Host, HostR),
connectServer (HostR, Socket),
writeStream(Socket, lazy(N, M, Term))

).

lazyRemoteSite (Host, N, M, Term, NC,
lazy remote(SD, N, M)) e
reduca (Host, HostR),
connectServer (Host, Socket),
writeStream(Socket, lazy(N, M, Term, NC)),
readStream (Socket, SD),
closeStream(Socket) .

lazy remote(Socket, N, M) => Stream
where
(reducea (Socket, SocketR),
readStream(Socket, Term),
',
lazyRemote (Socket, Term, N, M, Stream)
).

lazyRemote (Socket, ’'$end of stream’, N, M, []) :-
1
L 4
closeStream(Socket) .
lazyRemote (Socket, Term, 1, M,
[Term|lazy remote(Socket, M, M)]) :-
!,
writeStream(Socket, resume).
lazyRemote (Socket, Texm, N, M,

[Term[lazy_remote(Socket, Nn, M)]) :-
Nn is ¥ - 1.

Program 5 Constrained Reductions

54

is true that a worker cannot do anything productive while waiting fora resume mes-
sage, it is often best to have the worker idle so that other workers on the same site can
perform useful reductions. The lazy(M, N) option allows the construction of more

efficient transducer networks.

Upon receipt of a lazy (N, M, Term) message on socket S, the worker

invokes the goal lazyStream(N, M, Term, S). lazyStream/4isdefined

by the Prolog code in Program 6.
% lazyStream(N, M, Term, Stream)
% N is the number of solutions that should be
% sent initially
% M is the number of bindings that should be sent
% in response to each ’‘'resume’ message
% Term is the term to be reduced to produce the
% next binding
% Stream is the stream on which output
% is to be sent

lazyStream(_, _, [], Stream) HE
'

writeStream(Stream, ’$end of stream’),
closeStream(Stream) .

lazyStream(N, M, Term, Stream) -
mSend (N, Term, Term2, Stream),

readStream (Stream, rasume),
'

iazyStream(M, M, Term2, Stream).
lazyStream(_, _, _, Stream) -
closeStream(Stream).

Program 6 Constrained Worker
Constrained workers make use of the predicate, mSend(N, Term,

Term2, Stream), which reduces Term N times, resulting in a new term,

Term?2. The results of these reductions are sent on Stream.

55

The constrained production of multiple outputs is similar. The code is

specified in Appendix C.
4.9 Implementation of select/1

As discussed briefly in Chapter 3, the select/l transducer allows the pro-
grammer to exploit merge parallelism. select/l1 takes as its single argument a list
of terms to be reduced. This list may contain an arbitrary mix of terms to be reduced
locally and terms to be reduced remotely. This list is first partitioned into two lists,
one containing local terms and one containing remote terms. Allocation of a worker
process for each of the remote terms is requested. An auxiliary transducer
select/2 is then invoked. Its first argument is a list of stream descriptors for the
allocated worker processes and its second argument is the list of local terms.

select/2 strives to return the first available binding.

The algorithm followed when reducing select (Remote, Local) to

obtain the next result is outlined below.

1. If both Local and Remoteare [],return []

2. If any remote streams have been closed, remove their identifiers from
Remote forming Remote’

3. If a remote stream, has a data item, D, available, read it and return
[D | select (Remote’, Local)]

4, If no remote term is currently available, choose term, T, from Local
and reduce it
5. If Local= [], waituntiladataitem, D, becomes available

on any remote stream, read it and return
[D | select(Remote’, [])]

6. If the result of the local reduction of Tis [], remove T from
Local
to form Local’ and return the result of reducing
select (Remote’, Local’)

56

7. If the result of reducing Tis [A | B),replace T

in Local by B forming Local’and return

[A | select (Remote’, Local’)]
A new Prolog built-in, selectStreams/8, which allows access to the Unix select
system call is utilized here. It can be called in one of two modes, blocking or non-
blocking. Blocking mode is used when there are no local reductions to be performed
and the only alternative is to wait until one of the remote reductions returns a result.
Non-blocking mode is used when there are local reductions to be performed; if a bind-
ing is available immediately on an input stream, it is read and returned. Otherwise,
instead of waiting idly for a binding to arrive, a binding is produced locally by reduc-
ing one of the local terms. In Appendix B, the complete implementation of
select/1 is given. Section 4.12 describes selectStreams/8 more fully as well
as enumerating and describing other enhancements to the Prolog environment that

have been made to support ASPEN.
4.10 Modules

All workers in a pool are endowed with the same capabilities and are therefore
able to reduce the same set of terms. As database operations are expected to be very
common, all workers are capable of solving database queries using a standard set of
relational operators. However, workers may also be asked to reduce arbitrary terms
which may include operations outside the standard set of relational operations.
Reduction of such terms requires that the worker acquire new capabilities by loading a

new module of code.

The existence of a module system which exhibits the following characteristics

is assumed for the remainder of this chapter.

1. Unique names - A module name resolves to the same module of code, or an

57

identical copy of the module, regardless of which site the name is used

on.

2. Encapsulation - Rules from other modules are visible only if they are expli-
citly imported by the current module. Thus, name conflicts are avoided
and loading or unloading a module will not create conflicts with previ-

ously loaded modules.

3. Dynamic loading - When an imported predicate is called and the module that
defines that predicate is already loaded, the predicate is simply invoked.
If the module that defines the imported predicate has not been loaded
yet, it is dynamically loaded and the predicate is invoked. Subsequent
calls to that predicate (or any other imported predicate defined within
that module) will find the module already loaded and the call will

proceed immediately.

4. Unloading - Modules may be unloaded if they are no longer referenced. This
is particularly useful for worker processes as they tend to be very long-
lived and may be used by many different programmers for many
different purposes over their lifetimes. Providing the ability to drop

modules allows these worker processes to remain a manageable size.

5. Imports - All predicates that are imported by a module must be specified in
the module definition. This restriction guarantees that an environment in
a local client can be duplicated in a remote worker.
A module system for Log(F) which addresses some of these issues is described in

[13].

58

Modules are either specified explicitly or implied by the client. To specify a
module, the client simply includes the name of the module with the request for remote
service as in the following example.

#£(X, Y) in Module.
where Module is a module in which £/2 is to be reduced.

If no module is specified, one of two assumptions is made. First, if the term to
be reduced contains only database operations, no module is necessary as the worker
already understands database operations. Second, if the term contains non-database
operations, the current module of the client is assumed and the following reduction
request is issued.

#£(X, ¥) in C

whare

active_module(C).

The call to active_module/l is made on the local site and C is bound to the
name of the currently active module. This name is passed to the worker process as a

part of the request.

When a worker receives a request which specifies a module, the worker must
load that module before attempting to satisfy the request. The module is unloaded
only after the reduction is complete. Consider an example in which a worker receives
the following request on socket S.

single (Term in Modula).

The worker invokes the goal makeStream(Term in Module, S). The in/2

59

transducer is defined as follows.
Term in Modula => Term
causing
(drop_module (Module), module(0ld))

where
(active_module (0l1ld), new module(Module) }.

4.11 Dedicated Workers

Constantly loading and unloading modules can result in serious performance
degradation. For this reason, the concept of dedicated workers is introduced. A dedi-
cated worker is endowed with a specified module and allocated to a specific client
until that client terminates the dedicated service. Thus, if a client has a collection of
terms that all require reduction within the same module, there is no need to reload the

module for each of the terms to be reduced.

Clients request the service of a dedicated worker by issuing the following
request.

dedicated service(Socket, Term).

The logical variable Socket here insures that once the dedicated server is allocated,
it is re-used rather than recreated on subsequent uses. This request is rewritten to
dedicated _host/3,
dedicated_service(Socket, T) =>
dedicated host (selectSite(T), Socket, T).

whose implementation is shown in Program 7. The first two reduce rules are used
when the request is to be satisfied locally. The behavior is different from performing
standard reductions locally in that a module is loaded and remains lcaded until the
client terminates the dedicated service. While there is a context switch between

modules on each call to dedicated_service, the module is dropped only after

60

dedicated host (Host, Channel, Term) => Stream

Stream is the result of the reduction of Term
by a dedicated server on Host

if Host = local, Channel indicates whether the
module has been lcaded; if Channel is
unbound, then the module specified in
Term must ba loaded bhefore reduction

otherwise, Channel indicates whether a remote
sarver has been allocated to reduce
Term; if Channel is a wvariable, then
a remote process is allocated and
Channel is instantiated to the socket
with which to communicate with that
process; subsequent calls simply send
reduction requests on Channel

9P dP dP JP P JC dP OO dP I° IP I dP 9P IP

reduce (dedicated host(local, M1, Term in M2), §)
var (M1),
1

active module(Mold),
module (M2),
Ml = M2,
reduce (Term, S},
module (Mold) .
reduce (dedicated_host (local, M, Term in M), 8) H
!,
active modula(Mold),
modulae (M),
reduce {Term, 8),
module (Mold) .
raeduce (dedicated host (Host, Socket, Term), 8) :-

isSocket (Socket),

1
’

writeStream({Socket, Tarm),
reduce (remote_ stream(Socket), 8).

reduce (dedicated_host (Host, Socket, Term), S) :-
raeduce (Host, HostR),
connectServer (EostR, Socket),
writeStream(Socket, dedicated(Term)),
reduce (remote_stream(Socket), S).

Program 7 Dedicated Host

the dedicated service has been terminated.

61

The fourth reduce rule for dedicated host/3 is used for the initial alloca-
tion of a remote dedicated server. Subsequent requests to a dedicated server use the
third rule. Generally, the first call will specify a module in which to perform the
reduction, i.e. dedicated service(Host, Socket, Term in Module).

Subsequent reductions by that dedicated worker will use the same module.

The response stream coming back from the worker is essentially a stream of
streams. Sub-streams are separaied by “$end_of substream’ tokens. In order
to properly process sub-streams, the following clause must be added to the definition
of remoteStream/3 given in section 4.7.

remotaeStream(Socket, ’$end of substream’, []) :- !.

Thus, the consumer of the stream need not be aware that it was produced by a dedi-

cated worker. It is treated just like any other stream,

When the client no longer requires the service of the worker, he relinquishes it
by closing the socket. The programmer can use dedicated_service/2 for all
interactions with the dedicated server. A compiler can recognize the last interaction
with the dedicated server and modify it so that a cancel message is sent upon com-

pletion.

Dedicated service is intended to be used in a rather restricted class of applica-
tions in which invocations of the server will not overlap each other. That is, one invo-

cation must complete before a subsequent request is issued.

Recursively constructed streams belong to the class of applications for which
dedicated service is applicable. Consider the following transducer.

foo([1) => [].
foo([X | Xs]) => append(bar(X), foo(Xs)).

62

The reduction of bar/l is assumed to require that the module bar first be loaded.
This transducer could be annotated as follows.
foo([1) => [1.
foo({[X | Xs]) => append(
dedicated service(bar(X) in bar),
foo(Xs)).
The above transducer is easily compiled into the following.
foo(A) => foo2(A, B).
foo2([1, B) => []
causing
cancel (B) .
foo2([X | Xs], B) =>
append (
dedicated_service (B, bar(X) in bar),
foo2 (Xs, B)
).
The first invocation of dedicated_service/2 allocates a worker which loads
bar, and binds B, the socket identifier. Subsequent invocations simply write the

reduction request to the established socket.

Workers react to dedicated(Term) messages by reducing Term and
then waiting on the input socket for the next request. When a dedicated (Term
in Module) message arrives on socket S, the worker invokes the
dedicatedService (Term in Module, 8) goal given in Program 8. Dedi-
cated workers react to requests in an identical manner to standard workers except that
the worker is not deallocated after servicing the request. Instead, the worker awaits
another request from the same client. Only after seeing a cancel message does the

worker unload its module and deallocate itself.

If cancel (M) is called with M instantiated to a module name, it is assumed

that the dedicated service was performed locally. Module M is simply dropped.

63

dadicatedService{Term, Socket)

Term is reduced by the dedicated server and
results are sent out on Socket

if Term specifies a module, that module
is loaded and remains loaded for
the duration of the dedicated service

the worker will continue to accept new terms
to be reduced in the originally
specified module until a cancel
message arrives; at this time, the
module will be dropped and the worker
will be deallocated

dP d° dP 9P dP OP J° JP Jf d° JP IP

dadicatedService{cancel, Stream) :-
[
riteStream(Socket, ’$end of stream’),
closeStream(Sockat) .
dedicatedService{Term in Mcodule, Socket) t-
!
active module(Ml),
module (Module),
dedicatedServica(Term, Sockaet),
drop_module (Module),
modula (M1) .
dedicatedServicea (Tarm, Socket) :-
raduce (Term, ReducadTerm),
dedicatedRecursa {ReducedTaerm, Socket).

dedicatedRecurse([], Socket) :-
writeStream(Socket, ’‘$end of substream’),
raadStream (Socket, NaxtTerm),
nextTerm (NextTerm, Socket).
dedicatedRecurse ([H|T]), Socket) :-
writeStream(Socket, H),
daedicatedService (T, Socket).

nextTerm (Term in Module, Socket) -
1

s
dedicatedService(Tarm, Sockat).
nextTerm (Term, Socket).

Program 8 Dedicated Server

4.12 Enhancements to the Prolog Environment

ASPEN servers are implemented as C processes, but in order to facilitate rapid
prototyping and easy modification, the bulk of the other control is implemented in
Prolog. In order to facilitate this, SICStus Prolog has been extended with some low-
level primitives. These extensions fall into three categories, those for manipulating
semaphores, those for manipulating streams, and those for manipulating Ingres rela-

tions.

The semaphore primitives allow the server and the workers to synchronize
their activities.

getSemGroup (+Num, -Group) - allocate a block of Num semaphores,
Group is instantiated to identify that block

waitOnSemFree (+Semid, +Semnum) - wait until the semaphore with
index Semnum into the semaphore block, Semid, has been signaled

waitOnSemNotFree (+Semid, +Semnum) - wait until the semaphore
with index Semnum into the semaphore block, Semid, has been
decremented

signalSemFree (+Semid, +Semnum) - signal the semaphore with
index Semnum into the semaphore block, Semid

getSemValue (+Semid, +Semnum, -Semvalue) - Semvalue is
instantiated to the value of the semaphore with index Semnum into the
semaphore block, Semid
The primitives necessary to support stream communication between processes
are enumerated below.
establishService(+Port, -ServicelID) - service is es{ablished at
the address, Port; ServicelID is the descriptor upon which connec-
tions may be accepted. If Port is uninstantiated when the call is made,
Port is instantiated to a free port

shutdownService (+Service) - shut down the service identified by
Service

connectStream (+Port, +Host, =-StreamlID) -a connection is esta-
blished between the current process and a remote process at <Host,

65

Port>; StreamlD identifies the created stream

acceptStream(+ServicelID, -StreamID) -aconnectionto Servi-
celD is awaited; StreamID is an identifier for subsequent reads and
writes

closeStream(+StreamID) - the connection associated with StreamID
is closed

setNoBlock (+StreamID) - writes to StreamID are to return immedi-
ately if there is no space available

readStream{+StreamID, -Message) - Message is the next Prolog
termon StreamID

writeStream (+StreamID, +Message) - Message is written to
StreamiID; if there is no space, writeStream/2 blocks until space
becomes available

writeStreamNB (+StreamID, +Massage, -Return) - an attempt is
made to write Messaga to StreamID; if there is space, the write
succeeds and Return is instantiated to success; otherwise, the
write returns immediately and Return is instantiated to
would block

selectStreams (-N, +RS, +WS, +ES, -RS’, -WS’, -ES’, +M) -
provides a general interface to Unix select system call; RS, WS, and
ES are the streams which are to be checked to see if they are ready for
reading, writing, or have an exceptional condition pending, respectively.
RS’, WS and ES’ are the sets of streams that result from the above
checks. N is the number of ready stream descriptors. M is the mode
and is either blocking or non blocking to indicate whether the
call should block waiting for one of the descriptors to become ready or
return immediately if no descriptors are ready.

The Prolog environment has also been extended to allow access to relational databases
via the Ingres access methods. These extensions allow simple operations such as

opening and closing relations, accessing tuples, and accessing schema information.

With this relatively modest set of enhancements, the quite powerful and varied

functions presented in this thesis can be achieved.

66

CHAPTER 5
RELATED RESEARCH

This chapter compares ASPEN to related work done by others. First, ASPEN
is compared with Flat Concurrent Prolog and Parlog, both parallel logic programming
languages. ASPEN is also compared to the work of Kahn and MacQueen as well as
the work done on the Stream Machine. This chapter is not intended to be a review of
all related work. But, instead, it is intended to be a comparison with a representative

set of related research efforts.
5.1 Flat Concurrent Prolog

Flat Concurrent Prolog [15] is a process-oriented logic programming language
under development primarily at the Weizmann Institute of Science. Dataflow syn-
chronization using read-only variables and guarded-command indeterminacy are the
basic control mechanisms. In Flat Concurrent Prolog, a goal is viewed as a process, a
conjunction as a network of processes, a shared variable as a communication channel,

and the clauses of a logic program as rules for process behavior.

Stream processing is achieved in Flat Concurrent Prolog by repeatedly refining
the instantiation of a shared variable. For instance, a list structure can be communi-
cated by first instantiating some shared variable, say Xto [H | T], where T is
unbound. T may be further bound to [H2 | T2]. Binding T2 to [] signifies
the end of the stream. The consumer instance of the stream is annotated to be read-

only and the consumer blocks when it tries to read an unbound tail. This mechanism

67

relies upon shared memory to allow access to the shared variables by all producers
and consumers. By restricting the output streams of ASPEN transducers to contain
only ground terms, the expense of dynamic synchronization, which is especially

significant in loosely coupled systems, is avoided.

Sequential implementations of Flat Concurrent Prolog [9] require a mechanism
to suspend processes which access uninstantiated read-only variables and a scheduler
to decide which process is to be run based upon which read-only variables have been
instantiated, In a sequential execution of an ASPEN fragment, no scheduler is
required, stream continuations are used to produce exactly and only those values
which are needed. There is no overhead of context switching or scheduling of

processes whose outputs are not yet needed or may never be needed.

Flat Concurrent Prolog has been criticized for requiring the programmer to
specify the correct synchronization via read-only annotations. CFL, a concurrent
functional language has been proposed by Levy and Shapiro [7] as a user-level
language for Flat Concurrent Prolog, relieving the programmer of this burden. Its
implementation is based Uupon a source-to-source transformation of a CFL program
into an equivalent Flat Concurrent Prolog program. CFL programs exhibit con-
currency because of the parallel implementation of the resulting Flat Concurrent Pro-

log programs.

The current evaluation technique for CFL is eager evaluation, Calls and argu-
ments to calls are evaluated in parallel. A lazy evaluation technique has been pro-
posed, but it was deemed of limited use to combine lazy evaluation with unrestricted

OR-parallelism. CFL provides no mechanism for the user to control concurrency.

68

Flat Concurrent Prolog requires modifications to unification. ASPEN does not
require such changes and is fully Prolog-compatible. Thus, ASPEN can benefit from

the current research into efficient Prolog implementations.
5.2 Parlog

Parlog [4] is a parallel logic programming language similar to Flat Concurrent
Prolog. It provides synchronization by suspension on shared variables. Rather than
using read-only annotations as in Flat Concurrent Prolog, Parlog predicates have
mode declarations, indicating which arguments are to be used for input and which
arguments are to be used for output. If an input argument is not bound when a predi-
cate is called, the predicate will suspend. If an output argument is bound upon call,

the predicate will fail.

Parlog supports stream AND parallelism, the concurrent execution of two
predicates which share a variable whose value is communicated incrementally
between the predicates. Stream AND parallelism is supported only for single-solution
problems. That is, the shared variables must have the property of single-assignment;

no binding of a shared variable, once made, will be changed.

Parlog provides the programmer with the ability to limit the parallelism which
is to be exploited in the execution of his program. A conjunct of goals can be
specified to execute concurrently by replacing ,’s by &’s. For example, in the con-
junct, g, & (g, 93) , g, must complete before the execution of the conjunct
(g5, 93) begins. When the execution of g, completes, g, and g, are invoked

in parallel.

69

Lazy evaluation can be achieved in Parlog by altering mode annotations. By
reversing the roles of producer and consumer, one can have the consumer produce
"boxes" for the producer to fill. The producer only runs when an empty box is avail-
able and the consumer only produces a box when it is ready for the next input. How-
ever, one cannot achieve lazy stream processing within a single process. While the
Parlog conjunction g, & g, allows execution of g4 and g, within a single pro-

cess, no lazy evaluation is achieved; g4 and g, are not coroutined.

No functional interface to Parlog has been proposed. Such an interface makes
stream programming much more natural. Functional composition eliminates the need

for mode declarations and allows implicit output specification.
5.3 Kahn and MacQueen

Kahn and MacQueen [6] introduced a model in which dynamically evolving
networks of processes were used for the incremental generation and transformation of
data. Buffered communication between processes is provided by uni-directional chan-
nels which behave like unbounded FIFO queues. The language is implemented in
POP-2.

Processes are specified in process declarations of the following form:
Process <name> <parameter-list> ;
<process body>
Endprocess
Parameters are one of three types: ordinary parameters, input ports, or output ports.
Inputs are obtained by evaluating the expression GET (A) within the process body,
where A is an input port specified in the parameter list. The procedure call

PUT (<expression>, B) outputs the result of evaluating expression on the

output port B.

70

Additional processes are created to evaluate subproblems through the use of
reconfiguration instructions of the form:

doco <body> closeco

where body defines new processes and channels upon which they are to communi-

cate,

Processes which generate a single output stream may be specified in a func-
tional notation as follows:
Process <name> <parameter-list> => output;
<process body>
Endprocess
Here, the parameter list contains only ordinary parameters and input ports. Using this
notation, reconfiguration instructions can be expressed through functional composition

and channels are created implicitly. Explicit input and output declarations and

instructions are, however, still necessary.

Kahn and MacQueen’s model seems to present two different programming
paradigms to the programmer; a rather procedural paradigm for specifying processes
and a more declarative paradigm for specifying configurations. ASPEN strives to
present a more uniform declarative paradigm by not requiring programmers to expli-

citly manipulate processes.

Two modes of execution are presented, coroutine mode and parallel mode. In
coroutine mode, execution is demand-driven as in sequential ASPEN. However, even
in this mode separate processes are created by reconfiguration instructions. GET and
PUT operations are still necessary to communicate terms between processes and a
scheduler is needed to select the appropriate process for execution. These mechan-

isms and overheads are not incurred during sequential ASPEN executions. Demand-

71

driven execution is the default behavior for sequential ASPEN and is achieved within

a single process with no need for IPC or schedulers.

Parallel mode allows producers and consumers to execute in parallel as with
ASPEN. It is not clear how one indicates which mode is to be used and whether these

modes can be freely mixed to achieve the most efficient behavior.
5.4 Stream Machine

The Stream Machine [2], developed at Schlumberger, supports the develop-
ment and execution of software for data acquisition under real-time constraints. It
utilizes concurrently executing modules which communicate via streams in a data
flow style. Modules in the Stream Machine are coarse-grained and are implemented

as traditional sequential programs.

Access to values previously read from a stream is supported. However, for
communication-intensive programs such behavior is not supported; previously read
values cannot be accessed again and thus may be garbage collected. Values, once

written to a stream, may not be retracted or altered.

Programmers must explicitly program the reading and writing of streams.
Modules name input and output streams and manipulate them explicitly. These names
are used in a separate segment of code which specifies how modules are to be linked

together.

The programming style of ASPEN is much more natural. Reading and writing
of streams is implicit. There is no need to name streams and use a separate language
to link them together. Rather, inputs are represented in a functional style. That is, a

stream is represented by the transducer that produces it.

72

When a stream is generated and consumed within the same process, no com-
munication or scheduling should be required. Such is the case with ASPEN; values
are communicated by variable bindings and the scheduling is expressed within the
program itself. With the Stream Machine, however, even when modules reside within
the same process, explicit I/O operations occur and a mechanism is required to select
the appropriate module to execute next. This mechanism may take the form of a sim-
ple signaling mechanism or a more complex scheduler, neither of which should be

required for a sequential evaluation.

Program 1 in Chapter 3 presented an example which had been translated from
Stream Machine code to ASPEN code. The original Stream Machine program con-
sists of six modules of Pascal code. The ASPEN code consisted of six transducers
composed entirely in ASPEN. The Stream Machine code required an additional code
segment to specify how the Pascal modules were to communicate. No such module is
required for the ASPEN code; the relationships are specified in the transducers

through functional composition,

The Stream Machine supports explicit manipulation of piers, the links between
modules and streams that specify which element is to be read next. This allows the
expression of views on streams. The authors give an example of a smoothing module
that produces the average of three adjacent elements on the input stream. Such a
transducer is easily expressed in ASPEN, requiring no extension to the underlying

mechanism. The transducer to perform this operation in ASPEN is specified as fol-

73

lows.

smooth([]) => [].
smooth([H | T]) => smooth(T, H).

smooth([], A) => [A].
smooth([H | T], A) => smooth(T, A, H).

smooth([], A, BY => [(A + B)/2, B].
smooth([{H | T], A, B) =>
[(A + B + H)/3 | smooth(T, B, H)}].
With some minor modifications to the ASPEN compiler, one could specify this trans-
ducer a bit more cleanly as follows,
smooth([1) => I[].
smooth ([A]) => [A].
smooth([A, B]) => [(A + B)/2, B].
smooth([X, ¥, Z | R]) =>
[(X + ¥ + 2) / 3 | smooth([¥, Z | R])].
Thus, views can be expressed in ASPEN without requiring the programmer to deal

with any new constructs or operations.

74

CHAPTER 6
FUTURE WORK

This chapter presents some of the possible areas of future work that were
discovered during the research, implementation, and writing of the thesis. Some of
the ideas are large areas of research while others can be seen as incremental enhance-

ments to the existing system.
6.1 Metaprograms

The current implementation requires that programmers actually modify the
annotations of their source code in order to change the execution characteristics of
their programs. While this is significantly better than requiring that they re-structure
their programs, a much better approach would be to completely separate the
specification of the program from the specification of the concurrency that is to be

exploited.

By labelling annotations and specifying later what those labels mean, a pro-
grammer can alter the behavior of his program without changing the text of the code.
For example, the programmer could write the following transducer.

sq _evens(S) => sq(remote (sq_evens, even(s))).

In a separate metaprogram, the programmer could specify the meaning of the label.

75

The programmer might specify any one of the following.
label (sq_evens, remote) .
label (sq_evens, local).
label (sq_evens, debug).
The following code could be used to interpret the annotated terms.
remota (Label, Term) => do_remote (How, Tarm)
where
label (Label, How).
do_remote(local, T) => T.
do_remote (remote, T) => #T.
do_remote(debug, T) => T
causing (notrace)
where trace.
By altering the metaprogram only, the programmer can change the performance
characteristics of his program. Labels for library transducers should be made known
to the programmer so that the performance of these transducers may be modified as

well,

Metaprograms for producers and consumers of multiple outputs are no more
difficult to express or implement. Consider the following annotated transducer and its
accompanying metaprogram.
sq_plus_dbl(S) =>
add (remote (sq, sq(R)), remote(dbl, dbl(R)))
where
S <= remote(s, S).

label (s, remote).

label (sq, local).
label (dbl, 1local).

76

The transducer would be compiled to the following form.
sq_plus_dbl(s) =>

add (remote (sq, sq(R)), remote(dbl, dbl(R)))

where

remota(s, S, 2, R).
The remote/4 call will bind R to a stream descriptor. Both consumers (sq and
db1) will reside on the local site. A possible optimization here would be to perform
common subexpression optimization so that only one copy of the stream would have

to be sent. However, the common subexpression optimization described earlier

occurred at compile time. Here, it would have to occur dynamically at run-time.
6.2 Instrumentation

Ready availability of performance information about the system is essential for
several reasons. As the design evolves, many decisions will be driven by the perfor-
mance characteristics of the prototype system. Performance parameters must be avail-
able to the system itself so that it can dynamically reconfigure itself in response to
varying demands. An example of such reconfiguration is the need to change the
worker pool size on a given site. Such decisions might be based upon the length of
the queue of requests at the server, the load on the processor, the average service time,

or any combination of the above and other parameters.

Performance figures must be available to the programmer so that decisions can
be made about how best to annotate a program for optimal performance. Providing
programmers with information about, for instance, the rates at which each of the
processes in a transducer network are producing output, would allow the programmer
to locate bottlenecks and perhaps alleviate them by re-annotating his program. Meas-
urements of processor time per term produced may help the programmer maximize

concurrency while minimizing the overhead of transmitting terms.

77

6.3 Selecting Execution Sites

Information provided by the above-mentioned instrumentation can be used to
automatically select a site upon which to reduce a term. Often, however, the choice of
execution site is sensitive to the nature of the term. Through syntactic evaluation of
the term (the term is not reduced), one can often determine what stored relations are
used in the term. This information can be matched against a global data dictionary to

determine the best site upon which to reduce the term.
6.4 Workspace Management

Most, if not all, Prolog systems suffer from design misfeatures which make
them very difficult to use for large and/or long-lived applications. Among these prob-
lems are atom-table overflow and lack of modularity. These problems are described

fully and solutions are proposed by Page in [13]
6.5 Interfaces

ASPEN is ideally suited to graphical programming. Conceptualizing an
ASPEN program graphically where transducers are represented by nodes and streams
are represented as arcs is very natural. Thus, providing a graphical programming
interface would make programming much easier and increase programmer produc-

tivity.

Programmers must be allowed to view their programs at many different levels.
At the highest level, an entire transducer network would be viewed as one node with
input and output arcs. By "zooming in" on this node, the programmer should be able
to see network of transducers which define it. The programmer should be able to

expand any node in this network to any level of detail desired.

78

Programs should be constructed in a similar manner. Programmers construct
small transducer networks and "zoom out," viewing these networks as single nodes
and connecting them together with other nodes which themselves might represent pre-

viously constructed networks.

By viewing their programs in this way, programmers may be better able to
make decisions about how to annotate them. Various portions of a given transducer
network may be annotated to indicate that that portion represents a significant amount
of computation and could likely benefit from concurrent evaluation. These annota-
tions could be expressed by surrounding portions of the networks with boxes or by
marking all of the nodes that comprise the annotated subgraph. Alternatively, one
could label the output arc(s) of this subgraph and indicate in a metaprogram (as

described above) what the labels mean.
6.6 Filters

As mentioned in Chapter 3, it would be more efficient to perform the filtration
of streams that represent multiple outputs at the producing site rather than at the con-
suming site. Such an optimization is rather straightforward for such context-free
filters as first and second. When a connection request is issued, the desired
output type is specified to the producer. This output type specification is stored by the
producer along with the list of client streams that is used when sending results. When
an output is to be sent on a particular stream, it is first compared with the correspond-

ing type specification. If it matches, it is sent.

Filters like f£irst and second are relatively simple to perform on the pro-
ducing site because they are context-free. Each output element either matches the

filter or it does not. There is no dependence upon previous elements. Filters which

79

are not context-free require that state be stored. For instance, the filter below accepts
every third element on a stream.

every3rd(S) => every3rd(S, 2).

every3rd([_ | 8], 2) => every3rd(s, 1).

every3rd([_ | 8], 1) => every3rd(s, O0).

every3zrd([E | 8], 0) => |[E | every3rd(S, 2)].
General filters of this form would be very difficult to implement as described above.
Rather than storing a type specification and simply comparing the type of each output
element to that specification, one would have to maintain a potentially large state
specification and execute a potentially complex procedure for each element that is to
be filtered. One would essentially end up implementing another ASPEN interpreter.

Hence, one would have to allow the optimization of moving filters to the site of pro-

duction only for context-free filters.
6.7 Debugger

ASPEN programs, even sequential ones, can be very difficult to debug. If a
programmer uses the Prolog debugging facilities, he sees calls to predicates that he
never mentioned in his program, most notably reduce/2. The appearance of such
information serves to confuse the programmer who views his program as a collection
of rewrite rules and not as a collection of reduce/2 rules. The programmer is likely
to be further confused when =>/2 rules do appear but they are slightly modified ver-

sions of the ones that he specified.

Using the Prolog debugger, the programmer can place spypoints on either
reduce/2 rules or on =>/2 rules. Since these are used as principal functors for all

transducers, the user cannot place spypoints on individual transducers.

80

Annotated programs present further problems. The compilation process intro-
duces Prolog goals that were not specified in the original program. These goals may
confuse the programmer, both by their mere presence and by exposing details of the
implementation that the programmer need not be aware of. Other issues also arise
when debugging distributed programs. If a program is being traced and it creates
another process, should that process be traced? If so, how should the information be

communicated back to the programmer?

It seems clear that the Prolog debugger is inappropriate for debugging ASPEN
programs, be they sequential or distributed. A special ASPEN debugger is essential.
This debugger should allow the programmer to view the execution of a program as the

program was written and not as it was implemented.
6.8 Automatic Optimization

The factors that determine how best to annotate an ASPEN program for con-
currency are very similar to those that determine how best to execute a distributed
query. One must balance computation costs against communication costs. Distri-
buted queries are optimized by considering the sizes of the relations involved and the
relative costs of the operations. The set of operations used in query processing is

quite small, so the relative costs are quite well understood.

ASPEN programs involve a much broader range of operations. For this rea-
son, completely unaided optimization would be impossible. However, if the program-
mer provides some advice, the techniques used to optimize distributed queries may be

applied to the optimization of ASPEN queries. This advice would come in two forms.

81

First, information must be given about base relations. This information is
identical to that required for distributed query optimization. One must know the
number of tuples in the relation, the size of each attribute, and for each attribute A,
the number of distinct values for A appearing in the relation. These parameters could
be calculated for stored relations, but for relations that are generated in real-time (e.g.

sensor readings), the programmer would have to be asked to estimate their values.

Secondly, the programmer would be asked to provide information about the
transducers involved in the computation. Relevant parameters would include compu-
tation cost per tuple, the estimated ratio of the number of input tuples versus the
number of output tuples, and the expected ratio of input tuple size to output tuple size.

Using these parameters, weights can be assigned to each transducer.

Using the weightings of transducers and what is known about the base rela-
tions involved, it should be possible to optimally distribute processing over a given
number of processors automatically. Thus, user annotations would no longer be

necessary.

82

CHAPTER 7
CONCLUSIONS

Stream processing is a powerful programming paradigm. It allows a rich and
varied set of programs to be expressed elegantly and solved in an efficient manner.

Several interesting applications of stream processing are presented in [14] and [3].

This thesis has presented extensions to a programming language called Log(F)
to make it more useful as a stream processing language. The most significant of these
extensions are the annotations that allow programmers to exploit concurrency without
rewriting their programs. A term may be annotated with the # annotation if the pro-
grammer wishes to indicate that the performance of his program could be improved by
evaluating that term in parallel with the rest of the program. The @ annotation allows
the programmer to explicitly specify a site upon which the reduction of a term is to
take place. This can be extremely useful when the term to be reduced requires access
to data which resides only at a specific site. The thesis has also presented annotations
which may be used to make local definitions, allowing the programmer to express pro-
grams whose dataflows are DAGs as well as trees. Using these simple annotations,
programmers can express programs which exploit three types of parallelism, stream
parallelism, concurrent reduction of arguments, and merge parallelism, making

ASPEN a powerful stream processing system.,

The annotations presented in this thesis allow programmers to freely mix eager
and lazy evaluation. Portions of an ASPEN program which run within a single pro-

cess are evaluated in a lazy fashion. This is desirable for two reasons. First, there is

83

no need to buffer intermediate results since each result is calculated only when it is
needed. Second, the delay before the first result is produced is much lower than if
eager evaluation were used. These factors are extremely significant for large, poten-
tially infinite, streams. By introducing eagerness at process boundaries, concurrency
can be exploited. Further annotations allow the programmer to constrain this eager-
ness in order to prevent one process from running too far ahead of another and requir-

ing unbounded buffer space.

The annotations presented in this thesis are intended to be, to the greatest
extent possible, semantics-free. That is, their introduction into a program changes the
execution behavior of the program only, without changing the semantic meaning of
the program. When annotations which explicitly specify an execution site are used to
gain access to a particular database relation or fragment, there is, of course, a semantic
impact on the program. Those annotations which do not explicitly specify an execu-
tion site can be taken as hints, to be either ignored or heeded during execution, at the
discretion of the system. Since the annotations have no impact on the semantics of the
program, there is significant potential for making program distribution decisions

automatically, with no need for the programmer to annotate his program.

As ASPEN is used more extensively by the members of the Tangram research
project, its strengths and weaknesses will no doubt become more apparent. We
believe that the strengths will outnumber the weaknesses and that addressing the
weaknesses will require only incremental changes to the implementation presented

here.

84

APPENDIX A
ASPEN COMPILER

In this appendix, we show the code for the compiler described in Sections 4.2,
4.4, and 4.6. This compiler translates a program specified by the user into a Log(F)
program with three very important properties. First, user-specified rules which do not
consume all of their input streams are translated into a form that guarantees that
unconsumed streams will be closed and their producers will not be made to suspend
indefinitely. Second, if the programmer has specified a term as a candidate for local
common subexpression optimization, that optimization is performed, here, at compile
time. Occurrences of a common subexpression are tagged with a common variable so
that when one occurrence is reduced, all occurrences see the effect. A cancellation list
is also added to each occurrence so that the common term is only cancelled after all
occurrences have been cancelled. Finally, requests for remote reduction of common

subexpressions are extended to indicate the expected number of consumers.

dlc - ASPEN Compiler

ASPEN-to-Log (F) compiler to support ASPEN
- modifies ASPEN rules so that unused streams are
cancelled
- assures that producers of common subexpressions
will be informed as to the correct number
of consumers both for local and remote cases

called with a single filename or a list of files
- for each file <filename>.logf,
a file <filename>.dlc.logf is created
- for each file not of this form, <filename> is
extended to <filename>.dlc.logf

oo o o OF OP OP J° IP P dP P of OP oFf of

85

+— op (1150, =xfx, (=>}).
:— op(730, xfy, where).
:- op(730, xfy, causing).
:— op(730, xfy, (<=)).

:- op(730, fy, #).

1= op (730, xfy, @).

1= op (725, yfx, in).

t— op (715, xfy,).

[/ /usr/local/lib/prolog/lib/sets’].
% to define listtoset/2, memberchk/2, and subtract/3

[/ /usr/local/lib/prolog/lib/lists’].
% to define remove dups/2 and append/3

dlc([]) =:= !.
dlc([H|T]) :- !,
csol {H),
dlc(T) .
dlc(F) :-
dlcl (F).

dlcl (F) :-
filenamePrefix (F, ".logf", Prefix),
extendedFilename (Prefix, ".dlc.logf", EF),
seeing (CurrentIn),
see (F),
telling (CurrentQut),
tell (EF),

repeat, read(T),
(T == end_of file ->
!, true ;
(once ((
add cancels (T, T2),
cso (T2, T3),
writeg(T3), write(’.’), nl
)},

fail
)) .
told,
tell (CurrentOut),
seen,

see (CurrentlIn).

86

add_cancels (+Term, -NewTerm)
for each variable, V, that occurs on the LHS of
Term, % but does not occur on the RHS of Term,
goal of the % form, cancel(V), is added to the
'causing’ portion of Term, resulting in the term
NewTerm. If Term has no ‘causing’ portion, one
is added

0 of o AP dP d° Jf of of

add_cancels (T, T2} :-
numbervars (T, 0,),
add cancelsl (T, T2).

add cancelsl ({LHS => RHS), R2) :-
get vars (LHS, LV}, % vars from LHS
remove dups (LV, LVs),
rhs_vars (RHS, RV), % vars from RHS
remove dups (RV, RVs),
subtract (LVs, RVs, CVs), % LHS - RHS = {streams
% that may need to be
% cancelled}
)

newRule (LHS, RHS, CVs, R2

%
% get vars (+Term, -ListOfVariablesOccurringInTerm)
%
get vars(’$VAR’ (X}, [F$VAR! (X)]) = !,
get_vars (A, []) :- atom(a), !.
get vars{[(A | B], V) = I,
get vars (A, Av),
get vars (B, Bv),
append (Av, Bv, V).
get_vars(F, V) :-
I'? = [_ | A},
L
get _vars(A, V).
get vars(_, []).

87

df o o o o O o

rhs_vars (+Term, -Varliables)

Variables is a list of wvariables occurring in Term;
variables occurring within a ‘where’ clause
are only listed if they appear on the RHS
of a '<=' term

rhs_vars(T causing _ where W, V) :-
1

- r

rhs vars (T, RV),
where_ vars (W, WV),
append (RV, WV, V).

rhs_vars (T where W, V) :-
|

L J

rhs_vars(T, RV),
where_vars (W, WV),
append (RV, WV, V).

rhs _vars(T causing _, V) :-
1

. r
rhs vars({(T, V).

rhs vars(T, V) :-

o o dP of o

get_vars (T, V).

where wvars (+Term, =-Variables)

Variables is a list of variables that occur on the
RHS of a <=’ rule in Term

where_vars((Wl, W2), V) -

]
.

where vars(Wl, V1),
where vars (W2, v2),
append (Vl, vz, V).

where vars(_ <= T, V) -

1
. f
rhs wvars (T, V).

where vars(_, [1).

88

newRule (+LHS, +RHS, +VariablesToCancel, -NewRule)
NewRule is the Log(F) rule ’'LHS => NewRHS’' where
NewRHS is formed by adding a cancel gcal for
each variable occurring in VariablesToCancel
to the ‘causing’ portion of RHS. 1If no
'causing’ portion exists, one is added

o0 dP P of oP o of df

newRule (LHS, RHS, [], (LHS => RHS)) :- !.
newRule (LHS, T causing C where W, CV,
(LHS => T causing C2 where W)) :-
t
L
add Ccv(Cc, Cv, C2}.
newRule (LHS, T causing C, CV, (LHS => T causing C2)) :-
|
. r
add Cv(C, cCv, C2).
newRule (LHS, T where W, CV,
(LHS => T causing C2 where W)) :-
1

 f
add cv([], CV, C2).
newRule (LHS, T, CV, (LHS => T causing C2)) :-
|

add_Cv{([], CV, C2).

add_CV (+CancelClause, +Variables, =-NewCancelClause)
NewCancelClause is formed by adding a cancel goal
to CancelClause for each variable
occurring in Variables

oP o o o o of

add_cv(c, [1, C).
add_cv((], [(H | Tl, C2) :-
1

- f
add CV{cancel(H), T, C2).

add_CV(C, [H | T], C2) :-
add CV((C, cancel(H)), T, c2y.

89

cso (+Rule, -NewRule)
NewRule is formed as follows. For each term of the
form 'V <= S’ occurring in Rule, do the following:
if § = #T, replace 'V <= S8’ by the Prolog goal,
remote (T, NC, V).
if 8 = TRH, replace 'V <= S’ by the goal
remoteSite(H, T, NC, V).
if 8 = lazyRemote(N, M, T), replace 'V <= §5' by
the goal lazyRemote (N, M, T, NC, V).
if 8§ = lazyRemoteSite(H, N, M, T), replace 'V <= 35’
by lazyRemoteSite(H, N, M, T, NC, V).
(In all of the above, NC is the number of processes
specified in Rule which consume V. If V occurs
multiple times within a single process, common
subexpression evaluation is performed, as
described below.)
otherwise, S = G. G is a local common subexpression.
All occurrences of $§ are replaced by
common (T, G, L), where T is a common variable
shared by all NC occurrences of the common
subexpression in Rule and L is a list of NC
variables. L is used when cancelling streams
to assure that a stream is actually cancelled
only after all of its local consumers have
requested cancellation.

() S0 dC OF P IC OP OF dP dP dO df OF IR of OF o0 dP d° of dP d° dP o o° dP dP dP

so (R, (LHS => RHS2)) 1=
numbervars (R, 0, N),
R = (LHS => RHS), !,
cso(RHS, N, , RHSZ).
cso{R, R).

cso (RHS where W, N, N4, RHSS) HE B I
cso (RHS, N, N2, RHS2), % do inner-most where
% clauses first
cso (W, N2, N3, W2),
compile each(0, RHSZ where W2, RHS4, CL, N3, N4),
reformat (RHS4, CL, RHS5).
cso (f SVAR' {(X), N, N, ’'SVAR’ (X)) H t.
cso (A, N, N, A) e
atom(A) .
csc((A t Bl, N, N3, [A2 | B2]) -
cso (A, N, N2, A2),
cso (B, N2, N3, B2).
cso(F, N, N2, F2) -

F =.,. [H | A]l’
cso (A, N, N2, AZ),
F2 =.. [H | AZ].

90

%

% compile each(+NW, +Term, -NewTerm, -Counts, +N, =-N2)
% perform the compilation process for each term in
% the ’'where’ portion of Term to form NewTerm
% NW indicates which term of the where clause to

% process next. Note that these terms must

% be kept as a part of Term as they themselves
% may be changed by the compilation process.

% Counts is a list which indicates how many times

% each of the stream descriptors in the

% where clause occurred in Term

% N and N2 are merely used for numbervarsing terms
%
c

ompile each(NW, T, T3, [C } CL], N, N3) :-
numbervars (T, N, N2),
nth W(NW, T, WC), !,
compile_one(wc, T, T2, C),
NW2 is NW + 1,
compile each(NW2, TZ, T3, CL, N2, N3).
compile . each(, T, T, [1, N, N2) :-
numbervars (T, N, N2).

compile one(V <= §_, T, T2, P) :-

1
.

compile subexpression(T, T2, V, VvV, BP).
compile one(V <= _ €@ _, T, T2, P} :-

!
o

compile subexpression(T, T2, V, V, P).

compile one(V <= lazyRemote(_, _, _), T, T2, P) :-

!
r

compile subexpression(T, T2, V, V, P).

compile_one (V <= lazyRemoteSite(, _, _, _).
T, T2, P) :-

|

s 7

compile subexpression(T, T2, V, V, P).
compile one (V <= CT, T, T2, local) :=-

'

compile_subexpression(T, T2, V, CT, _).
compile one(_, T, T, prolog).

91

%
% compile_ subexpression(

% +Term, Term is compiled to

% -NewTerm, NewTerm

% +Variable, local occurrences of Variable are

% replaced by

% +CommonTerm, structures that assure minimal

% reduction of CommonTerm.

% -Processes The total number of processes which
% consume Variable is returned

%

%

c

)

ompile subexpression(T, T2, Vv, CT, P} :-
compile(T, V, T2, LV, CT, LO, RO),
localCSO(LQ, LV, CT),
processes (LO, RO, P).

processes (LO, RO, Processes)
the number of processes which consume a stream is
- the number of remote occurrences (RO) if
there are no local occurrences (LO)
- RO + 1 if there are any leocal occurrences

I o oP oP O o of

processes (0, RO, RO) HC T
processes(_, RO, P) :-
P is RO + 1.

%

% localCSO(+LocalOccurrences, -OptimizedExpr, +Expr)

% if there is more than one local occurrence of Expr,
% is is replaced by a common/3 structure

% which guarantees minimality

% otherwise, it is left as is

%

localCso (0, _, _) - 1.

localCso(i, VvV, V) i

localCS0t1l, commen(_, V, _), V).
localCSO(N, common(_, V, L), vy :-
nList (N, L).

%

% nList (+N, -L)

% L is a list of N uninstantiated wvariables
%

nList (0, [1) e 1.

nList (N, [| Bl) -

Nminusl is N - 1,
nList (Nminusl, B).

92

% compile(complle

% +Term, Term

% +Variable, in which Vvariable represents

% a subexpression

% -NewTerm, into NewTerm

% +LocalVar, substituted for local occurrences
% of Variable

% +CommonTermn, substituted for single occurrences
% of Variable

% -L0, # of times Variable is used by

% local process

% -Processes, # of remote processes which use

% Variable

o

)

% remote cases
compile(V <= RHS, V, V <= RHS, _, _, 0, 0) :- !
compile (R <= #T, V, R <= #T2, , CT, 0, P) := !,
compile subexpression(T, T2, V, CT, P).
compile (R <= lazyRemote(N, M, T), V,
R <= lazyRemote (N, M, T2), _, CT, 0, P} := !,
compile subexpression(T, T2, V, CT, P).
compile (R <= T@H, V, R <= T2@H, , CT, 0, P) :— !,
compile subexpression(T, T2, V, CT, P).
compile (R <= lazyRemoteSite(H, N, M, T), V,
R <= lazyRemoteSite(H, N, M, T2),

_, Cr, 0, P) = I,
compile subexpression(T, T2, V, CT, P).
compile (#T, Vv, #T2, _, CT, 0, RO) HE T

compile subexpression(T, T2, V, CT, RO).
compile (lazyRemote (N, M, T), V,

lazyRemote (N, M, T2), _, CT, 0, RO) =1,
compile subexpression(T, T2, V, CT, RO).

compile subexpression(T, T2, V, CT, RO).
compile (lazyRemoteSite(H, N, M, T}, V,
lazyRemoteSite(H, N, M, T2), _, CT, 0, RO) :- !,
compile subexpression(T, T2, V, CT, RO) .
compile (remote (T, N, S), V,
remote (T2, N, S), , CT, 0, RO) = !,
compile subexpression(T, T2, V, CT, RO} .
compile (lazyRemote (N, M, T, NC, S5), V,
lazyRemote (N, M, T2, NC, S), _, CT, 0, RO) = !,
compile subexpression(T, T2, V, CT, RO).
compile {remoteSite(H, T, N, S), V,
remoteSite(H, T2, N, 8), _, CT, 0, RO) = !,
compile subexpression(T, T2, V, CT, RO}.
compile (lazyRemoteSite(H, N, M, T, NC, Sy, V,
lazyRemoteSite (H, N, M, T2, NC, S),
, CT, 0, RO} :- 1!,
compile subexpression(T, T2, V, CT, RO).

93

% other cases

compile(v, v, LV, Lv, , 1, 0).

compile(T, , T, _, _, 0, 0} :-
atom(T) .

compile({a | B}, Vv, [AZ | B2], LV,
compile(a, Vv, A2, LV, CT, LO1,
compile(B, VvV, B2, LV, CT, LOZ2,
LO is LO1 + LO2,
RO is RO1 + RO2,

compile(T, V, T2, LV, CT, LO, RO)

T =.. [F | A],
compile (A, V, A2, Lv, CT, LO,
T2 =.. [F | AZ].

%4

CT, LO, RO)
RO1),
ROZ),

RO),

reformat (+Term, +CountList, -NewTerm)
NewTerm is formed by replacing ‘<=’ rules in
Term by the appropriate Prolog goals
CountList indicates the following about each
term in the ‘where’ portion of Term:
1. it is a Prolog goal and should be left as is.
2. it is a local common subexpression and should
be removed. (It has already been replaced
"in-line" within Term)
3. It is a remote common subexpression and the
element of CountList indicates the number of
consumers.

P d° 0O JO I of oP JO of P o of dP of

reformat (RHS, [], RHS3) FE T O

reformat (RHS where Where, CountlList, RHS2) :-
change counts(CountList, Where, Wherel2),
eliminate trues (Where2, Where3),
make_ term(RHS, Where3, RHS2).

change counts ([T), W1, wW2) :- !,
change one(T, W1, W2).

change_counts([{H | T], (Wl, Wsl), (W2, Ws2)) :-
change_one(H, W1, W2),
change counts (T, Wsl, Ws2).

change_one(prolog, G, G).

changeﬂone(local, _ ¢ true).

change one(N, V <= #T, remote(T, N, V)).

change one(N, V <= T & H, remoteSite(H, T, N, V)).

change one(NC, V <= lazyRemote(N, M, T),
lazyRemote (N, M, T, NC, V}).

change one(NC, V <= lazyRemoteSite(H, N, M, T),
lazyRemoteSite(H, N, M, T, NC, V)).

make term(RHS, true, RHS) :— !.
make term(RHS, W, RHS where W).

%

% nth W(+N, +RHS, -WC)

% WC is the Nth term in the where clause of RHS
%

nth W(N, _ where W, WC) :-
nth _of W(N, W, WCY, !.

nth of W(0, (H, _), H) :- t.
nth of W(0, H, H) :=- !.
nth of W(N, (, T), WC) :-
T Nm is N = 1,
nth of W(Nm, T, wWe) .

95

%
% once(+Goal)

% allow Goal to succeed at most one time
%

o}

nce (@) :- call(G), !.

%

% filenamePrefix(+File, +ExpectedSuffix, -Prefix)
% return a string which when extended with

% ExpectedSuffix forms the string File

% if no such string exists, return File

%
f

{lenamePrefix (File, ExpectedSuffix,Prefix) :-
name {File,FileString),
append (PrefixString, ExpectedSuffix,FileString),
name (Prefix,PrefixString),
|

filenamePrefix (File, ,File).

%

% extendedFilename (+Prefix, +Extension, -ExtendedName)
% ExtendedName is the result of appending the strings
% Prefix and Extension

%

extendedFilename (Prefix, Extension, ExtendedName} :-
name (Prefix,PrefixString),
append (PrefixString, Extension, ExtensionString),
name (ExtendedName, ExtensionString).

eliminate trues (A,B) :-
eliminate truesl(A,Z),
eliminate last_true(Z,B).

eliminate_truesl((true,X),Xl) i=t,
eliminate_truesl (X,X1).
eliminate truesl((X,Y), (X,Y1)) :- !,
eliminate_ truesl({(Y¥Y,¥1).
eliminate truesl (X, X}.

eliminate last_true((A,true),A) :- v,
eliminate last_true((A,B), (A, Z)) :- !,

eliminate last_true(B,Z).
eliminate last_true(A,RA).

96

APPENDIX B
CLIENT IMPLEMENTATION

In this appendix, we present the code for each of the concurrent processing

options available to the ASPEN programmer.

%

% client.logf

%

% Context to allow remote term reduction.
%

:— op(730, xfy, where).
:= op (730, =xfy, causing).
1= op(730, =zfy, (<=)).

:— op (730, fvy, #).

:= op(730, =xfy, @).

:— op(725, yfx, in).

[/usr/local/lib/prolog/lib/sets’].
% for subtract/3 and memberchk/2

[’ /usr/local/lib/prolog/lib/lists’].
% for append/3
% all site names are to be considered constructor symbols

simplified({local).
simplified{thet ford}.
simplified(exeter).
simplified(warwick).
simplified{windsor).
simplified(wingfield).
simplifiedirye).
simplified(raglan).
simplified{dover).
simplified(penzance}.
simplified(nottingham).
simplified(kingston).
simplified(ipswich).
simplified(beverly).

97

(+Term)

Reduce Term remotely.
(single consumer)

Term => Term @ selectSite(Term).

%
%
%
%
%
%
#
%
% +Term @ +Host
%
% Reduce ‘Term’ on the specified host.
% (single consumer)
%
Term @ Host =>
if (Host = local,
Term,
remote stream{Channel)

~ where

{reduce {Host, HostR),

connectServer (HostR, Channel),
writeStream(Channel, single(Term))

lazyRemote (+N, +M, +Term)

%
%
%
% constrained reduction of Term
% (single consumer)
%
lazyRemote (N, M, Term) =>

lazyRemoteSite (selectSite(Term), N, M, Term).

lazyRemoteSite (+Host, +N, +M, +Term)

%
%
%
% constrained reduction of Term on the specified host
% (single consumer)
%
lazyRemoteSite (Host, N, M, Term} =>
if (Host == local,
Term,
lazy remote (Socket, N, M)
“where
(reduce {Host, HostR),
connectServer (HostR, Socket),
writeStream(Socket, lazy(N, M, Term))
)

98

remote (+Term, +N, -Stream)

Stream is the stream descriptor for the
reduction of Term with N consumers

o d0 o of dP e

remote (Term, N, Stream) :-
reduce (selectSite (Term), Host),
remoteSite {Host, Term, N, Stream).

remoteSite (+Host, +Term, +N, -5)

%
%
%
% S is the stream descriptor for the reduction (on
% the specified host) of Term with N consumers
%
remoteSite (Host, Term, _, Term) :-
reduce (Host, local), !.
remoteSite {Host, Term, N, StreamDescriptor) :-
reduce {(Host, HostR},
connectServer (HostR, Socket),
writeStream(Socket, multiple(Term, N)),
readStream{Socket, StreamDescriptor),
closeStream{Socket) .

lazyRemote (+N, +M, +Term, +NC, -Stream)
Stream is the stream descriptor for the

constrained reduction of Term with NC
consumers

- dP oP o df of of oP

azyRemote (N, M, Term, NC, Stream) T -
reduce (selectSite (Term), Host),
lazyRemoteSite (Host, N, M, Term, NC, Stream).

lazyRemoteSite (+Host, +N, +M, +Term, +NC, -Stream)
Stream is the stream descriptor for the constrained

reduction (on the specified host) of Term with NC
consumers

dP o0 o o of of oP

lazyRemoteSite (Host, _, _, Term, _, Term) :-
reduce (Host, local), !.

lazyRemoteSite (Host, N, M, Term, NC, StreamDescriptor)
reduce (Host, HostR},
connectServer (HostR, Socket),
writeStream(Socket, lazy(N, M, Term, NC)),
readStream(Socket, StreamDescriptor),
closeStream(Socket).

99

%

% remote_stream(+Socket)

%

% Reduces to an element off of a stream and the
% continuation of the stream

%

reduce (remote stream{Socket), Stream) :-

readStream(Socket, Term),

!
4

remoteStream(Socket, Term, Stream).

remoteStream(+Sccket, +Term, —-Stream)

if Term, which has been read off of Socket indicates
an error condition or end of stream, the appropriate
action is taken. Otherwise, Term 1s returned.

H o0 of dP of of odP d°

emoteStream(Socket, ’'Serror’, _) :-
1

L
closeStream (Socket},
fail.

remoteStream(Socket, ‘S$end of stream’, []) :-
|
- r
closeStream(Socket) .
remoteStream(Socket, ’$end of substream’, []} :- !.

remoteStream(Socket, Term, [Term | remote stream(Socket)]).

%

% constrained reduction

%

reduce (lazy_ remote (Socket, N, M), Stream} :-
readStream(Socket, Term),
|

!

lazyRemote {Socket, Term, N, M, Stream}.
lazyRemote (Socket, ’$end of stream’, _, _, []1) :-

1

“r
closeStream(Socket) .
lazyRemote (Socket, Term, 1, M,
[{Term|lazy remote (Socket, M, M)]) :-
i
L
writeStream(Socket, resume).
lazyRemote (Socket, Term, N, M,
[Termllazy_remote(Socket, Nn, M)]) :-
Nn is N - 1.

100

%
% dedicated servers
%

dedicated service (Socket,
dedicated host(selectSite(T), Socket, T).

reduce {dedicated host {(Host,

reduce (Host, local),

var (M1},

|
’

module (M2),
ML = M2,

active module (Mold),

reduce (Term, Stream),

module (Mold).

T) =>

reduce (dedicated_host (Host, M,
reduce (Host, local),

'
¥

module (M),

éctive_module(Mold),

reduce (Term, Stream),

module (Mold} .

reduce (dedicated host (Host,

isSocket (Socket),

!
’

reduce {dedicated host (Host,

writeStream(Socket,

M1,

Term in M2)

Term in M),

Term),
reduce (remote stream{Socket), Stream).

reduce (Host, HostR),
connectServer (HostR,

writeStream(Socket,

%

% common subexpressions

%

reduce (common (T, S, L),

nonvar (T),

|
s

R=T

R)

reduce (common{R, S, L), R)

reduce (3, U),
common{U, L, R}.

Socket, Term},

Socket, Term),

Socket),
dedicated{Term)),
reduce (remote stream(Socket), Stream) .

commen {[A|B], L, [Alcommon{_,

common (T, L, T).

101

B,

)y1l) 1=

, Stream)

Stream)

Stream)

Stream)

%

% +Term where +Condition

%

% reduce Term after calling Condition

%

reduce (where (Term, Condition), NewTerm} :-
call (Condition),
reduce {Term, NewTerm).

+Term causing +Action
perform Action after reducing Term

educe (causing (Term, Action), NewTerm) :-
reduce (Term, NewTerm},
call (Action).

%
% first (+Stream) and second(+Stream)
$ filter the appropriate type out of Stream
%
firsc (1) => [].
first ([E|R]) =>
if(E = 01(T), [TIfirst(R)], first(R)).

second ([]) => [].
second ([E{R]) =>
if(E = 02(T), [Tlsecond{(R)], second(R)}.

streamDescriptor {+Host, +Port)

%
%
% Reduces to a open channel to another process at ’Host'
% and 'Port’.

%

reduce {streamDescriptor (Host, Port), Stream) :-
connectStream(Port, Host, Channel),
reduce(remote_stream(Channel), Stream) .

isSocket (X) :- integer(X).

102

%
% select (+List)

% List contains 0 or more terms to be reduced locally
% and 0 or more terms to be reduced remotely

% - all remote reductions are started immediately

% - upon each call, if there is data available on a
% stream from a remote process, that term is

% returned. Otherwise, one of the local
% reductions 1is performed
%

r

educe (select (L), R) :-
split (L, Local, Remote),
reduce (select3 (Remote, Local, non_blccking), R).

reduce (select3 (Remote, Local, M), Result) :-
selectStreams (Remote, Ready, Closed, M),
subtract (Remote, Closed, New),
localOrRemote (Ready, New, Local, Result).

%
% If a remote term is available, return it
% Otherwise, perform a local reduction
%
localOrRemote ([, [1, [], [1).
localOrRemote([], [RIRsl, [], Result) :-
reduce (select3([R|Rs], [], blocking), Result}.
localOrRemote{[], Streams, [A|B], Result) :-
reduce (A, Ar),
localResult {Ar, B, Streams, Result).
localOrRemote ([R|_], Streams, Local, Result) :-
readStream (R, Term),
processTerm{Term, R, Streams, Local, Result).

%
% process a term read off of a stream
%
processTerm(’ $error’, Socket, Streams, Local, R) :-
'
-7
closeStream({Socket),
subtract (Streams, [Socket], Streams2),
reduce (select3 (Streams2, Local, non_blocking), R).
processTerm(’ $end of stream’, Socket, Streams, Local, R)
!
L 4
closeStream (Socket),
subtract (Streams, [Socket], Streams2),
reduce (select3 (Streams2, Local, non_blocking), R).
processTerm (Term, Socket, Streams, Local,
[Term|select3 (Streams, Local, non_blocking)]) .

103

%

% process the result of a local reduction

%

localResult ([], Local, Remote, Result) :-
reduce (select3 (Remote, Local, non blocking), Result).

localResult {[A|B], Local, Remote,
[Alselect3(Remote, [BlLocall], non blocking)]).

%

% split (+Terms, -Local, -Remote)

%

% Remote is a list of stream descriptors for processes
% allocated to reduce annotated terms in Terms

% Local is a list of unannotated terms in Terms

%

split([], . [

(] .
split ([#T|Ts], L, [Channel|R]} :-
t

- !
reduce {select3ite (T}, H),
connectStream (1550, H, Channel),
writeStream(Channel, single(T)),
split(Ts, L, R).

split ([T @ H|Ts), L, [Channel|R]) :-
t

L
connectStream (1550, H, Channel),
writeStream{Channel, single(T)),
split{Ts, L, R).
split ([TITs], [TIL], R) :-
split (Ts, L, R).

selectStreams (+Streams, -Ready, -Closed, +Mode)

%
%
%
% call builtin selectStreams/8 to see if data is

% available on any of the streams in Streams. Ready

% is the subset of Streams upon which data is available.
% Closed is the subset of Streams upon which exceptions
% occurred. Mode indicates whether the call to

% selectStreams should block or return immediately if

% no data is available

%
S

electStreams (Streams, Ready, Closed, Mode) :-

selectStreams(_, Streams, (1, [], Ready., _,
Closed, Mode).

104

cancel (+Term)

close all streams that occur in Term

streams that occur in either of the two forms
remote_stream(S) or remote_ stream(S, _, _)
may be closed immediately

streams that occur in the form
streamDescriptor (Host, Port) must first be
connected, then closed. This assures that a
process will not wait forever for a consumer
that will never arrive

streams that occur within common({T, S, L)
structures must be treated very carefully; first,
we instantiate one of the variables in L to
closed (this will be seen by all instances of
the common structure since the variables are

%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
% instantiated, we may close S.
%
cancel (X} s -
var(X), 1.

cancel (X) e

atom{X), !.
cancel (X) :-

current module (X), !, drop_module({X).

cancel (remote stream(S)) :- !,
closeStream(S) .

cancel (remote stream(s, _, _)) = !,
closeStream(S).

cancel (streamDescriptor (Host, Port)) - !,

connectStream(Port, Host, Stream),
closeStream(Stream}.
cancel (common(, S, L)) HE
mark one (L),
cancel if last (L, S).
cancel ([1).
cancel{[A | B]) e
cancel (A),
cancel (B) .
cancel (Term) -
Term =.. (_ | Args],
cancel {Args) .

mark one([]).
mark_one([A |
var (&), !,
A = cancelled.
mark ocne([__ | B}) :-
mark one (B) .

1y -

105

shared. If all of the wariables in L have been

cancel_if last (L, S) :-
all marked(L), !,
cancel (3} .

cancel if last(_, _).

all marked([A | B]) 1=
nonvar (A),
all marked(B).

all marked ([1).

selectSite (+Term)

Reduces to a site upon which to reduce the given term.
The site is selected in a round-robin fashion from a
list of available sites

o0 o 90 of df o

reduce (selectSite(), 8) :-
sitelList ([S|Ss]},
retract (sitelList/1),
append(Ss, [S], NSs),
assert (siteList (NSs})).

siteList ([thetford, exeter, warwick, windsor, wingfield,
rye, raglan, dover, bath, vork, penzance,
nottingham, kingston, ipswich, beverlyl).

connectServer (Host, Socket) :-

connectStream{1550, Host, Socket).
% all servers are located at port 1550.

106

APPENDIX C
WORKER IMPLEMENTATION

In this appendix, we present the full Prolog specification of the worker process.
It is interfaced by clients via the messages described in Section 4.1.2.1. Recall that
those messages were single(Term), multiple (Term, N), lazy(N, M,

Term), lazy(N, M, Term, NC),and dedicated(Term).

worker.pl

Assumes the existence of the following structure
in the clause database as established by the server

r$workerData’ (RequestPortSock, IdleSemdId,
LockSemId, WorkerNum)

' SacceptRequest s’

This procedure waits for a request of service to
be handed to it from the server.

o o o o of o of of of o of o o I o

* SworkerData’ (RequestPortSock, IdleSemId, LockSemld,
WorkersFreeSemId, WorkerNum),

signalSemFree (IdleSemId, WorkerNum),

signalSemFree (WorkersFreeSemlId, 0),

waltOnSemNotFree (IdleSemlId, WorkerNum),

acceptStream(RequestPortSock, CS5},

gsignalSemFree (LockSemId, 0),

readsStream(CS, Reguest),

handleRequest {(Request, CS),

' SacceptRequests’.

107

handleRequest (Request, ClientStream)

handle Request which has arrived on ClientStream

%
%
%
%
%
%
% Request = single(Term)
% - request is for the eager reduction of Term
% - requesting process is the the only consumer
%
handleRequest (single {Term), CS) :-
makeStream{Term, CS).

%

% Request = lazy (N, M, Term)

% - request is for the constrained reduction of Term
% - requesting process 1s the the only consumer

%

handleRequest (lazy (N, M, Term), S) :-
lazyStream(N, M, Term, S).

%

% Request = multiple{Term, N)

% - request 1s for the eager reduction of Term
% - the results are to be sent to N consumers
%

handleRequest (multiple (Term, N), S) :-
initialize(Term, N, S, Buffer, ServicelD),
eagerlLoop (Buffer, ServicelD).

%

% Request = lazy (N, M, Term, NC)

% - request is for the constrained reduction of Term
% - the results are to be sent to NC consumers

%

handleRequest (lazy (N, M, Term, NC), S) :-
initialize (Term, NC, S, Buffer, ServicelD),
molazyStream (N, M, Buffer, ServicelD).

%
% Request = dedicated(Term)

% - request is for the allocation of a dedicated worker
% - Term is the first term to be reduced by the

% allcocated worker

%

h

andleRequest (dedicated (Term), S) :-
dedicatedService (Term, S).

108

makeStream(Term, Stream)
- Term is reduced and the results are sent on Stream
to a single consumer

o o0 oP of of

makeStream(’ $done’, Stream) :- !,
closeStream(Stream).
makeStream (Term, Stream) :-
reduce (Term, ReducedTerm), !,
action (ReducedTerm, NewTerm, Stream),
makeStream (NewTerm, Stream).
makeStream (Term, Stream) :-

% reduction failed -> error
writeStream(Stream, ‘$error’), !,
closeStream{Stream).

makeStream(Term, Stream) -

% write failed -> client closed?

closeStream(Stream) .,

action([], ’Sdone’, Stream) :-

writeStream(Stream, ‘$end of_ stream’), !.
action([H|T], T, Stream) :-

writeStream(Stream, H), !.
action(, ’$done’, _)}. % write failed -> client closed?

109

lazyStream(N, M, Term, Stream)

N is the number of sclutions that shculd be
sent initially

M is the number of sclutions that should be
sent in response to each ’resume’ message

Term 1s the term to be reduced to produce the
next binding

Stream is the stream on which output
is to be sent

- o dO of d@ o° OP o o oP of JP

azyStream{ , , [], Stream) :- Y,
writeStream(Stream, ’S$end_of stream’),
closeStream (Stream) .

lazyStream(N, M, Term, Stream} :-

mSend (N, Term, TermZ2, Stream),

readStream(Stream, resume), !,

lazyStream (M, M, TermZ, Stream).
lazyStream(_ , _, _, Stream) :-
closeStream(Stream).

mSend (M, Tin, Tout, Stream)
M is the number of bindings to produce
Tin is the initial term before any reductions
Tout is the final term after M reductions
Stream is the output stream

do dP P dP o0 oF do

mSend(_, [], [], Stream) :-
writeStream(Stream, ’'Send_of stream’),
1
closeStream(Stream).

mSend(_, [], [], Stream) :-
'

“r

closeStream(Stream).

mSend (0, Term, Term,) :- !l.

mSend {M, Term, Term2, Stream) :-
reduce (Term, ReducedTerm}, !,
recurse constrained (ReducedTerm, Term2, Stream, M).

mSend(_, _, _« Stream) -
writeStream(Stream, ’Serror’), ',
closeStream(Stream) .

mSend(_, _, _» Stream) 1=
closeStream(Stream).

recurse_constrained([], (], Stream,) o=y,
closeStream(Stream).
recurse_constrained ([H|T], T2, Stream, M) :-
writeStream(Stream, H), !,
Mminusl is M - 1,
mSend (Mminusl, T, T2, Stream).

110

% initialize{

% +Term, % term to be reduced

% +N, % number of consumers to expect

% +ClientStream, % stream to client who requested service
% -Buffer, % structure that is to contain all necessary info
% % buffer(

% % Term, % remainder of term to be reduced
% % Tail, % pointer to end of buffer

% % List, % buffers result until all

% % % consumers have arrived

% % CL, % list of consumers and their

% % % associated pointers

% % % into the buffer

% % NC % number of consumers who have

% % % not yet arrived

% %)

% - ServicelD % address at which worker will receive

% % connection requests from consumers

%)

%

%

initialize {(Term, N, ClientStream,
buffer (Term, T, T, [], N), ServicelD) :-
establishService (P, ServicelD},
getHostName (H),
writeStream{(ClientStream, streambescriptor(H, P)),
closeStream(ClientStream).

eagerLoop {(+Buffer, +ServicelD)

%
%
%
$ eagerly produce output for each of the consumers in
% Buffer by reducing the term in Buffer. Reduction

% stops only when the term has been completely reduced
% or all consumers have cancelled. If the term is

% completely reduced and there are still consumers

% outstanding, results are buffered for them until

% they have accepted all results or cancelled.

%

e

agerLoop (buffer([(], {1, [1, [1, 0), ServicelD) :- !,
shutdownService (ServicelD} .
eagerLoop (Buffer, ServicelD) :-
newConsumers (ServicelID, Buffer, Buffer2),
reduceTerm (Buffer2, Buffer3),
sendOutput (Buffer3, Bufferd), !,
eagerLoop (Buffer4, ServicelD)}.

111

buffer manipulation predicates

newConsumers (+ServiceID, +Bufferl, -Buffer?)

check to see if there are any new consumers waiting
on ServicelID
- if so, add them t¢ the consumer list in Buffer
- note that a non-blocking select is used; if no
new consumers have arrived since last we checked,
we do not wait for one to arrive
- streams established with new consumers are set to
allow non-blocking I/0 so that writes to those
streams will return immediately if the IPC buffer
is full

0P dP OP o o JC O Of of of OP OF of P o of de

newConsumers (SID, buffer(Cont, T, L, C, 0),
buffer{Cont, T, L, C, 0)) :- .

newConsumers (SID, B, B) :-
selectStreams(, [SID]}, (1, [1,

A, ., _, non_blocking),

A== [], LI

newConsumers (SID, Bl, B3) :-
acceptStream(SID, 3),
setNoBlock (5},
addConsumer (B1, S, B2),
newConsumers (SID, B2, B3).

addConsumer (+Bufferl, +Stream, -Buffer?2)

%
%
%
% add a newly arrived consumer, with whom a connection,
% Stream, has been established, to Buffer, Note that
% when the last consumer arrives (N becomes 0), the
% List argument of Bufferl is set to [] so that

% garbage collection will begin for elements in the

% buffer that have already been sent to all consumers
%
a

ddConsumer (buffer{Cont, T, L, C, 1), 5,
buffer(Cont, T, [1, [c(L, S)ICl, 0)) :-
t
addConsumer (buffer(Cont, T, L, C, N), 5,
buffer (Cont, T, L, [c(L, S)IC]l, M)) :-
Mis N - 1.

112

%
%
%
%
%
%

reduceTerm (+Bufferl, -Buffer2)

the term in Bufferl is reduced
Buffer?2 reflects the result of this reduction
the continuation and tail are updated appropriately

reduceTerm{buffer{(Cont, T, L, C, N), NewB) :-

reduce (Cont, ReducedCont},
matchTerm(ReducedCont, buffer{(, T, L, C, N), NewB}.

matchTerm([],

buffer(_ , [1, L, C, N),
buffer([1, [], L, C, N)).

matchTerm{[A | NewCont],

%
%
%
%
%
%
%
%
%
%
%
%
s

S
s

b}

8

buffer (Cont, {A | NewT], L, C, N),
buffer (NewCont, NewT, L, C, N)).

sendOutput (+Bufferl, -Buffer?)

an attempt is made to send data to each consumer in
Bufferl for whom data is available., If a term is
successfully sent, the buffer is updated accordingly.
If the write would block because the IPC bhuffer for
that consumer is full, the buffer remains unchanged
and another attempt to send the data will be made
later. If a write to a particular consumer fails,
that consumer will be removed from the buffer structure.

endOutput (buffer (Cont, Tail, List, CL, N},
buffer (Cont, Tail, List, CLp, N)) :-
sendOnall (CL, CLp).

endOnAll (| [1.

1,
endOnAll{({c{L, S) | C€S8], [c{(L, 5) | CSpl)y :-
var (L), ', % no data available for
% this consumer
sendOnAll (CS, CSp).
endOnAll ([¢([H | Lp], S} | CS], CSp) :-

writeStreamNB(S, H, RV), !,
continueSend (RV, S, H, Lp, €S, CSp).
endOnAll ({c([1, S) | CSs], CSp) :-
writeStreamNB(S, ‘$end of stream’, RV), !,
% this consumer has seen
% the entire stream
continueEQOS (RV, S, CS, CSp).

sendOnAll ([e(, S) | CS], CSp) :-

closeStream(S), % a writeStream failed

% close the stream and

% remove the consumer
sendOnAll (CS, CSp). % from the buffer structure

113

continueSend (+ReturnvValue, +Stream, +Term, +Rest,
+0OtherConsumers, -NewConsumers)

%
%
%
%
% if the write of Term to Stream would have blocked

% (ReturnvValue = would _block), put Term back into the

% buffer for Stream and continue with the other

% consumers. QOtherwise (ReturnValue = success), attempt
% to send more data elements from Rest on Stream before
% proceeding to the other consumers.

%
c

ontinueSend(would block, S, H, Lp, CS,
[c({H | Lpl, S) | CSp}) :-
sendOnAll {(CS, CSp).
continueSend(success, S, , Lp, C3, CSp) ‘-

sendOnAll ({c{Lp, S) | CS], CSp).

continueEQS (+ReturnvValue, +Stream,
+QtherConsumers, -NewConsumers)

%
%
%
%
% 1f the write of ’Send of stream’ to Stream would have
% Dblocked (ReturnValue = would block), put [] back into
% the buffer for Stream and continue with the other

% consumers.

% Otherwise (ReturnvValue = success), remove Stream

% from the list of consumers

%

c

ontinuek0S (would block, S, CS, [c([], S) | Cspl) :-
sendOnAll (CS, CSp).

continueEOS (success, _, CS, CSp) :-
sendOnAll {(CS, CSp).

%
% end of buffer manipulation predicates
%

114

moLazyStream{+N, +M, +Buffer, +ServicelD)
lazyStream with multiple outputs

N is the number of solutions that should be
sent initially
M is the number of solutions that should be
sent in response to each 'resume’ message
Buffer contains the information necessary
for producing, buffering, and sending
results.
ServicelID 1s the address at which new consumers
will be accepted

oP df d° P o0 I I I P IR AP o O I P

moLazyStream{ , , [1, _) := !.

moLazyStream(N, M, Buffer, ServicelD)]
lazyLoop (Buffer, Buffer2, N, ServicelD),
waitOnhAll (Buffer2, Buffer3, ServicelID),

moLazyStream (M, M, Buffer3, ServicelD).

lazyL?op(buffer([]. (o, 1, 1, O, 11, _, ServicelD) :-
-
shutdownService (ServicelD) .
lazyLoop (Buffer, Buffer, 0, ServicelD) HET N
lazyLoop (Buffer, Buffer5, N, ServicelID) -
newConsumers (ServiceID, Buffer, Buffer?),
reduceTerm{Buffer?2, Buffer3),
Nm is N - 1,
sendCutput (Buffer3, Bufferd),
lazyLoop (Buffer4, BufferS, ServicelD).

waitOnall (+ServiceID, +Bufferl, -Buffer?)

Wait for a ’'resume’ message to arrive from all consumers
in Bufferl. 1If not all consumers have arrived yet, we
must now wait until they do before proceeding.

O d¢ o oP P o de

waitOnAll (ServiceID, buffer(Cont, T, L, C, 0},
buffer(Cont, T, L, Cp, 0)) := I,
waltOnEach(C, Cp).
waitOnAll (ServicelID, Buffer, Buffer2) :-
newConsumers (ServicelD, Buffer,
buffer(Cont, T, L, C, N)),
waitOnEach(C, Cp).,
waitOnAll (ServiceID, buffer(Cont, T, L, Cp, N},
Buffer2).

115

of OP o O dP o JP o of oP

waitOnEach (+Consumersl, -Consumers?)

for each consumer in Consumersl, wait for a ’resume’
message to arrive. If the stream associated with a
particular consumer is closed or another type of message
arrives before the ’'resume’ message, the stream to that
consumer is closed and the consumers is removed from
Consumersl

waitOnEach{[1, [1).
waitOnEach{[c (T, S) | €8], [c(T, S) | CSpl) :-

readStream (S, resume), !,
waitOnEach (CS, CSp).

waitOnEach([c(_, 8) | C8] , CSp) :-

closeStream(S),
waitOnEach (CS, C3p).

116

dedicatedService (+Term, +Socket)

%

%

%

% A worker is dedicated to a given client to

% reduce a succession of terms until the client
% sends a cancel message instead of a term,

% The worker initially loads the requested

% context for the reduction and does not

% unload it until the client relingquishes the

% dedicated service

%
d

edicatedService (cancel, Socket) :-

|
o r

writeStream(Socket, ’'$end of stream’),
closeStream({Socket) .

dedicatedService (Term in Module, Socket) :-

|
L4

active_module (M1),

module (Module),
dedicatedService{Term, Socket),
drop _module (Module),

module (M1) .

dedicatedService (Term, Socket) :-
reduce (Term, ReducedTerm),
dedicatedRecurse (ReducedTerm, Socket).

dedicatedRecurse ([], Socket) :-
writeStream(Socket, ’Send of substream’),
readStream(Socket, NextTerm),
% if the term has reduced
% to [], inform the client
% and awalt the next term
% to be reduced
nextTerm(NextTerm, Socket).
dedicatedRecurse({H|T], Socket) :-
writeStream(Socket, H),
dedicatedService (T, Socket).

nextTerm(Term in Context, Socket) :-
!, % avoid reloading Context
dedicatedService (Term, Socket).

nextTerm{Term, Socket).

117

contexts - right now the context mechanism is
very primitive. A modules implementation will
certainly help.

H o° of o o of

in C => §
causing (drop_module (C), module(M))
where (active_module(M), module{C)).

module{([]) .

module([H | T1]) -
consult (H),
module (T) .

active_module([]).

drop_module{).

118

[1]

(2]

131

(4]

(5]

[6]

7

(8]

[9]

[10]

REFERENCES

Abelson, H. and G. Sussman, The Structure and Analysis of Com-
puter Programs, MIT Press, Boston, MA (1985).

Barth, Paul, Scott Guthery, and David Barstow, ‘‘The Stream
Machine: A Data Flow Architecture for Real-Time Applications,”’
pp. 103- 110 in Proceedings 8th International Conference on
Software Engineering, London, England (August 1985).

Chau, L., ‘‘Functional Grammars and Stream Pattern Matching,”
Draft, UCLA Computer Science Dept. (March 1988).

Gregory, S., Parallel Logic Programming in PARLOG: The
Language and its Implementation, Addison-Wesley, Reading, MA
(1987).

Henderson, Peter, Functional Programming: Application and
Implementation, Prentice-Hall, Englewood Cliffs, New Jersey
(1980).

Kahn, Gilles and David B. MacQueen, ‘‘Coroutines and Networks
of Parallel Processes,”” Proceedings of the IFIP Congress 77,
pp.993-998 (1977).

Levy, Jacob and Ehud Shapiro, ‘‘CFL - A Concurrent Functional
Language Embedded in a Concurrent Logic Programming
Environment,”’ CS86-28, The Weizmann Institute of Science,
Rehovot, Israel (December 1986).

Li, P-Y.P. and A.J. Martin, ‘“The Sync Model: A Paralle] Execu-
tion Method for Logic Programming,’’ Proc. Symp. on Logic Pro-
gramming, pp.223-234, IEEE Computer Society (1986).

Miyazaki, T., A. Takeuchi, and T. Chikayama, *‘A Sequential
Implementation of Concurrent Prolog Based on the Shallow Bind-
ing Scheme,”’ pp. 110-118 in Proceedings IEEE Symposium on
Logic Programming, Boston, MA (1985).

Muntz, R.R. and D.S. Parker, ‘‘Tangram: Project Overview,”

Technical Report CSD-880032, UCLA Computer Science Dept.,
Los Angeles, CA 90024-1596 (April 1988).

119

[11]

(12]

[13]

[14]

[15]

[16]

Narain, S., ““Log(F): A New Scheme for Integrating Rewrite
Rules, Logic Programming and Lazy Evaluation,”” CSD-870027,
UCLA Computer Science Dept., Los Angeles, CA (1987).

Narain, S., ““LOG(F): An Optimal Combination of Logic Pro-
gramming, Rewrite Rules and Lazy Evaluation,”’ Ph.D. Disserta-
tion, UCLA Computer Science Dept., Los Angeles, CA 90024-
1596 (1988).

Page, T.W., ‘“Prolog Basis for a Data-Intensive Modeling
Environment,”” Dissertation Prospectus, UCLA Computer Sci-
ence Department, Los Angeles, CA 90024-1596 (March 1988).

Parker, D.S., R.R. Muntz, and L. Chau, ‘‘“The Tangram Stream
Query Processing System,” Technical Report CSD-880025,
UCLA Computer Science Dept., Los Angeles, CA 90024-1596
(March 1988).

Shapiro, E.Y., Concurrent Prolog: Collected Papers, MIT Press,
Cambridge, MA (1987).

Sterling, L. and E. Shapiro, The Art of Prolog, MIT Press, Cam-
bridge, MA (1986).

120

