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Absatract

Efficient distributed systems may be designed by incorporating performance
evaluation as an integral part of the software development cycle. This paper
proposes a system design strategy in which performance models are viewed
as continuously evolving implementations of system specifications, where
the specifications include desired performance characteristics for the sys-
tem. In this strategy, systems at an intermediate level of design conasist of
operational modules and partially implemented (simulation) modules. The
goal is to ensure that the partially implemented design provides the de-
sired performance. The paper presents a methodology to develop partially
implemented designs, and describes algorithms to execute the design in a
distributed environment.



1 Introduction

A number of distributed systems have stringent constraints on their perfor-
mance. Among other parameters, the constraints may deal with response
time, reliability or throughput. It is advantageous and less expensive to en-
sure that a given design meets its performance constraints before the design
ts implemented. We present an approach that uses simulations to integrate
performance evaluation with the top-down design of integrated distributed
systems. ‘An integrated system emphasises the interaction among the soft-
ware and hardware components and may also involve human interaction. -
As integrated systems become more complex, they become harder to
evaluate using analytical techniques. Example systems include those where
the cooperation between processors is described by means of complex al-
gorithms (e.g. network access algorithms in distributed systems, resource
contention/allocation algorithms, and memory access algorithms in shared-
memory systems) as well as distributed operating systems and applications.
Even when analytical models can be constructed, lack of susficient data gen-
erally precludes doing a comprehensive study of the performance issues. The
usual alternative to analyzing the performance of a system is to use simu-
“lations. For large systems, simulation techniques prove to be prohibitively
expensive mainly due to the effort required to construct and maintain sep-
arate simulation models of proposed or exiting systems. Any modification
in the system design necessitates a corresponding change in the simulation
model. Model validation becomes increasingly difficult leading to doubtful
consistency between the model and the actual system being developed.
The key issue addressed in this paper is to identify an appropriate ab-
straction for performance models of distributed systems that avoids the
problems mentioned above. We suggest the use of Partially Implemented
Performance Specification (or PIPS); this abstraction views performance
models as continuously evolving implementation of system specifications.
The next section presents our approach. Section 3 describes related re-
search projects. Section 4 gives a brief overview of the language used to
write PIPS programs. Section 5 presents the centralized and distributed
algorithms to execute PIPS programs. Section 6 describes some limitations
of our approach and discusses implementation issues.



2 Approach

A distributed system consists of a collection of communicating sequential
processes that execute concurrently on a number of processors linked by an
arbitrary interconnection network. A processor may interleave the execution
of a number of processes. Processes communicate exclusively via messages
and a process may not directly modify the data-space of another process.
Each component of the distributed system is classified either as a PP or a
PE. Although the classification of components as a PE or PP is arbitrary,
in general a PE is realized primarily in hardware, whereas a PP represents
a program module. For instance, consider a distributed inventory manage-
ment system implemented on a network of workstations. Each workstation
and the network is considered to be a PE; each modules in the inventory
manager program may be considered a PP. A PP is reactive, in that its ac-
tions are initiated on receipt of a message. In the absence of any messages,
the PP is quiescient. The behaviour of a generic PP may be expressed as
follows:

while (not terminated)
{ (wait to) receive the next message;

perform local computation to process the message;
}

The local computation performed by a PP is termed a computation step; it
includes the creation of messages sent to other PPs in the system. A PP
is associated with a PE. Execution of a compautation step by a PP may be
viewed as "using the PE on wkich the PP is resident” and takes a finite
amount of time. We assume that each PE is associated with a clock which
measures the execution-time of a computation step. The computation steps
of two PPs associated with the same PE caanot be executed in parallel.
We now consider the message-based simulation model of a distributed
system. In the model, PPs and PEs are represented by logical processes,
henceforth referred to as LPs. An LP that represents a PE is sometimes
refered to as a server LP. Interactions among PPs are represented by an
exchange of messages among the corresponding LPs. The computation step
executed by a PP on a PE is modeled by the execution of a simulation step
by a server LP that models the PE. In executing a simulation step, an LP
waits for a certain amount of simulation time (equal to the estimated time
required by the physical system to process the message) to elapse. It does
this by scheduling a time-out message to itself at an appropriate time in the
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future. In addition to LPs that model PPs and PEs, a model also contains
instrumentation and Aousekeeping LPs to drive the model and collect and
print statistics. The behaviour of a generic LP may be expressed as follows:

while (not terminated)

{ (wait to) receive the next message;
perform local computation to process the message
OR simulate the processing of the message;

}

An LP simulates the processing of a message by executing a simulation step.

An LP either executes a computation step or a simulation step. If each
LP executed only computation steps, the model is an operational system and -
each LP is really a PP (or PE); an LP that executes simulation steps is an
abstraction of the corresponding PP. The basic contribution of this research
is in presenting an approach to iteratively transform a model (where the
abstractions are expressed as simulation steps of LPs) into an operational
system; at every intermediate step, the expected performance of the system
is monitored to ensure that it lies within the desired range.

Figure 1 displays the system development strategy. Given the perfor-
mance specification for a proposed system and an initial system design, an
analyst develops a simulation model of the software. The simulation model is
initially constructed at a very coarse, logical level and contains estimates of
the execution times and resource requirements for various modules in a pro-
gram. It also contains local invariants that specify correct execution of each
module. A model of the hardware environment of the proposed system is
built using parameterized library modules. Each software module is explic-
itly mapped to some hardware module. The simulation model is executed
to collect performance statistics. If system performance is unacceptable, the
analyst modifies the design by appropriate changes in either the software or
the hardware model. The software and hardware components are modeled
separately so that changes may be made independently. It is often desirable
to study the impact of reconfiguring a model on its performance. Primitives
are provided to allow the mapping of modules to be changed with minimal
changes to the model.

The modified design is executed as a simulation and the process is re-
peated until system performance is acceptable. At this stage, the model is
refined by introducing more detail in its implementation. This may be done
in a variety of ways: subdividing a module into more modules, elaborating
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Figure 1: Software Development from a Performance Perspective

a simulation step into a computation step, elaborating the required process-
ing for a message, or replacing a model of some hardware unit by actunal
hardware. The above process of refinement and elaboration implies that
at some intermediate stage, the model may contain some modules that are
(at least partly) operational, and the computation steps of these modules
must be included in determining the overall performance characteristics of
the evolving system. The intermediate form of the model is refered to as
a PIPS program. In this manner the model is refined iteratively, while its
performance is continuously monitored until the (software) model has been
transformed into operational code. Note that the PIPS program may be ex-
ecuted on a distributed architecture. (For instance, the analyst may decide
to replace an entity that modeis communication between remote processes
by an operational network that links multiple computers.) It follows that
the execution environment for PIPS programs must be capable of measuring
computation steps and executing simulations in a distributed environment.

What advantages may be derived from the above approach? The pri-
mary advantage is that a performance model of the system does not have
to be designed and maintained separately. The evolving design is its oun



model. The iterative refinement of the model is really the application of a
top-down design methodology to the software design process with the final
refinements producing the distributed software from the performance model.
This can result in tremendous savings in terms of manpower and resources
while at the same time ensuring the consistency between the software and
its model. Model validation is an important concern when the model is de-
veloped separately from the system. Modifications in system specifications
may require the model to be significantly reworked and revalidated. In the
PIPS approach to performance evaluation, modifications in system design
are directly incorporated in the model.

In addition to performance evaluation, the model is also useful in testing
and debugging. In order to facilitate debugging, an assertion-based trace
facility is provided. This facility may be used to ensure that a given as.
sertion(s) is obeyed locally by a module at discrete points in its execution.
Finally, our approach encourages reusability. A library facility is supported
which provides hardware models, statistics collection and report generation
entities as well as a collection of entities for services like termination detec-
tion and process allocation.

When is the integrated approach to software design useful? In order
to include both operational and simulation modules in measuring perfor-
mance, the simulation ’engine’ (the architecture on which the model is exe-
cuted) must be similar to the proposed hardware for the modeled system. If
the actual hardware is available, our approach will yield maximum benefit.
However, even if some characteristic hardware parameters like clock speed,
memory and disk access times, instruction cycle time ...are scalable with
respect to the simulation engine, our approach will be of significant help in
predicting system performance.

3 Related Work

Performance modeling in the design stage has frequently been used in the
design of hardware systems. The idea of integrating simulation models
with system design was proposed by Zurcher and Randell [26] to develop
a methodology for the design of computer systems and also explored by
Parnas{18]. Sanguenetti {14] describes a technique for performance predic-
tion by integrating simulation and software system design using PPML[20],
a system modeling language.

Other researchers have suggested methodologies and tools to construct



performance models prior to developing the system. Chandy et al [6] de-
scribes a top-down methodology for evaluating the performance of com-
puter/communication systems in the early design stages. Smith & Browne
(24] proposed a design methodology to integrate the software development
process with performance evaluation using software execution graphs. Other
design methodologies like the Design, Realization, Evaluation and Modeling
System designed by Riddle et al [21] and the Software Tool for Evaluating
System Design designed by Baker et al [4] have emphasised the use of sim-
ulation to study the behaviour of software systems. Estrin et al[9] suggest
a system design methodology to study performance aspects in multiple do-
mains: a control flow graph is constructed to analyze safety and liveness
properties. Also, a data flow graph may be used in conjunction with the
control flow graph to study performance characteristics by interactive simu.
lation. Roman(22] describes a specification language called CSPS, to study
correctness and performance characteristics of distributed systems. CSPS
is an extension of CSP{12] and uses verification techniques that have been
developed for CSP programs to prove properties of the CSPS programs. The
above work emphasizes throughput and reliability as opposed to completion
time as the important metric of system performance.

As an alternative to performance prediction, monitoring techniques have
been suggested to measure system performance. A body of work exists on
monitoring techniques to study the performance of operational systems. The
main emphasis of performance monitoring is to extract information about
the execution of a system without significantly affecting its behaviour or
performance. The monitoring activity is usually done transparently and
requires minimum input from the program being monitored. Miller [16)
describes a methodology for non-intrusive measurement of communications
in a distributed system. Joyce et al [15] describe a system to display and
analyze the information collected during the monitoring of a distributed sys-
tem. The two novel features of this work are its use of event abstraction
and graphical animation to present monitored information; and its use of
replay facilities to control non-determinism in the execution of a distributed
program. Whereas the above projects have made a significant contribution
to our understanding of the factors that impact on the performance of dis-
tributed computations, they are primarily used as prescriptive rather than
preventive or predictive aids. By integrating performance evaluation as an in-
tegral aspect of the system development cycle, we hope to solve performance
problems in the early stages of system development. In the next section, we
describe language primitives for integrated software development.
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4 Language Primitives

This section gives a brief description of language primitives that can be used
to write distributed programs and their simulation models. A complete de-
scription of the primitives including justifications for their selection may be
found in (3,2]. The primitives use the notion of entity to model ob jects,
message to model their interactions and clock to schedule events. They
may be implemented in any sequential programming language (e.g. FOR-
TRAN, PASCAL, C etc) to develop a language for integrated design. The
discussion in this section is developed in a language independent manner
and uses Pascal-like syntax and semantics.

Entities are the basic building-blocks of a distributed program. An en-
tity is an independent, sequential program module which is used to model
processes. An entity may create other entities; terminate itself; and send
(receive) messages to (from) other entities. An entity type is used to define
objects of a given type. Various instances of an entity type may be created
dynamically to.represent the many objects of a given type. An entity in-
stance is created by executing a let statement. Hereafter, we shall use the
term entity to mean an instance of an entity type. The local variables of an
entity cannot be accessed by other entities. Entities communicate via mes-
sages. On being created, an entity is assigned a unique identifier, which is
bound to the entity for its lifetime. In order for an entity to send a message
to another, it must have access to the latter entity’s identifier. A message is
viewed as a specific instance of a message type. A message type consists of
a name and a list of message parameters. An entity sends a message to an-
other by executing an invoke statement. Message sending is non-blocking:
messages sent by an entity are deposited in the receiving entity’s message
buffer; the sending entity is not delayed. An entity accepts messages from
its buffer by executing a wait statement. If a desired message is not present
in the buffer, the entity waits for the message. The wait may be indefinite
or specify a time-out interval. In the first case, the entity ceases to wait only
when the desired message is received by it. In the latter case, if the desired
message is not received by the entity within the specified time period, the
entity will eventually time out and thus cease to wait. On ceasing to wait,
an entity proceeds to the next statement in its code. Initially, every program
written using our langnage fragment consists of a single entity called main
executing on one processor. The purpose of entity main is to initiate the
execution of the program. The particular programming language in which
these constructs are to be embedded is called the host language.



We illustrate the concepts described above by means of an example which
implements the sieve of Eratosthenes[12]. This algorithm identifies succes-
sive prime numbers from a sequence of consecutive natural numbers. We
define an entity type called sieve to implement the algorithm. Multiple in-
stances of the sieve entity are created - one for each prime number that has
already been identified in the sequence. The various sieve entities form a
pipeline. Each sieve entity in the pipeline inputs numbers from its prede-
cessor, suppresses those that are multiples of the original prime and passes
the rest to the successor entity.

The program to implement this algorithm is presented in pseudo-code in
figure 2. Entity main (lines 0-10) is used to initiate the program. The main
entity creates the first sieve entity whose unique identifier is stored in ita
local variable first_sieve (line 5). Main sends a stream of integers 2,3,4,5....
to entity first_sieve via messages of type nezt.number (lines 7-8). The types
of all messages that may be received by an entity must be defined within
the corresponding entity type definition. For instance, the sieve entities may
receive messages of type nezt_number. This message type is defined in line
16. The first element of the stream of numbers received by a sieve entity is
a prime. For instance, the first number (i.e. 2) received by the sieve entity
firat_sieve is a prime number, and is stored in the entity’s local variable
my_prime (line 19). At this point, entity first_sieve creates a new instance
of the sieve entity-type. In general, the ith steve (i>1), say s;, is recursively
created by the (i-1)th steve (line 20). Subsequently, s; removes all multiples
of my_prime from the sequence of numbers received by it and passes the
rest onto steve 8,4, via messages of type neztunumber (lines 24-25). A steve
entity receives {or waits to receive) the next message of type nert_number
by executing the wait statement in line 23.

Figure 3 presents another program fragment that represents a simple
FIFO server, using essentially the primitives introduced by the preceding
example. Entity server is a FIFO server with two parameter: mu, which
represents the average service time for a job, and histogram which is the
identifier for a histogram entity (line 0). The actual service time required
to process a job is generated by using an exponential distribution. (Alter-
natively a job may itself generate its service time). Jobs that require service
send a reguest message to the server entity. This message has two param-
eters: the (simulation) time at which the request was generated and the
identifier of the requesting job (line 3). When idle, the server entity accepts
a request message (line 8), generates a service time and executes a wait
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entity main;
{ Local Variable Declaration Section }
first_sieve : entity_identifier;
t:integer;
{ Eatity Body }
let first_sieve be sieve;
{ send a stream of numbers 2,3...1000 to first_sieve }
for ¢ := 2 to 1000 do
invoke first_sieve with nezt_number(i);
end-entity;

entity sieve:
{ Local Variable Declaration Section }
nezt.sieve : entity_identifier;
my_prime: integer;
{ Message Receive Declaration Section }
message nezt_number( number:integer);
{ Entity Body }
wait for ( message-type = nezt_number);
my.prime:= number;
let nezt-sieve be sieve;
while true do
begin
wait for (message-type = nezt_number);
if (mod(number,my_prime) <> 0) then
invoke nezt-sieve with nezt_number(number);
end;
end-entity;

Figure 2: Sieve of Eratosthenes



statement (line 9) that simulates the processing of the request. In general,
a wait statement has the following form:

wait (f] [ for b

where ¢ is the wait-time and b represents the wait-condition. The wait-
condition may reference any local variables of the entity and is normally used
by the entity to specify the message(s) it is ready to accept. Execution of a
wait statement causes the entity to wait if it specifies a non-null wait-time
and no message satisfying the wait-condition is present in its message buffer.
If the entity is waiting for a specific message(s), other messages roceived by
the entity are stored (in the order they were received) in the message buffer.
A waiting entity ceases to wait when it is delivered a message that satisfies
the condition b or if it receives a time-out message from the monitor. A
time-out message is sent to the entity if no message satisfying condition b
is received by the entity within the specified wait-time.

In our example of a FIFO server, while the entity is servicing a request,
it does not accept any requests until the current request has been serviced.
As a result, the wait condition in line 9 evaluates to true only on receipt of
a time-out message. On receiving this message, the entity sends a reply mes-
sage to the job entity (line 10) to indicate that the requested service has been
completed. The server also computes the total amount of time that elapsed
from when the request was generated until the service was completed. It
sends this time to a library entity called histogram(line 11). ( Alternatively,
each job entity may compute its own elapsed system time). Entity Aistogram
is one among a variety of statistics collection routines available in the library.
It is used to generate a histogram of values in specified intervals. The server
is now ready to accept the next request message (line 8).

In the next section, we describe algorithms to execute programs which
contain both operational and simulation modules.

5 Partially Implemented Specifications
In this section we present the discrete-event simulation algorithm and con-
trast it with the algorithm to execute partially implemented specifications

on sequential and multicomputer architectures. The terms entity and LP
are used interchangeably in this discussion.
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entity server( mean-service-time:integer; histogram:entity-‘identiﬁer);

{ Message Receive Declaration Section }
message request( stim:integer;patient-id : entity-identifier);

{ Entity Body }
while true do
begin
wait for (message-type = request);
wait exp(mean-service-time) for (message-type = time-out);
invoke patient-id with reply;
invoke histogram with insert{clock-stim);

0o~ Db wWwNn=o

i
Lol =]

end;
end-entity;

—
[ 3 %]

Figure 3: FIFO Server Entity

5.1 Simulation Algorithm

Typical simulation algorithms use two data structures[17): a simulation clock
and an event-list. The simulation clock gives the time up to which the
physical system has been simulated. The event-list is a partial order of
tuples; each tuple consists of three fields:(m;,pi.t;), where m; represents a
message, p; the destination LP for m;, and ¢; a timestamp. The partial
order is typically based on the timestamp. If two dependent events have the
same timestamp, the dependencies must be expressed explicitly. At every
step of the simulation, the algorithm selects the tuple with the smallest
timestamp, say (m;,pj,t;), from the event-list and delivers message m; to
LP p;. The partial order guarantees that events are simulated in the order
of their dependencies. The simulation clock advances in a monotonic non-
decreasing manner through the timestamps associated with each tuple.
The preceding simulation algorithm is sometimes refered to as an imper.
ative algorithm. Other simulation languages use an interrogative algorithm,
also called a wait until algorithm(25). In this algorithm, messages are not
necessarily delivered in the partial-order specified by the event-list. Each
LP may specify a wait condition which restricts the set of messages that
it is willing to accept; a message is delivered to the destination LP only
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clock:=0;
while (simulation not terminated) do
{ fetch next tuple (m,,p;,t;) from event-list;
if (m, is not accepted by p;) then
store m; in tempgq;
else {if {m;=time-out) then clock=t;;
deliver m, to p; for simulation ;
merge tempq with event-list;

}

Figure 4: Wait Until Simulation Algorithm

if it satisfies its wait-condition. The basic difference between the impera-
tive and interrogative simulation algorithms lies in their treatment of con-
ditional events: in the imperative algorithm, if a LP is not ready to process
a message, it must do internal buffering and process the message at a later
time; in the interrogative algorithm, the buffering is done directly by the
simulation algorithm. The simulation clock in the interrogative algorithm
cannot advance through the timestamps associated with the tuples because
the messages need not be accepted by the LPs in the partial order implied
by the timestamps. Instead, the simulation clock is advanced through the
timestamps associated with the time-out messages in the event-list. An LP
schedules its own time-out messages and must accept it when it is sent. The
event-list always contains an entry for each entity that indicates the time
at which a time-out message is to be sent; this time is set by default to
an arbitrarily large value. The wait-until simulation algorithm is described
in figure 4, in which clock refers to the simulation clock. Figure 4 is an
inefficient implementation of the algorithm. However, it serves our purpose
of outlining the basic nature of simulation. For a detailed discussion of
implementation strategies for the above algorithm, the reader is refered to
Franta[10, Chapter 7).

We consider the simulation for a producer consumer program. In the
program, a producer process produces data and sends it to a buffer process;
a consumer process requests data from the buffer process, and is blocked if
the buffer is empty. The simulation code for this program is presented in

12



figure 5, where buffer overflow has been ignored. We assume main creates
one instance of each of the producer, consumer and buffer entity-types, re-
spectively named pi, c! and b1. The service times for both pl and ci are
generated from a negative exponential distribution with a mean of 5 units.
Assume that entity p! takes 4, 6, 8, and 3 time units to generate successive
units of data; and c1I takes 8, 2, 6, and 9 time units respectively to consume
successive data units. Figure 6 represents the progress of the simulation by
changes in the event-list and the simulation clock. The underlined tuple in
each entry contains the ‘next’ message to be processed in the simulation.
The clock in figure 6 refers to the simulation time at which the message in
the underlined tuple is delivered to the entity. The time-out message has
been abbreviated to tout in the figure. When created, entity c{ sends a get
message to b1, and pl schedules a time.out message. The initial event-list
also contains defauit entries with time-out messages for ¢f and b1. Figure 7
shows a time-line diagram for the simulation; each simulation step of an
entity is shown by a dashed line segment.

In the physical system modeled by the simulation, the producer and con-
sumer processes execute on separate processors. This mapping is modeled
by executing the simulation steps of entities p? and cf in parallel. For in-
stance, in figure 7 at time 4, simulation time elapses in parallel for both
pl and cl. If processes in the physical system are interleaved on a single
processor, the simulation steps of the corresponding LPs must be executed
sequentially. This is typically achieved by defining a server entity of the type
shown in figure 3. In the modified simulation, the producer and consumer
entities simulate generation or consumption of data by explicitly request-
ing the appropriate amount of service from the server entity. In the new
model, each simulation step of the server entity simulates the processing of
a request from either the producer or the consumer entity, thus effectively
mapping both entities to the same processor. In the following sections, we
modify the wait-until simulation algorithm to execute PIPS programs.

5.2 PIPS Algorithm -

In a partially implemented program, if an entity receives a time-out message
it executes a simulation step; otherwise it executes a computation step. The
PIPS algorithm differs from traditional simulation algorithms primarily in
its treatment of the computation step executed by a LP. In simulations, the
execution time of a computation step is completely ignored. For instance,

in the time diagram in figure 7, the computation step executed by entity b1
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entity producer(mu: integer; bufid:entity-identifler);
while (true) do
{ /* simulate the generation of data */
wait exp(mu) for (message-type = time-out);
invoke bufid with put(data);

}
end-entity;

entity consumer(mu: integer; bufid:entity-identifier);
message nezi{ data:integer);
while (¢rue) do
{ invoke bufid with ge{ myid);
wait for (message-type = nezt);
/* simulate the consumption of data */
wait exp(mu) for {message-type = time-out);
}

end-entity;

entity buffer;
fag:boolean:=false;
message put{ datainteger);
message gei( hisidentity-identifier);
while (true) do
{ wait for ((message-type=get) or (message-type=put));
if (message-type = get) then
if (buffer not empty) then
invoke hisid with nezt(nezt-data-stem)
else flag:=true;
else /* message must be a put */
if {flag) then /* satisfy outstanding request */
{ invoke hisid with nezt{data);

flag:=false; }
else store data in buffer;

end-entity;
Figuare 5: Simulation of a Producer Consumer Program

14



bt

pl

cl

0

4

4

4

10
10
12
12
12
14
14
i8
18
18
21

00Ot e W -
o %)

bt e s
(4 I S R

Figure 6: Events in a Simulation of the Producer Consumer Program
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to process a put or get message does not have any effect on the simulation
clock. By contrast, the execution time of the computation step is critical to
the performance measurement of a PIPS program.

The simulation steps of two (or more) LPs may be executed sequentially
by requiring both LPs to ‘request’ service from a common server LP. How do
we specify sequential execution of the computation step of one LP with the
simulation step of another? We introduce the concept of a Logical element
(LE). When created, each entity is mapped to a specific LE; multiple entities
may be mapped to a common LE. The simulation or computation steps of
all entities mapped to a particular LE are executed sequentially, In order to
allow entities to be mapped to an LE, the let primitive described in section
4 is extended as follows:

let ¢; be entity-type-name on le;

where le; is a variable of type element-identifier. Variables of this type
are used to represent logical elements. Each distinct value for a variable of
type element-identifier corresponds to a unique processor in the physical
system. Each LE is associated with a unique virtual clock; we use clock;
to refer to the virtual clock for LE;., The virtual clock of an LE may be
advanced by the execution of a computation step or a simulation step. In
this section, we present a centralized algorithm that determines how each
virtual clock in a PIPS program is advanced. The next section describes a
distributed algorithm to execute PIPS programs on multicomputers.

The PIPS algorithm uses two data structures: a set of virtual clocks, one
for each LE in the program, and an event-list. For a given LE, say LE,, the
value of clock; represents the time up to which the entities mapped to LE;
have been simulated or executed. The event-list is a partial order of tuples:
each tuple in the event-list contains (m;,p;,l;,t;), where message m; is to be
delivered to LP p; which is mapped on LE /;. As in the simulation algorithm,
the timestamp ¢; is used to assign the partial order to messages in the event-
list. However, there is one major difference in the semantic interpretation of
t; between the simulation and PIPS algorithms. In the simulation algorithm
of figure 6, the timestamp on a time-out message indicated the time at which
the message was delivered to the named LP. When multiple entities are
mapped to an LE, their simulation or computation steps must be executed
sequentially. Under these conditions, the time-out message to an entity
cannot be scheduled at an absolute time in the future. The timestamp on
the message is simply used to indicate the earliest time at which this message
may be delivered to an entity. It is computed by adding the wait-time
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specified by the entity to the current value of the wirtual clock; the wait-
time is also carried separately in the time-out message. The main question
that arises is the following: how is the virtual clock of an LE advanced during
execution of a PIPS program? To motivate our answer, we first consider this
question in two simple contexts.

Consider the PIPS code for the producer consumer program where the
code for entity consumer is fully developed, and the producer entity is only
partially implemented. Figure 8 gives the expanded code for entity con-
sumer. The code for the producer and buffer entities is exactly as in fig-
ure 5. As in the simulation, we assume that main creates one instance of
each entity-type, respectively named p1, ¢ and b1. The computation step
of entity ¢! is assumed to take 5 time units, and that of b1, 3 time unita.
The wait-time for the producer entity is once again sampled from an ex-
ponential distribution with a mean value of 5 time units, and the first few
values are again assumed to be 4, 6, 8 and 3 respectively. We consider two
simple mappings of the PIPS program: one where each entity is mapped
to a separate LE, and the other where all three entities are mapped to a
common LE.

entity consumer(bufidentity-identifier);
count: integer;
message nezt(datc:integer);
count:=0;
while (true) do
{ invoke bufid with get;
wait for (message-type = nezt);

counbt=count+1;
print( data);

}

end-entity;

Figure 8: PIPS Code for Entity Consumer

Figure 9 represents the execution of the PIPS program where each entity
is mapped to a separate LE. For brevity, we omit the LE-field from the
tuples in the event-list. For each entry in figure 9, the tuple which contains
the next message to be processed is underlined. The clock value refers to
the time at which the message in the underlined tuple is delivered to the
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destination entity, and is equal to the time denoted by the wirtual clock for
the destination entity immediately after the message is accepted by it (we
use ‘wirtual clock of an entity or LP’ to mean the virtual clock of the LE to
which the entity has been mapped). The time taken for the execution (or
simulation) of the computation (or simulation) step is illustrated in the time
diagram in figure 10. The simulation steps are shown by a dashed line and
the computation steps by a continuous line. At any point in its execution,
the value of the PIPS clock is the minimum of the values of the virtual clocks
for all LEs and indicates the time up to which the PIPS program has been
executed or simulated.

Execution of the PIPS program proceeds by executing events in the
partial order determined by the event-list and the wait-condition of the
LPs. Consider the first three events from figure 9. The first event is the
execution of a computation step by entity b to process a get message; this
event advances its virtual clock to 3. The next event is the transmission of
a time-out message to entity pI; the processing of this message by p1 causes
its virtual clock to advanced in simulation time to 4 and also deposits a put
message for entity bf with timestamp 4. Note that the simulation step for
entity pI! was initiated when its virtual clock was at 0, and procceeded in
parallel with the computation step of 51. When the pu? message is delivered
to bl, it executes another computation step which advances its virtual clock
to 7 (the timestamp on the put message(4) + the execution time of the
computation step (3)) and deposits a nezt message with timestamp 7 for
delivery to entity c!. The first three entries should be contrasted with the
corresponding entries for the simulation. As seen from figure 6, the latter
two events happen at simulation time 4 because the execution time of a
computation step is ignored in the simulation.

Consider a case where the computation step of an entity overlaps with
the simulation step of another: the fourth eveat in the PIPS program of fig-
ure 9 is the processing of a nezt message by ci when its virtual clock reads
7; as seen in the time line diagram of figure 10, the computation step (which
takes 5 time units) will overlap with the simulation step of entity p! which
expires at 10 time units. At this point, the computation step of entity b1 is
initiated which then overlaps with the continuing computation step of entity
cl. Overlapping processing steps need not cause the execution of an entity
to be interrupted. In the above example, even though the simulation step
of p! completes before the computation step of ci, executing the simulation
step of p! (that is, sending a time-out message) after the computation step
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pl

¢l

No. Clock Event-list

1 0 (<get,bl0>, <tout,pl,4(4)>, <tout,cl,0(c0)>, <tout,b1,0(00)>)
2 4 (<tout,pld(4)>, <tout,cl,00>, <tout,bl,00>)

3 4 (<put,bld>, <tout,pl,10(6)>, <tout,cl,00>, <tout,bl,00>)

4 7 (<neztcl,7>, <tout,pl,10(6)>, <tout,b1,00>, <tout,cl,00>)

5 10 (<tout,p1,10(6)>, <tout,cl,00>, <tout,bl,00>)
6
7
8
9

10 (<put,b1,10>, <tout,p1,18(8)>, <tout,c1,00>, <tout,bl,00>) '
12 (<get,b1,12>, <tout,pl,18(8)>, <tout,cl,00>, <tout,bl,00>)
16 (<nezt,c1,16>, <tout,p1,18(8)>, <tout,c1,00>, <tout,bl,00>)
18 (<tout,pl,18(8)>, <tout,cl,c0>, <tout,bl,00>)
10 18 (<put,b1,18>, <tout,p1,21(3)>, <tout,ci,00>, <tout,bi,00>)
11 21 (<get,b1,21>, <tout,p1,21(3)>, <tout,cl,00>, <tout,bl,00>)
12 21 (<tout,pl,21(3)>, <tout,cl,00>, <tout,bl,co>)
13 21 (<put,b1,21>, <tout,pl,34(13)>, <tout,cl,00>, <tout,b1,00>)
15 24 (<next,cl1,24>, <tout,p1,34(13)>, <tout,cl,00>, <tout,bl,00>)
17 29 (<get,c1,29>, <tout,p1,34(13)>, <tout,cl,00>, <tout,bi,00>)
19 32 (<nezt,c1,32>, <tout,pl,34(13)>, <tout,cl,00>, <tout,bl,00>)

Figure 9: Events in the PIPS Model : Multiple LE Mapping
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of ¢1 has been completed does not affect logical correctness. This is primaz-
ily due to the assumption that the computation step of an entity is atomic;
thus no message can be received by the entity from the time it initiates the
processing of a message until it completes its computation step. In particu-
lar, if on completing its simulation step, entity p! was to send a message to
cl, entity cI! may process the message only after its computation step has
been executed. Of course, an implementation may choose to interrupt entity
cl, process the time-out message for entity p1, and resume execution for c1.
However, the context-switching implied by this approach may be expensive
to implement.

We now consider a different mapping where the program is being de-
signed for a centralized implementation. The new mapping implies that all
computation and simulation steps are executed sequentially. This configura-
tion may be tested with minimum modifications to the program; only entity
main needs to be modified to map all entities to a common LE. For such
mappings, the execution algorithm is particularly simple because a single
virtual clock needs to be maintained. The events in the PIPS execution are
illustrated in figure 11. The sequential nature of the program is cleasly visi-
ble in the time line diagram for this mapping in figure 12. In the centralized
mapping, the first nezt message is processed by ¢1 when its virtual clock
reads 10 units as compared to the previous mapping where the message was
processed at time 7,

The previous discussion indicates how the virtual cdlocks in a PIPS pro-
gram must be handled. Messages are (conditionally) delivered to entities in
the order determined by their timestamps. If two messages have the same
timestamp and must be processed in a specific order, in general, the program
must explicitly indicate the dependency. The PIPS algorithm predefines the
ordering in the following two cases: if the messages are generated by a single
entity, delivery will be attempted in the order in which the messages were
generated. Secondly, if exactly one of the messages is a time-out message,
delivery of the other message will be attempted first. In all other cases, mes-
sages with the same timestamp may be delivered in an arbitrary order. The
timestamp for messages other than time-out messages is the time shown by
the virtual clock of the transmitting entity at the end of its computation (or
simulation) step. The timestamp for a time-out message is the sum of the
virtual clock of the entity and the wait-time specified in the wait statement
executed by the entity.

When a time-out message is delivered to an entity, its mirtual clock is
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b1

pl

cl

No. Clock Event-list

1 0 (<get,b1,0>, <tout,p1,4(4)>, <tout,cl,00>, <tout,bl,00>)

2 7 (<tout,pl,4(4)>, <tout,cl,00>, <tout,bl,00>)

3 7 (<put,b1,7>, <tout,p1,13(6)>, <tout,cl, 00>, <tout,bl,00>)

4 10 (<neztcl,10>, <tout,p1,13(6)>, <tout,bl,00>, <tout,cl,00>)
5 15 (<get,b1,15>, <tout,p1,13(6)>, <tout,cl,00>, <tout,bl,00>)
6
7
8
9

21 (<get,b1,15>, <put,b1,21>, <tout,p1,29(8)>, <toutcl,co>, <tout,bl,00>)
24 (<put.bl,21>, <tout,p1,29(8)>, <tout,cl,00>, <tout,bi,co>)
27 (<nezt,cl1,27>, <tout,p1,29(8)>, <tout,cl,00>, <tout,bl,00>)
32 (<get,c1,32>, <tout,pl1,29(8)>, <tout,cl,00>, <tout,b1,00>)
10 40 (<get,c1,32>, <put,b1,40>, <tout,p1,43(3)>, <tout,cl,00>, <tout,bl,00>)

Figure 11: Events in the PIPS Model : Single LE Mapping
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clock:=0;
while (ezecution not terminated) do
{ fetch next tuple (m;,p;,t;) from event.-list;
if (m; is not accepted by p;) then store m; in tempq;
else {
if {mi=time-out) then
{ clocki:=clock;+At,;
clock:=clock;;
pi simulates processing of m,;

b

else {clocki:=max(t;,clock;);
clock=clock;;
Pi processes m,; measure duration of the computation step (Az,);
clock;:=clock;+ At.;

)

merge tempq with event-list;
J§
};

Figure 13: Centralized Algorithm to execute PIPS Programs

simply incremented by At,, the wait-time specified in the message. For
other messages, the duration, say At., of the computation step executed
by the entity is measured and the virtual clock of the entity set to the sum
of At. and the larger of ita virtual clock or the message timestamp. The
algorithm to execute PIPS programs is presented in figure 13. In the figure,
clock refers to the PIPS clock whose value indicates the time up to which
the PIPS program has been executed.

Why are time-out messages processed differently from other messages?
The time-out message is an example of a conditional message. A conditional
message is scheduled for the future and may be canceled by the sending en-
tity. When an entity executes a simulation step, it schedules a time-out
message as a conditional message: if the entity accepts another message in
the interim, it may cancel the previously scheduled time-out message. The
timestamp on a time-out message indicates the completion time of the simu-
lation step executed by an entity. This ensures that the time-out message is
processed oanly after ascertaining that no other message was indeed accepted
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by the entity. However, the scheduling of every time-out message need not
be conditional. For instance, consider the simulation step executed by entity
put. The wait-condition guarantees that the entity will not accept any mes-
sage until its specified wait-time has expired. In this situation, the time-out
message may be delivered to an entity, like other messages in the system, in
the order determined by the time at which it is created.

How do we distinguish between conditional and unconditionally sched-
uled time-out messages? The wait-condition explicitly indicates whether or
not the scheduling of the time-out message is conditional. Alternatively, a
separate language construct may be used to specify a predetermined du-
ration for a simulation step (similar to the hold primitve of SIMULA[S)).
What is the benefit of scheduling unconditional time-out messages? If each
entity executes only unconditional simulation steps, the difference between
execution of a simulation step or a computation step is minimal. The com-
putation step executed by an entity may be viewed exactly as a simulation
step scheduled by an unconditional time.out message, except that its du-
ration is actually measured rather than specified by the entity. However,
conditional messages are essential in simulations to model objects like pre-
emptible servers. The notion of conditional and unconditional events has
been used by Chandy & Misra to suggest an elegant scheme for distributed
simulation(5].

In a PIPS program, the execution time of every computation step may

not be relevant to the performance of a system. Consider, for instance,
a statistics collection entity, like the histogram entity in a previous exam-
ple. Presumably this entity will not be a part of the eventual system, and
the execution time of its computation step should not be included in the
performance metrics being collected for the system. We define leg to be a
null-valued element-identifier. For all entities mapped to ley, the execu-
tion time of the computation steps are ignored and the simulation steps are
executed in parallel. A PIPS program may be executed entirely as a simu-
lation, simply by mapping all entities in the program to the logical element
lep.
* In the example discussed in this section, we have tacitly assumed that the
computation time used by the run-time system is not relevant to the perfor-
mance measurements. As a result, the overhead of event.list management,
message-transmission, ...have been ignored. This assumption was made
only for simplicity in exposition; message-transmission time in the underly-
ing system can be incorporated in performance measurements. Of course,
the transmission medium may also be explicitly modeled by an entity.
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5.3 Distributed Implementation

This section describes an algorithm to execute PIPS programs in a mul-
ticomputer environment. Once again, we modify existing algorithms for
distributed simulation to execute PIPS programs on parallel architectures.

What are the benefits of executing a PIPS program on multiple proces-
sors? In the case of distributed simulation, the motivation was to decrease
the elapsed time required to execute simulation programs. In our case, this
simply represents another refinement step: replacing some server LPs in the
model (for instance, the entity that models a communication network) by the
actual hardware (use an operational network to transmit messages between
entities) or execute different modules of the evolving design on a parallel
computer. We also have an additional motive - validation. If the hardware
architecture of the system being designed is (partially) available; it can be
used to validate part of the PIPS model. For instance, assume that the
communication network to be used in a system is available. In this case, the
entity that modeled the network may be removed from the PIPS program,
and the program can use the available network to transmit messages. Mea-
surements of the transmission times can be used to validate the model. It is
important to note that replacing an entity by actual hardware may increase
the elapsed time for execution of the PIPS program. (This follows because
simulating a message transmission may require the execution of only a few
instructions on a processor. The time taken for actual transmission of the
message over a network will be determined by the network itself.) Further,
the refinement affects the performance characteristics of the PIPS system
only to the extent that entities are an abstraction of actual components, and
may not reproduce the exact behaviour of the physical device (for instance,
the network in our example).

In distributed simulations, the event-list is not centralized. Instead, each
LP locally selects the next message for processing in a manner such that all
messages are eventually processed in their correct order of dependency. Var-
ious algorithms [7,17,13] have been designed to allow an LP to make this
decision locally. We use the so-called conservative simulation technique sug-
gested by Chandy & Misra and described in (17] to execute PIPS programs
on parallel architectures. (A few performance studies(11,19] on the simula-
tion of queuning networks using the above technique for distributed simula-
tion found insignificant speed up in the completion time of the simulation
program. We reiterate that in using distributed simulation, our goal is not
to decrease the execution time of PIPS programs; rather it is to allow the
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PIPS program to be executed in a multicomputer environment. If required,
other techniques for distributed simulation that prove to be more efficient
can be incorporated.)

We adapt the distributed simulation algorithm described in [17] for the
execution, of PIPS programs on parallel architectures. The simplest distri-
bution of the PIPS program is to execute each LE on a separate processor.
In general, muitiple LEs may execute on a given processor; we assume one
LE per processor, only for simplicity in exposition. In the distributed PIPS
model, we assume that each LE is associated with a number of incoming
channels, on which it receives messages from LPs on other LEs, and a num-
ber of outgoing channels, on which it sends messages to LPs on other LEa.
Each LE, say /;, waits until it has a message on each incoming channel, and
picks the message, say m; with the smallest timestamp, say ¢;. As in the
centralized algorithm, if m; is a time-out message, the virtual clock of [; is
advanced by the simulation period; otherwise the clock is advanced by the
amount of time required to process the message. The handling of the incom-
ing message may possibly cause messages to be sent on some of the output
channels associated with /;. The main problem with this scheme is that if no
messages are received on a particular channel, the destination LE for that
channel will be blocked. A cycle of blocked processes may form, causing
the system to deadlock. This may be prevented by requiring every LE to
eventually send some message on every outgoing channel. If no messages are
generated by the LPs on the LE, dummy messages refered to as null mes-
sages are sent to avoid deadlocks. The algorithm to execute a distributed
PIPS program is presented in figure 14, where transmission of null messages
kas been omitted. The algorithm is similar to the centralized algorithm of
figure 13. The major difference in the distributed implementation lies in
that each LE locally decides its ‘next’ event. '

The langnage discussed in section 4 needs to be extended in minor ways
to handle distributed execution of PIPS programs. In particular primitives
must be introduced to execute (simulate) the entities mapped to an LE on
a specific processor. On the other hand, the run-time system may randomly
distribute the load among available processors.

6 Summary and Remarks

We have described a performance-oriented approach to the design of dis-
tributed systems which are not amenable to analytical modeling. In this
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clock:=0;
while (ezecution not terminated) do

{

3

wait until a message exists on every incoming channel;
m,:= message with minimum timestamp;
if (m; is not accepted by p;) then

store m; in tempq; .
else
{ if (m;=time-out) then

{ clocki:=clocki+4t,;

pi simulates processing of m;;
b

else §{lock;:=max(¢;,clock,);
Pi processes m;; measure duration of the computation step (At,);
clock;:=clock,+At.;

}

merge tempg with message-list of appropriate channel(s);

b

Figure 14: Distributed Algorithm to execute PTPS Programs
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section, we examine,major restrictions of our approach and briefly describe
the implementation efforts in progress.

The approach suggested in this paper allows processes in distributed
programs to execute in one of two modes: simulation mode or computation
mode. A process (entity) executes in the simulation mode to model the
processing of a message, and executes in the computation mode to actually
process the messages. In the computation mode, the time taken by the
entity to process the message is measured by the clock associated with the
processor on which the process is executed. In the simulation mode, the
actual time taken by the processor is ignored; instead the relevant time is
the duration of the simulation step measured by the simulation clock. Both
the simulation and computation time-periods are included to predict system
performance. .

The most serious restriction of the PIPS approach concerns the elabo-
ration of a conditional simulation step - a simulation step scheduled by a
conditional time-out message. Consider the representation of a preemptible
program module. An entity may simulate such a module by scheduling a
conditional time-out message which is canceled if the entity accepts another
message before completion of the simulation step. In general, this effect
cannot be directly elaborated into a computation step, becnase the com-
putation step is atomic. Consider the following situation: PP, and PP,
execute computation steps of durations t, and t, in parallel, where t, < ;.
After executing its computation step PP, sends a message m1 to PP;, which
must be processed by PP} before the expiration of interval t;. Assume that
the PIPS model is being executed on a uniprocessor. If LP, executes a
simulation step, the preceding situation can be modeled correctly by re-
quiring LP; to schedule a conditional time-out message. However, if LP,
executes a computation step, the message cannot be processed before dura-
tion t; expires. Note that this problem cannot be solved simply by allowing
a specified message to interrupt the computation step of an entity (although
such a facility would be necessary to remove this restriction). The prob-
lem arises because the execution of LP, and LP, must be interlesved in the
PIPS environment. If the computation step of LP, is executed before that
of LP,, message m1 will not exist when LP; is executing. The problem may
be resolved in one of two ways: execute the computation step of LP, as a
series of microcomputation steps, i.e. interleave the execution of LP, and
LP;s at a smaller level of granularity, thus allowing LP, to generate message
m1 before the computation step of LP, is completed. A second alternative
is to use rollback. Checkpoint the states of LP, and LP, before executing
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computation steps, and execute the computation steps in arbitrary order.
If the computation steps were executed in an incorrect order, rollback the
computation and reexecute to ensure that message ml is, in fact, generated
before the computation step of LP, is initiated. These ideas are currently
under further investigation.

A second restriction of our approach concerns the use of shared memory.
The distributed system model described in section 2 restricts communication
between PPs to be message-based. However, shared memory may be used by
restricting how each entity updates the shared variables. The effect of these
restrictions is to ensure that access to the shared variable does not affect
the event dependencies that are represented by the event-list. The nature of
these restrictions is similar to the restrictions placed on Ada programs that
use shared variables{1](section 9.11]. Other restrictions have to do with the
resolution and speed of the processor clock on which an entity is executed.
The resolution of the clock limits the accuracy of the measurement of a
computation step. The speed of the processor clock limits the 'speed’ at
which a PIPS program may be executed.

In order to use the integrated approach to performance prediction, it
must be the case that the simulation hardware either be the same as, or be
scalable to the hardware on which the proposed system will eventually be
executed. On executing a computation step, the virtual clock of an LE may
possibly be advanced by a duration that is proportional, rather than equal,
to the execution time of a computation step. This extension will allow
analysts to directly examine the consequence of upgrading some existing
hardware by a component that is, for instance, 50% faster. If the simulation
hardware and the proposed hardware are radically different, measurements
of the computation steps on the simulation hardware are not meaningful. In
such situations, all entities in the PIPS program must be mapped to the null
element. The integrated approach to system design is still useful; however
the nature and purpose of the iterative refinements must be modified. As
refinements are progressively introduced in the design, performance metrics
must also be refined such that they relate oaly to the portion of the design
that is as yet abstract.

We have not addressed the problem of workload characterization, or
the related problem that arises when enhancements have to be made to an
existing system: how do we incorporate the performance of the existing
system into the performance prediction for future systems? This problem
is relatively simple, because the approach presented in this papper relies on
the inclusion of operational modules in performance predictions. As such it
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is sufficient to build scaffolding around the separately designed, operational
modules and treat it as a monolithic entity which interacts with the rest of
the system via messages.

A PIPS environment is currently under development on a network con-
sisting of SUN and HP workstations and a 32 node Intel iPSC hypercube.
The environment consists of a simulation language, a rua-time support sys-
tem and a program development environment.

A portable, object-oriented simulator is being developed by implement-
ing the primitives described in section 4 in the C programming language.
The run-time system has two ma jor responsibilities: implementing interpro-
cess communication and implementing the distributed PIPS algorithm. Re-
mote communication facilities (communication between processes resident
on different nodes) are provided by the Cosmic C environment(23], which
has been implemented on a number of parallel architectures including the
Intel and Amatek Hypercubes as also on a network of SUN workstations. It
should be noted that the run-time system could instead be based on some
other operating environment. For instance, if complete transparency across
different systems was desirable, the IPC could be based on a distributed
operating system like LOCUS or CRONTUS.
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