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ABSTRACT OF THE DISSERTATION

ON THE BEHAVIOR OF ALGORITHMS
IN A MULTIPROCESSING ENVIRONMENT
by
Jay-Hsiung Huang
Doctor of Philosophy in Computer Science
University of Califomia, Los Angcies, 1988
Professar Leanard Kleinrock, Chair

A3 multuprocessing sysiems attract more and more sucntion, we would like 10 understand more
about how the system performs and hence lmhowwdcsignmesymmmdmgly. For a paraile] pro-

(the simplest definition is %).wn»lewdﬁwmmwmho{mwu

usadlndtheoptimdsys:emopenungpoim(i.e..opumalurivum)mch that the power is maximized.
Furthermare, we also obeain the processing n)u:pudupandﬂrupomcﬁmmdnp for the service dis-
Cipline which admigs only one job into service a1 a time.

Also in this dissertation, ag an application of multiprocessing sysiems, we present one parallei
merging aigorithm and one panallel sorting algonithm for use in 8 parallel processing sysiem. We also
present one distmbyied sortng aigorithm 1o be ysed with a distributed computing system with broadcass

then we begin 10 understand why multiproccssing sysiems have ¢volved. Funhermore, by giving the cost.
capacity function and the speedup function, we are able 10 find the oplmal way of designing the system
(i.e., the optimal capacity of each processor, the opumal budget 10 spend, the oplimal number of processors
l0 use in the system, and the optimal arrival rate of jobs 1o (he sysiem) such that either the mean response
ume will be minimized or the power (defincd in chapier six) will be maximized. The impact of the distn-
bution of the service time on the sysiem design is also studicd.






CHAPTER |
INTRODUCTION

LI Architectures: Distributed and Paralle| Processing Systems

We first make a distinction between a parallel processing sysiem and a distributed computing sys-
tem. Generally speaking, both systems conain many processors, ranging from several t0 tens of thousands
Or even more. By careful hardware and software design, we can coordinate these processors to work on a
problem (or, problems) concurrenty to reduce the time (o completion. The major difference between them

shown in Figwe 1.1. Pi refers t0 processor i and M refors 10 2 local memory. For a distributed computing
system, the processors usually communicate with each other through a communication network as shown
in Figure 1.2. This architecwral difference makes the inter-processor communication 4 much more severe
problem for distributed €omputng systems than {or paralicl processing systems.



Shared Memory

|

P1’M P2 (Ml | P3M | Palpm

Figure 1.1 A Parallel Processing System

Paralle! and disribyed processing sysiems can be (urther classified intw many classes. Paralle]
processing systems can be classified into SIMD (Single Instruction, Multipie Data stream) and MIMD
(Multiple Inseruction, Multiple Daw sream) computing sysicms, Both SIMD and MIMD can further be

CRCW (Concurrent Read Concurrem Write). Distribuwed COmMpuLing sysiems can he classified by the
different communication erworks used 10 connccted all the processors. For example, the communication
network can be a point-to-point fully connecied nctwork, a ring-network, 3 mesh-connected network, g
tree-network, an n-cube network, a broadcast communicalon network, exg,

Communication Network

P1IM P2 M | P3lml [palm

Fligurs 1.2 A Distributed Computing System

12  Algorithms: Distributed and Parailei Algorithms

Algorithms for paralle! processing sysiems are known as parallel algorithms. The number of pro-
cessors used is sometimes large and they communicaie with cach other through the shared memory. The

performance of a parallel algorithm is measured Primarily as a function of the processing time speedup of
the algorithm in terms of the number of processors used.

- - 2



Speedup s 5 performance measure which s used to describe how mych faster 3 job can be pro.
cessed using Mmultiple processors, a4 Opposed o using a singte processor. Let g define

With these definitions, we define the processing time ipeedup with p Processors, denoted as
55(P), o be ’

5Py XD (L1)

and we define the response time Speedup wiy p processors ag syswm utlization p, denoted as S$(P.0), 0
be

5.(P.p) m S1(1:P) 1.2)



For ¢valuating a parailel algorithm, processing time Speedup is more oftenly used as the perfor-
mance measure than responss time Speedup. It is not hard 10 show that 5,(P) can never exceed P, or, the
speedup for any problem using P processors can never be greaier than P, For many applicatons, 5P
grows slower than a linear function of P (so called linear speedup). Therefore, the goal of designing a
parallel algorithm is to achieve a high processing time Speedup, hopefully a linear speedup,

132 Inter-processor Communication

As the technology of computer and communication advances, distributed computing systems
become more and more Popular because they have the poteatal 1 speed up the Computation time at a
lower cost. However, one major concern of distributed sysiems is the communication between processors
which is required to contro) and synchronize the algorithm and the sysiem. [f the communication time (
which includes the packetizing time for messages, the hardware switching time, and the wansmission time
of messages) is much greater than the compulation time, then inter-processor communication becomes a
bottleneck and therefore Serves as a major measure of the performance, Taking the inter-processoe com.

municadon as the performance measure, we will be measuring how many bis have w be sent across the
communication network,

Furthermore, if the communication network between processors is a multi-access communication

it can be several bytes per packet, hence we do not have 1o access the channel too frequently. More details
of this issue will be addressed in chapter five,

133 Power

For & paralle| processing sysiem, there are two performance measures which compets with each
other: wilization and response iime. That is, by raising the utilization of the system, which is desirable, the
Mmean response tme will also be raised, which is not desirable. Similarly, by reducing the mean response
time, the utilization of the system will also be lowered. In this paper, these (wo performance measures are
combined into a single measure, known as power, which increases either by lowering the mean response
dme or raising the utilization of the system,

In (KLEI78] and (KLE179], power was defined as

power = -L_ (L3)
T/x
With this measure we see that an increase in utilization {p) or a decrease in mean response time (1
increases the power. Here ¥ is the average iotal service ime required by a job. Note that this normalized
definition is such that 0 < P<land 1 <7/X and 50 0 S power < 1. The symbol * will be used to denote
variables which are optimized respect 10 power. In [KLEI79), it was found that for any M/G/1 queueing
System, power, as defined in (1.3), is maximized when

- - 4



.v.zl (1.4)

where N = the average number of Jobs in the sysiem. This rosuit says that an M/G/1 system has a max.
imum power when on the average there is only one 10b in the system. This result is inwitively pleasing
since it corresponds o our deterministic reasoning that the proper operaling point for a single server system

is exactly when only one job is being served in the System and no others are waiting for service at the same
tme.

In this dissertation, we define the following notation:

4, (P) & the average processor efficiency given there are 2 processors in the sysiem

u2(A.P) A the average processor efficiency given the Job arrivai rate A and P precessors in the system.
T3(A.P) & the mean response time (i.e., service time + queueing time) given the job arrival rate A and P
processors in the sysiem

M{"(P) & power with parameter » given P processors and no arrivals come to the system,

P QR.P) A power with parameter 7 given the job arrival rate A and P Processors in the sysiem,

Note the difference between u, which is the average processor utilization, and p, which is the average sys-
fem utilization. Whenever there is a job in the sysiem, the sysiem utilization is "1” byt the processor utili-
zation does not have o be "1” since thers may be some idle processors in the system because the job in ser-
vice does not need all of them. Hence, the sysiem utilization is always greater than or equal to the proces-
sor utilization,

If queueing effects are not considered in the system, we define power as:

u(P)
x(P)
With this definition, a more general definition of power (as originally swdied in {KLEI79)) is given as:

") = (1.5

u (P
x(P)
where r is a non-negative number. With this gencralization, we have the freedom to favor the processor

ualization more heavily over the service ume by simply increasing the parameter r,

ey = (1.6)

If queueing effects are considered in the system, we define power as

AP
O, P) = —_';il P; (.7

and the generalization of (1.7) is given as

“1(&”)’

" -
avQ. ) T:0nF)

(1.8)



L4  Outline of this Dissertation

In chapter two, we exiend the noton of "power" as applied o queueing systams to parzllel pro-
cessing systems, We consider 8 stream of jobs arriving 10 3 parallel processing system; the system admics

one job into service a a time and we mode} a jobasa concatenation of siages where the number of proces.

in the paralle] Processing sysiem such that power is maximized. Expressions for the processing time
speedup and the response time Speedup are also obtained. We obtain these results for two casas: queueing
and no queueing. These results can be very helpful in designing a paraiie} Processing system,

tics, the number of Processors possessed by a job dunng its execution time varies. In chapter three we
investigate such kinds of Systems tg find the mean response ime. The analysis of these Sysiems wm out 1o
be very difficuls as pointed out in (KLEIg6). However, we are abje to find the exact solution for some spe-
cial cases. With the exact solution for some special ¢ascs and the scale-up ruie, which will be discussed in
detail in chapter three, we are abie 0 provide a very 80od approximation for general cases,

A distributed sorting algorithm is presenied in chapeer five for a distributed System which uses a
broadcast communication network to communicate between processors. As described before, the perfor-
mance measure used in this chapter is the communication requirement across the network, Several ver-
sions of this algorithm will be discussed in this chapter. In one of the Versions, we can adjust a parameter
lo trade between Mmemory requirement and communication requirement.

In chaper six we explore why more and more distributed and paralle) processing systems have
been built although queueing theory tells us that ceniralized sysiem performs begter than a
distributed/paralie} system given that the aggregate capacity for the centralized and the distributed/parailel

the system in order o maximize power. In this chapter, the impact of the variance of the job’s service time
distribution is also studied. The resuits suggest that for Jobs with higher service time variance, the

6



multiprocessor system becomes more 2
future smdy.

tractive, Chapier seven gives the conclusion and suggestions for



CHAPTER 2

PARAILLET PROCESSING SYSTEMS WITH VARYING REQUIRED
PROCESSORS WITH A SINGLE jOB IN SERVICE

We extend the nouon of power 35 applied v queucing sysiems (o Parallel processing systems. We
consider a stream of jobs coming o a parailef processing sysicm: the sysiem admits one Job into service at
a ume and we model 3 jobasa concatenation of stages where the number of processors required by each
Stage can be differene. With this model and the definion of pawer given in chapier one, we are able © find
the optimai System operating point (i.e.. input rate of jobs) and the cpumal number of PrOCessors 1o use in
the parallel processing system such thag Power is maximizeg. Expressions for the Processing time $peedup
and the response gme Speedup are also obtained, We obuun these results for two cases: Queueing and no
Queueing. These results can be very helpfui in designing a paraile} Processing system.

vides, then the Jjob will simply use ail thag i nceds and the other processors will be idle for that stage. If,
for some Stage, the job in service Tequires more processors than the sysiem Provides, then it will yse all the

2.1 Previous Work

In [KLEI?9), power was defined asg
power = -71_ @

where v is defined as the throughput of (he System and T is defined as the mean response time of the sys-
iem. With this definition, it was proved that for any M/G;] queueing sysiem, power is maximized when

¥ = I (2.2)

In that same paper, the definition of Power was generatized 10 be

Power = -2’— (23)
rx

where o is the System utilization and # 15 3 fonncgauve reat variable. Wih this new definition, The follow-
Ing results were proved:



Foran MmN System, power s Maximized when
v ' , (2.9

For an M/G/1 sysiem, power is Mmaximized when

ﬁ._l(i" [)212+4z(r2-r+2)+8(.?+ 1)4-2.4.[2(?— 1')"2} 2.8
B YUc+ e h-a] o (@3)

where

A== ¥zt +dx(ré . 1)+ 4(r + 1)
and

I'C;z"-l

available processors in the system, the Job will yse ai the available processors by elongating (he service
tme under the constraint that the overall work is nog changed (as shown in Figure 2100, In [KUNG84),



Procassor

!

B Peecs s we -

Processor

!

e

22 Model Descriptions of Jobs

We use three different models (o describe a job in a parailet processing sysiem. We name these
models Model I, Model I1, and Mode| 111 The dilference between Model 1 and Model 11 is that in Mode! I,
we allow each stage 1w have its own service itme distribution while in Model IT we vary the overall service
ume distribution. In Model I and Model I the number of processors required between stages is a discrets
variable, whereas in Model III we assume that the number of processors required by a job changes continu-
ously over its execution time.

- 10



2.2.1 Modell

In this model, a job is composed of several stages: in each Slage a given number of processors will
be used for a random period of time, The numbers of processors needed for different stages need not be the
same. Hence, a task can be described using three vectors. The first vector 18 the processor vecior which
Specifies the number of processors requured by each stage. The second vector is the rime vector which
specifies the average service time required for each siags. The third vector is the standard deviation vector

which gives the standard deviation of the distnbuuon of the service time for each suage carresponding o
the time vecior. We denote these three vectors as

— S, )
P = [Pl. Pz. P;. [P P‘]
=l by by, 6]

-y . N ’ ‘
G =[0,,0:0,..,0,]

ton vector are given by

and

-
o=(a,.0;.0,...,0,]

where P, and 3 stand for the adjusted processor vector, the adjusied time vector, and the adjusted stan-
dard deviation vector respectively and  is defined as the number of stages in a job. An example is given in
Figure 2.2(2) for P = (5,3,8,4) and™ = (1,3.2.1). We have not represented the & vector graphically. An
example corresponding to Figure 2.2(a) is given in Fi gure 2.2(b) when the maximum number of processors
required by the job is greater than the number of processors in the system. Note in Figure 2.2(b) that the
service time for stage 3 is elongated such that the arca (work) in that suage is preserved.

222 Model

In this model, we assume a Job is composcd of many tasks and the number of tasks in a job is a
random variable M with mean M and coeflicient of variation cw. We assume the service time for all tasks
is deterministic with unit service time. A job is described by using M and ¢x along with two other vectors.
The first vector is called the fraction vector, ? and the sccond vector is called the processor vector, 7.
Without loss of genenality, we can rearrange the processor vector and the fraction vector is such a way that

1



Processor
4

1 ! R B L
0 1 2 3 4 L 6 7 8 Time

Figure 22(x). AnExample for P m(5,3,8,4] 1nd P [1,3.2.1] and P 2 3

Processor

Ly
0 1 2 3 4 S e 7 8 Time

Figure 2.2(b). An Exampls for ¥ (5,3,8,4) and P [1,3,2.1] when # w6
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PSP, for1Sisn~1inthe Processor vector as explained in secuon 2.2.1. We denote the adjusted
fraction vector (3 and the adjusied Processor vacior {7’3 as:

7‘-‘{f1-f2-f1 -------- fil

The meaning of?and Fean be explained as follows: Over the ol asks of the job, a fraction f; of the total
tasks (M) in a job can use £; processory 10 concurrently process these tasks. By this definition, it is clear

Example 2.1:

In this example, for the simplicity of illustration, we assyme the number of tasks in 3 Job 10 be determinis.
UC, i.e., ¢y = 0, and the service time for each Lask is one second,

M = 1000
7=(02,05, 03 ]

Pala,1p]
where P A the number of processors in the sysiem.
This example means 20 % of the 1000 wasks (= 200 tasks) can usadprocesson:ocmcurrennyprocmuus
workload, Hence, this portion of tasks will take 50 seconds to complete. If there are more than 4 proces.
sors in the systam, the extrs Processors will not be used ag ali. However, if there are only 2 processors in
the system, then this portion of tasks can yse only 2 processors 1o process this amount of tasks in 100
seconds. Similarly, S0 % of the tasks (= 500 tasks) can use 7 processors 10 concurrently process this tasks,

Lastly, 30 % of the tasks (= 300 tasks) can be concurrently processed using all the processors, P, in the sys-
tem,

Example 2.2:

As in Example 2.1, we assume the number of tasks in a job to be deterministic.
M = 1000

F=1005,0.15.0.12, 0.18, 02,0.1,02]



?:[4,4,7,7,7,?.91

223 ModellIm

For the speciaf case with deterministic workload, we define R(t)=f(1) 1o be the function which
gives the number of Processors required by g Job at ime s and ¢ is in the range of [0, » Isuchthat R (b) = 3.
»

For such a model, the workload for each job is dewerministic with valye J/(r)d:.

For the general case, we define Ry = f( -A!:) t0 be the function which gives the number of proces-

SOrs required by the job at time ¢, X is a random varigble with mean X and coeflicient of variation ¢gand f
is a function such thag it has a fixed maximum value B8 and ¢ is in (he range (0, Xb) as shown in Figure 2.3,

R(1)
8 - - -
P l— —
/lf
|
~ = Ti
a(P) Kb (P me

Figure 2.3: Modei li: A Model with Continuously Changing Number of Processors



23 Systems Withoyt Queueing

In this section, qQueueing is not allowed. Thag IS. we are given a job 1o be processed and no other
jobs will enter the syseem. Therefore, we yse (1.5) or (1.6} as the definition of power and we want to fing
the opumal number of Processorcs to be used in the System in order 10 maximize power. Furthermore, we
also obtain an expression for the processing time speedup. Below, Models | and II are discussed and an
iterative procedure is introduced in order 1o find the opumal number of processors for the system.

23.1 Model I

We assume the adjusted processor véclor and the corresponding time vector of 3 job are given by
Fatp,pyp, ... Pl

and

Talt, t3 g ta]

where P, <P, forl1si Sa-i,

We assume there are P processors available in the system. We first find the index "m" such that
PaoiSP <P, itPsP<p,; Oh.man+1ifP2P or.mml HPep,. The mean service tme of a
job can then be found as:

m=] n
HP)=Thv+T0p,

We define
m-f
a= z & (26)
im) ,
f= ir.-P.- .M
y= T02,
[ I
Hence,

P =a+ %B

The mean servics time for a Job using one processor is clearly v, Hence, the processing time speedup is
$,(P)= —J’__g- (2.8)

a+-3

From equation (2.8) we can show that the highest possible specdup, denoted as Sp.maas I8 achieved when
P 2 P,, which leads 10 a= it‘- and B = Q. therefore, the highest possible processing time speedup, no

1=

15



mater how many processors are available, is
ZFIII-
aLgiol
a Z"

im|

Sy mas

This result is intuitive since the numerator is the time for one processor to finish a job while the deénomina.
or is the time to finish a Job when there is always a sutlicient number of processars for each stage and
hence no prolonged Stage service time.

Since the compuung capability of P processors during the job's service time X(P) is PX(P) and the
total work of a job is simply v, the processor utilization of the system during the job's service time equals

U (Py= L
PI(P)
Defining power as in ( 1.5), we have
(P) 1 1
npe) ===y =y
() PEPY oa?P +20f + E
P

Hence,

dn‘”(P) (a+ ‘%)(G - %)
(P + 2ap + -%2)3

By carefully examining I1{"(P), we find the following characteristics of I1{"(p). (M OMP) isa
continuous function since ¥(P) is a continuous functon, ) TI{’(P) is everywhere differentiable with

Tespect to P except when P 2 P, where 1 < < n, (3) 1{”(P) has a global maximum valye and no local
maximum value, To see this, more explanation will be provided. First of all, note that @ increases as 2

increases; meaawhile, B decreases as P increases. Also note that when P is small, @ < %: meanwhile,

drp) 4r(py
2P we can see that

when P is large, a > % Hence, from is positive when P is small

Y anip ‘
and i%ﬂ keeps positive until at one point o > % then —;—# becomes negative and will remain

negative as P increases. Therefore, (3) is wue. The explanation given here also explains (4) which foilows.
an{(p
(4) There is at most one value for 2 such that ;P( )
1{Y(P) at that particular point has the maximum value. (S) The maximum value of T{"(P) may happen
dr(p)
daP

=0 (as long as it is differentiable) and the value of

will change sign from positive to negative as P

when P =P, where | <m <. If this happens,

changes from P, —¢ 10 P,, + & where £ — (.



From the above characteristics of M{¥(P), we can find P* as follows, Py <P' <P, then

. anf{e
wecan find P by setting Ler) =0 hence, we have
‘e B
P = | (29

2

It can be shown that -d%ni”(l") < 0: hence, this P° maximizes power. If power is maximized when

anfhe)
arP

P'apP, wherel <m <, we know

a--f-,&d) and u‘—-;L>O

will change sign at #,,; hence, we have

ar

-2

’ - r bt
wherea 2 31 andp A 3 P,

iwl Iame]

Using the more general definition of power as given in (1.6) we have

u (Py - y’ ¥’

ni’)(P) - = re rel -
X(P) P X(P) (QP +ﬂ)r(a+ %)

Hence,
@) . (P +B)raP -8
r 8
PP « By~ (a+ i

Optimizing [1{"”(P) with respect 10 P, we have (ifPa. <P" <P,
P = -E (2.10)
ra

Similarly, if P* = P, (1 < m < n), we have
(raP oy -B3)ra'P,-B) <0

From these results, we arrive at the following theorem.

THEOREM .1:
Given P and P(and for a and B asin (2.6) and (2.7) respectively, the processing time speedup for
any P is given by
5,(P)= —e
asd

IfP.., <P" <P, and power is defined as in (1.5), power is maximized when
' 17



Pl
]

e =Pl <mca), power is maximized when the following condition is met:

-

If power is defined as in (1.6), itis maximized (if P,,_, < p* < £.) when

P'a ..E
ra
P 2P (1<m< n). power is maximized when the following condition is meg:

(rafe - B)raP, -8 <0

Corollary 2.1:

If the elements of the processor vecior

form a linear function and the elements of the time vecior
equal unity, i.e.. P, = and =] fora

Ili, power as defined as in (1.5), is maximized when

12
jm_g_*%] -1
P A
— 3T

n 6

.
ifa>>l, L=
n

L
= -

If power is defined as in (1.6), it is maximized when

1/2
{4(2r+l)+-!i-+MJ + 4
p'_ n n n
' 22r+ 1)
) P’ 1
1, T =
ifr>> - Wy

{Proof]
For such a 7 and 7 we can easily find the value of m 10 be
which is smaller than x, which is a real number). Hence,
|
S

(m]

[P'J+l (sz'udeﬂnedtsl.lulargeuinwger

R

Let us approximate [p . J with * and define power as in (1.5), we have from (2.9)

18



prabl nlin-pi_p
a 28"

Solving for P* we have

P = V[Z(n!*-n)q-l -1
6

Hence

142
[12*_11”1::} 1
n

p'_ n n
2 3
fa>> 1, we have
2T NTT
P 3 =:?=577%

By using the more generai definition of power as in (1.6}, we have from (2.10) thae

PraB . niea-p3_pe
ra 2P

Solving for P* we have

P = V'l+4(2r+l)(n1+n)—|
Ar+ 1

Hence

n n

A2r+ 1)

112
[4(2r+l)+-iz-+m} .1
. n

L.
n

[fn>>1,wehave )
1

Pl
-ln—::-———

V2r+ 1

QE.D.

Now that the actual processor vector of a job does not have to be in the form of P; =i, Only after
rearrangement (such that P;_, < P,) must the processor vector of the job be of this form.

Corollary 2.2
If the elements of the processor vector form a power function of order & and the elements of the
tume vector all equal unity (i.c., P =t* and 4, =1 for all O and n > > 1, power, as defined as in
(L.5). is maximized when



. [
2
-Tz(

If power is defined as in (1.6), it is maximized when

3

Pl

t .

T = () T

n rk+r+|
(Proof]

Using this P, and 1, and defining power as in (1.5), we have

o

a= ¥ = [p'I’*J

1a)

k+)

- At X [P.MJ
P e e -
l'l[p""Jﬂ

+ 1

Letusdefiney AP'* 1pp s o 1, then we have

kel kel

B= f_:l- Tkl
From (2.9) we have
nt* ke
Playty 8 = M
a y
hence,

L
2 (b T
y (k+2) n
Therefore

n‘t k+2
When power is defined as in (1.6), we have from (2.10) that

kw|

ry
It can easily be shown that

QE.D.

Figure 2.4 shows %- for k from 1 10 40,
n

-0(|pu)
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232 Model I

[n Model IT we first study a special case which has only (wo stages in a job. The result of this spe-
cial case study allows more physical interpretation than the general case study. The general case study will
be given afterwards, :

23.2.1 A Special Case: Jobs with Twe Stages

Assuming a job consists of M (deterministic) tasks in which a portion "f" of al| tasks (057 <1)
has 0 be done serially and the remaining portion (1 ~ £) can be done concurrendy. This is equivalent 1o
7= (/i1-fland P = [1,P]. The processing time speedup of this mode] given P processors was found
by Amdah) [AMDAG67] as

P
Bri-f

This expression says that the processing Lime speedup of the System depends very much on the characteris-
tics of the job (f); the processing time speedup can be much smaller than the number of Processors used if
f is large,

SpP)=

It can easily be shown that the mean service time equals:
J?(l")ﬂ‘fff*-p——!;f-M (2.1

During the entire service time (X(P)), the processing capability is PX(P) while the work completed is sim-
Ply M (since the service time for each task is 1). Hence, the processor utilization equals

M 1

4\ (P) = NIy (2.12)

Defining power as in {1.5), we have

® 1 p

Py = nd. - —
ey EP) M (Pfel-py?
1

Seuing 4nie =] we have

P* = ‘—}'i 2.13)

2
It can be shown that -d—';-z-ni"(P') < 0; hence, this #* maximizes power. Note that #* cannot be smaller

than 1; therefore, #* = | if‘—;-ﬁ is smaller than 1.

This resuit matches our inwition. [t says that when most of (he tasks have to be done serially (a larger 5,
P will tend to be smaller since ever with more processors, they will still be wasted for most of the time.
Similarly, if most of the tasks can be procassed concurrently (a smaller £), P° will tend 1o be larger since
we can then achieve a higher concurrency.

T 22



{f we define power as in {1.8), we have

P Ld
apey LB 1 e :
P) M (Pfe =fre
Optimizing IT{" (P) with respect 1o P, we have
T
P = —-{
p (2.14)
L] . - - . I - .

Note that #* cannot be smailer than 1 therefore, P* = | if ——-Crf IS smaller than 1. From these results, we
arive at the foliowing theorem,

THEOREM 2.2:

If a job has M tasks in WO stages with the fraction veclor?= (/. 1-f1and the processor vector
-—pp
P=[1,P) the processing time speedup for any P ig given as:

P

Ry
Power, as defined in (1.5), is maximized when
if l—fisl
Pradl f
L;f if lfl,f >1
If power is defined as in (1.6), it is maximized when
it 1=Lg;
pr=dl f
Lﬁ if u >1
f 4

2.3.2.2 A Generai Case

For the general case, we assume a job has M tasks (deterministic) and the adjusted fraction vecior and the
adjusted processor veClor are

F=Uh fofs o fi]

?=[P1_P1_Pg_ ......... .P.]

L]
where P, < P, fa-l<:‘<n-iand2j}=l.

1.]

We assume there are P

processors available in the sysiem. We find the index
ifPl sPc

"m" such P, SP <P,
Poot,man+lifp 2PionLm=1ifp <P,.

The mean service time can then be found as

S 23



cw] T 1n-
Let us define the following:
L] f'
aa § o (2.15)
B=Y/ (2.16)
| -
hence, we have
)= M@+ Lp)

The processing time Speedup with 2 processors can casity be derived as:
1

M
s (P)g—_——.-———_ (2‘17)
TR 4.8
P
The highest possible processing time speedup, denoted as S,
L] .
P 2 P,, which leads 1o ot = E-;* and 8 =0, Hence,

iml *

.max, Of this model can be achieved when

M 1
Sy maz = = 2.18
». if‘M iﬁ. (2.18)
il Pi P;

1m0

This is a generalization of Amdahl’s resuylt [AMDAST)! If power is defined as in (1.5), we have power as

(P) M M
ﬂ‘u(P) = ! = =
ey ey ap, 208 + .;L’

Hence,

anfey @+ $xa- 2,

7
ap (@*P + 2aB + %)’

using
in order to maxim-

P =Py (l<m<n), power is maximized when the following condition is met:

24



wherea‘,;‘i%-md[i'é i £

TN 1 m- ]

Similarly, if power is defined as in (1.6), we (ind

u (PY - M
P PRy

@) =

ra
IfP =P (1<mc n), power is maximized when the following condition is met:
(raPoy-B)raP,~3)<0
Note that #° and 5»(£) do not depend on 1. From these resylts, we arrive at the following theorem.

THEOREM 2.3;
Given F'and 7 (and for & and B as defined in (2.15) and (2.16) respectively), the processing time
speedup for any P is given by

1

a+2

Power, as defined in (1.59), is maximized when (if P, < P* < 2.)

P':l-E

a

5p(P) =

P =P (1<m<hn), power is maximized when the following condition is met:

[a-;fz] [a'-ﬁ;}w

- fm

If power is defined as in (1.6), it is maximized when (if ., <P° < P,)

rrad

ra
P =P, (1 <m <n), power is maximized when the following condition is met:

(roPa-B)raP,.-3) <0



233 ModeiID

We assume R () to have the following three properties: (1) R (r) is continuous and everywhere
differentable, (2) R (1) is monotonically increasing, ang DR(isa one-w-cne mapping, We define:

a(P) A length of the interval from when a job first begins service until it first requires more processors
than the sysiam suppiies, i.e., a(P) = min (Rt} > P} (see Figure 2.3},

b & the service tme of the job if the number of processors in the sysiem is always greater than the number
of procea:ors required by the job (see Figure 2.3),

P e }; R(1)as
alm
P
THEOREM 2.4: Power, defined as ."_;((5}. is maximized when
F 4
PP
a(P")
[Proof] From the definitions, we have
[ ]
T(P)=a(P)+ (f B0 b ma(py L) (2.19)
am P 4

Define u,(P) to be the efficiency of the processors, We have
]
!R (t)dt
W
“(P)= = (2.20)
PI(P)  PX(P)

where W= 3(1) = tomal number of seconds of work required by a job. Thus, power becomes

uy(P) - CW @221)
(P)  PRE(PY?

() =

Maximizing power with respect o P, we require
2 (PEPY =0

which leads o
#(P) = 22 E(E) (2.22)
daP
But from Eq, (2.19) we have
dl (P
PELEP) ;0
4P) da(P) __ aP : (2.23)
dP aP p?

hence, substiruting equations (2.19) and (2.23) into equation (2.22), we have

- o- 26



a(P)=-2p [dagPl . LdI(P)J+ 4Py 1P
P P qp

Solving for P, the optimal valye of £ musr be such that

[(P) 2P \4a(p af
P=——-———. [—ag_lq. —Jﬂ} (2‘24)

]
alP) aPy| aP TP 2
Nota that
dP)  d(P) da(P)

ar da(P)y 4P
Now,
»

1(PY= [ Rt
aP)

therefore

- () R
2a (7) M RICTIS))

Buta(P) is such that [1{"(a (P)) = £, thus %‘(-‘;))- = -7 and so %‘P— = -P%(Pﬁ; therefore

da(P 1 df (P
Tkl @29
From equations (2.24) and (2.25) we see that the optimal value, 2° is
P. - LP:)-
a(P’)
z -
It can easily be shown that ﬁTni"(P') < 0; therefore, P* = L(Q;—% indeed maximizes power.
a
QE.D.
P
Corollary 2.3: Power, defined as -":'((;-))-. is maximized if and only it £(P*) = 20(P").
X

[Proof] Since 1%1 =a(P*),hence (P*) = a(P") + 4 (P") = 2a(P")

QE.D.

Let us look at what ¥(P*) = 22(P*) means Physically. From Figure 2.3 we know that 4 (P) is the
portion of the service time when the Job has enough processors than it needs, Therefore, X = 2a(P) means
that the portion of the service time when there arc enough processors equals the portion of the service time
when there are not enough processors for it needs. Let us define a(P) 0 be the "unextended service ime"

and %Q to be the "extended service time”. This corollary states that the "unextended service time"

27



cquals the “extended service time" when power 15 maximized. Also note thag during the unextended ser.
vice time period the processors are not fully utilized (processor wiliration < 1) while during the extended

THEOREM 2.5: Power, defined a “_'((:) . is maximized when
pra Ll
ra(P’)

{Proof] The proof can easily be derived following the procedure given in the proof for Theorem L

L1

Q.ED.

u (P)

+ is maximized when XPYa(r+ Da(®*).
X(P)

. Corollary 2.4: Power, defined as

In THEOREM 1 we require R (1) to satisfy thres constraines. Unfortunaisly, all three constrainty
will be violated if we want to apply this result in discrete ¢ases, which are more practical ones. In the fol-
lowing Theorem, we will show that Coroilary 2.3 sl holds even when some of (he constraints for & (r) are

violated,

Example 23: If R (¢) is a linear function, ie.R()= f-: for 0S¢ <b, and power is defined as in (1.6),
then we have
8

Pl et
v5+l
or
P’ 1

Maximum number of processors required - Vir+l
(Proofl From R (1) we have

b
a(P)-BP
T8 Bh b
a [, 4280 _b 5
[(P) ’me > 23P
ra

Hence,
[P) _82-p?
ra(P") 2Pt

P =

28
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Solving for P°, we have

In this example, by seting 7 = 1, we have -%— = ;%—.— =38 B (where 8 ig the maximum number of
processors required). This is the case approximated in [KUNG84); here we have the exact vaiye of 2*

Example 2.4: IfR (1) = bi.:“ for 051 < b and power is defined as in (1.6), we have

P‘: B

L)
[(r+1)r + 1)2%
or
P’ - 1
Maxgmum numper of processors required

(8 + 1)r + 7)o

(Proof] This proof is similar to the proof in Example 2.3,

23.4 AnIterative Procedure

In Corollary 2.1 and Coroilary 2.2, we studied the cases when P; and 4 can be formulated in a nice
form such that P* can be found mathematically by simply solving an equation. However, there are cases
Wwhen P, and +, cannot be expressed nicely as a function. Hence, we are 1ot able o find 2° by mathemag.
cally solving an equation for these cases. In this seclion, we introduce an iterative procedure which solves
the problem just described, The procedure wiil first sclect an arbitrary index m and find P* for this value
of m assuming P, , < P* Pu. I£P° has a value hetween Pu-i and P, as it should be, then this £ * is the
solution. On the other hand, if P* > P, which violates the assumption, then we choose a higher value of
m and repeat the same procedure, Similarly, if P* < P__ . then we choose a lower value of it angd repeat
the same procedure, However, note that %l = fl-;(a + %) = —% i$ not & continuous function ar the
intersections between suiges since the value of 8 would have a jump between saages; therefore, if the
optimai P° occurs exactly at the intersection between siages, then 2° will always be out of the range. In
this case, the procedure described above will arrive at a situation such that when m = &, P° is greater than
Py and when m = £ + 1, P" is smaller than £,. When this case happens, P, is the vaiye for P° The algo-
rithm can be written as follows:

(N



lid =]; / lid stands for lower index. /
hid = n; / hid stands for higher index. /

@ __ l!id-n-hidJ

where [x} is defined as the largest integer which is smaller than X

(3) According to m, find o and f according to the model (Tor I1) used.

P'=
a

@ ifP >p,
then lid = m
clseif P* < p__,
then thid = m, goto (2)

else STOP. /P* is found. /
} endif
endif
if hid = lid + 1
then STOP /P" is found. /
else goto (2)
endif

This procedure is obviously an application of binary search; hence, the number of steps for this
procedure is upper bounded by log,n, where n is the number of siages in the job,

Exampie 2.5:

Let us use an exampie to show how this procedure works, This example is a special case
of Corollary 2.2, Assuming n = 100, we have

Pi=i?; 1<i5100
and
tal, 1€i5100
Step 1
ma llg-ﬂjaso. With m = 50 we have 492 < P < 502, or, 2401 < P < 2500,
9
a=31=49

=]



100
B= T ita297,925
1350

From the a and the B denved above, we have

»_ 297925 _
P = —4_9-_ = 6080

Since P is 100 high, we have 10 adjust m 10 be higher.

Step 2:

mslsonoo

3 J =75. Withm =75 we have 74 g P < 752, 0r, 5476 < P < 56258.

74
a=3l=74

1}

100
B= 3 il=200,525
=78
From the a and the B derived above, we have

« _ 200525 _
P T =2709
Since P” is too low, we have 1o adjust m 10 be lower,

Step 3:
S50+ 7%
. [ :

J-sz. With m = 62 we have 612 < P <62) . 0r, 372l S P < 3844,

5l
a=Y1=61

im]
100
B= 3 i*=260,819
Timbd -
From the a and the B derived above, we have

« 260819
£= 61

Since P* is 100 high, we have 10 adjust m 1o be higher.

Step 4;
ma [&;‘.”lj.s& Withm = 68 we have 672 S P < 682, or, 4489 S P < 4624,

67
a= Zl=67

im]

3



100
Bs ¥ i%=235.840

1 w64
From the a and the B derived above, we have

. _ 235840 _
P = Y A 3520
Since P is too low, we have to adjust m 1o be lower,
Step §:
- | 62+68

= 63. With m = 65 we have 643 < P < 652, or, 4096 < P < 4228,

Ll
a=31=64

im]

100
B= T i?=248910
=]
From the a and the B derived above, we have

. _ 248910 _
R E )

Since 2 is 1o low, we have 1o adjust » 10 be lower.

Step 6:
62 + 65 . 2 2
ma= - =63. With m = 63 we have 62 SP <6} .or, J844 S P < 3969,

62
a=31a62

1m]

100
B= Z ;'2': 256,975
1 =)

From the a and the B derived above, we have
- _ 256978 _
P = -—a— =4145
Since P° is too high, we have 1o adjust m o be higher.
Step 7:

ma [Q;'—Gijaﬂ. Wimma&wehaveGZ‘a’sP<64’.0r.3969$P<4096.

8
a=31=63

sal

12



L0
B=Tit=253,006
+ b

From the a and the A derived above, we have

« _ 253006
P 00
63

Since P° = 4016 is between 3969 and 4096, P* = 4016 is the number of processors to use in order

0 maximize power. Note that the MAXiMum processors required is 1007 2 10,000, hence

P° 4016 . _ .

—_— : =402 %, which agrees  with  the resyjc glven in Corollary 2.2 (ie.,
2

= 4016

»~

n

LARNPEE W~
3 -(2+2) 39.7%).
Example 2.6

We use this example w show the procedurs when P° is one of the P, in the processor
vector. We use the same cxample as in Example 2.§ except that we have 1 = 50 in this exampie.

Step 1:

m= [?J 225, Withm =25 we have 242 g p < 253, 0r, 576 5 P < 625,

u
Q= 21324

im|
30
3= 3 i?x1380258
[E Y]
From the a and the 3 derived above, we have
p* o 38028

== =154

24
Since P* is t00 high, we have w0 adjust m w0 be higher.
Step 2:
" -Z—S%S.QJ =37. Withm = 37 we have 362 S P < 372, or, 1296 S 2 < 1369

¥
az31=136

im|

50
B= Tit=26719

1m3?

From the a and the 8 derived above, we have



P'= 2212 294y

Since P* is 100 low, we have 1o adjust m 10 be lower.

Step 3:
7
m= [3—5—;3—J=31. With m = 31 we have 30° S P < 312, or, 900 < < 961,

3
a=¥1=30

1]
50
A= T i?=33470
[T 21]
From the & and the B derived above, we have

« 33470
P = —3—0-—»

Since P° is 100 high, we have 1 adjust m w be higher.

=1116

Step 4:
31"'37 ' . 1 2
m= === = 34, With m = 34 we have 33 SPcla 0r 10895 P < 1136,

3
a=3y1=33

1.

50
B= ¥ i=30396
=3

From the @ and the P derived above, we have

. _ 30396
P R e——
3 921
Since P* is too low, we have to adjust m 10 be lower.

Step §:
1+ . 2 2
m= > =32, With m = 32 we have 3] SP <32% 0r,961 5P < 1024,

3
a=31=3]

Ll

50
B= T i*=32509
swd2

From the @t and the B derived above, we have
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Pt 0 10

Since P* is 100 high, we have 1o adjust m 1o be higher.

Step 6:
4 .
ma [—-—-32;3 J- 33. With m = 33 we have 3122 < p < 33%.0r, 1024 S 7 < 1089,

12
as=31=32

1=|

0
A= Fi2=31488

1=3)

From the & and the B derived above, we have

-, 31485 _
P —3-2—-984

Since P is too low, we have 1o adjust m 10 be lower.

From Step 5 we have P > 32 while from Siep 6§ we have P $ 32, therefore, we have

P’ =322 21024, We have f—z— = ;—gg% =41%. which again agrees with the result given in
Corollary 2.2.

2.4 Systems with Queueing

In this section, queueing is aliowed; hence, power is defined as either in (L7) or in (1.8). We

e also find the optimal operating point A° which, in combination with 2°, will achieve the maximum
power. An expression for the response time speedup is also derived,

24.1 Modell

For a system which admits only one job inwo service at a time, we can arbitrarily interchange the
stages without affecting the service time {hence the system utilization) and the processor utilization. For
the convenience of computation, once again we rearrange the processor vector such that the number of pro-
cessors required in each siage is non-decreasing. The time vector will also be adjusied accordingly. We
assume the processor vector of a Job after rearrangement is given by

?'-" ng. Pz. Py £.]

where P, S P, for 1 Si §n-1. The corresponding ime vector and standard deviation are given by
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We assume there are p

processors availabie in th
P, gspP <P, or

Mman+1ifP2P,.or.m=|

€ sysiem, We find “m” such that P
Job, given P processors in the system, as o,

m-i SP < P..
ifP <P, Denote the variance of the service time of the
» which can be found as:

L R "
9, =%a’+ P—l,- Talp?
1 =) i«
We define a. B, and yas before and we furiher define

m -
ad p o

b A 20'.'29.'2
1 BN
Hence,

IPY=q+ 71;-{3

1
ci=a+Fz-b

The coefficient of variation of the service time can be found as:

2
c; = O, - aP?+ b
¥ T(PY alri. 2a8P + gl

Denote p as the System utilization (i.e., the fraction of time there

is at least one job in the sysiem), we have

P = Ax(P)
and the processor ytilization can be found as
wahp)= A

Using results from M/G/1 (KLEI?5], we have

2
T\ (P.p) = 3(P) [1 L+ey J

With the above expression for T'| (P, p), we can find the mean system time when the number of processors
in the system is 1 or P, Hence, the response time specdup is
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1 *p‘———— 2
5.(P.p)= -—l~¢& -

Al -p)
where

Q+

P
Defining Power as in (1.7), we have

1) = HZ(A-P) -
s~

Optimizing 1703 £) with respecy 1o A, we ha

2 A~ T(P)A? —
PEP) 21 - AZ(PY) + AZ(PY(1 + cd)

ve

2+ T3 Zci (P)
and '

(2.26)

e same result as derived in (KLEI79), Therefore, 1he Intuitive explangtion given in
[KLEI79] also applies here, Thy 1S, the proper Operaiing poing (A ) for the System is when there 1s exactly
one job in service and no others ara waiung for service Since only one job is admitted ingg Service at a time
Substituting (2.26) ino YA, P) we have

l) L] l.z
MOR", Py 2 r5-
Hence,
oo pya 2o 227
de (1..1“')=-P2 [ZPdP AJ (
Opn'mizing Iy

A%, P) with respect to £ and assuming p_

-1 <P" <P wehave the following condition;
@ _1a (2.28)
dar 2p
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Defining

2 172
[iPY=2+ [u 2_".1.2_]

o ay (2.29)
and
2.30
HilP)=aP + @30
we have
‘et P
HUP) f2(P)
Hence,
df, (P d|
%P 1(P) - 2P [xm 1D o ey )
—d-l' = il i . 231
ap [iPYfaP) @
From (2.28), we have 10 solve the following equation numerically to geg #*:
f®ONCT) =221, 21, (P") - 2apy, (P =0 232
where
ifl(P’)- =vZ(ab - aBP") :
P (@P Py l] . P ep
(@P” +f)?
However, it P* = 5, d—;—n&"(l.', P) will change sign a1 P, Hence, from (2.27), the following condition
for #° has 10 be met:

[zp% - A’J : [zpi’“— - x'] <0
a.bad ar a8 e

where [2?% - x‘] stands for repiacing all a. B, a, and & by o, B.a’.and &’ in the brackets,

apfes

. B, @, and b are defined as above and o, 8. a".and 5" are defined as

. -
as=3,

a]

F= T 12,

[ L1



b'S T ap?

LR -

THEOREM 2.¢;

Given P. 7 and 7 and P {and for o,

B.v. a, b, and s,
speedup for any P is

as defined earlier), the response ume

- Ip2
y 2—p+p€3' . ,EO' Pl
5.P.py= E.Z—p+pcf’ where e, 3—7__
a+
P

If power is defined as in (1.7), the optimal System operating point is

. 2 1
R VITEL (P
such that
N el
The optimal number of processors (P, <P* < p

=) t0 be used should satisfy the following equa.
tion:

FLPYAP -
where £, (P") and f,(P"

PP )L f,(P) ~ 20pf,(P"y m 0

} are defined as in (2.29) and (2.30) respectively,

IfP* =P, the following condition should be met:
[v—-"" - x‘} : [zpiz‘— - A.‘J <0
ap afad ar a8
Corollary 2.5:

Ifo; =0 forall ;,

5P.py= —L—
as £
prowerisdeﬁnedu in (1.7). then
A,. = 2 - ‘-'2
x(P)
N =1
U Puy <P <P, (1sm $n) and we define @ and B as shown in equations (2.6) and (2.7), we
have
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£ ” 239

If power is defined a5 in (1.8), then
1+ 3, \F2

r® « 6t

2rE(P)

A=

N =AT0r Py e o Le (o VTG T
2"(-f-l+*lr2+6r+l)

Similariy, Py, <P < Pu(lSmsn)and we define @ and B as shown in equations (2.6) ang
(2.7, we havs
‘. B
P o (2.34)
Ifr>>1we have

—e 2 _4r- \rd
limN =1'T1(l',P)= r 4r 1+(r+12 [ TS
r—- 2r(-r—l+"ff’:‘:—'+—9—)

=L
2

[Proof)

Given @; = 0 for aif i, we have €s 2 ¢y, 0. Hence, we can easily prove the response time speedup from

THEOREM 2.4. If power is defined as in (1.7), we have from (2.26) that

Hence, from (2.27) we have

I'IE”(J«.'. Pim M@I

PE(PY?
From here we can casily prove (2.33). The rest of the lemma can be proved similarly.

Q.E.D.

Note from Corollary 2.5 tha by defining power as in ( L7 P' = -g is exactly the same as derived

in (2.9) when queueing is not allowed. An intitive explanation follows. In Coroilary 2.5, p* ;s achieved
when N = 1, i.e., the system is Operating at a point such thar, on the average, only one job is being served

system would behave as if queueing is not allowed. Therefore, whe resuls achieved here should be the same
as the result achieved when queueing is not allowed,
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242 Model I and m

Models IT and IIT will be swdied in this section. The comman characieristic of models ITand 17 is
that the coefficient of variation of the service time disuribution for both models is not a function of P£. This
characteristic will be made Clear lawer in this section. We assume the work brought by jobs is a random
vartable with a general distribution. Defining Xw be the random variabie represenung the service time disg-
tnbution, we can show that in the conunyoys Job modei:

- - b
xax[a(P)+ J ﬁ—”m} (2.35)
a(Py P

Defining c,, 10 be the coefficient of vanation of the scrvice time given P processors, (2.35) shows that X
equals X' multiplied by a constant: hence,

Note from (2.36) that Cy, 1S NOL 2 function of P: thig Property will be used later. Defining W o be the ran.
dom variable representing the work brought by a job, we can show that

5 -

W= I ! (7;-)4: = ifzf ()t 237

&
Since }f(!)dt is a constant, (2.37) shows that the work brought by a job is a random variable which has the

same coefficient of variation as K.

2.4.2.1 Finding the Response Time Speedup

In this section we wil] find the response time speedup for the discrete cases.

2.42.1.1 The Discrete Case: Jobs with Two Stages

THEOREM 2.7: Givenf'= [, 1 - /] and P a [ 1, 1. the response time speedup is;

P
S'(P'p)zfp"'l-f

{Proof] Denow f’(P) as the random variabie for the service time, we have

X(Py= Wf+ “_-Pﬂ - u‘/{“ tﬁl] (2.38)

P

Hence,
X(P)=Wf+ &PJ)_W and Crp = Cw (2.39)

We define p 10 be the sysiem utilization: hence,
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p=AX(P)

On the average, AW seconds of wark comes (0 the system per second and the capacity of the system is P
seconds per second, therefore the average processor etliciency of the Sysiem can be found as;

AW
Rz(l. P) = -P—
Using the M/G/1 resuit (KLEI75) and (2.39), we have
2
T.(P, p) =3(P) [1 . pot } =5P) [.2_1‘_&;_‘)_9} (2.40)
(1 -p) Al ~-p)
From (2.40), we find the Tesponse time speedup as
I{l.p) 3 P
SH{P.p) = = =5, (P) 2
P.p)= 75 e PO m

QE.D.

Interestingly enough, this response ume speedup when qQueucing is allowed is the same as the pro-
cessing time speedup when queueing is not allowed. Therefore, the response time speedup and the pro-
cessing time speedup are solely determined by the job speciiications and P in our mode{,

2.42.1.2 A General Case of Model I1

We assume the number of tasks in a job is a random variable W with mean W and coeflicient of
variation cw. The fraction vector and the Processor vector are given as:

F=UA Lo fy o £

?3 [Pl. PZ. P]_ [TTTTI Pu]

where P, < P, focl <i<cn=~1.

THEOREM 2.38: Given ?. 7 and defining o and 8 as in (14) and (13) respectively, the response time
speedup for any P and p is given as

1
S.(P.p)=
ar L

P

~ [Proof] Defining p to be the system utilization, we have
P=Az(P)

The response time speedup can be found using M/G/! theory as:



- l+c,
). a—

S.(P.p)= .
- P) s
x( I-v-p-—-—z(l_p)J

Itcan be shown that €y, =C,, =Cw, hence

S,(P.p)a J-li l) aS’(P). —l._.

a2
QE.D.

Again, this response tme speedup (considering Queucing) is not a function of P and is the same as the pro-
cessing time speedup (considenng no queueing).

2.42.2 Finding the Optimal Arrival Rate

Since only one job can be admitted into service at 3 time, this system can be anafyzed a5 3 single
server sysiem, Hence, we can apply results from M/G/| model [KLEI75) 10 find the average response time
for this system. In this section, we find the optimal operating point (A") for both the discree case and the
CONLNUOUS case, Amazingly, even though the definitions of power in this paper and in (KLEI79) are
different (since P # u), the results obtained in both papers are the same. Therefore, all the deterministic
reasoning given in {KLEI79] also applies in this paper.

AP
THEOREM 2.9: Power, defined as -;_%—P:- is maximized {given P) when
244,

2

2+ \(2 + ic,,z x(P)

A=

[Proof]:
w
w(p)= 2
From the M/G/1 results we have

+- ! - x
T:(AP) 2 %(P) [1 - p:(_',C';—,J s +2((T AEI():)(P)

Defining power as in (1.7), we have

$20P) AW (1= AE(P))
LA/ P 2+ (e, - DAT(P)

nPa, Py=

By maximizing power with respect (0 A, we have



A= 2 1

2+ T 3T 2P

Q.E.D.

Corollary 2.6: When power is maximized with respect 1o A,

2

ST

and

(Proof] From Theorem 2.9 we can show that

e
Using Liwle's result [LITT61], it is easy 10 show that
N =XT,(0".P)a 1
QE.D,

N

) is the deterministic reasoning given in [KLEI?9) which is described in the introduction in sec-
ton I

A PY
THEOREM 2.10: Power, defined as ?((x P)) . is maximized (given P) when
R 2\
A. = 4r

1
(e +r+(2 + )+ Ve, + 2L+ r + Xt + 2ct,

N AT

Corollary 2.7: When power is maximized with respect (o A,

ir
ek +3r+(cd, + 1)+ 5 *2c;, + Dre+ (=t

+ 2k, +3)r +(cg, + )%
and

7 2![(l+cf,)r+b(r)+(l+cf’)]
(ch - Dr¥e22-cd1 +cl)r+ [(l ~clr+(l+e

f,)]b (r) + (cf, +1)?
where

b(r)= \f(cs, +20 + Lyr? +2(=c;, +2c5, + r+(1 +C5 )
Ifr > > 1, we have
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limp* =
P oy r+]

and

= (Lecd)r
limV o —
2.42.3 Finding the optimal number of Processors
In this section, we will firsy Study the relationship between Py and (L), From the result

shown below, we show that there are many cases thar the 2° for the system With no arrivals and the £* for
Systems with arrivals are the same.

u2(A.P) = (processor utilization)
= (processor utilization | Sysiem is busy) P (sysiem is busy |
+ (processor uiilization | system is idle)P (sysiem is idle)
= (processor utilirarion | Sysiem is busy) P [sysiem is busy|]

=2u,(P)p
Substituting u,(A.P) = pu 1 (P) into the definition of power, we can show that
“3(AP)  pu,(P) o ()

PPy a = =
! TPy  TWKP TNPYZ(P) Z(P)
. uy(P) p 2p(1 - p)
Since —— = M1{"%(P) and = » We finally h
ee I(P) B an TPYZP) 2-p+pci © ey hive
M(.P) = _ZE&E)Z_.mU(p)
2-p+pc‘,

In order to find P* when the system is operating under the optimal Operating point (\"), we have

nPa’,pys 220200

i-p - P.Cx,

Note that 2—225%,%)2_ is only a function of €y, (since p’ is a function of ¢, Only as shown in Coroilary
2.7) and is not a function of P: therefore, for cases where €4, 1S Ot a function of P, the £* for MPa P is
the same as the P° for IT{"(P). Therefore, all the results obuined in sections 2.3.2 and 2.3.3 for Models [I
and II in finding P* can be used here. However, not every model has this characteristic, For example,

Model I does not has this characteristic,

Corollary 2.8: For the continuous model, power, as defined in (1.7), is maximized when
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and

atP Y2+ \2rck)

[Proof] This proof can easily be derived from Theorems 2.4 and 2.9,
Q.E.D.

Corotlary 2.9: For the two-stage discrete model, power, as defined in (1.7), is maximized when

. 1
= W2 +N2+2c8)
and
. 1 if —lfi s1
1=/ if 1<4=L
f f

(Proof] This proof can easily be derived from Theorems 2.2and 2.9,
QED.

2.5 Conclusions

By maximizing power as defined in this chapler, we found the optimal sysiem utilization (r") and
the optimal mean number of jobs in the system (¥ ) 1o be the Same as derived in (KLEI79); therefore, atl
the pleasing rules of thumb discovered in [KLEI79] also apply here. Moreover, we found the optimal

number of processors (P” = -E) 10 be used in the sysiem is the same for cases when queueing is allowed
and when queueing is not allowed. This result serves as an important design rule when implementing a
parallel processing system which admits only ane job into service at a time. The expressions of the pro-
cessing time speedup and the response ume speedup are also given so that we leam how much gain
(speedup) can be achieved for a specified job by using P processors.



CHAPTER 3
PARALLEL PROCESSING SYSTEMS WITH VARYING REQUIRED
PROCESSORS WITH MULTIPLE JOBS IN SERVICE

{n chapter two there are umes when the job in scrvice docs not require all the processors while
there are jobs waiting in (he Queue. Therefore, 1his sysiem does Aot work 10 its full power since the com-
puung capability of those unused processors are simply wasted and cannot be used by those Jobs waiung in
the queue( only one job in service m 8 umel. In this chupter, we avoid such an inefficiency by allowing
Jobs in the queue W use those unused processors. However, a higher priority is given to jobs which are

and the Scale-up Rule, we give an approximauon for the gencral case analysis. From these studies, we pro-
pose a rule of thumb for designing paralle] algonithms,

The rest of this chapter is organized as follows. Section one describes some previous work which
looked at a problem with a similar environmen: but with a diffcrent service discipline. Section two gives
the model description and assumptions for this chaper. [n section three we study the serial-parallel
behavior of & job which has & senal siage, which requires no Processing capacity at all, and a parallei siage,

the system equals the maximum number of processors required Dy the jobs. In section five we inoduce
the Scale-up Rule with some examples. In sccuon six we yse the Scale-up Rule and the exact result
obuined in section four o approximate the mecan response ume for any gencral processor-ume task graph
given any number of processors. A final conclusion is given in scclion seven,



3.1 Previous Work

In (BELGS6], some resuiis for the mean feSponse ume in a parailel processing sysiem were
derived. In (KUNGB84], g 1ask ETaph model was used 1o describe a job and was later converted into an exe-

in the system. The scheduling policy (i.e., a service discipline) was based on 4 non-egalitarian sharing of

the processors’ Capacity among the Jobs present in the System. The scheduling policy can be descabed as
follows:

Let A denote the random variable representing the total number of ready tasks, which can be processed
immediately, from all the Jobs present in the system in the sieady siate, The Discriminatory Processor
Sharing Discipline for the multiprocessing system is defined as follows:

L If the wtal number of ready tasks, A, in the sysiem is less than or equal © the number of processors
P, then each ready task is allocated one processor, that is each ready task is processed at a rate of 1

2, Lfthemtdnumberofmadymks,ﬁ.inlhesysn:m iszreaterthanorequalmmenumberofpmca-
sors P, then sach ready task is served atarawot‘; seconds per second. The ready tasks equally

n
share the P processors.

An Execution Graph for a given process graph is an acyclic directed graph with nodes represent.
ing the state of execution of 2 job (i.e., the identity of the ready tasksof the job), and edges representing the
precedence reladonships among the nodes. A simple approximation for the mean response time was given
by assuming that all Stages have the same concurrency degree i.e., all stages require the same number of
processors. However, by this assumplion we lose the characteristics of a job which requires varying
number of processors.

32 Model Description and Assumptions

We use Model I as described in chapter two as our model in this chapier, However, inswsad of
allowing the time required by each siage of a Job to have a general dismribution, we assume the time
required by each stage to be €xponentially distibuied. Therefore, a job can be fully described by two vec-
tors, the processor vector and the ume vector. We assume the amvals are generated from a Poisson pro-

As described in chapier two, whenever a job in a siage requires more processors than it is allowed,
this job simply uses all the processors available w it with a prolonged stage service time. For example, if a
job in a stage needs 10 processors for 1 second while Lhere are only $ processors available lo it, it uses
these 5 processors for 2 seconds.



gain more processors by preempung other Jobs in the sysiem beginning from (he lowest priority group unal

Example 3.1:

In this example we assume cach job has (wo stages. the first siage requires 2 processors and the second
siage requires 5 processors. The system has a lowl of § processors, Initally the system is empry

Event I; Job A arrives,

IobAusestwoprocesorstoworkon theﬁmstageunmeonmndspusecond.
The other three processors femain ynused.

Event 2; Job B arrives while Job A is sull in stage 1.
Job B uses two processors from the three unused processors 1o work on the fipst slage ata
rate of 2 seconds per second. Oniy one processor remaing unused,

Evenr 3: Job C arrives while Jobs A and B are still in stage 1.

Job C uses the only unused processor 10 work on the first siage at a rate of | second per
second. There are no more Processors unused.

Event 4: Job D arrives while Jobs A, B,and C are siill in stage 1,
Job D joins the queue waiting for any processor 1o become available.

Event §: Job A finishes stage one and begins suage two,
Job A needs three more processors w work on the second stage; therefore, jobs B and C
are both preempted and are pushed back 0 the head of the queue such that job A can use
all the processors. After gaining all the processors, Job A works at a rate of § seconds per
second.

Event 6: Job A finishes stage two and leaves the system,
All the five processors are released. JobsBandCreemerservicemdbo:hustwopm—
cessars o work on the first stage at a rate of 2 seconds per second. Job D also enters ser.
vice and uses the remaining processor o work on the first stage at a rate of 1 second per
second.
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The reason we claim the €xact analysis s very diflicult can be illystrated by using one special
Case. In this special case, the number of processors required by all siages équals "1” and the mean service
time for all sages are the same. Obviously this very simple special case corresponds to an M/E,/m queue,

where m is the number of Processors in the sysiem; this is a Queueing system which has no known closed
form soiuton.

33 A Serial - Parallel Mode}

In this section, we assume the execution of 3 Job can be classified into two stages, namely a serial
stage and a parailef stage. In the seria) stage. the job requircs a negligible amount of wowl processors while
in the parallel stage the Job requires ali the processors trom the system, One example of this model is for

Parallel stage (Figure 3.1(a)). then we study the case when the parallel stage precedes the seria) stage (Fig-
ure 3.1(b)). Finally we study the case when the paralici swage is preceded and followed by a serial stage
(Figure 3.1(c)). We derive both the mean response time and the z-transform of the distribution of the
number of jobs in the system,

Processor

?

p s s eewm

—
Time
Figure 3.1(2) Serial Phase Precedes Paralle] Phace

33.1 The Serial Stage Precedes the Parailet Stage

In this section, slage one is the senial stage and slage two is the parallel stage ang the higher prior-
ity is given 10 stage (wo as mentioned earlicr. [f there are no jobs in stage two. then all the jobs in stage
one are allowed o work concurrenuy since there are always enough processors for every job. However, if
one of the jobs finishes stage one and advances (0 stage two, this job will occupy all the processors and
preempt all other jobs suil in stage one.
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Processor

Time

Figure 3.1(p) Parallel Phage Precedes Seria Phase

Processor

]
Time
Figure 3.1(c) Seral Phase Precedes and Foliows Parallel Phase

One applicaton of this model is for a distrityied database which uses a locking mechanism 1o
preserve data integrity whenever more than one transacton tries 10 write into the database. We assume
there are a large number of workstations sharing thisdatabase, We mode! a ransaction as one query (read)
followed by one update (write). If concurrent rcad is allowced in the database, then we allow all the quenes
0 be processed in the system concurrently. Furthermore, when 3 Lransaction is in the query phase, it occy-

iSsues a writs update, the entire database will be locked such that gl ouher ransactions will be stopped.
This update phase corresponds to our parallel Slage since they possess the same characieristics. If we
further assume the time required for the read phase and the wriie phase are both exponentially disuibuted,
then our mode] matches this distributed dawbase modci perfectly.



3.3.1.1 Mean Response Time Analysis

Let us define the service rate of the serial stage (o be p,
- We draw a Markov chain for such a sysiem whers the s
there are n; jobs in stage onc (the senal siage) and a 7 Jobs in s

"‘ (L
Pl @
Co.)
Figure 3.2

The Markov Chain for Serial Stage - Paralle] Stage

and e service rate of the parallel stage 1o
1ale (n,,n;) represents the siluanon where
§¢ two (Lhe parallel stage),

From this Markov chain, we have the following equilibrium balance equations:

(ht kbt ) (6, 0) = A (k = 1,0)  uap (i, 1) k2l 3.1)
12
A+upk= LD mkup(kO) s Ap(k~21) 422 6.3
The boundary conditions are
13
29 (0,0) = 135 (0.1) G.3)
34
A+ 12)2(0,1) = 4, p(1,0) )

Define the following two z-transforms;

Po(s) & Tp (k. Ot
k=0

P10 & Tok et
&)

Define p(n) to be the probability that there are a 10wl of n

Jobs in the system, each job is either in‘smge one
Or in stage two. Define the z-ransform of p(n) w0 be

P 3Tkt
]

From the definition we have



pk)=p(k,0)+p(k~1,1) k21

p(0)=p(0.0)
From (3.5) and (3.6) we have
P(z)=Py(2)+2P,(2)
From (3.1) and (3.3) we have

MPo(a) + 3 Po(2) = MaPo(a) + P (1)
From (3.2) and (3.4) we have
O+ 1Py =y L Py ) 4 1P )
From (3.8) and (3.9) we have the following differential equation for Py(2).

(M2 = o)t Z-P (5 + Ak + 43 = A1)Po(z) = 0

Solving this linear differential equation we obtain the following explicit expression of Py(z):

i-(l =iaidg =y i)
PQ(‘) =(C¢ e

where ¢ is a constant yet 10 be decided. From (3.8) and (3.9) we have

Pi(1) = =22

My = Az
Combining (3.7), (3.10), (3.11), and P(1)= 1 wefind¢tobe

My = A -ﬁ [1 = ia(uy -l.)]
= —
Ha
From the above results we have the z-transform of the number of jobs in the system as:

[

A A
uz-l ;—[l-ll(l&a‘l)]er(l"‘“h'“ﬂ)

Kz —

Pa)=

We define N 10 be the average number of jobs in the system; hence,

Ve dP(z)l o M+ )
dz i=l Lll(u-z -)L)

(3.5

(3.6}

(3.1

(3.8)

(3.9

(3.10)

3.11)

Let us define the mean response time of this model to be T, where "sp” stands for serial-paratlel. Using

Litle’s result{LITT61], we finaily arrive at

N ol + g,

W e v

(3.12)



Interestingly, note that ﬁ-;— in (3.12) is the load of the sysiem since the serial stage contributes no

load at all, Also note that /)y + 1/u; is the service ume of a job. Hence, if we define

x= 11[_1 + ﬁ: (3.13)
and
pek
]
then (3.12) becomes
Typ= = > (3.14)

which is the expression of the mean response ime of an M/M/1 queue. From thess results, we have the
following theorem,

THEOREM 1.1:
Given a serial - parallel model as shown in Figure 3.1(a), where M, is the service rats of the serial

stage and u, is the service rate of the parallel stage, the z-ransform of the number of jobs in the
system is; '

A A
e el LT Rt ) [ N O RPN
P(z)suz——e " [ ]e"'

M = Az

and the mean response time of the system is:

N Uwy+ Uy
T‘P S e W ee———
A l—l/u.,

33.1.2 Optimization Issue with Power

We define power as defined in chapter one. We will find the optimal operating point (A') given P
processors in the system, as well as the opumal number of processors to use in the sysiem given th; armival
rate, in order 1o maximize power. We define the workload of the parallel stage of the jobs to be W, which
is an exponentially distributed random variable with a mean W, Therefore

=2
uz-w

which leads to

U+ Uy P e Wy,
= =
1~ A"qu IJ.IP - AW’J.I

T (3.15)

The utilizadon of the processors, denoted as uz(X,P), can be found by dividing the average workload arriv-
ing to the system per second by P; hence



W
4y(AP)= }P— (3.16)
Defining power as in (1.7, we have

13 - “Z(A'-P) = l'l'yl"l'lP —lzwz“‘l
0Py = T Pispwy, G.17
Optimizing IT{"(A,P) with TESpect to A, we have

W | (3.18)
From (3.18) we have

H;(l..P) = ‘%
and

L=y} P
N =A'T —l+'ﬂ->l

Optimizing [T{''(A,2) with respect to P, we have

AW (P2 + PWY,) - (AW P - AWy y2p + Wu)=0
Solving this equation we have

P. = {l + l + Tl AW (3.20)

If we use the more general definition of power as given in (1.8), we have
A.P 4 lrwr P - A.”I W""
MPA.P) = u3(A.P) - My Ky

3.21
]:p Pl W_ulP' ( )
Opu'rmz' ing 1'15” M) with respect to 1, we have

- rP
T r e OW
Substituting A" into (3.21) we have
L r
u(A LY = o1

kence
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-

N =r+

MW

Note rhatﬁ. >r,

Optdmizing [T (A.P) with respect to P, we have

P AP+ 1) =2, (r ~ 1)+ VAS(r « 137 w4, (7 = 1)* + 2\, 7¢ + 22, W
2r

332 The Parallel Stage Precedes the Serial Stage

Here we change the sequence of the stages such that stage one is the parallel stage and stage two
is the seriai stage. We assume the service rate for the serial siage is K, and the service rate for the parallel
stage is W,, as defined in the previous section,

3.3.2.1 Mean Response Time Analysis

The analysis of this model is simple since the serial siage (with the higher priority) will never
affect the parallel stage because the serial siage occupies no capacity at all. This model can be treated as a
classic M/M/1 queueing sysiem with service rate u, with the modification that each job will suffer an extra

delay of mean H-L before leaving the system. Let us define the mean response time of this mode| tobe T,
1
where "ps" stands for "parallel-serial”. From the result for M/M/1 we obtain

/4, 1
* T T um G2

Let us compare T,, and T, from (3.14) and (3.22); it can be shown thag T, is always greater than Ty if

—L<1.
H2

L. Mu, l._p
-T,, = — - = 0
Tor = Tou K 1=Mpg py 1-p

Ty can be much greater than T when p approaches one. If we regard the parallel stage as the blocking
stage since it blocks all other jobs in the system, then this result suggests that a job with an early blocking
stage performs better (i.c., has a lower mean response Lime) than a job with a late blocking stage given
other conditions remain the same.



33.2.2 Optimization Issue with Power
We use the same definitions and notations as in section 3.3.1.2, We have
i
M2 W

/1, LWy +P-aw
o T T AW
-2 W R(P-AW)

H2

Ty =

The utilization stays the same and is
uxh.P) = 2

Defining power as in (1.7), we have

“ahP)  Wu  ap -y

nPm.e) =
&( ) Tﬂ' P Wu.l-;-P-M‘V

Optimizing IT{"’(A,P) with respect to A, we have

A a Wi, + P ~ WL Wy, + P)
W

3.23)
- —W
Ua(AP) =1 - quzmu: "'FS My
P
hence
112
1+ P -1
- .—e WH! P

N 2T =1+p (3.24)

=]+ >1
VW ulm M+ PY - Wy, W,

Note that the result in (3.24) is the same as the result in (3.19). Also note that the result in 3.23)
is greater than the result in (3.18). Thiscan be explained as tollowing, Since T,, is greater than T, and N
for both systems are the same; therefore, using Litte's result (LITT61] we can show that A* in (3.23) is
greater than A’ in (3.18). This result shows that the optimal throughput of the parallet-serial model is
greater than that of the serial-parallel model when power 1s maximized for both cases.

Optimizing IT{"(A.P) with respect to P, we have

P'=(|+-,}-£—)Lw

If we use the more general definition of power as given in (1.8), we have

ua(APY - Wy NP =AW
T,,  P° Wu +P-AW

nPQa.ey =
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Optimizing [T§(A,P) with respect 1o A, we have

< TP WU - WU+ TP W 2 27P]
A= rw

Optimizing ITY"(X.P) with respect 10 P, we have

P rAW + Wy, - WL+ (P Wy - 2PAW < Wi ) - draTw? 5 drAwey,
2

Let us make a comparison between the 1wo cases discussed above, Figure 3.3 shows the mean
response ume versus load assuming py =, = 1 for both cases. [f we regard the behavior of the parallel
Stage as a blocking stage, then from the comparison we see that early blocking performs beter (i.e., with
smaller mean response time) than late blocking. Therefore, if we have the choice 0 decide when to place
the blocking stage in designing a paralie| algorithm, we would like 1o place it as carly ag possible (rule of
thumb),

333 A Combined Modei

We define "/" to be the fraction of the service time the Job spends in the serial stage over the
overall service time, j.e,

A ”l-l!
—_—T
=l o+ Vg

Without loss of generality, we normalize the sesvice ume to be unity, i.c.

serial stage which precedes the parallel stage (i.c., a percent g of the serial Stage precedes the paralle! stage
and the remaining fraction (1-g) of the serial stage follows the parailel stage). We denote the mean
response time of this system o be Ty,. By using the results of (3. 12) and (3.22) we obtain

1 1
A + * e——
Ha Ky 1
Tr =2 ———— +{] - - —
It A. ( 3) l.l.;

1- 2

M2

RSP

i viny A

The utilization of the resource is
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A
- =] -
p= ™ -
Hence, the condition for the System not o saturale is

p<l

or

AMl-frel

Figure 3.4 shows the mean response time versus load over differen; values of g and £, From these results,
we have the following theorem,

THEOREM 3.2:
For a serial - parallel modei as shown in Figure 3.1(¢) and with "f" and "g" as defined above, the
Mmean response time is

l=F)+

Tu= 1 SHEEL - gy
under the condition that

Al-fyet

34 A Two-stage model

In this section, we consider a job with only two slages where in one stage the job uses P, proces-
SOrS 0 process its work while in the other stage the job yses mP | processors, where m is a real number
greater than 1, for processing concurrenly. We define the stage which uses P, processors as the
low ~concurrency stage and the other sage which uses mP,; processors concurrently ag the
high Tconcurrency stage. We assume there are mP, processors in the system, i.e., the number of proces-
WO cases are analyzed: one is when the low-concurrency stage precedes the high-concurrency stage and
the other is when the high-concurrency stage precedes the low-concurrency stage. For cases when the
number of processors in the system is greater than mP |, 2 good approximation will be given after the intro.
duction of the scale ~up rule, which will be described in section 3.5.

341 The Low-Concurrency Stage Precedes the High-concurrency Stage

In this section, stage one is the low-concurrency siage while stage two is the high-concurrency
stage. This job can be modeled as shown in Figure 3.5, This mode! is similar to the model described in
section two except that in this model there can be at most m Jjobs working concurrently in the first stage,
The Markov chain of this model is shown in Figure 3.6. From the Markov chain we have
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Processor

Figure 3.5
A Sample Task Graph

Figure 3.6
The Markov Chain for Figure 3.5
A+ kpy )p (k,0) = Ap (k - LO) + pap (k, 1); 1sk<m
A+ mu,)p(k,0) 2 Ap (k - 1O} +wap(k, 1);  mek
(lﬂlz)P(t-1.1)=1P(k-2.1)+kunp(k'0): 28k<m

A+ta)pk =11 = Ap(k -2.1) +mupk, 0y m<k
The boundary conditions are

Ap(0,0)=u,0(0,1)
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(3.26)

(3.27)

(3.28)

(3.29



A+u)p0,1) = u p(1,0) (3.30)

We define the following two z-transforms:

Poz) & ¥ p (k. 0)et
k=0

Pi(s} & Tok et
k=D

We also define
pk) B Probl k jobs in the Sysiem |

P(z) @ ip(k)z‘
_ =)
From the above definitions we have
P2)=aPy(z)+ WP (2)
From (3.25) and (3.26) we have |

T O+kuOp(h, 0sts 3 Guomysy)p Or's FAp (=100 Fpuop (k, 1)e?
k=) kol kwl

da|

After some algebra we have
L] ‘
A+ my ~ AP o(e)mitaP ((2) + 41y T (m - k)p (K, 0zt (3.31)
k)
Similarly, from (3.27) and (3.28) we have

T+ 1) (k=1,1)s* = 3 0p (=2, 1t » Thwp kO + 3 pp (k. Opet
[ 7] km2 ka2 k

-+l
After some algebra we have
[(l +H2)z - h’]f’l (@) =my, Po(2) = mpy ~w,Po(z) - :'é(m = k)p (k, 0)z* (332
From (3.31) and (3.32) we have
PL0) = 2Py (3.33)

Using (3.31), (3.32), and {3.33) we have

(Hy - Az), m=| R
-k)pik, 0)z
~Az 4+ myy g - ”Ilu-lz - 7‘4122 + 2322 ‘Eo(ﬂ'l o (k, 0)

Pol2) =

lM-I mal &
= -k k,O T
Pi(®) —Alz + my g - mig 2 - Miyz + A22 Z_o(m o (k.0)
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HiH2 ml

P = "k : k i 4
@ A%z iy - mag, 2 = Apgz + A22? Eo(m 0 (k. 0)z (3.34)

The remaining problem is o find all pk Q) for 0sksm-1. Using (3.34) and P(1) =P(+P (D=1,
we have

MU Mg = muy A = (a4

S(m=-k)p(k 0)=
k=l

3
M1k 339
Rearranging (3.25) and (3.27) we have
plk 1) = ﬁiﬁp *,0)- > pk - LO%  Isksm (3.36)
Ha H2
Pl 0= 2tH LD -2pk-21%  22m (1.37)
ki, kidy
From (3.29}) and (3.30) we have
PO = 20500 (3.3%)
Ha
AA + Uy) )
1,0) = ————=r(0,0 3.39
p(L,0) ™ 2(0,0) (3.39)
From (3.37), (3.38), and (3.39) we have
AL LI
PICX PR ik ] B (3.40)
pITHTE,
Apply (3.36) to (3.37) we have for 3 <m,
(A + WA+ (k =~ Dy, ] AA+ 20, (k- 1))
k,0)= k-1,0)- k-20
Pk, 0) PITRTA P ) Y™ P )
M k-30 3.41)
TR '

From (3.39), (3.40), (3.41), and (3.35) we are able 1o findaill p(k,0) for OSkSm=1. Applying
these results we obtain P (2) and consequently N and T.

Differentiating (3.34) we have

N i—P @ ),a

MiHa =l A2 = mAyy - Ay,
= k(m ~k)p(k,0) - (3.42)
miyda = mAY = Ay, El m - £)p k. 0) MU = mAW, - A,y

Hence,



>z

i1 2 ml A=y -y,

- kim=k)pk, 0)~ 3.43
A pg = mAy = Miy) E. ¢ o M Ha = mAU, -~ A, (43
From (3.43) we observe that the constraint for A not 10 saturate the sysiem is
A< mi Wy
) . myy +
The processor utilization () can be found as
Ay + myy)
U§ 3 ——
mu, g
Hence, the constraint of A is equivalent 1o
a<l]
THEOREM 1.3:
For a two-stage mode! as shown in Figure 3.6, the z-transform of the number of jobs in the sysiem
is
[ mel

P(z)= N R
© =A%z + mui g ~ mAgy,z - Mgz + Al2? B(m k)p (k. O3z

and the mean response time is

My Mz el A—myy -,
T= k(m - k)p(k, Q) -
A(muypy - migy - Ayy) E, (m = k)p &, 0) MWy - mAL, — A,

where p (k,0) for 0 Sk < m - 1 can be obtained from (3.35), (3.39), (3.40), and (3.41). The con-
dition for the system not 1o saturate is g

mily g
mily + Wy

A<

A example is now given for mm2 which will later be used for comparison. Erom (3.35) we have

2 =24 A - oA
22(0,0) + p(1,0) = HiHa = 2l M2 (3.44)
HiMa

From (3.30) we have

(3.4%)

A+ u2)p (0, 1) =, p(1,0)

From (3.29) we have

(3.46)

Ap(0.0) = w0 (0,1)
Solving (3.44), (3.45), and (3.46) we have
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Ay = 24 A - Ha A
0.0)= - .
p(0.0) AT e ks 20y (347

p(1,0) = (A% « uzl)(ml Hy = 2u,4 - Had) (.48)
' e AT NS T '
Substituting (3.47) and (3.48) into (3.42) we have

R Adu i+ dufu, - A%
(A? gk + 20 )24 g = 2ui k= wyd)
Using Liwle’s resuit (LITT61] we have

= 3 duty, 33
rad_ : opd + dudy, (3.49)
(A 4+ ph + 20 Mg (20 gy = 2, A - HzA)

J.42 The High-concurreucy Stage Precedes the Low-concurrency Stage

We study the case when the high-concurrency slage precedes the low-corl:urrency stage. The
processor-ume task graph can be modeled as shown in Figure 3.7. We can draw the Markov chain as
shown in Figure 3.8,

Processaor

f

m

1 t....

——e
Time
Figure 3.7
Task Graph
From this Markov chain, we have
(3.50
(Mua)p(k.o)ﬂp(k-1.0)+uzp(k. 1) k21

[l+ju.2 + -’%:—iul}p(k.j)= Ak =1+ 1"—'”{;"“1[7(* *lj=1)+ )
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Figure 3.8 .
Markov Chain for Figure 3.7



U+ D h,j+ 1) k2l & m>;>0 33D

O+ mu)p (k) = Ap (k = 1.m) ;ll-},L.p(k* Lm=1) k21 (3.52)

The boundary conditiong are

Ap (0.0} = 113 (0, 1) (3.53)
A+ junp(0,)) = -”'—“-mLf—'p,p(l.j “DYG+ Dup @+ 1) m-12)21 (3.54)
O+ mudp Om) = Ly p (1m - 1) (3.55)
Finding the z-transform of (3.50), (3.51), and (3.52) we have
A -z
Pi(z2)= L Pol2) - &p (0.0) (3.56)
K2
PAD= 0GP ()~ 0GnP s - c ity maja2 @.57)
K Ky
(A + muty AP (2) o P2} - *-m—zp(O.m -1 (3.58)

where

, 1 , =i+
\2) = —— - ool
a(j,z) ™ [14-(; Dy + M MJ

b(jiz)= u;(ﬂ_: -j+2)
Jmaz

. -j+1 ) Hilm=-j+2)
c{j,2 =LL+__ 0. -1 - 0"-...2
G.2) T Hp©.j-1) Tt p0.j-2)
Define p (k) and P (2) as in section 3.4.1, We have

wun{m a)
piry= 3 pln-jj)
J=)

P@O=TTo0=i e § Fpn-ijt TP G)
= il

Awlj Ammy el uf)

From P (z) we can derive the mean number of jobs in the system by

- 4 il B - d
Ns= IP(:),‘.I =;§0 [JZI IPJ(Z) +Z’ZPI(3)J

1m]
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= ;o [J‘P,(z) + f;ﬂ(z)] (3.59)
7

We are not able to soijve this problem for an ar

bitrary value of m since there are o0 many
unknowns. But, the result for m = 2 can be found. '

We now derive the result for the Case when m = 2. From (3.53), (3.34), and (3.55) we have the
following boundary conditions:

(3.60)
Ap(0,0) =, (0,1)
A +12)p(0,1) = 1,p(1,0) + 2430 (0,2)
G+ U)o 0.2) = S p (1, 1)
From (3.56), (3.57), and (3.58) we have the following z-transforms:
Al ~
Pi(2)= _i__‘.)_*'ﬂpo(,) - E'-p (0,0) 361
[ Ha
MI-2)+ My + 2 My My My
Pyz)= 2 P (2)- it Po(t) - g 2(0,1)+ E;P(O-O) (3.62)
Ky B
Pi(a)= 20+ 2y~ L1 - T+ 20, ~ Ay POD (3.63)
Solving (3.61), (3.62), and (3.63) with (3.60) we have
A MG+ B 20
Po(z) = 3 2(0.0)
A2 -0+ 3, + ?u.)zz + A2 = W (A + py + 2,)
(3.64)
where
) 3 , uf
A=A "'31121*‘5'“1 A+, le“'zl-l-z*?)
From (3.64) we have
WiAZ + 20 10A + pX - 2udy, - dpyd
Po(l)= 2(0,0) (3.65)
oD udh + ufh + duyuoh - 2utp, - g
From (3.61) we have
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L

Ky K
Pl)= ——p 1) = —— 0,
(1) ™ o) Ll-zp( 0) (3.66)

From (3.63) we have

i-llz ulz“'l-lll
Pil)= —=Po(]) = ——tt 0.0 ]
A1) il oll) i o (0.0) | .67

From (3.65), (3.66), (3.67) and Po(1) + P, (1) + P5(1) = | we have

Hikz =1 A =20,
HiAd + 2Uy 1,y

2
2(0,0) =

From (3.64) we have

Pa(l) =
a(l) B( D 2(0,0)

where

(1) = dpfd + ik + 4 pah - 2ud - 4y, i
By =i A + 2y gk + u3A = 23, - 4,
(1) = ~6upA% = 3y, A% + 81t Mg A + dudA + uda
BI(1) =~ A + 6y pph + uir
From (3.61) we have |
PL==2=Po(l)+ P

From (3.63) we have

. 2 A-2u? 23 2 A _
P31y = Hi L2 Hikz + My Po(l) + _u;__PD(I)+ My + AN(213 - )
8u3 aul

8ud

2(0,0)

From (3.59) we have
§=P1(1)+2P2(1)+P(,(1)+P] (1) + P3(1)
oA Cud ey + 24D -y -y, - dudA - dpdut + 3,y + 2ud)
A+ 2, Ha2(y + 202 )(p A + 29A = 21 44)
Using Liale's result (LITT61] we finally have

T=x

>l

. Gud + miy + DA - 1y - 1y, - 2udh - dudud + I + 2u8) (3.68)
Ha(h + 220 (1 + 22)( A + 245h = 20, 45)
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343 A Comparison

We make a comparison between the models of scctions 3.4.1 and 3.4.2 for #i =z = 1. These two
examples have every condition the same €xcept that the sequence of the stages is different. The result from
(3.49) shows that

1+A . I~-A
Aere2  2-3R

where T, is defined as the mean Tesponse time when the low-concurrency Stage precedes the high.
concurrency stage. The result from (3.68) shows that

T|=

Ad -2 -2Y

T, =T, =
1o IA+DAT+A+2)

Itcanbeshommﬂythaforlc%(oﬂuﬂ). T\ - T, is always positive, If we regard the

high-concurrency Stage as the blocking stage (since it blocks other jobs in the system), then T, - T, > 0 is
consistent with the result we obuined in section 3.3.2. Hence, the rule of thumb in designing perallel algo-
rithms is to put the blocking stage as carly as possible (if allowed). The system time versus load of T, -1,
is shown in Figure 3.9. Notice that 7, and T, are very close 1o each other, this is because there is no pole
in the denominator in the expression of T') - T,.

3.5 Scale-up Ruie

The results derived in sections 3.3 and 3.4 are for cases when the number of processors in the sys.
em cquais the maximum number of processors required by the job. This assumption simplified the Mar-
kov chain dramatically, hence making the analysis feasible. The analysis applied above will be infeasible
when the number of processors is greater than the maximum numberofpmcmmteqdredby the job. In
order 10 solve this problem, we Propose the Scale—up Rule which 8ives a very good approximation result
without adding any analytical complexity. We will first show some examples for the classical queucing
system. Then, an applicstion of the scale-up rule for the Iwo-slage moded when the number of processors
in the system is greater than the maximum number of processors required by the job is given,

3.5.1 Previous Work: Classical Queueing Model

Although there has been considerable effort paid 10 the analysis of the M/G/m queue, aimost no
exact result has beea achieved for the mean wailng ume. Two exceptions are provided by M/M/m and
M/D/m sysiems although in both cases the solutions are not in a closed form ( (CROM34), [SYSKB84)).
Besides these two exceptions, only bounds, approximatons, and numerical results have been found for
other cases. [HILL71]} gave some numerical results for the M/E,/m queue, (KING10}, (BRUM71),
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{STOY74), and {MORI7S] provided some bounds, and (BOXM79], [YAKA7T7], and (HOORS2] derived
Some approximation results for such sysiems,

In this section, we focus our attention on the resuits provided by [MAAL73] and (NOZA75] who

provided an approximation for the mean waiting time in an M/G/m system, [COSM76] and [BOXM79]
later extended this model 10 achieve a better result. Let us define

Wi/Gim £ mean waiting time for an M/G/m system

(MAAL73] and INOZA75] suggested the following approximation for WeiGim:

WuiGim = "_‘—WWG” Witistim
MM
Some simulation results are shown in Figures 3.10, 3.11, and 3.12 for three different queueing models to
show the preciseness of this approximation. Figure 3.10 shows the simulation result along with the approx-
imation result using the above ¢quation for an M/D/3 Queueing system with the mean service time X = 2,
Figure 3.11 shows the result for an M/E4i2 queueing system where the mean service time for each stage
equals 1. Figure 3.12 shows the result for an M/H /3 Queueing sysiem where the mean service time is 1,

or 10, or 100 with equal probability, -;-

3352 Queueing Model with Varying Required Processors

section also applies in our model, In other words, if we find the mean response time for a system with P

processors, we can find a good approximation result when the number of processors is greaer than P by
using the scale-up rule.

Scale-up Rule: Given'a processor-time task graph of a job and the number of processors in the system,
say P, equals the maximum number of processors required by the job, we define the
average waiting time of the system 1o be Wuwirei (p), where p is the system Joad and
TG stands for “Task Graph”. Similarly, define Wain 1 () 10 be the average waiting
ume of an M/M/1 queueing system with the same mean service time as the job. Define
Waitcim(P) 10 be the average wailing time if the number of processars is mP. The
Scale-up Rule says that

w761 (P)

4
Wui1G:m(p) = ———m.

Wotrrtrm
WH;M:I(Q) om (p)

The scale-up rule can be useful in two situations. First, if we can analytically obtain Wuirei, 3s
we did in sections 3.3 and 3.4, then we can use the scale-up rule to approximate Wyitcim. Second, if we
cannot obtain the analytical result, then we have 10 run the simulation. Since the time required o run the
simulation for the M/TG/m System is longer than the time required to run the M/TG/1 system, we can run
the simulation to find the mean waiting time for the M/ TG/ 1 System and then apply the scale-up rule to find
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the result for the M/TG/m system. Thus large amount of time can be saved using this rule,

3.53 Available Processors Exceed Maximum Number of Processors Required in the Two-Stage
Model

In this section we study the case where the available processors exceed the maximum number of
processors required in the two-stage model. The exact solution is not feasible since the analysis gets wo
complicated; hence, an approximation model will be given. The approximation resuit is a combination of
the use of the exact result from section 3.4 and the use of the Scale-up Rule.

Suppose the number of available processors is m limes of the number of processors required by
the high-concurrency stage. We first find the results of the system with the same Pprocessor-time task graph
assuming the number of processors in the System equals the number of processors required by the high-
concurrency stage. The result for this model is provided in section 3.4. With these results, we apply the

the approximation result using the Scale-up Ruie. Three cases are given for two different Jjobs: one is with
P=11, 2)andP=[1, 1], and the other is with P=[2, 1 landP=(1,1). Figures 3.13 and 3.14 shows
the result when the available number of processors is twice ag Mmany as the maximum number of processors
required Figures 3.15 and 3.16 shows the resuit when the available number of processors is three times as
many as the maximum number of processors required. Figures 3.17 and 3.18 shows the result when the
available number of processors is five times as many as the maximum number of processors required.

3.6 An Approximation for the General Cases

As we mentioned earlier, 1o exacly evaiuate the performance of a general case is extremely
difficult. In this section, using the exact solution of the wo-stage model and the scale-up rule, we give an
approximation method for any general processor-time task graph and any nymber of processors in the sys-
tem. The simulation of this approximation method shows reasonably good results.

Given a processor-time task graph, we divide the processor-time task graph into two pieces such
that the mean service time for each piece is the same. In each piece, we average the work load over its ser-
vice time o find the average number of processors needed. By doing this, we achieve a two-stage model as
analyzed in section 3.4. We use this two-stage model as the basis for the approximate model.

£ the first stage requires fewer processors than the second slage, we use the result obtained in sec.
tion 3.4.1. An example is shown in Figure 3.19. In Figure 3.19(a), the processor vector for this 4-stage job
is [3,1,3,9] and the corresponding time vecior is _2[ % é—% - By dividing the time vector into two
equal pieces, the first two stages of Figure 3.19(a) will be merged into the first stage of the approximation
model as shown in Figure 3.19(b). Similarty, the last two stages of Figure 3.19(a) will be merged into the
second stage of the approximation model as shown in Figure 3.19(b). In order 10 make the work in Figure
3.19(b) 10 be the same as in Figure 3.19¢a), the processor vector for Figure 3.19(b) is (2,6] and the time
vector is {1,1]. Figures 3.20 and 3.21 shows the approximation result for this example given 12 and 45
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processors it the sysiem respectively. From these fi

gurcs, we sce that the approximation results are very
close to the simulation results.

Processor

F'y

9 - - -

6-

3

' —>
¢ 1 2 Time
Figure 3.19(a)

An Example with 7= (3,1,3,9) and 7= [-;-.%.%- %l
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!
9
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3 =
' —
0 1 2 Time

Figure 3.19(b)
An Approximation Model for Figure 3.19(s)

If the first stage requires more processors than the second stage, there is one more step w be done
in the approximation method. An example is given in Figure 3.22. In Figure 3.22(a), the processor vector

is (3,9,3,1) and the time vector is %%%% - Applying the same rule as we did in Figure 3.19, we con-

vert Figure 3.22(a) into 3.22(b) such that the processor vector and the time vector of Figure 3.22(b) are
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(6.2] and {1.1] Tespectively. Since we can analyze the sysicm only when the number of processors required
in the first stage is exactly twice that in the second stage, we have 0 modify the two-stage approximation
model by using a three-stage approximauon model, The first stage of the three-siage model (as shown in
Figure 3.22(c)) is the same as the first stage of the two-stage model (as shown in Figure 3.22(b)). The
second stage of the three-stage model is modified such that it requires exacuy half of the processors
required in the first stage and the towl work required in the stage is the same as that of the second stage
from the two-siage model. The third stage in the 3-stage mode! is used to adjust the no-queueing service
ume such that it is the same for the 2-stage approximation model and the 3-stage approximation model,
The processor vector and the time vector for Figure 3.22(c) are (6,3,0] and {1, -;'1 -;— ] respectively.
Although the model in Figure 3.22(c) is different from the model described in section 3.4.2, it can be
solved by using the result from section 3.4.2. Notce that the third stage has the highest pricrity and
requires no processors from the system at all, the existence of stage three has no impact on stages one and
two. Hence, we can solve this problem by first neglecung the third stage in Figure 3.22(c) and apply the
resulis obuained from section 3.4.2; from this result, we add the mean service time of stage three 1o it to gt
the overall mean response time, Figurcs 3.23 and 3.24 shows the approximaton results for this example
given there are 12 and 435 processors in the System respeclively.

Processor

4
9 b=
6 |-
3

I
0 1 2 Time
Figure 3.22(a)

-
An Example with 7 = {3,9,3,1] and 7= [-!-.l.'l-.ll
2'2°2'2
3.7 Conclusion
In this chapter, we were able to analyze some inicresting models exactly to study the behavior of
Jobs in a multi-processor system. By inuroducing the scale-up rute, which is one of the major contributions

of this chapter, we are able 10 give an approximation method for finding the mean response time for any
general application,
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The First Step Toward Approximation Model for Figure 3.22(a)

Processor

!
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Figure 3.22(c)
The Second Step Toward Approximation Model for Figure 3.22(2)

By looking at the comparisons in sections 3.3.2and 3.4.3, we have the following rule of thumb in
designing parallel algorithms: If there is blocking in the algorithm, late blocking will generate a longer
mecan response time than carly blocking if the service discipline is the same as given in this chapier.
Hence, if we have the choice, we would like o have early blocking rather than late blocking in the algo-
rithm,
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CHAPTER 4

AN OPTIMAL PARALLEL MERGING AND SORTING ALGORITHM
USING VN PROCESSORS WITHOUT MEMORY CONTENTION

Having studied the theoretical performance of parallel processing systems in the previous two
chapters, we would like to look at some applicauons (parallel algorithms) which can be run on a parallel

lished in this field. When the distributed and parajle| processing sysiems were brought into light, people
tried to have more processors working concurrently to spcedup the tomputauon. This is also the motiva.

A parallel algorithm for any given computational problem is optimal if the processing time
speedup by using P processors compared w the known best serial algorithm (i.e.. the best algorithm when

In this chapter rwo algorithms will be prescnied which run on a shared-memory parallel process-
Ing system. Furthermore, no simullaneous read from or write ino the same memory location is required
for these algorithms, We firs present a parallel merging algorithm which uses P = VN processors 1o merge

two soried lists, each of length N, in time O (%) =0 (\N), where P is the number of processors used. We

then apply this merging algorithm 1o construct a sorung algorithm which uses VN Processors o sort 2V ele-
ments in time O(N—'jg-ﬂ) =0 (VNlogN). Both algorithms arc optimal because they both achieve linear

processing time speedup (i.e., linear with P) and optimal ume complexity,
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4.1 Previous Work

There have been many parallel sorting algorithms published in the literature, [AKL85] and
(LAKS84) provide good references to many of these algorithms. However, there are not many parallel
algorithms for merging.

Batcher has an odd-even merge algorithm [BATC68) which, in order to merge two lists each of
length N, will first merge the odd sequences from both lists, then merge the even sequences from both lists.
Finally, it applies the comparison-interchange operation to yield a sonted list This algorithm uses
1 + NlogN processors 10 achieve a time complexity of 1+ log N. This algorithm does not achieve linear
processing time speedup.

Valiant [VALI7S] has a paraliei merging algorithm which uses N processors and has a time com-
plexity of O (log log N). This algorithm does not quite achieve linear processing time speedup.

Thompson and Kung (THOM77] have a merging algorithm which uses 2N processors connected
in a linear array containing two sonted lists each of length N, where the first list is in the first N processors
and the second list is in the second N processors. Their algorithm will rearrange these elements in such a
way that the i smallest element is in the i processor. By using 2N processors their algorithm achieves a
time complexity of log N and 8V routings, where one routing is defined as sending one element from cne
Processor to another processor. A similar result, which also uses a linear array, is reported by Kumar and

Hirschberg [KUMABS3] which merges two sorted lists using 2V processors in log N time and %N routings.

Thompson and Kung (THOM77] also have another paralle! merging algorithm which uses a two-
dimensional array of 2N mesh-connected processors (o merge two sorted lists each of length N in ow)
time. These algorithms do not achieve linear processing lime speedup also.

In this chapter, we first describe a Multi-way Parallel Merging algorithm which uses VA" proces-

sors  achieve a processing time speedup which is linearly proportional to the number of processors used.,
#-1

By recursively applying this algorithm, we can show that for P = N —2‘—. the processing time speedup of
the algorithm is 3% For example, if P = N*, then the processing time speedup of this algorithm is %
which is a very high speedup.

4.2 Multi-way Paralle! Merge Algorithm

The input of this merging algorithm is two sorted lists, namely L, and L,, each of length N. We
would like to merge these two lists into one sored list using P processors. We will describe the algorithm
for the case when N = P3,

The idea of this merging algorithm is first to divide each of the two sorted lists into P sorted sub-
Lists in such a way that sach sub-list in £ 1 or L, contains elements which are P positions apart in Lyorl,.
We then assign processor P; o merge the i sub-list from L, and the i* sub-list from Ly@=1,2.,P).
We call this procedure phase 1. Obviously, all P processors will be working concurrently and will finish

approximately at the same time (i.e., in 2-% steps) since the two sub-lists for each processor to merge are
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full list as one group. After the grouping we have 2P groups. Note that the P elements in each ETOup are
sor.. In phass 2 we merge the i group with the (i + 1)" group using P ...y, (for all odd §). Since there
are 2P groups and each processor merges 2 groups, we have all the processors working concurrently and
the will finish at the same time onca again. In phasc 3. we mcerge the ;4 group with the (j + 1) group
using P,,; (for all even J). Note that in phase 3 only 2P -2 groups need to be merged; hence we use P - |
processors concurrendy and they will finish ag the same ume. In phase 2 and 3, every element is free 1o
move up or down by more than P positions; therciore, alter phase 3 this list is sorted.

THEOREM 4.1: Afier phase 1, every element is within +P positions of its final positon,

(Proof]
Suppose elements A, B and X are assigned 10 procassor P;, where A is the
m™ and B is the (m + D" element in the sublist from Ly for P, and X is the
™ element in the sublist {rom L, for P,. We also assume A <X <B.
m 1A (1) Number of elements smallcr than X is ar least
M-DP+i+(n-1P +ix {(mﬂ. - I)P-H'] +{i-P)
m+l|B
(2) Number of elements greater than X is ar most
l:(m-o-l—l)P-H'—l]*- [(n-l)PH’]
+n{X .
m =[(m+n—l)f'+i]*(l"1)
From (1) and (2), the ranking of X is between
nix [(m+n-1)P+£]+(i-P)and [(m+n-1)P+;']+(|‘-l).
The position of X after phase 1 is:
(men-1P+i
Thercfore, element X is within a distance P from its final position,
ALGORITHM:
Siep 1:
Divide L, into P sub-lists where the i sub-list conainsthe i, P +i, 2P +i, .. N=-P +i.
Also divide L, into P sub-lists in the same way as L.
Step 2:
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For all i from 1 to P, assign the i sub-list from Ly and the i* sub-list from L, to P,
Have each processor merge its two sub-lists using the same memory spaces (i.e, every P
slots).

Step 3;
Group the list resulu‘rig from siep 2 into 2P groups such that each group contains P ele-
ments. For all i from 1 10 P, assign the (2i -1)"* group and the (2i)* group to P,. Have
¢ach processor merge its two groups.

Step 4;
For all i from 1 to (P-1), assign the % group and the (2i+1)" group to P;, Have each
processor merge its two groups.

Example 4.1;

Figure 4.1(a) shows two sortad lists of equal length. After step 2 in the algorithm we
have the list as shown in Figure 4.1(b). After step 3 we have the list as shown in Figure 4.1(c).
After step 4 we have the final sorted list as shown in Figure 4.1(d) and the algorithm is completed.

Compiexity Analysis:

In phase 1, we have all P processors working concurrently with each ;locma' merging two sub-
lists each of length %; hence, the toial computational complexity for phase 1 is P 2-%- = 2N. This is

also true for phase 2, For phase 3, the total computational complexity is (P - 1) [2%] 22N - %V-
Therefore the total computational complexity is at most 6N, It is easy to see from the aigorithm that all P
processors are working all the time (except that one processor is idle in phase 3) and that there is no over-

lapped work between processors; therefore the time complexity is at most % We know that the compu-

tational complexity for merging two lists, each of length N, using one processor, is at least 2. Therefore,
we have a processing time speedup of %

Now, we show how this algorithm can be modified 1o be able to use more than N2 processors.
In the original algorithm (P = N'/2), we use one processor 1o merge two sub-lists each with N2 elements.
We now focus our attention on merging these two sub-lists. In the modified aigorithm, we will use more
than one processor to do this merging. Since there are ¥''? elements in each sub-list, we can use
(W22 = NV* processors to merge these two sub-lists using the original algorithm by tripling the time
required. Since N3 of these happen concurrendy, the total number of processors required is

NYEZNV4 = N¥4 However, since the required time is tripled, the overall speedup becomes %-%- = 3%
By repeatedly using this idea on merging two sub-lists with only one processor, it can easily be shown that
2 -t

P

wecanuse P =N processors for this merging algorithm to achieve a speedup of ;;*
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43 Multi-way Parallel Sorting Algorithm

We construct a multi-way parallel sorung algorithm using the merging algorithm described above,
We use VN processors to sort 2V elements. For ease of explanation, we assume P = VN =2*, In the first
step of the algorithm, we assign 2V elements to each processor and have each processor sort its data
using any known optimal sequential sorting algorithm. We divide the second step ino k phases. At the
beginning of the i* phase (ix1.2,... k), there are 2*'~ sorted lists with 2:-! processors associated with each
list. In each phase, we concumrenty merge pairs of sorted lists using the processors associated with those

two sorted lists. Therefore, in the i phase, we merge two sorted lists, each of length qu-_;- =2*%, using

227! = 7' processors. Let us define N 10 be the length of each sublist to be merged in phase i and 2@ 1o
be the number of processors used to merge two sublists in phase i. Since YN 3 pO (VN = 2FF
2V2 ™ =22 =P we can apply the multi-way merging algorithm to achieve linear processing time
speedup. After k phases, there is only one sorted list left; hence the algorithm terminates,

Complexity Analysis:

The time complexity of step 1 is 02V log(2vW)) = O(ﬂ%j‘vﬂ) - O{N—l‘}’,ﬂ). In step 2, the

K
time complexity for the i phase is O [—%—] =024 =0 [%] Sirice there are logP phases in step 2, the
total time complexity of step 2 is O (-‘;;’--logP) < O(N—’;ﬂ) = time compiexity of step 1, then the toal

time complexity of this sorting algorithm is O [N—?’ﬂJ

4.4 Conclusion

Multi-way parallel merging and sorting algorithms provide a speedup of -’3: when P = VN, which
2-1
is a very high speedup. Furthermore, for P =N 7' | the processing time speedup of the algorithm is %

This is a very high speedup as long as k is smail, which is true for many applications. Another advantage
of this algorithm is that we do not require concurrent read or concurrent write for this aigorithm, hence this
algorithm can be implemented on any version of parallel processing systems (EREW, CREW, or CRCW).
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CHAPTER §
A DISTRIBUTED SORTING ALGORITHMS USING BROADCAST COMMUNICATION NETWORKS

In this chapter we present a sorting algorithm for distributed computing sysiems using a broadcast
channel to communicate between Processors. An important issue in such an environment, which is usually
neglected, is the queueing behavior of accessing the communication channel. [n computauonal complexity
theory, if algorithm A has a computational complexity N while algorithm B has a computational complex-
ity 2N, then Ty = 2T,, where T, (T,) is the time for algorithm A (B) to complets. This is not true for our
System because of the queueing behavior of accessing the broadcast communication channel. From queye-
ing theory {KLEI76] we know that doubling the load of the system does not imply doubling the system
time. Especially when the load (utilization) of the system is high, a slight increase in load might incur a
much longer system time, Therefore, for such a system, a slight decrease in the communication require-
ment might improve the performance dramatically,

Another issue which is also important is that for a random-access broadcast channel, even if the
total amount of information (bytes) which has 10 be ransmitted over the network is the same, the perfor-
mance of a sysiem with a smailer message size, which contains fewer bytes per message, might be far
worse than a system with a larger message size, which contains more bytes per message. This is because
the system with a larger message length requires fewer Mmessages to convey the same amount of informa-
ton (bytes). This reduces the amount of message overhead (e.g. header and check bis) and the time
wasted on propagation delay; it also reduces the chance of collisions and retransmissions,

The beauty of this algorithm we present is that it requires much less inter-processor communica.
tion than some previously published algorithms, We also have an improved version which provides a
parameter "a” which gives the user the freedom o decide whether to spend more time on communication
and less time on computation or more time on computation and less time on communication,

5.1 Previous Work

There have been some papers dealing with distributed sorting algorithms [WEGNS2) (ROTESS)
(ZAKS85] [DECHS81) [MARBS6]. Since we are interested in distributed computing systems with a broad-
¢ast communication channel, we will refer only to [DECHS&1] and [(MARBSS6] for our comparisons.

Dechter and Kleinrock (DECHB81] have an algorithm which makes use of a broadcast communica-
ton network to implement a distribuied sorting algorithm. The advantage of their algorithm is that, regard-
less of the number of processors used, their algorithm has a communication complexity between N and 2N
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(the average is %N). where N is the number of elements which need to be sorted. The disadvantage of the
algorithm is that each broadcast message contains only one element. It can be shown that their algorithm

will incur, on the average, %N messages and %PN propagation delays, where P is the number of proces-

sors in the system. As we mentioned earlier, since there is a communication overhead for each message
sent, the total communicaton overhead of their algorithm is fairly high, which is completely neglected in
their model.

Marberg [MARBS6) has another distributed sorting algorithm which also makes use of a broad-
cast communication network using more than one channel. This algorithm can achieve even higher con-
currency by using all the communication channels. However, its disadvantage is that it has a communica-
tion complexity of 4N, where N is defined as above.

5.2 A Distributed Sorting Algorithm

In this section we first present a soring algorithm and then an improved version of it. We also
present a modification of this algorithm in section 5.4 such that the communicaton complexity is N plus a
term which is not a function of N. Note that sorting in such an environment requires a communication
complexity of at least N since every element must be broadcasted at least once to the processar it should
reside at the end of the algorithm, Therefore, our algorithm only adds an extra term which is not a function
of N. This implies when N is large, our algorithm will be beuer than that in either (DECHS!] or
[MARBS6].

As we mentioned earlier, inter-processor communication is usually the bottleneck of a distributed
system. We propose an algorithm which can reduce the communication complexity. Furthermore, by hav-
ing reduced the communication complexity, we can pack more than one element into a message which can
further reduce the communication overhead.

The system has P processors and there are N elements 1o be sorted assuming N> > P. We
assume these N elements are in P unsorted lists (each of length %), one for each processor. The purpose

of this algorithm is w0 sort these lists such that all elements in £, are smaller than all elements in P, and all
elements in P, are smaller than all elements in P4 and so on, Furthermore, for each processor, its list will
also be sorted and so the full list of N elements will be sorted. This algorithm will be partitioned into four
steps. The first step is to have all the processors sort their own lists. The second step will be 1o find the

(%)“. (-ZFN)". ...... , and the (L;lm)"‘ elements over all the processors (using the communication net-
work). We call these elements delimiters. The third step is 10 transfer all the clements smaller than the
(%’-)" element to processor 1 and all the elements which are between the (%)"‘ element and the (_ZFI:J_),,

element o processor 2 and so on. The last step is (o have ail processors sort their own lists.

Example 5.1:
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Let us use an example 10 illustrate the operation of this algorithm, Suppose we have four
processors with input data as shown in Figure S.1(a). After Step 1, we have the system as shown
in Figure 5.1(b). In step 2, since we have 80 elements with 4 processors, we must find the 20/,
the 40*, and the 60" elements. We explain the details of step 2 after thig example and we assume
we have found these three elements (which are 109, 208, and 282). In step 3, we require that all
elements less than or equal to 109 be sent to processor 1. Similarly, ail elements between 109 and
205 (including 205) must be sent to processor 2, all elements between 208 and 282 (including
282) must be sent to processor 3, and all elements greater than 282 must be sent to processor 4. If
processor 1 starts sending its data to the other processors, followed by 2, 3 and 4, then after step 3
the system will be as shown in Figure 5.1(c). Afier step 4, we have the final result as shown in
Figure 5.1(d) and this algorithm is completed.

Now we explain in detail how 10 implement step 2 as shown in Figure 5.1(e), which contains the
major idea of this algorithm, The idea behind step 2 is a combination of binary searching and counting.
We first explain how counting is used in this algorithm. If a processor, say £, wants o find the ranking of
one of its elements with value M, it will broadcast M to all the other processors. Every processor {except
£) will then calculate how many elements in its list are smaller than M and will then broadcast this
number to ;. P, can add up all these numbers from these messages to determine the overall ranking of
M. Now we explain how binary searching is used in step 2. Suppose P wants 10 find out whether its list
contains the m™ element and the value of that element if it is in P,’s list In our algorithm, P, will first
find out the ranking of its median element using the method just described. If the ranking of that element is
higher than m, then we know the m* element will either be in the first half of P, s list or not in Py's list,
Therefore, we then take the first haif of P s list as the working list and and find the overall ranking of the
median element in this working list. The same process will be repeated until we either find the m™ element
or we are sure that the m* element is not in 2, °s list.

We now show how to find the 20* element in Example 5.1. Note that the 20 element may be in
any of the four processors, hence cvery processor must try to find it in its list. In step 2, P, first broadcasts
its median element’s value, say v, (253), then P broadcasts-its median element’s value, say vy (259) and
the number of elements in its list which are smailer than v1 (9), then P, broadcasts its median element's
value, say vy (187), and the numbers of elements in its list which is smaller than vy (14) and v; (14), then
P4 broadcasts its median element, say v4 (124), and the number of elements in its lisg which are smaller
than v, (20), v, (20), and vy (15). Afier P, finishes its broadcast, P\ has determined the ranking of v,
(53). If v, is the 20" element, P, will broadcast inio the network 2 special message containing "&", which
tells all the other processors that the 20 element is found and its value is v 1. If vy is not the 20* element,
£ repeats the searching process applying binary search. After the 20™ element is found, then all the pro-
cessors will advance to find the next delimiter, which is the 40* element in example 5.1. In this example,
the procedure goes on untif the 60* element is found.

ALGORITHM:
Step 1: Each processor sorts its own list using the best sequential sorting algorithm.
Step 2: Fori=1ta(P-1)do

h
find the i-%’- element using the broadcast network

99



226 341 13

19 69 199
61 274 47

286 122 118
109 181 130
329 304 292
208 232 151
16 247 1583
347 250 175
349 259 187
269 g1 28

282 1289 205
8% 211 235
Ji 313 301
3186 326 262
3Jaz2 331 265
202 337 271
343 39 147
244 352 287
253 361 241
P1 P2 P3

Figure 5.1(a)
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After Step 1 from Figure 5.1(a)
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After Step 3 from Figure 5.1(a)
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Step 3: Fori=1twPdo
forj=1wPdo

th th
P, sends the data between [(j—l)-%] and [;%] 0P

Step 4: Each processor sonts its list using merge sort.

Complexity Analysis:

We denote log; to be /g, then the optimum computational complexity for step 1 is O(%Ig(%))
for each processor (using, for example, quick sort). The communication complexity for step 2 is
OWPyg (%)). This compiexity is calculated as follows. We define a "run” 1o be that every processor
broadcasts once; hence, there are P messages per run. In order to find a delimiter, the number of runs is
upper bounded by Iy (%-) which is the complexity for binary searching. Therefore, the number of mes-

sages is upper bounded by Pig (%): hence, the number of "elements” is upper bounded by P‘Ig(%) since
there are P elements per message. Since we have o find (P-1) delimiters, the overalt communication com-

plexity is upper bounded by P3/g (%). The communication complexity for step 3 is simply O (V). The

computational complexity for step 4 is 0(%!3!’) for each processor since each processor will simply
merge its remaining list with P ~ 1 sub-lists received from other processors and the complexity can be
shown to be %IgP.

One advantage of this algorithm, as we mentioned earlier, is that in step 2 we can send P elements
per message and we can send as many elements in step 3 per message as there are elements in the sublist.
Also note that all communication is scheduled and so no collisions will occur on the multiaccess broadcast
channel. However, there are some inefliciencies in step 2, which will be improved in the next section.

53 Improvement of the Algorithm

In the previous algorithm, we repeated the same procedure whenever we tried to find the element
with a specified ranking. We did not make use of the information we had acquired from previous searches.
Here, we improve the algorithm so that we can make use of that information 10 cut down the effort of
searching in step 2.

Let us use the previous example to convey this idea. Afier we have found the 20* element, every
processor knows that the next element to search for is the 40* element. However, at that point, P, already
knows that 187 is the 35* element and P, already knows that 253 is the 53 element. If P, and P, broad-
cast this information w all the processors, then every processor would search for the 40" element between
187 and 253 and they do not have to search the entire list 10 find the 40 element. Although we will incur
some memory overhead by this change 10 memorize this extra information, it is easy to show that the
memory overhead is 2P for each processor, which is smail compared to N. By this change, we save
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communication.
Example 5.2

We will redo example 5.1 using this modification, Since only step 2 is modified, we will
only re-do step 2 in this example as shown in Figure 5.2. Note that after the first delimiter 109 is
found, P, has learned that 253 is the 53" element, £, has learned that 259 is the 54% element, P,
has leamned that 187 is the 35 element, and P, has learned that 124 is the 25" element. There-
fore, after the first delimiter is found, £ will broadcast a message telling all the processors that
the 40 element should have the value betwoen 109 and 253. Similarly, P, will broadcass 109
and 259, P, will broadcast 187 and "---" (which means ), and P, will broadcast 124 and "---"
{e=). Alfter these four messages are received by all processors, every processor will take the max-
imum value of the first element from each message and the minimum value of the second element
from each message as the range for finding the 40* element. The binary searching will be applied
only in this range. Figure 5.2 explains the rest of this example. (In Figure 5.2 and 5.4, a processor
broadcasts a message containing "&&" means that this processor has nothing left in its list. Note
that this processor will not broadcast any more message after it broadcasts 3 "&&" message.)

5.4 Modification of the Algorithm: A Parameterized Algorithm

In this section, we make a slight change to the previous algorithm 10 reduce the communication
complexity dramatically with a slight sacrifice in computation. Since communication is presently much
more expensive than computation, this modification of the algorithm will give us a great benefit. The most
significant effect of this modification is that the communication complexity for step 2 is no longer a func-
ton of N. This makes our algorithm a very good algorithm for large N.

The idea of this modification is not 10 require to find the (-’;i)'* exactly as the first delimiter but

rather only to within @ % (0 < a s 100) of % That is, the first delimiter can be any element whose rank-

ing is between % X e ] and [_A_f + K-L]. Similarly, the second delimiter can be any element

P 100 P P 100
—_ N N a N N « . . . . .
_— . .2 - fi Li all delim-
whose ranking is between [P 7 ll,.:‘o]a.nd [P +P 100] This modification applies to eli

iters. By doing this, it can be shown that the number of runs is upper bounded by Ig-!;ﬂ; hence the com-
munication complexity for step 2 after this modilication is 0(P3rg’—29). Note that this complexity is

independent of N. Also note that this communication compiexity can be much better than P’lg% if

N > > P, which is obtained in section 5.2. However, by this saving in communication, we also incur more
computation in step 4. Fortunately, the computation complexity for step 4 will be at most 2a % more than
the original algorithm, Note that this increase in computation is incurred in step 4 only, whose cOmputa-
uonal complexity is dominated by the computational complexity in step 1; hence this increase in computa-
tion has only a minor effect.
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Example 5.3:

Let us redo example 5.1 by choosing @ = 10. Since steps 1, 3, and 4 are not affected by
this modification, we will only show the procedure for step 2. For a equals 10, we know thar the
first delimiter can be any one of the 18*, 19", 20*, 21*. ang 22 clements (i.e., 20 +2). Simi-
larly, the second delimiter can be any one of the 384, 39" 40™, 41", and 42* elements, and the
third delimiter can be any one of the 584, 59, 60", 61", and 62 elements. Figure 5.3 shows
the broadcast messages for step 2.

Another advantage of this modification is that by adjusting the value of &, we are able o trade

between communication complexity and computational complexity. A larger a will incur less communica-
tion and more computation than a smaller o,
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CHAPTER 6
WHY DISTRIBUTED OR PARALLEL SYSTEMS?

In this chapter we explore why more and more distributed and parallel processing systems are
being built despite the well known queucing result that a centralized system has better performance than a
distributed systemn. In queueing theory we have the following result (see {KLEI76)]):;

TI(LAC)<T(m A C) (6.1)

This says that given the same arrival rare (A) and the same aggregale capacity (C) for two systems, one
with only one big processor and the other one with m small processors, the mean response time of the sys-
tem with only one big processor (denoted as T(1, A, C)) is smaller than the mean response time of the sys-
tem with m small processors (denoted as T(m, A, C) ). This result suggests that we should use centralized
computing systems rather than distributed computing systems.

However, as the technology improves, more and more distributed and paralle] processing systems
are being introduced in the real world. The Connection machine [HILL8S), which uses 65,536 weak pro-
CESSOrs in one system, is one of the mast famous distributed system. Here, weak Processors means proces-
sors which are not powerful. A distributed computing system described in (MUTKS7] and the hypercube
machines are all examples of this rend. Since there are 0 many distributed and parallel processing sys-
tems butlt, there must be a reason to support it.

With these two facts stated above, we inguire us to why people build distributed or parallel pro-
cessing systems, In this chapter, we focus on one issue. which is the cost issue. In other words, if there is a
diseconomy of scale in computing, i.e., the average cost per computing capacity (MIPS, million instruc-
tions per second) for a less powerful processor is lower (per MIPS) than that for a more powerful proces-
sor, then we can buy more capacity for a distributed (or, parallel) system than a centralized system using
the same budget. Equation (6.1) does not fit in this situation since the aggregate capacities for the central-
ized system and the distributed system may well be different. In this case, a natural question arises which
is w find the optimal capacity (i.e., computing power) of each processor and the optimal number of such
processors o be used in a sysiem given the cost-capacity function such that the mean response time is
minimized. In this chapter, we distinguish between distributed computing systems and parallel precessing
systems by the following. Let us assume there are P processors in the sysiem, For a distributed system,
there are £ queues in the system, one for each processor. When a job comes 10 the system, it can join any

of the queues with equal probability % Therefore, a job can have only one processor to process its work,

For a parallel processing system, there is only one queue for the system and every job that comes to the
system will have to join this queue. However, when a Job is admiued into service, it will occupy all P pro-
Cessors to process its work concurrendy. By this definition, it is clear that the service time (not the mean
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response time) of the parallel processing system will be smaller than the distributed system but the waiting
time of the parallel processing system may be greater than the distributed system.

For a distributed system, by using more processors with less capacity per processor, we decrease
the queucing time of a job by suffering an increased service time, On the contrary, by using fewer proces-
sors with higher capacity per processor, we decrease Lhe service time by suffering a longer queueing tme.
Given the cost-capacity function, we would like to find the optimal capacity of a processor and the optimal
number of processors to use such that the mean response time is minimized. We also study the impact of
the distribution of the service time on this issue.

For a parallel processing system, aithough a job can use all the processors, it is not guaranteed that
the service time of the job will be £ (P is the number of processors in the sysiem) times smaller than the
service time when the job uses only one processor. This can be achieved only when the speedup of the job
in this system is exactly P, which is usually not the case. Therefore, if we assume a diseconomy of scale in
computing and we do not take the speedup effect into caonsideration, we would like 10 use as many smail
processors as possible since by doing so we can get the most capacity for the system and hence the smallest
service time. However, if the speedup of the system is considered, choosing many small processors may
hurt the performance if the speedup is not linear. Hence, by considering both the cost-capacity effect and
the speedup effect, we are able 10 find the optimal capacity of a processor and the optimal number of pro-
Cessors 10 use in order o minimize the mean response time.

6.1 Previous Work

In [KLEI84] a case is considered by adding more processors to the system, but in a fashion which
maintains a constant total system capacity. The particular structure considered is the regular series-parallel
structure as shown in Figure 6.1 where a total processing capacity of C MIPS are divided equally into mn

processors, each behaving as an M/M/1 queue, and each of }% MIPS. On entering the system, a job

selects (equally likely) any one of the m series branches down which it will travel. It will receive _}T of its

total processing needs at each of the n series-connected processors.

The key result obtained in [KLEI84] for this system is that the mean response time for a job in this
series-parallel pipeline system is mna times as large as it would have been had the jobs been processed by a
single processor of C MIPS! This result Clearly suggests that mulliprocessing processing of this kind is ter-
rible. Then, the question is why multiprocessing systems auract so much attention and interest In
[KLEI84), it was pointed out that the answer may be that a large number of small processors (e.g.,
microprocessors) with an aggregate capacity of C MIPS is less expensive than a large uniprocessor of the
same total capacity. [EIND8S] studies this issue by actually looking at existing systems to draw the con-
clusion that there is a diseconomy of scale in computing over all systems (from micro to super computers).
Figure 6.2 shows the result of his study. Figure 6.2 says that within each family of computers (e.g.. micro
computers Or minicomputers, eic.), there is an economy of scale. However, comparing all the computers
over all families, there is a diseconomy of scale in computing.
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6.2 Distributed Systems

In this section we first examine the effect of the cost-capacity function on the mean response time
in the distributed system. Then, assuming there is diseconomy of scale in computing, we revisit the
definition of power as ysed in the previous chapters. Two new definitions of power will be given and by
using these new definitions, we find the optimal values of some design parameters such that power is max-
imized. These parameters are the optimal budget to spend, the optimal job arrival rate, the optimal capacity
of a processor, and the optimal number of processors (o use in the system. We also study the effect of the
variance of the service ume on this issue.

6.2.1 The Effect of Cost-Capacity Function

We assume the cost of a processor is a monotonically increasing convex function of the capacity
of the processor (i.c., the average cost per CPU power in MIPS is monotonically increasing). Given a fixed
budget to build a distributed system, inwitively we would choose to buy as many smail processors as we
can since we can get the most capacity out of it. With higher capacity, we can accept heavier traffic inw
the system without running into saturation. However, the disadvantage of using a smaller processor (with
less capacity) is that it incurs a longer service time. Therefore, even if we have many small processors
such that the aggregate capacity is so high that there is almost no queueing time, the longer service time
will still result in & larger mean response time, Also, the utilization of the overall capacity would be lower
since the arrival rate is fixed while the total capacity grows.

We define the following notation:

W A the average work load for each job

C & the capacity for each processor

d & the cost (in dollars) for each processor

f(C) 2 the cost for one processor with capacity C (d = £(C))
n £ the number of processors used

D £ the budget to build the system

X 2 the average service time for jobs

T(C) A the mean response lime given each processor has a capacity C
X 2 the Poisson arrival rate

p £ the utilization of the system

N 4 the average number of jobs per processor

We assume the arrival rate (A) and the average workload for the jobs are given, Also given is the towal
budget and the cost-capacity function. The goal in this section is to find the optimal capacity of a processor
and the optimal number of processors (n") o use in a system under the given conditions in order 1o minim-
ize the mean response time. [n summary, the objective of this section is:

Given: A and £ (C) and assuming all processors have the same capacity

Find: 2" and C* 10 minimize T
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Constraint: Fixed budget D < 3 d(C,) = n-d

i=]

We assume the cost function £ (C) of a precessor with a capacity Cis a monotonically increasing convex

function.
d=f(C)
From (6.2) we have
n=l_ D
d fio)
4
T c
L (5]
P2 =D ¢
Hence,
1= . k‘l:'
C-SF(O)
or
W
T(n)=
AW
f-l(g_) - —
n n
Minimizing T(C) with respect to C, we have
d . D
Z‘Ef (€)= W

(6.2)

6.3)

(6.4)

(6.5)

(6.6)

6.7

Equation (6.7) is the equation that C* must satisfy in order to minimize the mean response time.
Moreover, notice that for a given budget D, the most capacity we can get for a single processor is £~ (D),
which can easily be derived from (6.2). Therefore, if the C* derived from (6.7) is higher than f~! (D), then

C” should be equal 10 £~ (D).

Also notice that since £ (C) is an increasing convex function, then ch-:'f (C) is a monotonically

increasing function. Therefore, if there exists any solution for (6.7), the solution must be unique. If there
is no solution for (6.7), then the optimal C* must be st the boundary, i.e., the optimal C* would be either

(D) or as small as possible.

By finding C*, we find n* by first finding d°,
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d =f(C"

Hence,
. D D
n = —_= p
4  fiC)
Notice that if £ (C) is a linear function, Eq. (6.7) docs not apply: in that case we have from (6.6) that
W
T(C)= (6.8)
ca - ki;w )

where 1 (C) = kC. From Eq. (6.8) we observe that in order 10 minimize T, we would like to choose C o be
as high as possible, i.e., we would spend all the budget to buy one big processor. This is equivalent to say-
ing that the centralized system performs better than the distributed System, which is the same resuit as
described in (6.1).

6.2.1.1 Polynomial Cost Function

In this section we assume the cost function 1o be 3 polynomial function of the form C*: (6.9)
d=_" where a > 1

Substituting (6.9} into (6.7) we have

1
C. = min [(E?W):l-‘ D [MJ

n° = max

(Aatv)o=1 |

b

AW
P =min ;.-F
Let us define L 8 AW, we have

. rD 1
C'zmjn e I'a
.(41-) © j

O
n" =max [MJ =y

Total capacity =n"C” = al, if n">1

Figure 6.3 shows the time versus n curve for an example with W =10, A =2,D =40, and a = 1 4.
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6.2.1.2 Exponential Cost Function

In this section we assume the cost function to be an exponcatial function, 6.10)

d=f(C)=e*
Substituting (6.10) into (6.7) we have

= min [iln(g-). lln D
a a

D 1
alW)' a[nD

C* =min {l!n(
a al

n" = max [akw, 1] = max [aL. l]
Figure 6.4 shows the time versus n curve for an example with W = 10, A= 1, D = 10,000, and a = 1.

6.22 When to Use Distributed Systems?

In this section we discuss the conditions when a distributed System performs better than a central-
ized system. We will be cornpanng a centralized sysiem with one big processor, with a distributed system,

with m processors cach wnh 1 of the capacity of the big processor, as shown in Figure 6.5. We wish 10

find out how many small proccssors (i.e., the value of m) we need 10 achieve the same mean response time,
We assume the workload for each job is an cxponentially distributed random variable W with mean W. We
define the following notation:

W 2 the average work load for each job
4 total number of small processors in the distributed sysiem
C‘ the capacity for that BIG processor in the centrulized system
C.. A the capacity for each of the small processors in the distributed system
n ;.3 the ratio between C and C,,

X1 & the mean service time for the centralized system
%, £ the mean service time for the distributed system
o £ the utilization of the centralized system

Pm £ the utilization of the distributed system
T, & the mean response time for the centralized system
T.. 2 the mean response time for the distributed syslem

From the definitions, we have

c.- €
n
and
=
s
and
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Figure 6.3
A Distributed System
PL=Ax) = l_é%'/_
Using results from M/M/1 [KLEI75] we have
z
Ti=q --lg:)l c -‘-vl.w
For system two, we have
y ELAY. 14
" Can C
and
Ma  AniW

Using results from M/M/1 [KLE[75] we have

L Em AW
T 1-pa  mC-AnW

Ta

Seting T, = T,, we have

ms= _...12'_ (6'11)
npl + i -n
The condition for m 1o exist is
I>p > n-l (6.12)
n
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n-1

Notice that when p, < » the centralized system will always outperform the distributed sys-

tem, Therefore, load is an imporant factor in deciding whether to use a distributed system or not. Figure
6.6 shows m versus p, with n = §.

Corollary 6.1: m > nif (6,12} is met.

(Proof]
From (6.11) we have
Py
m=n:
n +il=-n
All we have to do is to prove
(] 51
ﬂpl + l -n
or,
pr=-npr—-l+n>0
the left hand side equals (n - 1)(1 - p,). which is always positive since 1 > 1. It is thus
proved,
Q.E.D.

If W has a general distribution with coceflicicnt of variation ¢, we have the following theorem.

THEOREM 6.1:
For an M/G/1 system,

e (Z-n+np =p)+(n-npy +p1)c2_

= 6.13
(R-n+np; -p)=n{l~p,)+pct " ©13)

and the condition for m to exist is
1>p, > —2A=D_ (6.14)

n-1+¢2

From equation (6.14) we conclude that if the service time distribution has a higher variance, then the distri-
buted system will become atgactive at a lower load.

Corollary 6.2: If a job has a higher variance for its scevice time disuribution, m (as calculated in equation
(6.13)) will be lower,

Proof:
From equation (6.13) we have
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2=n+np; -p
————————

o2
o e_n-npitp ”nm o+
2-2n+21p -p, " Pr+ Py
+c
|

We can prove this iemma by proving
2"2H+2ﬂp1"pl 2—ﬂ+ﬂp|-p|
<
Pt fA=np+py

or
2-n+np, -p 2-2n+2np, -p,
n=npiep P >
The left hand side of equation (6.15) equals

(n =11 -p,)?
pi{r—np +p))

0 (6.15)

which is always positive, i.e., equation (6.15) is always true.

QE.D.
Figure 6.7 shows m versus c2 for p; =0.9.

Let us explain the physical intuition of Corollary 6.2. With a higher variance of service time, the
probability of having a job which requires a relatively long service time in the sysiem is higher, For a cen-
ralized system, whenever there is a big job in service, it blocks jobs which come after it from service,
Hence these jobs incur a long queucing time even if they are very small. Therefore, for simations like this,
a distributed system wiil become more auractive since the long jobs will not block the entire system. This
lemma says that for jobs with higher variance in service time distribution, the number of processors
required for the distributed system to have the same mean response time of the centralized system is
smaller. This implies that for a service time with higher variance, the cost required to set up the distributed
system will be lower: hence, a higher the motivation for using distributed systems,

With the value of m found from THEOREM 6.1, we can calculats the overall cost for the distri-
buted system as long as we have the cost of the processors. If the total cost for the disuributed system is
lower than the cost for the centralized system, then we should choose to use the distributed system. Other-
wise, the centralized system prevails.

6.23 Optimization Issues Using Power

In section 6.2.1 we found a° in order 1o minimize the mean response time given the values of all
other parameters. In this section, we leave one more parameter open to be decided in order 10 optimize the
performance measure we choose to use. Two cases will be discussed in this section. In case one, we have
to decide the optimal budget (D) to spend. the optimal capacity (C") of each processor, and the optimal
number of processors o be used (1) in the system. In case two, we have to decide the optimal operating
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point (A"), the optimal capacity (C ") of each processor. and the optimal number of processors 1 be used
(n") in the system. For both cases, it would be meaningless to choose the objective function 1 be minimiz-
ing the mean response lime. Since for case one, we can always spend more money to get lower mean
response ume. Similarly, for case 1wo we can always lower the arrival rate to lower the mean response
ume. Clearly, these solutions are not very useful. In this section, we introduce the definition of power
again and by maximizing power for both cases, we derive the optimal values we need. We assume the dis-
tribution of the service requirement 1o be exponential,

6.23.1 Optimize the Budget and the Capacity with a Given Arrival Rate

In this section, we first use power as previously defined. However, the results derived from this
definition of power do not seem reasonably intuitively; hence, we give another definition of power and use
that to derive the results required to maximize power. Let us first use power as previously defined:

R=-;f:=% (6.16)

From (5.5) and (6.6) we have

& = MOHUCD - AWf ()]
cD?

(6.17)

Setting aa—g ={) we have

D'=M££l (6.18)

Substituting (6.18) into (6.17) we have
C
Ry = W (6.19)

From (6.19) we know in order to maximize Rp- we would like to choose C o be as large as possible, That
means:

n =1
hence,
= 0% (6.20)
Substituting (6.20) into (6.18) we have
o« 2BWD"
D=
C
which leads o
C" =2\wW
Hence,
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D" =f(20W)
Froma =1and C* we have

1
p = 3 (6.21)

and

N =1

This result tells us that no maiter what the cost-capacity function is, the maximum power can be
achieved by spending all the budget 1o 8¢t one big processor, An intuitive explanation follows. Instead of
using one processor, we choose to use n processors (each one is less powerful than the centralized proces-
sor) with the total capacity of all these n processors to be m times of the centralized (big) processor
(n > m). Since the workload for both system are the same and the capacity is m times more for the distri-

buted system, the utilization of the system should become —:T of the original utilization. Now the question
is whether the mean response time of the distributed sysiem operating at a point where power is maximized
can be less than -”l: of the mean response time of the centralized system operating at the point where power

is maximized. For the system with only one processor, power is maximized when T = 23 which can be
casily derived from (6.21). Hence, if m > 2, then the mean response time of the R-processor system will

never be lower than % because the mean response time of the n-processor system will never be smaller

than X; therefore, power of the A-processor system will be always smaller than the one-processor system. If
m < 2, the same result can be proved mathematically, but not intuitively,

Intuinvely, if the cost per MIPS rises significandy with respect to C, it is natural ©0 buy more
smaller processors to get a much higher towal capacity than buying only one bigger processor under the
same budget. However, the result of n" = | is contrary 10 this intuition. This contradiction suggests that

defining power as % may not be practically meaningfu! because p may not be of interest since more total

capacity can be bought using the same budget. Therefore, we would like to change the definition of power.
In designing a system, it is natural o ask for lower budget and lower mean response time; hence, we define
power to be

Hence we have

R =D2C-AMWF(O) (6.23)

Dw

Setting % =0 we have

D' = Z_M*:CQQ (6.24)

Substituting (6.24) into (6.5) we have



- —l-
P =3
Therefore, the mean number of jobs in each queue is
N =1 (6.25)

Equaton (6.25) shows a very interesting result. It says that no matter how much capacity we
assign 1o each processor, the Optimal budget to maximize power as defined in (6.22) is such that the mean
number of jobs per processor in the system is one. This is the same result as obtained in {(KLEI79] which
bears the inwition that the proper operating point for the system is exactly when there is only ane job being
served by each processor and no others are waiting for sezvice at the same time for every queue.

Substituting (6.24) into (6.23) we have

c?
Rp+ = VT ) (6.26)

Optimizing Ry~ with respect to C, we have
¥(CH=CFCh 627

This is the condition that C* has to meet. This can be solved either' mathematically or numerically once
F(C)isgiven. From Eq. (6.27) and (6.24) we have

D® =AWf(C*)
If we define power as
1
RA—_ 6.2
= DT 628)

then

R DC- MWF(C)

Drw

Setting g—g =0 we have

D' = {r= DAWF(C) (6.29)

C

Substituting D° from (6.29) into (6.5) we have

Hence

=

=r

Again, this result is the same as found in [KLEI79]. From (6.29) we have
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R rr C”l
o' = .
(r+ DWW R0

(6.30)

aRpe
Setting —a—g,— =0 we have

f(CY= SLPCL(C_l (6.31)

From Eq. (6.31) and (6.29) we have
D . = le(C')

Notice that D“ does not change with », From these results, we have the following theorem.

THEOREM 6.2;

For a distributed system, if power is defined as R = #. power is maximized when C° meets the

following conditon:
YCH=CFCH
and the optimal budget is
D’ =AWf(CY
Fl.}{-memom

N =1

If power is defined as R = BI’—T it is maximized when

"= (r+ l)t (C'!
F (o' e

and the optimal budget is
D* = WF(C)
Furthermore
N =p
Example 6.1:
In this example we assume the cost-capacity function to be a power function. That is,
fCYy=C2 a>l
We define power as defined in (6.22). From (6.26) we have
CZ
Rpe =
P awics

Therefore, we have the following conclusion:
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* If a <2, we shouid choose only one big processor. Hence C” = 2AW.
* If a> 2, we should choose as many small processors as possible,

If we define power as in (6.28), from (6.30) we have

rl’

= (r + l)r*llrwﬁ-l

Therefore, the conclusion for this definition of power is:

,CH-l-ur

RD'

* Ifa<IZ 1 » we should choose only one big processor. Hence C* = 2AW.
* Ifa>I% 1 » we shouyld choose as many small processors as possible,
Example 6.2:
In this example we assume the cost-capacity function to be expanential. Therefore,
f(C)=eC
From (6.27) we have
C'=2
and
D" =AWe?
Therefore
. D AWel
NSz AW =L
£ e?

Figure 6.8 shows the power versus n curve for three different values of D,

6.2.3.2 Optimize the Arrival Rate and the Capacity with a Given Budget

In this section, we are given the budget and we would like 1o find the optimal arrival rate and the
opdmal capacity for each processor such that power is maximized. Since the budget is fixed, we can no

longer use the same definidon of power as in the previous section (R = 311:): therefore we have 10 give

another definition of power,

For a queueing system which does not saturate, the throughput of the system equals the arrival rate
into the system. For a system with fixed budget, it is reasonable to ask for higher throughput and lower

mean response time. Hence, we define power to be:

128



160

140

120 5

100 -

Power 80 —

60 -

40 —

20 4

Figure 6.8
Power versus n for Three Different D (A = 1, W=10)

129

30



- %2

Setting g—f_ =0 we have

A= zung) 633)
From (6.33) and (6.5) we have
0=
2
and
N =

Again, this is the result with the same intuitive explanation as described before. Substituting (6.33) into
(6.32) we have
o _c?
Ryt = ———— e
YT awt 7O

C dRae )
Setting Tg- =0 we have the following condition to meet for C

A(C)=C"f(C (6.34)

[nierestingly, this is the same condition as given in (6.27) for C* to meet. Hence, by defining power as we
did, the problem in this section is a dual problem to the one described in section 6.2.3.1. From Eq. (6.34)
and (6.33) we have

. D
A ———
WF(C")
If we define power to be
e
R=
then
N WDC - NVHUWF(C)
= - 6.35
R T bw (835)
Optimizing R with respect to A, we have
. r DC
. 6.36
r+1 WF(C) (6.36)
From (6.36) and (6.5) we have
L 4
p = r+1
and
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Substituting (6.36) into (6.35) we have

Ry = 1 | ¢
(r+ LW | (r+ HW Fid ()
. dRy- . o .
Setting < = 0 we have the following condition to meet for C
fi€cN= Mr();ﬁC_l 6.37)

From Eq. (6.37) and (6.36) we have

s—D __
wF(C")

Notice that A" is not affected by r. From these results, we have the following theorem.,

THEOREM 6.3:
For a distributed system, if power is defined as R = % power is maximized when C* meets the
following condition: .
¥(CH=Cf(CY
and the optimal arrival rate is
R
Wf(C)

Furthermore

N =1
If power is defined as R = l?. it is maximized when
o L+ DFECT)
(o' e

and the optimal arrival rate is
p—
Wr(C)

Furthermore
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6.2.4 The Generally Distributed Service Time

In the previous section, we assumed the distribution of the service requirement to be exponental.
In this section, we relax this assumption and assume a general distnbution for the service time. By this
assumption, we study the impact of the distribution on the issues we discussed in the previous sections in
order t0 maximize power as defined in section 6.2.3.

6.2.4.1 Optimize the Budget and the Capacity with a Given Arrival Rate

In this section, we look at the same issues discussed in section 6.2.3.1 except that we assume the
service time has a general distribution. Using Eq. (6.4), (6.5), and the formula from M/G/1 we have

T=%1 1+ | W 2DC - 2AWf (C) + AW (1 + ¢ 1Y (C)
U -p) c 2DC - 2WF (C)
Define power as in Eq. (6.22) we have

R=-L L. 2DC - Wf (C)
T DT~ W 2DIC - 2AWF (C)D +AW (1 +cdf (W

(6.38)

Sening % = we have

2+V2+ 27

b= 2C

AWF (O) (6.39)

From Eq. (6.39) and (6.5) we have
. 2

I e ——

2+V2+ 28

Using Little’s result we have
= 1+¢?
N=AT=p|l +p—5
p[ p.2(l-—p)]
Hence

N =aT=1

Again, we arrive at the same result here. From Eq. (6.3) we also have
_2+v2 427
B 2]C

Note that if the service time is exponentially distributed, that is ¢ 2 = 1, then we have the same result as
before. Substituting D° from Eq. (6.39) into Eq. (6.38), we have

2 aC? - \wC?

D= =

aW 2af (C) - 2AWF (C) + AW (1 + ¢ 3)f (C)

AW (6.40)

dR .
Setting j‘%- =0 we have
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Y(CH=CF(CH (641)
From Eq. (6.41) and (6.39) we have

D' = 2+N2+ 2

" AWF(CT) (6.42)

Notice that C* does not change with ¢2, Observing from (6.40), we notice that if the jobs have a
higher ¢2, we should buy more processors compared to jobs with a smaller ¢2, The inwitive explanation is
that with higher ¢2, the probability of having some big jobs would be higher. If the number of processors
is small, all the processors would more likely be occupied by these big jobs such that even a small job will
have to suffer a long queueing time. Hence, the mean response time will get higher and therefore lower the
power. Therefore, from (6.42) we observe that we should have a higher budget for jobs with a larger vari-
ance while maintaining the capacity for each processor invariant to the variance. Figure 6.9 shows the
curve of D* versus c2. If we define power as in Eq. (6.28), then

plel DC = MWf ()

R=2——= =

1
D'T W 2D7*'C - 2AWf (C)D” + AW(1 + c2)f (C)D*

Setting aa—g =0 we have

2 .
D" = (=c2+r +4(::C + D)+ b(r) AWF (C) (6.43)

where

b(ry=v(e® + 2% + ¥+ 2= + 2T+ r+ (cT+ 1)°

From equation (6.43) and (6.5) we have

. 4r
e+ Nr+ e+ D+VET + 25+ Drf +2(cS+ 22+ 3)r + T+ 1)

and

. 2’[(I+c2)r+b(r)+(l+c2)]

N =

-0 +22-cH +cHr+ [(1 ~cr+(l+ c=)]b(r) +(c?+1)?
where
b(r) =N + 2%+ )r* +2(-c* + 2T+ r+ (1 +c 22

Ifr>>1,

« o 4!"

P = (~c2+Dr+(c?+ D+V(c +2c2 + Dri+2(—c +2c+)r+c' —6c2+9
ot
r+1

and
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Nz {xcdr
T2

From equaticn (6.43) we have
- 2{a{r) - AW c
Wa(ry [24 (F) = 2AW + AW(1 + cﬂ e

RD'

where g is defined as

(=c3+3r+(ct+ D)+ b(r) AW

a(r)= 4r

where

b(r)=N(c* + 22X+ DrT ¥ 2~c* + 2+ 37 +{c*+1)?

Setting ;%,-RD- ={ we have

(r+ D (CHY=rC"f(C")

THEOREM 6.4:
If the service time of a job has a general distribution with coefficient of variation ¢ and power is

definedas R = -DI_T power is maximized when C” meets the following condition:

Y(CH=CF(C)

and the optimal budget is
Furthermore
N =1

If power is defined as R = D_l’f it is maximizéd when

(r+ DF(CHY=rCf(CT)

and the optimal budget is
o (=2 +Dr+ P+ D +b(r) AWF(CY
D = .
4r r+1l
Furthermore
. 2r[(1+c2)r+b(r)+(l+cz)]
N =

=02 +2Q~cH(l+cHr+ [(1 —eHr+(l+ cz)Jb(r) +(c?+ 1P

where
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br) =V + 2T+ HrT+ 2" + 27+ Hr+(l+cH)

6.2.4.2 Optimize the Arrival Rate and the Capacity with 2 Given Budget

In this section, we discuss the same issues as in section 6.2.3.2 except that the distribution of the service
time is a general distribution here. Let us define power as

-3
then
- 2
R= % = ZWC 20C - 2143((:231 Tfu(rfl) t B (O 644)
Setting g; =0 we have
M= 2+\(22+_2cT.W?(%) (643

From equation (6.45) and (6.5) we have

B ————

p = 2+V2+ 22

Using Liale's result, we have

Substituting A" into (6.44) we have

.= 2a(-a)0 (P}
> W32-a+ac?) f(C)

where
a= 2
2+V2+2c2
Setting X 2 0 we h
eumg-?- we have
AECH=Cf(CH

Notice that C* is not affected by ¢2 and p° is a decreasing function of c2. Hence, as ¢? increases, the
optimal capacity for each processor remains unchanged; but the optimal system utilization and the optimal
arrival rate would be lower. Figure 6.10 shows the curve of A" versus c2.

If we define power as
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then

R=2E. DOV - wr O
W 2DC - 2WF (C)h + W (1 + ¢ 1Y (O)A
Setting %% =0 we have
A" 4r _DC

T e D es0) WO

where

b(r)=V(c + 2T+ Drf v 2 + 2cF+ 3yr ¢+ 1D¥
Substituting A" into (6.5) we have
y 4r

" (2 +3)r+{ct+ )+ Ve +2cT+ T+ 2(=c® + 2c2 + Vr+cl+ 1

Using Liule's result we are able to derive

a 2r [(1 +c2)r+b(r)+(1+c2)]
N =

- Dri 22 -cH1+cr+ [(1 ~chHre(l+ c’)jb(r) +{c?+ 1)

where
Y=V +2c* + Dr¥+ 2A-c"+ 2T+ r+ U +c I
Ifr>>1,
p' = — S—
2+ + 2+ D+ T+ 2¢2+ Dt A< +2c+r+c'~6c2+9
= r
r+1
and

&a = gl +(.‘2)F

2

Substituting A" into R we have

2 b(n-ar [ arD }’_ cr+t

Ry =% b(r)—dr +4rct |Wo(r) | F(C)

Setting % =0 we have
(r+ DF(CHY=rC F(C)

THEQOREM &.58:
If the service time of a job has a general distribution with coefficient of variation ¢ and power is

definedasR = % power is maximized when C" meets the foilowing condition:
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¥(CH=Cf(C)
and the optimal arrival rate is

A = 2 2D
2+V2+2e2 WF(CH)

Furthermore

N =1

r

[f power is defined as R = l;:- it is maximized when

£(Ch = 1’*—%’1‘:—1

and the optimal arrival rate is

A= 4r .Agl:l- D
(-¢?+ Nr+(ct+ D+b(r) rWF(CH

where
bir)=N(c*+ 2T « 1ré+2(=c*+2c% + r+(ct+ 1)
Furthermore
- [ts et b+ v 3]
(€= 1t +20- B+ e+ [ —cir el by + e+ 1P
where

b =N+ 2T+ rT v 2T+ 3k s Ir + (1 & cfy

6.3 Parallel Systems

In this section, we consider parallel processing systems. We define a parallei processing system w©
be a system which can use all the processors in the system to process a job Jointly. At any instant of time,
there will be at most one job in service with all the processors working on this job concurrently.

The advantage of the parailel processing system over the distributed system, as stated earlier, is
that the service time of a job will be much smaller. Another advantage is that for a parallel processing sys-
tem, all the processors will be working as long as there is one job in the system. The major disadvantage of
the parallel processing system is that although a job is allowed access w ail the processors, the synchroni-
zation restrictions (precedence relationships between tasks) of the Job (algorithm) may interfere with linear
speedup. Minsky [MINS71] conjectured a pessimistic form for the typical speedup, namely;

S=logP
and this kind of performance is not unlikely to be observed. Further evidence was observed in chapter two
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which says that no matter how many processors are available in the system, the maximum speedup of the
System cannot be greater than

|

Spmax =

|:~.

>

1=}

"o

i

given f; and P, for all ¢,

If we believe there is a diseconomy of scale in computing, then the cost effect and the speedup
effect are playing opposite roles. Considering the cost effect, because of the diseconomy of scale, we
would tend 10 buy more processors with smaller capacity under the same budget such that the overall capa-
city is higher. On the other hand, if we cannot get a linear speedup, we would tend 1o use fewer processors,
each with a higher capacity but with a lower overall capacity. Therefore, for a given budget, a given cost
function, and a given speedup function, there is an optimal number of processors o use, each with a capa-
city such that the total budget is fixed. In this section, we assume the cost function to be a convex function
and the speedup function to be a concave function.

For the rest of this section, we consider the cost function to be a polynomial function of the form
x? or an exponential function and we consider the speedup function to be a polynomial function of the
form x“ or a logarithm function. For each combination, we find the optimal number of Processors to use
under a fixed budget.

We will first look at the general stwdy 10 find the optimal number of processors to use in order o
minimize the system time given the cost function and the speedup function. Let us define the following
notaton,

C A the capacity for each processor
5{n) & the speedup of the system given n processors in the system
T D the average service time for each job given n processors in the system

With these definitions, we assume the workload for the jobs is sampled from a random variable W,
which is generally distributed with mean W, We denote the cost-capacity function to be

4=£(C) (6.46)

Define the inverse function of fi{)wobeg()ie.,
g(x)=f1"(x)
Define the speedup function to be (647)
S=fan)

It can be shown that
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W
Z = _C_-__l (6.48)

Sin)
From (6.46) we have
n= —-D—...
HO)
Therefore
=12y,
C=f (n)—g(n) (6.49)
Substituting (6.49) into (6.48) we have
- w
X(n) = = (6.50)

-1, D
ORG->ZIONFICAS

Since this system accepts one job at a lime, it behaves like an M/G/1 queueing sysiem, Hence, in
order to minimize the mean response ume we nced oniy 1o minimize the average service time (since the
coefficient of variation does not change) given in (6.50). Theretore, in order o find the optimal #°, we set

d -
Z;(n)-o
which leads 1o
d .
PG FODES YA (6.51)

(6.51) is the equation that »° would have 1o satisfy in order to minimize the mean response time,

6.3.1 Polynomial Cost Function - Polynomial Speedup Function

In this section we assume the cost function and speedup function are both polynomial functions of
the form x“. Since we assume the cost function w0 be convex and the speedup function to be concave, we
assume

fix)=x a>»l1
filx)=x> . b<l
From (6.50) we have
W W
x(n)= = (6.52)
_[?- La_s lenna(ﬂb-l)
( o )y n

From (6.52), in order to minimize x(n), there are thres cases (0 be considered:
Casel: ab=1.
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From (6.52), we have

Since X(n) is not a function of n, thercfore, the mean response time is indifferent to n.

Case2: ab>1.

For this case, we have

X(ny= BT‘

x(n)= ud

———
leana(nb-l)

Hence, we should choose as many small processors as possible.

Case3: ab<cl.

For this case, we have

;(ﬂ)= Dl‘d

Hence, we should choose only ene BIG processor.

In summary, we have the following rules:

* If @b = 1, the mean response time is indiferent to .

* If ab > 1, we should choose as many small processors as possible.

* If ab < 1, we should choose only one BIG processor

It is important to see the impact of the spcedup function besides the cost function.

6.3.2 Polynomial Cost Function - Logarithm Speedup

In this section, we assume the cost-
and the speedup function to be a logarithm [

d=f(C)=C*

S=fi(n)=1+logn

Substituting (6.53) and (6.54) into (6.50) we have

Serting -‘i—.?(n) =0 we have
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Wna(ab-i)

a»l1

capacity funcuion o be a polynomial function of the form ce
uncuon. Lot us assume

(6.53)

(6.54)



n =gt
Hence,

= (e

Notice that n” is not a function of D in this case. Hence, as the budget gets higher.'only C" will become
larger and n” will not be affected. Figure 6.11 shows the curve of X{n) versus n.

63.3 Exponential Cost Function - Polynomial Speedup Function

In this section, we assume the cost-capacily (unction to be an exponential function and the
speedup function to be a polynomial function of the form x2.

Let us define
d=fi(C)=e< a>»0

S=filn)y=n* b<l
It can be verified that

200 = £ (1) = ;l-lnx

Therefore
x(n)= WITJQDW—_WJ
Seming %E(n) =0, we have
"= (ei)%o (6.55)

Hence

Notice that in this case, C" is not affected by the budyct. Hencc, as the budget gets higher, a°* will gets
higher while C* remains unchanged.

As shown in (6.55), n° is lincarly proportional 10 D. Figure 6.12 shows the curve of X(n) versus
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Figure 6.11
X(n) versus n (W=100, a=3, D=10000)
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X{n)}
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Figure 6.12
X(n) versus n
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63.4 Exponential Cost Function - Logarithm Speedup Function

In this section, we assume the cost-capacily function to be exponential and the speedup function to
be logarithmic, Let us assume

d=fi({C)=e*X a>0

S=fn=1+Inn

Therefore

Tn) = aW

In(=}1+inn)
n
Setting -L-%(n) = 0, we have
g dn '
nt =2y
e
Hence,
C*= %(1 +in D)

In this case, as the budget gets higher, both C* and n* will both get larger. Figure 6.13 shows the curve of
x(n) versus n.

6.4 Conclusions

It is interesting to observe that how the cost-capacity function, the speedup function, the load of
the system, and the variance of the Job's service time atlect the performance of a multiprocessing system.
Our conclusion tells that neither the centralized sysiem nor the.distributed/parallel system prevails under all
conditions. However, we do arrive at the conclusion that a distributed system would become more attrac-
tuve as the load of the sysiem or the variance of the job’'s scrvice ume distribution increases.
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CHAPTER 7
CONCLUSION AND SUGGESTIONS FOR FUTURE STUDY

In this dissertation, we analyzed various performance issues of distributed and parallel processing
systems. In chapter 2, for the parallel processing systems which admit only one job into service at a time,
we were able to find the optimal operating point (A*) and the optimal number of processors to be used in
the system by the use of the definition of powcr. We also gave an expression for the processing time
speedup or the response Lime speedup, depending on the sityation. In chapter 3, for parailel processing sys-
tems which admit more than one job into service at a time. it is a very difficult mathematical problem just
o find the mean response time for the gencral case. Hence, we provided the exact analysis for some spe-
cial cases and the scale-up rule as a ol to be used as an approximation. [n chapters 4 and 5, we presented
two sorting algorithms as an application for distributed and parallel processing systems. Lasy, in chapter
6, we studied the effect of diseconomy of scale in computing and the effect of speedup. We also studied
the effect of the variance of service time in such systems,

What remains for further study can be classified inwo three areas:

Area |: Although we have presented three models [or representing an algorithm executed in the parallel
processing system, there are stili ¢xampies which our models do not fit perfecy, For example, an algo-
rithm may have a conditional branch such that it can either use P, processors for time T, with a probability
Py, oritcan use P, processors for time Ty with a probability p,, wreey OF, 1L CAN use P, processors for time
T, with probability p, under the constraint that 3" p, = 1. In our models, we do not have this flexibility.

1=

Area 2: Under the envionment discussed in chapter three, we have only a two stage approximation for the
general case. A minor ambition is 1o approx:matc Lhe general cases with a three stage model. A major
ambition is to get the exact solution for the gencral casc, or the more general special cases. To achieve a
better approximation than we have will also be a great contribution. Of course, in order o achieve these, a
wially different analysis tool may be used. Tighicr bounds, upper and lower, are aiso desired 10 understand
the behavior of the system better.

Area 3: Although we assume there is a discconomy of scale in computing, there is also an article
(MENDB87] which says that there is no economy or discconomy of scale in cemputing. The economy of
scale in computing is an interesting issue which we belicve should deserve more attention because it may
help us in designing a cost efficient multiprocessing sysicm. Speedup, the counter pant of the cost issue, is
another interesting issue to be studied more caref, ully. Some experiments may be needed in order to geta
general picture about speedup for practical applications.
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