Computer Science Department Technical Report
University of California
Los Angeles, CA 90024-1596

XWIP REFERENCE MANUAL
VERSION 0.4, THE OGIVE EDITION

Ted Kim October 1988
CSD-880079
(Rev. 4/89)






XWIP
Reference Manual
Version 0.4
The Ogive Edition

Ted Kim

April 1, 1989



Copyright ©1989 by The Regents of the University of California.
This software work was developed at UCLA with support in part from
DARPA Contract F29601-87-C-0072.



Abstract

This manual describes an interface to the X Window System ! for Prolog.
The X Window System is a network-based window system providing a desktop
style of user interface and graphics. XWIP provides a low level interface to X for
Prolog similar to that provided by “Xlib” for the C language. XWIP is designed
for use with version 11 of the X Window System. Higher level interfaces (such as
toolkits) are built on top of this one and are outside the scope of this document.

XWIP is implemented in the C language using the C language foreign func-
tion interface from Quintus Prolog.? Almost any Prolog which supports the
Quintus style interface can use this package with few restrictions. In particular,
SICStus Prolog was used in the development of this system.® This document is
a reference manual. As such, it is not a tutorial or user’s guide to X or Prolog.

!Scheifler, R.W. and Gettys, J., “The X Window System”, A CM Transactions on Graphics,
vol. 5, no. 2, pp. 79-109, April 1986,

X Window System is a trademark of the Massachusetts Institute of Technology.

2 Quintus and Quintus Prolog are trademarks of Quintus Computer Systems, Inc.

3Carlsson, M. and Widen, J., “SICStus Prolog User’s Manual”, Swedish Institute of Com-
puter Science, Research Report SICS R88007.






Contents

1 Introduction

2 Using XWIP

3 Implementation

4 Conventions

5 Data Types

6 Connections

7 Windows

8 Atoms and Properties
9 Pixmaps

10 Color

11 Graphics Contexts
12 Graphics

13 Images

14 Text

15 Cursors

16 The Pointer

17 The Keyboard

18 Window Manager Support
19 Events

20 Miscellaneous

A Xlib Equivalents

B X Font Cursors

11
14
16
17
19
21
23
24
27
28
29
31
34
40
44

46






1 Introduction

This manual describes the “X Window Interface for Prolog” system, hereafter
referred to by its acronym, “XWIP” (pronounced “X-whip”). XWIP was for-
merly called PX. The name was changed, when it was found that another system
also used that name.

The system provides an interface to the X Window System for Prolog.* The
X Window System is a network-based window system providing a desktop style
of user interface and graphics. XWIP provides a low level interface to X for
Prolog similar to that provided by “Xlib” for the C language. XWIP is designed
for use with version 11 of the X Window System. Higher level interfaces (such as
toolkits) are built on top of this one and are outside the scope of this document.

XWIP is implemented in the C language using the C language foreign func-
tion interface from Quintus Prolog. Almost any Prolog which supports the
Quintus style interface can use this package with few restrictions. In particular,
SICStus Prolog was used in the development of this system.

This document is a reference manual. XWIP descriptions in this manual
assume the user is familiar with X and programming with X in the C language
and some variety of Prolog. This manual is not a tutorial or user’s guide to X
or Prolog. The XWIP programmer should have access to to X documentation,
especially the Xlib manual.®

2 Using XWIP

Generally, XWIP is preloaded into Prolog. The preloaded SICStus version is
called “spx” and the Quintus version is called “qpx”. These preloaded versions
are found in the same access path used for X binaries. On UNIX® systems, the
default location for X binaries is the directory */usr/bin/X11”. An alternate
method is to consult the “spx” or “qpx” Prolog files from the XWIP source direc-
tory. Before actually starting XWIP, UNIX users may want to specify a default
connection name by setting their DISPLAY environment variable. Similarly,
users may want to specify a resource database by setting their XENVIRON-
MENT environment variable.

XWIP does not implement the “convenience” functions of Xlib, which are just
wrappers around the general protocol functions. For instance, the Xlib function
XSetWindowBackground is just a particular request of the XChangeWindowAt-
tributes. Similarly, a XWIP user should use xSetWindow to set the window back-
ground, The problem with convenience functions is that programmers tend to

4This work was supported by the TANGRAM project, DARPA Contract F29601-87-C-
0072,

83Gettys, J., Newman, R. and Scheifler, R.W., “Xlib — C Language X Interface, X Version
11, Release 3", MIT.

8Unix is a trademark of AT&T.



use them when its not appropriate. Where a general function can batch several
requests into one protocol request, convenience functions cannot.

XWIP detects whatever errors it can before making a request to the server.
Such errors will cause XWIP predicates to fail. Other errors can be detected only
by the server. These errors occur asynchronously and do not cause predicate
failures (except zOk, whose sole purpose is to detect such errors). Both types
cause diagnostic messages which are printed to the Prolog standard error output.
Example error messages are given below.

[ERROR xSetWindow/3: no such connection]
This is an example of a XWIP detected error. zSetWindow/3 is the name
and arity of the predicate. The rest of the message is an explanation of
the error.

[ERROR detected by X Server: not a valid window ID]

[ERROR generated by ChangeWindowAttributes request with serial 5)
This is an example of a server-detected error. The first line gives an

explanation of the error. The second line gives an indication of what
caused the error in terms of the actual protocol request and its serial
number. Predicates do not necessarily map one to one with protocol
requests. The current request serial number can be determined by using
the zQueryConnection predicate.

3 Implementation

The foreign function interface was used in preference to direct modification of the
Prolog interpreter for three reasons. First, it was much simpler to write. Second,
it is relatively stable compared to the internal structure of Prolog interpreters,
which seem to undergo major changes with each new release. Finally, it enhances
portability between versions of Prolog.

On the negative side, this approach is a bit less efficient. Also, the foreign
function interface is somewhat deficient in some areas. These deficiencies lead
to an imperfect match with some requirements of X.

Since communication in X between the client and server take place through
network services, the delay for any particular request may be large. In order to
maintain good throughput, many X requests are asynchronous. Errors detected
by the server are flagged by XWIP when the error events are received, which
may be long after the original request was made. As a result, XWIP predicates
may succeed, but not actually perform as requested. Thus, success of XWIP
predicates should be taken to mean that the form of a request was proper, but
not necessarily its content. XWIP provides facilities to allow the synchronization

of requests and the testing of the server error state.
XWIP uses X identifiers (XIDs) as defined in the X Protocol Document.”

TScheifler, R.W., “X Window System Protocol — X Version 11, Release 37, MIT.



These identifiers are used by the client to reference server maintained objects.
XWIP uses Prolog integers to represent these identifiers. However, because
of the limited precision of integers in many Prologs, there exists a potential
problem with misrepresentation of identifiers. The protocol defines X identifiers
as unsigned 32 bit integers with the top 3 bits set to zero. X identifiers are
generally not checked for validity by XWIP for efficiency reasons. Therefore,
if a Prolog system has significantly less than 29 bits of precision, then it is
unsuitable for use with the current implementation of XWIP.2

Some other X values are represented by 32 bit unsigned integers. Prolog sys-
tems generally provide only signed integers. Using signed integers to represent
unsigned values can result in trouble, especially if sign extension occurs. In gen-
eral, there is no problem as long as very large values are not used. For example,
a client would have to use millions of X atoms before precision became an issue.
In those few cases, where large values are commonly used, a special method of
representation, called a split structure is provided below. As a practical matter,
XWIP may give incorrect results if the actual precision of Prolog integers is less
than 25 bits including sign.

XWIP makes use of a number of client maintained data structures provided
by Xlib. In C, these structures would be referred to by pointers. Aside from
possible precision problems, pointer values could also be represented as integers.
However, since there is no guarantee that valid pointers would be passed to the
XWIP routines, this method is dangerous. Instead, integer keys similar to UNIX
file descriptors are used to represent these Xlib structures. The validity of such
descriptors is checked by XWIP.

4 Conventions

XWIP makes use of some internal predicates, all of which are prefixed by “px”.
In some versions, no user visible internal predicates exist. However, to be on the
safe side, the user should avoid use of predicates with such names. All external
predicates and data structures are prefixed with “x”.

XWIP was meant to provide an Xlib style interface. Thus, unless otherwise
stated, XWIP routines use the exact same arguments as their Xlib counterparts,
with some simple translations to the Prolog world. Generally, descriptions of
XWIP predicates only describe differences and clarifications from the equivalent
Xlib function description. In some cases, the XWIP predicate is named differ-
ently from its Xlib counterpart. These cases are listed in Appendix A. Names
were changed to make them more consistent or, in a few cases, shorter.

This manual uses the following format for its descriptions:

xDataStructure(Argl, Arg2)

831CStus Prolog supports 32 bit integers, and Quintus supports 29-bit integers. Thus,
both are sufficient in this regard.



This is a data structure description. Argument names, such as Arg! and
Arg2, which are referenced in the description are set in italics. By con-
vention, arguments generally follow the order used by the corresponding
Xlib structure. References to other data structures or predicates are set in
italics. Any extended discussion of an argument merits its own paragraph.

xPredicate(+InputArg, 7EitherArg, -OutputArg, -NextArg)

This is a predicate description, The format is the same used with data
structures with the following additions. Arguments prefixed with a plus
should be instantiated when calling the predicate. Those prefixed with a
minus should not be instantiated. A question mark prefix indicates that
the argument may be instantiated. Violating the indicated argument mode
usually just causes predicate failure. Users should note that arguments
prefixed with a minus will often return information which cannot otherwise
be recreated.

Also, input arguments usually come before output ones. New input argu-
ments are added after the X defined input arguments. Argument descrip-
tions may provide information about what values are allowed. The major
styles are described below.

InputArg: This argument uses an established data type. (boolean)

EitherArg: This argument lists all of the allowed values. (xValuel,
xValue2, xValue3)

OutputArg: This argument uses a data type described in the text, but
also may take on some special value. (xRed for the color red)

NextArg: This argument uses a data type described in the text, but also
may take on some special value. This special value is usually an X
constant. (xCopyFromParent allowed)

5 Data Types

In XWIP, Prolog integers are used to represent XIDs, descriptors, atoms and
boolean values. All of these are either zero or positive. XIDs represent a wide
range of objects including windows, pixmaps, colormaps, cursors and fonts.
For booleans, the value “true” is represented by the atom zTrue and “false”
by zFalse. X time values may commonly assume values that exceed Prolog
integer precision. Therefore, X time values may always be represented as a split
structure (see below).

The generic “mask” type is represented by a list of constants (atoms). Event
mask components (called “event sets”) are described in the Events section.
Others are described as they are introduced. Unfortunately, there are other
uses of the term “mask”. One use names a bit mask of some sort. In XWIP, the



type of such an object is an integer. Another use describes a graphics filtering
operation. Users should carefully note the context in which the term is used.

Some special data structures are used by XWIP. These are detailed below.
Such objects are represented in Prolog as structures. The functor of such a
structure may be thought of as the data type of the object. Predicate descrip-
tions describe where these special types may be used.

xAre(X, Y, Width, Height, StartAngle, ArcAngle)

The arc structure describes an arc in terms of a bounding box and angles.
The first four elements of this structure define the bounding box of the
arc in the same format used for the rectangle structure. StartAngle and
ArcAngle are given in terms of gz th of a degree. The angles are measured
according to mathematical rather than geographic conventions. A zero
StartAngle ray is horizontal, originating from the center of the bounding
box leading outward toward the right. Larger starting angles are measured
counterclockwise from the zero angle. The arc, itself, sweeps through the
AreAngle in a counterclockwise direction.

xCell(Pixel, Color)
The cell structure represents a colormap cell and its associated color. Pizel
is an integer which references a valid colormap cell. Coloris a color struc-
ture.

xColor(Red, Green, Blue)
The color structure is used to represent an exact color in terms of its pri-
mary color intensities. The elements of this structure are positive Prolog
integers. In a few specifically noted circumstances, the structure is used to
specify what color component elements are to be changed in an operation.
In these circumstances, the atom “xChange” and the atom “xNoChange”
are also legitimate values for the structure elements.

xDelta(Delta)
The delta structure specifies an integer horizontal skip in a list of text
drawing instructions.

xEvent(Type, Serial, SendEvent, Connection, ...)
The event structure describes an X event. The first four fields of all events
are the same. Other fields are type dependent. (see the Events section}

Type: event types, one of the following constants, xKeyPress,
xKeyRelease, xButtonPress, xButtonRelease, xMotionNotify,
xEnterNotify, xLeaveNotify, xFocusIn, xFocusQut, xKeymapNotify,
xExpose, xGraphicsExpose, xNoExpose, xVisibilityNotify,
xCreateNotify, xDestroyNotify, xUnmapNotify, xMapNotify,
xMapRequest, xReparentNotify, xConfigureNotify,
xConfigureRequest, xGravityNotify, xResizeRequest,



xCirculateNotify, xCirculateRequest, xPropertyNotify,
xSelectionClear, xSelectionRequest, xSelectionNotify,
xColormapNotify, xClientMessage, or xMappingNotify.

Serial: event serial number.

SendEvent: indicates whether this was an event generated by
zSendEvent. (boolean)

Connection: connection the event was reported on.

xFont(Font)
The font structure specifies a font change in a list of text drawing instruc-
tions.

xKeyboardMap(Map,,, Map, 41, ...)
The keyboard map structure contains the keysyms associated with a range
of consecutive keycodes. Each Map is the keysyms structure associated
with that keycode.

xKeycodes(Codey, Codes, ...)
The keycodes structure contains the keycodes associated with a particular
logical modifier. The xNoSymbol atom may be used when there is no
keycode for that position. (see modifier map structure)

xKeysyms(Sym,, Syma, ...)
The keysyms structure contains the keysyms associated with a particular
keycode. The xNoSymbol atom may be used when there is no keycap for
that position. (see keyboard map structure)

xModifierMap(Map,, ..., Mapg)
The modifier map contains the keycodes associated with the 8 modifiers.
Each Map is a keycodes structure.

xMotion(Time, X, Y)
The motion structure describes a pointer motion event. Time may be a
split structure. X and Y are integers.

xPoint(X, Y)
The point structure describes a particular pixel in a window. X and ¥ are
integers,

xPointerMap(Button;, Button,, ...)
The pointer map structure describes the mapping of physical to logical
buttons. The Nth element indicates what logical button is pressed when
the Nth physical button is pressed.



xProperty(Format, Data)

The property structure is generally used to represent properties that can-
not be represented as Prolog atoms. Format is the X format of the prop-
erty and should be one of the numbers: 8, 16 or 32. This represents
the basic unit of the property in bits. A property representable as an
atom is in format 8., Format information is used by the X server for byte
swapping purposes. Data is a list of zero or more numbers which make
up the elements of the property. Property data is considered to be un-
signed. Therefore, negative Prolog integers will be interpreted by X as
large positive numbers. Format 32 data elements may be specified using
split structures.

xRectangle(X, Y, Width, Height)
The rectangle structure describes a rectangle in terms of its upper left
location (X, Y) and its width and height. X and Y are integers. Width
and Height must be non-negative.

xSegment(X1, Y1, X2, Y2)
The segment structure describes a line segment in terms of its endpoints
(X1, Y1) and (X2, Y2). All components are integers.

xSplit{Most, Least)
The split structure is generally used to represent a number too large to
represent as a normal Prolog integer. Most is a Prolog integer contain-
ing the most significant 16 bits of the number. Least contains the least
significant 16 bits.

xText(Format, Codes)
The text structure is generally used to describe a text string in a list of
text drawing instructions that cannot be represented as a Prolog atom.
Format specifies the number of bits in each character code. Legal values
are 8 or 16. Codes is a list of character codes. Atoms are equivalent to
format 8 text.

6 Connections

For historical reasons, a network connection, in X, is called a “display”. (In older
versiong of X, the mapping between network connections and display screens was
one to one.} Here, a network connection is simply called a “connection”. Within
XWIP, connections are referenced by descriptors, which are integers.

xOpenConnection{+Name, -Connection)
opens a connection to the X server. If Name is nil, the DISPLAY envi-
ronment variable is used to determine the X display opened. Otherwise,
Name should be an atom naming an X display according to the usual X



conventions. On success, Connection will be instantiated to a connection
descriptor. If the X connection cannot be opened or if not enough memory
can be allocated for internal data structures, the predicate will fail (and
a diagnostic message will be printed).

xCloseConnection(+Connection)
closes a connection to the X server. Conrnection should be a valid connec-
tion descriptor.

A large amount of information is associated with a connection. The following is
a brief overview of the structure of this data. Each connection has a number of
“screens” associated with it. A screen corresponds to an actual physical display
screen device. Each screen has a number of allowable “depths” associated with
it. A window (or pixmap) is made up of pixels, The number of bits per pixel
used in a particular window (or pixmap) is called the depth of that window (or
pixmap). The depths of all windows and pixmaps on a particular screen must
be chosen from the set of allowable depths. Finally, each depth has a number
of “visuals™ associated with it. A visual is a color model. (i.e. how pixels are
mapped to physical colors)

The following predicates allow examination of the various connection data
structures. Some of these predicates use lists of zero or more gueries. A query
is a structure with one argument. The functor is the attribute name and the
argument is the vafue of the attribute. The value may be instantiated.

xConnections{ ?ConnectionList)
gives a list of all valid connection deseriptors.

xQueryConnection{+Connection, 7QueryList)
provides information about the connection specified. The following queries
are possible:

xNetworkDescriptor(7Value)

the underlying network file descriptor for the connection.
xProtocolVersion(7Value)

X protocol version number.

xProtocalRevision{?Value)
X protocol revision number.

xServerVendor(?Value)
X server vendor name.

xImageByteOrder{?Value)
whether image byte order is most significant first. (boolean, xFalse
indicates least significant first)

xIlmageUnit(7Value)
image scanline unit. (in bits)



xIlmagePad(?Value)
image scanline pad unit. (in bits)

xlmageBitOrder(?Value)
whether image scanline unit bit order is most significant first.
{(boolean, xFalse indicates least significant first)

xVendorRelease{?Value)
X server vendor release number.

xQueuelength(?Value)
length of event queue.

xLastEvent(?Value)
serial number of last event read, which is effectively the serial number
of the last request that is known to have been processed by the X
server. (can return a split structure)

xLastRequest(?Value)
serial number of last request made to the X server. (can return a
split structure)

xConnectionName(?Value)
connection name,

xMotionBuffer(?Value)
motion buffer size.

xDefaultScreen(?Value)
descriptor of the default screen.

xMinKeycode(?Value)

minimum keycode supported.
xMaxKeycode(?Value)

maximum keycode supported.

xScreens(?Value) .
list of descriptors for the screens associated with the connection.

xScreens(7ScreenList)

gives a list of all screen descriptors.

xQueryScreen(+Screen, TQueryList)

provides information about the specified screen. The following queries are
allowed:

xConnection(?Value)
connection descriptor associated with this screen.

xRootWindow(7Value)
root window XID.



xWidth(?Value)

screen width (in pixels).
xHeight(?Value)

screen height (in pixels).
xPhysicalWidth(?Value)

physical screen width (in millimeters).

xPhysicalHeight(?Value)
physical screen height (in millimeters).

xRootDepth(?Value)
root window depth.

xRootVisual(?Value)
descriptor for root visual.

xDefauitGC(?Value)
descriptor for default graphics context.
xDafauitColormap(7Value)
default colormap XID.
xWhitePixel(?Value)
white pixel value.
xBlackPixel{?Value)
black pixel value.
xMaxColormaps(?Value)
maximum number of resident colormaps allowed.
xMinColormaps(?Value)
minimum number of resident colormaps allowed.
xBackingStore(?Value)
available backing store support. (xNotUseful, xWhenMapped,
xAlways)
xSaveUnders(?Value)
available save under support. (boolean)
xRootEventMask(7Value)
initial root window event mask.
xDepths(?Value)
list of descriptors for depths associated with the screen.

xDepths(?Depthlist)

gives a list of all depth descriptors.

xQueryDepth(+Depth, ?QueryList)

provides information about the specified depth. The following queries are
supported:

10



xDepth(?Value)
depth value,

xVisuals(?Value)
list of descriptors for visuals associated with the depth.

xVisuals{?VisualList)
gives a list of all visual descriptors.

xQueryVisual(+Visual, 7Querylist) .
provides information ahout the specified visual. The following queries are
allowed:

xClass(?Value)
color model class. (xStaticGray, xGrayScale, xStaticColor,
xPseudoColor, xTrueColor, xDirectColor)

xRedMask(?Value)
red bit mask. (defined for decomposed colormaps only)

xGreenMask({?Value)
green bit mask. (defined for decomposed colormaps only)

xBlueMask(?Value)

blue bit mask. (defined for decomposed colormaps only)
xColormapBits(?Value)

log (base 2) of number of colormap entries.

xColormapEntries(?Value)
number of colormap entries.

7 Windows

Windows are referred to in XWIP by their XIDs. Some of the following predi-
cates use lists of zero or more atiributes. Attributes have the same structure as
queries, except they must be fully instantiated.

Coordinates in a window are measured in pixels. Larger X coordinates are
to the right. Larger Y coordinates are further down. The origin is the inside
(if there is a border) left corner. Window dimensions (including border width)
are measured in pixels. The position of a window is measured from its parent’s
origin to the outside, upper left corner.

xCreateWindow(+Connection, +Parent, +X, +Y, +Width, +Height,
+BorderWidth, +Depth, +Class, +Visual, +AttributeList, -Window)
creates a window.

Depth: specifies the actual depth, not a depth descriptor.
{xCopyFromParent or xNone allowed)

11



Class: specifies the window class. (xCopyFromParent, xInputQutput,
xInputOnly).

Visual: specifies a visual descriptor. (xCopyFromParent allowed).

AttributeList: attribute list, any attribute usable with zSet Window is

allowable here. While some attributes are redundant, they are still
allowed and will be set, as if, by a subsequent zSet Window invocation.

xDestroyWindow(+Connection, +Window)
destroys a window and its subwindows.

xDestroySubwindows(+Connection, +Window)
destroys all subwindows of the specified window.,

xQueryWindow(+Connection, +Window, ?QueryList)
provides information about the specified window. The following queries

are supported:

xX(?Value)
x coordinate of the window position in the parent’s coordinate sys-

tem.

xY(7Value)
¥ coordinate of the window position in the parent’s coordinate sys-

tem.

xWidth(7Value)
window width.

xHsight(7Valus)
window height.

xBorderWidth(?Value)
border width.
xDepth(?Value)
depth.
xRootWindow(?Value)
root window XID of screen containing this window.

xScreen(?Value)
descriptor of screen containing this window.

xVisual(?Value)
visual descriptor.

xClass(?Value)
window class. (xInputOutput, xInputOnly)

xUnionEventMask(?Value)
union of all clients’ event masks for this window.

12



xBitGravity(?Value)
bit gravity. (xForget, xNorthWest, xNorth, xNorthEast, xWest,
xCenter, xEast, xSouthWest, xSouth, xSouthEast, xStatic)
xWinGravity(?Value)
window gravity. (same as xBitGravity, except xForget is replaced by
xUnmap)
xBackingStore{?Value)
backing store. (xNotUseful, xWhenMapped, xAlways)
xBackingPlanes{?Value)
backing planes.
xBackingPixel(?Value)
backing pixel.
xOverideRedirect(?Value)
override redirect. (boolean)
xSaveUnder(?Value)
save under. (boolean)

xEventMask(?Value)
event mask for this client.

xDontPropagate(?Value)

event mask for events that should not propagate.
xColormap(?Value)

colormap XID.
xColormaploaded(?Value)

indicates whether the colormap is loaded. (boolean)
xState(?Value)

window state. (xUnmapped, xUnviewable, xViewable)

xSetWindow(+Connection, +Window, +AttributeList)
sets the attributes of the window. The attributes and their values are
listed below. The following attributes are supported:

xX, xY, xWidth, xHeight, xBorderWidth, xBitGravity, xWinGravity,
xBackingStore, xBackingPlanes, xBackingPixel, xOverrideRedirsct,
xSavelnder, xEventMask, xDontPropagate, xColormap:
same as rQuery Window.

xSibling(+Value)
sibling window XID, if a sibling window is specified the stacking mode
(see below) is changed relative to this window, otherwise it is changed
relative to the window stack.

xStackMode(+Value)
stacking mode. (xAbove, xBelow, xToplf, xBottomIf, xOpposite)

13



xBackPixmap(+Valuse)
background pixmap XID. (xNone, xParentRelative allowed)

xBackPixel(+Value)

background pixel. (overrides background pixmap)
xBorderPixmap(+Value)

border pixmap XID. (xCopyFromParent allowed)

xBorderPixel(+Value)
border pixel. (overrides border pixmap)

xCursor(+Value)
cursor XID to be used in the window.

xQueryTree(+Connection, +Window, ?Root, ?Parent, ?Children)
provides information about a window’s position in its screen’s window
tree. Children is a (possible empty) list of window XIDs.

xTranslateCoordinates(+Connection, +Source, +Dest, +SrcX, +Sre¥, 7DestX,

?DestY, ?Child)
translates window coordinates. This predicate fails if Source and Dest

windows are on different screens.

xMapWindow(+Connection, +Window)
maps the specified window.

xMapSubwindows({+Connection, +Window)
maps all subwindows of the specified window.

xUnmapWindow(+Connection, +Window)
unmaps the specified window.

xUnmapSubwindows(+Connection, +Window)
unmaps all subwindows of the specified window.

xCirculateSubwindows(+ Connection, +Windaw, +LowerHighest)
circulates a subwindow of the specified window. LowerH tghestis a boolean.
If not set, the operation performed is RaiseLowest,

8 Atoms and Properties

The X server names some objects with atoms. These atoms are distinct from
Prolog atoms. The X server uses numbers to represent atoms. In addition, X
atoms also have a printable representation as a character string. In XWIP, X
atoms are represented as Prolog integers, and X atom names are represented
as Prolog atoms. There are a number of predefined atoms in the X server. By
convention, their names are in upper case with multiple components separated
by underscore. For a complete list, see the Xlib manual.

14



xAtomExists(+Connection, +XAtomName, ?7XAtom)

succeeds, if the X atom corresponding to the specified X atom name exists

in the X server. On success, XAlom is instantiated.

xAtom(+Connection, 7XAtomName, ?XAtom)

provides a mapping between X atom names and X atom numbers. With

XAtomName instantiated, the corresponding X atom is unified with

XAtom. If the X atom corresponding to XAtomName does not exist,
it is created. If XAtomName is uninstantiated, the reverse mapping is

provided.

X properties and their associated X types are named by atoms. Property values
have two different sorts of representations in Prolog. If they are printable as
normal character strings, they can be represented as Prolog atoms. Otherwise,
they are represented as a property structure. The “format” of a property has no
semantic meaning and is only used for byte swapping purposes. The “type” of
a property is the logical type of the property. X places no restriction on what

atom numbers can be used for types.

xWindowProperties(+Connection, +Window, ?PropertyList)
gives a list of the properties associated with the specified window.

xGetProperty{+Connection, +Window, +Property, +Offset, +Length,

+DaletalfEnd, +RequestedType, +WantAtom, ?Type, ?Remaining, ?Value)
obtains the value of an X property. If the specified property does not
exist, the predicate fails. If the requested type does not match the actual
type, an empty property is returned (but other information is updated

properly).

Offset, Length: in terms of 32 bit units (even if the property format is

not 32).

DeletelfEnd: If set to true, and the property is successfully read and
there are no elements remaining, the property is deleted. {(boolean)

RequestedType: requested type of the property (xAny allowed).

WantA‘tom: If set to true and the property can be represented as a
string, Value is instantiated as an atom. Otherwise, the property is

represented in the property structure form. (boolean)

Type: actual type of the property.

Remaining: unread portion of the property in terms of the format units.

Value: Format 32 items may be returned using split structures.

xSetProperty(+Connection, +Window, +Property, +Type, +Mode, +Data)
changes the value of the specified property.

15



Mode: specifies the exact operation performed. (xReplace, xPrepend,
xAppend)

Data: may be specified using split structures,

xDeleteProperty(+Connection, +Window, +Property)
deletes the specified property from the specified window.

xRotateProperties(+Connection, +Window, +Positions, +PropertyList)
rotates the specified properties in the property array,

Selections are a special type of property, explicitly used for transferring data
between clients.

xGetSelectionOwner(+Connection, +Selection, ?Window)
gets the owner window of the specified selection. This predicate fails, if
the specified selection is not owned.

xSetSelectionOwner{+Connection, +Selection, +Owner, +Time)
sets the owner window of the specified selection. Owner maybe xNone,
Time may be xCurrentTime.

xConvertSelection(+Connection, +Selection, +DestType, +DestProperty,
+DestWindow, +Time)
requests conversion of a selection. IDlestProperty may be xNone. Time may
be xCurrentTime.

9 Pixmaps

Pixmaps are referred to in XWIP by XIDs. Pixmaps are rectangular pixel arrays.
Most graphics operations work equally well on windows or pixmaps. But unlike
windows, pixmaps cannot be directly mapped to the screen. However, they can
be used as the template for tiling patterns, cursors, etc. Pixmaps are associated
with a particular screen at creation and can only be used with that screen.

xCreatePixmap(+Connection, +Screen, +Width, +Height, +Depth, -Pixmap)
creates a pixmap. Screen is a screen descriptor. Depih is a depth value
not a depth descriptor,

xDestroyPixmap(+Connection, +Pixmap)
destroys a pixmap.

xQueryPixmap(+Connection, +Pixmap, ?QueryList)
provides information about the specified pixmap. The following queries
are supported:

xWidth, xHeight, xBorderWidth, xDepth, xScreen:
same as rQuery Window.

16



10 Color

Colormaps provide the mapping between pixel values and hardware color val-
ues. The actual interpretation of the hardware color values depends on the
visual (pseudo-color, gray-scale, etc.) associated with the colormap. In XWIP,

colormaps are referenced by their XIDs.
Colormaps may be read-only and shared or writable and exclusive access. A
colormap has no effect on the actual screen until it is “loaded” into the resident

set.

xCreateColormap(+Connection, +Screen, +Visual, +AllocAll, -Colormap})
creates a colormap.

Screen: screen descriptor.

Visual: visual descriptor.

Alloc All: specifies whether the whole colormap should be preallocated as
writeable. (boolean, xFalse indicates that no preallocation should be
done)

xDestroyColormap(+Connection, +Colormap)
destroys a colormap.

xMoveToNewColormap(+Connection, 4+Current, -New)
moves and frees all entries of a client’s colormap. The colormap entries
are moved to a newly created colormap.

xLoadedColormaps{+Connection, +Screen, -ColormaplList)
gives a list of the loaded colormaps, Screen is a screen descriptor.

xLoadColormap(+Connection, +Colormap)
loads a colormap into the resident set.

xUnloadColormap(+Connection, +Colormap)
removes a colormap from the resident set.

xParseColor(-+Connection, +Colormap, +Specification, -ExactColor)
parses a standard X color specfication. Specification may use the “hex
string” style or name a color in the color database,

xQueryColor(+Connection, +Colormap, +Name, -ActualColor, -ExactColor)
looks up the specified color in a colormap. ActualColorand EzactColor are
color structures. (Note this is not the equivalent of the Xlib XQueryColor
function.)

xGetColors(+Connection, +Colormap, ?CellList)
gives the colors associated with the specified pixels. CeliList should have
the pixel element of each cell structure instantiated. The color component
of each cell may be instantiated,

17



xRequestColor(+Connection, +Colormap, +Color, -Cell)
requests the closest color possible in the specified colormap. Color is the
requested color structure. Cellis the returned cell structure. The actual
color cell is shared and read-only.

xRequestNamedColor(+Connection, +Colormap, +Narre, -ActualCell,
-ExactColor)
requests the closest color possible in the specified colormap. The atom
Name specifies the name of the requested color. ActualCell is the actual
cell provided in the colormap. The cell is shared and read-only. EzactColor
is the exact color requested.

xAllocColorCells(+Connection, +Colormap, +Contiguous, +Planes, +Pixels,
-PlaneList, -PixelList)
allocates color cell/plane combinations for PseudoColor visuals.
Contiguous is a boolean.

xAllocColorPlanes(+Connection, +Colormap, +Contiguous, +Colors, -+Reds,
+Greens, +Blues, -PixelList, -RedMask, -GreenMask, -BlueMask)
allocates color cell/plane combinations for DirectColor visuals.
Contiguous is a boolean,

xFreeColors(+Connection, +Colormap, +PixeiList, +PlaneMask)
frees colors in a colormap.

PlaneMask: This argument is different depending on how the colors were
obtained. If the colors were “requested”, then this argument should
be zero. If the colors came from zA4ilocColorCells, then this argument
should be the inclusive or of all of the Planes returned from that
predicate. In the case of zAllocColorPlanes, this argument should be
the inclusive or of all of the Reds, Greens and Blues obtained.

xSetColors(+Connection, +Colormap, +CellList)
stores colors in a colormap.

CellList: a list of cell structures. The component color structures may
use the xNoChange atom. A primary color intensity specified as
xNoChange retains its previous value.

xSetNamedColor(+Connection, +Colormap, +Name, +Cell}
stores & named color into a colormap. The color specified by Name is
stored into the pixel specified by Cell. The color component of Cell must
use the xChange and xNoChange atoms. Any primary color intensity
specified as xNoChange retains its previous value. Those specified as
xChange take on the corresponding value for the named color,

18



11 Graphics Contexts

A graphics context can be considered a “pen” that X uses to perform graph-
ics operations. This “pen”, however, specifies more than just line width and
color. It also specifies parameters for such things as clipping regions, tiling, etc.
Graphics contexts are referred to by descriptors.

xGCs(?GClList)
gives a list of all graphics context descriptors.

xCreateGC(+Connection, +Drawable, Attributelist, -GQ)
creates a graphics context. AtftribufeListis any attribute list usable with
zSetGC.

xDestroyGC(+Connection, +GC)
destroys a graphics context.

xCopyGC{+Connection, +Src, +Mask, +Dest)
copies portions of a graphics context to another graphics context.

Mask: list of graphics context components to be copied. The components
are specified by giving their corresponding attribute names. Any of
the attribute names listed under zQueryGC may be used, with the
exception of xClipList and xDashList.

xQueryGC(+GC, 7Querylist)
provides information about the specified graphics context.

xFunction(?Value)
logical operation. {xClear, xAnd, xAndReverse, xCopy,
xAndInverted, xNoop, xXor, xOr, xNor, xEquiv, xInvert,
xOrReverse, xCopylnverted, xOrInverted, xNand, xSet)
xPlaneMask{?Value)
plane mask.

xForeground(?Value)
foreground pixel.

xBackground(?Value)
background pixel.

xLineWidth{?Value)
line width (as defined in the X Protocol Document). {xThinLine
allowed)

xLineStyle(7Value)
line style. (xSolid, xOnOfiDash, xDoubleDash)

19



xCapStyle(7Valuse)

line cap style. (xNotLast, xButt, xRound, xProjecting)
xJoinStyle(7Value)

line join style. (xMiter, xRound, xBevel)

xFillStyle(?Value)
fill style. (xSolid, xTiled, xStippled, xOpaqueStippled)

xFillRule(?Value)
fill rule, specifies whether the “winding” rule is used. (boolean, xFalse
indicates the “even-odd” rule is used)

xTile(?Value)
tile pixmap.
xStipple(?Value)
stipple pixmap.
x TileStipXOrigin(?Value)
tile or stipple x origin.
xTileStipYOrigin(?Value)
tile or stipple y origin.
xFont(?Value)
current font XID.

xSubwindowMode{?Value)
subwindow mode, specifies whether clipping should not be performed
against inferior InputOutput windows. (boolean, xFalse indicates
clipping)

xGraphicsExposures(?Value)
graphics exposures, specifies whether GraphicsExpose events shouid
be reported when zCopyArea or zCopyPlane operations are done with
this graphics context. (boolean)

xClipXOrigin{?Value)
x clip origin.

xClipYOrigin(?Value)
y clip origin,

xClipMask(7Value)
clip mask. (integer)

xDashOffset(?Value)
dash offset,

xDashLength(?Value)
dash length. {same as the Xlib GCDashList component)

xArcMode{?Value)
arc mode, specifies whether “pie slice” mode should be used for
¢FillArcs operations. (boolean, xFalse indicates chord mode)

20



xClipList(?Value)
specifies if the clip mask is a list of rectangles. (boolean)

xDashlist(?Value)
specifies if dash mode is a list. This is not the same as the Xlib

GCDashList component. {boolean)

xQueryBestSize(+Connection, +Mode, +Screen, +Width, +Height,
7ReturnWidth, 7ReturnHeight)
obtains the best server dependent sizes.

Mode: specifies the exact size returned. (xCursor, xTile, xStipple)
Secreen: screen descriptor.

xSetGC(+Connection, +GC, +Attributelist)
sets elements of a graphics context.

xFunction, xPlaneMask, xForeground, xBackground, xLineWidth,
xLineStyle, xCapStyle, xJoinStyle, xFillStyle, xFillRule, xTile, xStipple,
xTileStipXOrigin, xTileStipYOrigin, xFont, xSubwindowMode,
xGraphicsExposures, xClipXOrigin, xClipYOrigin, xClipMask,
xDashOffset, xDashLength, xArcMode:
same as those specified in 2QueryGC.

xSetClips(+Connection, +GC, +XOrigin, +YCrigin, +RectangleList, +Ordering)
sets clipping rectangles for a graphics context.

RectangleList: a list of rectangle structures.

Ordering: clip rectangle ordering. (xUnsorted, xYSorted, xYXSorted,
xYXBanded) .

xSetDashes(+Connection, +GC, +DashOffset, +DashList)

sets the dash mode for a graphics context. DashlList is a list of dash
lengths.

12 Graphics

The following predicates may generate exposures.

xClearArea(+Connection, +Window, +X, +Y, +Width, 4+Height, +Exposures)
clears the specified rectangular area. Ezrposures is a boolean.

Width: if this value is zero, then the X position is interpreted as the
window width minus X.

21



Height: if this value is zero, then the Y position is interpreted as the
window height minus Y,

xCopyArea(+Connection, +Sre, +Dest, +GC, +SrcX, +SrcY, +Width, +Height,

+DestX, +DestY)
copies an area. GC is a graphics context descriptor.

xCopyPlane(+Connection, +Src, +-Dest, +GC, +SrcX, +SrcY, +Width, +Height,

+DestX, +DestY, +Plane)
copies a bit plane. GCis a graphics context descriptor.

Many of the following predicates take a “drawable” argument. A drawable may
be either a window XID or a pixmap XID.

xDrawPoints{+Connection, +Drawable, +GC, +PointList, +Relative)
draws the specified list of points. GC is a graphics context descriptor.
Relative in a boolean, If set, coordinates are interpreted relative to the last
coordinate. Otherwise, coordinates are considered to be absolute window

coordinates.

xDrawLines(+Connection, +Drawable, +GC, +PaintList, +Relative)
draws the specified list of lines. GC is a graphics context descriptor.
Relative is specified as in #DrawPoints.

xDrawSegments(+Connection, +Drawable, +GC, +SegmentList)
draws the specified list of line segments. GC is a graphics context deserip-
tor.

xDrawRectangles(+Connaction, +Drawable, +GC, +Rectanglelist)
draws the specified list of rectangles. GCis a graphics context descriptor.

xDrawAres(+Connection, +Drawable, +GC, +ArcList)
draws the specified list of arcs. GCis a graphics context descriptor.

xFillRectangles(+Connection, +Drawable, +GC, +Rectanglelist)
fills the specified list of rectangles. GCis a graphics context descriptor,

xFillPolygon(+Connection, +Drawable, +GC, +Pointlist, +Shape, +Relative)
fills the specified polygon. GCis a graphics context descriptor. Relative
is specified as in zDrawPoints.

Shape: hint to improve server performance. (xComplex, xNonconvex,
xConvex)

xFillAres(+Connection, +Drawable, +GC, +ArcList)
fills the specified list of arcs. G'C'is a graphics context descriptor.

22



13 Images
Images are referenced by descriptor.

xImages(?ImageList)
gives a list image descriptors.

xCreatelmage(+Connection, +Visual, +Depth, +Format, +Offset, +Width,
+Height, +Pad, +BytesPerlLine, -Image)
creates an undefined image.

Visual: visual descriptor.

Depth: depth value, not a depth descriptor.

Format: specifies format. (xXYPixmap, xZPixmap)

Pad: scanline pad unit. The default value is the same used by the con-
nection. (8, 16, 32, xDefault)

BytesPerLine: bytes per scanline. (xDefault for compute it from other
data)

xDestroylmage(+Image)
destroys an image.

xQuerylmage(+Image, TQueryList)
provides information about the specified image.

xWidth(7Value)
width.

xHeight{?Value)
height.
xOffset{?Value)
x offset.
xFormat(?Value)
format. (xXYPixmap, xZPixmap)

xlmageByteOrder(?Value)
whether byte order is most significant first. (boolean, xFalse indicates
least significant first)

xImageUnit(?Value)
scanline unit.

xlmagePad(7Value)
scanline pad unit.

xImageBitOrder(?Value)
whether scanline unit bit order is most significant first. {boolean,

xFalse indicates least significant first)

23



xDepth(?Value)
depth value.

xLineBytes(?Value)

bytes per line.
xPixelBits(?Value)

bits per pixel. (for ZPixmap)

xRedMask(7Value)
red mask. (for decomposed ZPixmap)

xGreenMask{?Value)
green mask. (for decomposed ZPixmap)

xBlueMask({?Value)
blue mask. (for decomposed ZPixmap)

xGetlmage(+Connection, +Drawable, +SreX, +SrcY, +Width, +Height,
+PianeMask, +=Destimage, +DestX, +DentY) . .
gets an image from a drawable. (This predicate uses the Xlib function

XGetSublmage.)

xPutlmage(+Connection, +Drawable, +GC, +Image, +SrcX, +SrcY, +DestX,
+DestY, +Width, +Height)
puts an image into a drawable. GC is a graphics context descriptor.

xSublmage(+Iimage, +X, +Y, +Width, +Height, -Sublmage)
extracts a part of an irnage from another,

xAddPixel(+Image, +Value)
adds a constant to all pixels in the specified image.

xGetPixel(+Image, +X, +Y, -Pixel)
gets the value of the specified pixel.

xSetPixel(+Image, +X, +Y, -Pixel)
sets the value of the specified pixel.

14 Text

The terminology used in XWIP is somewhat different than that used in Xlib.
In order to use a font, you must “open” it. When you are done with the font
you “close” it. Both of these operations cause the server to possibly load or
unload font information. However, no information is loaded or unloaded on the
client side. In order to examine the font information, you must explicitly do
a “load” operation on the open font, which causes XWIP to actually store the
information. After use, you may “unload” the font information from XWIP.
Fonts are referred to by XID. Loaded fonts are referred to by descriptor.

24



xOpenFont(+Connection, +Name, -Font)
opens a font.

xCloseFont{+Connection, +Font)
closes a font.

xLoadedFonts(7LoadedFontList)
provides a list of loaded font descriptors.

xLoadFont(+Connection, +Font, -LoadedFont)
loads a font.

xUnloadFont{+LoadedFont)
unloads a font.

xGetFontPath(+Connection, -PathList)
returns the list of directories (atoms) to be searched by the X server for

fonts.

xSetFontPath(+Connection, +PathList)
sets the list of directories to be searched by the X server for fonts. If

PathList is nil, the default path is restored.

xListFonts(+Connection, +Pattern, +MaxNames, -FontList) ‘
gives list of font names matching Pattern. The list is up to MazNames in
length.

The following predicates provide information about a loaded font and its char-
acters, Font character codes are either 8 or 16 bits long. Characters in a 16 bit
font are considered to be in a two-dimensional array. The most significant byte
of the 16 bit character code is the “row™ coordinate. The least significant byte
is the “column” index. An 8 bit font is considered to be completely in a row
zero. X text items (i.e. character strings) can be represented as Prolog atoms
or as text structures. Atoms may only be used when the text item is made up
of printable characters from an 8 bit font.

xQueryFont(+LoadedFont, ?Querylist}
provides information about a loaded font. The following queries are sup-
ported:

xConnection(?Value)

descriptor of the connection that this font was loaded from.
xFont(?Value)

font XID assigned by the connection that this font was loaded from.
xDirection(?Value)

right to left font direction hint. {boolean, xFalse indicates left to
right)

25



xMinColumn{?Value)

minimum character column.

xMaxColumn(?Value)
maximum character column.

xMinRow(7Value)
minimum character row.

xMaxRow(7Value)
maximum character row.

xAllExist(?Value)
specifies whether all characters have nonzero bounding boxes.
(boolean)

xDefaultChar(?Value)
specifies the default character to print for missing characters.

xMinLeft(?Value)
minimum left bearing of all characters.

xMinRight(?Value)

minimum right bearing of all characters.
xMinWidth{?Value)

minimum width of all characters.
xMinAscent(?Value)

minimum ascent of all characters.
xMinDescent(7Value)

minimum descent of all characters.
xMinAttribute(?Value)

minimum attribute of all characters.

xMaxLeft(?Value)
maximum left bearing of all characters.

xMaxRight(7Value)
maximum right bearing of all characters.

xMaxWidth(?Value)
maximum width of all characters.

xMaxAscent(?Value)
maximum ascent of all characters.

xMaxDescent(?Value)
maximum descent of all characters.

xMaxAttribute(?Value)
maximum attribute of all characters.

xAscent(?Value)
font ascent.

26



xDescent(?Value)
font descent.

xProperties(?Value)
gives a list of all properties defined on the loaded font.

xGetFontProperty(+LoadedFont, 4Property, ?Value)
returns the value of a loaded font property.

xGetCharInfo(+LoadedFont, +Character, -LeftBearing, -RightBearing, -Width,
-Ascent, -Descent, -Attributes)
provides character specific information.

xTextExtents(+LoadedFont, +Text, -LeftBearing, -RightBearing, -Width,

-Ascent, -Descent)
gives metric information for the string using the specified font.

The following predicates draw text.

xDrawText(+Connection, +Drawable, +GC, +X, +Y, +Drawlist)
draws text. Only pixels in the body of each character are modified.

GC: graphics context descriptor.

DrawlList: a list of text drawing instructions. The list may contain text
(either as atoms or text structures), font structures and delta struc-
tures. All text must either be 8 bit (atoms and format 8) or 16 bit
(format 16) and match the type of font.

xImageText(+Connection, +Drawable, +GC, +X, +Y, +Text)
draws image text. Image text draws the character body and fills the
bounding box of the character with the background color. Terminal emu-
lators require this type of behavior.

15 Cursors

A cursor is the screen image of the pointer. A cursor is referred to by an XID.
Foreground and background colors used in cursor related predicates are specified
as color structures, not pixel values. Therefore, it is not required to store the
color values in a colormap before using them with a cursor.

xCreateFontCursor(+Connection, +Shape, -Cursor)
creates a cursor from the standard cursor font. Shape can be any one of
the atoms listed in Appendix B.

27



xCreateGlyphCursor(+Connection, +SrcFont, +MaskFont, +SrcChar,
+MaskChar, +Foreground, +Background, -Cursor)
creates a cursor from the specified font information. MaskFont and
MaskChar can be xNone.

xCreatePixmapCursor(+Connection, +Source, +Mask, +Foreground,
+Background, +X, +Y, -Cursor)
creates a cursor from pixmap information. Mask can be xNone.

xDestroyCursor(+Connection, +Cursor)
destroys a cursor.

xRecolorCursor(-+Connection, +Cursor, +Foreground, +Background)
changes the color of a cursor.

16 The Pointer

A pointer device can be any of a number of devices, such as a mouse, graphics
tablet, track ball, etc. The pointer also has upto 5 buttons (e.g. mouse buttons).
X supports only one pointer per connection.

xPointerState(+Cennection, +Window, -Root, -Child, -RootX, -RootY, -WinX,
-WinY, -State)
returns the current position of the pointer and state of the modifiers and
buttons. This predicate fails if the pointer is not on the same screen as
the specified window.

State: is a mask describing button and modifier state. The representation
of Stale is a list of zero or more of the following: Shift, Lock,
Control, Modl, Mod2, Mod3, Mod4, Mod5, Buttonl, Button?2,
Button3, Button4, Button5.

xWarpPointer(+Connection, +Source, +Dest, +5rcX, +SrcY, +Width, +Height,
+DestX, +DestY)

warps the position of the pointer. Source and Dest may be xNone.

Width, Height: specify the dimensions of the source rectangle containing
the pointer. If Width is 0, it is replaced by the window width minus
SrcX. If Height is 0, it is replaced by the window height minus Src Y.

xQueryPointer(+Connection, ?Querylist)
provides information about pointer acceleration setting. (Note this is not
the equivalent of the Xlib XQueryPointer function.) The following queries
are allowed:

28



xNumerator(7Value)
acceleration numerator.

xDenominator(?Value)
acceleration denominator.

xThreshold(?Value)
acceleration threshold.

xSetPointer(+Connection, +Attributelist)
sets pointer acceleration. The following attributes may be specified:

xNumerator, xDenominator, xThreshold:
same as in zQueryPointer.

xGetPointerMapping(+Connection, +Length, -Map)
gets the mapping of buttons 1 to Length. Meaningless values may be given
for non-existent buttons. Map is a pointer map structure.

xSetPointerMapping(+Connection, +Map)
sets the mapping of pointer buttons. Map is interpreted the same as in
zGetPointerMapping. This predicate may fail if the buttons to be changed
are pressed down or if a specified button does not exist.

17 The Keyboard

The “keyboard” in X also includes the terminal bell and keyboard LEDs. X
supports only one keyboard per connection.

xDownKeymap(+Connection, -Keymap)

returns the keymap of pressed down keys. Keymap is an ascending list of
keycodes corresponding to pressed down keys.

xQueryKeyboard{+Connection, +Querylist) -
gives information about the keyboard. The following queries are allowed:

xKeyClickPercent(?Value)
key click percent.

xBellPercent(?Value)
bell percent.

xBellPitch(?Value)
bell pitch.

xBellDuration(?Value)
bell duration.

29



xLed(7Value)
mask of lit LEDs.

xAutoRepeatMode(?Value)
specifies whether auto repeat is on. (boolean)

xRepeatKeymap(?Value)
gives the keymap of keys that have been to set to auto repeat. (Note
that the global keyboard state of auto repeat is not reflected here.)
The format is the same as in zDownKeymap.

xSetKeyboard(+Connection, +Attributelist)
sets the state of the keyboard.

xKeyClickPercent, xBellPercent, XBellPitch, xBeliDuration:
same as in rQueryKeyboard, except that xDefault can be specified to
restore the default value.

xLed(?Value)
specifies a server specific LED, or if not specified, all LEDs.

xLedMode(?Value)
specifies whether to light an LED. (boolean)

xKey(7Value)
specifies a key, or if not specified, the global auto repeat state.

xAutoRepeatMode(?7Value)
specifies whether to enable auto repeat. (xFalse, xTrue, xDefault)

xGetKeyboardMapping(+Connaction, +First, +Count, -KeyboardMap)
gets the keyboard mapping for the specified range of keycodes.
KeyboardMap is a keyboard map structure. The first keysyms structure
corresponds to the keysyms for keycode First.

xSetKeyboardMapping(+Connection, +First, +KeyboardMap)
sets the keyboard mapping for the keycodes starting from First.
KeyboardMap is a keyboard map structure. All keysyms structures must
have the same arity.

xGetModifierMapping(+Connection, -ModifierMap)
gets the modifier mapping. ModifierMap is a modifier map structure.

xSetModifierMapping(+Connection, +ModifierMap, -Busy)
sets the modifier mapping. ModifierMap is a modifier map structure. All
keycodes structures must have the same arity. Busy is a boolean. The
value xTrue indicates that the request failed because at least one of the
modifiers to be changed was held down already.

30



xBell(+Connection, +Percent)
rings the bell with a modified strength. Percent can be any integer from

-100 to 100.

The following predicates support client keyboard processing. In order to avoid
making a protocol request, these predicates make use of mapping information
stored in the client. This requires the client to update this information whenever
there is xMappingNotify event by calling the zRefreshMapping predicate.

xKeycodeToKeysym(+Connection, +Keycode, +index, -Keysym)
maps a keycode and index to a keysym. Keysym may be xNoSymbol.

xKeysymToKeycode(+Connection, +Keysym, -Keycode)
maps a keysym to its first keycode. Keysym may be xNoSymbol.

xRefreshMapping(+Event)
updates client mapping information.

18 Window Manager Support

Most of the following predicates are seldom used outside of window managers.
These predicates cover five areas: connection close processing, input focus con-
trol, “grab” processing, screen saver control and server access control.

xSetSaveSet(+Connection, +Window, +Delete)
inserts or deletes a window from the connection’s save set. Delete is a
boolean. If set, the window is removed from the save set. Otherwise, the
window is added to the save set.

xReparentWindow(+Connection, +Window, +Parent, +X, +Y)
reparents a window in the same screen.

xSetCloseDownMode(+Connection, +Mode)
sets the close down mode of a client. Mode may be xDestroy, xPermanent
or xTemporary.

xKillClient{+Connection, +Resource)
forces a close down of the client which created the specified resource.
Resource may also be xAllTemporary.

xGetlnputFocus(+Connection, -Window, -Revert)
returns the current focus state.

Window: the focus window or xNone or xPointerRoot.

Revert: revert state. (xNone, xPointerRoot, xParent)

31



xSetInputFocus(+Connection, +Window, +Revert, +Time)
sets the input focus. Window and Rever? are specified as in
zGetlnpuiFocus. Time may be xCurrentTime.

xGrabPointer(+Connection, +GrabWindow, +NormalEvents, +EventMask,
+PointerRelease, +KeyboardRelease, +ConfineWindow, +Cursor, +Time,
-Status)
grabs the pointer. This success of this predicate only means that the
request was correct. In order to determine if the grab was successful, the
Status value must be examined. Time may be xCurrentTime.

NormalEvents: specifies whether normal pointer event processing for the
grabbing client occurs during the pointer grab. (boolean, xFalse, all
pointer events are reported with respect to the GrabWindow and only
pointer events specified in EventMask are reported)

FuventMask: event mask for special event processing. (list of zero or more
of the following: xButtonPress, xButtonRelease,
xEnterWindow, xLeaveWindow, xPointerMotion,
xPointerMotionHint, xButton1Motion, xButton2Motion,
xButton3Motion, xButton4Motion, xButton5Motion,
xButtonMotion, xKeymapState)

PointerRelease, KeyboardRelease: specifies whether further events of this
type are to be processed normally (as opposed to deferring them)
during the grab. (boolean)

Confine Window: the XID of the window to confine the pointer to or
xNone,.

Status: reports the status of a correct request. (xSucess,
xAlreadyGrabbed, xInvalidTime, xNotViewable, or xFrozen)

xUngrabPointer(+Connection, +Time)
releases the grabbed pointer. Time may be xCurrentTime.

xSetActivePointer(+Connection, +EventMask, +Cursor, +Time)
changes active pointer grab parameters. EventMask is specified as de-
scribed in GrabPointer. Cursor may be xNone. Time may be
xCurrentTime.

xGrabButton(+Connection, +Button, +Modifiers, +GrabWindow,
+NormalEvents, +EventMask, +PointerRelease, +KeyboardRelease,
+ConfineWindow, +Cursor)
establishes a passive pointer grab, triggered by the specified circumstances.

Button: specifies the number of the button to be grabbed. (xAny al-
lowed)

32



Modifiers: modifier mask. (a list of zero or more of the following: xShift,
xLock, xControl, xModl, xMod2, xMod3, xMod4, xMod5 o
xAny) '
NormalEvents, EventMask, PointerRelease, KeyboardRelease,
Confine Window: same as zGrabPointer.

xUngrabButton(+Connection, +Butten, +Modifiers, +GrabWindow)
removes a passive pointer grab trigger. Bufton and Modifiers are specified
as in zGrabBution

xGrabKeyboard(+Connection, +GrabWindow, +NormalEvents, +PointerRelease,
+KeyboardReleass, +Time, -Status)
grabs the keyboard. This success of this predicate only means that the
request was correct, In order to determine if the grab was successful, the
Status value must be examined. Time may be xCurrentTime.

NormalEvenis: specifies whether normal keyboard event processing for
the grabbing client occurs during the keyboard grab. (boolean, xFalse
indicates all keyboard events are reported with respect to the
Grab Window)

PointerRelease, KeyboardRelease, Siatus: same as in zGrabPointer.

xUngrabKeyboard(+Connection, +Time)
releases the grabbed keyboard.

xGrabKey(+Connection, +Keycode, +Modifiers, +GrabWindow, +NormalEvents,
+PointerRelease, +KayboardRelease)
establishes a passive keyboard grab, triggered by the specified circum-
stances. Time may be xCurrentTime.

Keycode: keycode for the specific key to be grabbed. (xAny allowed)

Modifiers: same as in 2GrabBution.

NormalEvents: same as in zGrabKeyboard.

PointerRelease, KeyboardRelease: same as in zGrabPointer.
xUngrabKey{+Connection, +Keycode, +Modifiers, +GrabWindow)

removes a passive keyboard grab trigger. Keycode is specified as in
zGrabKey. Modifiers is specified as in zGrabBution.

xAllowEvents{+Connection, +Mode, +Time)
changes pointer and keyboard event processing modes during an active
grab. Time may be xCurrentTime.

33



Mode: specifies which events are released. (xAsyncPointer,
xSyncPointer, xReplayPointer, xAsyncKeyboard, xSyncKeyboard,
xReplayKeyboard, xAsyncBoth, xSyncBoth)

xGrabServer{+Connection)
grabs the server.

xUngrabServer(+Connection)
releases the server.

xGetScreenSaver(+Connection, ?Timeout, ?interval, ?Blanking, 7Exposures)
gets current screen saver parameters.

Blanking: whether the screen is blanked. (xNoBlanking, xBlanking)
Ezposures: whether exposures are enabled. (xNoExposures, xExposures)

xSetScreenSaver(+Connection, +Timeout, +Interval, +Blanking, +Exposures)
sets screen saver parameters.

Timeout: timeout value in seconds. (xDefault, xDisable allowed)
Interval: change interval in seconds. (xDisable allowed)
Blanking, Ezposures: same as in rGetScreenSaver. {xDefault allowed)

xScreenSaver(+Connection, +Activate)
turns the screen saver on or off. Activaie is boolean. The xFalse value

causes the screen saver to be reset.

xQueryAccess(+Connection, -Control, -HostList)
gives information about the current state of access control. Controlis a
boolean indicating whether access control is enabled. HostList is the list
of hostnames on the access list.

xSetAccess(+Connection, +Enable)
turns access control on or off. E‘nable is a boolean. If it is xFalse, access
control is disabled.

xSetHostAccess(+Connection, +Insert, +Host)
inserts or deletes a host from the access list. Insert is a boolean. If it is
xFalse, the specified host is deleted. Host is a hostname.

19 Events

Event information is represented in the event structure. The form of an event
structure is given in the data types section. The interpretation of the first four
fields of all events are the same. The first four elements are: Type, Serial,
SendEvent and Connection. The other fields are type dependent and are de-
scribed below.

34



xKeyPress, xKeyRelease
xEvent(..., Window, Root, Subwindow, Time, X, Y, RootX, RootY, State,

Keycode, SameScreen)

Time: time when the event was generated. If it is a “send”™ event,
xCurrentTime is allowed. (may be a split structure)

State: state of pointer buttons and modifier keys.

SameScreen: whether the root of the source window is on the same screen
as the reporting window. (boolean)

xButtonPress, xButtonRelease
xEvent(. .., Window, Root, Subwindow, Time, X, Y, RootX, RootY, State,
Button, SameScreen)
The Time, State and SemeScreen elements are the same as in the
zKeyPress structure.

xMotionNotify
%xEvent(..., Window, Root, Subwindow, Time, X, Y, RootX, RootY, State,

IsHint, SameScreen)
The Time, State and SameScreen elements are the same as in the

zKeyPress structure.

IsHint: whether the event is a “hint” event or a normal motion event.
{boolean)

xEnterNotify, xLeaveNotify
xEvent(..., Window, Root, Subwindow, Time, X, Y, RootX, RootY, Mode,
Detail, SameScreen, Focus, State)
The Time, SameScreen and Staie elements are the same as in the
zKeyPress structure.

Mode: specifies whether this event is a “normal” one or due to grab
processing. (xNormal, xGrab, xUngrab)

Detail: additional information about the event. (xAncestor,
xVirtual, xInferior, xNonlinear, xNonlinearVirtual)

Focus: whether the reporting window is the focus window. {boolean)

xFocusln, xFocusOut
xEvent(. .., Window, Mode, Detail)

Mode: specifies whether this event is a “normal® one or due to grab
processing. (xNormal, xGrab, xUngrab, xWhileGrabbed)

Detail: additional information about the event. (xAncestor, xVirtual,
xInferior, xNonlinear, xNonlinearVirtual, xPointer, xPointerRoot,
xNone)

35



xKeymapNotify
xEvent(. .., Window, Keymap)
Keymap is a list of keycodes.

xExpose
xEvent(..., Window, X, Y, Width, Height, Count)

xGraphicsExpose
xEvent(..., Drawable, X, Y, Width, Height, Count, MajorCode, MinorCode)

xNoExpose
xEvent(. .., Drawable, MajorCode, MinorCode)

xVisibilityNotify
xEvent{..., Window, State)

State: the new state of window visibility. (xUnobscured, xPartial,
xObscured)

xCreateNotify
xEvent(. .., Parent, Window, X, Y, Width, Height, BorderWidth,
OverrideRedirect)

QOverride Redirect: the value of this field in the zCreate Window or
zSetWindow requests for the window in question. (boolean)

xDestroyNotify
xEvent(..., Event, Window)

xUnmapNotify
xEvent(..., Event, Window, FromConfigure}

FromConfigure: whether this event was generated because the parent
window was resized and this window had a window gravity set to
UnmapGravity. (boolean)

xMapNotify
xEvent(..., Event, Window, OverrideRedirect)
The OverrideRedirect field is the same as in CreateNotify structure.

xMapRequest
xEvent(. .., Parent, Window)

xReparentNotify
xEvent{..., Event, Window, Parent, X, Y, OverrideRedirect)
The OverrideRedirect field is the same as in zCreateNotify structure.

36



xConfigureNotify
xEvent(. .., Event, Window, X, Y, Width, Height, BorderWidth, Above,

OverrideRedirect)
The OverrideRedirect field is the same as in rCreate Notify structure.

Above: the XID of sibling window under the window whose state just
changed. If the window is at the bottom of the stack, this value is

xNone.

xConfigureRequest
xEvent{.. ., Parent, Window, X, Y, Width, Height, BorderWidth, Above,

Detail, ValueMask)
The Abgove value is specified as in the xConfigureNotify structure.

Detail: stacking mode request. (xAbove, xBelow, xToplf, xBottomlf,
xOpposite)

ValueMask: a list of which requests were made. The list is made up of
zero or more of: xX, XY, xWidth, xHeight, xBorderWidth, xSibling,
xStackMode.

xGravityNotify
xEvent(. .., Event, Window, X, Y)

xResizeRequest
xEvent{. .., Window, Width, Height)

xCirculateNotify
xEvent(. .., Event, Window, Bottom)

Bottom: whether the request is to place the window on the bottom of
the stack. (boolean, xFalse indicates the window should be placed
on top)

xCirculateRequest
xEvent(. .., Parent, Window, Bottom)
The Bottom field is the same as in the zCirculate Notify structure.

xPropertyNotify
xEvent(. .., Window, Atom, Time, Delete)

Time: timestamp of when the value changed. If it is a “send” event,
xCurrentTime is allowed. (can return a split structure)

Delete: whether the property was deleted. (boolean, xFalse indicates a
new value was assigned to the property)

37



xSelectionClear
xEvent(..., Window, Selection, Time)
The Time field is the same as in the tPropertyNotify structure. -

xSelectionRequest
xEvent(..., Owner, Requestor, Selection, DestType, Property, Time)

Property: a property or xNone.

Time: timestamp of the zConvertSelection request or xCurrentTime.
{can be a split structure)

xSelectionNotify
xEvent(..., Requestor, Selection, DestType, Property, Time)
The Property field is the same as in zSelection Request structure.

Time: timestamp of the conversion time or xCurrentTime. (can be a
split structure)

xColormapNotify
xEvent(. .., Window, Colormap, Modified, Load)

Colormap: colormap XID or xNone, which indicates that the colormap
(associated with Window) was destroyed via zDestroyColormap.

Modified: indicates the colormap was modified. (boolean, xFalse indi-
cates the colormap was (un)loaded, instead of being modified)

Load: If Modified is false, then this field specifies whether the colormap
was loaded. (boolean, xFalse indicates that the colormap was un-
loaded)

xClientMessage
xEvent(..., Window, MessageType, Format, Datay, ..., Data,)
If format is 8, there are 20 data elements. There are 10 data elements for
format 16 and 5 for format 32.

xMappingNotify
xEvent(..., Window, Raquest, First, Count)

Request: type of request. (xModifier, xKeyboard, xPointer)

Some sets of events are described by event masks. An event mask is a list of
zero or more event sets. Possible event sets include: xKeyPress, xKeyRelease,
xButtonPress, xButtonRelease, xEnterWindow, xLeaveWindow,
xPointerMotion, xPointerMotionHint, xButtonlMotion, xButton2Motion,
xButton3Motion, xButton4Motion, xButton5Motion, xButtonMotion,
xKeymapState, xExposure, xVisibilityChange, xStructureNotify,

38



xResizeRedirect, xSubstructureNotify, xSubstructureRedirect, xFocusChange,
xPropertyChange, xColormapChange, and xOwnerGrabButton.
The following predicates provide event processing capabilities.

xEventsQueued(+Connection, +Mode, -Count)
gives a count of the events queued. Mode may be xAlready, xAfterReading
or xAfterFlush.

xNextEvent(+Connection, +Remove, -Event)
returns the next event on the queue. This predicate blocks, if no event is
available. If Remouve is true, the event is removed from the queue. A non-
blocking version of this predicate can be simulated by using zGetEvent.

xGetEvent(+Connection, +Window, +Mask, +Type, +Remove, +Block, -Event)
searches the event queue for events matching the specified criteria. At
least one of Remove and Block should be true.

Window: event window or xAny.

Mask: event mask or nil for all possible event sets.
Type: event type or xAny.

Remove: the matching event is removed. (boolean)

Block: the search will block if no event is available. The predicate will fail
if no matching event is available and this argument is set to xFalse.
{boolean)

xSelectEvent(+Connections, +ReadFDs, +WriteFDs, +ExceptFDs, +TimeQut,
-SConnections, -SReadFDs, -SWriteFDs, -SExceptFDs, -TimeOutFlag)
selects an event source, This predicate selects the next source of events
from a set of connections and file descriptors. If a connection is “selected”,
events are ready to be read from it. If a file descriptor is “selected”, then
it is ready to be read or written or some exception has occurred on it.
The exact interpretation depends on which list the descriptor appears in.
In addition, a timeout mechanism is provided.

Connections: list of X Connections.

ReadFDs, WriteFDs, ExceptFDs: lists of file descriptors. The respective
lists are read file descriptors, write file descriptors and exception file
descriptors.

TimeOut: number of milliseconds. An indefinite timeout can be indicated
by using xNone. (can be split structure or xNone)

SConnections: list of selected connections.
SReadFDs, SWriteFDs, SEzceptFDs: list of selected file descriptors.
TimeOutFlag: whether the request timed out. (boolean)

39



xPutBackEvent(+Connection, +Event)
puts the specified event back on the front of the event queue.

xSendEvent(+Connection, +Window, +Propagate, +EventMask, +Event)
sends the event described to the specified window. Fails on improperly
constructed events.

Window: specifies the destination window. (xPointerWindow,
xInputFocus allowed)

Propagate: specifies whether the event should be allowed to propagate.
{boolean)

EventMuask: Clients receive this event only if selecting on an event spec-
ified in this mask.

xFlush{+Connectian)
flushes the connection output buffer to the X server.

xSyne(+Connection, +Discard)
flushes the connection output buffer and waits until all requests have been
processed. Discard is a boolean.

xSynchronize{+Connection, +0On)
turns synchronous mode on ot off.

xGetMotionEvents(+Connection, +Window, +Start, +Stop, -MotionEventList)
gives a list of pointer motion events in between the specified times.
MotionEveniList is a list of motion structures. Start and Step can be
xCurrentTime.

20 Miscellaneous

xList Extensions(+Connection, 7ExtensionList)
lists all extensions supported by the server.

xQueryExtension(+Connection, +Name, ?Opcode, 7Event, ?Error)
provides information about the specified extension.

xNoOp{+Connection)
does a no-op protocol request, exercising the connection.

xGetDefault{+Connection, +Program, +Option, ?Default)
obtains the value of a default. Default is always unified with an atom, if
a default is found. This predicate fails, if no default is found.

40



xParseGeometry{ 4-Specification, -Width, -Height, -X, -Y, -XNegative, -YNegative)
parses a standard X geometry specification. If a particular geometry com-
ponent in Specification is not present, its corresponding return element is
xNone. XNegative and YNegative are booleans.

xGeomnetry{+Screen, +Specification, +PDX, +PDY, +PDW, +PDH, -X, -Y, -W,
_H, -Hints)
parses a standard X geometry specification, fills in missing elements with
program defaults and figures out geometry hints.

Screen: a screen descriptor.
Specification: geometry specification.

PDX, PDY, PDW, PDH: program default values for X, Y, width and
height.

X, Y, W, H: final values for X, Y, width and height.

Hints: a list of geometry hints for use with rSetNormalHinis.

xSetStandardProperties{+Connection, +Window, +Program, +IconName,
+WMHints, +Command, +NormalHints)
sets the “standard” window manager properties.

Program: the program name, used to set the WM_.NAME property.

JconName: name to be used with the program when iconified, used to
set the WM ICON_NAME property.

WMHints: described with zSet WM Hints.

Command: command used to invoke the program, used to set the

WM_COMMAND property. The goal used to invoke the X client
should be passed here.

NormalHints: described with zSetNormalHints,

xSetWMHints(+Connection, +Window, +HintList)
sets the WM_HINTS property, HintListis an attribute list containing any
of the following requests:

xInput{+Value)
whether the application relies on the window manager to set input
focus. (boolean)

xinitialState(+Value)
the initial state of the application. (xDontCare, xNormal, xZoom,
xIconic, xInactive)

xlconPixmap(+Value)
the icon pixmap XID.

41



xlconWindow(+Value)
the icon window XID,.

xlconX(+Value)
the X coordinate of the icon window.

xlcon’Y(+Value)
the Y coordinate of the icon window.

xlconMask{+Value)
the icon mask pixmap XID.

xWindowGroup(+Value)
the window group XID.

xSetNormalHints{+Connection, +Window, -+HintList)
sets the WM_.NORMAL_HINTS property. HintList is an attribute list
containing any of the following requests:

xUserX(+Value)
user specified X coordinate.

xUserY(+Value)
user specified Y coordinate.

xUserWidth({+Value)
user specified width.

xUserHeight{+Value)
user specified height.

xProgramX(+Value)
program specified X coordinate.

xProgramY(+4Value)
program specified Y coordinate.

xProgramWidth(+Value)
program specified width.

xProgramHeight{+Value)
program specified height.

xMinWidth(+Value)
program specified minimum width.

xMinHeight(+Value)
program specified minimum height.

xMaxWidth(+Value)
program specified maximum width.

xMaxHeight{+Value)
program specified maximum height.

42



xWidthincrement(+Value)
program specified width resize increment.

xHeighttncrement(+Value)
program specified height resize increment.

xMinAspectNumerator(+Value)
program specified minimum aspect ratio numerator.

xMinAspectDenonminator(+Valtue)
program specified minimum aspect ratio denominator.

xMaxAspectNumerator(+Value)
program specified maximum aspect ratio numerator.

xMaxAspectDenominator(+Value)
program specified maximum aspect ratio denominator.

xOk
succeeds if XWIP has not received any X server detected errors yet, Usu-

ally, it is used after an zSync (see above).

xPrecision(7Bits)

If Bits is instantiated, then the XWIP precision threshold (in bits) is
changed to the specified value. Data elements requiring greater preci-
sion will be represented as a split structure. Unsigned data will be split
at a threshold of one less than specified. By default, this value should be
set properly for the particular Prolog interpreter. It cannot be set to less
than 18, or greater than 33. The value 33, essentially prevents use of split
structures. If Bils is not instantiated, the current value is returned.

43



A Xlib Equivalents

Most predicates use the same (except for capitalization) names as their Xlib
counterparts. In those cases, where different names are used, the Xlib equivalent
is listed below.

XWIP Predicate

Xlib Function(s)

xAtom XGetAtomName
XInternAtom
xAtomExists XInternAtom
xCloseConnection XCloseDisplay
xCloseFont XUnloadFont
xDestroyColormap XFreeColormap
xDestroyCursor XFreeCursor
xDestroyGC XFreeGC
xDestroyPixmap XFreePixmap
xDownKeymap XQueryKeymap
xDrawText XDrawText
XDrawText16
xGetColors XQueryColors
xGetEvent XCheckIfEvent
XIfEvent
XPeekIfEvent
xGetImage XGetSublmage
xGetProperty XGetWindowProperty
xImageText XDrawImageString
XDrawlmageString16
xLoadColormap XInstallColormap
xLoadFont XQueryFont
xLoadedColormaps X ListInstalledColormaps
xMoveToNewColormap XCopyColormapAndFree
xNextEvent XNextEvent
XPeekEvent
xOpenConnection XOpenDisplay
xOpenFont XLoadFont
xPointerState XQueryPointer
xQueryAccess XListHosts
xQueryColor XLookupColor
xQueryConnection Display macros and functions
xQueryKeyboard XGetKeyboardControl
xQueryPixmap XGetGeometry

{continued on next page)

44



XWIP Predicate

Xlib Function(s)

xQueryPointer
xQueryScreen
XQueryWindow
xRefreshMapping
xRepeatKeymap
xRequestColor

xRequestNamedColor

xScreenSaver
xSetAccess
xSetActivePointer
xSetClips
xSetColors
xSetGC
xSetKeyboard
xSetNamedColor
xSetPointer
xSetWindow

XxSetProperty
xTextExtents

xUnloadColormap
xUnloadFont
xWindowProperties

XGetPointerControl

Screen macros and functions
XGetWindowAttributes
XRefreshKeyboardMapping
XGetKeyboardControl
XAllocColor
XAllocNamedColor
XForceScreenSaver

XSet AccessControl
XChangeActivePointerGrab
XSetClipRectangles
XStoreColors

XChangeGC
XChangeKeyboardControl
XStoreNamedColor
XChangePointerControl
XChangeWindowAttributes
XConfigureWindow
XChangeProperty
XTextExtents
XTextExtentsl6
XUninstaliColormap
XFreeFont

XListProperties

45



B X Font Cursors

The following are available cursor shapes in the standard cursor font.

num._glyphs X_cursor

arrow based.arrow.down
based_arrow_up boat

bogosity bottom_ left_corner
bottom right_corner bottomside
bottom_tee box_spiral
center_ptr circle

clock coffee_mug

cross cross.reverse
crosshair diamond.cross

dot dotbox
double_arrow draft_large
draft_small draped_box
exchange fleur

gobbler gumby

handl hand?2

heart icon

iron._cross left_ptr

left_side left_tee

leftbutton ll_angle

Ir_angle man
middlebutton mouse

pencil pirate

plus question_arrow
right_ptr right_stde
right_tee rightbutton
rtllogo sailboat
sb_down_arrow sb_h_double_arrow
sb.left_arrow sb_right.arrow
sb_up.arrow sh_v_double_arrow
shuttle sizing

spider spraycan

star target

teross topleft_arrow
top_left_corner top_right.corner
top.side top-tee

trek ul_angle

umbrella ur.angle

watch xterm

46



Index

event masks, 38
event types, 5

xAddPixel, 24
xAllocColorCells, 18
xAllocColorPlanes, 18
xAllowEvents, 33
xAre, 5

xAtom, 15
xAtomExists, 15
xBell, 31
xButtonPress, 35
xButtonRelease, 35
xCell, 5
xCirculateNotify, 37
xCirculateRequest, 37

xCirculateSubwindows, 14

xClearArea, 21
xClientMessage, 38
xCloseConnection, 8
xCloseFont, 25
xColor, 5
xColormapNotify, 38
xConfigureNotify, 37
xConfigureRequest, 37
xConnections, 8
xConvertSelection, 16
xCopyArea, 22
xCopyGC, 19
xCopyPlane, 22
xCreateColormap, 17
xCreateFontCursor, 27
xCreateGC, 19
xCreateGlyphCursor, 28
xCreatelmage, 23
xCreateNotify, 36
xCreatePixmap, 16
xCreatePixmapCursor, 28
xCreateWindow, 11
xDeleteProperty, 16
xDelta, 5

47

xDepths, 10
xDestroyColormap, 17
xDestroyCursor, 28
xDestroyGC, 19
xDestroylmage, 23
xDestroyNotify, 36
xDestroyPixmap, 16
xDestroySubwindows, 12
xDestroyWindow, 12
xDownKeymap, 29
xDrawArcs, 22
xDrawLines, 22
xDrawPoints, 22
xDrawRectangles, 22
xDrawSegments, 22
xDrawText, 27
xEnterNotify, 35
xEvent, 5
xEventsQueued, 39
xExpose, 36
xFillArcs, 22
xFillPolygon, 22
xFillRectangles, 22
xFlush, 40

xFocusIn, 35
xFocusQut, 35
xFont, 6

xFreeColors, 18
xGCs, 19

XxGeometry, 41
xGetCharlnfo, 27
xGetColors, 17
xGetDefault, 40
xGetEvent, 39
xGetFontPath, 25
xGetFontProperty, 27
xGetlmage, 24
xGetInputFocus, 31
xGetKeyboardMapping, 30
xGetModifierMapping, 30
xGetMotionEvents, 40



xGetPixel, 24
xGetPointerMapping, 29
xGetProperty, 15
xGetScreenSaver, 34
xGetSelectionOwner, 16
xGrabButton, 32
xGrabKey, 33
xGrabKeyboard, 33
xGrabPointer, 32
xGrabServer, 34
xGraphicsExpose, 36
xGravityNotify, 37
xImages, 23
xImageText, 27
xKeyboardMap, 6
xKeycodes, 6
xKeycodeToKeysym, 31
xKeymapNotify, 36
xKeyPress, 35
xKeyRelease, 35
xKeysyms, 6
xKeysymToKeycode, 31
xKillClient, 31
xLeaveNotify, 35
xListExtensions, 40
xListFonts, 25
xLoadColormap, 17
xLoadedColormaps, 17
xLoadedFonts, 25
xLoadFont, 25
xMapNotify, 36
xMappingNotify, 38
xMapRequest, 36
xMapSubwindows, 14
xMapWindow, 14
xModifiertMap, 6
xMotion, 6
xMotionNotify, 35
xMoveToNewColormap, 17
xNextEvent, 39
xNoExpose, 36

xNoOp, 40

xOk, 43

xOpenConnection, 7

xOpenFont, 25
xParseColor, 17
xParseGeometry, 41
xPaoint, 6
xPointerMap, 6
xPointerState, 28
xPrecision, 43
xProperty, 7
xPropertyNotify, 37
xPutBackEvent, 40
xPutlmage, 24
xQueryAccess, 34
xQueryBestSize, 21
xQueryColor, 17
xQueryConnection, 8
xQueryDepth, 10
xQueryExtension, 40
xQueryFont, 25
xQueryGC, 19
xQuerylmage, 23
xQueryKeyboard, 29
xQueryPixmap, 16
xQueryPointer, 28
xQueryScreen, 9
xQueryTree, 14
xQueryVisual, 11
xQueryWindow, 12
xRecolorCursor, 28
xRectangle, 7
XxRefreshMapping, 31
xReparentNotify, 36
xReparentWindow, 31
xRequestColor, 18
xRequestNamedColor, 18
xResizeRequest, 37
xRotateProperties, 16
XScreens, 9
xScreenSaver, 34
xSegment, 7
xSelectEvent, 39
XSelectionClear, 38
xSelectionNotify, 38
xSelectionRequest, 38
xSendEvent, 40



xSetAccess, 34 xWarpPointer, 28
xSetActivePointer, 32 xWindowProperties, 15
xSetClips, 21
xSetCloseDownMode, 31
xSetColors, 18
xSetDashes, 21
xSetFontPath, 25
xSetGC, 21
xSetHostAccess, 34
xSetInputFocus, 32
xSetKeyboard, 30
xSetKeyboardMapping, 30
xSetModifierMapping, 30
xSetNamedColor, 18
xSetNormalHints, 42
xSetPixel, 24
xSetPointer, 29
xSetPointerMapping, 29
xSetProperty, 15
xSetSaveSet, 31
xSetScreenSaver, 34
xSetSelectionOwner, 16
xSetStandardProperties, 41
xSetWindow, 13
xSetWMHints, 41

xSplit, 7

xSubImage, 24

xSync, 40

xSynchronize, 40

xText, 7

xTextExtents, 27
xTranslateCoordinates, 14
xUngrabButton, 33
xUngrabKey, 33
xUngrabKeyboard, 33
xUngrabPointer, 32
xUngrabServer, 34
xUnloadColormap, 17
xUnloadFont, 25
xUnmapNotify, 36
xUnmapSubwindows, 14
xUnmapWindow, 14
xVisibility Notify, 36
xVisuals, 11,

49






