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ABSTRACT OF THE DISSERTATION

Load Balancing Algorithms in a Distributed Processing Environment
by
Joseph Jacob Green
Doctor of Philosophy in Computer Science
University of California, Los Angeles, 1988
Professor Leonard Kleinrock, Chair

In this dissertation we study the issue of Load Balancing and Load Sharing in
a Distributed Processing Environment, The models we work with are assumed to be
static or quasi-static with respect to the arrival process of jobs. A reduction process is
presented which transforms Load Balancing problems in such environments to data
communications network routing problems. We provide efficient distributed algo-
rithms (in terms of message complexity) for load balancing when the underlying com-
munication network has a point to point architecture. 'n the case where the processing
nodes communicate across a broadcast medium, we provide a simple yet efficient load
sharing scheme that signiﬁcantly reduces the average response time (delay) of a job in
the network. In order to evaluate the average delay of a job in such an environment,
we provide a new queueing mode! and analysis. The results of our work justify the
notion that the major savings (in delay) are achieved with a small amount of effort
(Load Sharing as opposed to Load Balancing). We also analyze a star topology where
satellite nodes (workstations), connected to a central mainframe site, use a Threshold
Load Balancing policy. The queueing problem (for this model) is reduced to a Boun-

dary Value Problem and solved numerically for the case where the threshold is one.
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We provide a proof (subject to a condition on the parameters) that the solution to our
boundary value problem (and thus our queueing problem) is unique. The conditions
for ergodicity of the queueing problem are derived in the proof of uniqueness of the
solution. The reduction procéss (from a queueing problem to a Boundary Value prob-
lem), and the proof of uniqueness provide an interesting study of applying Boundary

Value Analysis to Queueing problems.
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CHAPTER 1
INTRODUCTION AND SURVEY

1.1) Introduction

In the last fifteen years there have been great advances in processor and com-
munications hardware. Microprocessor and various support (memory management,
communication handlers, etc.) chips have become faster, smaller, and much cheaper
to produce. Similarly, data communications has also undergone a technological revo-
lution. There now exists glass fibers pure enough to transmit Gigabits (10%) of infor-
mation per second, that can be manufactured at relatively low cost. Both of these tech-
nological revolutions have led researchers to create their own information revolution.
The number of papers that propose new architectures and protocols for the large sys-
tems of the future has increased by leaps and bounds. This plethora of publications at-
tempts to answer the question: Can we use current processor and communications
technology to build super systems that are far more powerful than the large systems

that we have today?

In this dissertation we focus on the issue of dividing up work among a number
of communicating processors. The models we study all have individual job streams
arriving to processors that are connected with 2 communication network. The idea is
to distribute the work (jobs) in such a fashion as to reduce the average response time

of a job.



In this chapter, we try to organize the relevant literature by defining some
terms and presenting a survey. There are two terms in the literature that are used to
describe different approaches. The terms Load Balancing and Load Sharing, are used
by different authors to mean different things. In this work, we define Load Balancing
to be a system that tries to minimize the response time (or time in system) for the
average job (or customer). Load Sharing refers to systems that attempt to maximize
the utilization (or minimize the idle time) of all the processors in the system. One sim-
ple case where there is a difference between the two approaches is when there are both
very fast and very slow processors in the system. A Load Sharing algorithm would
send some of the load to the slow processors thus decreasing their idle time. A Load
Balancing algorithm might use the faster processors solely if the average response
time would suffer by having jobs "stuck” in the slower processors. Almost all of the
models dealing with Load Sharing algorithms assume a homogeneous network, that

is, all of the processors run at the same speed.

Another important distinction is to classify approaches (or algorithms) by be-
ing source initiated or server initiated. Wang and Morris [Wang85] define source ini-
tiated algorithms to be those in which the source of a job decides, using some infor-
mation at the source, where to send the job. Server initiated algorithms are those in
which a server processor searches among the sources for the next job to process based

on information that the server keeps.

The last definitions we now present explain static, quasi-static, and dynamic
algorithms. In static algorithms, the different components of the system (e.g. servers,
sources, communication nodes) base their decisions on pre-determined parameters
(such as routing variables) that are not responsive to the current state of the network.

Quasi-static algorithms also ignore the current state of the network but do adapt to

: ‘.r;



slowly changing characteristics (such as the arrival rates of jobs to the network) by
tuning their decision variables. Dynamic algorithms attempt to adapt the network to

quickly changing environments by keeping track of the current state of the system.

The reader might ask the question: Why bother with distributing the load
among the processors? The answer has three parts a) efficiency b) availability and c)
extensibility. The hope of exploring large multiprocessor systems is that there is a
gain in performance for some such system at a lower cost than a super computer alter-
native. Assuming the latest machine (or theoretically possible machine) is able to
compute at X gigaflops (10° floating point operations per second), the question is: Is it
possible to design a system of N or more processors where the achievable processing
speed of this system is at least X gigaflops? The answer is meaningful only if the total
cost of N {or more) cheap processors plus communications is far cheaper than the one
super machine alternative. Thus the multiprocessor approach is to find a more efficient
solution (higher performance to cost ratio) than just buying the latest mainframe. By
having a number of processors in the system, we can try to build in a degree of fault
tolerance. That is, despite the eventual failure of one or more devices , the system will
continue to function, albeit at a reduced level of performance. This increase in availa-
bility is crucial to many users of large systems. The success of the TANDEM Inc. line
of systems is a direct result of the guaranteed availability that is built in. The last issue
deals with the ability of the system to handle changes in the user requirements. After a
system is in place the users might find more tasks to do on a computer along with
larger amounts of input (e.g. larger data base files or finer meshes for finite point
analysis). Mainframe manufacturers have been imp-oving the performance of their
machines and trying to maintain upward compatibility to satisfy their user population
(at high cost). However, maintaining compatibility works against the increased perfor-

mance in many cases. Also, the increase in performance may be too much or too little



for different users. A well designed multiprocessor system should offer exrensibility
(at low cost) by being able to add on processors as the users need them. Algorithms
that distribute the load over a network should be insensitive (or lightly sensitive) to

the number of processors in a network.
1.2) Survey of the Literature

In this section we present a survey of the load balancing and load sharing
literature. The survey is intended to classify papers by the definitions that we present-
ed earlier, and to summarize their main points and results. In some cases, we elucidate
a particular model if it warrants special attention. The survey is organized on the basis
of amount of information a node (or a component in the system) has when it makes
decisions to send or search for new work. As a rule, an increase in the amount of in-
formation a node requires to make a decision requires an increase in the communica-
tion to obtain this information. There is also an issue that nodes might use outdated

information to make decisions, thus degrading the performance of the system.
1.2.1) Static Load Balancing Algorithms

The simplest load balancing algorithms are source partition and server parti-
tion [Wang85]. In their source partition algorithm the sources are partitioned into
groups, with each group being served by one processor. Assuming that the arrival pro-
cess of each source is Poisson with intensity r;, the group behaves as an M/G/1 sys-
tem. The jobs that arrive at the sources queue up at the server, so that the service poli-
cy is FCFS. Their server partition algorithms split the servers up into groups which are
fed by one or more sources. If the arrival process is Poisson then the group behaves as
an M/G/K system. The authors assumed, for simplicity, that the jobs have service

times that are negatively exponentially distributed. The question remains how to parti-



tion the sources and the servers so that the minimum expected delay can be achieved.
Assuming the workload is constant and known, two approaches have been used,
namely, network flow theory and mathematical programming [Ston78, Chou82,
Chu80], to optimize the system performance with respect to a particular measure, If
the armrival rates vary then the partitions must be recast. Tantawi and Towsley
[Tant85] derived a centralized algorithm to determine the source and server partition
(we investigate this in greater depth later on). In [Ni81] an extra random parameter is
used along with the partitions to distribute the jobs from sources to servers. Here as
well, the probabilities must be chosen to optimize some measure (e.g. delay). Klein-
rock [Klei84] swdied the following static network design issue. Assume a central
source of Poisson arrivals and a network of parallel chains of servers, with each chain
having some number of servers (exponentially distributed service times). The total
capacity of the servers in the network is C. Jobs entering the network choose one of
the chains (concurrent processing of jobs) and then are processed in a pipeline manner
in the chain (jobs are assumed to be composed of a number of tasks, each processed
by a different server on the chain). Kleinrock found that the average delay in this sys-
tem is greater than the average delay of a single machine with capacity C. This result,
while at first is surprising, can be explained by looking at both systems at less than full
load. A single machine uses all the capacity whenever there is work in the system.
The distributed network may not be using all the capacity since a number of the

chains might be idle when there are jobs being processed in other chains.

All the above algorithms utilize only known a-rival rates and service time dis-
tributions. None of the servers or the sources know the state of the network. A disad-
vantage of this approach is that the network cannot respond to short term variations in

the workload.
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1.2.2) Quasi-Static Load Balancing Algorithms

In this class of algorithms , the network components track slowly changing
parameters of the system andadapt the load balancing so that some measure is optim-
ized. Although full network information (states of the system) is not communicated,
some measurements are passed along. This extra information passing adds a load to
the communication and processing burden already present. However, it is assumed

that the information exchange is done infrequently and presents a negligible increase

to the system load.

The major work in this class is that of Kurose and Singh [Kuro86). This work
is investigated in depth in section (1.3.3). Their aigorithm is the result of adapting a
model in mathematical economics to a model of distributed processing in computer
networks, Consider the network to have resowrces and agents wishing to use the
resources. The problem is to divide up the resources among the agents in an optimal
(for some measure) manner. The solution to this problem involves caiculating the
marginal utility of each agent, and specifying how each agent reacts to his marginal
utility and that of other agents. The problem with the analogy is that economics uses
such models to show how udlity is maximized in a real world (or close to a real world)
setting. No consideration is given to achieving this optimization in an efficient
manner. Adapting an algorithm from economics to distributed processing yields an
unwieldy algorithm for computers. In particular, Kurose and Singh suggest that at
cach round of the algorithhn each node (agent) sends every other node a distinct value.
If the communication medium is a broadcast network then O (n2) messages are sent
every round. In a point to point network the number of messages sent each round is
O(n?) at best and O (n3) at worst {depending on the network topology). These com-

munication costs are far from optimal and could overload certain links or nodes in the



system. Other algorithms that are used in packet routing networks are discussed in

depth in section ( 1.2.5).

1.2.3) Dynamic Load Balancing Algorithms

A simple method which is called the state feedback method includes such al-
gorithms as JSQ (Join the Shortest Queue) [Ni81, Chow79, Maju80]. Simple state in-
formation , such as queue length estimates, are broadcast Periodically. Variants of this
algorithm determine how far a node broadcasts its Own information. There are two
problems. The first is determining how often to update. If the update is done occasion-
ally then the nodes are basing their decisions on possibly outdated information. On the
other hand, frequent updating could congest the communications network. The second
problem is determining who receives this information. In a large point to point net-
work, broadcasting each node’s state over the net could overload the communication
links.

Chow and Kohler [Chow79] looked at a model of a central scheduler that sent
arrivals to one of two queues. They used an analytic approach to Compare three
different dynamic policies. The first policy sends a new arriva) to the shorter queue.
The second policy attempts to minimize the delay of an arriving job. The third policy
attempts to maximize the number of jobs processed in a period of time (e.g. between

two arrival points). Using approximation techniques to solve a two dimensional Mar-



kov lattice, they found that for the model presented the third policy produced the best
throughput versus delay curve (smallest delay for a given throughput). Ramakrishna
[Rama83] also describes a system where a centralized switch uses the instantaneous

queue lengths to determine where to send the next arriving job.

Eager ct al [Eage84] describe a number of decentralized algorithms which use
various amounts of information. The simplest model routes jobs to other nodes based
on no information (static scheme). In the next algorithm, a node probes other nodes
sequentially until a node is found with a queue length below a threshold T (a system
parameter). The first such node found ends the probing and the job is sent to that node.
If no such node is found after L probings the job remains with the current node. In the
third algorithm, a node over the threshold will collect the queue lengths from L other
nodes. The extra job(s) will be sent to the node with the shortest queue length only if
it is below the threshold. Otherwise the job will remain at the current node. The result
of the analysis is that the second policy yields a vast improvement over the first (in
terms of average delay) even though little extra work is involved. The third policy
provides very little improvement over the second even though it collects far more in-
formation. The authors conclude that a load balancing algorithm which collects little
information is the best alternative in terms of the performance versus communication

cost tradeoff. This paper is examined in greater detail in section (1.3.1).

Other systems use a form of bidding to distribute the load. Both DCS [Farb72]
and CNET [Smit80] use versions of this algorithm. In Normal bidding a source which
has work to send, broadcasts a request for bids to all servers (source initiated algo-
rithm). Servers receiving the request may submit a bid based on their queue length,
delay, etc. The requesting source then compares all the bids and selects the best

(lowest) server to receive the work. In Reversed bidding an idle server will request

'+



bids from sources (server initigted algorithm). The sources respond with bids that
reflect their queue lengths or delay. The server may then select the job from the source

yielding the best return (lower delay, etc.).

In some network models nodes may act as sources for jobs as well as "sinks".
The ADAPT [Peeb80] System provides each node with a "dipstick” that has minimum
and maximum notches. If the workload at the node is below the minimum notch, the
node broadcasts to other nodes that it is willing to accept additional work, If the work-
load is above the maximum notch then it wili attempt to send incoming work to other
nodes. In a similar system, POGOS [Case81], the author reported difficulties in keep-

ing the system stable, Dipstick systems also suffer from €Xxcess communication when
the load is high.

The last paper mentioned is that of Bryant and Finkel [Brya81]. They describe
a diffusion algorithm in the ROSCOE system in which only neighboring nodes com-
municate with each other. A node that is congested randomly selects a neighbor and
inquires about cooperating. If the neighbor responds positively the two nodes will be
paired for a duration of time, and will share their load. Afterwards, the pair will break
up and other cooperation ventures will be sought with other nodes. The system at-
tempts to adjust the load so that extra work migrates from a region that is overloaded
to a region that has more idle capacity. The network is point to point and communica-
tion is relatively light for large systems. The problem is that the migration rate is slow

and not very well understood.
1.2.4) Routing with Dynamic Thresholds

In recent years (since 1977) there has been much interest in the area of dynam-

ic control of multiple queues. This interest originated in the control of large packet



switching networks at the nodal level. Although controlling a large network optimally
with a decentralized dynamic policy is still an unsolved problem, much progress has
been made in optimally controlling a local environment.

The authors in [Ephr80] examined two models of two servers (negatively ex-
ponentially distributed service times) controlled by a central switch. In the first model,
the switch has instantancous knowledge of the number in each queue. The authors
were able to prove (using a dynamic programming technique) that the optimal policy
is to send an arrival to the shorter of the two queues. In the second model the switch
has no current knowledge of the queue lengths; it only knows that at some previous
point there were x; and x; customers in queue one and queue two respectively. If
x1 =x then the authors can show the optimal policy is to alternate arrivals among the
queues (round robin). If, however, x| # x, then the authors can prove that sending to

the expected shorter queue is not optimal.

Hajek [Haje84] generalized the two queue model to include centralized plus
individual arrival streams, defection mechanisms from one queue to the other, and a
central server as well as individual servers for each queue. The result of his work was
to show that the long run (infinite horizon) cost is convex with respect to the set of
control variables. Thus there exists a threshold (or swirch over) policy that minimizes

the long run cost.

Other researchers [Nels85] have shown optimal control policies for models
with one queue and a finite number of servers. In this model the servers are ordered by
decreasing processor speed. The decision is when to send a waiting customer to an
idle processor. If the processor is very slow then the customer’s service time may be
large leading to a higher average delay. Nelson formulated a policy which attempts to

maximize the number of customers processed in the time between two external events

10
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(arrival to the system, earthquakes, etc.). Note the similarity of this policy to the third
policy in [Chow79]. The authors claim that the average delay of their policy, comes
very close to the minimum delay. Kleinrock [Klei64] developed a similar model, but
used a greedy policy in which each job attempted to minimize its delay. The authors
in [Agra84)] worked on the same model but without arrivals. The problem was to find
a policy when to send the next waiting customer to an idle processor. The authors
presented a threshold policy (i.e. send to the i** processor if there are I; Or more custo-

mers waiting in the queue) and proved it to be optimal.

The distinguishing feature of these models is that there is a central queue or

(more importantly) a central controller.
1.2.5) Distributed Minimum Delay Routing in Computer Networks

We include this topic since load balancing and packet (or message) switching
are similar problems. In Chapter 2 we transform a well used load balancing model into
a packet routing problem and adapt a known algorithm [Sega79] to the load balancing

problem that converges to the minimum delay.

The authors in [Cant74, Frat73] presented an efficient centralized algorithm to
route flow from many sources to many destinations. In 1977 Gallager [Gall77]
presented a distributed algorithm that settled on a set of flows which minimized
(within a small radius) the delay in a message routing network. The key contribution
of the paper was to point out that global optimization could be achieved by each node
individually minimizing the marginal delay over its own outgoing links. The algo-
rithm (indeed the solution) was possible since the link delay was assumed to be a
function of the flow in the link only, convex with respect to the flow, and locally com-

putable. Segall [Sega79] presented another version which made the algorithm easier



to implement and understand. Bertsekas [Bert78] described a whole class of distribut-

¢d minimum delay algorithms which included Gallager’s algorithm as a special case.

We have now finished an overview of some topics that are used later in
Chapters 2 and 3. The next section is an in-depth investigation of some pertinent
literature. Following that, we explain the motivation for our work based on the previ-

ous papers in the field and some of the background topics discussed in this chapter.

1.3) Particular Papers of Interest

In this section we investigate a number of papers more closely. These papers
provide much of the motivation for the models and algorithms we develop in Chapters

2,3and 4.
1.3.1) Dynamic Load Balancing in a Homogeneous Network

We briefly described in section (1.2.1) three policies presented and analyzed in
[Eage84]. We now present the model in greater detail. The network consists of N
identical nodes connected by a broadcast bus. All nodes have one server with the same
service rate. The exogenous arrival rate is the same for all nodes. The cost of transfer-
ring a job from one node to another is reflected as a processing cost, not as a commun-
ication cost. The reason is that Lazowska [Lazo84] et al. found that the processor de-
lay of packaging and unpacking the data far outweighs the communication delay. The
homogeneity assumption is used for simplicity and, the authors claim, does not affect

the conclusions drawn.

The authors point out that there are two aspects to Load Balancing algorithms,
the transfer policy and the location policy. The transfer policy is used to decide if and

when to send a job elsewhere for processing. The location policy is used to determine
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the destination of an outgoing job. The transfer policy used here is the simple rhres-
hold policy. If there are more than T jobs in a node the processor activates the location
policy to transmit the extra jobs to remote processors, Note that a processor cannot
process one job while transmitting another. There are three location policies used that

use either no, little, or greater amounts of information.

Random - The destination is chosen at random for each outgoing job. There is no
need for any state information from any other node. However, the job may ar-
rive t0 a node that is above the threshold, thus requiring further transmission to
yet another node. Thrashing jobs is a problem and the authors show that this
policy is inherently unstable. No matter what the system load is, eventually a
state will be reached where all the processors are busy transmitting jobs rather
than processing them. This unstability property is akin to the inherent unstabil-
ity of the ALOHA access scheme. An extra parameter L is used to control the
system. After a job migrates through L nodes it must be processed at the L+1%

node, no matter how backlogged that server mi ght be.

Threshold - The transmitting node tries to locate a suitable destination node by prob-
ing other nodes one at a time. If a node is found with T—~1 Jjobs or less (adding
another job would not place it above the threshold) then probing stops and the
job is sent to that node. Otherwise, if the ransmitting node probes L nodes un-
successfully, then the job is processed locally. The Threshold policy tries to
limit the communication overhead by sequentially probing rather than broad-
casting. The authors found that a probe limit, L, of three to five provided al-

most as good performance as a probe limit of twenty.

Shortest - The transmitting node probes L random nodes requesting their queue

lengths. The job is transferred to the node with the shortest queue length only
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if that number is below the threshold. If nore of the polled sites are below
threshold then the job is processed locally. This policy uses the most informa-
tion of all three policies. However, for the same system load (arrival rates and

service rates) the parameter L need not change as the network size increases.

The analytic model for all three location policies relies on the Markovian na-
ture of the problem. All distributions are exponential, and a node’s behavior is deter-
mined by the number in its queue. The only variables to keep track of are the queue
lengths in all N queues. The authors reduce the problem from an N-dimensional lattice
to a one dimensional chain by making an explicit independence assumption. The ar-
rival rate of jobs to a "typical” node is modified to reflect the probing and transfer of
jobs from other nodes. The main conclusion of the paper is to show that a little infor-
mation goes a long way in improving the performance, while a lot of information does
not help that much more. The random policy shows a 40% decrease in the response
time as the load (p) increases to 80%. This is a surprising result considering the ran-
dom policy uses no information at all. The threshold policy performs as well or a little
better than the random policy for the lower end of the load range (p=0 to .57). Atthe
higher loads (p=.8 to .95), the threshold policy performs much better than the random
policy. This is not so surprising in that at high loads the random policy is sending jobs
from one overloaded node to another. The thrashing phenomenon for each job contin-
ues until the limit of Z hops is reached or a suitable node is chanced upon. The major
result of the paper is reflected in the response time curve for the shortest policy.
While this policy collects far more information (approximately fifteen to seventeen
nodes more) than the rhreshold policy, the average delay is about the same or a little

less.
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Figure 1.1
Throughput vs. Delay for Three Location Policies

The last issue discussed for now is the choice for the threshold T. In this
model, all nodes have the same arrival and service processes. Thus the issue is to
choose one threshold parameter for all nodes. Based on the analysis, the authors claim
that a threshold of one, two, or three is the only decision for most values of the load (p
= 0 to .95). Therefore, only a simple decision mechanism is needed for the nodes to
choose the proper threshold. However, this conclusion can only be made in a2 homo-

geneous system. Also, the authors did not show the effect of the network size (V) or
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the probe limit L on the threshold choice. We will discuss this issue in the Motivation

section (1.4).
1.3.2) Two Centralized Load Balancing Algorithms

The first centralized algorithm we discuss is described in [Tant85]). The au-
thors provide a model for a load balancing network where the communication as well
as the processing costs are accounted for. The jobs are considered as flows in the net-
work. Processing and transmission delays for the average job are functions of the
flows through links and processors. The delay functions are assumed to be convex
with respect to the flows which allows the authors to formulate a mathematical optim-
izaton problem that can be solved by finding a set of flows that satisfy the Kuhn
Tucker conditions (derived from the constraints). A triangle inequality for the
transmission delay function assumes that the communication delay from any node i to
any other node j is smaller than the delay in going from i to j through any intermedi-
ate node k (k#i, j). The inequality forces each node to be in one of three sets as a solu-
tion to the optimization problem. The first set, sources, are those nodes that send out
jobs to be processed remotely (as well as processing iocally), but accept no jobs from
any other nodes. The second set, newsrals, do not send out or accept any preempted
jobs. Neutrals process their own internal jobs only. The last set, sinks, are those nodes
which accept other jobs for processing (in addition to their own), but do not send out
any jobs. A node may either be a source, a neutral, or a sink node. There are no nodes
which accept and send out jobs, since any such node could be bypassed, thereby de-
creasing the overall delay by the tiangle inequality assumption. The authors present a
centralized algorithm which calculates the three sets given the parameters for each
node. A sorting algorithm is also presented, which takes the current three nodal sets

and varies their elements as a particular nodal or system parameter is varied. This
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second algorithm allows network designers to watch what happens to the network as

parameters change. The algorithms are efficient but centralized.

The second centralized algorithm includes a more general model than the one
in [Tant85]. We briefly describe this model from the recent papers [Silv87, Silv84]
and describe the solution method used. The network is modeled as a number of satel-
lite sites [Gold83] connected together with a "communications network” (at the hub).
Each site has a number of resources (CPU’s, disks, programs, files, etc.) that are to be
used by the incoming traffic. There are two types of traffic in each site. The local
traffic is composed of "background" jobs that may run only at the site of their genera-
tion (i.e. they cannot be transmitted to another site). The other kind of traffic is in-
teractive generated from the terminals connected to a site. This traffic may be routed
to other sites to help relieve congestion. The loca! traffic is modeled as a closed chain,
that is the number of local jobs at a site remains constant. In addition, the routing of
local jobs within a site is fixed. The interacrive traffic is modeled as an open chain (no
restriction on the number of jobs in the system), and arrives at the sites according to a
Poisson distribution. Although the interactive wraffic may be moved from one site to
another, the number of moves (or transmissions) is limited to one at most. In addition,
some open chains of traffic can be constrained as to which sites they may be processed

at.

The resources at a site are modeled as single server fixed rate, or infinite server
service centers. The queue disciplines and service demands must satisfy the require-
ments for a product form network. The communications network is modeled as an

infinite server service center.
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The problem is to assign the flow of the open chains through the different sites
such that the overall job delay is minimized. They construct a delay function that is
convex in the set of open chain flows. The authors provide an algorithm, the Flow
Deviation Load Balancing a'lgorithm (FDLB), which finds the optimal assignment
such that this delay is minimized. The solution method consists of the centralized ver-
sion of the Flow Deviation Algorithm (FDA) [Cant74] together with Mean Value
Analysis (MVA) [Lave83]. Given a starting (feasible) flow assignment, MVA is used
to calculate the first two moments of the job delay. Then FDA is used to reapportion
the flow assignment to reduce the delay. The method iterates until the average job de-

lay converges.

The load balancing algorithm (FDLB) was applied to different settings. The
results indicate a tremendous decrease in the average job delay when load balancing is
used. The improvement (with load balancing) depends on the number of jobs in the
closed (and fixed) chains, N.. When N, is small then FDA can deviate enough flow
from the congested sites so as to reduce the average job delay significantly. As N, gets
large, the improvement due to the balancing is reduced since FDA is not allowed to

reroute the local traffic.

Although the authors claim that the load balancing problem is more complicat-
ed than the routing problem, we show this not to be the case in Chapter 2. In fact, us-
ing the mcthodoloéy in that chapter, we can reduce the problem presented in [Silv84)
to a packet routing problem. In addition we can provide a distributed version of the
FDLB algorithm if the conditions (on the delay function, listed in Chapter 2) are
satisfied.
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One important aspect of the FDLB algorithm, the computational complexity, is
not discussed. For cach iteration of the FDA, the subroutine MVA must be called to
calculate the delay moments. ‘When the number of chains (open and closed), local
customers, and sites is considerable then the time for MVA computation is quite high.
Multiplying the MVA complexity by the number of iterations of the FDA could result

in a very long computation time for FDLB.
1.3.3) Two Distributed Load Balancing Algorithms

Kurose and Singh [Kuro86] worked on a load balancing network model that is
similar to the one described in [Tant85)], however, they [Kuro86] proceed to present a
quasi-static distributed algorithm that minimizes the overall delay in the net. The dis-
tributed algorithm has its roots in the field of Mathematical Economics. The idea of
the algorithm is to decrease the overall delay (towards the minimum) by having each
node (in every iteration) adjust the flows to all other nodes based on the recipient’s
marginal utility. The flow adjustment phase is preceded by a round of information

passing. We present the algorithm and then discuss its implementation.

Let f;; be the amount of flow node i sends to node j. U; is the utility (inverse
delay) at node i, and

aU;

? is the marginal utility at node i due to the flow from node j. The marginal utility
Ji

is the increase in the utility due to a small increment in the flow.

Repeat Forever:

aU;
a. Each node i computes the marginal utility _B?L (using the
Ji
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current flow f;) and broadcasts this value to node j, V.

‘ 0
b. Each npde 1 waits until it has received —q‘-t— from all £ and then

afix
computes
U, 1 ol
o; - VkeK;
Afx=] (¥ IK,-Ikg,iaf,-k €&
0 Vkek;

where «; is a step size (fixed) and K; is the set of nodes to
which i sends flow or to whom i will send flow since their mar-

ginal utility of receiving flow is greater than the average

Uk ] 1K) ( ted ively)
_— ; | (computed recursively).
kEK‘, afa [ p y
c. each node i sends node & the new flow
Fa=fu+Afa

Once each node i finds out the value of increasing or decreasing the flow to
every other node k (start of step (b)) then node i computes how much to increase or

decrease each flow by calculating the average marginal utility of sending flow from

node i, po} %}Ui / |K;1)|- Nodes that have a marginal utility greater than the aver-

ke K; 9Jik
age would receive an increase while those with a marginal utility below the average
would receive a decrease. Those nodes not receiving any flow from i would receive
Afy if their marginal utility is greater than the average, otherwise they would continue

to receive no flow. The algorithm is efficient in that a node i may increase the flows to
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more than one node in an iteration, speeding up the time for the algorithm to converge
to the maximum utility. This aspect of the implementation is analogous to Bertsekas
[Bert78] class of distributed algorithms. However, this algorithm is inefficient in the
message complexity of the Iinforrnation collection phase. In a LAN the algorithm
sends O (n%) messages in the information round (step (a)). In a point to point network
the complexity varies with the diameter of the network. The number of messages

transmitted can be as low as O (n2) or as high as O (n>).

Recently [Lee87] reported some results which are closely related to our algo-
rithm presented in Chapter 3 but which were arrived at independently. We include a

survey of this work and compare it with our own.

The load balancing environment is a star configured system with N sateilite
sites (workstations) and a central hub (mainframe). Each node i (satellite or the cen-
tral server) has a Poisson arrival stream of jobs with rate A;. Jobs processed at node i |
have a service time that is exponentially distributed with service rate y;. The nodes
have a communications server that is assumed to have a convex delay function in the

flow that is transmitted through it.

There are three load balancing policies presented. Each of the policies uses a
threshold in order to decide which of the incoming jobs (from the outside) should be
transferred. Once a decision is made about a job (whether it will be processed locally
or remotely), that decision cannot be changed. Jobs may be transmitted at most one
time. A job that is transmitted, called a remore job joins the processor queue in the
destination site. Jobs that are not transmitted, but remain at their originating site are
called local jobs. For simplicity we describe the case where the central server only re-

ceives jobs and does not forward any to a satellite site.
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The first policy has a priority discipline that favors local jobs over remote jobs.
The second policy has the reverse priority discipline, while the third policy has no
priority structure at all, i.e. all ‘jobs queue up for the processor in a first come first

SCIve manner.

Assuming the delay function at each node and in each communication link is
convex, a non-linear optimization problem can be formulated, similar to the one
presented in Chapter 3. Briefly, the problem is to minimize the average job delay (pro-
cessing plus transmission time) by either working with the thresholds directly (an in-
teger programming problem) or by relaxing the integer constraint on the threshold and
working with the resulting flows. The threshold is set after determining the flow of
jobs to be processed locally and remotely. The algorithms presented in [Lee87] are
distributed and based on the work in [Gall77].

The authors also provide a heuristic algorithm for minimizing the average job
delay by adjusting the thresholds up or down by one. In each iteration of the heuristic
algorithm, a site compares it’s marginal delay with that of the central server. If the
site’s marginal delay is greater than the marginal delay at the central server then the
threshold at that site is decreased by one, otherwise the threshold is increased by one.
An extra slack variable can be used to prevent hysteresis. The idea is to equalize the
marginal delays (thus minimizing the average job delay). The authors provide an ex-
ample where the algorithm brings the average job delay close to the optimum, yet the
thresholds keep on oscillating. There is no proof presented in this paper to show that

the heuristic algorithm converges to the right value, or at all.

The development of the optimization problem and the distributed algorithm in
[Lee87] is nearly identical to our own work in Chapter 3. However, the network

configuration selected by Lee and Towesly is puzzling. If the network is configured as
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a star then why use an iterative approach like the one presented in their paper? It is
faster and far more efficient for all the satellites to send their actual delays to the cen-
tral site where a centralized algorithm (such as FDA [Cant74] ) can be run. The cen-
tral server can easily determine the thresholds for every satellite node in the net and
broadcast those values to each node. We develop the problem in Chapter 3 using a
general point to point network. In our case, it is better 10 use a distributed algorithm
since a centralized algorithm would require too much communication bandwidth to
collect all the information at one site. We present a more detailed analysis in Chapter
3 (and for the broadcast case discussed in Chapter 4). We retumn to these papers in the

motivation section (1.4).
1.3.4) Queueing Systems and Boundary Value Problems

In this section we focus on one paper [Fayo79)] in which there is an elegant
reduction of a queueing problem to a Riemann-Hilbert problem. After discussing the
reduction technique used in this paper, we mention another technique developed by

Cohen and Boxma [Cohe83].

A Riemann-Hilbert problem [Gakh66] can be formulated as follows: Assume
there is a closed curve L in the complex plane ¢, and three real valued functions a (¢),
b(t), and c () on L. Find a function ®(r) = u(#)+i v(¢) analytic in the interior of L,

and continuous up to L, such that:
au@+b@v()=c(t) tel

Let G(t) =a(t) +i b(r) then the Riemann-Hilbert problem may be restated as fol-

lows: Find an analytic function ®(¢) (as before) such that:
Re[G(NHD(N)]=c(t) tel

where G (¢) is the complex conjugate of G (7).
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The solution techniques for such problems are beyond the scope of this work.
We refer the interested reader to [Gakh66] for a comprehensive treatment of the
Riemann-Hilbert problem. However, we briefly mention some aspects of the solution

that play a role when applying the Riemann-Hilbert problem to queueing problems.

The dimension of the solution space to a Riemann-Hilbert problem depends on
the winding number or index, ¥, of the function G (). We provide a precise definition
of the winding number in Chapter 5. At this point we use an intuitive description. The
winding number, i, of G(r) (on boundary L) is the number of times G () wraps
around the origin as ¢ follows the contour L. If x20 then there exists a solution to the
Reimann-Hilbert problem. In fact, the homogeneous problem has a ()+1) dimensional
solution space. On the other hand, when %<0 then a solution need not exist; In this
case, the problem may have a solution if ¢ (¢) satisfies a certain set of —y, linear equa-

tions.

We now describe the queueing problem in [Fayo79] along with the reduction
to a Riemann-Hilbert problem. Let therc be two nodes (1 & 2) each having a server
and a queue. Customers arrive to the nodes according to a Poisson distribution with
rates A, and A, (going to nodes 1 and 2, respectively). Both servers have negative ex-
ponential service rates. Server 1 (in node 1) serves customers with rate 1; when server
2 is busy, and with rate u; when server 2 is idle. Similarly, server 2 serves customers
with rate gy when server 1 is busy, and with rate p when server 1 is idle. The
difficulty in solving this problem is due to the coupling of one node’s service rate to

the state of the other node.

Assume that the system reaches equilibrium then the state of the two node sys-
tem can be completely characterized by (n,n2) where n; is the number of customers

in node 1, and n, is the number in node 2. Let P; ; be the steady state probability that
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the system is in state (i,/). and define P(z,w) to be the two dimensional generating
function of the steady state probability distribution. Then the form of the equation ob-
tained from transforming the steady state rate equations is (call it the system equa-

tion):
K(z,w)P (z,w) =a(z,w)P (O,w) + b(z,w)P(z, 0) + ¢ (z,w)P (0,0)
where a(z,w), b(z,w), and ¢ (z,w) are known functions, and K (z,w) is given by:
K(z,w)=A(1=2) + 1, (1-1/2) + A, (1-w) + pa(1-1/w)

The functions P (z,w), P (z, 0), and P (0,w) are unknown, and P (0,0) is the probability

of an idle system.

When K (z,w) =0, the right hand side of the system equation must vanish, oth-
erwise P(z,w) will not be analytic. Fayolle and Iasnogordski were able to derive
another two equations from the system equation (when X (z,w)=0) by extending the
region of analyticity from 1zI<1, iwls1 to |zIS\fl; 74, IwlS\Ha/A3". In particular,
when K (z,w)=0 and |z1=J}1;/X; the authors showed that the imaginary part of w is

zero (i.e. Im(w)=0); Returning to the system equation we see that when K (z,w)=0 we

have
a@zZwPOw)+b(z,w)P(z,0) +c(z,w)P(0,0)=0
or
b(z,w) ¢ (z,w)
PO,w)+ azw )P( 0= a(z’w)P(OO)

That is, when lzI=+J}1;7/A;, w is real and therefore so is P (0,w). Taking the ima-

ginary part of the above equation then yields:

Im ["E’ W;P( 0)} =-Im [CEZ’W;]P(O 0)
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The above equation is in the same form as the Riemann-Hilbert problem presented ar
the beginning of this section. lAn equivalent equation for P{(0,w) can be derived by
considering |wi=v}i;7%;. Solving both Riemann-Hilbert problems yields the func-
tions P (z, 0), and P (0,w) subject to the normalizaton constant P (0,0) which is deter-

mined by cvaluating P (z,w) wz=t = 1.

In order to carry out the reduction outlined above there are a few details left to
check. First, we must guarantee that P (z, 0) has no poles (i.e. is analytic) in the ex-
tended region of analyticity ( l20 <\ u 750). Similarly, P (0,w) must be shown to be
analytic over Wi\, 7%;". In order for the system to be ergodic, the solution space
to the Riemann-Hilbert problem must have a single dimension, Therefore, the winding

numbser, x, of G(z) = g%% on the contour | z| SV 7A] must be zero, The stability

conditions of the system were derived as a result of proving that x=0,

Although the reduction technique provided by [Fayo79] is elegant, it is also
limited. Specifically, the technique relies on the kernel function K (z,w)=0 to provide
an analytic continuation of the System equation. However, this property is limited to
simple state spaces and, hence, simple kemnel functions. The problem we present in
Chapter 5 has a kernel function that is much more difficult than the one analyzed in
[Fayo79], and we cannot extend the region of analyticity for the unknown functions
beyond the unit polydisk (I1zi<1,Iw!<1). Cohen and Boxma [Cohe83] developed a
parameterization technique that can handle more sophisticated kernel functions than
the one in [Fayo79], however, it cannot handle kemel functions where the mapping
functions of the variables (2,w) are not simple curves. In Chapter 5 we develop a prob-
lem where neither of the two mappings, z (Iw!=1) and w(lz1=1), are simple curves.
To solve our boundary value problem we use the Splitting Technique developed by
[Tayl88). This method is the most general solution method for these boundary value

26



problems to our knowledge. The Splitting Technique handles ail kernei functions that

have continuous mappings, z (!wl=1) and w{l zI=1) in the unit disk.
1.4) Motivation

What is so bad about running N machines independently of each other? As-
sume that no machine is overloaded and each is modeled as an M/M/] queueing sys-
tem. It is simple [Livn82] to derive the probability that there is at least one idle pro-
cessor and at least one waiting job. Since each processor is independent and identical

1o all others (assuming homogeneity) with Pr [ processor idle ] = P o = (1-p) we have

Pr(21 processor idle ; 21 job waiting | =

E: N] PS (1-PoV * HN* =1 - p¥ + (1-p)¥ [p" - (l+P)N]

where H' is the probability that at least one job is waiting given that i processors are
busy, is given by.

[;] (1=Po—P1Y (Po(1~Po))'™ (A=Poy -,

(1-Po) (1-Py)

i
Hi = J=1

Py =Py(l - Py) is the probability of one in a system (job in the server only). The
probability (of at least one system idle while a job is waiting in some other queue) as a

function of p is shown in Figure (1.2) which was originally produced in [Livn82].

There are two aspects of the graph to note. The first is that with relatively few
systems (N =5) there is already a high probability of wasted capacity over the expected
range of p. The latter note is that as N gets larger the probability of wasted capacity
goes to one for all loads (i.e. Pr[21 processor idle ; 21 job waiting ] =1 for all p in

the range 0<p<1). The wasted capacity is the main motivation for load balancing al-
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Figure 1.2
Probability of Idle Capacity with Work in the System
gorithms. The best situation we could hope for (in the homogeneous case) is an
M/MIN queueing system, while the worst (if we are not too stupid) is M/M/1. Since
Load Balancing algorithms require some communication, the performance will fall
somewhere in between M/M/1 and M/M/N. Eager et al (Eage84]. was able to show
that simple schemes can improve the performance dramatically; however, the work
was limited to showing some principles and did not derive algorithms for optimum
performance in a more realistic (heterogeneous) setting. Tantawi et al [Tant85]. used

a more realistic model but provided only a centralized algorithm. In addition, the au-
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thors assumed a triangle inequality which might hold for broadcast nets but not for
general networks. Thus in a real setting there will be intermediate types of nodes
which both accept and send out remote jobs. Kurose and Singh [Kuro86] presented a
distributed algorithm that is claimed to converge quickly; however it is extremely
inefficient in the communication complexity. Furthermore, the nodes do not use any

form of threshold which has been used in other models as a control variable.
1.5) Summary of Results

In this dissertation we study the design and analysis of load balancing (and
sharing) algorithms in a distributed processing environment. The underlying com-
munication networks connecting the processors are either general point to point or
broadcast networks. We assume a static or quasi-static environment. That is, the exo-
genous arrival rates vary slowly and the load balancing (sharing) algorithms are able
to track the input rates and adapt accordingly. Each node in the network has one or
more processors and one or more communication links to its neighbors. Jobs that enter
the network at node i can be processed at a processor in node i or at any other proces-
sor reachable from i. We assume that any files that are needed to process a job are re-
plicated throughout the network, or that the files are short enough to be transmitted
along with the job to another site. We assume further that the results of any job are
short in length and that the time of transmission is negligible compared to processing
and transmitting the job. Thus, we do not include the return time (sending the results

back to the originating site) as a cost in any of our models.

In Chapter 2 we model the underlying network as a general point to point net-
work. The strategy used is to minimize the average response time of a job in the net-
work by transferring jobs from one processor to another by using routing variables.

We detail a distributed load balancing algorithm based on Gallager’s Minimum Delay
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Distributed Routing Algorithm [Gall77] in which each node computes its own routing
table based on the marginal delay at that node and at its neighbors. Our algorithm has
a number of improvements over the one presented in [Kuro86]. We do not require an
artificial approximation for t.he average delay at high udlization; Qur algorithm in
Chapter 2 incorporates the loop free property of Gallager’s algorithm. (This is a criti-

cal feature for a load balancing application.)

The main result of Chapter 2 is that the processor load balancing problem in a
quasi-static network can be reduced to a packet routing problem. Once the transfor-
mation (or reduction) is accomplishod then all the results that were developed for
packet routing (flow control, routing, etc.) can be applied to processor load balancing.
Using our reduction method, a number of previous load balancing algorithms

[Kuro86, Silv87, Silv84] are easily derived from the packet routing equivalent.

In Chapter 3 we modify the supporting network presented in Chapter 2. Here
each node uses a threshold policy to control the flow of jobs to its own processors or
to its neighbors. The contribution of this chapter is an optimal (in terms of the average
response time of a job) distributed algorithm that lets each node determine the value

of its threshold based on the marginal delay at that node and at its neighbors.

The model in Chapter 4 is a broadcast network of N homogeneous nodes. We
present a new model in which the arrival rate of jobs at each node is drawn from a un-
iform distribution independently of the other nodes. We computed a tight approxima-

tion, Ty to the average delay in such a network:

Ty = —2 3 a-
TN =P [m(e) a e)]

where [0, 1-€] is the range of the arrival rate to any node. We provide a simple, yet
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efficient, algorithm to match up the K most heavily loaded users to the K most lightly

loaded users in O (Klog(L max)) bits 1, Nodes that are paired share their pooled input
rates equally. The effect of the matchings is to reduce the average network delay
drastically by involving relatively few nodes. We compute a tight approximation for
the average delay with load sharing:

Ao | (NADINNIK) - (VoK +1)
N-2k N—K+1

We then extend the model by including a communication cost for the load sharing
rraffic. By combining the average processing delay with the average communication
delay we derive the optimal number of pairs in a network of N nodes to be
K* =2C/p, where C is the capacity of the communications channel and 1/j is the
average processing time of a job. We then compare the pairing scheme to a clustering
policy where the nodes randomly select "buddies” to form clusters of size 2,3,...K.
We derive 2 bound on the tail of the distribution for the delay in a cluster with K
nodes. This bound allows us to determine the probability of exceeding a particular de-

lay value given K nodes in a cluster.

In Chapter 5 we return to the threshold policy used in chapter 3 and analyze a
particular system. our intention is to model a central server system in which satellite
workstations are connected to a central mainframe server. Our system consists of two
nodes in tandem, in which each node has one processor. The first node uses a thres-
hold, T, to determine when to transfer jobs to the second node, while the second node
processes all incoming jobs. Even this simple queueing model is intractable using
standard queueing theory techniques. We approach this problem numerically, by first

transforming the queueing problem into a Boundary Value problem. Then we numeri-

1 L max is the maximum average load any node in the network can cxperience and is
equal to 1-€.
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cally construct two analytic functons ®(z) and W(w) that are the generating
transforms for the boundary states in the queueing problem. We prove that (under cer-
tain stability conditions) ®(z) and W(w) are the unique solutions to the boundary
value problem and hence, the probabilities obtained from these ransforms are the
unique solution to the queueing problem. For T'=1, our proof is complete except for a
restricted set of the parameter space (A, +A2,12,0). For the cases not covered, we
conjecture that the solution is unique based on extensive numerical evidence. In our
proof of uniqueness we derive two stability conditions (on the parameters) that makes

the system of steady state equations ergodic.
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CHAPTER 2
QUASI-STATIC NETWORKS

In this chapter we develop a simple static load balancing network model.
Essentially, the load balancing problem is reduced to a message routing problem
which has been solved already. The load balancing algorithm may either be central-
ized or distributed. The centralized version closely follows the Flow Deviation
[Frat73] algorithm for minimum delay routing in a packet switched network. The ai-
ternative distributed algorithm closely resembles the algorithm presented by Gallager
[(Gall77] and modified by Segall [Sega79]. As opposed to the centralized algorithm
which is static, the distributed algorithm allows the network to adapt to a slowly

changing environment.
2.1) The Model

The network is modeled exactly as a packet switching network. The backbone
of the network is a set of communication nodes that are interconnected by full duplex
lines (of possibly different capacities). Processing nodes (CPU’s) are attached to com-
munication nodes by links as well. The network can be modeled as a graph G with a
set N of communication nodes, and a set E of communication links. For the purpose of
simplifying the presentation an extra vertex, V_OUT , is used to denote a fictitious
destination. The processors in the network are represented as links connecting the
communication nodes with the virtual destination, V_QUT. Thus if there are K pro-
cessors attached to node i then E will include K separate edges from vertex i to

V_OUT. Let P (i) be the set of processors at node i.
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It is assumed that the traffic (number of jobs in the network) over a long period
of time is large enough so that a single job is an infinitesimal portion of the traffic. The
model may then deal with the jébs in terms of flows (number of jobs per unit time)
rather than number of jobs. Another assumption is that the traffic entering the network
behaves as a Poisson source with total rate . Each communication node i in N has a

separate Poisson arrival stream with rate y; (Y= Y. ¥i). The processing times for jobs
ieN

are drawn from the same distribution (no matter where the job originated) while the
ransmission times are drawn from another distribution. We assume that the process-

ing times are independent of the transmission times.

Let f; x be the flow (of jobs) on link (i,k) ((i,k) in E), and let ﬂ'pj be the flow
from node i to V_OUT through processor P;. The capacity for communication link
(i,k) is denoted as C;;, and the processor capacities (in terms of operations or bits
processed per second) are C;, P The flows then have the following constraints:
2.1a) fix20; V¥ (i,k)eE

2.1b) fip 20, ViinN; ¥V PieP (i)

210) Tfa+ X fir, =Yt }.‘.Nﬂi
J€

keN PieP (i)
2.1d) fab<Ca
2.1e) f,'_p}.E<C5,pj

The third constraint is a statement of the conservation of flow through a node. The
parameter b, is the average number of bits per job, and ¢ is the average number of in-

struction cycles per job.
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Let Dix(fix) be the average delay on link (i,k) given that there is a flow f;; over
the link. We assume the following properties (as in Gallager) for the delay function:

2.1f) Dyu(fy) is a function only of the total flow in link (i,k). The consequences of
this assumption are discussed in [Gall77].

2.1g) Du(fi) is a non-negative continuous increasing functon of the flow f; with

continuous first and second derivatives.

2.1h) Diy(fx) asymptotically approaches infinity as the flow f; approaches the capa-
city Cp.

2.1i) Dy(fy) is Convex up.

An example of Dy;(f;) given by Kleinrock [Klei75] is the expression for delay

in an M/M/1 queueing system: -—f‘kb—_ We can use this expression for delay if we
Cia - fud

make an assumption that job lengths (transmission time) are exponentially distributed.

Analogously, Gy p,(fi.p;) is defined as the delay for processor P; on node i. In the

graph model, G,'.pj is the delay across link {,P; from node i to V_QUT. The same as-

sumptions made above with respect to the transmission delay can be assumed for the

processing delay as well. The total delay in the network, denoted by H?f), is given by

the sum of the processing and transmission delays over all the links in the graph.

H—’(f)= X Dulf+ 3 ¥ Giplfip)

(i,k)eE IENP;eP(i)

The minimum delay in the network can be found by finding the set of ﬂows,?:

that minimizes the expression Hﬂ(f). It is a straightforward exercise from [Gall77,
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Sega79] to derive the following Kuhn-Tucker conditions that must be satisfied in ord-
er to find the flow f*, where H(f*)= min H(f):

¥ feasible f
. =ouk; *:>0
D’y (f*u) + a¥, AL
2ok, f¥ ;=0 2.1

Gop pripy] T8>
.p.(f*p.
MR -1V PR *.p =0 (2.2)
The set o*; has the following intuitive meaning, Each a*; is the marginal de-
lay at node i given the traffic flow at the node. If the input to node i (?;) is increased by

an amount € then the resulting increase to the delay is given by € a*;.

2.2) The Centralized Algorithm

The total delay in the network was described in terms of sums of convex func-
tions. Thus any algorithm that uses a downhill search technique will eventually locate
the global minimum delay point. Since the load balancing problem was reduced to a
multi-source single destination routing problem, we choose to use the Flow Deviation
Algorithm [Frat73] to locate the minimum delay "balance”. The algorithm is present-

ed in [Klei76]
2.3) The Distributed Algorithm

We note here once more the similarity of load balancing to the packet routing
problem in computer networks. We are able to take advantage of an existing algorithm
[Sega79] with some minor modifications. Before the load balancing algorithm is

presented, we will explain a few concepts used later oa.
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Based on the Kuhn Tucker conditions for optimality (Equations 2.1,2.2), the
communication nodes will need to know three quantities. The first is the flow passing
through the communication links (f; ;) and the processors (f; P; ). These quantities can
be estimated over a period of time. The algorithm will iterate slowly enough, and use
small enough increments so that nodes should be able to get steady state estimates on
the flow. The second quantity is the marginal delay on the links (D’; ;). We assume
the nodes know the value for the marginal delay for a particular value of the flow, f; s,
either by computing directly from the function D;; or by measuring the quantity
directly on the link [Sega79]. The last quantity is the marginal processing delay
G’,-‘pj. We assume the nodes are able to compute this function in the same manner as

the marginal communication delay.

If we take a snapshot (see figure 2.1) of a load balancing network (or graph),

there are some properties we expect to see, and others we hope not to see. One proper-

ty that should be apparent is that the flows form a directed tree. That is, jobs start

flowing from their origination nodes through a path of intermediate nodes until they
arrive at the destination, V_OQUT. However, along a given path of flow each of the
nodes should be distinct. If a node i appears twice on a path p from origin j to destina-
tion V_QUT, then jobs flowing on path p incur extra delay circling around in a loop
that includes node i. Formally, a node j that sends flow down a path j,iy,i2, * - ,im is
upstream from all nodes iy x=1,2,...,m. If there are two nodes i,k (i # k) that are mutu-
ally upstream from each other then there exists a loop, otherwise the network is loop
free. Unlike the original packet switching network, here we do not use real or adopted
sons. Since all nodes are assumed to have flow arriving from the outside, there are no
nodes with “preferred” sons that carry no flow. We mention in the algorithm explana-

tion how looping is avoided.
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Figure 2.1
Snapshot of a Load Balancing Network

The algorithm works in iterations with each iteration consisting of two phases:
information updating and rerouting. The information updating phase starts at the desti-
nation node V_OUT and ends at the leaves of the tree. During this phase nodes re-
ceive information regarding marginal delays from their downstream neighbors, com-
pute the value of their own marginal delay (o;) and send this value to their upstream
neighbors. Once this phase has been completed at the leaves (nodes that only send out
flow and do not receive any) the rerouting phase begins. In this phase each node i
waits for its upstream neighbors to complete rerouting (increasing or decreasing) flow
to i. When all of i’s upstream neighbors are finished, node i then reroutes the new flow

Y. fj3" based on the marginal delay values of its downstream neighbors. Basically,
jeN
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node i will shift flow from downstream neighbors with larger marginal delays to those
neighbors with smaller marginal delays, The rerouting phase (and the iteration) ends
when the upstream neighbors pf V_OUT finish their rerouting. The algorithm iteration
ends at the same nodes at which it starts. This property insures that iterations do not
overlap, that is, the n** iteration will finjsh before the n+1% iteration starts. In both
phases the algorithm follows the topology of the directed flow tree (from the root to
the leaves and then back to the root), thus the loop free property of the algorithm is
needed not only for efficiency but also for the correcmess of the algorithm. We define
a Blocked set of nodes to be all neighbors of a node { that i cannot start sending flow to
in this iteration. If i were to start sending flow to a Blocked node then 2 loop might

form.

The last note concerns the modifications to Segall’s algorithm. Since the desti-
nation node, V_OUT, is only a virtual node, the responsibility of starting each itera-
tion is with the upstream neighbors of V_OUT. That is, all communication nodes that
send flow to their own processors (direct links to V_OUT) will initiate the next itera-
ton. We still use the fact that @y our =0. In the discussion after the algorithm we ela-
borate further on this modification.

We now proceed to present the algorithm in detail, The notation f™ is the set of
flows at the n* iteration, a? is the marginal delay at node { in the n'* iteration. A step

size | will be used in the algorithm and explained later.
The algorithm is the same for every node i (i=1,2,..,N) in the network,
Phase I. (information update).

1. Wait for the @;’s from each downstream neighbor j. If any

downstream neighbor is blocked then node i declares itself to be
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Phase II. (Rerouting)

blocked. Let NB(i,n) be the set of all downstream neighbors
(plus any other neighbors that sent their «’s) that are not

blocked in the n** iteration.

I.tet Cl? = [[a’k‘+D’£.k]lG,£,Pj}

min
keNB(i,n); P;eP (i)

if for any downstream neighbor & of <o} and

Nlaz+D’; ;—af] < f1 then node i declares itself blocked.

Send af to all but the downstream neighbors. Also, notify them
if node i is blocked.

Wait for a’s from all the neighbors. Let
B(i,n)={j | j is not a blocked neighbor of node i Af3;' > 0)

For all neighbors j¢ B (i,n) let a? j =0 (deviate no new flow to
those blocked neighbors).
For all neighbors je B (i,n) let

ri=lal+D’ ;] ~ min Om+D'; ], G'ip,
aij [ Ji l.j] meB(i,u):PjeP(i){[ m 1.ml :.P,}

and

alp; =[Gip,] - {[0m+D"im], Gip}

min
meB(i.n); PieP (i)
Choose a single processor that has the minimum marginal de-

lay:
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L?=Pj whercaf;:j =0

and K7 =0 for all i. If no such processor exists then choose an

outgoing link that has the minimum marginal delay.
K} =k where ke B (i,n) and (a?, = 0)

and L? =0forall i.

Let f7' be the flow on link (i, k) after all upstream neighbors of

i have completed rerouting their flows. Let

Al =min [fR} ﬂai'.'k]
Alp, = min [ﬁ."?l, , Tlﬂ"-fp,]

Reroute flow away from links (or processors) that have higher

marginal delays. If L=0 then
f"l:'P]} - E:Pj P] *Llu
A 2 -
=1 i+ £ alp+ TAl P=LY
PieP (i) keN
and

fAE=rol =A% VkeN

otherwise (if the processors have higher marginal delays)

, il -ak k=K’
FE=1 i+ T Alp+ TANL k=K
PieP(i) keN

and
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+ ¥

fif, =8 -A}, Y PePG)
4, New flow entering at node { is routed to downstream node or

processor with minimum marginal delay. If L? # 0 then

f:’:‘}% Pj #L:"

f:;}= 2 n
f?Pj + new flow Pj=L|'

and /13! = F52 (for all ke N). Otherwise K}#0
it _ | S22 k»K?
7 2 4 new flow k=K

and f15) = fl for all Pje P (i).

5. The new set of downstream neighbors includes all nodes J with
%11 > 0, in addition to the virtual node, V_OUT, if there exists

at least one processor Pje P (i) with flow f?}} > 0.

6. Send af and blocking status to alt downstream neighbors.

Inidalization of the network is a simple matter in this algorithm. All nodes ini-
tially send their jobs to their own processors. If a node does not have its own proces-
sor then it may evenly divide its incoming flow over all of its outgoing links, The
nodes may then start to measure their respective marginal delays and proceed with the
above algorithm. We assume the existence of a flow control policy that prevents a
short term saturation problem on a processor or link, especially in the initialization

phase.
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The algorithm identifies situations where loops may occur and acts to avoid

them by controlling the path of the flow (see figure below).

X+1

Figure (2.2)
Possible Loop in Flow Tree

Assume there exists a path p of distinct nodes iy, ...,in, Where i is the originating node
and i,, is the upstream neighbor of V_OUT. A loop may occur if a downstream neigh-
bor of iy (x=1,..,m~1) decides to send flow to ix or to any node i, upstream from i;.
Node i, ,, may decide to send flow to iy (y=1,...,x) if the marginal delay at ix,) (0z+1)
is greater or equal to the marginal delay at i, (a). If the flow f; ; ., is greater than
the amount i, can divert away from iy,, [’nl’_cz,-Ml +D' i —a,-,]], there will exist a

loop of flow from i, to ix4; through /y and back to i,. The algorithm detects this situa-
tion in step (1.3) and blocks i, and all nodes upstream (iy, .. .,ix-1) in a blocked set.
The algorithm in step (II.1) will prohibit node ir4; to any member of a blocked set
thus preventing a loop from forming. In the ensuing iterations iy will continue to
divert flow away from iy, (assuming o; ,, 2 o, still holds) undl there is no more and
ix+1 is no longer a downstream neighbor of i;. Only then will nodes {y,...,iy be re-

moved from the blocked set and iy, will be allowed to send flow to some i,
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=1,...0).

There are two differences between our algorithm and Segall’s original algo-
rithm. The first change involves the different functions used for processor delays. In
step (1.2) and throughout phase II each node compares and diverts flow based on the
marginal delays of communication and of processing. However, processors act as
communication links to the virtual destination thus G can be considered a delay func-
tion for that link. The second difference is in the way iterations of the algorithm are
synchronized. In Segall’s algorithm the destination acts as a controller. When the
upstream neighbors finish rerouting flow they send their a’s to the destination node
signaling an end to the iteration. The destination node may then broadcast a message
(=0) to its upstream neighbors starting the next iteration, In this algorithm the desti-
nation is a virtual node, so that synchronizing the iterations is left to the upstream
neighbors of V_OUT. Assume that one node (or a set of nodes) wakes up and starts
broadcasting its marginal delay to its neighbors. Eventually this broadcast wake up
call is propagates throughout the network since the graph G is assumed to be connect-
ed. When the broadcast reaches the leaves of the path tree the first phase will be com-
pleted and the second phase will begin. Different iterations cannot overlap since each
node i is held up from rerouting (Phase II) until all upstream neighbors have sent node
i the value of their marginal delays. Thus all nodes reroute flow for the same iteration

in the same phase.

The step size 1 is used to deviate an amount of flow during each iteration such
that the algorithm eventually converges to the minimum delay. Letting M be an upper
bound to the value of D” (the second derivative of the delay with respect to a flow),

Gallager and Segall have shown [Gali77] that with a step size



n= [211«11\1-"]_l

any rerouting strictly decreases the delay in the network. Greater values for the step
size that guarantee convcrgehcc and speed up the descent of the network delay may
exist. The authors in [Bert84] presents a method of dynamicaily changing the step size
at each node that helps speed up the convergence. However, there exist cases where

the dynamic behavior of the step size causes the algorithm to diverge.

The proof of correctness (and convergence) for the algorithm can be found in

[Sega79] and will not be repeated here.

In phase 2 flow is decremented from all links and processors with high margi-
nal delays and rerouted to the processor or communication link with the minimum
marginal delay. Bertsekas [Bent78] suggested an approach where flow is rerouted from
links with a’s higher than some quantity o to links with a’s lower than o, In
Gallager’s algorithm the value of o’ is the minimum of the marginal link delay plus
the marginal delay of a neighbor over all the neighbors. A simple value for o' is

Z afg' + D""k
,_ keBlin)
|B(@,n)}

That is, &’ is the average marginal delay of sending an increment of flow over all the
downstream neighbors (that are not blocked). A node i then decrements A; j from all
downstream nodes j whose value a}' + D’ ; > &’ and reroutes this flow (plus all new
flow) to all downstream neighbors /e B (i,n) whose value af + D’; j<a’. The rerouted

(plus new) flow should be proportionally distributed, that is

al +D’;

a :I a+ D>

so that nodes with a very low value receive more of the rerouted flow than nodes with
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higher marginal delays.
2.4) Summary

In this chapter we presented a model (previously used) of a load balancing net-
work, and a distributed algorithm for achieving the minimum delay. The algorithm is
efficient in its message complexity. In every round each node sends one message of
constant length to each of its neighbors. Thus the message cormplexity is O(IE1)
where 1E| is the number of links in the net. Although the number of links can be as
high as N2, most nets have a bounded number, M, of links per node. The distributed
algorithm of [Kuro86] has a message complexity of O (¥2) at best, and ON?) at
worst. In addition, the algorithm in this work uses a loop avoidance mechanism, while
the algorithm in [Kuro86) does not. We can reduce the number of iterations needed
tll convergence with the modification that flow can be increased on more than one

link,

Our algorithm can be easily extended to include site constrained jobs. The vir-
tual destination of all jobs is still V_QUT, however, we introduce chains of open
traffic that are allowed only specific routes in the network. Each chain is routed
through a path of links and finally through a processor that is allowed to process that
class of traffic,
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CHAPTER 3
THRESHOLD NETWORKS

In the previous chapter we examined a quasi-static load balancing network and
algorithm. The communication nodes route jobs either to their own processors or to
other communication nodes using probabilities that are updated every so often. That
is, when a job arrives to node i (from another node or from the outside), the job will
be routed to an outgoing link (i,k) with probability ¢; ; or to a processor P; with pro-

bability ¢p,. the sum of the routing probabilities ¥ ¢;,+ Yy ¢p, = 1. The flow
keN PeP(i)

across a link (i,) is just ¢; .f; where f; is the total flow passing through node i. The
distributed algorithm presented in the last chapter minimizes the overall network de-
lay by having each node determine its local set of ¢’s. The problem with routing pro-
babilities is that jobs may get sent off to remote locations when the local processor is
idle or momentarily underutilized. Although the network average delay may be
minimized, the variance of the delay may be quite high. In this chapter we develop a
new approach to load balancing that attempts to correct the short term problems of
routing probabilities yet maintains the minimum delay in the long run. We present a
communication node with a threshold policy in a network setting. Although the model
developed here is ideal for simplicity, more complicated models could be developed

so0 long as the delay function retains convexity.

First, the model will be presented and analyzed in terms of the given parame-
ters. Next, we will develop an optimization problem and show a solution to it. The

model includes an independence assumption regarding the arrival process to each
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node. We include simulation results to verify the assumption,
3.1) Model

The network consists of a set N of nodes, and a set £ of links connecting the
nodes. At each node i there is an outside arrival process which is Poisson with intensi-
ty ¥:. There are also arrivals to the nodes from other nodes, Jobs arriving to node i join
one queue where they wait for service. Each node i has two SEIvers, a processor, and a
communications server. The Processor is used to perform the work the job brings in.
Whenever the processor becomes idle it will select the next job at the head of the
queue (if there is one waiting, otherwise it will wait for the next arrival) and process
the job. Each job has a scrvice time that is negatively exponentially distributed with
an average time 1/ cycles per job. The processor at node works at a constant rate of
R; cycles per second. Combining the Processor rate and the average service time
yields an equivalent model of a negatively exponentially distributed server with aver-
age rate W; = UR; jobs per second, The communications server is used to transmit ex-
cess jobs to remote nodes in the network. If there are 7, Jobs waiting in the queue, the
communications server (when idle) will take the next available customer in the queue
and start to transmit him to another node. If the number in the system drops below
T;+1 then the communications server Stops ransmitting . If there was 2 customer in
transmission at the time, it is transferred to the (idle) processor. The transmission time
for a job is also negatively exponentially distributed with mean 1/c bits per job. The
communications server at node ; transmits at a constant rate C; bits per second, We
can model the communications SErver as a negatively exponentially distributed server
with rate o; = aC; jobs per second. We have made two assumptons in our analysis.
The first is that job transmission times are redrawn from the same distribution every

time a job is transmitted over two or more hops. The second is that consecutive job
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arrivals have transmission times that are independent of one another (independence
assumption [Klei64] ). A further assumption is that job transmission times and job ser-

vice times are independent of each other.

In summary, the network is modeled as a set of independent G/M/2 queueing
nodes with server rates J; and o;. The first server operates whenever there are custo-
mers in the system. The second server operates whenever there are T;+1 or more cus-
tomers in the system. A customer in the second server may be preempted and placed
in the first server if the number in the system drops below T;+1 before his service
(transmission) is complete. The arrival process to a node consists of an external Pois-
son process and a general arrival process from other nodes. Each node may be con-
nected to a number of different nodes. A customer in transmission may be sent from i

to j with probability P; j°

The output process from a communications server is not a simple one. The
overflow process described here is even more complicated than the process described
and analyzed by Cinlar and Disney [Cinl67]. In a typical network, a node has an exo-
genous arrival process plus a bounded number of incoming links. If we assume that
the main source of jobs is from the outside, or that the number of incoming links is
great enough, then the arrival process behaves approximately as a Poisson process.
This assumption implies that each node behaves as if it were in isolation with the
same arrival intensity as in the network. In other words we assume a Jacksonian net-
work of threshold queues. It can be shown for small networks (two nodes) that the
Jackson model does not satisfy the system steady state equations, so that our last as-
sumption is quite bold. In section (3.5) we verify this assumption with our simulation

results.
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The network probability distribution can be expressed in terms of the individu-
al nodal distributions. The equilibrium probability distribution for the number in the
system can be expressed as:

INI

PIN1=B-' [Pl n]
;13 § (3.1)

where ﬂ= (ny,n2,...ny) and P;[ n; ] is the steady state distribution of having »n; jobs
at node { in isolation. The constant B~! is a normalizing constant. Calculating the
steady state distribution for any node in isolation is a simple matter. The only variable
that needs to be accounted for is the number in the system. What the behavior of the
node is or whether there is a job in transmission or not is solely determined by the
number in the system. Below we have included a figure of the birth death chain that

describes the single node system behavior.

Figure (3.1)
Markov Chain for Node in Isolation

The arrival rate is A no matter what the nodal state is. The service rate is 1
when the second server is off, and p+¢ when there are more than T in the system. The

equilibrium probability of & in the (single node) system is:
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if k<T

T A k=T (32)
| k2T

= Irj :1:

where

a7

The total arrival rate to a node i, A;, is composed of exogenous arrivals (at rate ¥;), and
overflow arrivals from neighboring nodes. The overflow rate from a node can be cal-
culated by considering the long term flow of jobs that are communicated, not pro-

cessed. Over a long period of time the flow of jobs that node j transmits is:

T; _
el
fi= i o;P) = Hj K,+0y
£=T+1 1M (3.4)
Hj+or;

A node j transmits jobs only when there are T;+1 or more jobs in the system. In each
state k27 ;+1 the transmission rate of jobs is a constant ©;. A job that is ransmitted

will be sent to a neighboring node / with probability p;; (T Pji=1), so that the
leN

resulting flow of jobs from j to / is expressed as

Liai=1ipji (3.5)
The total input rate to j is given by
Ai=vi+ X fij
A B 3.6)

51



The conservation of flow at each node j requires that

fie+ + ¥
E"‘ fiour =%, .Evf’ G.7)

The average number in the network M is the sum of the individual averages (m;) for

each node, ¥ ;. Since the input rate 1o the net is fixed we sce (by Little’s result) that
ieN

minimizing the average number in the net is equivalent to minimizing the average
response time of the jobs. The average number at a node is easily calculated for this
model using the probability distributions in (3.2) and (3.3). The average number is ex-

pressed as a function of the threshold, the arrival and service rates.

x=TxT4x T+ (T =) | xTo+T(1-y)

)2 Y
7= (1=0) (1-y)
[l-xT xT } (3.8)
—— + ——
1-x 1-y
A A;
where x = -HT Yy = E——. and T is the threshold at node i. The problem with the ex-
l

pression is that the only control variable the node can use is the threshold, T. The
difficulty lies with the behavior of m as T varies. When T=1 (the lowest T can be) the
node behaves as an M/M/2 system with nonequal server rates. When 7 — o0 the sys-
tem behaves exactly like an M/M/1 system. The average number in the system then
starts from a finite value and increases asymptotically to another finite value as T in-
creases. Unfortunately, m; is not a convex function with respect to the control variable
T. In order to handle any optimization problem we need a convex function. We now
express the system average in terms of the flows leaving the node (through the proces-
sor and communication links). From equation (3.4) we have the expression for the
flow of jobs transmitted from a node. Using the same reasoning we can calculate the

flow of jobs , B, processed at a node.
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B=)..:.W°k= WP

k=1

-

The ratio of B/f, when A=y, is given by:

B/f=

and, when A=, is:

Isolating for T yields:

lJ-Po(T+'5)
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A=p

(3.10a)

(3.10b)



3.11)

where

1A (3.12)

Replacing T in equation (3.8) with (3.11) and (3.12) we now have an expression for

the average number in a node as a function of f and B. We denote the delay function

for node j to be

m;(f;.B;)
Aj

Di(f;,Bp =
and the system delay (response time) to be

DB = £ (;+8)) D,Gi.B
j€

We were unable to prove that the average delay in system for a network node is con-
vex with respect to the flow variables P and f. We assume that the delay function is

convex in the next section which discusses the problem formulation and optimization.
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3.2) Formulation of Problem
The load balancing problem (LBP) can now be formally presented:

LBP: Minimize D?f), Tf) subject to the following constraints.

L. T hi+Bi=v; + T fi;
keN

ieN
2. B;j20
3. £20
) 4, Bi <u
- 5. fi<oq;

The last two constraints are not necessary since the delay function approaches infinity
when those constraints are violated (and the step size of flow is small enough so that

we will not overshoot the capacity constraints).

Although the threshold T was presented as a discrete parameter, we will as-
sume it to be continuous for simplicity. Since D; is a function of only fi and B;, we

can find the minimum of D(?: E) using Lagrangian multipliers (¢;,y;,n;). Let

GG Bowm=DGB- To [P~ Bfu]+ 3 snistiat Tus,

JjeN JEN keN

The optimal solution satisfies the following Kuhn Tucker conditions:

a6 _ 9P Lﬁ:ﬁ"'aj] 64041 =0
ok ofx ! , (3.13)

55 — -



oG _ aDj(f;f!ﬁ]) . L
oBjx  OB; 9 +v; =0

(3.14)
fik20 Mjifje=0 (3.15)
B;j20 w;B;=0 (3.16)
From (3.15) we see that either flow f;, is zero or positive yielding:
BD_, LEVJIBJ +¢t {=¢] f}',k>0
fjx >¢; fix=0 (3.17)
From (3.16) either flow P; is zero or positive which yields:
oD;(f;.B;) {= ¢ B;>0
dB; >¢; B;j=0 (3.18)

Equations (3.17) and (3.18) are a compact form of the Kuhn Tucker conditions. As in
Chapter 2, ¢; is the marginal delay at node j. That is, if the input to j, ¥;, is increased

by &, then the resulting increase in the network delay will be €0;. An increase in the

oD;(f:.B;
input at j will cause an incremental increase in the processor delay [—Ja%ﬁ] and
/]
: . . . . BDJ szf-”Bj]
an incremental increase in the communication delay eN + 0 for each

afjk
node k that j sends flow to. Equations (3.16) and (3.17) specify that the optimum point
(f*,B") has been achiwed when the cost of sending an incremental amount of flow to
all downstream neighbors is equal and no more than the cost of sending flow to a
non-downstream neighbor. The cost of sending more flow to a processor should be

equal to the cost of sending incremental flow to a downstream neighbor.
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3.3) Distributed Algorithm

The network can now be viewed as a set of communication nodes each with its
own threshold, processor, and communication links. The problem is for each node to
regulate the flows to its own processors and to other nodes by increasing or decreasing
its "reservoir level” . By raising (increasing the threshold) or lowering (decreasing the
threshold) the dam, each node controls the reservoir of jobs that it holds. If the down-
stream neighbors of a node j are becoming congested, then J could increase the thres-
hold, retaining more jobs for its own processors, and decreasing the flow it sends
downstream. If, on the other hand, j’s own processors are getting congested then j
could lower the threshold (dam) and pass on more of its load to downstream neigh-
bors.

The distributed algorithm for this model is similar to the one presented in
Chapter 2. Both problems deal with local regulation of the flow. One difference with
the previous algorithm is that in this case after a node decides on what the outgoing
flows should be (rerouting), the node has to decide on a threshold and routing proba-

bilities that will achieve those flows.

Another difference with the previous model deals with synchronizing the itera-
tions. Here, all nodes have links to the virtual node (V_OUT) through their own pro-
cessor. Thus the responsibility of synchronizing the phases is with those nodes whose
thresholds are set to infinity (i.e. they do not send flow to any downstream neighbor).
Initially, all nodes may send their input flows to their own processors. This may over-
load the processors for which y>J. We assume that the node will drop the excess input
(using flow control techniques) until it is able to start sending some flow to down-
stream neighbors. The initial value of the threshold for each node is infinity, and the

marginal delay, ¢, is the marginal processor delay. The changes to the earlier algo-
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rithm are during the rerouting steps (phase 2). We now list the new step (2.3’) that

comes right after step (2.3):
(2.3°):

a. ﬁ'!-l = zﬂ:l

keN
b. ﬁiH-l = f‘ﬂ';jl

c. Calculate and set T using equations (3.11), (3.12), /#*!, and
Bn+l

+1
n+l__f'l::t
let Pl ==

3.4) Simulation Results

We ran simulations of the arrival process at a network node with a different
number of input sources. Figure (3.2) includes a table of the simulation results com-
pared to what a true Poisson process with the same intensity would yield. Each input
source was a threshold queue with Poisson input y; = 1 and a service rate u; =.75, and
a transmission rate ¢; = .5. The threshold was varied from 1 to 5. We ran simulations
with different numbers of input sources for each threshold value. The arrival process
to a network node consists of the overflow process from each input source plus the ex-
ogenous Poisson arrival process (with rate ¥). In our simulations we set Yto 0 so as to
study the overflow processes more carefully. We found that by superimposing a Pois-
son process on the overflow processes, the correlation coefficient further decreased

thus making the total arrival process more "Poisson”.
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Arrival Rate Variance .
TS Simulation | Expected | Simulation | Poisson Correlation
T 3479 .%'3‘78 10.62 ; 03017 ]
2 6975 6957 2.36 2.07 0337
1 3 1.041 1.044 1.02 918 0331
4 1.386 1.391 .5601 .5166 027
5 1.738 1.739 .3524 .3306 .0246
6 2.084 2.087 .2433 2296 0266
1 3159 3168 16.7 9.96 0458
2 6324 6337 3.38 2.49 0608
3 9542 .9505 1.34 1.11 .0538
2[4 1.269 1.267 17 6226 .0535
5 1.59 1.584 4465 3985 .0460
6 1.889 1.901 3114 2767 0402
7 2.215 2218 2213 2033 0381
1 2967 297 23.3 11.3 0503
2 .5944 .594 4.33 2.83 0786
3 .8947 .891 1.68 1.26 0813
314 1.195 1.188 .8592 . 072
5 1.49 1.485 5313 4535 0615
6 1.775 1.782 3658 3149 .0519
7 2.085 2.079 2578 2314 053
1 2821 2837 30.8 12.4 0532
2 5661 .5673 5.31 3.11 0864
3 .855 .851 1.98 1.38 0864
4 |4 1.13 1.133 1.027 1168 083
5 1.41 1418 611 4971 075
6 1.698 1.702 4105 3452 0644
7 1.977 1.986 .2945 .2536 0564
] 2.262 2.260 2197 .1942 0448
1 ~2728 2144 37.4 13.3 0512
2 552 .5488 6.2 3.32 091
3 8266 8233 2.19 1.48 1
4 1.104 1.098 1.115 .8299 0891
515 1.382 1.372 6531 5312 0739
[ 6 1.646 1.647 4461 .3689 0729
7 1.922 1.921 3157 271 0614
8 2.199 2.195 2366 2075 0576
9 2482 2.47 1834 .1639 0468
Figure (3.2)

Interarrival Process Simulation Results
Yi=1, W;=.75, o;=.5, 200,000 arrivals per simulation run
T= Threshold; S= Number of Sources
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The expected arrival rate was calculated using equation (3.4). The simulation
arrival rates are within 1% of _the expected arrival rates for each case in figure (3.2).
The variance of the simulated interarrival process is consistently higher than the vari-
ance of a pure exponentially distributed interarrival process (corresponding to the
Poisson arrival process). This observation is expected since the overflow processes
from the input sources are much more bursty than the Poisson process. Each input
source cycles through a period consisting of a phase where the ransmitter is tumed on
and sending jobs at a rate o;, and an off phase where no jobs are transmitted. The
length of time of the off phase depends on the parameters v;, J; @;, and the threshold,
T. In particular, holding ;, H;, and o; constant and varying only the threshold, we see
that the simulation variance (for a given number of input sources) is closer (both rela-
tively and absolutely) to the pure {(exponentially distributed) process variance when
the threshold is lower. When T is smaller, the "off* phase is smaller making the
overflow process less bursty, hence the smaller variance. For any particular threshold
T, the variance of the simulated process approaches (both relatively and absolutely)
the assumed process as the number of input sources increases. This last observation is
also no surprise since it is well known that the superposition of N independent renewal

processes tends towards a Poisson process for large NV (Palm-Khinchin Theorem).

In the last column of figure (3.2) we listed the correlation coefficients of the in-
terarrival process for each simulation. We observed that the correlation never exceed-
ed 10% (which is small). Furthermore, for a particular threshold T, the correlation
coefficient decreases when the number of sources grows large. Again, this effect is a
result of the Palm-Khinchin Theorem. We noticed that the correlation coefficient in-
creases with the number of input sources, N, when N is small. We cannot explain this
phenomena although we note it. We also observed that for a particular number of in-

put sources the correlation coefficient increases with the threshold. The increase is
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due to the longer "off” phases. If the last interarrival period was long the next one is
likely to be short (since the input source is now "on"). This likelihood increases if the

"off" periods increase in length relative to the interarrival time during an "on" period.

The result of all these simulations is that in heavily loaded networks (where
load balancing is needed) the independence assumption is valid when the number of
input sources is greater than 4 or 5. The variance of the simulations differed by .1 or
less from the assumed process variance at those points. We did not run simulations
for thresholds greater than 5, however, there is evidence [Eage84] that the source
nodes in a heavily loaded network will have thresholds of 4 or less.

3.5) Summary

We have formulated a new model of a load balancing network that includes
nodes with thresholds. The nodes use their threshold values instead of routing vari-
ables to control the flows. We used the system delay and the constraints on the flows
to derive the Kuhn Tucker conditions for optimality. We modified the algorithm in
Chapter 2 so that the nodes could settle on the optimum flows in a distributed manner.
Each node sets its own threshold so that flow is routed to the links or processor with

minimum marginal delay.
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CHAPTER 4
LOAD SHARING IN BROADCAST NETWORKS

4.1) Introduction and Motivation

The previous two chapters dealt with load balancing algorithms in point to
point networks. The networks serve as the communication basis for a distributed pro-
cessing environment. Jobs that arrive to a node in the network may be processed at
that site or at other sites (nodes) in order to reduce the expected job response time.
The algorithms presented earlier reroute flow (of jobs) incrementally based on local
information that is computed, measured, or received from neighboring nodes. As the
algorithms iterate, the objective function (namely, the average delay of a job in the
network) approaches, or converges to the global minimum. How would such iterative
algorithms perform in a broadcast environment? That is, assuming the nodes were
connected by a broadcast medium, these algorithms are not nearly as efficient in terms
of time and message complexity as are other methods in this medium. In each itera-
tion, every node broadcasts one message (containing the marginal delay at that node),
yielding an O(N) time and message (per iteration) complexity, where N is the number
of network nodes. However, quite a few iterations would be needed until the delay
converged to a point close to the optimum. A far quicker solution is for each node to
broadcast its input (N messages), and for each node to carry out the same centralized
optimization algorithm to find the matching (sources to sinks) that would minimize
the network delay. This is the approach in [Ston78] (far more efficient in time and

messages than the algorithm in [Kuro86] ). If the inputs to the network change, then
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this broadcast matching has to be done every time some node’s input varies
significantly. The cost of this approach is O(N) time and messages each time the net-

work needs to rebalance.

In this chapter, we draw on some intuition discussed in the first chapter. That
is, a little load sharing goes a long way. Rather than try to balance the entire network,
we relieve the high delay at the most heavily utilized machines by sharing their (pro-
cessing) load with some underutilized machines. Although this idea appears in a
number of places, we provide a new approach that matches up pairs of nodes. The
model we develop is completely new along with the expected delay analysis. The
results obtained from the analysis describe the response time as a function of the
amount of load sharing. Our results show that significant reductions in the average
processing time of a job (over the whole network) can be achieved by pairing up a
fraction of the total number of nodes. The amount of work needed to pair up the nodes
is minimal compared to the flooding mechanisms found in other approaches.

4.2) Preliminaries

4.2.1) Model

In this chapter we use a broadcast medium for communication among N pro-
cessors. Each processor (or node) in the network receives work from an external user
population, and (possibly) from other nodes in the network. The external input to node
i (from the users) arrives as separate jobs. The external job stream into node i has a
Poisson distribution with rate ; jobs per second. All of the processors in the network
are identical; in particular, they all have the same speed. All the jobs arriving to the

network are assumed to have the same service time distribution with an average ser-

vice time equal to E seconds. For simplicity, the service time distribution is assumed
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to be a ncgative exponential so that each node can be modeled as an M/M/1 service
station with (external) arrival rate ¥;, and service rate p. All of the nodes have the
ability to communicate with gaich other (i.e. send and receive jobs). The communica-
tion bus is modeled as an M/M/1 service node with an arrival rate of Ay.; jobs per
second and average service time of X seconds per job. The capacity of the bus is C
jobs per second. The input rate of traffic to the bus depends on the load sharing algo-
rithm while the service rate depends on the average transmission time of a job and the
bus bandwidth. The network is modeled (see figure (4.1)) as N M/M/1 queues feeding
a communications server with a fraction of their external inputs, r;y;. The rest of the
external input, (1-r;)y; is processed by the node and "exits" the network after comple-
tion. The output from the communications server is fed back to the individual nodes.

The fractions r; (0<r;<1 ¥ r;=1 ) divide the shared traffic among the nodes. The object
i

of this chapter is to determine the optimum value of these fractions.
4.2.2) Performance Measures

We wish to provide an analytic expression for an objective measure of net-
work performance with and without processor load sharing. Before any load sharing is
done we are concerned with a network of N independent queues. The objective func-
tion used is the sum of average delays of all processing nodes weighted by the fraction
of the total traffic flow that each node sees. Let T be the average delay of a job in the

network, then T can be written [Klei76] as

z
>

~T:(\)

—>

T = .

=]

1 4.1)

N
where T=(11.3\.2, *o,An), Y= X7 is the total input to the network, and T;(A,) is the

i=1

average delay at node i ( from section 4.2.1):



On
o
P Oy
(D
O

Figure (4.1)
Model of a Broadcast Network
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Ti(h) = —5—
A 4.2)

 (ALE

T

At no loss of generality, we assume p=1 (at all nodes) for the remainder of this work.

After the network redistributes the traffic there are two components to the
average job delay.The first component is the processing delay (expressed in the previ-
ous equation) with input rate A;, the total flow to the processor at node i. The second
component is the communication delay experienced by the jobs that are sent from one
node to another for remote processing. The amount of traffic that is communicated
through the bus is:

1

N
2 Z I‘Y;—l,' |

i=1 4.3)

A'Nﬂ =

The difference 1y;~A; | is the amount of job traffic (sent or received) by node i. The
factor of 4 avoids double counting the same traffic that is sent and received. The com-

plete expression for the average delay after load sharing is:

l-N+1

> N
TR =3 —T:(A)+ D
i§l ¥ i ” (lN-o-l) 4.4)

Where D (Ay.1) is the average delay for the communication server as a function of the

flow through it, Ay ...
4.2.3) Method for Load Sharing

In this section we describe a method of acquiring information and distributing
loads in an efficient manner by taking advantage of the broadcast medium. The objec-
tive is not to completely balance the load, but to address the major imbalances in the

network. We assume that each node is capable of estimating its average load over a



reasonable period of time. However, due to the randomness of the external input,
some nodes may require more time than other nodes to obtain a more accurate esti-
mate of their input rate. For this reason we do not want to use an algorithm (such as
TDMA) in which every node must participate (perhaps broadcasting inaccurate infor-
mation, or none at all). On the other hand, if many nodes wish to participate in a new
round of load sharing, we would like to transmit a minimum of information. The
amount of information transmitted is examined later in this section and in section

(4.5).

The idea is to have a series of rounds in which information is obtained (by par-
ticipating nodes) and traffic is divided up. In each round the network nodes identify
two nodes, namely, the most heavily loaded node and least loaded node. In our model
we assume that the average delay function (of the load) is identical at each node. By
specifying the load at a node, the delay is also specified. The two nodes identified pair
up by evenly dividing their combined loads. That is, the heavily loaded node
transmits a fraction of its load to the other node in the pair such that each node has the
same amount of traffic to process. The amount of new network traffic (due to this
round) is added to the present amount of communication traffic (known at each node,
or at a network leader). If the expected decrease in the job processing time outweighs
the extra communication delay incurred by the most recent pairing then the algorithm
iterates and a new pair is found, otherwise the latest pair breaks up and the load shar-
ing algorithm halts. After running the load sharing algorithm, each node will either
send traffic to another node, receive traffic from another node, or not participate and

process its external inpput only.

Finding the minimum and maximum values in a broadcast environment can be

done efficiently in terms of the number of bits transmitted. It is not the purpose of this
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work to present a new algorithm to accomplish the search. Instead we outline a
method that is a distributed version of the binary search. We assume that a large
number of nodes wish to participate and that there is a maximum load that any node

reports, Lygax-

The search for the greatest (least) load in the network is essentially a search for
the maximum (minimum) number in the range [0,Ly4x]. This problem is similar to
finding the packet with the earliest arrival time in a broadcast network [Cape79]. A
node or set of nodes that wish to initiate the algorithm (due to varying input rates)
synchronize the network by broadcasting a start message over the bus. The start mes-
sage is followed by a variable number of slots, in which the node with the maximum
is determined, followed by the transmission of the maximum value. Each slot serves
as 2 test on a particular subset of the range. A node that is participating in the algo-
rithm broadcasts a one in the current slot if its value is‘within the range being
searched, or remains silent if the value is out of range. All participating nodes listen
on the bus for broadcasts from each other. There are three possible results to a test on
the current slot. The idle result is when no node broadcasts a one. The successful
result is when only one node broadcasts a one, and the collision result is when two or
more nodes broadcast a one. We assume that the nodes have circuitry to detect when
two or more nodes are broadcasting simultaneously. The algorithm proceeds to the
next slot based on the result of the test on the current slot. If the result was a success
then we have found the node with the maximum value. The search stops and this dis-
tinguished node then broadcasts the actual value over the bus. If the test result was a
collision then there are at least two candidates for the maximum. To continue the
search, only nodes that broadcast a one (involved in the collision) continue. All other

nodes are not candidates and do not participate any more. The current range [x,y] is

then halved and the next slot is a test of the top half [%.y ]. For the last case (idle
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result) assume that the range of the current slot is [L;i,y]. The idle result means

that the search found no candidate in the upper half of some previous range [x,y], so

that the search must continue in the lower half. The next slot is then a test of the range
[x,%]. The first slot (following the start message) starts the search over the range

[0,Latax]). The detailed algorithm running at each node i in the network is presented
in figure (4.2). The search algorithm uses a broadcast and listen primitive that is as-
sumed to be provided at a lower level protocol. The primitive is called with a one if a

broadcast as well as listening is desired, as opposed to passing a zero for just listening.

The same search procedure, with one modification, can be used to locate the
minimum value as well. Instead of first searching the top half a range, the algorithm
would first search the lower half. A further refinement is to first search for the first K
maxima and minima. This would require the search process to backup and retest

ranges that had yielded collision results earlier.

When the searching and pairing phases are finished then the heavier loaded
nodes involved in the recent pairings siphon off and transmit the fraction of traffic
(calculated earlier) to their buddy nodes. The communication traffic is reduced when a
node involved in a pairing notices a change in its external input. If the change is
significant then the node suspends the pairing, notifies the network of the drop in com-

munication traffic, and initiates a new round of the load sharing algorithm.
4.2.4) Analysis of the Search Algorithm

Every iteration of the search algorithm cuts the range to be explored by half.
At worst log(Lysax ) iterations are needed to locate the maximum {we assume that each

node has a distinct load value). Each iteration is one message slot with a length of one
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SEARCH (LOAD:rea.I);

vars ,
X,Y:real; /* bottom and top markers respectively */
RESULT: (SUCCESS, IDLE, COLLISION);
STATE: (LOW, HIGH, DONE, OUT);

begin

synchronize broadcast network for search;
Y:= MAXTL.OAD;

x.=0.

RESULT:= BDCST&LSTN(1);
if (RESULT=SUCCESS)
then STATE:= DONE
ELSE
if (LOAD < X+Y)/2)
then STATE:= LOW
else STATE:= HIGH;

while (STATE "= DONE or OUD do
case STATE of

LOW: Y=(X+Y)/2;
RESULT:= BDCST&LSTN(0);
if (RESULT=SUCCESS or COLLISION)
then STATE:= QUT
else if (LOAD >= X+Y)/2)
then STATE:= HIGH:

HIGH: X=(X+Y)/2;
RESULT:= BDCST&LSTN(1);
if (RESULT=SUCCESS)
then STATE:= DONE
else if (LOAD < X+Y)2)
then STATE:= LOW;
end /*case */
end; /* SEARCH %/

Algorithm for Finding the Maximum Valye
Figure (4.2)

bit. Assuming that we would like to locate the first K maxima and minima (K is dis-
cussed in section (4.5)), then the time and message complexity is O (Klog(Lyx)) bits.

The nodes with the maximum and minimum values also broadcast their values which
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adds another O(Klog(Lyax)) bits for a total that is of the same order, An alternative
search procedure is to use TDMA, where each node broadcasts its value if the node
has not seen a larger value brbadcast, or nothing if it has heard a larger value. In the
WOrst case, a lai'gc fraction of the network broadcast their values yielding a time and
message complexity of O(Nlog(Lyy)) bits, where O(log(Lpax)) bits are needed for
each broadcast. We will see later that X is of order VIV so that the search procedure
outlined in the previous section is more efficient than the TDMA solution by a factor

of O(VNlog(Lyuax)) bits.

A cost that was not considered above is the amount of time and bits it requires
to synchronize the network. This cost depends upon the size of the starting set of
nodes and the lower level protocols that resolve collisions. This cost, however, is in-

herent in any load sharing algorithm that operates asynchronously (i.e. when needed),
4.3) Network Performance Without Load Sharing

In this section the average delay for a job is derived for a network with no load
sharing. We wish to evaluate the network performance without specifying a particular
assignment of external input rates, Yi, to the nodes (i.e. A; =7;). Therefore, we assume
that the vector of inputs,?: (1.%, * - -, W) is a vector of random variables, Y, with a
distribution F .,,(% =P [75715. For any assignmcnt,;: to the r.v.’s y there is an expected
delay T('_ys. The performance measure that is derived in this section is the expectation

of T(Yy):

ET ) = [TWdF 4
Y (4.5)

We assume that the nodal input rates are independently drawn from the same distribu-
tion. Each node is modeled as an M/M/1 system with service rate p=1. To keep each

node stable (without load sharing) the input rate carnot exceed 1-¢ for some small
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€>0. Without this limitation the expected delay at each node would diverge to infinity
making it impossible to dcrivq a meaningful expression for the delay in the network.
Thus we assume the input rates to be distributed over the domain [0, 1~¢]. In the next
section where we consider load sharing, we can do away with €. In the following two

subsections we look at the cases for different input rate distributions.
4.3.1) Results for Uniform Distribution

The simplest case is for the uniform distribution of Processing load, that is,

> N Ny,
Fy)=T1Fy(y) = []——
v H”) .-l;Ill-e (4.6)

where v; is the random variable for the input rate to node i. The density function for

the input rate at node i

4.7
is defined only over the domain 0<y,<l-~e. The expected value of T(Tys, which is
denoted by T, can be written using equations (4.5),(4.7), and (4.2);

?=j...j["l_1_Jﬁ_“ﬁ
noowl= Y 1% g 1-e (4.8)

N
The expectation integral is intractable due to the y=Y v; term in the denominator. We
=1

i
approximate the integral by removing y from the inside of the integrai and replacing it
with the expected value of the total input rate to the network, -f This is an excellent
approximation for large N, which is verified later in this section when we present the

simulation results, This expected value is the sum of the expected input rates at each

=_(1-¢)

node, y;= > The approximate expected delay, which is denoted by f",v, is:
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- 2 dy; w N1y |dw
Ty = —L +
N" N(-e) J | I Hi 1-€ J [I*TN Ex H’-’] 1-e (4.9)

The expression has been rearranged to isolate the delay and uncondition the expres-

sion on one random variable, yy. Let My denote the last term (inside the innermost

brackets):
e [ | | dw
t[ -\ o 1% (4.10)
so that
. N-1 dv.
Ty=—2—|[ [ I'I-l’-MN
N(-€) |y =1 1€ 4.11)
Solving equation (4.10) for My, by substituting y =1-yy yields
I ” ! 'Y. - ln(%) +~2_'.1 Yi
We define M to be M, which is:
In{—)
M=M, = :
l —-1 (4.12)
1-€ .

The expected contribution of node N'’s delay to the average job delay is summarized
in the parenthesized term on the right. As £-»0 the expected delay mushrooms to
infinity as expected. By substituting the expression for My into (4.11) we have

- 2 |In(l/e) d?," i i
= -1+
Ty N(l1-e) I-e J I n 1-€ -1 1"% (4.13)

i} -1 /=1

There is a simple recursive relationship between f‘N and f‘,,, ( for 0<m <N -1) if we let
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m ay; Y;
Ro=[- (124
and rewrite equation (4.13) so that
Ni- " T N@-o) | |41 4.14)

The solution to the above recursion is

R,=Mm
for (0<m <N) and the closed form approximation to the expected delay with no load
sharing is:

~ 2 2 2
Ty = Ry = =
N = Nae N = Na—e N = lep

ln(—:-)—(l—e)] 15

It is surprising to note that the rightmost equality in the above expression is indepen-
dent of the number of nodes, N. The omission of N is due to the approximation in
equation (4.9) where the sum of input rates was pulled out of the denominator and re-
placed by the expected sum, ¥. The approximation gives the same results as the

M/M/1 queue when considering € at O or 1.

4

- €
STV 00 T
We have used L’hospital’s rule to obtain the third equality in the above equation. The
average delay of 1 agrees with the average delay of an M/M/1 queue with A=0 and
p=1. The approximation tends to infinity (like the M/M/1 average delay) when €—0
(when A—p). In the table in figure (4.3), we show how the approximation 'f'N com-
pares to simulation results for different N and €. Each simulation sample consisted of

independently drawing N values from 2 uniform distribution (over [0, 1-€]) The sam-
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ple values were used to compute the average job delay, Ty using the M/M/1 delay
equation. The results of the simulation show that the approximation, f‘N upper bounds
the expected delay and improves as N gets larger. For small N, the approximation and
simulation results differ by 15% . However, as N gets larger (i.e. N=500) the
difference shrinks to 5.5% . The difference is the result of pulling ¥ out of the denomi-
nator of the expectation integral and replacing it with ? For large N we note that this

approximation is validated by the simulation.

£ N Tn Simulation | # samples

e s s
") 7.32 40,000
107 7.3717 733 40,000
300 737 30,000
13 11.02 40,000
I 11.60 30,000
107 —pgp 11841 1174 40,000
300 1181 30,000
§8 %5.3? 30,000
) W) 30,000
3 X i 8'33 30,000
i 20, 30,000
105 F29_1 21006 2077 40,000
o0 | 2! 30.79 30,000
300 20.82 20.000
10 73.45 20.000
—6 5 23.52 40,000
107 oo 25631 —535% 40,000
300 34.39 30.000

Comparison of (No Load Sharing) Processing Delay Results with Simulation
Figure (4.3)

The same type of delay analysis can be applied to other systems as well. The
waiting time for an M/G/1 system depends on the first two moments of the service dis-
tribution, but only on the first moment of the arrival process. From [Klei75], the aver-

age system time for M/G/1 is:
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N1+C})
2(1-y)

T=1+

where C% is the coefficient of Avariation (standard deviation divided by the mean) of
the service distribution. The average delay for a network of M/G/1 nodes (same ser-

vice distribution at each node) is:

iMIGIl = I

IN % [ ¥1+Ch)
M TN'=1

T ]I'If(*r,) Y;

Using the same methodology as for the M/M/1 case we obtain:

1 2 1
- 2 In(=) Cs~1 | In(—)
Ty = — € + —_ e 1
1-¢ e 1 2 e 2(3—8)

For the case of the exponentially distributed service times (C3=1) the above result is

equal to equation (4.15).

The delay expression for M/G/1 models depends only on the first moment of
the arrival process. However, the delay expressions for G/M/1 and G/G/1 systems rely
on the first as well as higher moments. Our methodology, which is well suited for
M/G/1 systems, is questionable for G/M1 and G/G/1 models. It is not clear how the
higher order moments of the arrival process are affected when the first moment is
selected using a probability distribution. For Poisson arrivals, the second moment is

related to the square of the first; however, this is not true for other distributions.
4.3.2) Results for the Beta Distribution

In this section the input rate to a network node is drawn from a Beta distribution, that

is:

f o) =AY (1) 0<ys1 (4.16)
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where A is the normalization constant given by

_ I'(b+c+2)
IT'Gd+1)Clc+1) 4.17)

The parameters b,c¢ of the distribution can be any two real numbers. The notation I'(x)
denotes the Gamma function applied to x [Abra72]. In the case where x is an integer,
then I'(x) = (x-1)!

There are two reasons we include the Beta distribution in our analysis. First,
many unimodal distributions can be approximated by changing the parameters b, and
¢. In Figure (4.4) we show some sample Beta distributions with different parameter
values. Second, the distribution has no mass for the case v; = 1 (for nonzero c) thus

eliminating the need for the € correction. The network delay approximation f‘,v, is

Ty=—2f-- Iz [Ay”(l-y,) dy,]

Nyy Tvi= 1_7‘ i=
where

1
_ ¢ g b+l
‘l[”b“"’) N=yem

As in the previous section, we isolate the integral for the N** term.

1 N-1

‘Y.
Ayy(l °d
I[[I_TN 2 l_ij (=) dyy

1
): T A t[ W 1)y

However, the integral on the right hand side is the inverse of the normalization con-
stant, A’, for a Beta distribution with parameters b’=b+1 and ¢’=c —1. From equation

(4.17):
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A’ = - T+c'+2) o _Tb+c+2)
Td’+1) T'(c’+1) I'(6+2) I'(c)

so that M is now:

N1 +Lb+c+2)  T(b+2) I(c)

M=,.=1 1%~ T(+1)T(c+]) T(G+c+2)

=”-1 Yi b+1

+ ——
i=1 1—7" C
We used the following property of the Gamma function [Abra72] to simplify

T'(c) T'(b+2)
Te+n 24 T(b+1)’

that is,

IFx+1)=xI'(x)

After substitution of M the approximate average processing delay expression is:

_ (b+c+2) - NL% b+l
N(b+l)I -[wa’[ll—»y,- c]

which is solved recursively (as in the last section) to obtain:

T = b+c+2 N(b+1) - btc+2
N(b+1) C c (4.18)

The parameter ¢ is equivalent to the correction factor e used earlier. As ¢ approaches
0, the distribution is zero for all 0<x <1, with an impulse of 1 at x=1. The average ar-
rival rate then equals (or approaches) the server rate, saturating the server and causing

an infinite delay.
4.3.3) Results for the General Distribution

The approximation equation (4.9) can be adjusted for a general distribution for
Y; defined over the domain [0,1~-€]. The network input rate, v, is removed from the

expectation integral and replaced with the expected value, -f The quantity M (equa-
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Figure (4.4)
Beta Distribtuion Function
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tion (4.11)) is then calculated for the distribution given. That is, for general £ (y;)

1€ (yop ..
Y. W
M= U o
! [Ei Ty Ty [ W
N-i Y l-e , !
=y — + d
E. T 15‘1 [v~] fawdyw

where we have expanded the M/M/1 delay expression at node N into a power series.
By moving the integral inside the summation, we see that the M term is composed of

the average delays at the other nodes plus the sum of the moments of yy.

s 1% =3 (4.19)

Replacing the expression for M into the expression for f'N. and recognizing the same

recursive relationship seen in the previous section, we have

jIA”N=I\r%-fl\’[!ijl?]=l+-7—£+£+ .

LA { (4.20)

whefe ? is the /* moment of the general distribution.,

As a check, we can calculate the approximation for the uniform distribution.
The /* moment is given by
1-e !

T_ ¢ X _ (e
r= ! o= I+

The approximation, Ty is then written as:

s 127 2 Z(a-gitl
E:§1 (1-8)21§ [+1
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_ 7] [ (l_e)l'l-l _a
= er J:,_‘,o R

2 hi(%)

=t )
-0 1<

1

which agrees with the result in eq. (4.15). The calculation above uses the series ex-

e |

pansion for the natural log, that is, In( 1—x)=lzl-‘fl-.

Although the results derived in the last three sections do not include any load
sharing, there are two reasons for presenting the results. The first is to present and jus-
tify our approximation approach. The approach derives the expected job delay in a
network with input rates that are drawn from a common distribution. The second rea-
son is to compare the network performance with and without load sharing. In the next
section, we extend our approach to obtain closed form expressions for the delay in a

load sharing environment.
4.4) Results for Broadcast Networks With Load Sharing

The method (and algorithm) for load sharing was described in section (4.2). In
brief, the network matches up the node with the maximum delay with the node that
has the minimum delay. This pairing process continues for X iterations until the com-
munication delay incurred from the last pairing exceeds the amount of time saved in
the processing delay due to the benefits of load sharing. In this section we obtain an
expression for the expected processing delay given K pairings (K'=1,2,...,n/2). We
use the uniform distribution for the nodal input rates for the remainder of this chapter.
Although we were able to find an expression for f‘N using a beta distribution, we could

not do so in the case of load sharing. This will become apparent when we derive the
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resuits using the uniform distribution.

As the algorithm proceeds and pairs up more nodes, the processing delay can
be written as the sum of two components. The first component is the delay contribut-
ed by the nodes that have not been paired up yet. The second component involves the
nodes that are already sharing their loads. If the number of network nodes, N, is very
large then we can expect that the maxima identified through the X* round had values
of load very close to 1-€, while the minima had values close to 0. Each pairing yields
two nodes each having input rates that are roughly %4, and average delays of 2
seconds. This second component is weighted by 2K/N, the fraction of nodes paired
up. For small X, the weighted second component is close to 0, and completely dom-
inated by the weighted first component. For the next few sections we are concerned
only with small X and therefore we ignore the second component entirely. The prob-

lem for this section is to obtain an expression for the first component.

After K pairings the network will have N 2K remaining unpaired nodes with
input rates distributed uniformly over[0,xx], where Xy is the value of the
K" maximum. Our first attempt at calculating the new network delay is to use the
value xx in our previous delay expression (4.15) as an upper bound to the range, and
then to uncondition that delay based on the density for the K** maximum, Jx nx).

First we calculate the cumulative distribution of the X maximum.

Fg.n(x) =P (Xgnsx)

N i N-i
N | x X
= . 1
s=av§(+1 [‘] [1'5] [ 1—8] (4.21)

This equation results from observing that the K** maximum, Xg ., will obey Xg n<x

only if at least N-K'+1 random variables have values that are less than or equal to x.
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The probability that i uniformly distributed r.v.’s (W -K+1%i <N) each have values <x

i N—i
is [lx ] [1 1:-:] multiplied by the number of ways of choosing i out of N ran-
{ -

dom variables. The approximation, Ty, can be modified by changing the range of the
integrals from [0, 1-€] to [0, X g .»].

1
- 2 ln
TN!XK:H = X [I_XK.N]

K:N -1 (4.22)

XxN

For large N, and small X, the values of the first X minima will be small enough that
the lower bound of the range will be kept at 0. The new approximation is expressed

by unconditioning f‘m xx using the density for the K * maximum (derivative of equa-

tion (4.21)):

Tk =

N-% 4.23)
1- -1 N-i-
2 ‘“[1—_1.;] ] I TR 1 3
JI — 2 o 1|i=N-K+1 i 1—-¢ 1-¢ 1-¢ 1-¢

X

The above expression is intractable due to the presence of the logarithm and hyper-
geometric terms. Instead of solving the integral exactly, we now derive a number of
approximations that yield successively better results when compared to simulations.
The first approxﬁﬁon to f‘N..zg is to assume that the input rates to the N-2K nodes
are uniformly distributed over the domain [Wy_ k.15, Mg ], Where pg.y is the ex-
pected value of the R** maximum out of N random variables. The mean value for

Mg can be easily derived or found in [Davi70]
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1-¢

AN = 11 dFp .n(x)dx =

N-R+1
(1-e)
N+1 (4.24)

Thus, the expected network input rate for N 2K nodes is

[U-K:N_I-W—KH:N] - (N—ZK)(I—E)
2 2

Y= (N-2K)

The probability density for the input rate to a node is uniform over the new domain

[UN-k+1:8-HEN]

ay; _4d% | N+l
HEN ~KN-k+siN 1€ {N-2K+1

(4.25)

Using the new expressions for the integration bounds, the density, and the network in-

~ 1 ~
put rate in equation (4.9) we have TI(V)—ZK our first approximation to Ty _x:

(m [ N+1-K(1~g)
(1) 2 (N+De+K (1-€)
Tnax = > -
(1-&) | [n-2k+1 ] (4.26)
—|(1-€)
| N+l

In contrast to equation (4.15), the approximation here depends on N and also K. Even
as N gets very large the logarithmic term, which dominates the expression, remains
dependent on ¥, and X. In the table in figure (4.6) we show values of iﬂlzx for some
representative values of N,K, and e=107%. The table includes simulation results for the
same parameter values. In each simulation sample, the first X maxima and minima
(out of N r.v.’s) were identified and paired. The simulation delay includes the delay in-
curred by locally processed jobs, as well as shared jobs. Note that differences between
simulation results and f‘ﬁlu now differ by =10% even as N gets very large (N =500).
Another problem is that the approximation is no longer an upper bound to the simula-

tion results as was the case in section (4.3.1). The reason for the poor behavior is that
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using Py-x+1:N» bxy for the integration bounds is too aggressive. There is a small,
but not insignificant, probability that one of the remaining N-2X nodes has a value
that is larger than {x.y. 'I'lus -value will be a large component of the delay calculated
by the simulation. However, the approximation, i"ﬁ’_u, does not consider this case at
all, thus underestimating the expected delay. Herein lies the solution as well! Let us
again consider the remaining N —2K random variables. Instead of using a uniform dis-
tribution, as before, the r.v.’s will be drawn from a new distribution that gives de-
creasing weight to the upper end of the domain where the K maximum is expected
to be. The domain of the new distribution will be [0, 1-¢]. At the low end, ¥; will be
distributed uniformly, however, at the high end the density will drop off towards 0
reflecting the probability that v; is greater than ytx ..

Jrew(x) =G f(x) P [ug.n>x]

where G™! is a normalizing constant. Indeed, when x is small then P{pg.n>x] is
nearly one, and x is distributed as before. As x increases, the probability P[pg.y>x]
decreases slightly until a point xo where P [l y>x] drops precipitously. Thus, ¥; is
distributed even at the high end of the domain, but with a much smaller probability
than at the lower and mid range. The probability, Py .y>x] can be determined from

equation (4.21) and the complete expression for the new distribution is:

=

new(X) = — -
Jnew(x I—QE [{;’] . N-j x j£ 4.27)
£j=K ] 1-¢ l-e | 1-¢

The above distribution reflects the pairing of nodes by decreasing the probability mass
at the high end of the range. Our new expression does not take into account the nodes
with the minimum values that were removed (by the pairing). A more realistic expres-

sion would also include a decrease in the probability mass near the low end of the dis-
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tribution range. However, the low end does not contribute much at all to the delay, so
that neglecting it does not affect the approximation much. In figure (4.5) we have
plotted the new distribution in equation (4.27) for some values of K, the number of

pairings. It is evident from the figure that the distribution falls off earlier for larger K.

Note that the equation in the denominator of equation (4.27) is equal to

N-K+1
N+1

of summation and integration, and recognizing the normalization constant for the Beta

for any distribution f (x). The result is easy to see after changing the order

function, viz.,

1-¢ N

[ 100 Pua>r1=ff 0 3 M @ria-r ayar
x j=

V)fr @-i-F Gyyar @)

n
TSN

(N) | TV =+ TG +1)
. TWN+2)

]
N

N-K+1

N+l (4.28)

To derive the last equality we used the relationship I'(/ +1) =/! when I is an integer.

Now let us modify equation (4.9) taking into account the new distribution to obtain

-~ (2) . . ~
Ty -2k, our second approximation to Ty 2.

1-¢ 1-¢
A(2) 1 N-2K N=-2K x,
Ty ok == ! ces tl)' x;) 1

[ 1 o) & o0 4.29)

IN-2k
Following the technique we have used before, terms relating to the last node (r.v.) are

moved to the right to be computed first,
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Sample Distribution After Pairing

87



““1m

@ 1 [“‘ l-ey_ox-1 o ]
N-2K o 1 l[ gfm. N-2K

(4.30)

where My _ax is the rightmost integral.

1€y ox-1 .
My_2x = g[ p) 5, N Srew(in2x)

j=1 l—xj H —AN-2K

1-x

N :
2] e
N-2K-1 g, +H’- x |k lii|1-e l1-e| i-€
Jj=1 I‘xj g ———N_K+1

N+1

At this point, the artificial parameter € can be done away with. There will be no prob-
lem of infinite delays as x—1 since the denominator of the delay will cancel with one
of the geometric terms in the numerator. The integral and summation can be ex-

changed in order of evaluation. We then solve the integral by parts over the domain

[0,1] which yields:

N [N] (-1 (N=i+1)!
=K

y VU kU D!
N-K = Ex 1-x; N-K+1
N+1
’Z":N-m
N-2K-1 xj sk i

= Z -+

= |—L ||+ ;f L1 _w=k+
N-K+1 i=K i

The expression for My _ox is always positive, which can be proven by showing the

(4.31)

bracketed term above is always positive as follows.
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N N
N+DY 2N+ Y —
i=x ¥ l'=KN

- (VD) —K+1)
N

>N-K+1

The expected network input rate, Yy_ox, is now

(N=2K) [N—2K+2]

1
W-2k = NV =2K) [x foe (1) = == )

(4.32)

By pilacing ?N_gx (equation (4.32)), and My_p¢ (equation (4.31)) into equation

(4.30), and recognizing the recursive structure as before, we obtain:

N
[(N+1) > - (N—K+1)]
;@ a4 | L =k jl
N=2= N2k +2 N-K+1 4.33)

The above approximation can be simplified (and made even more accurate, surprising-
ly) by using the old expression for the expected input rate ( i.e. ;N—‘ZK:(N =2K)/2, for

€=0) rather than the expression in equation (4.32); this yields our third approximation,

~ ) -~
Tg-zx. to Ty-2x.

i=K

N
2 [(N+l) D Vi-(N-K+1)
%(3) -
N-2x N-K+1 (4.34)

~(1
Figure (4.6) compares the last two approximations with T,Sg)_zx and the simulation
~ 2 - 3
results. The results show that T(hl)_zx, and T1(v)-zx are much better approximations than
~(1
T;(v)_gx, and they also bound the simulation results from above. The last approxima-

. ~(3) . . ~(2) A3 . . .
tion, Ty_zx, 1s much tighter than Ty ,x. Indeed, T;u.).zj( differs from the simulation
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results by less than 1% when N =500 and K'=1,2,3,4. This last observation is surpris-
ing considering that 'Irﬁlzx uses the new distribution £, (x) to calculate -‘;}v_zx,
whereas f',(alzx uses the old (uniform) distribution. The reason is that the network in-
put rate (used for weighting the nodal delay) does not change after the nodes pair up
for load sharing; i.e. the input rate, y remains at N/2. 'I"ﬁlu is consistent with

- ~(2
Y= N/2, whereas va).u is not.

The above approximations do not include the average delay at the 2K nodes

that are sharing load. If we scale Ty ox by (V=2K)/N (i.e. J=N/2 not (N-2K)/2) and
add the weighted delay at the load sharing nodes, 2 [—ZNE] the result is, our fourth and

final approximation to fN—zxi

~(4) 4K

i=K
ok = +
Ty_ox N

N(N-K+1) (4.35)

N
2(N-2K) [(N+l) Y li- (N-K+l)]

Looking at Figure (4.6), the scaling up of the network input rate decreases the expect-
ed delay yielding an approximation that is close to the simulation results. We have
derived two close approximations i‘ﬁ?ﬂm and fs)-zx such that both approximations
are within 3% of the simulation results, It is interesting to note that %S’_M is con-
sistently greater than the simulation results for all ¥ and K. On the other hand, %}f,‘lu,
for a given number of nodes N, starts off (at KX = 1) greater than the corresponding
simulation results and then dips below the simulation results as K increases. The rea-
son for this behavior is that for small K, the second component of i‘i‘,"_u has a weight
factor close to 1. This second component is identical to %,(3)_2,( and is greater than the
simulation results. As K increases the first component (4K/N}, which is negligible,

gets more weight. Since the first component is an underestimation (though not by

much) of the actual delay at the "balanced" nodes, the overall approximation will be
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N | K| Tvla | T | 700 Tnoax | Simulation
0 [ 25631 | 25631 25.631 | 25.631 22.43
10 [ 1 3.629 5.332 4.444 3.955 3.98
2 2727 4.073 2.715 2.425 2.69
O 1 25831 | 25.631 T 25631 25.631 23.52
s0 L1 6.143 1.466 7.178 6.971 6.96
2 4.942 5.724 5.284 5.021 5.12
3 4.285 4.944 4.373 4.089 4.25
O [ 25631 | 25.631 | 75.631 25.631 23.26
100 1 7.396 8.648 8.479 8.349 8.31
2 6.126 6.811 6.544 6.362 6.42
3 5.413 5.951 5.601 5.384 5.49
0_| 25.631 23.6:8’»6 25.231 23.(1531 -
1 8.155 3 9.257 160 9.13
Ol O 0 B T e B . 720
3 6.120 6.609 6.348 6.174 6.25
0 | 25631 | 25.631 | 25.631 25.631 24.39
1 | 10478 1711.659 | 11.613 | 11.573 11.51
500 (2 9.127 9.70% 9.632 9.571 9.56
3 8.348 8.754 8.649 8.570 8.59
4 7.801 8.128 7.999 7.903 71.94
Comparison of Load Sharing Processing Time With Simulation Results
e=1075; 40,000 samples per simulation run

Figure (4.6)
smaller than the simulation results.

It is difficult to generalize the results obtained so far with the same techniques.
As an example, we can ry to approximate the expected Jjob delay when the input rates
are taken from a general distribution. The starting point is equation (4.29). The net-
work input rate wil] be approximated by N-'y.. The normalizing constant in the new dis-
tribution f,,,,(x) is equal to (N+1)/(N-K +1) for any general distribution. The new

(after load sharing) distribution for the remaining nodes is:
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N . ,
159> m(l—F(x))'F(x)”"
_ i
Trew¥)= N =K +1

N+l

(4.36)

The calculation of My_sx reduces to

[’}.’](F OV (1-F 1)) ()
N-K+1

N+l

N

e 1-¢
N-2K-1 v, +g[x]£=lf
1-x
Expanding the M/M/1 delay expression into a power series and exchanging the order

of summation and integration, yields an extremely difficult equation to solve except

for the simplest distributions.

As was done for the no load sharing network, we can replace the M/M/1 delay

expression with the M/G/1 expression. The approximate network delay is:

1 1
~MIGi 1 1 N-2K N-2K X(I+C‘2,)
Tn- == U new (Xi) 1 T
v -2k l[ l[sglf El [ * 2(1=x;)

In Appendix 1 we show that the solution to the above equation is:

N
(N+D) 3 1/f

A MIGI1 =K
ok =2—i% 5
N-K =2 *
Ci-1 V=K +1)N 43 YYD KE-D oy 3 10
N-K+1)(N+2) T 2z =

In this section we derived several approximations to the expected network de-
lay in a load sharing environment. The last two approximations yielded very tight
- results compared to the simulation results. In the next section, we use these approxi-

mation expressions to study the performance of the network as a function of N.X, and
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the communication delay of a "shared" job,
4.5) Communication Costs and Optimal Number of Pairs

In the last three sections, we developed a number of tight approximations to
the average processing time in networks with and without load sharing. Some sample
values of the approximations are plotted in figure (4.7) as functions of X, the number
of pairs in the network. The plots show a dramatic decrease in the average delay even
for small K. The initial steep decrease justifies the intuition, mentioned in the intro-
duction, that motivated this work. That is, that the average job delay is dominated by
a few nodes that have very high utilization. By locating these few "trouble makers”
and reducing their input traffic, the average processing delay can be drastically im-
proved without 00 much effort. This result corroborates one of the findings in
[Eage84] that even a small of amount of load sharing can drastically improve perfor-
mance. Successive increases in K continue to decrease the average processing time

but in decreasing amounts. Eventually, the processing delay will decrease to a valye

of 2, which is the M/M/1 delay at each node with an input rate of 1‘.-_..;_ for a sym-

metric density, f (x), of the input rate x.

In this section, we complete our study of the network performance by finding
bounds (from above and below) to the decreases in the delay as the amount of load
sharing increases. We also introduce a simple model for communication cost and
show a tradeoff between decreasing average processing time and increasing communi-
cation time. Finally, we shall find the number of pairs in the network, X, that optim-

izes the sum of the processing and the communication time.,
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Figure (4.7)
Approximation of Average Processing Delay and Simulation Results



The model presented here is an elaboration of the bus model that was briefly
discussed in section (4.2). The communication media is a one hop multi-access broad-
cast channel. Assume that the load balancing traffic is a major part of the overall
communications traffic being sent over the channel. When K increases, the extra load
sharing traffic increases the response time of the system. We model the communica-

tions server as an M/M/1 node. Thus the average delay of the channel, Dy, given a

flow of fx jobs per second, is Dy =

L where C is the capacity of the communica-
C—fx

tions channel in jobs per second. The fraction of jobs that suffer the exira communi-

cation delay is fx /v, so that the average system time, G (V,K), for a job in the network

is:

G(N,K)=Ty_x + I Dy

Y 4.37)

when there are 2K nodes paired up. The object of this section is to find K *, the op-

timum number of pairs that minimizes G (V,X).

First, we look at the behavior of f-N-ZK as a function of K, and obtain expres-

sions that bound the decrease in %N-ZK (for increasing K) from above and below.

Let VT = f‘N_g(KH)-f'N_gK be the difference in processing time between two
consecutive values of K. We use the expression for f",(\?izx to start with; the reason is
that i'f(\?)-zx is both very tight with respect to the simulation results, and is consistently
greater than the simulation results. The approximation f‘ﬁlzx acts as an "upper
bound” to the actual processing delay (as reflected in the simulation results) although

we have no proof for such an assertion.

(N+1) N (N+1) ¥
VT =2 _%11/ J 2|5 s 121/ ]
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FONK+D) | D B W WO R U

N 1
Y Vj-N=-K)=
j=K+l K

_2N+D
T (N-K)N-K+1)

(4.38)

The difference, VT, can be bounded from above by replacing 1/ in the summation
with the first (largest) term, 1/(K +1). We will use O (V¢T) to denote the upper bound.

_ 2N +1) WN-K) (N-K)
VT SO (VT = (N-KYN-K+1) | K+1 K
-2N
W-EKKE+D) (4.39)

where N has replaced N+1 under the assumption that N >>1. Similarly, the 1/; term
can be replaced by the last (smallest) term, 1/N, to obtain the lower bound denoted by
Q(VgT).

2(N+1)
N-K)(N-K+1)

=22 K<<N

VT 2Q(VgT) = X 4.40)

(N-K) _ (N—K)]

N K
where N >>1 has been assumed again. The above bounds formally describe the des-
cent property of the processing delay. In figure (4.8) the two bounds for V¢ T are plot-
ted along with the exact results. From the figure, it is evident that the lower bound, in
particular, is very tight. The close fit of Q(VxT) is seen by noting that 1/ quickly ap-
proaches 1/N (in order of magnitude) as j increases from K+1 to N. We can obtain the
same expression as in equation (4.40) by considering K to be a continuous variable.
When N >>K then

Tw-2k _203In(N/K) _ =2
oK &K K
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In order to analyze the communication delay as a function of X, we first have
to find an expression for the traffic, fy. Let Fxy(x) be the CDF (Cumulative Distri-
bution Function) for the K ""maximum out of N random variables. The average com-
munication flow is approximately half of the expected sum of the first X maxima (ig-
noring the small load contributed by the X minima). When the N random variables are

identically and independently drawn from a uniform distribution, we then have:

K-1
NK-Y i
fe= L N=l=D) _ 5
k=5 ETNA 2(N+1)
_K[2N-K+1]
4(N+1) (4.4
K[2N K]

Assuming N>>1, we have fy = The above expression appears unitless;

aN
however, the upper limit of the integral is 1 job per second, so that fx has units of jobs

per second. The weighted communication cost of load sharing is therefore:

f_KDK=iK[2N—K] 1
Y y 4V L_K[N-K]
4N

Since both fx and Dy are positive and increasing in X, then fyDgis also positive and

increasing in K.

We now assume that N >>K to see what value of K optimizes the total average

job delay. Qur point is to study large networks (large M) and see what effect a little
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load sharing (small X) has on the average delay. We can therefore approximate the

weighted communication cost as:

k.. _1 K2
—Dg == >
¥ v C-K/

Note that X' must be less than 2C in order for the channel to be stable. If X is con-
sidered to be a continuous variable then we can express the marginal increase in

weighted communication cost as:

1 9fkDx _ C

Yy K qC -k 4.42)

The increase in communication delay for an increment in X is positive as expected.
Returning to equation (4.37), both terms on the right hand side have been analyzed
with respect to K. Thus if the system starts out with K=1 (we assume that the initial
drop in processing delay in going from K =0 to X' =1 will dominate any communica-
tions cost) and keep increasing X by 1, we would expect to reach a point at which the
increase in communication delay would outweigh the decrease in processing delay.
Network managers would be interested in the number of pairs, K*, that yields a
minimum system delay. The point we are looking for is the minimum K such that
G (N.K+1) > G (N,K). For that K, the marginal cost of communication delay (VDgfx)
is greater than the marginal savings in the processing delay (VgT). Also, since
VDgfx is increasing in K and VT is decreasing in X, the total cost G (NV,K”) will only

increase for K > K (for large N >>K). Thus, G (N,K") is a global minimum. Under

the assumption that N >>K the first derivative of f’N_zg is _72 thus the second

.. - . . s 2 .
derivative of Ty_x with respect to X is positive (it is equal to F), as is the second

derivative of fyDg with respect to K. Therefore, the second derivative of G WN,K) is

positive as well, and G (V,K) is convex in K. The minimum of G (V,K) is not at K =0
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since we assume C is large enough to handle the initial load sharing traffic at little
cost. Starting with equation (4.37) and differentiating G (W,X) with respect to K (as-

suming K is c;ontinuous) yicld$:

IGWVK) _ 1 3fkDx Ty_ok
- +
K~y oK Tk

The value of X that optimizes the system cost satisfies the following relation;

1 fxDx = My _x _
y & ok O

The optimum number of pairs, &* can now be found by equating the expres-
sions for the marginal processing and communication delays. We now substitute N/2
for y.

C _2
N(C -Kk*/2) ~ k*

which yields the following quadratic equation:
(K" ~4K'C(1+ /2Ny +4C2 =9

The solution of which is the following root;

. 1
K’ =2 —_— Z_
C [1 + V(1+1/2N) 1]

which simplifies to the following expression for X* when we assume N >>1;

* 1 1
K =2C(l+—~—|<2C
[ 2N VN] (4.43)

When N is large then the optimal number of pairs, K*, tends towards 2C which is the
upper limit on X noted above. This result means that we should push as much flow as

the channel can carry. The result is surprising since the delay on the channel will be
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extremely high when it is fully loaded, which is the opposite of what we set out to ac-
complish. However, we can explain the result as follows. By considering the channel
delay, we added another “server” to the N processors in our model. When N is large
there are many processors that have loads near 1 before load sharing, and the average
job delay is quite high. After load sharing, the average processing time at X nodes has
been reduced, while only the channel delay has been significantly increased. The
overall effect is to reduce the average delay of a job since relatively few nodes are

transmitting jobs over the network.
4.6) Random Pairing

In the previous sections we designed and analyzed an algorithm for load shar-
ing. The algorithm paired up the heaviest loaded node with the most lightdy loaded
node. The two nodes then shared their combined load equally, thus relieving the large
processing delay at the heavily loaded node. The performance of the average job de-
lay involved a tradeoff between communication and processing costs. The question
we now ask is: what would be the average processing delay in a network where the N
nodes paired up at random (i.e. without first identifying lightly loaded and heavily
loaded nodes) and shared their pooled load? In this section we neglect the communi-
cation cost and derive the average processing delay of the random scheme for sharing
the load. The results of this section can be compared with those derived earlier; how-

ever, the reader should remember that the communication cost is left out,

We assume the same model as before. A broadcast network of N nodes each
having one processor. The arrival process to each node is Poisson with rate Y; and
each job has a processing time that is exponentially distributed with rate u=1. The
random variable v; is uniformly distributed over [0, 1]. As with load sharing in section

(4.4) once again we do not need to use €, since there will be no probability that both
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nodes of a pair will each have a load of 1.

A simple scheme is for each node to randomly pair up with another node and
share the combined load equally. We refer to this scheme as clumping. More
specifically, a clump is a set of nodes that pool their load together and share it equally.
The size of the clump is the cardinality of the set. We analyze the network delay when
the size of the clump is two. The total amount of load in the clump is the sum of the
individual input rates. Each of the rates is an independent random variable so that the
distribution of the sum is the convolution of the distributions for the individual r.v.’s.
Let Y be the random variable for the load a node will see after load sharing in a clump.

Y1+Y2

Y=
2 (4.44)

The distribution of Y is the convolution of two uniform distributions and is expressed

as:
OSySl
4y 2
fro) = ady 1
34 ESySl (4.45)

which is a triangular function on [0,1]. Since fy(1)=0 we need not to add guards

against infinite delays. The approximate processing delay expression is calculated by
considering just one node from each of the % pairs. Each node has the same shared

input rate as the other so that considering only half the network will yield the same
result. The approximate processing delay expression is formulated and solved in the

same manner as was done in section (4.4).
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Note that the average processing time of a job is already close to the minimum of 2

(using the uniform distribution over{0, 1] for the input rate.

The result of random pairing in the network is a dramatically reduced system
time. By continuing the clumping process (adding more nodes to a clump) we can
bring the system delay down to the optimum of two (when all nodes share the network
load equally). As more nodes are added to the clump, the tail of the distribution for the
clump load has less mass. In the limit as N,K —<o the distribution is nearly Gaussian. 7
if the clump size is K, we would like to bound the tail of the distribution to determine
the probability of having a high delay in spite of the load sharing. Assume a network
analyst has a specific delay, T"21, that should not be exceeded. What is the probabili-
ty that, with a clump size of K, the delay of the nodes in a clump exceeds T*. All the
nodes in a clump have the same input rate (after load sharing) and the same delay.

Thus the question can be rephrased as follows: What is the probability that the mean

input rate to a node after clumping (S K=Z%) exceeds an amount ¥ which is a func-
K

L
tionof T* (i.e. ¥'= TT:I ). Since all the ¥;'s are independent random variables we can

use the Chernoff bound to find an upper limit to the tail of the distribution of Sx/K.
Let X; represent the original input rate (before load sharing) to the i** node, and f )

be the uniform distribution over [0,1]. We are interested in
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[>1']
Following the procedure detailed in [Klei75] we find My(v) the Laplace transform of
the uniform distribution,
1 1
My()=[edr = - [e*-1]
v (4.46)
The parameter v is used to tighten the bound and is determined by the given parameter

Y'. We will need the following functions.

_ g,
W) = ln(Mx(v)) = In [7 [e -1]]

4.47)
and
dyx(v) Iy -
W) = Y;v _ e'[v=-1]+1
v [g V_1] (4.48)
The Chemnoff bound is given by:
K [we(v)y-vi v
P [SK 2Ky =K7§P(v)] <e [
(4.49)

where v is determined by solving

e'[v-1]+1

Y =v¥0) = —[T

Figure (4.9) lists the bounds for P{Sg/K 2}"] for different values of the clump size, X.
For example, in order to have a clump delay of 2.5 or less, the shared input rate must
be equal to or less than .6. Looking at the first row in the table, we see that even a
clump size of twenty still might yield an input rate rate greater than .6. However for
higher delay requirements (e.g. 7" =5) even small clump sizes (K =5) will yield lightly
loaded clumps with probability close to 1.
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Chemoff Bounds on P[Sx/K2>Y']
Figure (4.9)

4.7) Conclusions

In this chapter we developed a model of a distributed processing environment
that uses a broadcast medium for transmitting the shared load among the various
nodes. Previous algorithms (those presented in chapters 2 and 3 as well as in the
literature) are not suited for broadcast networks, since they try to balance the load by
sending too much information. Our approach, in this chapter, is to unburden the most
heavily loaded nodes by sharing their processing traffic with lightly loaded nodes. To
accomplish this we developed an algorithm that finds the most heavily and most light-
ly loaded nodes and pairs them up. Our algorithm is efficient in time and message
complexity (O (log Lyax) bits and time per iteration) and does not require that all
nodes participate. The algorithm proceeds in rounds until the processing delay at
every node is within a prescribed amount or until the extra load sharing traffic starts 10

increase the overall job response time.

We analyzed the distributed processing environment model with and without
load sharing. Based on the assumption that input rates to the users are uniformly dis-
tributed from O to 1-e we found that the processing delay f'N is closely approximated

by:
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[m(%) - (l—e)}

where € is close to, but less than 1. Using our model we found a close approximation
to the processing delay in an environment with load sharing. Let K be the number of
matched pairs Then the average processing delay with K pairs is closely approximated
by:

N
2 (W+D) Y 1/i - (N-K+1)
~(3) i=K

Ty-ax = N-K+1

The approximation results, along with simulation results, show that significant reduc-
tions in the average processing time of a job can be realized with relatively few pairs.
Therefore, we have a method that does not utilize the network too much, yet
significantly reduces the response time of a job. This confirms our thesis that in a
broadcast network, only a little sharing needs to be done. Note that the results
described in this paragraph are independent of the communication medium (since we

are ignoring the delay due to transmitting the jobs).

We also developed a model of the communication traffic over the broadcast
medium. Using this model we developed a tradeoff between savings in processing
time and communication costs. We found that the number of pairs which minimizes
the sum of the processing and communication delay is: X* = 2C where C is the capa-

city of the broadcast medium in jobs per second.

Another load balancing strategy was presented, in which random groups of K
nodes “clump” together by collecting all their inputs and dividing the sum equally
among the group membe:s. We bounded the probability of having a high delay in the

clump as a function of the clump size, K. We found that group sizes of four or five
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(nodes) is enough to guarantee that moderately high delays do not occur.
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CHAPTER 5
ANALYSIS OF TWO QUEUES WITH THRESHOLD

In Chapter 3 we looked at a load balancing problem in a distributed processing
environment using a point to point data network for communications. The load
balancing was accomplished by using a threshold policy at each node in the network
to decide when to transmit jobs for remote processing. The analysis in Chapter 3 as-
sumes that each node in the network can be modeled as a stochastically independent
system. In this chapter we analyze the threshold queue in a network environment
without making any independence assumption. Our motivation for this chapter is to
provide a numerical technique to obtain the average number in system as a function of -

the parameters.
5.1) Model

The network we are modeling in this chapter is a two node load balancing sys-

tem. One node may be considered to be a "network server” by accepting jobs

transferred from the other system node as well as jobs from external sources.! The
other node accepts jobs only from external sources and either processes those jobs lo-
cally or transmits them to the network server for processing. This is the dynamic load
balancing policy. The model is a small (yet extremely difficult to analyze) example of
the central server model studied by [Tant85]. In that model there are N satellite pro-

cessors that are connected to a central server in a star topology. The satellite proces-

I A source is external if it is not a node in the communication network.
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sors receive external input and process a fraction of those jobs locally. The rest of the

jobs are transmitted to the central server for processing. The central server may also

| accept jobs from cxternal sources. The load balancing policy used in this chapter is

the threshold method. A satellite node will start transmitting jobs to the central server
whenever the number of jobs that are waiting to be processed (at the satellite) meets

or exceeds a threshold 7. See figure (5.1) for a graphic description of the model.

Although the model focuses on one satellite node and the central server, the
other N-1 satellites are included as well, as we now explain. In Chapter 3 we showed
(using simulation results) that the superposition of the output processes of a large
number of threshold queues is nearly Poisson. In this chapter we focus on one satellite
node, and represent the output from the other N -1 satellites as a Poisson source. The
Poisson source, with rate Ay, of external jobs to the second node shown in figure (5.1)
represents the superposition of the transmitter output processes from the other N-1 sa-

tellite nodes.

Formally, there are two queueing systems, nodes 1 and 2. Node 1 is the satel-
lite while node 2 is the network server. Jobs arrive from independent external sources
to nodes 1 and 2 in a Poisson manner with rates A1 and A, respectively. The processor
at node 1 will take the first job waiting at the head of the queue (if any) whenever the
processor is idle. If there is no job waiting then the processor will remain idle until a

job arrives to the queue. Jobs that are processed at node 1 have a service time that is

negatively exponentially distributed with mean length x 1=HL' If there are less than T
1

jobs in the queue at node 1 then the communications link (to the central server)
remains idle. When the number of Jjobs waiting is T or more then the communications

link is activated and starts transmitting the job at the head of the queue. The transmis-

sion time for a job is negatively exponentially distributed with mean time ?=B1-L-. If,
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while the communication link is busy, the number of jobs waiting drops below T then
the communication link immediately ceases transmission of the job it was working on.
The pre-empted job returns to the head or the back of the queue. In the analysis of
this problem we are concerned with the average number in the system so the Markov
description will be identical for any pre-emption policy (i.e. where to place the pre-
empted job). Transmitted jobs and external arrivals to node 2 queue up for processor
2. Jobs in queue 2 are processed in a FCFS manner and have a service time that is
negatively exponentially distributed with mean x5 = 1/j1;. Jobs leave the system when

they have been processed at either of the two nodes.

ol T I__‘*__.
i I PROCESSOR 1
ol
'PROCESSOR 2

COMMUNICATIONS
SERVER

NOOCE t NCODE 2

Two Node Threshold Queueing System
Figure (5.1)

The model is intended to analyze the effect of the threshold on the system
behavior. The problem is difficult enough, thus we have made a conscious decision to
leave out some aspects of a more realistic load balancing model. In particular, a job

that is transmitted from node 1 to node 2 for processing does not have to return to
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node 1 before exiting the system. If the central server and satellites are geographically
dispersed then omitting the return leg makes the model less convincing. However, if
all the machines are colocated then one may assume that users are directly connected
to both machines, and that 3 Job transmitted from node 1 to node 2 includes the ad-
dress for directing the output. A second problem arises with data files that might be Jo-
cated at a satellite node that are used in processing jobs at that node. Transmitting a
Job from one node to another might entail shipping a large data file as wel], There are
two ways to handle this modeling aspect. If the real system has shared memory then
only jobs are transmitted and data files are accessible to cither machine. If there is no
shared memory, then we assume that the data files are to be shipped as well as the jobs
and the average transmissjon time of a job will take into account the mean job length

and the mean data file length in bits .
5.2) Problem Formulation and Solution
5.2.1) System Equations

The system can be modeled by a two dimensional state space. Let n,(2) be the
total number of jobs in node 1 (including any job in the transmission link or the pro-
cessor), n,(¢) be the number of jobs in node 2, at time t. Then (n1(t)n,() nq20,
1220, 120 is the complete set of states that the System can be in. The threshold policy
depends only on the tota] number of jobs in node 1. If 5 1(£)2T +1 then there is a jobin
the transmission link, otherwise it is idle, The preemptive discipline precludes the
state where there are less than T+ in system yet the transmission link is busy. The
distributions for the Processing and transmission time are negatively exponentially
distributed, thus the system is memoryless. Let P; j(1) be the probability that the Sys-

tem is in state (7, ) at time ¢,
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We now state the system conditions for ergodicity (i.e. stability requirements),
which will be derived later in this section. At this point we provide the intuition and

state the requirements so as to move on with the steady state analysis.

The intuition for the following three conditions is that the input rate must be

strictly less than the service rate of the system considered. Considering the first queue

alone; we have
M<H+a
We now give a stricter condition (to be proved in section (5.2.2)):

A < +ofr (S1)
where fr represents the fraction of time the communication server is busy transmitting
jobs. It is given by

fr= Y Pi<l
i=T+!

where P; is the steady state probability of finding i jobs in node 1. Essentially, (S1)
states that the input rate must be strictly less than the server rates, where the second
server (transmitter) is only busy a fraction fr of the time (when the threshold is 7).
Thus the effective rate for the transmitter is ofr. We now derive stability condition
(81). If Ay <y +ofr then Ay < {4y + o since fr < 1. We now show that inequality
A1 < Wy + o implies (S1). When Aq/u;<1 then the assertion is obviously true. We
now consider the range A >(1;. We use equations that are derived later to prove our
assertion. From equation (5.20) we have

M<wpm+ofr=p+a ¥ P;
l'=T+l
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- [ 2 i~T+1)
i=T+1 [uﬁﬂ]

Summing the above we get

audy /iy )_T[ll /(1 +0=A1)]

1-(hy /) O /)T
= /yy)  1-[A A (uy+o))

=l +

After some algebraic manipulation to simplify the denominator we obtain

7L10: [}l - 1]

K1

A <y +
e Ara/py = (y+o=Ay )Gy /AT

or

o=ty oAy YRy /A )T
' Apo/py — (g +0=Ag )y /AT

M >4

The denominator may be written as
A=) ADT + e/l ~ G /ADN >0

Since A, > |;, we see that the denominator is positive. We have, after multiplying

the denominator through and canceling like terms,

=y (1 +0=A )1y /)T > =Ry (g +e=Ag )y /AT

which is true since A; > ; and 4;+a-A; > 0. QED.

The stability condition for the second queue (derived in section (5.2.5)) is

A2 +ofr <Y (52)

which implies that A; < p;. A third condition which immediately follows from (S1)

and (S2) considers the two queues as an entire system.
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M+l <y +py (S3)

We assume that (under the above conditions) the System reaches steady state and that

the long run probability of finding the system in a state () (i20,720) has a unique
limit

AmP; () =P,
Where P i

.j Tepresent the steady state probability that the system is in state (i, ).

The two dimensional state diagram is illustrated in figure
state transition equations are now presented,
Fori,j=0

(5.2). The steady

(A1+A3) Pog =p, Pro +uaPy,

(5.1)
For j=0 and 1<i <T
Qi +ha+py) Py g = A, Picto + 1y Piyrg + 1y Py (5.2)
For j=0 and i >T +1
M+hat+a) Py g =1, Pico + 1 Pioyg +p, Py (5.3)
For />0 and i =0
Ar+do+up) Py =2, Poj1+m Pyj+p, Poju (5.4)
For j>0 and 0<i <T
A +hg+ +1,) Pij=h Py +2, Pijet Wy Piyyj+ 1y P; i (5.5)
For j>0and i=T
Mo+ +py) Pr i= (5.6)
A Pr.

Lj+A2 Prj_ +, Priij+Us Prj +a Pri1,j-
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Figure (5.2)
State Diagram for the Threshold Queueing System
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For j>0and i>T
A+ Huy HL+O) P j = 5.7)

A Piyj+hy Pyjy+ 1 Pigtj+ M Pij + APy jy

We define the following transforms:

Ri(2)= X Pz
i=0

Piw)= Y P jw
j=0

P(zw)= iP,-(z)wf = Epf(w)z‘
j=0 i=0

Multiply equations (5.1) through (5.7) by w/ and sum from j=0 to infinity to obtain

the following.

Fori=0

(A+A2+13) P (O,w) — 2P oo =AywP (O,w) + 1, Py (w) + %f— [P (O,W)-Po.o]

(5.8)
For O<i <T
(A +AgHL HU2) Pi(w) — PPy g = (5.9)
MPi- 8) + AawPi(w) + 1 Praa () + 22 [Py )P o
Fori=T
(M+Ag+l +Hlp) Pr(w) — HaPr 0 = (5.10)

MLy W)+ AawPr(w) + i Pra ) + 22 [Pron-ro| + owPraon)
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Fori>T

(M +AgHL HH) Pi(w) — o P o = (5.11)

MPi-1(0) + AgwPi(0) + P ) + 2 [iGw)=Py o] + cowPrsa )

We now multiply equations (5.8) through (5.11) by z* and sum from i =0 to infinity to

obtain the generating function for the two dimensional Markov process (n1,1,).

T
K@Ew)P(zw)=A@EZw)PO,w)+B(Zw)P(z,0)+ t.’.‘(z,w)z:l”,-(w)zi
i=0 (5.12)

where

K(@zw)=A(1-2) + 11 (1-1/2) + A (1-w) + R (1~1/w) + a(l-w/z) (5.13)

AGz,w)=u,(1-1/2) (5.14)
B(z,w) = (1-1/w) (5.15)
C(@w)=a(l-w/2) (5.16)

5.2.2) Performance Measures

Equation (5.12) is too difficult to invert for P (z,w) since there are T+2 un-
known functions on the right hand side. However, we can extract some more informa-
tion about the performance of the system (rather than the steady state probabilities)
from the above equations. We know from the sum of total probability that
P (z,w)!,,, =1 =1. From equation (5.12) we have:

T ,
A(z,w) P(O,w) + B (z,w) P(z,0) + C (z,w) . P;(w)z"
i=0

w,z=1

Pzw)l,yoy=1=
EAT) ] PR K(z,w)) ;a1
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The equation at w,z=1 evaluates to an indeterminate (0/0) form. Using L’Hospital's
rule (with respect to ¢ither z or w) we can derive a relationship between P (1,0) and

P (0,1). Instead, we will use a simple argument to derive these same results.

By putting a black box around the second node only we observe that the input
rate must equal the output rate, The input rate consists of the external arrival rate A7)
plus the transfer rate of jobs from node 1. The transmission link is busy only when
n1>T and then transmits with rate .. The departure rate of jobs from node 2 is K2
when the node is nonempty otherwise it is 0. Equating the input rate with the depar-
ture rate yields:

mI-PL,0)=A +a ¥ Pi(l)

i=T+1

or

M, o« 4
PlLO=1-—)-—|1- Pil
(1,0)=( le) uz[ ‘_Z ()]

(5.17)

where P (1,0) = 2. P; ¢ is the probability of no jobs in node 2 and P;(1) = 2 P;isthe
i=0 j=0

probability of i jobs in node 1.

For node 1, the input rate consists only of the external arrival rate, A;. The
departure rate consists of the processor rate, Ji;, when the node is nonempty, plus the

transmission rate, o, when there are n,>T jobs in the node. We then have

T
W [1-P 0, D] + [1-2&(1)] =
i=)

23] i=0

M.« T }
POD=(1-—)+—|1-3P(1)
H1 [ Z (5.18)

Combining equations (5.17) and (5.18) yields the following equation;

118 -



#é:

ll +12 =p.1(l-P(0n l))+“'2(l_P(I'O))

Alternatively, we could have derived the above equation from considering the flow
through both nodes. From thig observation we get:

Ai+A
L p 0,1+ —H2 P(1,0)=1 - 21722
Hi+4a HitHy K1+l (5.19)

Exact expressions can be obtained for P (0,1)and P( 1,0) by considering node 1 alone.
Since node 1’s behavior is not dependent on node 2 at all, we can determine the pro-
bability distribution Pi(1) for all i, The distribution of number in node 1 (uncond;-
tioned on the number in node 2) can be easily derived as was done in Chapter 3 (from
a birth death chain) and we will repeat the resuits only. Note that the stability condi-
tion A} < p;+ais easily derived from the birth death chain (see (Klei75] ).

Ay .
[P(O,l)(—l—)‘ i<T
P,'(l)=1 “’l i-T
PO 1)(1"—)Ir M i>T
BATH Hy+c
where
[ M
Hy+o Ay
POD=| o [1-(oy/p o L
< H+a 1= /3y Hi+o
(5.20)
-1
+
[T+ t aJ A=y
[0 4

From equation (5.19), the probability of no Jobs in node 2 is:
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(u1+uz-(11+2¢) My Hi+Ho~Ay
-— Ap#uy
Ha M2 [ 1-(Ag /)T J
' I !
P(1,0)=, | 1/t
M+ ~(Ay +4,) M/ A=it; (5.21)
H2 [ uﬁa]
T+——

Unfortunately, given the set of transforms (equations (5.12) through (5.16)) we
are not able to extract other probabilities such as Pog, or R;(1), the probability there
are j jobs in node 2 (unconditioned on node 1), for any j. The same problem holds for
the average number in system. That is, while we are able to derive a closed form ex-
pression for the average number in node 1, 71 we are unable to do so for node 2. A
simple way to obtain 7, is to use equations (5.12) through (5.16) with w=1.

T .
az}’,-(l)z' + P (0,1)

i=0

(i1 +0)~z2, (5.22)

P(z,1)=

Taking the derivative of the above equation (w.r.t. z), setting z=1 and using equation

(5.18) yields

A a T,
P
- Ky +o A +°‘i§o‘ i@
ny= +
M M (5.23)
Hit+o Hi+o

which is the same result as equation (3.8). To derive 7153 we set z=1 in equations (5.12)

through (5.16) and obtain:

T
M2P (1,0) - 0w 3 Pi(w)
=0

P(l,w)= (5.24)

Ha-w(Ay+0)
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Taking the derivative of (5.24) (w.r.t. w), setting w=1 and using equation (5.17) we
obtain

h2(1-P (1,0)) ~ o 3, o)
2 ’ for? aw w=]

Ha—(Az+t) (5.25)

ny=

When p—(Ap+0)#0 then the last equation has T+1 unknown functions. The term

dP;(w)
ow

w=1 denotes the average number in node 2 when there are i jobs in node 1.

dP o(w)
ow
unknown constants P; o (0<i <T) by repeatedly using equations (5.8) and (5.9). When

The T+1 unknown terms can be reduced to one unknown wal, and a set of

Ha=Az+0 then equation (5.25) is indeterminate. However, we will use the following

simpler approach to derive an expression for the total number in system.
Consider the following transform P *@2).

P(2)= 5 nP-,_,-z"
P20 (5.26)

The inner sum collects all the states that represent n jobs in the total system, into one
“diagonal” group (see figure (5.3)). Let P, be the steady state probability of n jobs in
the total system (whose z transform is P*(2)). Probabilities Pp o, and Py , remain as

before. The state equations for this grouping can be written as follows:

MHA) Po =11 Pyo + MaPoy = (1+H2) Py = 2Py + W Py (5.27)

Fori21l

A +2+1 +Hl) Py = (WaP g + 114 Pgy ) = (5.28)
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Figure (5.3)
Alternate Representation of the State Space
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(M+A2) {’i-l + (L) Piyy = (M2Piv1 0 + M1 Poi+1)

Multiplying equation (5.28) by z* and summing from i=1 to infinity yields:

(A HAp+R1HH2) [P"(z)-P o] -y [P (O,z)—Po] ) [P (z, 0)-P o]

= u#ap" @ + 222 [p )P o-ap |

- -’f} [P 0,2)-Po—zP o.l] - % [P @ 0)—Po—zP1.o]

The above equation can be simplified using equation (5.27) to obtain

1P 0,2) + WP (2, 0)

P'()=
® Hi+a—z (A +A2) (5.29)

The functions P (0,z) and P (z, 0) are the transforms of the sets of boundary states
{Po,j) and (P; ¢} respectively. By setting z=1 and equating P*(1) with one we ob-
tain equation (5.19) once more. Taking the derivative of P " (z) with respect to z at z=1
gives an expression for the average number in the system, 7.

Ai+hg N H1P(0,1) + 12 P’(1,0)
1+ —~(A A7) H1+Hz—(A+22) (5.30)

n=

The denominator is strictly positive when stability condition (S3) is true. We will use
this equation to evaluate n in section (5.3) after we obtain analytic solutions (by solv-

ing a boundary value problem) for P (0,z) and P (z, 0).

Our goal is to obtain numerical solutions to P*(0,1) and P’(1,0). To do so, we
first define a two dimensional boundary valued problem involving P (z, 0) and P (0,z)
and solve it numerically. From the nurnerical solution we can obtain the numerical

derivatives we are seeking to evaluate n.
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5.2.3) Boundary Vaiye Problem Formulation

A Boundary Valye problem in two variables can be formulated as follows,
Find two functions D(z), and ¥(w) analytic in their respective disks (1z{ <], | w! <1),

such that the following equation holds for X (z,w)=0 (the zero set of points)
AQ,w)D(z)+ B @w)¥(w)=C (z,w) (5.31)

where A (z,w), B (zw) and C (z,w) are known functions. For our problem of section
(5.2.2) we will shortly be able identify that X (z,w) is the kernel function of the state
Space ransform P (z,w), The function d(z) is the transform of the boundary probapbili-
tes P; o, and W(w) is the transform of the boundary probabilities Py j.

start off with equations (5.8) through (5.11). Let G @w)= ¥ Pyw)zi, Muldplying |

i=T+1
¢quation (5.11) by z and summing both sides from 7'+1 10 o= yields;

[lg(l-W}-i-ﬂz(l-l/W)'Fll 'HJ.]'HI]G(Z, W) -y (1-1 Iw)R'(2) = 5.32)

Hy+00hw
4

Az [G(Z, w)+PT(w)zT] + [ J [G (Z,W)-PT+](W)ZT+1]

where R‘(z) = ¥ Pioz'. Collecting the G (z,w) terms on the left hand side simplifies
i=T+]

the above equation to:

KGw) Gaw) =1o(1-1/w)R ") + 4,241 p ) - [ Hy *““’JPM (w)z T+ 33
z (5.33)

S ubstituting in equation (5.10) above 1o eliminate Pro(w), we obtain:
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K (z,w) G@z,w) = la(1-1/w)zTR (@) + Az TPr_ (W) -
[rs -2y 0 1w 11| PronneT

where R(z)= T P oz' T =2T(R'(z}+Pr, 92z7) We now factor out the z7 term and
i=T

have:

K(@z,w)G(z,w) = (5.34)

2T [le(l-lf WIR(z)+ M Pr_ (W) - [11(1-2)+u1+12(1-W)+u2(1—1/ W)]PT(W)]

The above equation has three unknowns (Pr_; (w), Pr(w), and R (2)) on the right hand
side. We can reduce the number of unknowns to two by using equation (5.9) repeated-
ly to find the relationship between Pr_,{w), Pr(w), and P (0,w). We now use equa-

tion (5.9) and an identity for P;(w) to write the following matrix equations for 0<i <T'

Pivi(w) Aot Pilw)
i _ [Mu) “EI- l _ % i0
Pi(w) 10 |[Piatw 0 .35
A +Aa(1- 1-1/
where M (w) = rHHA( :Huz( w). Equation (5.8) also lends itself to a
1
vector formulation
11
Pl(w)]___ L(w)}P(O,w)_ Bap
P(O,w) 1 Hi (5.36)
0
A+ (1- 1-1/
where L(w) = 1A (17w rHia( w). We want to reduce the following expression

Hi

in equation (5.34) to one involving P (0,w) and the constants P; g (0si <T-1).
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MPr_j(w)~ [11(l—z)+111+12(1-w}m2(1-1fw)]PT(w) =

: T-1
BTzw)P Qw)+ X Cilz.w)P; g
i=0

For simplicity, we write the above equation in vector form

P
[osa-omurta-m s -ty 3] [PTT(?::)] i
-1

T-1
BT(z,w)P O,w)+ ¥ Ci(z,w)P; o
i=0

Now we use equation (5.35) recursively to obtain the following:

‘7: ':PT(W))J - V:MT—I [PI(W)J _Tili}';MT—l-i [HZ(I'(')IIW)]P"O

Pr_i(w P{0,w) i=]
where
M !
M= [Mu®) T 17; = [-(ll(l—z)+|,11+lz(l—W) + Ha(1-1/w)) 7\-1]
1 0

Finally, using equation (5.36) we end up with
Pr(w T-1 ;
7| T | oo P oy - 3 M B
Pr_1(w) i=0 (5.37)

where
V)= [L(w) 1] V= |22 021wy 0
Hi

We use the notation 7? to denote the transpose of vector V Substituting equation

(5.37) into (5.34) yields
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K(z,w)G@zw) = (5.38)
T-1 ,
2T [ (1-1/w)R @) + ViMT1V3 P (Ow) - 3 ViMT-17 P,
. i=0

At this point we are almost done. The problem will be to (numerically) determine the
boundary functions R(z) and P (0,w). The last step in the reduction to a boundary
value problem. concerns the latter function, P (0,w). In the solution of the boundary
value problem we will find it necessary to apply the logarithm function to BT(z,w),
the coefficient of P (0,w). In order that the logarithm function be analytic over the
domain of interest, we need to guarantee that BT(z,w) has no poles in the domain. Our
domain of interest includes the point w=0 which is a pole of order T+1 in BT (z,w).
One pole will be canceled when the equation is divided by the term in front of R(2).
The other T poles will be canceled by separating from P (0,w) the first T terms

Py, ,-wf (0<j <T)) and pulling out a factor w? from the remaining terms. The boun-

T-1 .
dary function will then be wTPT(O,w)=(P O.w)-¥ Pow/) where
i=0

PTO,w)= 3 Py, jwj T, The systemn equation assumes its final form:
j=T

K(@zw)Gz,w)= (5.39)

T-1 ,
27 [we(1-1wIR@) + wIViMT 175 PTO,w) - 3 ViMT-1503 TP, o +
=0

L s ;
_)=:,0V1MT vy Pow/
}

We are looking for analytic functions G(z,w),R(z), and PT(0,w). When K (z,w)=0 the
left hand side of (5.39) vanishes. The right hand side must also vanish if G(z,w) is
analytic. We thus obtain the following boundary value problem defined on the set of
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points (z,w) where K (z,w)=0:

T-1 -1
H2(1=1/w)R(z) + BT (z,w)PT(0,w) + ZClzwP o+ 3 Ci(z,w)Py ;=0
| i=0 j=0

(5.40)
where
BT@,w)=wIViyT-1573t (5.41)
Cilz,w) = -V MT-1-i73t (5.42)
Ciew)=vV MT1y.7,,J (5.43)

each a function of one variable (z and w, respectively). The other functions are known
except for the 2T -1 constants, This is the form of the general two dimensional boup-
dary value problem that we specified in the beginning of the section, The only
differences are the 27— constants. In the next section we wii provide a method for
solving our boundary value problem in two parts. The first part consists of solving
2T -1 separate boundary value Problems as formulated in the beginning of this sec-
tion. The second part uses the 2T-1 solutions along with the 27 -1 constants in a

linear program that resolves the values of the constants.
5.2.4) Method of Solution

The solution of a two variable Boundary Value problem consists of construct-
ing the analytic functiong ®(2), and ¥(w) so that equality (5.31) holds when the pair
(z,w) satisfies X (z,w)=0. For this purpose we use the Splitting Method and Theorem
developed by (Tayl88). The Splitting Theorem is stated without proof, Given

1. K(z,w) analytic in |z] <« I+g, lw| < 1+4¢,

2. Forall 1zi=1, z#], there exists unique lwl < 1 such that K (z,w)=0.
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3. For all Iwl=1, w=l, there exists unique {z! < 1 such that X (z,w)=0.
4. Ve={((z,w): lzl<l+e, Iwl<l4g, K{(z,w)=0}
5. C (z,w) a function analytic on V.

Then there exists 0<e’<e and D(z),¥(w) analytic for 1z} < 14¢’, Iwl < 1+€

such that
D)+ ¥Y(w)=C(z,w) for (z,w)eVyg

Further, ®(z), and ¥(w) are unique up to an additive constant.

We now show that the system equations given in (5.40) through (5.43) (when
K (z,w) = 0) satisfies the first three criteria of the splitting theorem.

For the threshold problem, K (z,w) (given in equation (5.13)) is a polynomial
of degree two in the z and w variables. Thus, X (z,w) is analytic in the polydisc (z,w)
lz1< 1+€, 1wl < 1+€ for any £20.

The following two definitions will be used throughout the next two sections.

DEFINITION 1: Let w (z) denote the set of roots {w: K (w,z)=0, Iwl<1} fora given
Z.
DEFINITION 2: Let z(w) denote the set of roots {z: K (w,z)=0, 1z1<1} for a given

W,

The following two theorems prove that the cardinality of w(z) (z(w)) is one when
[zl = 1+€ (Iwl = 1+€), satisfying criteria two and three of the splitting theorem.
THEOREM 5.1: For all z, 121 = 1+¢, there exists a unique root w(z), Iw(z)! <1,
such that K (z,w (z2))=0.

129



PROOF: We use Rouche’s theorem to show that there is one root w, in the w unit disk

for a given 1z| < 1+&

K (z,w) =21 (1=2)+ Ry (1=1/2) + Aa(1-w) + pa(1-1/w) + a(l-w/z) =0

= (M+a/2)w? = (AgHlg+0HA, (1-2) + Py (1-1/z))w + 13 =0
Define the following two functions:

f @w) =waHla+oathy (1-2) + 1y (1-1/2))

g@w) = (Ap+a/)w? + y
and compare the absolute values of fand g on the contour Iwi =1, Then

lg W)l = |(Ap+a/2Iw? + 2y |

Spp + 1wl 1A+alz

o
S +A+—
U2 + Az iz]

where we used the triangle inequality to obtain the upper bound.

Lf (zw)| = lw(hgHtg+ohg (1-2) + y (1-1/2)) |
= |(Ag+g+otAg (1-2) + py (1-1/2)) | onlwl=1

2 |12+u2+11+u1+0'.- |AIZ+%1-| |

2 Ay +Hy+Ag HL O~ 111 i."i'-“.zi I

2 12+},L2+11 +4,+a - 11 12| ‘"%

The last set of inequalities were derived using lx—y|2[ixI-Iyl ). We need to show
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that | f (z,w)! > 1g (z,w)! on Iwl!=1, which is:

AgHla+A  +py +00— Ag IzI—Tule > M"'!lz""l'?]—

which implies

1 1
pl(l-——lz—l) + a(l—-l-;T) >AM(1z1-1)

18] +(1>1.1 lzi =ll(1+€)

U1+a-Ag

which holds if we choose Q<g< X
1

. By Rouche’s theorem the number of

zeroes of f +g (inside Iwi=1) is equal to the number of zeroes of f (inside |wl=1)

which is one. QED.

H1+0—Ay

A . The same result holds (i.c. we
1

The above proof works for O<e<

can apply Rouche’s theorem to prove there is one w root in the unit disk) for =0 since
If (z,w) 1 >MHia+02 1 g (z,w) | for all 1z1=1 except at z=1. At z=1 the two roots of w

arew;=1andwy = H2 If ! < 1 then there are two roots in (and on) the unit
Oty A+a

circle.

THEOREM 35.2: For all Iwl=1, w=l, there exists a unique root z(w), lz(w)l < 1,
such that K (z (w),w)=0.
PROOQF: We write X (z,w)=0 as a quadratic in z.
Mz2 = 2O HoFAL (1-w) + Py (1-1/w)) + Hi+ow =0
Define the following functions:

f (z,w) = z2(A + oA (1-w) + Wy (1-1/w))
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g(z,w)= Ay 22 Faw
On the contour |z1=1, we have for fixed w, IwJ_=1,w==1

|
Ig (zw)t = 1R 224, +ow |

S A z2 141 +awl

<A + I +owl
!

<MHuytalwl  on Iwi=lwal

< A+

I Gw)l = 1zQhHiy +athy (1-w) b pa (1-1/w))

2 A+ HoFAg+HL, — |i2w+u—;| |

2 A+ AL — lljiw+%l

|

| Ha
Wl - —
: lwl

2 A+ HOHAHL, — A |

2 A+t > 1g (z,w)l |

i
By Rouche’s theorem, the number of zeroes ok f+g (inside |z1=1) is equal to the
number of zeroes of f (inside |121=1) which is ohe. For w=1, solving K (z, 1)=0 yields

Hi+o
two roots z;=1 and z,= ]
1

. The root z; must lie outside the unit disk (1z51>1)

since the stability condition for the first queue dictates that Ay <pp+a. QED.
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We will show the solution technique using a "splitter” subroutine [Tayl88] for
the general threshold problem (T >0). However, we prove (in section 5.2.5) the
correcmess of condition four of the splitting theorem only for ihe restrictive case T=1
(plus a restriction on the values of the parameters). Numerical evidence will be
presented for the other range of parameters and also for T > 1; this evidence will allow
us to conjecture that the functions we need to split are analytic on the zero set V, for

all T >0. We have the following equation for general T, from the previous section.
K(@zw)Ge(z,w)=

T-1 T-1
2T lu2(1-1/w)PT(z,0) + BT @ w)PT(O,w) + T Ci(z,w)P; o + 3 Cj(z.w)Po,
i=0 j=0

where BT(z,w),C,-(z,w), and C;(z,w) are defined in equations (5.41)'through (5.43).
When K(z,w)=0 (1z1<1,Iwl<1) the right hand side must vanish as well, otherwise
the probability generating function, G(z,w) will not be analytic. We then have the fol- |

lowing equation holding on the zero set { (z,w): K (z,w)=0, 1wl<1,1zIs1}:

BT(z,w)

T
Pi(z,0)+ 12 (1=1/w)

T=-1 T-1
PTOw)= T Ci@w)Pi o+ 3 Cjzw)Py,
i=0 j=0 (5.44)

where C; (z,w) (C; (z,w)) is C;(z,w) (C;(z,w)) divided by W,(1-1/w). There are two
unknown functions PT(z, 0, and PT(O,w), and 2T-1 unknown constants
Po‘o M P,'. 0 (0<i <T) M PO.j (0<j <T).

BT(z,w)

STEP 1: Take the logarithm of the function —————
].lz(l—llw)

on the zero set K (z,w)=0 and

use the splitting subroutine on the result to obtain two functions y(w),0(z) that are

analytic in their respective unit disks and are the unique solution to
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Bi@w) |_..._
log [M(H ,w)] = y(w) - §(z)
Assuming that we can apply the logarithm and split the result into y(w), and ¢(z) we

then have

BTzw) _ e¥™
p2(1=1/w) %D

It turns out that there is an extra complication in applying the logarithm function. In

order for the log function to be single valued we need to remove T zeroes from

BT(z,w)
M2(1-1/w)

rewrite equation (5.44) by multiplying and dividing the T zeroes through.

. These zeroes are located in the unit disk in the complex w plane. Let us

T T-1 T-1
PT(z,0)+ [[W-wa)B ' @w)PT(O,w)= 3 C;(z.w)Pio + T C;(z.w)Po,
m=1 i=0 j=0 5.45)

where

BT(z,w)
T
H2(1-1/w) TT (w-wp)

m=1

B (z,w)=

We now apply the logarithm function to B (z,w) and split the result into y(w), and

¢(z). Replacing B *(z,w) in equation (5.45) with y(w) and ¢(z) yields

T T-1 T-1
e¥OPT(z, O+ [T (w-wm)e V™ PT(O,w)= X e%C)CI (2, w)P; o+ X €*)Cj(z,w)Pg ;
m=1 i=0 j=0 (5.46)

STEP 2: We split the right hand side of equation (5.46) using the "splitter” subroutine

to obtain:

T-1 T-1 .
¥ e¢(z)C:(Z.W)Pi.0 +Y e“(’)Cj (z,w)Pg ;=
z 5 (5.47)

134



T-1 ' T-1
% (000 + ¥oom)Pio+ T (00,0+ o, 00)Po, +
i=1 j=

[‘I’o.o (2)+ ¥ (W)]P 00 +K-K

which yields the unique functions ( ®;, o(z), Qo ;(2), \¥;, o(w), ¥p, j(w)), up to an addi-
tive constant X, that solve the above equation. We include the X —K term in the above
equation to show that there is an extra constant that must be solved for when we
scparate the w terms from the z terms. Rewriting equation (5.46) with the functions
obtained in equation (5.47) yields:
e*®pT(z,0) + ﬁ (w-wp) eV PT(O,w) =

m=1 (5.48)

T-1

T-1
) [‘Di. o) +¥; D(W)]Pi.o + Y [‘Do.j(Z) + ‘Po.j(w)]Po.j +
i=1 j=1

(@000 + oo m)Pog + K -&

By the splitting theorem the right hand side is the unique way to split C (z,w) into two
analytic functions ®(z) and ¥(w) such that ®(z) + W¥(w) = C (z,w) on the zero set

K (z,w)=0. However, equation (5.48) also provides a way to split C (z,w) into two ana-

T
lytic functions @'(z) =e®®R(z) and W'(w) = [T (w-wm)e¥™ PT(0,w) such that

m=l
D'(z) + ¥ (w) = C(z,w) on the zero set. By the uniqueness principle of the splitting

theorem we must have @’(z) = ®(z) and ¥'(w) = ¥(w), i.e.

T-1 T-1
e¥)pT(z 0)= z D; 0(2)P; 0 + X Do, j(2)Po,; +K
i=0 j=0 (5.49)
T T-1 T-1
1 w-wn)e¥™PTO,w) = T W, o(w)P; o + 2 o, jw)Po; - K
m=1 i=0 j=0 (5.50)

Solving for PT(O,w) we note that there are now 2T unknown constants
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K;iPo0iPi 0 0<i<T;Py,j0<j<T, and T equations (one for each zero w,). We can
get an equal number of equations and unknown constants by considering the triangle
zone of states shown in figure (5.4) along with their flow equations. From these states,
and the T equations above a linear set of equations can be set up to solve for all the

unknowns by introducing the flow equations for the states P; ; 0<i+j<T-1.

n2

Triangle Zone of States 0<i+j <7 ~1
Figure (5.4)
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The number of unknowns is now 1+ I%Hl (K and states P 0<si+j<T)

T(T+1)
2

while the number of independent equations is also (which is the sum of the T

T(T-1)

equations from the zerpes Wm in equation (5.50), plus the flow equations we

introduced from the triangle zone). The last equation (independent of the other equa-

tions) is that the total Probability is equal to one. Note also that
T-1
PTO)+ 3 Poj=P(0,1)
j=0

The probability P (0, 1) (Pr{ ro jobs in the first queue)) is easily calculated from equa-
tion (5.18). Thus the last equation to the set of independent equations is €quation
(5.50) when w=1. Solving the linear set of equations yields numerical values for the
constants P; ; 0<i+j <T and the boundary functions P(z,0), and P(0,w) (for 121<1
and Iwi<l). This information is enough to derive any state probability, P; j» by using
equations (5.8) through (5.10) to determine P;(w) and its J™ derivative at w=0, We
also have enough numerical information to derive the average number in system from

equation (5.30).

The above procedure to obtain the average number is a general one that is used
for many problems of this type. However, for each problem it must be shown that the
solution technique yields a unique solution. if there is more than one solution then our

queueing problem has more than one solution and must be nonergodic.
5.2.5) Proof of Uniqueness for T=1

This section contains a proof for the uniqueness of a solution to our Boundary
Value problem along with a proof of existence of such a solution, We limit our atten-

tion to the case where the threshold, T = 1. We discuss the general case T21 in the
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next section. The following material includes proofs that the functions we split satisfy

the criteria of the Splitting Theorem listed in section (5.2.4).

For the case T=1 we have the following Boundary Value problem from equations
(5.40) through (5.43).

1
MPI({]‘w) =P0'0C(Z,W)

Pl(z,0
=0 hal-w) (5.51)

Where C (z,w) is the sum of the coefficients for Py in equations (5.42) and (5.43).
We provide a constructive proof of uniqueness and existence by stepping through the

technique presented in the previous section. In order to take an analytic logarithm

B! (z,w)
H2(1-1/w)

ic over the domain of interest. For the remainder of this section we use the following

(step 1) of we must show (among other things) that the function is analyt-

definition:

Bl(z,w) _ w2 [ +m (W)X +A (L=2)+m (W))=Ag iy ]
p2(1-1/w) HiM2(1-w)

B(@w)=
wir.ﬁ
m(w) =X (1-w) + Py (1-1/w)

The function on the right hand side is a polynomial (in z and w) divided by a polyno-
mial. B(z,w) is analytic over the zero set, V, if the polynomial in the denominator

does not vanish anywhere in V.

The factors (A1 +m (w)) and () +A) (1-z)+m (w)) each have pole at w=0, How-
ever, the w? term in front cancels both poles. At w=1 and z=1 (on the zero set) both
the numerator and the denominator vanish. We now show that this point is not a pole.

Rewriting B (z,w) we have
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B(zw)= ﬁ&;— [112 ((11::' )) + (”;E:; (M1+A+A (1=2)m (w))]
From the kernel X (z,w)=0 we have

A(1=2) + Uy (1~1/2) + X (1-w) + ty (1-1/w) + a(l-w/z)=0
By adding and subtracting ct/z, and grouping terms we obtain:

(1=z) _ (2/w-2 —a/2)

(1-w) = 3, - 1) (5.52)
Z
at w=l1, z=1 we have
(1-2) Ho—(Az+00)

(1-w) ™= T X 2+
and

1

B(l,)= [112 Ho—(Ag+ar)

A —(py+o)

Hi1H2

+ (A2—12)(11+A)
2—H2)(Iy 1] 5.5%

Since A; <p;+o for stability (implied from condition (S1)) we see that B (1,1) # oo,
The function B (z,w) is thus analytic on the zero set V¢ and yet may have zeroes on
that domain. This is a problem since the logarithm of B (z,w) is not analytic at a point
(z,w) (in V) where B (z,w)=0. The number of zeroes of B (z,w), if any, over the zero
set V¢ can be determined by computing a quantity known as the winding number (or
index) of the function around the boundary of the zero set (Iwi=1, and |z1=1). The
zeroes, if any, can be removed from B (z,w) and then the logarithm function may be

applied.

The winding number, or index, of a function f (x) on contour § is the number
of times f (x) wraps around the origin as x traverses Q. Let Wf;(f (x)) denote the

winding number of a function f (x) as x traverses Q. From (Chur74], if Q is a simple
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“1m

closed curve and f is analytic within and on Q (except for poles interior to Q) and

does not have any zeroes on {2 then

Wh( () = [ L ax =N,

where N; (N,) is the number of zeroes (poles) of f interior to Q. In this section we

provide proofs for the winding numbers listed in the table in figure (5.5).

i Wum;l (z,w))
f(zw) iwi=1 {f (z,w)) A+ < ol lo:-a) A+l > of1- uia)
ﬁ—z'_'(—w) =%
2 W) 0 0 -1
li—w
wB " (z,w) 1 0 -1
wB]:_(}vw)
(1=w)(w-p) 0 0 °

Table of Winding Numbers for B (z,w)
Figure (5.5)

We now prove that the winding number W’fw.:lB (z(w),w)=1.

THEOREM (5.3):

Wh, 121 (B z(w),w) =

w2 | 2 (-2  mw) _
‘Vfwl=l [I-llllz [ll (1-w) + (1-w) (Ll1+11+ll(l-z)+m(w)) =1

Where z=z(w) is defined by K (z,w)=0.

PROOQF: The winding number of a product is equal to the sum of the individual wind-
ing numbers (ie. Wh(fg) =Wh(HWh()). Since W¥, .o, (w)=1 we need to

show that
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1-
Whial [u::lz [112 oL, mln) (u1+xl+x1(1—z>+m<w»H

. =wal=l [_B_llﬁﬂ] =0
W

. gl
Assume that the above winding number is not zero, then the function I_B(T(va;')_ must

touch the positive real axis for some value w’, Iw’i=1, and |2’1<]1.

Rk Bl(z' W)

— = where C is real and C20.

CASE I: Iw’l=1, and w'#l. Assume
Then

Ai+m (W +A (1=2Y+m (W) = My = —C (1-1/w")
We now isolate the (1-z") term from the rest, leaving:

Ay =C(1-1/w"
M=) = A+m(w")

-mw) -

Looking at the real parts of both sides yields:

Ay =C (1-1/w")
7\.1+m (W’)

A1(1-Re(z)) =Re [ ] =Re(m(w)) -

Looking at the first term on the right hand side more closely, we can find an upper

bound for it (by multiplying and dividing by the complex conjugate of A +m (w").

R llul-C(l—llw’)
I aamor)

_ Re(Ap—C (1-1/w))Re(hy+m (") + Im(Ay py ~C (1=1/w)Im(h, +m (w"))
- 1A +m (w) 12
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(A1 11 =C (1-Re(w)Re(hy+m (w1) = C Im* (w)(Ha—A2)
= [Xy+m (w12

The right hand side of the equation is maximized when C=0 since y;>A, for stability

(condition (S2)). Furthermore, we have that

| Ay +m (w12 = Re2(Ay+m (W) + Im2 (A, +m (W)

> Ay Re(A+m (w"))

since m(w")=A(1-w )+12(1-1/w’) > 0 when Iw’I=1. We then have the following
upper bound:

Re My —-C(1-1/w) | Ay Req+m(w?))
A+m(w’) A Re(hy+m(w?)) .

Thus A; (1-z") is also bounded from above:
A1 (1-Re(z)) < g — 1y = (Wa+A2) (1-Re(w)) < 0
since 1-Re(w’)>0 for 1w’i=1,w'2l. However, this inequality contradicts Theorem

5.2 which states that for any w, Iwl=1, there exists a root z(w) inside the unit disk,

1
hence 1-Re(z (w))20. Therefore, the assumption that W¥,,,_; [w]ﬁo is in-
-w

correct for case 1,

CASE 2: w'=1 and z(w")=1 (CASE 1! included all Iw"1=1 except the point w’=1).

From equation (5.53) we know that

w Bl(z,w) __1 -121-12-(124'0)
(1-w) =17 g, _1 A=y +a)

1 [ 3.12 llza
= Ay— + +
THY -( 2—H2) [l-l1+11 (p.1+a)-'7‘~1] (H1+o)—Ay

+ (A2—H2) (1 +0y )}
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The right hand side is negative if

112(1. ) 112
. < (U2—22) [u1+3-1+'—_‘—(u1 T
or
A2
(L +o)=A,
Hamhy > o A2 (5.54)
At —— )
Hi+Ap (i +0)-Ay

This last inequality is the stability condition (S2) for the second queue. Together with

B l(z,w)

-w) never touches the positive (20) real axis for any

case 1 we have that

w’, lw’1=1. Therefore, W‘f,.,|=1 [B(;(—z“)')]ﬂ, and W, _; (B (z,w))=1. QED.
-w

The stability criterion for the second queue is that the external input rate, Az,
plus the internal transfer rate (call it f) must be less than Hz. The internal input rate f

can be calculated as follows.

- o i-1
f=aYPr{iinQl} = aPo(h)Z [ M ] from equation (5.20)
i=2

l‘ll =2 “'1+a
A M Ay M
0P o(— o(—
_ °(ux)[u1+a] (Hl)[uﬁa
—4 l =
M - A +_£1_
Hi+o A T |
allz
_ oy - (W +00)-A)
(MHADMIHO-A 1y Wy (g +00-Rg )+hy (U +o)=Ay 3+, 2
(1 +0)=Ay
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—lam

ulﬁ
(U +00)-A,
l 2

1
1y +a)-A

j.l.l'l-ll-i'

Then the stability condition requires that

A2
(W +or)=Ay
2

1
(Mg o)A,

Ha—As >
|.ll+ll+

the same inequality found in (5.54).

The second boundary of the zero set V. is the set of points {(w,2):
tzl=1,lwl<1,K(z,w)=0}). We show that the winding number of B (z,w) on the con-
tour |zi=1 is either O or —1 depending on the parameters. In order to prove the asser-

tion about the winding number, we first need to prove the following lemmas.

H2
124'0.

LEMMA 5.1: If <1 then there exists a unique root w(z) defined by K (z,w)=0

such that lw(z) 1< when |zl=1, z#1, Atz=1, wy= and wao=1,

H2
A+t Ay+or

PROOF: From the kernel equation X (z,w)=0, let

f(@w) =w(Ry+la+0+A, (1-2) + Wy (1-1/2))

g(zw) = (Q+a/nw? + 1y

\ . M2
We are interested in the contour {wi= e and a fixed z such that Izi=1, z=1.

2

K2
If (z,w)| = m ill+3.2+u1+u2+a—llz—p.l fzi
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I . . \
2 (A+AHU HI+o—~(R+11)) by the triangle inequality

2
12+a

H2
Ay+a

2 Py (I+ )

18 (z,w)| = Iw2(Ay+oe/z)H; |
Sy + Iw2(g+alz)

H2 2
7\-2+U-) [Ap+0t/z)

SHy +(

H2 2 _
lz+0'.) (A+a) on lzl=1,z21

< U3 +(

H2
Ay +a

< ya(l+ )

therefore 1f (z,w)| > lg(z,w)| on the contour IWI=lu+2-a' By Rouche’s theorem
2

f +g has the same number of zeroes as f inside |wi= l!-lz which is one. At z=1 we

2+00

obtain two roots from K (1, w)=0, w1=1% and w,=1. QED
2

The next lemma shows that for Izi=1 the real part of the w root (inside the
unit disk) is strictly positive.

LEMMA (5.2): Re(w(2)) > O for 121=1 and K (z,w)=0

PROOF: The kernel equation is:
M (1=2) + 23 (1-1/2) + A (1-w) + 1y (1-1/w) =0

Taking the real part of both sides (for 1z1=1) yields:
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(H1+A1 )(1-Re(z))+A,( 1-Re(w))+1, [I- !sz::‘;) J-i-a( 1-Re(w)Re(z)-Im(w)Im(z )N=0

Solving for Re(w) leaves

(K1 +A1 )(1-Re(2))+Ag+ity +x( 1-Im(z)Im(w))
Re(w) =

J\Q+I—3—i—+aRc(z)

From Lemma (5.1), if —2—<1 then
A +a

Ay+a
lwl

At toRe(z) > Ayt

Mmmac(z) 20+
Iwi lwl

W

>0

On the other hand, if lu-:a 21 then Iwl <1 when lzl=1,221 and
2

U2

A+ 7 HRe(z) > A+~ 20
lwl

Thus the denominator is positive for 1z1=1, z#1. From Theorem (5.2) we know that

the product Im(z)Im(w)<1 thus the numerator is strictly positive and Re(w)>0 for

Izl=1, 2#1. At 2=1 we have two roots w1=iu—i; and wa=1, both having strictly po-
2

sitive real parts. QED.

The next lemma involves the real part of m (W)=A(1-w) + H2(1-1/w) when |z|=1.

LEMMA (5.3): if —2—<1 then for Izi=1, 221,
lz'H]'.

Re(m (w)) = Re(A,(1-w) + K2(1-1/w)) < —a(1- u-:a
2

)

PROOF: From the kernel equation we have
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(A (1-w) + Ha(1-1/w)) = A (1=2) + 11 (1~1/2) + o(1-w/2)
The real part of the above equation is
-Re(m (w)) = (A +11; )(1~Re(2)) + a(1-Re(w/z))

We know that (A;+y;)(1-Re(2))20 for |zI=1. From Lemma (5.1) we know that

Iwl<1 when lzI=1, z#1, however, dividing w by z (z on the unit circle) merely

changes the angle, not the magnitude of w. Thus Re(w/z)< lu:a and
2
M2
Re(m (w)) > ol lz-t-a)
and finally, our result
Re(m(w)) = Re(Aa(1-w) + la(1-1/w)) < -a(1- Ha )
?\.2+a
QED
THEOREM (5.4):
0 ll"’]—ll < a(l- a )
lg-HI
Wizi=1 (B zw)) = 4 y
1 Ay 2 el
1+ 2 o A+ )

K2 ) Note

lg'HI

PROOF: We first prove that W%, _; (B (z,w)) =0 when A;+; < a(l-

25

that
2 A+a

<1 is implied when the above inequality holds since A, and W, are both po-

sitive. We need two corollaries of Lemma (5.3).

COROLLARY (5.1): For lzl=1, z#1, when ll+u1<a(l—kuia) then
2
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m

Re(hy+m (W) < Ay —o(1- l;_a ) <

COROLLARY (5.2): For !zI=1, z#1, when A+ <a(l- luja ) then
2

—Re(Uy+A; (1=2)+m (w)) = -Re [EL

- —a(l-wlz)] from K (z,w)=0

M2
M+a)>ll

> =y +0(l-

Therefore, Re(ui+A; (1=z2)+m (w)) < -A1. Now for the proof of Theorem (5.4).

When lu-:a <1 then the function 1-w(z) never winds around the point zero
2

for izl=1 since Re(1-w (2)) =1-Re(w(2)) 21~ luja > 0. The same result holds for
2

the function w (2). Therefore,

2 — -
Whizt B @w) =W, |2 ([ +m W) ta 43 (L2 )b w))-Ay 1
KiH2(1-w)

=Wizi= [(11+m W) +R1 (1=2)+m (w))-2, ul]

+2W1,, . (w) - W12 (1-w)

=Wz [(3-1"'”! W)U +A ) (1-2)+m (W))"llul]

If the winding number of the parenthesized function on the right hand side is not zero

the function must "touch" the negative real axis for some value of z°, 1z’i=1 and

w'=w(z"). Assume this is the case, then for [z’|=], 2’#1, there is a real number C > 0
such that
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(Ar+m (W) +Ay 1=z Hm (w))-A g =—C
then rearranging terms leaves

A —C

;.Lfl-ll (Q=zHmw’) = m

Taking the real part of the above equation yields:

Re(py +Ay (12 Hm () = (A 11 ~C)Re [m‘im]

- (A1 =C)Re(Ay+m (w?)
[ Ay+m (w12

(Al )Re(A+m(w"))
| Ay +m (w12

The last inequality is a result of corollary (5.1). Also from Corollary (5.1) and .
|A,+m (w')12 = Re?(A;+m (W") + Im?(Ay+m (w’)) we have

(11 e8] )Re(ll +m (W')) _ A.l H1 S ll

Re(l-l1+3-1 (1-zym (w") 2 Rc2(7\.1 +m (w")) - Re(ll-i-m w") -

However, this last inequality contradicts Corollary (5.2). Therefore, the assumption is
incorrect and (Ay+m (W) (1 +A; (1=2z"Hm (w”))~A l; does not touch the negative real

axis for 1z”1=1, z’#1. At the point z’=1 we have

1 H2 H2
-(11 —a(l—m))(].ll—a( 1- A +0. Nk “l]

Bl(1,w))=
(Lw (@) HiH2

[
= L a(l
I-lll-lz_

K2 K2
Nyt )[a(l"m)-(h +y )1] >0

Therefore
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(A +m (W) +A (1= Ym (w))-A ) ) = —C

for any C 2 0 and 2°, 12’ |=1. Thus W¥,,; (B (z,w))=0.

The second part of the theorem assumes that A+, 2 a(1- lu:_a
2

), let us call
this inequality condition C;. We show that W¥,,_; (B (z,w)) = —1 by going through a
two step procedure. First, we prove that B (z,w) # 0 for any |zI=1, w=w(z) when C,
holds. Second, we prove that WT,|=1 (B (z,w)) = -1 for a certain subset of the parame-
ters (Aq,M1,A2,H2,00) that satisfy Cq. If W‘f,,=1 (B (z,w)) = -1 for a subset of parame-
ter values satisfying C,, then Wf,|=1 (B (z,w)) = -1 for all parameter values satisfying
C'1. The reason is that the function B (z,w), which is continuous in the parameter
space (A1,M1,A2,M2,0), never goes through the point zero. Hence, the winding

number, which is a discrete function of 8 (z,w), cannot change throughout the parame-

ter subspace which satisfies condition C;.

In order to continue with the proof, it is necessary to investigate the image of
IzI=1 in the complex w plane. The next lemma describes the behavior of Im(w(z))
for 1zi = 1. The different types of curves for w(z) (lzI =1) are displayed in figure
(5.6).

A
LEMMA (5.4): If Rew(2)>—L for all Iz1=1, then Im(z)Im(w (2))<0 for all
izl=1 except at z=1,-1 where Im(2)=Im(w (2))=0. If
Ap-p

Z={z: 1z1=]1,Re(w(2))<

" ! } is not empty then
>0 zeZ

Im())Im(w(z)) = { =0 z=1,-1, z;, 7,
< all other z, 1zi=1
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v (1=171)M
 mamantl L1\

@m=m

{(a9s)

ZIM=m

(vog)

Figure (5.6)
Image of w(z) forlzl =1
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Where 1z, | = 17| =1. PROOF: From Im(X'(z,w)=0) on !z1=1 we have

uzl‘z -ngIm(w) - a(Rc(z)Im(w)—Re(w)Im(z)) =0

(M1 -A1)Im(z) + [
Iw

Solving for Im(w) yields:

(L1=Aq +aRe(w))
(=2 -A,-aRe(z))
Iwl

Im(w) = —Im(z)

The denominator is always positive if

a f_a >lwi? which obviously holds if

———l:l_:a >1. If l::z-a <1 then Lemma (5.1) guarantees the inequality to be true. If
Ay~
Re(w)> 17 for all [z!=1 then the numerator is also positive, the set Z is empty

Ay

and the first part of the lemma is established. If Re(w (z))< for some z, 1z{=1,

then the numerator is negative for those points ze Z and the second part of the lemma
is established. Since Re(w(z)) is a continuous function of z then we must have

l —
Re(w (2)) = ‘a” ‘

(and Im(w (z2)) = 0) for some values of z, Since zis quadratic in w

there can be at most two such points, call them z1, and z;. The form of

A=,
K (Z,T)=O is a quadratic equation in z with real coefficients. Since

lzyl=1z31=1and z,, z2#1 then zy and z, must be a conjugate pair (i.e. z; =7,)

and the proof is complete.

We use this lemma to help prove that B (z,w)=0 while condition (or inequality)
CI holds.

LEMMA (5.5): B(z,w) =0 for all 2, Iz1=1, w=w(z) when condition C, holds (i.e.

n
AL >a(l- lzf-a)
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PROQF: First, we check the point z=1

r 2
a2
Arta M2 173
1,w(l) = -
B(l,w(1)) T (1 3.2+a) A+ <0 s <1
< ( e ) TSYTPS
M2 oy ? H2
—_—T (= +Ar+ H <0 21
; ll- o [Ra=H2) (1 +Ay TN rrul_m_ll] jyw
and at the point z#1 we have (let w_; denote w(z=-1))
w_ 2
B(-l,w.)= —E'l—w—)[(lﬁ'm WD +2A+m (w_1))-Aq ]

Note that w_; > O from Lemma (5.2). From the kernel equation (evaluated at z = -1)

we have

A+m(w_y) = ~A =21 —0(l+w_y)

H1+2A+m(w_1) = —p—o(1+w_y)

Substituting in the right hand sides of the above two equations into the equation for

B (-1,w_;) yields:

B(-l,w,)= (A +2uy +a(l+w_ )y o T+w 1)) -Ag 1y ]

Mia(l-w_;)

The first parenthesized term (on the right hand side) is strictly greater than A, while
the second is strictly greater than . Thus, the bracketed term is strictly positive and
$0 is B (z,w(2)) at z = —1. This excludes the points where Im(z) = 0 from further con-

sideration. The rest of the proof is divided into two cases.

L forall z, 1z]=1.

CASE 1: Re(w(2)) >

By Lemma (5.4) Im(z)Im(w) <0 (excluding the points z=1,-1). Assume

B(z’,w") =0 for some z’, w'=w{z"). Then
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Ay
A+m(w”)

A (1=2"YH +m (W) =

By looking at the imaginary pai't of the above equation we obtain:

A1y H2
M +m w12 | 1w’12

...11 IIIKZ’) + [I—u’zl—z - M]Im(w') = - M]Im(w’)
w

From Lemma (5.4) we know that the left hand side is negative when Im(z")>0, yet the
right hand side is positive when Im(z")>0, thus leading to a contradiction. The same
contradiction results when considering Im(z")<0, therefore B (z,w (z)) #0 for 1z1=1

l -
when Re(w (2)) > 1au1 .

A
CASE 2: Re(w (2)) S — "1

for some values of z, 1z1 =1.

The same contradiction (from CASE 1) holds for all z, lzl=1 such that

Re(w (2)) < Mty

. Unfortunately, we have not been able to find a proof for all other

A4

z, 1zl =1 Re{w(2)) < o

. By considering all the numerical evidence we ob-

served for different parameter values satisfying A+, > a(l—%), we conjecture
2

that B (z,w)#0 in this case as well. For the remainder of this proof (for Theorem (5.4)),

we assume the conjecture to be true.

The last step involves a proof that W’fz|=1 (B (z,w(2))) = -1 for a set of param-
eters that satisfy condition C ;. We utilize the fact that Wh (B/A) = Wh (B) - Wh (4).
In this proof, we divide B (z,w) by a function that has winding number -1 (Lemma
(5.6)) and show that the resulting function has a winding number of 0 (on |z1=1).

Thus, B {z,w) must have winding number -1 on Iz!=1.

LEMMA (5.6): W¥, o (01+Ay (1=2)+m (w)) =~1 when ju; > c
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PROOF: p;+A; (1-2)+m(w) = %-—a(l—wl z) from the kernel equation. We prove that

the winding number of the right hand side is -1 on |z1=1. Multiplying the right hand

side by z (which obviously has winding number 1) we obtain p; —(z -w). However,

Re(u -0z -w)) = iy —a(Re(z)-Re(w))
> uj—oRe(z) since Re(w) >0

>-a>0

which proves that W’f,;._.l (U1 —0(z=w)) = 0. Therefore,

Whaia1 (i +Ay (1=2)+m (w)) = W11 (%—a(l-wlz)) =

szl:l (H1—o(z—w)) - le:l (z)=-1

thus completing the proof of Lernma (5.6).

) B(z,w) _
LEMMA (5.7 W"f,.=l [ Ay (12 iy 4 (W)J =0 when }; > and py >A,.
PROOF:
B(z,w) ___w? . Ay
A (l=z2)Hl+m(w) 1 pa(1-w) ["“m W) A (1=2)+it, +mm (w)

' B(z,w)
Assume Wf,|__,1 [11(1-2)+I~l-1+m (w)} #0 then

Aty ) _ LN
W‘I’zl=1 [11""" (w)- A (L2 )ty +1m () ]#0 Since szl:l w)= W‘?‘z|=1 (1-w) = 0.

Then there must exist a point z’, w’=w (") and a real rumber C > 0 such that the func-
P

tion in the parentheses touches the real axis at C when z=z".
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A -C
M (=2 +m(w’)

A.l +m (W’) -

The imaginary part of the function must be equal to zero at z=z".

ALy =0
A (1=2"yy+m (W)

Im [A+m (W)

and that

-AM My

Im(A =
ytm () | A (1=2" )y +m (w') 12

Im(A; (1=2 1ty +m (W)

but from Lemma (5.4) we know that Im(A; +m (w") = Im(w") < 0 when Im(z") > 0 yet
the right hand side is positive since Im(A;(1-z"VH+m (W) =
~MIm@Ez"HIm(m(w)) <0 for Im(z") >0. The same contradiction holds for
Im(z") < 0. Thus,

B (z,w) _
Wi ia [ll (=2 )+ +m (w)] =0 when ) >a and Yy >A,

COROLLARY (5.3): W¥, ., (B (z,w)) = -1 when 1, >a and iy >A;.
The corollary results from Lemmas (5.6), (5.7) and that

B(z, :
Wheizs (B aw)) = Whhyoy [M (l_z}fu‘:’lm(w)] + Wiy (M (12 m ()

Corollary (5.3) and Lemma (5.5) together imply that W'fz,=1 (B{z,w))=—1 when

A+l > a(l- lu:_a ), completing the proof for Theorem (5.4), subject to the conjec-
2
ture made in CASE 2 of Lemma (5.5). (When A;+L =oa(l- lu-ta) then
2

B (z,w)1,=; = 0. We handle this situation later on in this section.)
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The winding number results obtained so far are displayed in the first two rows
of the table in figure (5.5).

For the case llﬂ1<a(1-%a—) we have Wf,.,|=1 B(zw))=1 and
2

W.1=1 (B (z,w)) =0. Recall that the argument principle states that for a function,

J (x), analytic in 2 domain that has boundary €.
Wa( () = Neeroes = Npotes

where N;eroes (Npoles) is the number of zeroes (poles) of f (x) in the domain. We al-
ready showed that B (z,w) has no poles on the zero set V. The boundary of the zero
set is given by Q) ={(z,w): K(z,w)=0, Iwl=1} and
Qy ={(z,w) : K(z,w)=0, 1z1=1} (as seen in figure (5.6)). Thus, the number of zeroes
of B (z,w) on the zero set is one. In order to take an analytic logarithm of B (z,w) (step

1 in section 2D), we have to remove the zero (let it be denoted by p). In fact, the zero,

P, must lie on the real axis in the w complex plane between w = H2 andw=1. At

A +a
the end of the proof of Theorem (5.3) we showed that B (1,w=1) < 0 for a stable sys-

tem. In the proof for Theorem (5.4) we saw that B(l,-;\%)>0 for
2

AHL < ol- l::—a ). Since B (z,w) changes sign as w moves from

o to 1, then
lz-l-a

2 ,1). We then take the logarithm of B_(z;‘.’."_l.
).2+0'. (w—p)

Since p is located on the zero set V, between the two boundaries (Q; and Qj; see

B (z,w) =0 at some point w=p in (

figure (5.7)) we have W’f,,,,:l (w-p)=1and W’f,lgl (w=p)=0sothat

Mwl:l [B (Z’W)] = W/l’zl=l [B (Z’W)] =0

w=p w=p
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W=W(2)

Z=Z(W)

Z(Wjm1) e

1Z]=1

W(lZj=1)

Figure (5.7)
Zero of B(z,w) for llﬂll < a(l-u.zl(lzm))
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For the other case (A;+i,; >a(l—%)). the winding numbers (from the
2

boundaries 21, and £2;) sum to zero, so that B (z,w) has no zeroes on the zero set. A
problem remains in that the logarithm is not single valued.

Recall that the winding number (or index) of an function f (x) is defined as

__1 ¢ fix)
Wa(f (0= [ &

where Q is the boundary of the domain of interest. If the domain is a simply connect-
ed annulus then Q=Q, +Q, where Q; is the outer boundary and Q, is the inner
boundary. See figure (5.8) for an example where the domain of interest is
D= {x: %<IxI<1}). Assume f(x) is analytic with no poles over D (for example
f (x) =x). Then the logarithm of f (x) is (from) [Chur74]

log(f (x)) =loglf (x)| + 07
where 0y () is the argument of f (x). If the winding number of f (x) is 1 around both

boundaries then the winding number (of f (x)) is 1 for any closed curve homotopic !

to Q; or ; [Conw78]. Let @ be a closed curve in D homotopic to Q; or Q,. Then

-1l Sy, _
W&(f(x»-mmf(x)dx-l

But the integral is the logarithm of f (x) over the closed curve ®, so that

1 fx) . 1 _
Zui({f(x)dr_ 2mi 1°gf(x)"‘"1

The rightmost equality in the above equation tells us that the result of traversing a

loop leaves us with a non-zero answer

! Two simple closed curves, [y and I} are homotopic if there is a continuous
parameter 0<r<1 and a continuous function, I'(¢) such that [(0) =T and ['(1) =T},
and I'(¢) is simple and closed for any ze [0,1].
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logf (x) I‘” =2xi
and that

' _ log!f (x)1 +i6f(x)
logf (x) = {Iogl £ OO +i(By ey +2m)

i.e. logf (x) is double valued. Thus, there is no analytic logarithm of f (x) over domain
D as stated. However, dividing f (x) by x—a where lal < yields a function, L&)
x-a

that does have an analytic logarithm. To see this, note that as x traverses @ in the posi-

tive direction (counter clockwise), logf (x) increases its argument. However,

(x-a)

traverses @ in the opposite direction and log decreases the argument by an

1
(x-a)
equal amount. When x returns to the starting point the argument portion of the loga-

rithm (for the entire function %) has been canceled out. Also note the winding

numbers Wf;l (x-a)= W““Q2 (x-a) =1 so that Wf-,l [—-ﬂ&] = W",;;2 [M =0.

(x—a) (x-a)

In our problem, we divide B (z,w) by (w—p), where p is a point in the w unit
disk that is not included in the zero set V. (i.e. there is no z, 1zI<1 such that
K (z(p).p)=0). In Theorem (II.1) (in Appendix 2) we prove that such a p always ex-

ists in a stable system. Since Ipi<1 it is easily seen that wa|=1 (w=p)=1, and so

Wty [f(’f—_'pw))] =0. From Theorem (IL1) it is obvious that the point p lies im-

mediately to the left (on the real axis) of w(z=1) (see figure (5.9)). Thus the w image

of |z| =1 wraps around the point p one time in the opposite manner of the z variable,

and W%, _,(w(z)yp)=-1. We now have W%, ., Bzw) =0 for the case
w(z)-p
H2
A-I'HJ-I > ofl- A0t ).
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When A Hl; = a(l— ) we have B (z,w)|,;=; =0. We deal with this prob-
lem by dividing out the zero at w = l:-iz-a , and take the logarithm of B (z’j:)

Thus, we now have

Whiz [Ef—;:)] Wy is1 [gf_—:)] =0

for all cases and is displayed in the last row of the table in figure (5.5). From
[Maly72] we know that any closed curve o on the zero set, V. is homotopic to the

boundaries iwl =1, and 1z1 =1 so that

w [8 (z.w)] —o
w~p

B (z,w)

We have now proved that log [ ] satisfies condition 5 of the Splitting Theorem
w-=p

in that the logarithm is analytic on V. The system equation then becomes

B(z,w)

Pl(z,0)+(w—p)( =—==—=P1(0,w)=PyoC (z,w)

P) (5.55)

B(z,w)
(w-p)
subroutine. By the Splitting Theorem ¢(z) and y(w) are the unique analytic functions

We apply the logarithm function to and split the result using the "splitter"

that satisfy

Bzw)

In
(w-p)

=y(w) - 9(2)

so that

B@w) _ e V)
(w=p) %) (5.56)

Substituting (5.56) into (5.55) we obtain the system equation:
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W=W(2)

|Z}=1

Z(W[=1) recoreens

W(iZ}=1) s

Z-Z(W)

Figure (5.9)
Zero of B(z,w) for Ji.l+p.1 > o(1-py/(A, +00))
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e“z)Pl(Zg 0) + (W_P)C“W)Pl(o,w) = eﬂl}Po'DC(z'w) (5.57)

The next step is to split the right hand side into two functions. One function is analyt-
ic throughout the z unit disk and is independent of w, while the other is analytic
throughout the w disk and is independent of z. In order to split the right hand side we
must show that e**)C (z,w) is analytic on the zero set V. The first term, ¢¥®) is ana-
lytic since the exponential of an analytic function is analytic. From equations

(5.40),(5.42) and (5.43) we have the following expression for C (z,w):

— =t =3 ot = =t ¢t
Vivs -V WilVy -V ]

Claw) = ma(l-1/w)  — pp(i-l/w)
Ay +ha(1=w)) | .
= [ Q=2 HL +m (W) L] Ei ‘m
;
w [ (-2 m A+ (1-w) = Ay
- KMo (w~1) (5.58)

The w term in front cancels out the (only) pole at w=0, located in the m(w) term. The
(w—1) term can be divided out of the numerator as was done for B (z,w). Since z(w),
and w(z) are analytic mappings on the zero set V¢ we conclude that C (z,w) is analyt-
ic on V. Applying the splitting subroutine to the right hand side of equation (5.57)
yields:

e¥IC (z,w) = (D2 }+K) + (F(w)-K) (5-59)

Where X is an additive constant to be solved for. Our system equation, which holds

on Vg, is now
e¥DP1(z,0) + (w=p)e¥™P (O, w) = Poo (D) + K) + (Fw)-K ) (5:60)

Since, by the Splitting Theorem, equation (5.59) is the unique way to split
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e%®)C (z,w), then we must have that

e®DPl(z,0)= Py o (D(z) +K) (5.61)

(w=p)eY™PLO,w) = Pgg(¥(w) - K) (5.62)
Setting w=p in the above equation forces the constant to be ¥(p) so that

Poo(¥(w)-¥(@))

PlOw)=
e¥™)(w-p) (5.63)

Using the equation 37 ¥ P; ; =1 we obtain (from equation (5.20) in particular)
i=0j=0

v-ve)| | e e
e¥(1-p)

POD=P 1+ =
G,1) o.o[ r ~
_+l.._...___

5] Hi+o

Thus, solving for P yields:

ll 11
—(l-—) 1
Poo = P2 Y(1)-¥@)
' 1
[ﬁn— M ] eV (1p) (5.64)
H1 Hi+&

Thus we have the proof of existence (and form) of a solution. In order to prove that
there exists only one solution to the system equation we must show that the solution

space to the homogeneous problem, namely,
wa (1-1/w)P1(z, 0) + B (z,w)P 1(0O,w) =0

includes only the trivial solution (P!(z, 0)=0 and P 1(0,w)=0). We duplicate the first

step exactly as for the proof of existence and obtain
e¥P(z,0) + (w=p)eV™P1(O,w) =0

We now split the function 0 into two unique functions up to an additive constant.
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Since ®(z) =0, and ¥(w) =0 do indeed split 0, they must therefore be the unique

solution to the previous equation. Then we have

e¥pl(z 0)=0+K

(w=p)e¥™pPl0O,w)=0-K
Setting w=p forces K =0 and we are left with

PYO,w)=0 and Pl(z,0)=0

In order to see that inequality (S2) is indeed a condition for ergodicity, we
analyze the situation when the condition is violated. The winding number of

Bl(z,w)

n on Iw! =1 will be 1 and not 0, and W¥,, (- (B (z,w)) = 2. In order to take an
-w

analytic logarithm of B (z,w) it will be necessary to divide B (z,w) by two factors,
(w-p,) and (w—p3) (not one as in the stable case). At least one of the p;’s will be on
the zero set, V. After applying the splitter the second time (Step 2 in section (5.2.4))

we have
e®*Pl(z,0) + (w—p ) w-p2)eY™PLO,w) = P g (D(2) + K) + ¥(W)-K ))
and by the uniqueness of the Splitting Theorem we must have
(w=p1)(w=p2)e¥*P1(0,w) =Poo(¥(w) - K)

The above equation has two conditions to solve for two unknowns Pg g, and K. How-
ever, we still have the equation for P (0,1) which overdetermines our system and
yields no solution. Therefore, (S2) is a condition for existence of a solution, i.e. an

ergodicity condition.

This concludes our proof of uniqueness and existence for the case T=1 (except

for the set of parameters in CASE 2 of Lemma (5.5)). In the next section we discuss
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the general case T21.
5.2.6) The General Problem, T greater than 1

The conditions (S1) and (S2) listed in section (5.2.1) are the conditions for er-
godicity for the general case T>1. Condition (S1) was proved necessary for ergodicity
(for any T). However, we have been unable to find a proof that (S2) is necessary for
the stability of the system although, we have Strong numerical evidence that supports

our conjecture that it is. The evidence concerns the winding number of BT(z,w) on

T
the contour iw! =1, For the remainder of this section let B (z,w) = 'ﬁ—-(z—’w—)— From
H2(1-1/w)

equation (5.41) we have that

B(z,w)= B1w) Wi ViMT-17)!
Z,w) = =
H2(1-1/w) Ha(w-1) (5.65)

where

1 [11+u1+M(W) "llJ ‘7:= [_(11(1_2)4-|,;1+m(w)) 11]

7 [ﬂ:‘m_(w_) IJ 7 [Ez_(l_l,w) o}

H1 |1 (5.66)

The w*! term cancels the T+1 poles (at w =0) that occur in V1M 17" A w=l,

z=] the denominator of equation (5.65) is 0 whereas the numerator is

1 [—“'1 l]] ll'ﬂ'll —ll T-1 ll’l—'-l
p -t b1 0 1

We can show that the above expression is equal to 0 for any T21, by transforming ma-

trix M into its eigenvalue matrix, D, and associated eigenvectors, i.e.
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where 4 is a 2x2 matrix with each column being an eigenvector of M. The two cigen-

values of M, denoted bye; and ey, obey the following equations

€re =detM =1,

2
€1 +ey=trace M = Zm,-,- =A-l +
i=1
where m;; is the ;% diagonal element of M. It is obvious that e =

Ay and ep =,
satisfy the above cquations. Also note that det M = 0, so that M is not

singular at w=],
z=1. The matrix 4 is found by solving the following two vector equa

tions.
an an
M =e,
[aﬂJ as;

Each vector equation leads to two equations in two unknown

s. The following valyes
fora; ij=1,2 satisfy the vector equations up to a multiplicative constant,

a a A1

A= |0 92| A
n an| |y 1

and
1 1 -1

A o 2

Ay, ["‘“l li}
Now
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_ 1 M1 T o 1 -1
e N TP 4 B R I TP TP

1 MewT A Tt =T
e L [TPY PN TP VYTTE AL TR Wl

After plugging in the above expression into ‘I7:MT‘1 17? it is easily verified that the
numerator of equation (5.65) is 0 at w=1, z=1. The zero in the numerator cancels the
zero in the denominator and B (z,w) has no poles on the zero set, V. In the table in
figure (5.10) we present numerical data on the winding numbers W4, ., (B (z,w)) and
W*, =1 (B (z,w)) for different parameter values of stable systems. From the table we
sec that Wf,.,,:l (B(z,w))=Tand -T < W”f,1=, (B (z,w)) £ 0. The number of zeroes of
B (z,w) on the zero set is n =W, (B(z,w)) + W}, 1_ (B (z,w)) which can range
from O to 7. In order to take an analytic logarithm of B (z,w) on the zero set we will
have to remove those n zeroes plus T —n other points in the "hole” (points (z,w) on the

polydisc Izl <1 Iwl S 1, K(z,w) #0). After removing these T factors, both winding

B (z,w) B (z,w)
numbers, W¥,,,_; lII (W) and W¥,,_, IZI W) will be 0. As in the case
m=1 m=]

T=1, these T factors that were removed give us T equations to help solve for the un-
known constants in equations (5.40) through (5.43). If the winding number
W’Tw|=l (B (z,w)) =T+1, then we will have T+1 factocs to remove, and T+1 equations
to help solve for the unknowns. However, this extra equation will overdetermine the
system of equations thus yielding no solution. The question as to whether or not there
exists a solution depends on on the value of the winding number Wf,,.:l (B(z,w)). We
conjecture that in a stable system the winding number is T, whereas in an unstable

system the winding number is T+1.
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Mof R [T Wha@Tewy) | wh, BT(z,w))
0T | 2 | 2 Y 0
.15 1 2 2 2 -1
1.2 1 K] 2 2 -2
01 1 2 3 3 0
.1 1 2 3 3 -1
15 1 2 3 3 -2
1.2 1 .3 3 3 -3
05 1 .1 4 4 0
.1 1 .1 4 4 -1
2 1 1 4 4 -2
4 1 .1 4 4 -3
1.2 1 .8 4 4 -4
05 1.5 2 5 5 [1]
¥ 1.5 2 5 5 -1
2 1.5 2 5 5 -2
4 1.5 2 5 5 -3
b7 1.5 2 5 5 -4
1.2 1 .8 5 5 -5

Table of Values for W4, (BT(z,w)) and W21 BT (z,w))
M2 =2, o= 1.5 (All cases are for stable systems)
Figure (5.10)

In the next section we discuss some of the numerical results we obtained for
the performance measures of the queueing system,
5.3) Discussion of Results

In this section we discuss the numerical results obtained from the Boundary
Value approach to the threshold queueing problem. We present numerical results ob-
tained using the splirter, and compare those results to numbers obtained using two

other approaches.

We limit the presentation of results to the case where the threshold T = 1. The

numerical algorithms used in the splitter did not converge to particular values for
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T > 1. We do not believe this is a problem with the Boundary Value approach, but

rather an implementation problem with the algorithms used to compute the Poisson in-

tegral.

In the table in figure (5.11) we present the results, in terms of the average
number in the system, for three different methods. The first is the Boundary Value ap-

proach. The second is the State Truncation approach. The two dimensional state

A
Space was truncated at n, =M and at n2 =N. For light loads (p1=u :_a<.7,

1

A
pz=M—2 <.5) we used N=M =50, For higher loads we increased both N, and M from 50
2

to 100. The steady state equation for cach state (i, ) 0<i <M 0<j<N, is the same as in
section (5.2.1). On the boundary, the equations are modified as follows:

AH12)Pon =RaPon—y + 1Py
For 0<i<T
M+ PN = M Pioyy + Wy Pray y + A2Pin-y
ForT<i<M
RrHUHIP N =M Py y + 1 Py g + MPin-y + 0Py oy
(M1 H2)Pyn =My Pyyoy v + Mg Pryn—y
For O<j<N
A2+ +0)Py j = A Pyy_y. it APy 1+ 1yPuy i
Aot +00Puy, 0 = M PM 1,0 + 1P |

The state probabilities, P, j, were given initial values as if the system consisted of two

independent M/M/1 queues. In each iteration the set of equations was used to calcu-
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late the new value for each P; ;. The iterations continued until the probabilities stabil-
ized. The last method was a simulation of the two queues. The simulation was written

in the C language and run on a DEC VAX ! 11/750. Each simulation was stopped
after the second queue had processed from 750,000 to 1,000,000 jobs (depending on

the parameters).
A Ar Simulation SST B-V
0.5 0.5798 0.5798 0.57
0.75 0.25 0.9135 09138 0.9139
1.5 : 3.586 3.588 3.582
1.7 6.345 6.351 6.407 |
1.9 19.793 19.213 18.228
0.25 0.5243 0.5253 0.5254
0.5 0.7302 0.7800 0.7800
0.75 1127 1.127 1.126 |
1.25 1 0.5 2.406 2408 2.407
1.5 3.877 3.881 3.886
1.7 ___6.678 6.679 .
1.9 20.166 19.586 19.032
0.75 1.903 1.901 1.910
1.5 1 5.117 5.100 5.157
1.7 8.140 8.136 8.285
1.9 21.967 21,372 19.719
0.75 4.541 4.537 4.562
i3 12.760 12.088 | 12.794 |
1.6 1.5 15.461 14.776 17.088
1.7 21.941 20.736 18.795
1.9 61.186 45,402 49.848
0.25 1.75 7.618 7.511 7.965

Average Number in the System
T=1, n=1.5, ]..l.2=2, o=0.5
Figure (5.11)

When the utilization is low for both queues (less than .75) all methods are
within 1% of each other. Comparing the R-H (Boundary Value or Riemann-Hilbert)

with the SST (state space truncation) numbers the difference is less than .5%.

lVAXisa registered trademark of the Digital Equipment Corporation
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As the udilization in the first queue increases beyond .75 the differences
between the three approaches starts to increase. However, if the utilization in the
second queue remains low then the differences are bounded by 1%. This effect is due
to errors in computing the Poisson integral and in computing the derivatives of the
constructed functions. When the utilization in both queues tends towards 1 then the
results from the three approaches starts to diverge. In particular, the three results for
the case A;=1.6, A,=1.5 (p;=.8, p,=.75) differ by 10%. The effect is even more
dramatic for the case A;=1.9, My=1.5 (p;=.95, p,=.75). This effect is expected due to
computational errors with the R-H, and SST approaches. In particular, the SST ap-
proach underestimates the average number due to the truncation. At high load there is
a non-negligible amount of probability mass in the states that have been cutoff. How-
ever, by increasing the state size (increasing M and N) the computational complexity
increases drastically. A further problem with the SST approach is that the number of
iterations needed also increases with increasing load. The problems mentioned earlier
with the Poisson integrator and taking derivatives, are exacerbated at heavy loads.
The last approach, simulation, provided stable values for A; $1.7 and A, <1.5
(p1=.85, p2=.75). That is, different runs for the same parameter values yielded results
that were within 5% of each other. However, for A; = 1.9 and A; = 1.5 (p;=95,
p2=.735) the different runs differed by as much as 25%.

5.4) Conclusion

In this chapter we introduced a coupled queue problem that is difficult, if not
impossible, to solve using the standard methods in queueing theory [Klei75]. We
presented an alternative approach that reduced the queueing problem to a two dimen-
sional boundary value problem. The new problem is solved using Complex Analysis

to construct analytic functions that satisfy the boundary conditions. The advantage of
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our approach is that it yields an exact solution (albeit numerical) to the problem. Other
approaches (State Space Truncation, Simulation) that yield numbers are approxima-
tions, not exact. A second advantage of our approach is that the method yields condi-
tions for ergodicity as part of the proof of uniqueness. In many coupled queueing
problems, the stability conditions are intuitively obvious (as in our problem), howev-

er, proving those requirements to be the ergodicity conditions is far more difficuit.

The last advantage is a double edged sword. The main problem with our ap-
proach is the complexity of proving the solution to be unique. We were able to prove
uniqueness for 7=1 only, not for general T. Even for the case T=1 the proof is incom-
plete for the particular case of lemma (5.5). We hoped that a method could be
developed that would apply to other coupled queue problems as well. However, the
proofs derived here are only for the particular problem at hand. There are no general

theorems that we could extract from our work.

We encountered a problem with the particular splitting subroutine that was
used. The splitter was not sensitive enough for high loads or for 7>1. This is not a
problem with the method in general, but with the implementation of the splitting rou-

tine. A more sensitive Poisson integrator would yield more exact results.
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CHAPTER 6
FUTURE RESEARCH

In Chapters 2 and 3 we investigated algorithms for load balancing in point to
point networks. In Chapter 4 we looked at load sharing in a broadcast environment.
An area for future research is load balancing in a mixed media network. For example,
it would be interesting to develop and analyze effective, yet efficient, load balancing
algorithms for many broadcast networks connected together in a point to point net-
work. How could the algorithms in Chapters 2,3, and 4 be adapted to work in such a
network? On the flip side we can design a point to point network that utilizes a low
bandwidth channel for information passing only. Is there an advantage to using the
channel] for a load balancing application? Would the extra channel help speed the con-

vergence of the algorithms in Chapters 2 and 3?

In Chapter 4 we analyzed the delay in a broadcast network before and after
load sharing when the arrival rates were sampled from a uniform distribution. More
work is needed to determine other distributions that are useful and amenable to
analysis. We found that the average delay was sharply reduced when load sharing was
used. However, wé limited the external input rates to the nodes to be no larger than
the service rate at the nodes. This limitation was used to bound the average job delay
at a node without load sharing. In a real distributed processing environment, however,
there may exist processors that are overloaded which clearly dictates the need for load
sharing. Another performance measure (or different delay function) is needed to cap-

ture the effect of distributing the traffic from overloaded processors.
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The proof of uniqueness in Chapter 5 is for the case T=1. A new approach for
obtaining the winding numbers is needed for the general threshold case (7' >1). An
asymmetry remains between probabilistic analysis and complex analysis. If we are
able to construct a solution using complex variables theory, perhaps we should be able
to do so using probabilistic methods. An alternative method (using probability) would
(hopefully) yield meaningful equations. The complex analysis approach yielded equa-
tions that did not help us understand the system. A closed form approximation to the
average response time would give us a better feel to the system, and allow us to fine
tune the system (by changing the threshold) thus minimizing the average response

time of a job.

The system analyzed in Chapter 5 modeled a star topology in which the satel-
lite nodes were connected to a central mainframe server. The satellites used thres-
holds to determine when to send jobs to the central server. A more complete model
would include a threshold for the central server as well. The server could accept jobs
only if the number in its queue is below its threshold, otherwise, the satellite nodes are
prohibited from sending jobs to the central server. Another modification would be to

allow the central server to send jobs to the satellite nodes if it is congested.
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APPENDIX 1
DERIVATION OF M/G/1 DELAY WITH LOAD SHARING
~MIGI1 -
We start off with the equation for TNI_Z{K using the same value for yw_;x as in the
M/M/1 network.
1 Iyox N-2K 2
en 1 [ [ x;(lwb)}]
dx;

v == [T | 3 1e 550

-2k i=1 (A.1)

For notational simplicity, we let D; represent the average delay at one node in the net-

work.

x(1+C})  24x(C}-1)
20=x) ~ 2(1-x))

D=1+

Replacing this value in the network equation and isolating the terms for the random

variable xy_ox yields:

11
~M/GI 1 1 N-2K
Ty-2k -_—gl[ I1 fGxj)dx; M
‘YN_ZK j=l (A.2)
where
tv-2x-1 2ty 2k +xF 2k (CE-1)
M= . N-2k+XN-2k(Ch ) ) .
1[ El xD; + 2(0ty—28) -2k Oy 25 )N -2k

The solution of the bracketed term is made up of three separate parts,

M =N_§_ D; +l X £ (x)dx + [Ci_l] l f_l £ (x)dx

i=l

The middle term on the right hand side of the above equation, call it A, is
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1y
N+l N] =1, N=j+1 N+1 N ] =1 N=j+l

- — 1- 1 idy = ————— 1-xY 'x dx
4 N—K+l ,_K[J (1Y N-K+12 % l( Y

The integral in the rightmost_ term is the normalization constant for a Beta distribution

with parameters j—1,N —j+1. Substituting the constant into the equation yields:

4o NHL m T()HTN =j+2)
—K+l T(N+2) (A3)

—j+1

N—K+1 Z v+ 1)27_1]

N K +1 [
The third part of M is likewise solved.

(N+1)(C,,-1)l N W =1, N=j+2
= 2Nk ,,K [J](I Y “

WADCE-D Ny =1, N—j+2
S T2NK+D) | [J] (I=xy =7 dx

As with the A term, the integral in the above term is the normalization condition for a

Beta distribution with parameters j—1, N—j+2.

_ (N+1)(Cb"1) N [17] C(HCWN —j+3)
2(N —K+1) '(N+3) (A.4)

(o] z(N—j+2)(N—_,'+l)
T 2N-K+1) fors FIN+2)

(oF)

= NN+ KK-1) N1
T 2N-K+1)(N+2) HV+H2)WN+D) T =

2 2 j=kJ

N-K+1)(2N +3)+

Replacing A,B, and ¥'x;D; in equation (A.2) yields the same functional equation but
with one less random variable (xy_,x). By repeating the same procedure for the other

N =2K -1 random variables we have:
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~MIGI 1
Thox = ﬁ [(N—ZK)'(A +B)]

Replacing A and B with equations (A.3) and (A.4) yields the final result in section 4.4.
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APPENDIX 2
STUDY OF THE KERNEL EQUATION

THEOREM (I1.1): For p;+iy <A; +A,, there exists a point p in the w complex plane
such that X (z,p)»=0 for any z, 1zI<]1,

The inequality W +py<Ay+A; is the system stability requirement (condition
(S3) from section (5.2.1)). The input rate A, +A; should be strictly less than the sum

of the service rates. In order to prove Theorem (I1.1) we need the following lemma.,

l -
LEMMA (IL1): l”ia > la"‘
2

1%

PROOF: If
A+t

21 then we must have A; <jL;+a for stability in the first queue. This

A
1;:’11<1< Ha . If Ha <1 then assume

condition immediatel ives us
vy &8 A+ A+t

Mo M2
a _124-(1

. By considering the system stability condition and the assumption we

have the following inequality

H2
Ha=Az >A—y >«

12+02
but o a ={a(1~ A ) =Ha—Ay H2 > Ha—As which contradicts the above ine-
124-(1 Ar+a 7\.2+a
quality. QED.

PROOQF (of Theorem I1.1): The kernel equation is
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A122 = (AL Hom (W))z + (U +ow) =0

where m (w)=Az(1-w) + Ha(1-1/w). Let w=re'®, Taking the partial derivative of the

kernel equation with respect to » we obtain:

2112% - -—(11+u1+a+m (w)) -z [l-lz - _ lze‘e] +0e®=0
r
. dJz .
Isolating for — yields:
ar
z [""_ge—:e _ 3-28"3} — e
or  2A;z = (AU +otm (w)) (I.1)
Ha2 M2
CASE 1: <1. We want to show that p =——-¢, for small enough &, has no z
A+ A+
roots in the unit disk. From the kernel equation, when w= v there are two roots
2
K2
At 12
z1(w)=1 and z,(w)= y > 1 (from Lemma (II.1)). The derivative of each
_ 1

root is obtained from equation (II.1).

H2 A
H2 -a
dz(w) _ Ay
or k2 Ha

el v A —(py+ot 7*-2'*'0!)

The denominator is negative (from Lemma (II.1)) and the numerator is positive since

Ha H2
- +a)>

Hy 2 2 H2

Ayt A+t

—€ (small €) moves z;(w) to a point

-(7\.2 +a)=0

0z (w)
or

us is negative and picking p= lujcx
2
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on the real axis greater than one. The derivative of z;(w) at w= X -:a
: 2

H2 -2
W) | | 2 2 ~a
dz2(w) - Mo
0 2 +ot
r W hara M za(w)—(h oA (1- 1:; }"le(l-%';—))

We see after some algebraic manipulation that both the numerator and denominator

to point p=£——e, z2(w) also moves on the

are positive. As w moves from "
2

M2
A+t
positive real axis to the left. However, if £ is chosen small enough then z,(w) will still

§

be out of the unit circle. So for p= l” 2
2

—g both z roots will be out of the unit circle,

CASE 2: 1:-42-021' Here p=l-e. The two 2z roots of w=1l are z;(1)=1 and

+o
za(l) = Ll;' >1. The corresponding derivatives at w=1 are
, 1

oy w) _pa=(a+0)

or w=1_ll-(].£1+a) <0

A small decrease in r (by €) will result in an increase for z,(w) to a point outside the
unit circle. For z,{w) we have
H1+

dz2(w) . Ay 0
ar T T2+~ iy + @) g

a
(M2 - A7) -

Decreasing r by € will bring z,(w) closer to the unit disk. However, for small enough

g, 272 (w) will remain outside. QED

182






[Abra72]

[Agra84)

[Bert78]

[Bert84]

[Brya81]

[Cant74]

[Cape79]

[Case81])

[Chou82]

[Chow79]

References

M. Abramowitz and I. A. Stegun, Handbook of Mathematical
Functions, Dover Publications, New York (1972).

A. Agrawala, E. Coffman, M. Garey, and S. Tripathi, ‘A Stochas-
tic Optimization Algorithm Minimizing Expected Flow Times on
grg;g;m Processes,’”’ /[EEE Trans. Comput. C-33(4), pp.351-356

D. P. Bertsekas, *‘ Algorithms for Optimal Routing of Flow in Net-
works,”” , Coordinated Science Laboratory Working Paper,
University of Ill. at Champaign-Urbana (June 1978).

D. Bertsekas, E. Gafni, and R. Gallager, “‘Second Derivative Al-
gorithms for Minimum Delay Routing in Networks,’’ IEEE Trans.
Commun. COM-32(8), pp.911-919 (Aug. 1984).

R. M. Bryant and R. A. Finkel, ‘*A stable distributed scheduling
algorithm,”” pp. 314-323 in Proceedings 2nd International
C%ngference in Distributed Computing Systems, Los Alamitos, CA
(1981).

D. G. Cantor and M. Gerla, *‘Optimal Routing in a Packet-
Switched Computer Network,”” IEEE Trans. Compus. C-23,
pp.1062-1069 (Oct. 1974).

J. 1. Capetanakis, ‘‘Generalized TDMA: The Multi-Accessing
Tree Protocol,’”” [EEE Trans. Commun. COMM-27, pp.1476-
1484 (Oct. 1979).

L. M. Casey, ‘‘Decentralized Scheduling,”’ Australian Compuz. J.
13, pp.58-63 (May 1981).

T. C. K. Chou and J. A. Abraham, ‘‘Load Balancing in Distributed
Systems,”” IEEE Trans. Sofiware Eng. SE-8, pp.401-412 (July
1982).

Y. Chow and W. Kohler, ‘‘Models for dynamic load balancing in

a heterogeneous multiple processor system,”’ /EEE Trans. Com-
put. 28(3), pp.354-361 (May 1979).

183



[Chur74]

[Chug0]

[Cinl67)

[Cohe83)

[Conw78]

[Davi70]
[Eage84]

[Ephr80]

[Farb72]

[Fayo79]

(Frat73]

[Gakh66]

[Gall77]

[Gold83]

R. V. Churchill, J. W. Brown, and R. F. Verhey, Complex Vari-
ables and Applications, McGraw-Hill, New York (1974).

W. Chu, L. J. Holloway, M. T. Lan, and K. Efe, *“Task Allocation
in Distributed Data Processing,’”” IEEE Computer 13, pp.57-69
(Nov. 1980).

Erhan Cinlar and Ralph L. Disney, ‘‘Stream of Overflows from a
Finite Queue,’’ Operations Research 15(1), pp.131-134 (Jan. -
Feb. 1967).

J. W. Cohen and O. J. Boxma, Boundary Value Problems in
Queueing System Analysis, North-Holland Math. Studies, Amster-
dam (1983).

J. B. Conway, Functions of One Complex Variable, Springer-
Verlag, New York (1978).

H. A. David, Order Statistics, Wiley, New York (1970).

Derek L. Eager, Edward D. Lazowska, and John Zahorjan,
‘‘Dynamic Load Sharing in Homogenous Distributed Systems,”’
84-10-01, Dept. of Computer Science, Univ. of Washington (Oct.
1984).

A. Ephremides, P. Varaiya, and J. Walrand, “‘A simple dynamic
routing problem,’’ /EEE Trans. Automatic Control 25(4), pp.690-
693 (Aug. 1980).

D. C. Farber and K. C. Larson, ‘‘The Distributed Computer Sys-
tem,”’ in Proceedings Symp. Comput. Commun. Networks and
Teletraffic (1972).

G. Fayolle and R. lasnogorodski, ‘“Two Coupled Processors: The
Reduction to a Riemann-Hilbert Problem,”” Z. Wahrscheinli-
chkeitstheorie 47, pp.325-351 (1979).

L. Fratta, M. Gerla, and L. Kleinrock, ‘‘The Flow Deviation
Method: An Approach to Store-and-Forward Communications
Network Design,”” Nerworks 3, pr.97-133 (1973).

F. D. Gakhov, Boundary Value Problems, Pergamon Press, Ox-
ford (1966).

Robert G. Gallager, *‘A Minimum Delay Routing Algorithm Us-
ing Distributed Computation,”” IEEE Trans. Commun. COM-
25(1), pp.73-85 (Jan. 1977).

A. Goldberg, G. Popek, and S. S. Lavenberg, ‘‘A Validated Distri-

buted System Performance Model,”’ pp. 251-268 in Performance
83 Proceedings, ed. A. K. Agrawala, S. K. Tripathi (1983).

184



[Haje84]
[Klei64]

[Klei84]

[Klei75]
[Klei76]

[Kuro86)

[Lave83]

{Lazo84)

[Lee87)

[Livn82]

[Maju80]

[Maly72]

[Nels85]

[Ni81]

B. Hajek, “*Optimal Control of Two Interacting Service Stations,’’
IEEE Trans. Automatic Control 2%(6), pp.491-499 (June 1984),

L. Kleinrock, Communication Nets; Stochastic Message Flow and
Delay, McGraw-Hill, New York (1964).

L. Kleinrock, ‘‘On the Theory of Distributed Processing,”
Twenty-second Annual Allerton Conference on Communication,
Control, and Computing (October 3, 1984).

L. Kleinrock, Queueing Systems. Vol. 1, Theory., Wiley, New
York (1975).

L. Kleinrock, Queueing Systems. Vol. 2, Computer Applications,
Wiley, New York (1976).

James F. Kurose and Suresh Singh, *‘A Distributed Algorithm for
Optimum Static Load Balancing in Distributed Computer Sys-
tems,’’ pp. 458-467 in Proceedings INFOCOM (1986).

S. 8. Lavenberg (Editor), Computer Performance Modeling Hand-
book, Academic Press, New York (1983).

E. D. Lazowska, J. Zahorjan, D. R. Cheriton, and W. Zwaenepoel,
‘‘File Access Performance of Diskless Workstations,” 84-06-01,
Dept. of Computer Science, Univ. of Washington (June 1984).

K. J. Lee, Load Balancing in Distributed Computer Systems, Dept.
of Computer and Information Science, University of Mas-
sachusetts, Amherst (1987). Ph.D. Dissertation.

M. Livny and M. Melman, ‘‘Load Balancing in Homogeneous
Broadcast Distributed Systems,’” pp. 47-55 in Proceedings ACM
Computer Network Performance Symposium (April 1982).

S. Majumdar and M. L. Green, ‘‘A distributed real time resource
manager,’’ in Proceedings [EEE Symp. Distrib. Data Acquisition,
Comput. Control (1980).

V. A. Malysev, ‘‘Positive Random Walks and Generalized Elliptic
Integrals,”’ Soviet Math Dokl. 12(1), pp.178-182 (1972).

R. Neison and D. Towsley, ‘‘On Maximizing the Number of
Departures Before a Deadline on Multiple Processors,”” RC
11255 (#50703), IBM Watson Research Center, Yorktown
Heights, NY (July 1985).

L. M. Ni and K. Abani, ‘‘Nonpreemptive Load Balancing in a

Class of Local Area Networks,” in Proceedings Comput. Net-
working Symp. (Dec. 1981).

185 —



[Peeb80]

[Rama83]

[Sega79]

[Silv84]

[Silv87]

[Smit80]

[Ston78)

[Tant85]

{Tayl88]

[Wang85]

R. Peebles and T. Dopirak, ‘“ADAPT: A Query System,”” in
Proceedings COMPCON (Spring 1980).

K. K. Ramakrishna, The Design and Analysis of Resource Alloca-
tion Policies in Distributed Systems, Ph.D Dissertation, Dept. of
Computer Science, Univ. of Maryland (1983).

Adrian Segall, “‘Optimal Distributed Routing for Virtual Line-
Switched Data Networks,”’ IEEE Trans. Commun. COM-27(1),
pp.201-209 (Jan. 1979). .

E. de Souza e Silva and M. Gerla, “‘Load Balancing in Distributed

" Systems with Multiple Classes and Site constraints,”’ pp. 17-33 in

Performance 84 Proceedings, ed. E. Gelenbe (1984).

E. de Souza e Silva and M. Gerla, ‘‘Queueing Network Models
for Load Balancing in Distributed Systems,’”” CSD-870069,
Department of Computer Science, UCLA, Los Angeles, CA (De-
cember 1987).

R. G. Smith, ‘*The Contact Net Protocol: High Level Communica-
tion and Control in a Distributed Problem Solver,”’ IEEE Trans.
Comput. C-29, pp.1104-1113 (1980).

H. S. Stone and S. H. Bokhari, ‘“‘Control of distributed
processes,”’ IEEE Computer C-11, pp.97-106 (July 1978).

Asser N. Tantawi and Don Towsley, ‘‘Optimal Static Load
Bailancing in Distributed Computer Systems,”” J. ACM 32(2),
pp.445-465 (Apr. 1985).

B. A. Taylor and S. L. Hantler, *‘Boundary Value Problems Aris-
ing in Muld-Dimensional Queueing Systems,’* Special Session on
Several Complex Variables and Their Applications, University of
Maryland (May 1988).

Yung-Terng Wang and Robert J. T. Morris, ‘‘Load Sharing in
Distributed Systems,”’ f[EEE Trans. Comput. C-34(3), pp.204-216

(Mar. 1985).

186



