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ABSTRACT

A quadratic algorithm is given for the membership problems of Independency models induced

by marginal probabilistic distributions. The algorithm is very simple and easy to implement.
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1. INTRODUCTION

It has been shown by Geiger and Pearl [GP] that a set of 3 axioms exists which is sound
and complete for Independency models derived from marginal probabilistic distributions (in-
cluding the case where the numerical entries in the distribution tables are strictly positive and in-
cluding the case where the random variables involved in the distributions have binary domains).

These axioms are defined in Section 2.

It has also been shown in that paper that the family of marginal-probabilistic-
distribution-induced independency models is superexponential (i.e., the number of different such
models is 0(22")) implying that the number of independencies included in any particular model

may be exponential.

The above mentioned fact raised the question whether a polynomial algorithm exists for
the membership problem for such models, i.e. given a polynomial set of independencies induced
by a marginal probabilistic distribution and some staiement T, the alagorithm should find, in po-

lynomial time, whether T is in the closure of the given set under th 3 above mentioned axioms.

A positive answer for this question is provided in this paper.

2. THE PROBLEM

Find a polynomial algorithm whose inputis: A set . of polynomial size, of marginal statements

S={(x,y): 0<i <poly(@n)}

and a marginal (target) statement 7 = (1, v), and whose output is:
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Yesif T e ¢l (¥)

Noif T € cl(Z)

where ¢l (Z) is the closure of X under the three axioms below.

1. (x,y)—>.x) Symmertry
2. (x,yz) = (x,y) Decomposition
3. (x,y)& (xy,z) > (x,y2) Mixing

In the following section a polynomial algorithm with complexity O (npoly(n)) where
IS | = (the size of the set ) = poly (n) is given. The complexity is defined in terms of "basic"
operation where a basic operation is the operation of comparing two statements, or the operation

of deleting some variables from a statement. We need first

Some Notations and Definitions

— E (d) is the set of elements represented in the pair d.

— E(X) is the set of elements represented in all the pairs in Z, similarly for any set of

pairs D we can define £(D ).

— If d =(x,y) is a statement and § is a set of elements then d (s) (the reduction of d
by 5 ) is the statement derived from d by removing all the elements in s fromd.

Thus if d = (123,45) then d (45) = (123, ¢) and d'(25) = (13, 4)

-— All pairs of the form (x, §) are termed rrivial and trivially belong to ck(Z). Unless

otherwise stated all pairs considered will be nontrivial.
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— T ={d(s):d € L)}

—_— ID| = "the size of D" = the number of elements in D .

3. THE ALGORITHM (INPUT X, T)
Find (Z, T):
1. Let s be the set of elements

s =E(Ey-ET).

Construct Z. (s)

2. If T is "trivial,” or for some statement S in E'(s) we have that § =7, up to symmetry,
then return.

Find (£, T) = True

3. Else if E (d) = E(T) for all nontrivial d & ¥ (s) then return.

Find (Z, T) := False

4, Else there exists a statement § In Y (s) such that E(S)=E(T), and up to symmetry,
S =(AP,BQ) T =(AQ, BP) where onc of the sets A, B, P, @ may be empty.

If several such S exist then choose any one such S.

SetT,=(A,P),Ty= (8, Q), and return.

Find (£, T) := Find (£, T{) A Find (Z,T3).

We will show first that the algorithm is correct and then prove its complexity.



Lemmal:fd e cl(¥)and s < £(Z) then d(s)yecl(Z).

Proof: Follows from the decomposition and symmetry axioms.

Lemma 2: 1f d ... d; is a proper derivation chain (ie. for 1 £/ £k, d; is either in T or fol-
lows from previous dj ’s by one of the axioms) and § < E(Z) then a‘i'(s), a’,c'(s) is also a
proper derivation chain.

Pf‘oof: Follows from Lemma | and from the fact that the axioms are preserved under the

reduction operation.

Lemmas 1 and 2 justify Steps 2 and 3 of the algorithm. To justify Step 4 we will first prove

several lemmas.

Lemma 3: Let S =(AP,BQ),T,=(A,P), T,=(B.,Q) be statements. If §,7, T, are in
cl(T) . Then the statement T =(AQ.BP) is in <l (X) and all the statements

(A, Pp), (B, Q) such that A0, =AQ and B P ;= BP are in cl ().

Proof: The derivation chain below is a proper derivation chain for T

1. (AP,BQ)=S;(A,P)=T;(8,Q)=T,
2. (A,PBQ): Mix § with T
3. (APB,(O): Mix § with T,
4, (PB,0): Decomposition from 3

5. (AQ,BP)Y=T: Mix 2 with 4

Now (AQ, BP)=(A,Q,, B,P)). Delete all the elements of Q4 and B, from the above deriva-



tion chain. The result will be a proper derivation chain for (A, P, (not passing through T).
Delete all the elements of A and £ from the above derivation chain. The result will be a prop-

er derivation chain for (B {, @) (not passing through T). [J

Lemma 4: If § ecl(X) then T & () iff T & (X} and T, € cl(X) where §,T,T,T,

are defined as in Step 4 of the algorithm.

Proof: If S, T, Ty e cl(X)then T can be derived as in the proof of the previous Lemma 3.

If T ecl (X} then let
dy,ds....d, =T ={AQ, BP) be a proper derivation chain for T. Let s = E((Q,B)). Then
d{ (s), dé(s), dk'(s) =T, =(A, P) is a proper derivation chain for T;. Similarly a proper

derivation chain for T, can be constructed. O
Lemma §5: T e cl(Z) iff Find (Z, T) = true,

Proof: By induction on the size of 7. If IT =1 then T is trivial, T ecl(Z) and Find
(Z,T)=true. If ITI=2thenT e cl(Z) Iff Find (X, 7)) = true as follows from Steps 2 and

3 of the algorithm.

Assume that the Lemma holds for all ‘T | <k and let T be a statement |T | =k ,T =(AQ, BP).
Then Find (X, T) = true iff (by the definition of Step 4) Find (X, T) = true and Find (X, T5) =

true iff ( by induction) Ty, T, € ¢l (Z) iff (by Lemma NT ecd (.0
The next Lemma shows that the algorithm is independent on the choice of S in its Step 4.

Lemma 6: The value of Find (Z, T) computed in Step 4 of the algorithm does not depend on



the choice of the statement S.

Proof: Assume that for a given choice S we get Find (Z,T) = true. Then, by Lemma 5,
T e cl(T) and also Ty, T, ecl(X). If another possible choice in Step 4 exists, say Sq
S{=(A,P,,B,Q}), (notice that (A,@;,B,P)=T)), then by Lemma 3 (A{,P;) and
(B, Q1) are also in ¢l (Z).

This implies, by Lemma 5, that Find (Z, (A4, P)) = Find (%, (8,Q)) = true, which implies that

the value computed for Find (X, T) when the algorithm chooses S, instead of S is also "true.” O
Theorem 7: The algorithm halts and when it halts it produces the correct answer.

Proof: Everytime the algorithm passes through Step 4 the size of the statements involved
strictly decrease. If it did not halt beforfe, it will hait when the size of the two statements

have reached the value 2 (at Step 2 or 3).

It follows from Lemmas 5 and 6 that when the algorithm halts it provides an exact
and correct answer to the question whether T € cl(Z), namely, the answer is "yes" iff Find

(Z,T) =true. O

4, THE COMPLEXITY OF THE ALGORITHM

The procedure of the algorithm may be described as the counstruction of a binary tree
whose root is labeled T and every 2 nodes emerging from a node T are labeled T{ and Té as
defined in Step 4 of the algorithm. The leaves of the tree represent singleton statement pairs

which must be checked against the elements of Z.



Let n be the number of elements represented in 7 and let M (r) be an upper bound on the
number of nodes of the tree determinded by T. We verify first that M (n) satisfies the recursion

below

M(nysM(n)+Mny+1

wheren|+ny=n

This follows from Step 4 of the algorithm: We must count the root, (1), representing T
plus the nodes of the two subtrees whose roots are Ty and T, The number of vertices 4
represented in Ty is [AP| and the number of vertices nj represented in T, is 1BQI. Thus,

Ry+thry=N.

It is easy to see that the above recursion is satsfied if M(n)<n -1. Clearly

M (1)=0=1-0 (trivial statements need no processing) and M (2} = 1= 2-1.

It follows that the number of nodes in the tree determined by a statement T of size n is
bounded by n — 1. For every such node we will have to perform O(IZ 1) operations ( construct-

ing £ (s) and comparing T against the statements in Z(s)).
The above observations can be summarized in the theorem below.

Theorem 8: The complexity of the algorithm is O(1 %1 n) measured in basic operations.



5. REMARKS:

[GP]

1t is reasonable to assume that the bound is pessimistic at least in its | X1 part, since as

the algorithm proceeds the number of statements in the (s ) decreases.

The algorithm can be slightly modified so as to produce a derivation chain for T if

T € ¢l (Z), whose length is O(n ).

The fact that the longest derivation chain for any staternent of size n in ¢l (Z) is bounded

by n bounds the number of elements of size n in ¢l (£) as a function of IZI and of nn.

The algorithm can be expanded into a polynomial algorithm (provided that 2! is poly-

nomial) for the following problems:
a. Given Tand &, is ¢l (£) = ¢l (T), or is ¢l (T) € el (T)?
b. Minimize the size of T while preserving cl (X):

Start with 2 "independent" maximal size statements in Z and probe all oth-
er statements in some non-increasing (as to size) order. Any statement which is

found "dependent" on the set of previously probed statements is deleted.
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