Computer Science Department Technical Report
University of California
Los Angeles, CA 90024-1596

A STUDY OF THE APPLICATION OF FORMAL
SPECIFICATION METHODS FOR
FAULT-TOLERANT SOFTWARE

Ann Tsu-Ann Tai December 1988
CSD-880100



UNIVERSITY OF CALIFORNIA

Los Angeles

A Study of the Application of

Formal Specification Methods for Fault-Tolerant Software

A thesis submitted in partial satisfaction of the
requirements for the degree of Master of Science

in Computer Science

by

Ann Tsu-Ann Tai

1986



© Copyright by
Ann Tsu-Ann Tai
1986



The thesis of Ann Tsu-Ann Tai is approved.

John P.J. Kelly

David A. Rennels

Daniel M. Berry

Algirdas AviZienis, Committee Chair

University of California, Los Angeles
1986

ii



TABLE OF CONTENTS

page
1 INTRODUCTION ...ooiiiiienieveeicssssissmesnissssesisssterssssnssssassssassesosssibssssssasassans 1
2 THE DEFICIENCIES OF INFORMAL SPECIFICATIONS ........cccocninennee. 3
2.1 The English Specification of RSDIMU and Its Deficiencies ............ 3
2.2 The Necessity of Formal Specifications ........cccoovviinniiniinnicnnns 7
3 FORMAL SPECIFICATION AND FAULT-TOLERANT SOFTWARE ... 10
3.1 Criteria for Selecting Specification Languages ........cceivivviiiinnns 10
3.2 Rationale For Using Larch ..o 12
4 AN OVERVIEW OF LARCH .....ccciiiinr et ssas s s 15
4.1 TNLOQUCHOM  cooiirerievvvrerrsesenssnresrererenssssassssssnssnennsnssssssnrasesasssossansesssss 15
4.2 The Larch Shared Language .......cccooeemeviveinicmnnnnennnenccnnesiinesins 15
4.3 Larch Interface LANGUAZES ...cccoocvvivirirnriseesiesssenisnenesnnsssstcosnnenscnnns 19
4.4 Two-tiered Specifications ......cvoeiceiniiiicnsnriconi e 21
5 EXPERIENCES IN LEARNING LARCH ....ccooommminiincrrenncisiniiniiinieee 22
5.1 Difficulties Encounted in Learning Larch ......ocoeiieriinieinininninnns 22
5.1.1 Lack of Past EXPErence ........ccceeiiemcnivinnnninnneninnsiruin 22
5.1.2 Insufficiency of Literature .........ccccivieimcninninnncnnciiniininne 22
5.1.3 Transition to Practical Applications .........ccccuveermmeniceniesinnans 23
5.1.4 Lack of TOOIS ...cooveervcimiiimnrimmnensrernmensininssneesssstssenianssnesns 24
5.2 Progress of LEarning ......ccuovrrevecinesessssssiosiimsssmncmssnises s 24
5.2.1 The DEDIX Real Number Decision Algorithm .....cc.ccceeeen 24
5.2.2 Specifying the Decision Algorithm in Larch .....ccocevvrninnnn. 26

5.2.2.1 The First Version of the Real Number Decision
AlGOTItNIM .oviviriiiciiirrnerire bbb s e s 27
5.2.2.2 Three Different Versions of the Median Trait ............ 30
5.2.3 Discussions with Drs. J.V. Guttag and J.J. Horning .............. 33
5.2.3.1 The Operator belowMedian .........ccoveiiiiniinniinnns 35
5.2.3.2 The Operator Nth ......ccceeiennccisiiiiiie e 36
5.3 Summary of EXPETIENCE ..ccoevimmremnmiiisnninsmiesisimsssanesicsissinssnsieseass 40
5.3.1 An Efficient Way to Learn Larch .......ccoeeiiniviiiiniienne 40
5.3.2 The Spirit of Larch Style ...cooeinniiiiiiiiiissens e 41
5.3.3 Simplicity vs. Complexity in Writing Specifications ............. 42
5.3.4 To Uncover Specification EfTors ......ccccoininnennnnnns 43
6 THE LARCH SPECIFICATION FOR RSDIMU  ...ccoiminiiimiiniiinininieennes 44
6.1 General Structure of the Larch Specification .........ocoonvmiinininnieneen. 44
6.2 Using Larch to Specify RSDIMU .....cooiiiiiccisninsinninienees 50
6.2.1 Data ADSITACHONS ..eeevverurisiiecrirrmriisesssssonerssssnsnssranmsisss e senss 50

iii



6.2.2 Mathematical Fundamentals .........cccoceviniereisiinenrininsencens

6.2.2.1 SUIMMAHON  coovviierrecrvrsrreereresrseriseneserssssssssrassrnssansnnnnses
6.2.2.2 Division and Modulo ....cccvevriveriiiiniinincanneesens

6.2.3 System Definitions .....oooiveveieeieniininii e
6.2.4 Clarity of a Given Algorithm ...
6.2.5 Mapping FUnNCions ........coceemnnnnnmiiimim s
6.3 Analysis of Specification EITOrs ..........ccovmmiinininicne
6.4 Getting Better Comprehensibility ..o
6.4.1 Formalism vs. Readability .......cccoiviirorinricnnnin
6.4.2 Tips to Improve Comprehensibility .......cooovviiminiiieinnn
6.5 Limitations of Larch ......cocooiricimiiiirninnrnssses e e

.....................................................................................................

iv

52
52
53
55
55
56
57
59
59
60
61

66

69



LIST OF FIGURES

Fig.1: RSDIMU System Data Flow Diagram .........ccccoveenene

...........................

Fig.2: Relations among the Traits for the Calibration Module ...

Fig.3: Relations among the Traits for the Fault Detection Module ......c.cccereevve.

Fig.4: Relations among the Traits for the Estimation Module

..........................

page

45
47
48
49



ACKNOWLEDGMENTS

I would like to thank my committee members, Professors Algirdas AviZienis,
Daniel Berry, David Rennels, and John Kelly for serving on my thesis committee with

such enthusiasm.

1 wish to express my sincere thanks to Prof. AviZienis for his guidance,
advice and encouragement that have contributed significantly to the preparation of this

thesis.

Special thanks to Prof. Kelly for his guidance and support of my research that
has made this thesis possible.

Prof. J.V. Guttag of MIT, Dr. J.J. Horning of DEC Systems Research Center,
and Prof. .M. Wing of Camegie-Mellon University have spent much time and sent

much electronic mail to help me to understand Larch. Very special thanks to them.

Thanks to Prof. Berry for reading the manuscript drafts so carefully and

helping me to state my meaning better.

Thanks to members of the UCLA Dependable Computing and Fault-Tolerant
Computing research group, especially Jean-Paul Blanquart, Yasuhiko Hatakeyama,
Rong-Tsung Lyu, Barbara Swain, Kam-Sing Tso, and Bradford Ulery for invaluable

discussions that improved the quality of this work.

vi



I must give my heartfelt thanks to my husband Kam-Sing for his love and

dedication.

This work was supported by the Federal Aviation Administration Advanced
Computer Science Program (via NSF Grant MCS81-21696), under the direction of A.
AviZienis, Principal Investigator, and the National Aeronautics and Space
Administration, Contract NAG1-512, under the direction of A. AviZienis, Principal

Investigator, and J.P.J. Kelly, Co-Principal Investigator.

vii



ABSTRACT OF THE THESIS

A Study of the Application of
Formal Specification Methods for Fault-Tolerant Software
by
Ann Tsu-Ann Tai
Master of Science in Computer Science
University of California, Los Angeles, 1986
Professor Algirdas Avizienis, Chair

The main purposes of this research are to discuss the importance of formal
specifications and to identify a number of promising specification techniques of
Larch. Common deficiencies of informal specification aspects are identified with
reference to an English specification used in a fault-tolerant software experiment.
Criteria are established for evaluating the practical potential of formal specification
techniques for fault-tolerant software. A number of specification techniques for
describing an application in the fault-tolerant software are surveyed and evaluated
with respect to these criteria. Basic features of Larch which make it feasible to use it
to specify fault-tolerant software are presented. The difficulties encounted and
experiences gained during the learning activities and the specifying process are
discussed. Common errors that occurs during the specification process are identified
and classified with the help of case studies. The distinctive style of Larch
specifications is studied. How to improve the comprehensibility of Larch
specifications is discussed. Finally the limitations of the present Larch specification

language are indicated.

viii



CHAPTER 1
INTRODUCTION

An ideal software specification provides a description of the desired external
behavior of the software without describing or constraining its internal
implementation. Specification is crucial in software development as it has been
estimated that the cost to fix an error detected during operation can be 1000 times
greater than the cost to fix the same error had it been detected during the specification
phase [Boeh81]. Specifications have to be complete, consistent, unambiguous and
correct. Past experiences in software development show that faults due to an
inadequate specification are very difficult and expensive to correct when they are

discovered in later phases of software development.

A growing concern on the reliability of computer systems is design faults.
Design diversity [Aviz82] is an approach to tolerate design faults. In this approach
hardware and software elements are not copies, but are independently designed from
an initial specification to meet a system’s requirements. Different designers and
design tools are employed in each effort. It is hypothesized that although errors may
occur in some of the elements, a majority of good results can be found because faults

are independent, if they exist.

Multi-Version Software (or N-Version Programming) [Aviz77, Aviz85b], the
generation of N 2 2 software "versions” from the same specification, is an approach to

tolerate software faults by design diversity. The specification is to state the functional



requirements completely and unambiguously, while leaving the widest possible choice
of implementations. Thereafter, N independent versions are independently written by
N programming teams that do not interact. Since the versions are written
independently, it is hypothesized that the probability that they contain similar errors is
greatly reduced, ie., errors in their results are largely uncorrelated. Since the
implementation of the software versions are based on the same specification, the
specification is effectively the hard core of the approach. A possible way to get rid of
the hard core is to have one more level of design diversity, that is, using multiple
specifications to specify the same functional requirements. A specification oriented
Multi-Version Software experiment conducted at UCLA [Kell82, Kell83] has
demonstrated that specification faults are the most serious and there is a need for

improvement in specification techniques.

In the next chapter the deficiencies of the English specification of the
Redundant Strapped Down Inertial Measurement Unit (RSDIMU) used in the Second
Generation Experiment [Kell86] are discussed and the importance of using formal
specifications is highlighted. Various formal specification languages have been
considered for formally specifying RSDIMU. Chapter 3 presents the rationale for
choosing LARCH. Chapter 4 contains an overview of LARCH, and Chapter 5
records the experiences gained in the learning process of LARCH. Chapter 6
discusses the specification of RSDIMU in LARCH. The specification itself can be

found in the Appendix.



CHAPTER 2
THE DEFICIENCIES OF INFORMAL SPECIFICATIONS

2.1 The English Specification of RSDIMU and Its Deficiencies

A large scale experiment was conducted in the summer of 1985 to determine
the effect of fault-tolerant software techniques under carefully controlled conditions
[Kell86). An application was programmed by 20 teams of two students each from
four universities* working in a carefully controlled programming environment. The
application, called the Redundant Strapped Down Inertial Measurement Unit
(RSDIMU), had been chosen as a realistic example from the avionics area. It was
specified in English by the staff of Charles River Analytics, Cambridge, MA
[Redu85]. The specification consists of 64 pages of English description and was
augmented by 250 question and answer pairs and 10 Announcements (about 60 pages
long). The questions were raised by the programmers during the development of the
program versions. Answers to those questions were broadcast every programmers.
The Announcements are used to correct errors in the initial specification. In the
course of the software development and the preliminary evaluation of the resulting

programs we found that the specification was grossly inadequate.

Table 1 [Meye85] lists seven classes of deficiencies in natural language
specification that we have found to be both common and particularly damaging to the

quality of requirements. The followings show some of these deficiencies in the

*They are the University of California, Los Angeles, the University of Illinois at
Urbana-Champaign, North Carolina State University, the University of Virginia.



RSDIMU Specification:

Noise: The presence in the text of an element that does not
carry information relevant to any feature of the problem.

Silence: The existence of a feature of the problem that is
not covered by any element of the text.

Overspecification: The presence in the text of an element that
corresponds not to a feature of the problem but to
features of a possible solution.

Contradiction: The presence in the text of two or more elements
that define a feature of the system in an incompatible
way.

Ambiguity: The presence in the text of an element that makes it

possible to interpret a feature of the problem in
at least two different ways.

Forward reference: The presence in the text of an element that uses
features of the problem not defined until later in
the text.

Wishful thinking: The presence in the text of an element that defines

a feature of the problem in such a way that a candidate
solution cannot realistically be validated with respect
to this feature.

Table 1: The Seven Sins of the Specifier

1. An instance of noise appears on page 32 of the specification. Paragraph 2 says
"If a specific accelerometer on a given face is declared to be failed prior to the
invocation of the program, then that face is not used in the edge vector test.”
In the beginning of the next paragraph, it states "If a single sensor on a face
fails, the face cannot be used in the edge vector test.” When such a statement

is first encountered, the reader may think it brings new information, but upon



closer examination, he realizes that it only repeats known information in new
terms. The reader must thus ask himself nonessential questions, which divert
attention from the truly difficult aspects of the problem. Noise is also a source

of contradiction and ambiguity.

The specification is silent in some critical points. In Appendix C, Least
Square Vehicle Acceleration Estimation, the specifier tries to define the
computations that are to be performed by using the various sensor subsets. It
says "If the x-accelerometer on face B and y-accelerometer on face C are
determined to be failed, then the best estimate of the vehicle acceleration is
computed by performing the computations above with 6*3 partitions of the
matrix C obtained by deleting the third and sixth rows.” Thus the y-element
on face B and x-element on face C are still among the six rows. But which
frame are thcy in? It is not specified. Most programmers did not have enough
engineering background and made the assumption that speciﬁé force in a good
accelerometer isolated from a bad face should remain in the Sensor-Frame as
those in a good face do. Not until the Unit Testing Stage did the specifier give
a clear definition in Announcement VIL 30 questions conceming this
inadequacy are the strong evidence of the sin of the silence.

Another example of silence is shown in appendix D regarding the Edge Vector
Test. The specification only asserts that 3 common threshold test failures is
the sufficient condition for determining a bad face but keeps silent on what the
necessary condition is. About 20 questions regarding this silence were raised.

(The final solution from RTT was still unreasonable.)

The specification overspecifies the Least Square Algorithm. Instead of

specifying the requirement it gives the solution which uses matrix inversion.



In fact it is not a very good solution unless the residual correction method is
used. Overspecification is especially bad in multiple version software because
it reduces the degree of design diversity as extra details lead independent
programmers to follow a similar structure and increase the probability of

similar errors.

The definition of LINOUT says, "This will hold real values representing the
linear acceleration component of sensor....". However, page 60 defines that f
which is an approximation of LINOUT in Instrument Frame is the specific
force. Together with the equations
LinearAcceleration = Offset + Slope x Voltage (Sec. 2.3.3)
a=Tnf+g" (Appendix C)

a contradiction occurred and similar error followed.

Ambiguities are very common in the specification. One typical example is in
the definition of LINOUT. It states that some exception handling ought to be
done on these "failed sensors”. It is possible to interpret the words "failed
sensor” as either the sensor failed prior to the flight or the sensor failed during
the flight. The consequence of the different interpretations was that multiple
versions disagreed on LINOUT and badly degraded the dependability of the

fault-tolerant software system.

The specification uses quite a few forward references. Not all of them are bad
but some implicit ones really confuse implementors. For instance, the
Specification defined an input variable NORMFACE at page 12 without
defining its usage and mentions a variable fag after 46 pages without explicit

indication that they refer the same thing. That is why so many questions were



raised about NORMFACE.

7. The Specification defines an operational status ANALYTIC on page 21. The
definition is "Exactly 3 instrument values are available from which to compute
the 3 components of acceleration in the Navigation Frame of Reference.”
However, on page 19, the definition of SYSSTATUS says "(SYSSTATUS) is
TRUE if at least two faces are completely operational and their edge vector
satisfies the threshold test. It is FALSE otherwise. If the value of this
variable is FALSE, set ... all acceleration estimate status indicators to
UNDEFINED ....." If exactly 3 sensors are working in the system, there is at
most one face completely operational and its edge vector satisfies the threshold
test. In that case, the acceleration estimate status should set to UNDEFINED
according to definition of SYSSTATUS. Therefore, the ANALYTIC status
will never appear in the acceleration estimate status of the output variable

BESTEST. That is an example of wishful thinking.

2.2 The Necessity of Formal Specifications

The obvious advantage of design diversity is that reliable computing does not
require the complete absence of design faults but only that those faults not produce
similar errors in a majority of the designs. Analysis of the twenty versions has
provided some insight into the causes of similar erfors. The most prevalent cause has
shown to be the specification. Boundary conditions, exceptions, and other such
design and coding errors appear to be both less frequent and less correlated. This
observation strongly supports multi-version software as a means of diminishing the
number of faults introduced during the design and coding phases of development.

This observation also shows that Multi-Version Software demands a high quality



specification for similar error avoidance.

In a fault-tolerant software system, the most critical condition for the
independence of design faults is the existence of a complete and accurate specification
of the requirements that are to be met by the diverse designs. This is the hard core of
this fault tolerance approach. Latent defects, such as inconsistencies, ambiguities, and
omissions in the specification are likely to bias otherwise entirely independent

programming or logic design efforts toward related design faults [Aviz85b].

The RSDIMU English Specification has many deficiencies. Although well
written requirements are obviously preferable to poorly written ones, we doubt that
they alone solve the problem. In our view, natural language descriptions of any
significant system, even good quality, exhibit deficiencies that make them
unacceptable for rigorous software development. The most promising approach to the
production of the initial specification is the use of a formal, very-high-level
specification language [Lisk79, Parn79, Mell79].

A specification is formal if it is written entirely in a language with an
explicitly and precisely defined syntax and semantics. Its purpose is to provide a
mathematical description of the concept; and the correctness of a program is
established by proving that it is equivalent to the specification. There are advantages
in using formal, rather than informal specifications. Formal specifications can be
studied mathematically while informal specifications cannot. Formal specifications
can also be meaningfully processed by a computer, Certain forms of inconsistency or
incompleteness in the specification can be detected automaticaily. Since this
processing can be done in advance of implementation, it should prove to be a valuable

aid to program design.



Because it is difficult to construct specifications using informal techniques,
such as English, specifications are often omitted, or are given in a sketchy and
incomplete manner. This may explain some deficiencies illustrated in the previous
section. Formal specifications techniques can provide a concise and well-understood
specification or design language, which should reduce the difficulty of constructing

specifications.

Problems arise if the specification is ambiguous: that is, if it fails for some
reason to capture a unique concept so that two programs with different computational
properties both satisfy the specification. The existence of ambiguity often is not
realized, and instea.d the ambiguity is resolved in different ways by different people.
This was a common scenario in our second generation multi-version software
experiment. Formal specifications are less likely to be ambiguous than informal ones
because they are written in a well-defined language. Also, the meaning of a formal
specification is understood in a formal way, and therefore ambiguities are more likely

to be recognized.

Thus, formal specification techniques are valuable aids to fault-avoidance and

fault-removal in the development of reliable software.



CHAPTER 3
FORMAL SPECIFICATION AND FAULT-TOLERANT SOFTWARE

Significant progress has occurred in the development of formal specification
languages in the past few years. Examples are the CLEAR specification language
developed at Edinburgh University and SRI International [Burs81], The "M"
specification language developed at Oxford University [Meye84], The Ina Jo
specification language developed at SDC [Loca80], The OBJ2 specification language
developed at SRI International [Futa85], and the Larch family of specification
languages developed at MIT, Xerox PARC and DEC [Gutt85a].

3.1 Criteria for Selecting Specification Languages

The selection of a specification language for Fault-Tolerant Software must
satisfy a number of requirements. The criteria described below are practical as well

as theoretical considerations [Lisk77, Kell82].

1. Formality. The syntax and semantics of the language in which the
specifications are written must be fully defined. A specification method
should be formal, that is, specifications should be written in a notation which
is mathematically sound and provable. The formality plays a fundamental role

in fault-avoidance in the construction of reliable software.

2. Constructibility. It must be possible to construct specifications without undue

difficulty. Two facets of the construction process are of interest here: the

10



difficulty of constructing a specification in the first place and the difficulty in

knowing that the specification captures the concept.

Comprehensibility. A person trained in the notation being used should be able
to read a specification and then, with 2 minimum of difficulty, reconstruct the
concept which the specification is intended to describe. Properties of
specifications which determine comprehensibility are size and lucidity.

Comprehensibility is a necessary condition for avoidance of similar errors.

Minimality. It should be possible using the specification method to construct
specifications which describe the interesting properties of the concept and
nothing more. The properties which are of interest must be described
precisely and unambiguously but in a way which adds as little extraneous
information as possible. In particular, a specification must say what functions
a program should perform, but little, if anything, about how the function is
performed. One reason this criterion is desirable is because it maximizes the

design diversity of fault-tolerant software.

Wide Range of Applicability. Associated with each specification technique
there is a class of concepts (domain of applicability) which the technique can
describe in a natural and straightforward fashion, leading to specification
satisfying the criteria for constructibility and comprehensibility. Concepts
outside of the domain can only be defined with difficulty, if they can be
defined at all. Clearly, the larger the class of concepts which may be easily

described by a technique, the more useful the technique.

Extensibility. Tt is desirable that a minimal change in a concept should result

in a similarly small change in its specification. This criterion especially

11



impacts the constructibility of specifications.

The second and third criteria address the fundamental problem with

specification techniques -- the difficulty in using formal specification techniques.
3.2 Rationale For Using Larch

The techniques of specification fall into five categories [Lisk77]:

1. use of a fixed domain of formal objects, such as sets or graphs;
2. use of an appropriate, but otherwise arbitrary, formal domain;
3. use of a state machine model;

4, use of an implicit definition in terms of axioms;

5. use of an implicit definitions in terms of algebraic relation.

Larch is an algebraic method. The algebraic specification method provides a
method for specifying a type by defining an axiom set for the type. The method is
largely free from any representational or operational content, thus avoiding undue bias
on the subsequent implementation. Thus, the algebraic specification is feasible to

fault-tolerant software.

Each Larch specification has two parts, written in different languages. One
part is written in a language derived from a programming language and another is
written in a language independent of any programming language. The former is
called Larch interface language, and the latter is called Larch Shared Language.
Larch interface languages are used to specify program units (e.g., procedures,

modules, types). Their semantics is given by translation to predicate calculus.

12



Abstractions appearing in interface specifications are themselves specified

algebraically, using the Larch Shared Language.

Some important aspects of the Larch family of specification languages are
[Gutt85b]:

i. Composability. The Larch Shared Language is oriented towards the
incremental construction of specifications from other specifications. This
bottom-up construction method breaks down a large piece of abstraction into
smaller ones, thus easing the difficulty of writing a large specification. The

feature of composability also provides extensibility of a specification.

2. Emphasis on Presentation. To make it easier to read and understand
specifications, the composition mechanisms in the Larch Shared Language are
defined as operations on specifications, rather than on theories or models.

This supports the criterion of comprehensibility.

3. Semantic Checking. The semantic checks for the Larch language were
designed assuming the availability of a powerful theorem prover. Hence they
are more comprehensive than the syntactic checks commonly defined for

specification languages. This feature strengthens the formality of Larch.

4. Availability of Handbooks. 1t is inefficient to start each specification from
scratch. We need a repository of reusable specification components that have
evolved to handle the common cases well, and that can serve as models when
we are faced with uncommon cases. The Larch Shared Language Handbook
has a rich collection of essential reusable units in Larch, and provides great

convenience for constructing specifications. The handbook is the concentrated

13



essence of abstractions that experienced specifiers found useful.

5. Incompleteness. Most specifications of Larch can be partial. Sometimes
incompleteness reflects abstraction from details that are irrelevant for a
particular purpose; sometimes it reflects an intentional choice to delay certain
design decisions. The incompleteness which leaves wider range of
implementation choices to programmers is advantageous to design diversity in

fault-tolerant software system.

Thus, Larch is a qualified candidate to assess the promise of formal

specification methods for dealing with fault-tolerant software.
Other good reasons for choosing Larch are:

1. Support of the authors of Larch. Drs. Guttag, Horning, and Wing were

willing to provide advice and support (which is documented later).

2. Availability of the Good Documentations. Larch in Five Easy Pieces and
other Larch literature were available for us, which contain introductory,

motivating, and reference information.

14



CHAPTER 4
AN OVERVIEW OF LARCH

4.1 Introduction

The use of formal specification in software development offers significant
advantages. Although there are many theoretical research activities, practical
experience is limited. The Larch Project, a research project intended to aid in putting
formal specification into practical use, is developing both a family of specification

languages and a set of tools to support their use [Gutt80, Gutt83, Gutt85a, Gutt85b].

Each Larch specification has one component written in a language derived
from a programming language and another component written in a language
independent of any programming language. The former is called the Larch Interface
Language and the latter is called the Larch Shared Language.

The predicate-oriented interface languages are used to describe the intended
behavior of procedures. Abstractions are formulated in the Shared Language.
Descriptions given in the interface languages are given in terms of those abstractions

and might also include descriptions of error reactions and implementation limits.

4,2 The Larch Shared Language

Similar in appearance to many algebraic specification languages, the Shared

Language can be used for specifying abstract data types, but its focus is on specifying

15



smaller entities or properties (such as commutativity, group theory, and generic
properties of container-like types). Such entities are expressed as independent,

tractable, and reusable building blocks.

The Shared Language offers a simple, syntactic approach to modularization
and composition, Units of specifications, called traits, are combined by syntactic
inclusion; inclusions can be equipped with renaming rules. Traits are never explicitly
parameterized; the renaming mechanism makes any entity of a trait a potential
parameter. The meaning of a trait is first-order theory. It is obtained as the
conservative union of the theories associated with included traits and the set of local

axioms of a trait. The local axioms are expressed as first-order, quantified equations.

The following is a piece of a Larch/Pascal Interface Language specification.

The terms in iralic are the names of traits defined in the Shared Language part.

function bagChoose(b:bag; var e: integer): boolean
modifies at most [e]
ensures if —isEmpty(b)
then bagChoose & count(b, €po)>0
else —bagChoose & modifies nothing

The basic unit of Shared Language is a trair which introduces terms and

specifies their properties.

The functional structure of a trait is as following:

Name: trait
[includes|assumes|imports] (names of traits prior defined)
[introduces] (names of new operators)
[constrains|asserts] (quantified equations)
[converts] (names of operator which have sufficient axioms)

The imports statment says that the importing trait is a conservative extension

of the theory of the imported trait. The includes statment indicates that the including

16



trait intends to inherit the imported traits’ operators and to further constrain them. We
use importation when we can incorporate a theory unchanged, and inclusion when we
cannot. The assumes statment is similar to includes statment but assumptions can be

discharged by explicit inclusion.

The introduces statment declares a set of new operators (function identifiers),

each with its signature (the sorts of its domain and range).

The constrains statment constrains operators by means of equations that relate
terms containing them. In general, each equation involves several operators, and an
operator may appear in several equations. The asserts statment is used when
constrains would supply no information (e.g., there are too few operators in the trait

to build any quantified equations).

The converts statment indicates that this trait is intended to contain enough

axioms to define the operators introduced.

Here is an example which shows us the reusability of trait:

Container: trait
introduces
new: = C
insert: CE - C
asserts C generated by [new, insert]

Size: trait
assumes Container
imports Cardinal
introduces size: C — Card
constrains size so that
size(new) =0

AdditiveSize: trait

assumes Container
includes Size

17



constrains size, insert so that for all [c:C,e:E]
size(insert(c,e)) = size(c) + 1
converts [size]

It is noted that AdditiveSize has the converts part while Size does not. This is
because Size leaves intentional incompleteness for a property of size whereas

AdditiveSize completes its definition.

The incompleted operator size can be reused in different including traits which
give it complete but different properties from these obtained in AdditiveSize. E.g.

size can be given another definition in another including trait:

includes Size with [sizel for size]

sizel(insert(c,e)) = sizel(c) + if e € c then 0 else 1

which counts the number of kinds of different elements in a set. By reusing existing

traits, specifiers will save time and avoid errors.

The following is a group of traits which shows the composability of Shared

Language:

Relation: trait
introduces # ® #: T,T — Bool

Reflexive: trait
includes Relation
asserts for all [x: T]
x®x

Transitive: trait
includes Relation
asserts for all [x,y,z: T]
(x®y)&(y®z)=>(x®7z)

18



ReflexiveTransitive: trait
includes Reflexive, Transitive

PartialOrder: trait
imports ReflexiveTransitive with [ < for ® ]

They show how complicated traits are composed of simple ones and what the
incremental structure looks like. The Larch languages are designed for incremental

construction of specifications from other specifications.

New traits are unlikely to have as much structure as is present in the various
specializations of Container. This kind of structure tends to come after a large
number of related traits have been written and regularities recognized, or when the

abstraction represents a well-studied mathematical system.
4.3 Larch Interface Languages

Larch interface languages are those specifications that actually describe
program units to be implemented. The role of the Larch Shared language traits is to
define the theories that give meaning to operators that appear in the interface

specifications.

Each Larch interface language is designed for a particular programming
language. Everything from the modularization mechanisms to the choice of reserved
words is influenced by the programming language. Larch/Pascal and Larch/CLU are
the only two moderately well-developed Larch interface languages to date.

Both Larch/Pascal and Larch/CLU support the specification of data and
procedural abstractions. For each language, we consider one data abstraction,

containing several procedural abstractions.

19



In both Larch interface languages, a specification of a data abstraction has
three parts. The first is a header giving the type name and the names of the externally
visible routines. The second is an associated trait and a mapping from the types in the
data abstraction to sorts in the trait. The third comprises the interface specifications
for each routine (procedure or function) of the type. A specification of a routine has

three parts:

1. A header giving the name of the routine and the names and types of its formals

{parameters and returned values).

2. An associated trait providing the theory of the operators that appear in the
body.

3 A body stating any requirements the routing’s parameters and specifying the

effects the routine must have when those requirements are met.

The body of each routine’s specification in Larch/Pascal places constraints on
proper arguments for calls on the routine and defines the relevant aspects of the
routine’s behavior when it is properly called. It can be translated in a straightforward
way to a predicate over two states in the style of Hehner [Hehn84] by combining its
three predicates into a single predicate of the form

requlres =>
{modifies predicate &

ensures predicate}.

An omitted requires is interpreted as true.

In the body of a Larch/Pascal specification, as in Pascal, the name of a
function stands for the value returned by that function. Formal parameters may

appear unqualified or qualified by post. An unqualified formal stands for the value of

20



that formal when the routine is called. A formal qualified by post, for example byogt,

stands for the value of that formal when the routine returns.

The clients must establish the requires clause at each point of call. Having
done that, they may presume the truth of the ensures clause on return, and that only
variables in the modifies at most clause are changed. They need not be concerned

with how this happens.

The implementors are entitled to presume truth of the requires clause on
entry. Given that, they must establish the ensures clause on return, while respecting

the modifies at most clause.

The specification of each routine in an interface can be understood without
reference to the specifications of other routines--unlike traits, in which the

specification constrains the operators by giving the relations among them.
4.4 Two-tiered Specifications

The Larch Shared Language is used to specify a theory rather than a model,
and the Larch interface languages are built around predicate calculus rather than
around an operational notation. One consequence of these differences is that Larch

specifications are less prone to implementation bias.

21



CHAPTER 5
EXPERIENCES IN LEARNING LARCH

5.1 Difficulties Encounted in Learning Larch

At the beginning of learning the Larch specification techniques, a number of

difficulties were encountered.

5.1.1 Lack of Past Experience

Recently there has been a great deal of theoretical interest in formal
specifications. However, there has not been a corresponding increase in their use for

software development.

The Larch Project is developing tools and techniques intended to aid in the
productive use of formal specifications. Nevertheless, even the specification language
developers do not yet have much experience with their use in practical software
development, and the supporting tools are not yet available [Horn85]. To be the
software developer assessing the promise of Larch for dealing with practical problems

is not easy.

5.1.2 Insufficiency of Literature

The Larch Project is an effort to test the ideas about making formal

specifications useful. The Larch Project is indeed of a research nature. Therefore, the

22



Larch literature emphasizes the analysis of the attributes of Larch rather than the
essence of the usage of the Larch syntax and semantics. The most recent Larch
literature is "Larch in Five Easy Pieces” report [Gutt85b). Larch in Five Easy Pieces
is written for formal specification researchers and developers who have a certain
depth of knowledge about formal specification. Larch in Five Easy Pieces, however,

is not an easy tool for novices trying to master the specification techniques.

Furthermore, no formal semantics of Larch/Pascal have been published. The
developers have been fairly negligent about publishing formal semantics of interface
languages [Wing86), and they have not yet written any large specifications in any

Larch interface lméuages [Horn85].

5.1.3 Transition to Practical Applications

Larch in Five Easy Pieces proQidcs fairly numerous examples of Larch traits
and exhibits the style of Larch specifications. Nevertheless, almost all those example
traits are abstract data types and mathematical primitives. We anticipated that there
would be a significant distance between those sample traits and most traits used in

fault-tolerant software such as DEDIX or RSDIMU.

Difficulty appeared because the real number data type is used throughout the
RSDIMU. An uncountable domain, such as the real numbers, cannot be defined using
the algebraic approach [Lisk77].

There are many mapping functions (sensor to face, channel to face, edge to
sensor, etc.). How can we define these mapping functions without an intuitive picture
or a table? There is neither an analogical example nor a direct clue for these functions

in the literature.

23



5.2.2.1 The First Version of the Real Number Decision Algorithm

The following is the first version of the Real Number Decision Algorithm:

% Selects the maximum element of a set

Max: trait
imports Member, Ordered
introduces max: C - E
constrains max so that for all [¢:E, b:C]
(ee b)=>(e < max(b))
converts [max]

% Selects the minimum element of a set

Min: trait
imports Member, Ordered
introduces min: C — E
constrains min so that for all {e:E, b:C]
(ee b)=>(e2min(b))
converts [min]

% Identifies the median in a set with odd number elements by declaring
% the number of elements smaller than the median and the number of
% elements greater than the median are equal

Median: trait
imports RangeCount, Max, Min
introduces median: C - E
constrains median so that for all [ b: C]
rangecount(b, min(b), median(b)) =
rangecount(b, median(b), max(b))
converts [median]

% A set with even number of elements has two candidates for the median.
o, Median] identifies the smaller one whereas Median2 identifies the
% larger one.

Medianl: trait

27



imports RangeCount, Max, Min
introduces medianl: C 5 E
constrains median! so that for all [ b: C]
rangecount(b, min(b), medianl(b)) + 1 =
rangecount(b, median1(b), max(b))
converts [medianl]

Median2: trait
imports RangeCount, Max, Min
introduces median2: C - E
constrains median2 so that for all [ b: C]
rangecount(b, min(b), median2(b)) - 1 =
rangecount(b, median2(b), max(b))
converts [median2]

9, Test if a set has odd number elements

Odd: trait
imports AdditiveSize
introduces odd: B — Boolean
constrains odd so that for all [b:C]
(odd(b) ) = (size(b) =2*n+1)
converts [odd]

9 Identifies the element which has the maximum value all the elements
% smaller than medianl

LeftM1: trait
imports Min, Median1, RangeCount
introduces leftm: C 5 E
constrains leftm so that for all [ b:C]
rangecount(b, min(b), leftm(b)) + 1
= rangecount(b, min(b), medianl(b))
converts [leftm]

% Identifies the element which has the minimum value all the elements
% larger than medianl

RightM2: trait
imports Max, Median2, RangeCount

28



introduces rightm: C 5 E
constrains rightm so that for all [ b:C]
rangecount(b, rightm(b), max(b)) + 1
= rangecount(b, median2(b), max(b))
converts [leftm]

% Counts the number of valid elements (channels). An element will be
% counted if its value passes the threshold test

CountChannel: trait
assumes Container, Cardinal
introduces ccount: C, E, E, E — Integer
constrains ccount so that for all [b:C, e,el,e2,e3:E]
ccount({}, el,e2,e3)=0
ccount(insert(b,e), el, €2, €3) =
ccount(b, el, €2, e3) + (if (abs(el+e2+e3) >e &
abs(el-e2-e3) < e) then 1 else 0)
converts [ccount]

The following is the Larch/Pascal interface language part of the Real Number

Decision Algorithm specification.

% Determine whether majority exists.
% Declares the median as the correct result if there is majority.
% Distinguishable median operators are utilized for different cases

type Rset exports Majority
based on sort C from MultiSet with [real for E]
function Majority (b, sp, sn: Rset; var correctreal: real): Boolean
modifies at most [correctreal}
ensures
if odd(b) then
if rangecount(b,min(b),median(b))
< ccount(b,median(b), median(sp),median(sn))
then Majority & correctreal = median(b)
else ~Majority & modifies nothing
else if median1(b)-leftm(b) < rightm(b)-median2(b)
then if rangecount(b,min(b),median1(b))
< ceount(b,median1(b),median1(sp), median1(sn))
then Majority & correctreal = mediani(b)
else —Majority & modifies nothing
else if rangecount(b,min(b),median2(b))-1

29



< ccount(b,median2(b), median2(sp), median2(sn))
then Majority & correctreal = median2(b)
else ~Majority & modifies nothing

The traits concermning medians all include the library operator rangecount. The
rangecount is defined in the trait RangeCount which counts the number of elements

that fall into the range (el, €2). Its quantified equation is

rangecount(insert(c,e3),e1,62) =
rangecount(c) + if (63 2 €] & e3 < ;) then 1 else 0

Then the quantified equation for median (for a set with odd number of elements) is:
rangecount(b, min(b), median(b)) =
rangecount(b, median(b), max(b))

The motivation is to define a median value without sorting and indexing a sequence.
Unfortunately, this definition fails on some’ multisets such as { 2, 2, 3,3,4}. Inthat
set, the median is 3, the minimum is 2, and the maximum is 4. The number of
elements fall into the interval {min, median] is 4, but the number of elements fall into
the interval [median, max] is 3. Thus the theorem stated by the above equation is not
valid. The boundary conditions were overlooked.

5.2.2.2 Three Different Versions of the Median Trait

The First modified version of Median

Closer observation of a median value showed the fact that both the number of
elements falling in the interval between the minimum and the median and the number
of elements falling into the interval between the maximum and the median must be
greater or equal to half the size of the multiset. Then a modified version of the

median definition which still uses rangecount has been constructed as follows:

30



Median: trait
includes RangeCount, AdditiveSize, BagBasics,
Pair with [P for C]
introduces
csize: C — Integer
cand: C =P
median: C 5 E
constrains C so that for all [b:C]
csize(b) = (size(b) + if odd(b) then 1 else 0)/2
rangecount(b, cand(b).first, max(b)) 2 csize(b)
rangecount(b, min(b), cand(b).first) 2 csize(b)
rangecount(b, cand(b).second, max(b)) 2 csize(b)
rangecount(b, min(b), cand(b).second) 2 csize(b)
median(b) = if min(cand(b)) -
min{cand(delete(delete(b,min(cand(b))),max(cand(b))))))
< max(cand(delete(delete(b,min(cand(b)}),max(cand(b)))))) - max(cand(b))
then min(cand(b))
else max(cand(b))

Since the multiset can have either an odd or an even number of elements, an
intermediate operator cand is introduced, which always returns two candidates for the
median in the sort Pair. Median is then determined by further numerical checking
according to the particular definition of median in the Real Number Decision
Algorithm. The advantage of this solution is the mathematical strictness. The
disadvantage is poor comprehensibility. It is hard to build a clear picture of the
median in the reader’s mind at his first few glances. Furthermore, there is a subtle
error, i.e., the operator cand might return a pair in which one element is a duplicate of
the other so that the definition of median of a set with an even number of elements is

violated.
The second modified version of the Median

A suggestion was made during the seminar class discussion. The approach
suggested was to delete the extremas from the multiset successively. If the set has an

odd number of elements, the deletion stops when there is only one left which is the

31



median, If the set has an even number of elements, the deletion stops when there are

two elements left which are the median candidates. The new version is as follows.

Median: trait
includes AdditiveSize, BagBasics, Join, Pair with [P for C]
introduces
oddmd: C - E
evenmd: C > E
evencand: C - P
neighbors: C —» P
constrains C so that for all [b:C]
odd(b) => oddmd(b) == if size(b)=1 then b
else oddmd(delete(delete(b, min(b))), max(b))
—odd(b) => evencand(b) = if size(b)=2 then b
else evencand(delete(delete(b, min(b))), max(b))
& neighbors(b) = if (size(b)=2 | size(b)=4) then (min(b) .join max(b))
else neighbors(delete(delete(b, min(b))), max(b))
& evenmd(b) = if min(evencand(b)) - min(neighbors(b))
< max(neighbors(b)) - max(evencand(b)) :
then min(evencand(b))
else max(evencand(b))

The advantage here is the intuitiveness; the disadvantage is the implementation bias

which otherwise could be avoided.
The third modified version of the Median

Another way to define a median is to divide a multiset into two multisets. The
two multisets have the same size and every element in one set is greater than or equal
to any element in the other set. If the original set has an even number of elements, the
two new sets are disjoint. If the original set has an odd number of elements, the two
new sets will have an intersection. The intersection, however, cannot be any value
other than the median since it is asserted that each element in one set will be greater
than or equal to any element in the other set. Thus, the maximum of the smaller set

and the minimum of the larger set are the candidates for the median. The trait is as

32



follows:

Median: trait
includes  AdditiveSize, Join, SetIntersection, BagBasics
introduces
isSpan: C, C, C — Bool
median: C 5 E
constrains C so that for all [b:C]
isSpan(b,b;,by) = (b = if odd(b) then delete(b; .join by, b; —\ b2)
else by .join by) &
size(by) = size(by) &
max(b; ) € min(bz)
isSpan(b, by, by) => median(b) =
if max(by) - max(delete(b;, max(b;)))
< min(delete(b,,min{b,))) - min(b;)
then max(b, ) else min(bz)

This approach retains the mathematical rigor, and its assertive nature gives a high
level definition. It is also fairly easy to understand. However, this technique uses an
implicit definition in terms of axioms rather than an implicit definition in terms of

algebraic relations. All three versions do not exhibit the preferred style of Larch and

lose harmony with other parts of the specifications.

5.2.3 Discussions with Drs. J.V. Guttag and J.J. Horning

Drs. Guttag and Horning, the Larch specification language designers, wrote a
Larch specification of Real Number Decision Algorithm, which became the most
valuable material for learning the language [Gutt86]. The following is his

specification:

Nth: TRAIT
ASSUMES Container, Size, Ordered WITH [E for T]...
IMPCRTS Cardinal
INTRODUCES
nth: C, Card -> E
median: C > E
funnyMedian: C, Card -> E

33



belowMedian: C -> Card
countBelow: C, E -> Card
withinSkew: C, E, E => Card
CONSTRAINS C SO THAT FOR ALL [n: Card, c: C, e, e', skew: E]
nth(insert(c, e), n) = IF isEmpty{c) THEN e
ELSE IF e »= nth{c, n) THEN nth(c, n)
ELSE max{e, nth{c, n=-1)})

median{c) = IF odd(size(c)) THEN nth(c, (size(c)+1}/2)
ELSE funnyMedian(c, sizel(c)/2)

funnyMedian(c, n) =
IF (nth(c, n) - nth{c, n-1)) <= (nth(c, n+2} - nth(c, n+l))
THEN nthic, n}) ELSE nth{c, n+l)}

belowMedian{c) = countBelow(c, median(c))
countBelow(new, e} = 0
countBelow{insert(c, e’), e) =

countBelow(c, e) + (IF e’ < e THEN 1 ELSE 0)

withilnSkew (new, e, skew) = 0
withinSkew({insert{c, e'), e, skew) =
withinSkew(c, e, skew) +
(IF (e’ >= (e-skew)) & (e’ <= (e+skew)) THEN 1 ELSE 0)
EXEMPTS FOR ALL [n: Card]
nth{new, n)
belowMedian (new)

FUNCTION Majority(b, sp, sn: vec; var correctreal: e): Boolean
MODIFIES AT MOST [correctreal]
ENSURES
IF (belowMedian (b)
<= withinSkew (b, median(b), median(sp)+median{sn)))
THEN Majority & correctreal!post = median(b)
ELSE "Majority & MODIFIES NOTHING
The first noticeable feature of Drs. Guttag and Horning’s specification is that
all the behavior is defined by the algebraic relationships between the arguments of the
operations and the results. Different behaviors are described in different quantified
equations in a quite consistent manner. This minimizes the distraction of readers and

improves comprehensibility.

Second, a larger trait introduces all the operators except some reusable

operators such as max and odd, which would be introduced in some smaller traits

34



individually. This approach reduces the size of the specification tremendously
because one additional trait will give additional heading lines due to the requirement

of the formality. Smaller size usually add lucidity.

Third, an operator nth is introduced. The powerful nth enables access to the
nth largest element from a sequence. Its quantified equation implies the embedded
indexing and embedded ordering of a sequence of elements. By introducing the

operator nzh, the axioms associated with the operator Median become straightforward.

Fourth, the operation to pick the median for these sets with an even number of
elements now resides in the Shared Language part. The size of the interface language

part has been minimized, and so has the implementation bias.

Nevertheless, two operators, belowMedian and nth are incorrectly defined.

They have the undesired behavior discussed below.
5.2.3.1 The Operator belowMedian

The operator belowMedian counts the number of elements whose values are
less than the median. It is used by the Larch/Pascal function Majority to decide if a
majority exists.
IF belowMedian(b) <= withinSkew(b, medlan(b), median(sp)+median(sn))

THEN Majority & correctreall!post = median(b)

ELSE -Majority & MODIFIES NOTHING
For example, a set of numbers {1, 1, 5, 5, 90, 100, 120} has a median value 5. If both
median(sp) and median(sn) equal to 1, then the skew interval will be [4, 6]. The set
will have only two elements, namely 5 and 5, within the skew interval. Consequently,

no majority exists. However, the operator belowMedian gives a result of 2. Thus the

function Majority claims the existence of a majority.

35



In order to make the specification work, the belowMedian could be replaced by an

operator as

morethanHalf(b) = (size(b) + if odd(b) then 1 else 2} / 2

The first line underneath ENSURES could then be changed to

IF morethanHalf(b) <=
withinSkew (b, median (b) ,median (sp) +tmedian (sn))

5.2.3.2 The Operator nth

The nth operator is intended to define an implied ordered sequence. Its
rational is as follows: If an element e is added to a multiset c, in the case this element
is greater than the kth in c, the first k elements remain in the original order so that the
kth in the set still remains as the kth in the new set. Otherwise the new element will
be inserted into somewhere between the first and the kth element and then either the
new element e or the (k-1)th element in ¢ becomes the new kth element depending on

their ordering. On the two boundaries,

1. Accessing the very first element, nth(c, 1).

2. Accessing the very last element, nth(c, size(c)).

nth fails on certain permutations of the substitution (order of resolution). For a set {1,
2}, nth(insert({1}, 2), 1) returns 1 but nth(insert({2}, 1), 1) retumns 2. Similarly,
nth(insert({2}, 1), 2) returns 2 but nth(insert({1}, 2), 2) returns 1.

The first tentative revised version is:

nth(insert(c,e),n) = if (n = size(c) + 1)
then max(nth(c,n-1), €)

36



else if e 2 nth(c,n) then nth(c,n)
else max(nth(c,n-1),e)

% nth(c,0) = neginfinity
% 0 <n < size(c)

where the condition "IF n = size(c) + 1" assures the retrieval of the very last element

and the definition "nth(c, 0) = neginfinity" assures the retrieval of the very first

element. Thus nth survives these boundary cases.

In order to get rid of "neginfinity," the second revised version was done as

follows.

constrains C so that for all [k, n:card, c:C, e: E]
nth(c,0) <e )
nth(insert(c,e),n) = if (n = size(c) + 1)
then max(nth(c,n-1), e)
else if e 2 nth(c,n) then nth(c,n)
else max(nth(c,n-1),e)
exempts for all [n:card, ¢:C, n > size(c)] nth(c,n)

The final version sent to Drs. Guttag and Horning is:

constrains C so that for all [k, n:card, c:C, e: E]
nth(c,0) <e % nth(c,0) gives the "absolutely" smallest element
nth(insert(c,e).k+1) = if k = size(c)
then max{nth(c,k), e)
else if e 2 nth(c,k+1) then nth(c k+1)
else max(nth(c,k),e)
exempts for all [n:card, c:C, n > size(c)] nth(c,n)

% nth(new,n) for n > 0 is exempted because n > size(new)
% nth(new,0) will have nth(c,0) <e for all e:E
% so nth(new,n) need not to be exempted here

Dr. Horning gave the following comments [Horn86]:

It took me a while to grok this one, but it seems to work, except for
the EXEMPTS. I would have used a >= in the first conditional.

37



The first inequality startled me. I guess it's a perfectly good way
to avoid naming the least element of the type, but I’d normally give
it a name, and turn this into an equality.

I would tend to use k on the left hand side, and k-1 on the right,
but that is a small matter of style.

‘Another solution suggested by Jean-Paul Blanquart is:

CONSTRAINS nth SO THAT
FOR ALL [c:C, size{c)>0, e:E, p:Integer, O<p<size(c)+l]

nth(insert (new,e),l) = e
nth(insert (c,e),size(c)+1) = max(e,nth{c,size(c)})
nth(insert {(c,e},1l) = min(e,nthic,1)}
nth{insert(c,e),p) =

if e »>= nth{c,p) then nthic,p)

- else max(e,nth(c,p-1)}
IMPLIES CONVERTS (nth}
EXEMPTS nth{new,p) FOR all p,

nth(c,p) FOR ( p <= 0 CR p > size(c) )

Dr. Horning’s comments are as follows [Horn86]:

Over the years we have found that it is usually best to write (almost
all) left-hand sides of equations in a standard form: an "observer"
function (such as nth), applied to variables and/or "constructor"
functions (such as insert). Among other things, if an observer is
applied to all the operators in a GENERATED BY, and the right-hand
sides are simplifications (in a certain technical sense) then the
observer is converted. More complex discrimination on the values of
arguments we tend to put in conditionals on the right hand side.

Thus, we would tend not to write left hand sides like
nth(insert {¢c,e),size(c)+1)

Also, your first and second (and third and fourth) equations have
overlapping left hand sides. This is a terribly easy way to generate
inconsistencles. Again, we tend to put a conditional on the right.
Finally, EXEMPTS cannot be conditional; it must be on the syntactic
form of the term, not its wvalue.

Meanwhile, Dr. Horning tried to fix nth in own way as follows [Horm86]:

Nth: TRAIT

38



CONSTRAINS C SO THAT FOR ALL [n: Card, ¢: C, e, &', skew: E]
{sl) nth{(insert{c, e}, n} = IF isEmpty(c) THEN e

(s2) ELSE IF n > size({c) THEN max(e, nth(c, n))
(s53) ELSE IF e »= nth(c, n} THEN nth(c, n)

(s4) ELSE max({e, nth(c, n-1))

A number of cases that ware considered by Dr. Horning to convince himself that it

captures the intuitive notion are as follows [Horn86]:

(c1) The first two cases ensure that nth returns the largest value in ¢ when n is
greater than its size.

(c2) If e is greater than or equal to the value of the nth element in the smaller set, it
doesn’t affect the value of the nth element in the larger set.

(c3) If e is between the value of the nth and (n-1)th, it is the nth value of the larger
set.

(c4) If e is less than the (n-1)th, the (n-1)th becomes the nth.
Let’s first look at an example which shows the incorrectness of this nth.
nth(insert({20},10),1)

— sl: false

— s2: false since not (1 > size({20}))

- §3: IF 10 >= nth({20},1)
right hand side is nth(insert({},20),1) so when it recurses back, s1 becomes
true and returns 20, which makes s3’s condition false.

— s4: max(10, nth({20},0))
the second argument of max is nth(insert({},20),0), which satisfies the
condition of sl and returns 20. Finally we get the result from max(10,20),

which is 20. But the answer should be 10!

39



Where does this nsh fail? We may check the behavior of this trait:

s1 and s2 handle the cl as desired. s3 handles the ¢2 without problem. And
s4 attempts to handle ¢3 and c4, however, s4 fails in the case which has n equal to 1
(so there is no (n-1)th element). In that case, the s4 makes an undesired recursion to
s1 and returns the only element. The only element is certainly larger than the other

operand of max because of the condition checking in s3. Thus this nsh fails.

If we want to keep the original s1..s3, then the correction could be done by

changing the s4 as follows.

ELSE IF (n=l1) THEN min{e, nthic,1))
ELSE max(e, nth{c, n-1))

5.3 Summary of Experience

The experiences gained in the learning process of Larch is valuable for
specifying RSDIMU.
5.3.1 An Efficient Way to Learn Larch

Compared with the task to specify the practical application RSDIMU, the
Median trait is so little and the nrh operator is so tiny. However, these little things

have been provided a great opportunity to learn Larch.

To write a troublesome specification in many alternative versions is indeed a
effective way to learn Larch. One piece of advice from Dr. Horning is as follows

[Hom86]:

I would encourage you to try writing a troublesome specification in
as many different styles as you can think of —-- change the way the

40



data 1s grouped, the allocation of functions to traits, etc. This is
a stage that is hard to teach; often we spend a day or more Jjust
moving equations around, renaming functions, etc. Two people at a
whiteboard seem to be able to do this better than cone, although often
one will come back the next morning with a still better idea that
occurred overnight.

On the way to explore some better specifications among all the
alternatives, one can get famillar with a broad range of Larch syntax

and semantlcs, and obtain a good sense on the spirit of this
specification language.

5.3.2 The Spirit of Larch Style

Although many alternatives of Median have been written, the most acceptable

style would be the latest version of the nth (see Sec. 5.2.3.2).

Nth: TRAIT

CONSTRAINS C SO THAT FOR ALL [n: Card, c¢: C, e, ef, skew: E]
nth(insert(c, e), n) = IF 1sEmpty(c) THEN e
ELSE IF n > size(c) THEN max{e, nth(c, n))
ELSE IF e >= nthi(c, n) THEN nth{c, n)
ELSE IF (n=1) THEN min(e, nth{c,1))
ELSE max(e, nth(c, n-1))

From specifying nth, we can have some insight into the spirit of Larch.

1. The algebraic Larch specification technique is based on a generalization of the

algebraic construction known as a presentation.

2. The set of legal expressions is not defined by separate axioms, but by the
convention that it is the set of expressions that can be formed from the
operations given for the data abstraction such that type correctness is

preserved.

3. The definitions for most data abstractions require the use of conditional

41



equations, that is, equations which do not hold for all possible substitutions of
expressions for variables, but which hold only for substitutions which satisfy

some condition.

4, In a good Larch specification, most of the programming-language-independent
complexity is pushed into the traits, allowing interface specifications to
become almost trivial.

The spirit of Larch has to be in the specifier’s mind throughout the process of

specifying a problem. All the specifications must be in harmony in their styles.

Consistency on styles among all the traits is essential. This consistency will

strengthen the comprehensibility of a specification because the formats that the

programmer needs to follow are standard. This consistency will diminish
implementation bias because it enables programmers to distinguish the expression of

functional requirements and the implied algorithm.,

5.3.3 Simplicity vs. Complexity in Writing Specifications

The syntax of Larch is comparatively simple. The Larch Shared Language is
perhaps more notable for what it leaves out than for what it includes. Some features
found in other algebraic specification languages have been omitted in Larch. The gain
in simplicity of language is at the cost in expressive power or increase in the
complexity of specifications written in the language. However, the number of
approaches devised for specifying a median shows the power of the simple syntax.
After one perceives the spirit of Larch, he can convince himself that Larch is able to

capture most properties of most problems.

42



5.3.4 To Uncover Specification Errors

The experience on Median and nsh suggests that the process of writing
specifications is at least as error-prone as the process of programming. The ultimate

tool for error detection is the understanding of human minds.

While discussing the Larch specifications, several errors were uncovered by
inspection; errors in Larch are easier to detect and ambiguities are more likely to be
recognized than those in English. The reason is that the algebraic specification is

understood in a formal way.

The expcriénce suggests the necessity of a symbolic execution tool
accompanying the automated theorem prover. A theorem prover is only able to
uncover inconsistencies in the specifications. Therefore, as long as there is no
inconsistency, mismatching of the effort of a specification and the functional
requirements intended to be specified would not be uncovered by the theorem prover.
For example, the serious errors that occurred in the operator nth will never be
uncovered by a theorem prover but may be exposed by the output of a symbolic

execution tool which is able to trigger the boundary conditions.

43



CHAPTER 6
THE LARCH SPECIFICATION FOR RSDIMU

6.1 General Structure of the Larch Specification

The functional requirements of RSDIMU can be divided into four modules.

They are:

e Calibration
s Fault Detection
* Estimation

« Display
The System Data Flow Diagram is shown in Figure 1.

Study of the existing English specification shows that most deficiencies are in
the first three modules. Functional requirements in Display are relatively
straightforward. The effort of that part of the specification is rather satisfactory. The
figures, tables and descriptions in that module are clear. The same intuitiveness may
not be achieved by the formal specification. So we have come to the decision to leave
that module in English. In addition, the English specifications are interspersed with
environmental details, e.g., version restrictions, the version of the system that
maintains it, write permission in the release directory, etc. These are important, and
they should be specified separately from the Larch specifications part. Formal

specifications cannot entirely replace informal specifications -- they are

44



J0S$301]
Aeydsiq

wesbeiq moid4 ejeg walsAS NWIASY 1 @inbiy

NI'HVANIT

saInqie,]
LI ETE

C1 I INETRITEYY
157 werey

uoTR|OS] puy
uonoNg
nneg

AeIQIED . (LSNIT
AOVIWNAON MY U0
NOFTVSIN
__‘ ——  dWNdL
uonesuadwo))
a[eog e —
uawudiy NITMVH

LOOTYANIT

45



complementary. Ideally, system specifications should include both formal and
informal specifications. The informal specifications are easier to read and understand
while the formal specifications tend to be clearer, precise, unambiguous, efc.
Whenever there are any doubts about the informal specifications, the formal

specifications should be used to resolve doubts [Geha82].

I do not yet have experience with the use of Larch specification in practical
software development, and the supporting tools are not yet available. However, the
promise of Larch for dealing with practical problems is being assessed, and I am
encouraged with the way the most of functional requirements in RSDIMU seem to be

captured by Larch.

The Larch specifications for the three modules of RSDIMU are 750 lines long.
Its local structure diagrams are shown on figures 2, 3, and 4. Other details are shown

in Table 2. The complete specifications is presented in the Appendix.

Modules Traits L/P Procedures Lines Resuable Traits
Calibration 18 4 267 10
Fault-Detect 15 1 190 7
Estimation 10 2 293 1
Totat 43 7 750 14

Table 2: Sizes of RSDIMU Larch Specifications

46



LinNoise LinOffset LinOut
SDev Sigma$8 AllBad
] i i

Mean Summation Scale

i

1 {
Ps . : Map
qt ArraySpecR ArraySpecB MatrixSpec SensorFace
1 1
RealSpec ArraySpecl DivMoed ConstSpec

Fig. 2: Relations Among the Traits for the Calibration Module

47




a|npoyy uonoeleg-yne syl Joj syel] ey} Buowy suonesy g ‘614

uaAg 0101937 POy Smcmmﬂuumm ooan%ﬂwcm umuwwnmgm
oM 1 103UQ INOUITPINOA
NS
alod
/
dniss arenbgAeury 183 . pajred
uwwwwmm sneISSAS

AZ

nopEgury

e

48



a|npoyy uonewsy ay) 10 sied eyl Buowy suonejsy v 614

2adgpi02ay

pyradgheury

1dN19s

ydgamg

{1eosed/yorey}

Te | RET |

e Juey) spjuey)
depy apo22q
[euonexd()
uno)) tdmag
1squBy)

49



Because of the reusability and composability of Larch, the rate of growth of
the size of the specification decreases, while the amount of information captured by
the specifications increases. In other words, the growth of size of the specification

will not be linear.

6.2 Using Larch to Specify RSDIMU

RSDIMU is a medium size program. The average size of the 20 programs is
2000 lines. The specifications involve data abstractions, mathematical fundamentals,
system definitions, basic algorithms, and special requirements of fault-tolerant

software.

6.2.1 Data Abstractions

Data abstractions in RSDIMU include array which is utilized from input of
raw data to final report of the health of the sensors, matrix which used for geometry
transformation, real number sort, etc. All of them are specified in an incremental

way.

Array type is specified in the library trait ArraySpec. In order to carry out
some mathematical functions such as summation and inner product, the original
ArraySpec with its incomplete nature is not sufficient. For example, definitions of
upper bound and lower bound are required. The ArraySpec! gives an increment to
ArraySpec by importing ArraySpec and adding two conventional quantified equations
in recurrence fashion.

ArraySpecl: TRAIT & increment of ArraySpec

IMPCRTS ArraySpec
INTRODUCES upper, lower: Array -> Integer

50



CONSTRAINS Array SO THAT FOR ALL [t:Array, ind: Integer, val: Val]
lower (assignit, ind, val))} = IF isEmpty(t) THEN ind ELSE
IF ind < lower({t) THEN ind ELSE lower({(t)
upper {assign(t, ind, val)) = IF isEmpty(t) THEN ind ELSE
IF ind > upper(t) THEN ind ELSE upper(t)
EXEMPTS lower(new), upper (new)

The first version of MatrixSpec simply uses the renaming mechanism:

ArrayofArraySpec: trait
includes ArraySpec with [vector for val, ArrayofArray for Array]

However, it presents some implementation bias. E.g., it implies a data structure

“array of array" in Pascal and excludes the two dimensional array data structure. Also

there would be no way to directly access an individual cell. So a new version is:

MatrixSpec: TRAIT
IMPORTS ArraySpecR, IntegerSpec
INTRODUCES
new: -> Matrix
assign: Matrix, Integer, Integer, Val -> Matrix
defined: Matrix, Integer, Integer -> Bool
read: Matrix, Integer, Integer -> Val
isEmpty: Matrix -> Bool
row: Matrix, Integer -> Array
column: Matrix, Integer -> Array
elecount: Matrix -> Card
CONSTRAINS Matrix SO THAT
Matrix GENERATED BY [new, assignl
Matrix PARTITIONED BY (deflned, read]
FOR ALL [r, ¢, indl, ind2: Integer, val: Val, m: Matrix]
read(assign(m, indl, ind2, val), r, ¢} = IF (indl = r) and
{ind2 = ¢) THEN val ELSE read{m, r, c)
defined(new: —-> Matrilx, r, c) = false
defined(assign(m, indl, ind2, val), x, c) =
{(indl = r) and (ind2 = ¢)} | defined(m, r, c)
elecount (new: -> Matrix) = ¢

elecount (assignim, r, c)) = IF defined(m, r, ¢) THEN elecount (m)

ELSE elecount(m) + 1
isEmpty(m) = (elecount(m} = 0)
read(row(m, r), c) = read(m, r, c)
read(column{m, c), r} = read(m, r, <)
$read(row(m, r), ¢) = read(column(m, c), r)

MatrixSpec now is actually an analog of ArraySpec with one more dimension.

51



Additional operators row and column extract one dimension arrays. This specification

is favored by the composability of Larch.

An uncountable domain, such as the real numbers, cannot be defined using the
algebraic approach (without using an uncountable of primitive constructors). The
specifications need to deal with real numbers. The solution is to assume the theory of
Rational Numbers and rename the R(ational) with Real. Thus, the reader will
perceive the real number type number type whereas the theory behind is about
Rational. Without the renaming technique, other specification languages such as Ina
Jo, can only simulate a real number by scaling it to an integer. The elegance of the

specification is then ruined.

6.2.2 Mathematical Fundamentals

Several mathematical fundamentals have been specified for RSDIMU.

6.2.2.1 Summation
The operator sum is defined conventionally in a recurrence equation:

Summation: trait
ASSUMES ArraySpecR, IntegerSpec, RealSpec
INTRODUCES sum: ArrayR, Integer, Integer -> Real
CONSTRAINS sum SO THAT FOR ALL (t: Array, 1,k: Integer]
sum(t, i, k) = read (t, 1) + IF (L = k) THEN 0
ELSE sumit, i+1, k)

Incompleteness is left intentionally. The version with more completeness is the

following:

sum(t, i, k) = IF defined(t, i) THEN read{t, 1) ELSE 0
+ IF (1 = k) THEN 0 ELSE sum{t, i+l, k)

52



Since we never expect that a summation is computed on a sequence with some
element undefined, and since the above definition may confuse the programmer, the
sum has been changed to the current version and its definition was intentionally left
incompleted. Dr. Horning has introduced sum as an operator taking just one argument
which is an array together with an auxiliary operator sumFrom [Horn86]:
Summation: TRAIT
ASSUMES ArraySpecl, Real, Integer
INTRODUCES sum: Array -> Real
sumFrom: Array, Integer -> Real
CONSTRAINS sum, sumFrom SO THAT FOR ALL [t: Array, i: Integer]
sum(t) = sumFrom{t, lower{t)}
sumFrom(t, 1) = read(t, i) +
(IF 1 = upper(t) THEN 0 ELSE sumFrom(t, 1+1))
EXEMPTS FOR ALL [i: Integer]
sum{new}
sumFrom(new, 1)
The one-operand operator looks more attractive than the multi-operand operator.
However, the cost for doing so is loss of flexibility. Ie., the one-operand case will be
forced to sum up the whole sequence whereas the 3-operands case is able to sum up
any subsequence. There is some way to achieve both the flexibility and elegance,

which is to introduce an additional operator sumAll:
sumAll{t) = sum(t, lower(t), upper(t))
Thus the sumAll can be used to sum up the whole sequence, while the swm can be
used to sum up any subsequence.
6.2.2.2 Division and Modulo
The first version of DivMod is:
DivMod: TRAIT

ASSUMES Cardinal
INTRODUCES div, mod: Card, Card -> Card

53



CONSTRAINS div, mod SO THAT FOR ALL [p, d: Card, d <> 0]
d * divip, d) =< p
d * {div(p, d) + 1) > p
p=4d* divip, d) + mod(p, 4)

IMPLIES FOR ALL [p, d: Card] mod(p, d) < d

EXEMPTS [FOR ALL p: Card] div(p, 0), mod{p, 0)

Dr. Horning had the following comments [Horn86]:

We tend to view the use of inequalities standing on thelr own as
somewhat of a last resort. This may be because we tried for so long
to get along with them entirely, and because they don’t really work
all that well in a rewrite-rule based theorem-prover. However, I
doubt that I could give as elegant a definition of div and mod as
this one without using them. Cute.

1 tried to rewrite it by using equality only. The second version is the following:

DivMod: TRAIT
IMPORTS Cardinal
INTRODUCES div: Card, Carxd -> Card
mod: Card, Card -> Card
CONSTRAINS div, mod SO THAT FOR ALL [p, d: Card]
div(p, d) = IF (p < d} THEN 0
ELSE (div(p-d, d} + 1)
mod(p, d) = IF (p < d) THEN p
ELSE mod{p-d, d)
EXEMPTS [FOR ALL p: Card] div{p, 0), mod(p, 0)

If the infix notation is used, the equations will look like
p divd = IF (p < d) THEN 0
ELSE ((p~d) div d + 1)
pmod d = IF (p < d) THEN p
ELSE ((p-d) moed d)
Although in this case the assertional style of the former approach is more appealing,
the later approaches are more acceptable because the theorem-prover is going to work

more effectively when given equations.

54



It is encouraged to obtain the mutual exclusion by setting the conditional on
the right hand side of the quantified equation. Trying to achieve mutual exclusion by
overlapping left hand sides of equations always create a risk to generate

inconsistency.

Failure to consider the boundary cases will make a specification invalid.
Typical examples are the misuse of rangecount for defining a median (see pages 26-
29) and ignoring the access to the extremas in a sequence for nth operator (see pages

35, 36, 38 and 39).

The desired results can be achieved only if the relevant syntax is fully
understood. The trait AllBad used to be written as

AllBad: TRAIT

ASSUMES ArraySpecl

INTRODUCES allBad: Array -> Bool

CONSTRAINS allBad SO THAT FOR ALL [T: Array, ind: Card]

allBad(t) = (read(t, ind) = true)

It seems to be a direct translation of the mathematical language: An array T is said to
be aliBad if the individual cell T[i] equal to TRUE for all i: i & Integer.
Unfortunately, the syntax works out the other way around: An array T is said "allBad"

if there exists an i such that T[i] = TRUE.

In order to achieve correctness, it is always be beneficial to ask oneself "Does

the syntax utilized work exactly in the desired way?"

Novices often put the conditional in some place outside the equations. E.g., in
the Summation trait, instead of putting the conditional into the quantified equation or
intentionally leaving incompleteness, the conditional for bounds of index was

mistakely placed in the CONSTRAINS part. Similarly, one of the proposed traits nth

58



{(see pages 36-37) places several conditionals in the EXEMPTS part.

IfThenElse branch can only be explicitly defined in the equations but can
never be implicitly implied elsewhere. To say this more precisely, the universal

quantification is only allowed over sorts; a predicate is not allowed in a FOR ALL.

Sort mismatching is also a common mistake. With a syntax checker, the
failure on sort-check can be easily uncovered. Since now the detection of syntax
errors totally depends on inspections, it is rather difficult to have all the specifications

syntactically correct.
6.4 Getting Better Comprehensibility

There have been a number of interesting phenomena observed during the

process of specifying RSDIMU.
6.4.1 Formalism vs. Readability

A formal language usually gives precise and unambiguous specifications. A
formal specification can claim to be "free of sin” after undergoing all checks. It
appears that the comprehensibility may suffer because of the formal approach. There

are two approaches to define a zero-vector.

Vector0: TRAIT .
ASSUMES Summation WITH [vector FOR Array, Card FOR Val)
INTRODUCES vector0: -> vector
ASSERTS size(vector0) = (upper{vector0) - lower(vector()) + 1
% no hole
sum{vector(, upper(vector0), lower(vector0)) = 0
% every slot is zero value

$ An alternative which is less formal but more readable
Vector(Q: TRAIT

ASSUMES ArraySpecl WITH [vector FOR Array, Card FOR Val]
INTRODUCES vector(: -> vector

59



CONSTRAINS vector) SC THAT FOR ALL [ind: Cardl
read(vector0, ind) = 0

The first one looks elegant and sounds formal. However, programmers may favor the

second one since the first one consumes their time trying to perceive its meaning.

An even more serious threat to the widespread use of algebraic speciﬁcations.
is the very considerable difficulty experienced by average programmers in
understanding them, and even experts in their use make uncomfortably many mistakes
while writing algebraic specifications. Resolution of the conflict between formality
on one side and comprehensibility and constructibility on the other is an important

research problem.
6.4.2 Tips to Improve Comprehensibility

Despite the conflict between formality and readability in algebraic
specification languages, the better style always leads to the better comprehensibility.

There are several instances:

1. To choose short names for sorts and to leave the longer names for traits. This

makes an easy distinction between the names of sort and the names of traits.

2. Where multiple words are combined in an identifier, the convention needs to
be uniformly used is that each word after the first is capitalized. This gives the
reader a much stronger clue how the identifier is intended to be read. E.g.,

mapChanFace vs. mapchanface.

3. Another useful convention is to place the principal sort first in a signature,
unless there is some strong reason for doing otherwise. E.g., itis preferable to

have



mDefine: Matrix, Integer, Integer -> Bool
rather than

mDefine: Integer, Integer, Matrix -> Bool

4. Start sort identifiers with upper case letters and start operators with lower-

case. This also provides an easier distinction.

5. Avoid "magic numbers” like 2048 or 409.6 in equations and introduce them as
constants with meaningful names elsewhere in order to convey a little
intuition.

ConstSpec: TRAIT
INCLUDES RealSpec, Equality WITH [Const FOR T)
INTRODUCES offsetCounts: -> Const
scaleFactor: =-> Const
CONSTRAINS Const SO THAT
Const GENERATED By [offsetCounts, scaleFactor]
FOR All []
offsetCounts = 2048
scaleFactor = 409.6
BADDAT = 9999.0000
6. Always put the operator in the left hand side of an equation if it is not a

recursive one.

6.5 Limitations of Larch

While we are pleased to see that Larch is able to capture most information of
our application, we think that Larch specification technique requires further

refinements.
Some additional features we wish Larch to have are:

1. Good Shorthand Techniques. When an operator has many data dependencies,

61



it must contain a long list of operands. This also affects comprehensibility.
One way to solve the problem is to specify the group of operands as a record
[Horn86].

Calibration RECORD OF [scale0, scalel, scale2: Array]
Thus the three operands can collapse to a single identifier Calibration. This is
not considered a good way. First, this kind of shorthand implies a type
declaration which otherwise would not be mentioned nor used. Second, in
order to put actual operands to the fields of RECORD, assignments have to be
done in the Larch/Pascal procedure such as

Calibration = valGets(Calibration, SCALE(0, SCALEl, SCALEZ)

which is another implementation bias.

Record notation is to be regarded purely as shorthand for a set of
axioms, not as a hint to the implementor. However, in practice it is hard to
say that this kind of shorthand provides no implementation bias. To use this
kind of shorthand is not convenient because extra effort for assignments would

be needed.

Availability of Inequality. Because inequalities do not really work all that well
in a rewrite-rule based theorem-prover, the use of inequalities standing on
their own is considered somewhat of a last resort [Horn86), as mentioned in
section 5.2 for trait DivMod. In fact, inequality can contribute elegance and
assertiveness, and reduce the amount of bias. Without inequality, many

functions will become hard to define. Examples are:

a. To use rational number to approximate a square root.

b. To specify the least square method.

62



3. Mixfix Notatrion. Mixfix notations have not been available in Larch, and also
Larch lacks the important and powerful predicate "there exist”. We hope they

would make Larch more powerful.

The ideas behind the Larch project are more important than its details
[Horn85]. The main contribution of the Larch project lies in the understanding of the
specification process and in their influence on the design of future specification

methods that will be kinder to relatively unskilled users [Mell79].

Experience shows that the research oriented specification language Larch can
be applied to practical problems in general. However, the range of the applicability of
Larch is smaller than we would like. Since the range of applicability is different for
the algebraic specification language and English, we may expect that using a
combination of techniques when describing a large program such as the fault-tolerant

software RSDIMU would be a profitable approach.

Even if we are not able to describe an entire program using formal
specification techniques, the ability to define most of the modules used in constructing
a system in a precise, formal way would be a major advance in the construction of
reliable software. Work in applying existing formal specification techniques to
practical problems, and in assessing the promise of the techniques, is of the utmost

importance.

63



CHAPTER 7
CONCLUSION

The informal specification of a proposed software product is the most critical
aspect of software production. Informal specifications, while easy to read, tend to be
ambiguous, incomplete, imprecise and overspecific. Formal specifications offer the
potential for the development of automated aids for detection of the above problems.
They are valuable aids to fault-avoidance and fault-removal in the development of

reliable software, and especially for Multi-Version Software systems.

The formal specification language Larch basically satisfies the general
requirements demanded by fault-tolerant software, such as formality, constructibility,

comprehensibility, minimality, extensibility [Kell83].

The merits of the algebraic specification technique, Larch, have been shown
on fairly well studied examples such as stacks, queues, lists, etc. The transition from
these data abstractions to a practical problem such as RSDIMU has been basically
achieved after becoming acquainted with the spirit of Larch. A preliminary version of
the Larch specification of RSDIMU has shown us that Larch is a promising formal
specification language for fault-tolerant software, since it provides the accuracy of

system definitions and the clarity of given algorithms.

Despite the conflict between formality and readability, better styles' always
lead to greater comprehensibility. Experience from the process of constructing the

specification of RSDIMU suggests some additional features which may make Larch



more powerful, such as useful shorthands and the availability of inequality in the
theorem prover. Since formal specification techniques have certain inherent
limitations, such as limitations in comprehensibility and constructability in certain
domains, we may expect that using a combination of techniques when describing a
large program would be a profitable approach. The RSDIMU Larch specification is
still immature and needs to be debugged and improved. Once the specification has
been completed, it will be used by the programmers of the next generation multi-

version software experiments.

65



[Aviz77]

[Aviz82]

[Aviz85a]

[Aviz85b]

[Boeh81]

[Burs81]

[Redu85]

[Futa85]

[Gehal2]

REFERENCES

A. Avi¥ienis and L. Chen, *‘On the Implementation of N-Version

Programming for Software Fault-Tolerance during Program
Execution,’’ in Proceedings COMPSAC 77, 1977, pp. 149-155.

A. AvizZienis, ‘‘Design Diversity - The Challenge for the
Eighties,”” in Digest of 12th Annual International Symposium on
Fault-Tolerant Computing, Santa Monica, California: June 1982,
pp. 44-45.

- A. AviZienis, P. Gunningberg, J.P.J. Kelly, R.T. Lyu, L. Strigini,

P.J. Traverse, K.S. Tso, and U. Voges, ‘‘Software Fault-
Tolerance by Design Diversity; DEDIX: A Tool for
Experiments,”’ in Proceedings IFAC Workshop SAFECOMP’85,
Como, Italy: October 1985, pp. 173-178.

A. AviZienis, ‘‘The N-Version Approach to Fault-Tolerant
Software,’* [EEE Transactions on Software Engineering, Vol.
SE-11, No. 12, December 1985, pp. 1491-1501.

B. Boehm, Software Engineering Economics, Englewood, N.J.:
Prentice Hall, 1981.

R.M. Burstall and J.A. Goguen, ‘“An Informal Introduction to
Specifications Using CLEAR,”” in The Correctness Problem in
Computer Science, R. Boyer and H. Moore, Ed. New York:
Academic Press, 1981, pp. 185-213.

CRA, “‘Redundancy Management Software Requirements
Specification for a Redundant Strapped Down Inertia
Measurement Unit,”” Charles River Analytics and Research
Triangle Institute, Tech. Rep. Version 2.0, May 30, 1985.

K. Futatsugi, J. Goguen, J.-P. Jouannaud, and J. Meseguer,
“Principles of OBJ2,” Principles of Programming Languages,
ACM, Vol. 12, 1985, pp. 52-66.

N.H. Gehani, *‘Specifications: Formal and Informal - A Case

Study,”’ Software - Practice and Experience, No. 12, 1982, pp.
433-444.

66



[Gutt80]

[Gutt83]

[Gutt85a]

[Gutt85b]

[Gutt86]
[Hehn84]

[Hom85]

[Horn86)
[Kell82]

[Kell83]

[Kelig6]

[Lisk77]

J.V. Guttag and J.J. Horning, ‘‘Formal Specification as a Design
Tool,”’ in Proceedings 7th ACM Symposium on Principles of
Programming Languages, January 1980, pp. 251-261.

J.V. Guttag and J.J. Homning, ‘““‘An Introduction to the Larch
Shared Language,” in Proceedings IFIP Congress 83, 1983, pp.
809-814.

J.V. Guttag, 1.J. Horning, and J.M. Wing, *“The Larch Family of
Specification Languages,”” IEEE Software, Vol. 2, No. 4,
September 1985, pp. 24-36.

1.V. Guttag, J.J. Horning, and J.M. Wing, ‘‘Larch in Five Easy
Pieces,”” Digital Equipment Corporation Systems Research
Center, Palo Alto, California, Tech. Rep. Report No. 5, July 24,
1985.

1.V. Guttag and J.J. Horning, Private communication, 1986.

E. Hehner, ‘‘Predicative Programming, Parts I and IL”’
Communications of the ACM, Vol. 27, No. 2, February 1984, pp.
134-151.

JJ. Horming, ‘‘Combining Algebraic and Predicative .
Specifications in Larch,”’ in Proceedings Joint Conference on
Theory and Practice of Software Development, Berlin, Germany:
March 1985.

1.1. Horning, Private communication, 1986.

JP.J. Kelly, ‘Specification of Fault-Tolerant Multi-Version
Software: Experimental Studies of a Design Diversity
Approach,”’ UCLA, Computer Science Department, Los Angeles,
California, Tech. Rep. CSD-820627, September 1932,

J.P.]. Kelly and A. AviZienis, ‘‘A Specification Oriented Multi-
Version Software Experiment,”’ in Digest of 13th Annual
International Symposium on Fault-Tolerant Computing, Milan,
Italy: June 1983, pp. 121-126.

I.P.J. Kelly, A. Avifienis, B.T. Ulery, B.J. Swain, R.T. Lyu, A.T.
Tai, and K.S. Tso, ‘‘Multi-Version Software Development:
UCLA’s Perspective of a Second Generation Experiment,’” in
Proceedings IFAC Workshop SAFECOMP’86, Sarlat, France:
October 1986.

B. Liskov and S. Zilles, ‘‘An Introduction to Formal
Specifications of Data Abstractions,’”’ in Current Trends in
Programming Methodology, Volume 1, R.T. Yeh, Ed. Englewood
Cliffs, NJ: Prentice-Hall, 1977, pp. 1-32.

67



[Lisk79]

[Loca80]

[Mell79]

[Meye84]

[Meye85]

[Parn79]

[Wing86]

B.H. Liskov and V. Berzins, ‘‘An Appraisal of Program
Specifications,’” in Research Directions in Software Technology,
P. Wegner, Ed. Cambridge, MA: MIT Press, 1979, pp. 276-301.

R. Locasso, J. Scheid, V. Schorre, and P. Eggert, *‘The Ina Jo
Specification ~ Language  Reference  Manual,”’  System
Development Corp., Santa Monica, CA, Tech. Rep. TM-
6889/000/01, November 1980.

P.M. Melliar-Smith, *‘System Specifications,”” in Computing
Systems Reliability, T. Anderson and B. Randell, Ed. New York,
NY: Cambridge University Press, 1979, pp. 19-65.

B. Meyer, ‘‘A System Description Method,” in International
Workshop on Models and Languages for Software Specification
and Design, B.G. Babb IT A. Mili, Ed. Orlando, Fla.: March 1984,
pp- 42-46.

B. Meyer, ‘‘On Formalism in Specifications,”” IEEE Software,
January 1985, pp. 6-26.

LR

D.L. Parnas, ‘‘The Role of Program Specification,”” in Research
Directions in Softiware Technology, P. Wegner, Ed. Cambridge,
MA: MIT Press, 1979, pp. 364-370.

J.M. Wing, Private communication, 1986.

68



APPENDIX

69



% SHeader: calibration,v 1.8 86/10/07 19:45:57 tai Exp §

% CALIBRATION MODULE

RealSpec: TRAIT
IMPORTS Rational WITH [Real FOR R}

ArraySpecl: TRAIT % increment of ArraySpec
INCLUDES ArraySpec
INTRODUCES upper, lower: Array —> Integer
CONSTRAINS Array SO THAT FCR ALL [t:Array, ind: Integer, wval: Vall
lower {(assign{t, ind, val)} = IF isEmpty(t) THEN ind ELSE
IF ind < lower({t) THEN ind ELSE lower (t)
upper (assign(t, ind, val)) = IF isEmpty(t} THEN ind ELSE
IF ind > upper(t} THEN ind ELSE upper{t)
EXEMPTS lower (new}, upper (new}

ArraySpecR: TRAIT
IMPORTS ArraySpecl WITH [Real FOR Val, ArrayR FOR Array]

ArraySpecB: TRAIT -
IMPORTS ArraySpecl WITH [Bool FOR Val, ArrayB FOR Array]

MatrixSpec: TRAIT
IMPORTS ArraySpecl, IntegerSpec
INTRODUCES
new: —-> Matrix
assign: Matrix, Integer, Integer, Val -> Matrix
defined: Matrix, Integer, Integer -> Bool
read: Matrix, Integer, Integer -> Val
isEmpty: Matrix -> Bool
row: Matrix, Integer —-> Array
column: Matrix, Integer -> Array
elecount:; Matrix -> Card
CONSTRAINS Matrix SO THAT
Matrix GENERATED BY [new, assign]
Matrix PARTITIONED BY [defined, read]
FOR ALL [r, ¢, indl, ind2: Integer, wval: Val, m: Matrix]
read (assign{m, indl, ind2, val), r, ¢} = IF {indl = r) and
{(ind2 = ¢} THEN val ELSE read{(m, r, c)
defined{new: -> Matrix, r, c) = false
defined (assign{m, indl, ind2, wval}), r, ¢) =
({(indl = r} and (ind2 = ¢}) | defined(m, r, c}
elecount (new: -> Matrix) = 0
elecount (assign{m, r, c}) = IF defined(m, r, c} THEN elecount (m)
ELSE elecount (m} + 1
isEmpty (m) = {(elecount(m) = 0}
read (row(m, r}, ¢} = read{m, r, c)
read {column{m, c), r) = read(m, r, ¢)
$read(rowi{m, r), ¢} = read{cclumn{m, c), r)

Summation: trait

ASSUMES ArraySpecR, IntegerSpec, RealSpec
INTRODUCES sum: ArrayR, Integer, Integer —-> Real

70



sumAll: ArrayR —> Real
CONSTRAINS sum SO THAT FOR ALL {t: Array, i,k: Integer]
sum{t, i, k) = read {t, i} + IF {i = k} THEN 0
ELSE sum{t, i+l1l, k)
sumAll({t) = sum({t, lower(t), upper{t)}
EXEMPTS FCR ALL [i, k: Integer] sum(new, i, k}, sumAll (new}

DivMod: TRAIT % Version 1
ASSUMES Cardinal
INTRODUCES div, mod: Card, Card -> Card
CONSTRAINS div, mod SO THAT FOR ALL [p, d: Card]
d * divi{p, d) =< p
d * (divi{p, d) + 1} > p
p=d* div(p, d} + mod{p, d)
IMPLIES FOR ALL {p, d: Card] mod{p, d) < d
EXEMPTS [FOR ALL p: Card] div(p, 0}, med(p, 0}

DivMod: TRAIT % Version 2
IMPORTS Cardinal
INTRODUCES div: Card, Card —> Card
mod: Card, Card -> Card
CONSTRAINS div, mod SO THAT FOR ALL [p, d: Card]
p divd =1IF (p < d) THEN O
ELSE (({p-d} div d) + 1}
pmod d = IF {(p < d) THEN p
ELSE ((p-d} mod d)
EXEMPTS [FOR ALL p: Card] (p div 0}, (p med 0)

MapSensortoFace: TRAIT

ASSUMES Cardinal

INTRODUCES senFace: Card -> Card

CONSTRAINS senFace SO THAT
senFace(l) = 1
senFace(2) =
senFace (3} =
senFace(4) =
senFace (5) =
senFace(6) =
senFace(7) =
senFace(8) =

B W W N

ConstSpec: TRAIT
INCLUDES Equality WITH ({Const FOR T]
INTRODUCES cffsetCounts: -> Const
scaleFactor: —-> Const
delta: -> Const
CONSTRAINS Const S0 THAT
Consat GENERATED By [offsetCounts, scaleFactor, delta,
FOR All []
offasetCounts = 2048
scaleFactor = 409.6
delta = 0.000000001
BADDAT = 9999.0000

Scale: TRAIT

ASSUMES ArraySpecR, MapSensortoFace, RealSpec, ConstSpec
INTRODUCES toVoltage: Real -> Real

71



slope: ArrayR, ArrayR, ArrayR, ArrayR -> ArrayR
CONSTRAINS toVoltage, slope SO THAT FOR ALL
[i: Integer, r: Real, scale0, scalel, scalel2, temp: ArrayR]
% try to give meaningful names to corresponding Real input
variable names (but not exact)
toVoltage(r) = (r - offsetCounts) / scaleFactor
read (slope{scaleQ, scalel, scale2, temp), i}
= read{scale0, i} +
read {(scalel, i} * read{(temp(senface(i}}) +
read (scale2, i} * square(read({temp(senface(i)}))

Mean: TRAIT
ASSUMES ArraySpecR, Summation, RealSpec
INTRODUCES mean: ArrayR -> Real
CONSTRAINS mean SO THAT FOR ALL [t: Array]
mean(t) * size(t) = sum{t, lower{t), upper(t})

LinQOffset: TRAIT
ASSUMES Scale, Mean
INTRODUCES linOffset: Matrix, ArrayR, ArrayR,
ArrayR, ArrayR, ArrayR -> ArrayR
CONSTRAINS linOffset S0 THAT FOR ALL [gm, scale(, scalel, scale2, temp:
ArrayR, offraw: Matrix, i: Integer]
read (linOffset (cffraw, gm, scale0, scalel, scale2, temp), i} =
read (gm, i) -~ read{slope(scale0, scalel, scale2, temp), i} *
toVoltage {mean(row{offraw, i})))}

PSqgrt: TRAIT

ASSUMES RealSpec, ConstSpec

INTRODUCES pSqrt: Real -> Real

CONSTRAINS pSqrt SO THAT FOR ALL [r: Real]
pSqrt (r) * pSqrt{r) =< r + delta
pSqgrt (r) * pSqrt(r) >= r - delta
pSqrt (r) >= 0

SDhev: TRAIT
ASSUMES ArraySpecR, PSqgrt, Mean, MatrixSpec WITH [Real FOR Val]
INTRODUCES offMean: ArrayR, Card -> Real
deltaSq: ArrayR, Card -> ArrayR
sDev: ArrayR, Card -> Real
CONSTRAINS offMean, deltaSg, sDev SO THAT FOR ALL
{offraw: Matrix, r, i: Integer]
offMean (offraw, r) = mean (row{offraw, r})
read (deltaSq{offraw, r}), 1) =
square(read (row({offraw, r), i) - offMean(offraw, r})}
sDev (offraw, r) = pSqrt{sum{deltaSq{cffraw, r),
lower {(deltaSq{offraw, r)), upper{deltaSq(offraw, r)})/
size (deltaSqg(cffraw, r)))

LinNoise: TRAIT
ASSUMES SDev
INTRODUCES linNoise: ArrayR, Integer -> Bool
CONSTRAINS linNoise 30 THAT FOR ALL [offraw: ArrayR,
linstd: Card, r: Integer]
read{linNoise{cffraw, linstd), r)
= {sDev{offraw, r} > 3 * linstd)

72



AllBad: TRAIT
ASSUMES ArraySpecB
INTRODUCES allBad: ArrayB -> Bool
CONSTRAINS allBad SO THAT FOR ALL ([t: Array, ind: Card, v: Bool]
allBad(assign(t, ind, v}) = IF isEmpty(t) THEN v
ELSE (v & allBad{t))

SigmaS: TRAIT
ASSUMES ArraySpecR, ArraySpecB
INTRODUCES addGood: Array, ArrayB, ArrayB, Integer, Integer -> Real
countGood: Array, ArrayB, ArrayB, Integer, Integer -> Card
meanSlope: Array, ArrayB, ArrayB -> Real
gigmaS: Array, ArrayB, ArrayB, Integer -> Real
CONSTRAINS addGood, countGood, meanSlope, sigmaS SO THAT FOR ALL
[slopearray: Array, noise, linfailin: ArrayB,
indl, ind2: Integer]
addGood (slopearray, noise, linfailin, indl, ind2)
= (IF ~“read{noise, indl) &
“read{linfailin, ind2} THEN read(slopearray, indl)
ELSE 0) + IF (indl = ind2) THEN 0 ELSE
addGood (slopearray, noise, linfailin,
indl+l, ind2}
countGood (slopearray, noise, linfailin, indl, ind2)
= (IF ~“read(noise, indl} &
“read(linfailin, ind2) THEN 1 ELSE 0} +
IF {indl = ind2) THEN 0 ELSE
countGood(slopearray, noise, linfailin,
indl+1l, ind2)
meanSlope (slopearray, noise, linfailin)} =
addGood {slopearray, noise, linfailin,
lower{linfailin), upper(linfailin})) /
countGood (slopearray, noise, linfailin,
lower (linfailin), upper(linfailin})
sigmaS(slopearray, noise, linfailin, linstd) =

meanSlope (slopearray, noise, linfailin) * linstd / scaleFactor
% Here I assume that slopearray = slope({slopel, slopel, slope2, temp)

% Does Larch allow us to do this kind of abbreviations?
EXEMPTS [FOR ALL nolse, linfailin: ArrayB, indl, ind2: Integer]
addGood (new, noise, linfailin, indl, ind2)
countGood (new, noise, linfailin, indl, ind2)
meanSlope (new, noise, linfailin)
sigmaS(new, nolse, linfailin)

LinQut: TRAIT
ASSUMES Scale
INTRODUCES l1linOut: ArrayR, ArrayR, ArrayR, ArrayR, ArrayR, ArrayR,
ArrayB, ArrayR -> ArrayR
CONSTRAINS linOut SO THAT FOR ALL [linoffset, gm, slope0, slopel, slope2,
temp, rawlin: ArrayR, linfailin: ArrayB, i: Integer}
read{linOut (linoffset, gm, slopel, slopel, slope2, temp, linfailin,
rawlin), i) = IF “read{(linfailin, i} THEN
read {linoffset, i} +
read {slope(slope0, slopel, slope2, temp), i) *
toVoltage (read{rawlin, i)}
ELSE BADDAT

73



% SHeader: faultdet,v 1,11 86/10/06 22:33:18 tai Exp $

% FAULT-DETECTION MODULE

MapEdgetoFace: TRAIT

ASSUMES Pair WITH [Pairsort FOR C]
INTRODUCES mapE2F: Card -»> Pairsort
CONSTRAINS mapE2F SO THAT

mapE2F (1) = <1, 2>
mapE2F (2) = <1, 3>
mapE2F (3} = <1, 4>
mapE2F(4) = <2, 3>
mapE2F (5) = <2, 4>
mapE2F (6) = <3, 4>

MapFacetoEdge: TRAIT
ASSUMES Triple WITH [Tripsort FOR C] %p.70

INTRODUCES mapF2E: Card -> Trisort
CONSTRAINS mapF2E SO THAT

mapF2E(l}) = <1, 2,
mapF2E (2) = <1, 4,
mapF2E (3) = <2, 4,
mapF2E (§) = <3, 5,

MapFacetoSensor: TRAIT

ASSUMES Pair WITH (Pajirsensor FOR C]

3>
5>
6>
6>

INTRODUCES mapF2S: Card -»> Pairsensor

CONSTRAINS mapF2S SO THAT

mapF28({1)} = <1, 2>
mapF2S(2) = <3, 4>
mapF25(3) = <5, 6>
mapF2S(4) = <7, 8>

VectorD: TRAIT

ASSUMES Summation WITH [vector FOR ArrayR}

INTRCDUCES vector0:

=> vector

ASSERTS size (vector0) = {upper (vectorgd)

% no hole
sum{vectord,

VectoxrQ: TRAIT

upper (vector(Q),
% every slot is zero value

% An alternative which

- lower (vector0)) + 1

lower (vectorQ)) = 0

ASSUMES ArraySpecl WITH [vector FOR Array, Card FOR Val]

INTRODUCES vector0:

-> vector

CONSTRAINS vector0 SO THAT FOR ALL ([ind: Card]

read (vectorQ, ind) = 0

InnerProd: TRAIT

ASSUMES Summatiocn, RealSpec
INTRODUCES arrayMul: ArrayR, ArrayR -> ArrayR

innerProd: ArrayR, ArrayR -> Real
CONSTRAINS arrayMul, innerProd S0 THAT FOR ALL [tl, t2: ArrayR,

read {arrayMul (t1, t2), ind) =

74

ind:

is less formal but more readable

Integer]



read (tl, ind) * read(t2, ind)
innerProd{(tl, t2) = sum(arrayMul (t1, t2), lower{tl}, upper(tl)}

VotedLinout: TRAIT
ASSUMES ArraySpecR, MapFacetoSensor
INTRODUCES votedLout: ArrayR, ArrayR -> Matrix
CONSTRAINS votedLout SO THAT FOR ALL [linout, normface: ArrayR, fid: Card]
read (row (votedLout {linout, normface), fid}, 1) =
read (linout, mapF2S8(fid).first}
read (row (votedLout {lincut, normface}, fid), 2) =
read (linout, mapF23(fid).second}
read (row {votedLout (lincut, normface)}, f£id), 3) =
read {normface, £id}

ProjDiff: TRAIT
ASSUMES MapEdgetoFace, InnerProd, VotedLinout
INTRODUCES projDiff: ArrayR, ArrayR, Matrix, Card -> Real
CONSTRAINS projDiff SO THAT FOR ALL [linout, normface: ArrayR,
edgevec: Matrix, eid: Caxrd]
projDiff (linout, normface, edgevec, eid)
= innerProd{row (M2I (votedLout {linout, normface)),
mapE2F (eid) . first), row(edgevec, eid}) =
innerProd {row (M2I (votedLout {(lincut, normface)},
mapE2F {eid) . second), row(edgevec, eid))
% M2I is an operator which takes voted linout as argument and cutputs a
% in I-Frame. edgevec is an operator which returns a "constant maxtrix"

EdgeVectorTaest: TRAIT
ASSUMES ProjDiff, LinNoise, Psqgrt, MapFacetoEdge
INTRODUCES badEdge: ArrayR, ArrayB, ArrayB, ArrayR, Matrix, Card -> Bool
EVTest: ArrayR, ArrayB, ArrayB, ArrayR, Matrix, Card -> Bool
CONSTRAINS badEdge, EVTest SO THAT FOR ALL [neise, linfailin: ArrayB,
linout, normface: ArrayR, edgevec: Matrix,
sigmat: Real, eid: Card]
badEdge (linout, noise, linfailin, normface, edgevec, eid)
= read(noise, mapF2S(mapE2F (eid).first).first) |
read (noise, mapF2S(mapE2F (eid).first).second} |
read (noise, mapF2S(mapEZF (eid).second).firat) |
read (noise, mapF2S(mapE2F (eid).second).second) |
read(linfailin, mapF2S{mapE2F (eid).firat}.first} |
read (linfailin, mapF2S(mapE2F (eid}.first).second} |
read{linfailin, mapF2S (mapE2F (eid).second).first) |
read (linfailin, mapF2S{(mapEZ2F (eid).second}.second)} |
abs (projDiff {(linout, normface, edgevec, eid)) >
sgrt (2} * sigmat)
EvTest (linout, noise, linfailin, normface, edgevec, fid)
= badEdge (linout, noise, linfailin, ncrmface, edgevec,
mapF2E(fid) .first} &
badEdge {(linout, noise, linfailin, normface, edgevec,
mapF2E (£id) . second) &
badEdge {linout, nolse, linfailin, normface, edgevec,
mapF2E{fid) .third)

SysStatus: TRAIT

ASSUMES EdgeVectorTest, MatrixSpec WITH [Real FOR Val]

INTRODUCES countBadface: Card, Card, ArrayB, ArrayB, ArrayR, Matrix -> Card
sysStatus: ArrayB, ArrayB, ArrayR, Matrix -> Bool

75



CONSTRAINS countBadface,
noise,

systatus 50 THAT FOR ALL [fid, fidl: Card,
linfailin, normface: ArrayR, edgevec: Matrix]

countBadface (fid, fidl, linout, noise, linfailin, normface, edgevec}

(IF EVTest (f

id, linout, noise, linfailin, normface, edgevec}

THEN 1 ELSE 0) + IF (fid = f£idl) THEN 0
ELSE countBadface (fid + 1, fidl,

linout, neoise, linfailin, normface, edgevec)

sysStatus (linout, noise, linfailin, normface, edgevec) =
{(countBadface (lower (linout), upper(lincut}, linout, ncise,

linfailin, normface, edgevec) =< 2}

Even: TRAIT

ASSUMES DivMod

INTRODUCES even: Card -> Bool

CONSTRAINS even SO THAT FOR ALL [n: Card]
even{n) = ({(n mod 2) = 0)

OneorTwo: TRAIT

ASSUMES Even

INTRODUCES lor2: Card -> Card

CONSTRAINS lor2 SO THAT FOR ALL [sid: Card]
lor2 (sid}) = IF even(sid) THEN 2 ELSE 1

SetUp: TRAIT
ASSUMES ArraySpecR, ArraySpecB, Mapsensortoface, OneorTwo,

Matrix WITH [Real FOR Val], EdgeVectorTest

INTRODUCES setVet: ArrayR, ArrayB, ArrayB, ArrayR, Matrix -> ArrayR

setMat: Matrix, Matrix, Matrix, Matrix, ArrayR,

ArrayR, ArrayB, ArrayR, Matrix -> Matrix

CONSTRAINS setVet, setMat SO THAT FOR ALL [noise, linfailin: ArrayB, linout,

normface: ArrayR, edgevec, tisa,

tisB,

tisC, tisD: Matrix, sid: Card]

read (setVet {linocut, linfailin, noise, normface, edgevec},
IF EVTest (senface(sid), linout, linfailin, noise,

normface, edgevec)
THEN 0 ELSE read{M2S (linout), sid)
row {setMat (tisA, tisB, tisC, tisD, linout,
noise, linfailin, normface, edgevec),
IF EVTest (linout, ncise,

linfailin, normface, edgevec, senface(sid))

THEN vector0

ELSE IF senface(sid)
ELSE IF senface{sid)
ELSE IF senface (sid)

ArraySquare: TRAIT
ASSUMES InnerProd, Matrix WITH [Real FOR Val]
INTRODUCES arraySq: ArrayR, Matrix, ArrayR -> ArrayR

CONSTRAINS array3q sc that for all [f, y: ArrayR, c¢: Matrix,

read (arraySq{f, c, v}, sid) =

sguare (innerProd(f, row(c, sid)) - read(y, sid))

Extremes: TRAIT
ASSUMES RealSpec
INTRODUCES
posiInfinity: -> Real

76

1 THEN row{tishA,
2 THEN row(tisB,
3 THEN row{tiscC,
ELSE IF senface(sid} = 4 THEN row{tisD,

sid:

sid} =

lor2 (sid))
lor2 (sid))
lor2 {sid)}
lor2 {sid)}

Card]



negalnfinity: -> Real

CONSTRAINS posilnfinity, negaInfinity SO THAT FOR ALL [r: Real]
poslInfinity >»= ¢
nagaInfinity <= r

Random: TRAIT

ASSUMES ArraySpecR, Extremes

INTRODUCES everyF: -> ArrayR

CONSTRAINS everyF SO THAT FOR ALL [ind: Card])
read {everyF, ind) <= posilnfinity
read (everyF, ind} >= negalnfinity

SpecificForce: TRAIT
ASSUMES SetUp, ArraySgquare, Random
INTRODUCES bestFit: ArrayR, ArrayB, ArrayB, ArrayR, Matrix -> ArrayR
CONSTRAINS bestFit SO THAT FOR ALL [linout, normface: ArrayR,
linfailin, noise: ArrayB, tisA, tisB, tisC, tisD,
edgevec: Matrix]
sum(arraySq(bestFit (linout, linfailin, noise, normface, edgevec),
setMat (), setVet ()}, lower(linout), upper (linout}) =<
sum({arraySq(everyf: —> ArrayR, setMat ()}, setVet()),
lower (linout), upper (linout))

LinFailQut: TRAIT
ASSUMES Specificforce, Sysstatus
INTRODUCES linFailOut: Card, ArrayR, ArrayB,
ArrayB, ArrayR, Matrix -> ArrayR
CONSTRAINS linFailOut SO THAT FOR ALL {sid, nsigt: Card,
linfailin, noise: ArrayB, normface, lincut: ArrayR,
edgevec: Matrix, sigmat: Real]
read{linFailOut (linout, linfailin, noise, normface, edgevec,
nsigt, sigmat), sid) = IF sysStatus{() THEN
IF EVTest(linout, noise, linfailin, normface, edgevec,
senfacea{sid)} THEN
read (linfailin, sid) | read(noise, sid) |
{abs (read {lincut, sid) -
read (vIZM(bestFit (), senface(sid)), lor2(sid)})
> gigmat) ELSE FALSE ELSE TRUE

77



$ S$Header: estimation,v 1.9 86/10/08 22:14:05 tai Exp $

DecodeChanFace: TRAIT

% ESTIMATION MODULE

ASSUMES Pair WITH {Pairsort FOR C]
INTRODUCES decCh: Card —> Pairsort
CONSTRAINS decCh SO THAT

decCh(l) = <1,
decCh{2) = <1,
decCh{3) = <1,
decCh{4) = <2,
decCh(5) = <2,
decCh(6) = <3,

MapChanFace: TRAIT
ASSUMES SysStatus

2>
3>
4>
3>
4>
4>

INTRODUCES chanFace: ArrayR, Card -> Card
nonCpFace: ArrayR -> Card
chanFace SO THAT FOR ALL

CONSTRAINS nonOpFace,

[code, cid: Card, linfailout: ArrayB]

nonOpFace {linfailout)
= (IF read(linfailout, 1) & read{linfailout, 2} THEN 1 ELSE
{IF read(linfailout, 3) & read{linfailout, 4) THEN 1 ELSE
{IF read(linfailout, 5) & read{linfailout, &) THEN 1 ELSE
({IF read(linfailout, 7) & read{(linfailout, 8) THEN 1 ELSE

chanFace {linfailout,

1} = IF nonOpFace{linfailout) = 1 THEN

IF read(linfailout, 1) & read{(linfailout, 2}
THEN 0 ELSE

IF read{linfailout, 3} & read{linfailcut, 4)
THEN 2 ELSE

IF read(linfailout, 5) & read(linfailout, 6}
THEN 1 ELSE 1

ELSE IF nonOpFace = 2

THEN IF linfailout(l} & linfailout({2) &
linfailout (3) & linfailout(4)
THEN 0 ELSE

IF linfailout(l) & linfailout(2) &
linfailout(5) & linfailout (6)
THEN 0 ELSE

IF linfailout(l) & linfailout(2) &
linfailout(7) & linfailout (8}
THEN 0 ELSE

IF linfailout(3) & linfailout (4} &
linfailout (5} & linfailout (&)
THEN 0 ELSE

IF linfailout (3} & linfailout(4) &
linfailout (7} & linfailowut (8}
THEN 2 ELSE 1

ELSE 0

chanFace (linfailout, 2} = IF nonOpFace(linfailout) = 1 THEN

IF read(linfailout, 1) & read{linfailout, 2)

THEN 4 ELSE

IF read{(linfailout, 3) & read(linfailout, 4)

78

0y +
0y +
0y +
0}



THEN 0 ELSE

IF read(linfailout, 5) & read{linfailout, )
THEN 5 ELSE 4

ELSE IF nonOpFace = 2

IF linfailout(l) & linfailout (2} g
linfailout {3) & linfailout (4}
THEN 0 ELSE

IF linfailout{l} ¢ linfailout (2) &
linfailout {5) & linfailout (6)
THEN 5 ELSE

IF linfailout (1} ¢ linfailout(2) &
linfailout (7} & linfailout (8)
THEN 4 ELSE

TF linfailout(3) & linfailout (4} &
linfailout(5) & linfailout (6}
THEN 0 ELSE

IF linfailout({3) & linfailout (4) &
linfailout(7) & linfailout (8)
THEN 0 ELSE 0

ELSE ©

chanFace (linfailout, 3) =~ IF nonOpFace (linfailout} = 1 THEN

IF read(linfailout, 1) & read(linfailout, 2)
THEN 6 ELSE

IF read(linfailout, 3) & read (linfailout, 4)
THEN 6 ELSE

IF read(linfailout, 5) & read (linfailout, 6}
THEN 0 ELSE 2

ELSE IF nonOpFace = 2

IF linfailout(l) & linfailout (2) &
linfaillout (3) & linfailout (4)
THEN 6 ELSE

IF linfailout (1} & linfailout (2) &
linfailout {5} & linfailout (&)
THEN 0 ELSE

IF linfailout (1) & linfailout (2) &
linfailout {7} & linfailout (8)
THEN 0 ELSE

IF linfailout {3} & linfailout (4) &
linfailout (5) & linfailout (6}
THEN 0 ELSE

IF linfailout(3) & linfailout(4) &
linfailout(7) & linfailout (8)
THEN 0 ELSE 0

ELSE 0

chanFace (linfailout, 4} = IF nonOpFace (linfajilout) = 1 THEN

IF read(linfailout, 1) & read(linfailout, 2)
THEN 5 ELSE

Ir read(linfailout, 3) & read(linfailout, 4)
THEN 3 ELSE

IF read(linfailout, 5) & Tead (linfailout, 6}
THEN 3 ELSE 0

ELSE IF nonOpFace = 2

IF linfailout (1) & linfailout (2) &
linfailout (3) & linfailout (4}
THEN 0 ELSE

IF linfailout(l) & linfailout (2) &
linfailout(5) & linfailout (6)

79



THEN 0 ELSE

IF linfailout{l) & linfailout(2) &
linfailout(7) & linfailout (8}
THEN 0 ELSE

IF linfailout(3) & linfailout({4) &
linfailout (5) & linfailout (6)
THEN 3 ELSE

IF linfajilout({3) & linfailout{4) &
linfailout{(7) & linfailout (8)
THEN 0 ELSE ©

ELSE 0

StateSpec: TRAIT % p.4 of Modification of 5 Easy Pieces
State ENUMERATICN OF [NORMAL, ANALYTIC, UNDEFINED]

RecordSpec: TRAIT % p.3 of Modification of 5 Easy Pieces
ASSUMES RT WITH (Real FOR Int, State FOR Bool, acceleration FOR val,
state FOR bool, Record FOR T}

ArraySpecRd: TRAIT
ASSUMES ArraySpecl WITH [Record FOR Val, ArrayRd FOR Array]

SetUpl: TRAIT
ASSUMES ArraySpecR, MapSensortoFace, MapFacetoSensor, Vector(
MatrixSpec WITH (Real FOR Val]
INTRODUCES setVecl: ArrayR, ArrayB -> ArrayR :
setMatl: Matrix, Matrix, Matrix, Matrix, Matrix, Matrix, Matrix,
Matrix, ArrayB -> Matrix
CONSTRAINS setVecl, setMatl SO THAT FOR ALL [tisA, tisB, tisC, tisD, timA,
timB, timC, timD : Matrix, linout: ArrayR, linfailout: ArrayB,
sid: Card]
read (setVecl {linocut, linfailout), sid) =
IF “read{linfailout, mapf2s({senFace(sid)).first) &
“read{linfailout, (mapf2s(senFace{sid})).second} THEN
read (M2S (linout}, sid) ELSE
IF read(linfailout, sid) THEN 0O
ELSE read(linocut, sid)
row(setMatl (tisaA, tisB, tisC, tisD, timA, timB, timC, timD,
linfailout), sid) =
IF “read(linfailout, mapf2s(senFace(sid)) .first) &
"read(linfailout, mapf2s({senFace(sid)) .second}
THEN IF senFace{sid} = 1 THEN row(tisaA, lor2(sid})
ELSE IF senFace({sid}) = 2 THEN row(tisB, lor2(sid)}
ELSE IF senFace(sid) = 3 THEN row(tisC, lor2(sid))
ELSE row(tisD, lor2({sid)})}
ELSE IF read(linfailout, sid} THEN vector0
ELSE IF senFace{sid) = 1 THEN row{timiA, lor2(sid))
ELSE IF senFace (sid) = 2 THEN row(timB, lor2 (sid}}
ELSE IF senFace(sid) = 3 THEN row(timC, lor2(sid)}
ELSE row(timD, lor2 {(sid})

BestEstimate: TRAIT
ASSUMES SetUpl, StateSpec, SysStatus, Random
INTRODUCES beatFitl: ArrayR, Matrix, Matrix, Matrix, Matrix, Matrix, Matrix,
Matrix, Matrix, ArrayB —> ArrayR
bestEst: Bool, ArrayR, Matrix, Matrix, Matrix, Matrix, Matrix,
Matrix, Matrix, Matrix, ArrayB, Real -> ArrayR

80



bestStatus: Bool -> State
CONSTRAINS bestFitl, bestEst, bestStatus SO THAT FOR ALL
tisA, tisB, tisC, tisD, timA, timB, timC, timD: Matrix,
linfailout: ArrayB, linout: ArrayR]
sum(arraySq(bestFitl (), setMatl(), setVecl (yy,
lower (linout}, upper {linout)) =<
sum{arraySq{everyf: -> ArrayR, setMatl (), setVecl()),
lower(lincut), upper(linout))
bestEst {sysatatus, linout, tisA, tisB, tisC, tisD, tima, timB,
timC, timD, linfailout, gn} =
IF sysstatus THEN vecAdd(izn(bestFitl()), gn)} ELSE 0
bestStatus (sysstatus) = IF sysstatus THEN NORMAL ELSE UNDEFINED

SetUp2: TRAIT
ASSUMES ArraySpecR, MapSensortoFace, MapFacetoSensor, DecodeChanFace,
MapChanFace, Vector0, MatrixSpec WITH [Real FOR Val}
INTRODUCES setVecZ: Card, ArrayR, ArrayB -> ArrayR
setMat2: Card, Matrix, Matrix, Matrizx, Matrix,
Matrix, Matrix, Matrix, Matrix, ArrayB -> Matrix
CONSTRAINS setVec2, setMat2 SO THAT FOR ALL {linout: ArrayR,
linfailout: ArrayB, tisA, tisB, tisC, tisD,
timA, timB, timC, timD: Matrix, seid, cid: Card}
read (setVec2 (cid, linout, linfajilout), sid) =
IF sid = mapF 28 (decCh (chanFace (cid, linfailout)).first).first) |
sid = mapF28 (decCh (chanFace (cid, linfailout)).firat).second) |
sid = mapF25 (decCh (chanFace (cid, linfailout)).aecond).first) |
sid = mapFZS(decCh(chanFace(cid, linfailout)).second).aecond)
THEN IF “read(linfailout, sid) & “read(linfailout, sid) THEN
read (M28 {linout), sid) ELSE
IF read(linfailout, sid) THEN 0
ELSE read(linout, sid)
ELSE 0
row (setMat2 (cid, tisa, tisB, tisC, tisD, tima, timB, timC, timD,
linfailout), sid)} =
IF sid = mapF25 (decCh (chanFace (cid, linfailout)).first}.first) |
3id = mapF 28 {decCh (chanFace {cid, linfailout}).first).second) |
sid = mapF 25 (decCh (chanFace (cid, linfailout)).second}.first) |
s3ig = mapF2S(decCh(chanFace(cid, 1infailoutl).second).second)
THEN IF “read(linfaileut, sid) & “read(linfailout, sid)
THEN IF senFace(sid) = 1 THEN row{tisA, lor2({sid))
ELSE IF senFace(sid} = 2 THEN row{tisB, lor2(sid)}
ELSE IF senFace({sid) = 3 THEN row (tisC, lor2(sid)}
ELSE row(tisD, lor2{sid))
ELSE IF read(linfailout, sid) THEN vector0
ELSE IF senFace(sid) = 1 THEN row{timA, lor2(sid))
ELSE IF senFace{sid} = 2 THEN row(timB, lor2(sid)}
ELSE IF senFace(sid) = 3 THEN row (timC, lor2 (sid})
ELSE row(timD, lor2{sid}}
ELSE vector0

CountOperational: TRAIT
ASSUMES MapFacetoSensor, MapChanFace
INTRODUCES countOps: Card, ArrayB -> Card
CONSTRAINS countOps SO THAT FOR ALL [ecid: Card, linfailout: ArrayB]
countOps (cid, linfailout) =
(IF read(linfailout,
mapfzs(decCh(chanFace(cid, linfailout)).first).first)

81



THEN 0 ELSE 1} +
(IF read(linfailout,
mapf2s(decCh (chanFace {cid, linfailcut}).first).second)
THEN 0 ELSE 1) +
(IF read(linfailout,
mapf2s{decCh (chanFace (cid, linfailout}}.second).first}
THEN 0 ELSE 1) +
(IF read{linfailout,
mapf2s (decCh (chanFace (cid, linfailout)) .second) .second)
THEN 0 ELSE 1)

ChanEstimate: TRAIT
ASSUMES SetUp2, CountOperational, StateSpec, Random
INTRODUCES bestFit2: Card, ArrayR, Matrix, Matrix, Matrix, Matrix, Matrix,
Matrix, Matrix, Matrix, ArrayB -> ArrayR
chanEst: Card, ArrayR, Matrix, Matrix, Matrix, Matrix, Matrix,
Matrix, Matrix, Matrix, ArrayB, Real —-> ArrayR
chanStatus: Card, ArrayB —-> State
CONSTRAINS bestFit2, chanEst, chanStatus S0 THAT FOR ALL
[linout: ArrayR,
tisA, tisB, tisC, tisD, timA, timB, timC, timD: Matrix,
linfailout: ArrayB, cid: Card)
sum(arraySq(bestFit2 (), setMat2(}.
setVec2()), lower(linout), upper(linout)} =<
sum{arraySq(everyf: -> ArrayR, setMat2(),
setVec2()), lower(lincut), upper(linout))
chanEst (cid, linout, tisA, tisB, tisC, tisD, tima, timB,
timC, timD, linfailout, gn) =
IF countOps (cid, linfailout) > 2
THEN vecAdd{iZn(bestFit2()), gn) ELSE 0
chanStatusa(cid, linfailout) =
IF countOps{cid, linfailout) = 4
THEN NORMAL ELSE IF countOps (cid, linfailecut} =
THEN ANALYTIC ELSE UNDEFINED

82



% SHeader: lpint,v 1.3 86/10/08 20:16:04 tai Exp $
% LARCH/PASCAL INTERFACE MODULE

TYPE SRARRAY, FRARRAY BASE ON SORT ArrayR FROM ArraySpecR
TYPE SBARRAY BASE ON SORT ArrayB FROM ArraySpecB
TYPE CMARRAY BASE ON SORT Matrix FROM MatrixSpec WITH [Integer FOR Val]
TYPE FRARRAY, CPARRAY BASED ON SORT ArrayR FROM ArraySpecR
TYPE EAARRAY, AAARRAY BASED ON SORT Matrix FROM MatrixSpec
WITH [Real FOR Val]
TYPE STATE BASED ON SCRT Record FROM RecordSpec
TYPE VSEARRAY BASED ON SORT ArrayRd FORM ArraySpecRd

PROCEDURE RSDIMU (g, SCALEQO, SCALEl, SCALEZ, RAWLIN, OFFRAW: SRARRAY;TEMP,
NORMFACE: FRARRAY; NSIGT: Integer;
LINFRILIN: SBARRAY; edgevec: EARARRAY:;
tisA, tisB, tisC, tisB, timA, timB, timC, timD: AAARRAY;
var LINNOISE, LINFAILOUT: SBARRAY;
var LINOFFSET, LINOUT: SRARRAY; var SYSSTATUS: Bool;
var CHANFACE: CPARRAY; var BESTEST: STATE;
var CHANEST: VSEARRAY)
= COMPOSITION OF LinOffset; LinNoise; VOTELINOFFSET; sigmat;
Linout; VOTELINOUT; LinFailout; VOTELINFAILOUT; Estimate;
VOTEESTIMATE END
REQUIRES lower{g) = 1, upper(g) = 3
lower (SCALEQO) = 1, upper (SCALEO) = 8
lower (SCALEl) = 1, upper (SCALEl) = 8
lower (SCALE2) = 1, upper(SCALE2)} = 8
lower {TEMP) = 1, upper(TEMP) = 4
lower (row (OFFRAW, r)} = 1, upper{row{(OFFRAW, r)) = 50
lower (column (OFFRAW, c¢}) = 1, upper(column (OFFRAW, c)) = 8
lower (LINOFFSET) = 1, upper (LINOFFSET) = 8
lower (LINFAILIN) = 1, upper{(LINFAILIN} - 8
lower (LINNOISE) = 1, upper (LINNCISE) = 8
lower (NORMFACE) = 1, upper (NORMFACE) = 4
lower (LINOUT) = 1, upper(LINOUT) = 8
lower {row(edgevec, r)} = 1, upper (row({edgevec, 1)} = 6
lower (column {edgevec, c¢)} = 1, upper{column (edgevec, c)} = 3
lower (LINFAILOUT) = 1, upper (LINFAILOUT) = 8
lower (CHANFACE) = 1, upper {CHANFACE) = 8
lower (row{tish, r)) = 1, upper(row(tish, r}) = 3
lower {column (tisA, c)} = 1, upper(column(tisad, c}) = 3
lower{row{tisB, r)}) = 1, upper{row(tisB, r)) = 3
lower{column (tisB, <¢)} = 1, upper{cclumn{tisB, c)} = 3
lower (row(tisC, r)) = 1, upper(row(tisC, r)) = 3
lower (column {tisC, ¢}} = 1, upper(column{tisC, ¢)) = 3
lower (row(tisD, r)) = 1, upper(row(tisD, r)}) = 3
lower {(column (tisD, ¢}) = 1, uppar{column(tisD, ¢)} = 3
lower (row(timaA, r)} = 1, upper(row{tism, zr}) = 3
lower (column {timA, ¢)) = 1, upper{column (timh, c}) = 3
lower (row(timB, r)) = 1, upper(row(timB, r}) = 3
lower (column (timB, ¢)) = 1, upper(column{timB, c}) = 3
lower (row{timC, r)} = 1, upper(row(timC, r)} = 3

83



lower {column {timC, c¢}) = 1, upper (column{timC, c))} = 3
lower{row{timD, r)) = 1, upper{row(timD, r}) = 3
lower {(column (timD, ¢}) = 1, upper{column{timD, c)} = 3

ACTION LinOffset
MODIFIES AT MOST [LINOFFSET])
ENSURES LINOFFSET!post = linOffset (OFFRAW, nZm{g).
SCALEQ, SCALEl, SCALE2, TEMP)
lower (LINOFFSET!post) = 1, upper (LINOFFSET!post} = 8

ACTION LinNoise
MODIFIES AT MOST [LINNOISE]
ENSURES LINNOISE!post = linNoise (OCFFRAW, LINSTD)
lower {LINNOISE!post} = 1, upper {LINNOISE!post} = 8

ACTION VOTELINOFFSET (var LINOFFSET: SRARRAY; var LINNOISE: SRARRAY}; EXTERNAL

ACTION Sigmat
MODIFIES AT MOST [sigmat]
ENSURES if ~allBad (LINNOISE) & ~allBad{LINFAILIN) then
sigmat!post = sigma$(slope (SLOPEO, SLOPEl, SLCPE2, TEMP),
LINNOISE, LINFAILIN, LINSTD) * NSIGT

ACTION LinCut
MODIFIES AT MOST [LINOUT]
ENSURES LINQUT!pest = linOut (LINOFFSET, n2m(g), SLOPEO, SLOPEl, SLOPE2, TEMP,
LINFAILIN, RAWLIN}
lower (LINOUT!post) = 1, upper{(LINOUT!post) = B

ACTION VOTELINOUT {var LINOUT); EXTERNAL

ACTION LinFailout
MODIFIES AT MOST [SYSSTATUS, LINFAILOUT]
ENSURES SYSSTATUS = sysstatus (LINOUT, LINNOISE, LINFAILIN, NORMFACE, edgevec)
LINFAILOUT!post = linfailout{(LINOUT, LINFAILIN, LINNOISE, NORMFACE,
edgevec, NSIGT, sigmat)
lower (LINFAILOUT !post) = 1, upper (LINFAILOUT!post) = 8

ACTION VOTELINFAILOUT (var LINFAILOUT); EXTERNAL

ACTION Estimate
REQUIRES 1 =< cid =< 4
MODIFIES AT MOST [BESTEST, CHANEST]
ENSURES CHANFACE (cid) = chanFace (LINFAILOUT, cid)
BESTEST. status!post = bestStatus(SYSSTATUS)
BESTEST.acceleration!post = bestEst (SYSSTATUS, LINOUT, tisA,
tisB, tisC, tisD, timaA, timB, timC, timD, LINFAILOUT, g}
CHANEST (cid) .acceleration!post = chanEst {cid, LINOUT, tisA, tisB,
tisC, tisD, timA, timB, timC, timD, LINFAILOUT, g}
CHANEST (¢cid) .status!post = chanStatus(cid, LINFAILOUT)}
lower (CHANEST!post) = 1, upper (CHANEST!post) = 8

ACTION VOTEEST {var BESTEST: STATE; var CHANFACE: CPARRAY:
var CHANEST: VSEARRAY): EXTERNAL

34












