Computer Science Department Technical Report
University of California
Los Angeles, CA 90024-1596

DIVERSITY IN N-VERSION SOFTWARE:
AN ANALYSIS OF SIX PROGRAMS

Werner Schuetz October 1988
CSD-880078

UNIVERSITY OF CALIFORNIA

Los Angeles

Diversity in N-Version Software:

An Analysis of Six Programs

A thesis submitted in partial satisfaction of the
requirements for the degree Master of Science
in Computer Science
by

Wemer Schuetz

1987

© Copyright by
Wemer Schuetz

1987

v

The thesis of Werner Schuetz is approved.

VileD renmee

Milos D. Ercegovac

6/5«7/4. Ui —

David A. Rennels

O dor Qoo

Algirdas Aau_lems, Committee Ch

University of California, Los Angeles

1987

e

TABLE OF CONTENTS

R
L.l Purpose and Goals of (his Research [
12 The Methodology Used in this Study '
1.3 The UCLA/Honeyweli Experiment
1.4 The Application Problem ...

..
...

...

2 THE ORGANIZATION AND OVERALL STRUCTURE OF THE
e s e OF THE
2.1 Introduction and General Observations ./
2.2 The Main PPOBTAI o
2.3 The Organization of the Complementary Filter Module and its
Interface with the Main Pro
2.4 The Organization of the Mode Logic Module and its Interface with
The o DIOBIAD o oo TS With
2.5 The Organization of the Control Laws angd their Interface with the
Main PROSTAM .. LD

..

ina

3.1 Barometric Altitude Complementary Filter
3.2 Radio Altitude COMPIEMENtary Filero
3.3 Glide Slope Deviation Complementary Filter oo
34 Mode FOBIC
3.5 Altitude Hold Control Law, Quter LOOD oo
3.6 Glide Slope Capture and Track Control Law, Outer Loop
3.7 Flare Control Law, Quter LOOD e
3.8 Inner T
300 om0 MO
310 Mode DIPIAY ettt
3.11 Fault DISPIY e
3.12 Signal DIPIRY et
g
S22 € o L
3123 MODULAg0
3154 PASCAL T
3153 PROLOG w0
128 T
3.12.7 Additional OBSEIVALONS ..o
3.13 The Implementation of the Primitive Operations ...

iii

page

~J LA G s

33
35
35
36
37
39
40
41
42
43
43

45
46
46
47
48
48
49
49
51

4 COMPARISON OF VARIOUS OTHER ASPECTS
4.1 The Declaration and Use of Variables
4.2 Placement of Calls to Vote Routines
4.3 Initialization

......................................

...

...

...

4.4 Handling the Differences of the Inner Loop

......................................

4.5 Time-Dependent COMPULALONScoeovvmeeeeeeeereeeereroeeeeeo oo,
4.6 Resetting of Test Points

3 CONCLUSIONS ...t
5.1 Summary of RESUIS ...cuccuivireeiriviniieercseeeeeeeee et
3.2 Observations and Implications for the N-Version Design Principle
5.3 Suggestions for Future Research

REFERENCES

--

iv

..

..

..

--

36
56
71
72
76
77
80

81
81
87
91
94

96

LIST OF FIGURES

page
Pitch Control System Functions and Data Flow Diagram ... 8
Structure of the ADA PTOEIAM ...covuuuiuuiremeeeeieeeseeeeeeesees s 26
Structure of the C PIOZram ..o ivueeerveie e 27
Structure of the MODULA-2 PrOGIaMoouueeeaereeseeoseesoeooeoeoeoos oo 28
Structure of the PASCAL PIOZIAIMooooeeeeeeeeeeeseeseeeseoeseooeoeoeooooooeoe 29
Structure of the PROLOG PIOZIAMcvveuvoeecceeeeeeceeees e, 30
Structure of the T PrOBIamcccooviviuimruurrenecesion oo eeeesreseme s 32
Barometric Altitude Complementary Filterooeeoreeoemereeeeeeeoeooeeon, 97
Radio Altitude Complementary FIterco.ooeoeceeeevvoremsoereeooeeoeooooeeeooeoeo 98
Glide Slope Deviation Complementary Filtercouoovvoeoeeeooiveoisooeoooon, 99
MOGE LOZIC ..ottt srese s eesemese et seessses s et 100
FPEC1 and FPDC1 AIGOTItIMScoucuuieeeeceecereeneeeececeeeesessvesstesesses e s ees e 101
Alttude Hold Control LaWcccvcieruireeeenrirnnseenee e eeeesnsssesiessesoesess e e 102
Glide Slope Capture and Track Control LaWcovvvevvevveeemeeeeoseesos s, 103
Flare Control LawWcoricecnineciece s ceeee e tesssssssessenssessessmsssossosnene. 104
Command MODILOTcuceeececeenreriesnnnensensessssessessssseseeesesessssessessenesssessesenesens 105

ACKNOWLEDGEMENTS

The research described in this thesis was supported jointly by the Sperry Com-
mercial Flight Systems Division of Honeywell, Inc., Phoenix, Arizona, and by the
Microelectronics Innovation and Computer Research Opportunities (MICRO) pro-

gram of the State of California.

I would like to thank my committee, Dr. Avi¥ienis, Dr. Ercegovac, and Dr.
Rennels, for serving on my committee. They were all extremely helpful under tight

time pressure.

A special thanks to Dr. AviZienis, director of the UCLA Dependable Comput-

ing and Fault-Tolerant Systems Laboratory, who enabled me to come to UCLA at all.

Thanks go also to the members of the fault tolerance research group, Michael
R. Lyu, Mark K. Joseph, Johnny J. Chen, and Chi S. Wu, for their support and stimu-

lating technical discussions.

vi

ABSTRACT OF THE THES]S

Diversity in N-Version Software:
An Analysis of Six Programs
by
Wermner Schuetz
Master of Science in Computer Science
University of California, [os Angeles, 1987
Professor Algirdas Avi¥ienis, Chajr

with differene structures,

CHAPTER 1|
INTRODUCTION

1.1 Purpose and Goals of this Research

The mult-version software approach to fault-tolerant software systems
involves the development of functionally redundant, yet indcpendent.ly developed
software components. These components are cxecuted concurrently under a super-
visory system that uses a decision algorithm based On consensus to determine the finaj

resuit [Aviz84, Aviz85a).

In all discussions and publications up to date, "Design Diversity” is in effect
referred 10 as a merhod: If two or more functionally equivalent programs are written
by independent programmers or programming teams, perhaps in addition using dif-
ferent variations of the Specification, different software development environments,
different Programming languages, or different software tools — as the case might be -
then the programs resulting from this effort are called "diverse", This method has
been criticized for not being as effective as desired, even for not being effective

enough to be practical at a]) [Knig86]).

As far as can be ascertained, no one has ever mied to analyze and compare dif-

ferent programs produced by this approach to find out which and how many

"

differences can be identified and generated by the Design Diversity methodology.
This is exactly what is done in this study. Here, "diversity” refers to the structural
differences found when analyzing and comparing different programs produced by the
Design Diversity methodology. "Structural differences" means differences with
Tespect to aspects that can be determined by examination and inspection of the (static)
code of the programs, for example the modularization, the algorithms, and the
definition and use of data stuctures. There are also other indicators of diversity, such
as differences in execution time, memory requirements, or the type of errors found
during testing. These are not examined in this study because they appear to be only
indirect indications of diversity that are dependent on the approach used by the indivi-
dual programmer (and thus on the structural aspects, e.g. the ilgorithms) and on the

software development tools (especially the compilers) used.

Two of UCLA’s long-range research goals [Aviz87a] are: 1) 1o develop
methods to qualitatively and quantitatively assess the amount of diversity present in a
set of program versions, in order to be able to determine the effects of different varia-
tions of the Design Diversity Paradigm under development; and 2) to explore the
benefits and effects of "random" versus “enforced” diversity. "Enforced” diversity is
obtained by imposing requirements to use different algorithms, data structures,
specifications, software development tools, programming languages, etc. "Random"
diversity, on the other hand, relies on the isolation between programming teams and

on their different backgrounds and approaches to the problem.

could be listed, if one was only willing to go sufficiently detailed into the source code.
Therefore, the next step was to categorize and order all the differences observed into a
number of classes or aspects. Finally, the source code of each program was inspected
again with respect to each aspect identified before, and an attempt was made to sum-
marize the differences found in each class and to try to abstract as much as possible

from the source code.

The rest of this thesis is organized as follows: The next sections of the intro-
duction give some background information about the UCLA/Honeywell Experiment
and its application problem, respectively. The next three chapters contain a descrip-
tion of the differences found between the six programs. This material has been organ-
ized into a description of organizational and structural (high-level) differences, a
description of diversity in implementation and computation sequence (lower-level),
and a description of various other aspects which could not be categorized easily in one
of the two categorics above. A reader who is not interested in these very detailed
descriptions might want to skip these three chapters and proceed directly to Chapter 5.
There, a general summary of the results, as well as a few observations and conclusions
are presented. Finally, an Appendix contains reproductions of the figures used in the
specification to define most of the algorithms of the application. This material can be
used to verify some of the observations and conclusions (especially those related to

the material described in Chapter 3).

1.3 The UCLA/Honeywell Experiment

objectives, the Problem chosen had 10 be as large as Practical, and it had o be a "real-
world" problem (thus the choice of the Flight Contro] System); furthermore
specifications and software development activities employed were as similar as poss;-

ble to the ones used in ap industria] environment,

gramming languages ADA®, C, MODULA-2, PASCAL, PROLOG, and T (a dialect
of LISP). The software development was structured into a design phase (4 weeks), a
coding and unit test phase (4 weeks), an integration test phase (2 weeks), and an

acceptance test phase (2 weeks).

A coordinating team, consisting of three researchers at the UCLA Dependable
Computing and Fault-Tolerant Systems Laboratory, supervised the six programming
teams and monitored their progress. The programmers and the coordinating team
communicated via a formal tool, i.e. electronic mail, to avoid the ambiguity of oral
communication, to control the type and amount of information communicated, and to
preserve a record for later inspection. The answer to each question or other problem
was only sent to the programming team that asked that question, with the help of
Sperry flight control experts, if necessary. Only answers that lead to an update or a

clarification of the specification were broadcast to all programming teams.

The twelve week programming effort lead to six programs of an average size
of 1739 lines of code, ranging from 1378 to 2253. More details about the objectives,
organization, execution, and evaluation results of this project can be found in two

technical reports [Aviz87a, Aviz87b].

ADA% s 2 registered trademark of the US Government AJPO.

1.4 The Application Problem

The programming task of the experiment was to write software for the Flight
Control Computer (FCC) whose function is to control and guide the aircraft along the
desired flight path, More specifically, the programmers were asked to provide the
software for the automatic landing phase (i.e. the last phase) of the flight. The problem
has been simplified insofar as only the vertical motion of the airplane is considered;
this is called the pirch control. It can be assumed that the vertical motion can be con-
trolled by a single surface of the airplane, the elevator. Thus, the main purpose of the
software is to compute and Output commands to set the position of the elevator. This
final output is called elevator command or lane command, since each program will be
but one of three computation lanes, each performing the same computation simultane-
ously. The major system funétions of the pitch control and its data flow are shown in
Figure 1. For more details, the reader should refer to the Specification Document

[Lyu87].

Simulated flights begin with the initialization of the system in the Altitude
Hold mode, at a point approximately ten miles from the airport. Initial altitude is
about 1500 feet, initial speed 120 knots (200 feet per second). Pitch modes entered by
the autopilot-airplane combination, during the landing process, are: Altitude Hold
(AHD), Glide Slope Capture (GSCD), Glide Slope Track (GSTD), Flare (FD), and

Touchdown (TD).

weidelq mopy BIEQ pue suonouny wasdg [01U0) yoig :1 amgiyg

sinding Aeidsiy = a
sinding soruopy purwwo) = o
PuBwwoy) auey =

sinduy 10susg sueldny = puadary

z £ x YA dINOD
YV | —| NOILVIAAQ | |
4dO7IS 3AITH
a
| Yovurw Je 907 LT dNOD
" sitiof | W -] WAL
Q)
W SYOLINOW I
ANVINIWOD
AL T dNOD

Sors. The Barometric Altitude and Ragip Altitude Complementary Filters provide
estimates of trye altitude from various altitude-related signals, where the former pro-
vides the altiyde reference for the Altitude Hold mode, and the lapter Provides the
altitude reference for the Flare mode. The Glide Slope Deviation Complementary

Flilter provides estimates for beam crror and radio altitude in the Glide Slope Capture
and Track modes,

Each Control Law consists of two parts, the Outer Loop and the Inner Loop,

where the Inner Loop is very simijar for all three Contro} Laws. The Altitude Hold

a path which targets a vertical speed of two feet per second at touchdown.

Each program checks its final result (elevator command) against the results of
the other programs. Any miscompare state (according to the algorithm used) is indi-
cated by the Command Monitor output, so that the supervisor program can take

appropriate action.

The Display continuously shows information about the FCC on various panels.
The current pitch mode is displayed for the information of the pilots (Mode Display),
while the results of the Command Monitors (Fault Display) and any one of sixteen

possible signals (Signal Display) are displayed for use by the flight engineer.

Upon entering the Touchdown mode, the automatic portion of the landing is
complete and the system is automatically disengaged. This completes the automatic

landing flight phase.

It was assumed that conceptually three of the programs would be executed in a
real FCC. Therefore, fault tolerance support mechanisms had to be specified in addi-

tion to the application itself, These are:

1) Test Points were used 10 output some selected intermediate values of each
major subfunction. Originally, Honeywell specified them for their own pur-
poses, especially error detection by version comparison. Most of them were
kept in the specification for the experiment, although some of them were

replaced by Cross-Check Points. For simplicity, they were output by using the

10

2)

3)

subsequent cross-check point routine; however, the Test Points were not
cross-checked. There are between 0 and 13 Test Points per major system func-

ton,

Cross-Check Points [Aviz85b] are used to cross-check the results of the major
system functions of the FCC (e.g. Complementary Filters, Mode Logic, Outer
Loop, Inner Loop, etc.) with the results of the other lanes before they are used
in any further computation. They have to be executed in a certain predeter-
mined order, but great care was taken not to overly restrict the possible choices
of computation Sequence. Seven cross-check points were specified:
VOTEFILTER]1, VOTEFILTER2, VOTEMODE, VOTEOUTER,
VOTEINNER, VOTEMONITOR, and VOTEDISPLAY.

Recovery Points [Ts087] are used to recover a failed program by supplying it
with a set of new, correct internal state variables. One recovery point was

specified: VOTESTATES.

In addition, two input routines were specified that were supplied by the coordi-

nating team. SENSORINPUT simulates reading all the airplane sensor input data,

LANEINPUT inputs the lane commands of the other two versions so that they can be

used in the Command Monitor.

11

CHAPTER 2

THE ORGANIZATION AND OVERALL STRUCTURE OF THE PROGRAMS

In this chapter the modularization of the six programs, the overall organiza-
tion, and the interface between the main program and its submodules will be com-

pared.

2.1 Introduction and General Observations

The first fact to observe is that all teams identified practically the same
modules. This was partly due to the nature of the problem and partly due to the
organization of the specification which was written as a functional partitioning of the

problem,

In the languages that explicitly support modularization constructs, the parti-

tioning was made as shown in Table 1:

12

Packages in ADA

Modules in MODULA-2

Main Program

AutolandModule (Main Prg)

Complcmcntary Filters

Radio Al Comp. Filter

Barometric AJ; and Glide Slope
Dev. Comp. Filters

Mode Logic Mode Logic
Altitude Hold Control Law Altitude Hold Control Law

Glide Slope Capture and

Glide Slope Capture and Track

Track Control Law Control Law

Flare Control Law Flare Control Law
Inner Loop Inner Loop
Command Monitor AB Command Monitors
Command Monitor AC

Displays Displays
Common_Pool Operator_Module

Table 1: Modularization in the ADA and MODULA-2 Programs

The last item in each of the above lists defines functions typically needed in
more than one of the other modules, such as Integrators, Magnitude Limiters, Rate
Limiters, and Linear Filters. No further comparisons are made here because only two

languages had the Opportunity to use explicit modularization constructs,

To have a common reference point for the following discussion we will con-
sider the programs to consist of the following global functions (or modules): Main

Program, Complementary Filters, Mode Logic, Control Laws (each consisting of

Some specific observations are needed here. The C Program has a main pro-
gram that consists only of a call to 3 C-function "autoland”. The PROLOG program

uses a PROLOG-function "autoframe” that does all the Computations for one time

13

frame and is repeatedly called by the main program. Similarly, a T-function "fly-
airplane” is executed in each time frame which in tur uses “control-plane” to do the
Control Law, Command Monitor, and Display computations, In these cases, we con-
sider the main program plus these auxiliary functions to be the "Main Program"
module.

In the following discussion, we will refer to & subprogram as a “procedure” if
its result(s) are returned by parameter passing or by setting of global variables, and it
will be referred to as 3 “function" if its result is returned via a "return” statement or a
similar construct, This distinction will be made regardless of whether a particular pro-
gramming language actually supports the distinction between procedures and func-
tions, or not. Those that do not support the distinction are C, PROLOG, and T. The
terms "procedure” and "function” are used according to the definition above

throughout the remainder of this thesis,

2.2 The Main Program

In general, the Main Program consists of some initialization statements and/or
procedures and of a loop which performs the actual computations until the aircraft
touches the ground. One iteration of the loop corresponds to the computations per-
formed within one time frame of 0.05 seconds, The T program only implements this
loop by using tail recursion of "fly-airplane"; all other programs use an appropriate

loop construct of their programming language,

14

Since the sequence of modules is practically unanimously determined by the
data dependencies of the problem, all teams developed basically the same algorithm.

It is also stated rather explicitly in the specification.

be performed in the following sequence:
1) Call SENSORINPUT to receive airplane sensor data.

2) Compute data estimates from complementary filters, and call VOTEFILTER],
VOTEFILTER2 properly to cross check output values of complementary filters.

3) Determine mode from mode logic, and call VOTEMODE to cross check output
values of mode logic.

4) If model valid discrete (MODV) is false, terminate your program. This lane is
closed.

5) If the mode is TOUCHDOWN, set lane command to 0.0 and call VOTEINNER,
then go t0 9} to perform monitor function and display module.

6) Initialize capture/track or fiare control law if mode has changed.

7) Compute the outer loop from altitude hold, capture/track, or flare control laws.
Then call VOTEQUTER to cross check output values of outer loop.

8) Compute lane command from inner loop of altitude hold, capture/track, or flare
control laws, and call VOTEINNER 1o cross check output values of inner loop.

9 Call LANEINPUT to receive the lane commands from the other lanes.

10) Perform the command monitor functions. Then call VOTEMONITOR to output
the monitor results and get the recovery command (via the variable

11) Compute display outputs, and call VOTEDISPLAY to cross check output values
of display.

12) If RECOVERY is true, call VOTESTATES to recover the internal states of the

15

FCC.
13) If the mode is TOUCHDOWN, terminate your Program. This completes the

execution of the flight control. Otherwise, g0 to 1) for the computation of the
next frame,

The following variations can be observed:

The ADA and PROLOG programs call SENSORINPUT for the first time out-
side the main loop. The motivation for that is obviously that some input values are
required to perform certain initializations, Thus this scheme enables the programs to
do as much initialization as possible before entering the main loop. The other pro-
grams do more initialization inside the main loop, and gencrally use a boolean flag to
determine if it should be performed in a given iteration of the loop or not. To make
up for this, the ADA program calls SENSORINPUT again at the end of the main loop,
but only if there will be another iteration of the loop (i.e. the mode is not yet Touch-
down). The PROLOG program uses a similar scheme, but callg SENSORINPUT at
the beginning of the main loop, after checking that the current Computation frame is

not the first one,

All teams moved step 5) below step 8) (see above) while making the Contro}
Law computation conditional on the fact that Touchdown mode is not yet reached,
Thus, in effect, step 5) became a "Touchdown Control Law", and this change resuited

in a cleaner Program structure,

16

The main differences in the Main Program modules are found in the level of

detail implemented there. This will be discussed in the subsequent sections,

2.3 The Organization of the Complementary Filter Module and its Interface

with the Main Program

The Complementary Filter module consists of three individual filters, the
Radio Altitude Complementa:y Filter, the Barometric Altitude Complementary Filter,

and the Glide Slope Deviation Complcmcntary Filter.

The Radio Altitude Complementary Filter is required to be computed during
all flight modes, the Barometric Altitude Complementary Filter only during Alttude
Hold mode, and the Glide Slope Deviation Complementary Filter during both Altitude
Hold and Glide Slope Capture and Track modes, Consequently, and because there is a
data dependency between the Radio Altitude and the Glide Slope Deviation Comple-
mentary Filters (the latter uses an output value of the former), it has been decided that
the vote routine VOTEFILTER] should check the output of the Radio Altitude Com-
plementary Filter, while VOTEFILTER?2 should check both Barometric Altitude and

Glide Slope Deviation Complementary Filters,

The following Table 2 shows the overall organization of the Complementary

Filter module:

17

ADA Three individual procedures for each Comple-
Mmentary Filter, called directly by the Main Pro-

gram,
C One procedure that internally calls three indivi-
dual procedures for each Complementary
L Filter,

MODULA-2 | The procedure for the Radio AlL Comp. Filter

is called directly by the Main Program,

Another procedure Organizes the calls to the

other two Compl. Filters.

PASCAL One procedure that internally calls three indivi-

dual procedures for each Complcmentary

Filter,

PROLOG Three individual procedures for each Comple-

mentary Filter, called directly by the Main Pro-
am,

Table 2: Overall Organization of the Complementary Filters

Table 3 gives the scquence in which the three Complementary Filters are com-

puted (an entry 1 means that this procedure or function is called first, etc.):

ADA | C | MODULA-2 | PASCAL PROLOG | T
Radio Alt, C. F, 1 1 1] 2 [2]
VOTEFILTER] 2 2 2 2 3 3
Baro. Alt. C.F. [3 3 3 3 1 1
G/SDev.C.F. | 4 4 4 4 4 4
VOTEFILTER2 || 5 5 5 5 5 5

Table 3: Computation Sequence of the Complementary Filters

tary Filters in 3 given time frame or not. Two approaches are found: ADA,

18

"system is either in Altitude Hold, Glide Slope Capture, or Glide Slope Track mode"
(MODULA-2, PROLOG, T). Cand PASCAL decide on a "flight mode first"-basis, i.e,
for each possible flight mode, the computations to be performed are determined and
the appropriate calls made. The first approach results in two consecutive [F-

statements, whereas the latter results in nested IF-statements,

2.4 The Organization of the Mode Logic Module and its Interface with the

Main Program

The Mode Logic module consists of two parts: the logic part which determines
the current flight mode and the flight-path part which Computes two intermediate
values (FPDC1 and FPEC]) that are input to the logic part, but that are needed only
while the system is in Altitude Hold mode. For layout reasons, two different figures
were used in the specification which seems to have caused some teams to treat these

WO parts quite independently from each other.

The following Table 4 shows the overall organization of the Mod_c Logic
Module:

19

ADA Procedure "Mode" is called by the Main Program. I uses two
functions "FPDC1" and "FPEC]" that compute and return the
intermediate values mentioned above. They are only called when
the system is in Altitude Hold mode.

C Procedure "mode_logic" is called by the Main Program. It uses
another procedure "flight_path" that computes the two intermedi-
ate values when the system is in Altitude Hoid mode, and sets
these values to zero otherwise.

MODULA-2 | Procedure “mdigc" is called by the Main Program. It uses two
functions “fpdcl” and "fpecl” that Compute the corresponding
intermediate value when the system is in Altitude Hold mode, and
sets these values to zero otherwise,

PASCAL Procedure "COMPUTEMODELOQGIC" is called by the Main Pro-
gram. It uses the procedures "COMPUTEFP" and "COMPU-
TEMODESTATE" for the two parts of the Mode Logic module.
"COMPUTEFP" computes the two intermediate valyes and is
called only when the system is in Altitude Hold mode, (Otherwise
a procedure "SETDEFAULTS" sets them to zero.)

PROLOG The Main Program first calls "fp_proc”, if the mode is Altitude
Hold, to compute the two intermediate values. Then, "mi_proc" is
called for the processing of the logic part.

T The Main Program calls the procedure "mode_logic", which in
turn calls "fp_error” and "fp_damping” if the mode is Altitude
Hold to get the two intermediate values. Then it calls
"pitch_modc_logjc" to compute the final output.

Tabie 4: Overall Organization of the Mode Logic

2.5 The Organization of the Control Laws and their Interface with the Main

Program

The three control laws compute the final and most important output of the
Flight Control Computer, the Lane Command, in Altitude Hold, Glide Slope Capture
and Track, and Flare mode respectively. Parts of these three control laws are (almost)
identical to each other; this part is referred to as the "Inner Loop", The specification

gave a hint that this part could be implemented only once; all teams adhered to that

20

suggestion. The parts of the control laws that differ from each other are called "Outer

Loop".

Table 5 shows the overal] organization of the Control Laws:

ADA

The Main Program calls a procedure to compute the appropriate
Outer Loop (depending on the flight mode), then calls a function
that computes the Inner Loop and returns the Lane Command.

The Main Program calls a procedure to compute the appropriate
control law (depending on the flight mode). Internally, calis to pro-
cedures to compute the Outer and the Inner Loop are made.,

MODULA-2

The Main Program calls a procedure to compute the appropriate
control law (depending on the flight mode). Internally, cails to pro-
cedures to compute the Outer and the Inner Loop are made.

PASCAL

The Main Program first calls the procedure "OUTERLOOPPROC"
which internally decides which one of three control law computa-
tion procedures to call (depending on the flight mode), then calls
the procedure "INNERLOOPPROC” to compute the Inner Loop.

PROLOG

The Main Program calls the procedure "do_outer” (a misleading
name!), that first calls the appropriate Quter Loop procedure
(depending on the flight mode), then the Inner Loop computation
procedure.

Depending on the flight mode, the Main Program calls a procedure
to compute the appropriate Quter Loop, then calls the Inner Loop
computation procedure.

Table 5: Overall Control Law Organization

2.6 The Organization of the Command Monitors and their Interface with the

Main Program

Each program was required to implement two Command Monitors to compare

its Lane Command with that computed by each of the other two lanes (a configuration

of three lanes per FCC was assumed). The result of each Command Monitor is a

boolean variable, indicating the outcome of the comparison.

21

The following Table 6 shows the overall organization of the Command Moni-

tors:

ADA The Main Program calls a function that returns the required result
for each Command Monitor. This function is implemented twice
(once for each Command Monitor) because different state vari-
ables are used internally.

C The Main Program calls a "monitor" procedure which does all the
necessary computations for both Command Monitors (duplicated
code).

MODULA-2 | The Main Program calls a procedure for Command Monitor pro-
cessing. Internally, a procedure that computes one Command
Monitor is called twice.

PASCAL The Main Program calls a procedure for Command Monitor pro-
cessing. Internally, a procedure that computes one Command
Monitor is called twice.

PROLOG The Main Program calls a procedure for Command Monitor pro-
cessing, Internally, a procedure that computes one Command
Monitor is called twice. '

T The Main Program calls a "monitor" procedure which does all the
necessary computations for both Command Monitors (duplicated
code).

Table 6: Overall Organization of the Command Monitor Module

Note: "Duplicated code” means that the Monitor procedure consists of two
parts for the implementation of one Command Monitor each. These parts are identical

except for the names of the state variables used.

2.7 The Organization of the Display Module and its Interface with the Main
Program
The Display Module is specified to consist of three parts, the Mode Display

which displays the curmrent flight mode, the Fault Display which displays the

22

compare/miscompare states as computed by the Command Monitors, and the Signal
Display which displays the value of one of sixteen signals, selected by one of the
parameters input by SENSORINPUT. The information has to be encoded in different

ways to drive the hardware of 3 (fictitious) display panel.

Table 7 shows the overal} organization of the Display Module:

ADA For each Display part, the Main Program calls a different pro-
cedure.

C The Main Program calls a procedure "display” that internally calls
one procedure per Display part.

MODULA-2 | The Main Program calls a procedure "display” that internally calls
one procedure per Display part.

PASCAL The Main Program calls a procedure "DISPLAYPROC" that inter-
nally calls one procedure each for the Mode Display and the Signal
Display. For the Fault Display, it twice calls a procedure that
displays the result of one Command Monitor.

PROLOG The Main Program calls a procedure "dspl_proc” that in turn calls
"Display_signals” to do the whole Display module. The latter uses
“calcnum” to do part of the Signal Display.

T The Main Program calls a procedure "disp" that processes all three
parts of the Display Module.

Table 7: Overall Organization of the Display Module

Note: The PROLOG implementation of the Display module is somewhat spe-
cial because bit manipulations are extremely tedious in PROLOG. Therefore,
“Display_signals” was written in the C language, put into the PROLOG interpreter,
and called in conjunction with VOTEDISPLAY. "Dspl_proc" itself only selects the
current flight mode and the correct signal value to be displayed by the Signal Display

and puts them in global variables to be passed to "Display_signals”.

23

Five teams chose the following order of computation: Mode Display, Fault

Display, and Signal Display. Only the PROLOG program computes the Fault Display

first, then the Mode Display, and the Signal Display last.

Another interesting variation depends on when the correct signal to be
displayed by the Signal Display is selected. If this is not done in the Main Program,
then all possible signals have to be communicated to the Display module. Different
strategies can be observed here, too. The following Table 8 summarizes these two

aspects:

|| sigpal selected in I siggals passed by

ADA Main Program N/A

C Signal Display global variables
MODULA-2 || Signal Display collected in a record
and passed by
parameter to
"display”; used as
global variables by

"signaldisplay".
PASCAL Display parameter
PROLOG Display lobal variables
T Display parameter

Table 8: Other Variations of the Signal Display

2.8 Summary

In this section, the calling hierarchy of subprograms for each of the six pro-
grams is given in Figures 2 — 7. It is felt that these will supply an overview of the
differences in structure and organization of the programs. Indentation in the following

figures corresponds to levels of the hierarchy of calls, not the hierarchy of subprogram

24

definition or declaration. Additional explanation in C-style comments is added if
necessary. The Main Program leve] has been omitted from the figures. Note that the
number of subprograms of the PROLOG program is about twice the number of sub-
programs in other programs; this is due to the fact that basically for each IF-statement

@ new subprogram had to be written in PROLOG,

25

SENSORINPUT /* supplied by coordinating team */
Initialize_Radio_Altitude

Initialize_Baro_Altitude

Inin'alize_Glide_Slopc

Initialize_Mode_Logic

InitializLCommand_Monitor_AB

Lnitializc_Command_Monitor_AC

Radio_Alttude /* Complementary Filter */
VOTEFILTERI1 /* supplied by coordinating team */
Baro_Altitude /* Complementary Filter */
Glide_Slope /* Complementary Filter */
YOTEFILTER2 /* supplied by coordinating team */
Mode Logic

FPDC1 /* function to compute intermediate value FPDC1 */

FPEC1 /* function to compute intermediate value FPEC1 */
VOTEMODE /* supplied by coordinating team */

Initialize_Altitudc_Hold_Outer
Alttude_Hold_Law_Outer
Initialize_Glide_Slope_OQuter
Glide_Slope_Law_Outer
Initialize_Flare_Quter
Flare_Law_Quter

VOTEOUTER /* supplied by coordinating team */
Initialize_Altitude_Hold_Inner

Altiude_Hold_Law_Inner /* function Inner was renamed here */
Initialize_Glide_Slope_Inner

Glide_Slope_Law_Inner /* function Inner was renamed here */
Initialize_Flare_Inner

Flare_Law_Inner /* function Inner was renamed here */
VOTEINNER /* supplied by coordinating team */
LANEINPUT /* supplied by coordinating team */

Command_Monitor_AB
Command_Monitor_AC

VOTEMONITOR /* supplied by coordinating team */
Mode Display

Fault Display

Signal Display

VOTEDISPLAY /* supplied by coordinating team */
VOTESTATES /* supplied by coordinating team */

Figure 2: Structure of the ADA Program

26

autoland
Clear_tp /* sets the test point variables of the Outer Loops to zero */
SENSORINPUT /* supplied by coordinating team */
init_main /* all initializations at the start of Alt. Hold mode */
filter_module
radio_filter
VOTEFILTER] /* supplied by coordinating team */
gs_filter_k /* to compute constants of Glide Slope Filter */
barometric_filter
baromcu-ic__housckccping /* reset test points of Baro, Alt. Filter */

gs_filter
fn_limit /* function to compute F9 */

gs_housekeeping /* reset test points of Glide Slope Comp. Filter */

VOTEFILTER?2 /* supplied by coordinating team */
Mode Logic

flight_path /* computes intermediate values FPDC1 and FPEC1 %/
init_law /* initialization of Inner Loop */
ahd_law /* Altitude Hold Control Law */

ahd_outer_|

VOTEOQOUTER /* supplied by coordinating teamn */

inner_loop

VOTEINNER /* supplied by coordinating team */
gsct_law /* Glide Slope Capture and Track Contro] Law */

gsct_outer_loop

VOTEOUTER /* supplied by coordinating team */

inner_loop

VOTEINNER /* supplied by coordinating team */
flare_law /* Flare Control Law »/

flare_outer_loop
/* to compute function F3 %/

f4 /* and F4 */
VOTEOUTER /* supplied by coordinating team */
inner_loop
VOTEINNER /* supplied by coordinating team */
VOTEINNER /* supplied by coordinating team */
LANEINPUT /* supplied by coordinating team */
Command Monitors
VOTEMONITOR /* supplied by coordinating team */
Display
Mode Display
Fault Display
Signal Display
d_seven /* to convert a single digit into the required code %/
VOTEDISPLAY /* supplied by coordinating team */
VOTESTATES /* supplied by coordinating team */

Figure 3: Structure of the C Program

27

SENSORINPUT /* supplied by coordinating team */
raf /* Radio Alt. Comp. Filter */

VOTEFILTER1 /* supplied by coordinating team */
bagsf /* Baro. Alt. and Glide Slope Dev. Comp. Filters */
baf /* Baro. Alt, Comp. Filter +/
gsf /* Glide Slope Dev. Comp. Filter */
kemp /* to compute constants of Glide Slope Filter */
VOTEFILTER2 /* supplied by coordinating team */
Mode Logic
fpdel /* to compute intermediate value FPDC] ¥/
fpeci /* 10 compute intermediate value FPEC1 */
pgscd /* to compute the output GSCD (this part is done twice) */
VOTEMODE /* supplied by coordinating team */
ahc /* Alt. Hold Control Law */
Outer Loop
YOTEOUTER /* supplied by coordinating team */
Inner Loop
VOTEINNER /* supplied by Coordinating team */
gscte * /* Glide Slope Capture and Track Control Law */
Outer Loop
YOTEOUTER /* supplied by coordinating team */
Inner Loop '
YOTEINNER /* supplied by coordinating team */
fc /* Flare Control Law */
Outer Loop
VOTEOQOUTER /* supplied by coordinating team */
Inner Loop
VOTEINNER /* supplied by coordinating team */
VOTEINNER /* supplied by coordinating team */
LANEINPUT /* supplied by coordinating team */
Command Monitors
pmxy /* to compute one Command Monitor */
VOTEMONITOR /* supplied by coordinating team */
Display
Mode Display
Fault Display
Signal Display
todigit /* breaks positive number into single digits */
VOTEDISPLAY /* supplied by coordinating team */
Xvotestates
VOTESTATES /* supplied by coordinating team */

Figure 4: Structure of the MODULA-2 Program

28

Main_Initialize /* to initialize timer, Mode Logic variables */

SENSORINPUT /* supplied by coordinating team */
AHD_Initialize /* all initializations at the start of Alt. Hold mode */
Timer_Update /* to keep track of the elapsed real time */
Filter Module
racf /* Radio Alt. Comp. Filter */
VOTEFILTER1 /* supplied by coordinating team */
bacf /* Baro. Alt. Comp. Filter */
Reset_Bacf /* reset test points of Baro. Alt. Comp. Filter */
gsdcf /* Glide Slope Dev. Comp. Filter */
lin_fun /* function to compute F9 */
Reset_Gsdcf /* reset test points of Glide Slope Comp. Filter */
VOTEFILTER2 /* supplied by coordinating team */
Mode Logic
Compute_FP /* compute FPDC1 and FPEC1 when in Alt. Hold mode */
Set_Defaults /* set FPDCI1 and FPEC! 1o zero when not in Alt. Hold mode */
Compute_Mode_State /* compute the Mode Logic output */
VOTEMODE /* supplied by coordinating team */
Mode_Update /* to encode result of Mode Logic in Integer values */

Outer_Flare_Init
Outer_GSCTC_Init

Outer Loop

T_Points_Reset /* reset test points to default values */

AH_Outer

GS_Outer

Flare_Quter

VOTEOUTER /* supplied by coordinating team */
Inner _Loop_Init
Inner_Loop

VOTEINNER /* supplied by coordinating team */
Reset_LC /* to set default values for Touchdown mode */

VOTEINNER /* supplied by coordinating team */
LANEINPUT /* supplied by coordinating team */
Command Monitors

Fault_Detect /* 10 compute one Command Monitor */

VOTEMONITOR /* supplied by coordinating team */
Display

Mode Display

Set_Fault_Word /* displays result of one Command Monitor */

/* is called twice to compute Fault Dispiay */
Signal Display
convert /* to encode a single digit in the required code */

VOTEDISPLAY /* supplied by coordinating tcam */

VOTESTATES /* supplied by coordinating team */

Figure 5: Structure of the PASCAL Program

29

init_system

SENSORINPUT /* supplied by coordinating team */
bacf_init /* Baro. Alt. Comp. Filter initialization */
racf_init /* Radio Alt. Comp. Filter initialization */
gscf_init /* Glide Slope Comp. Filter initialization */
ml_init /* Mode Logic initialization */
inner_init /* Inner Loop initialization */
cm_init /* Command Monitor initialization */
autofrarne /* all computations for one time frame */
check_first /* determine if it is the first frame */
SENSORINPUT /* supplied by coordinating team */
increment_time /* to keep track of the elapsed real time */
do_bacf /* call Baro. Alt. Comp, Filter if mode is Alt. Hold */
bacf_proc /* Baro. Alt. Comp. Filter */
racf_proc /* Radio Alt. Comp. Filter */
VOTEFILTERI /* supplied by coordinating team */
do_gscf /* call G/S Comp. Filter if mode is Alt. Hold */
/* or Glide Slope Capture or Glide Slope Track */
gscf_proc /* Glide Slope Dev. Comp. Filter */
init_F10 /* initialize linear filter F10 */
determine /* compute constants */
min_5_pt_5 /* limit output to 5.5 %/
fen_F9 /* compute function F9 */
init_I8 /* initialize integrator I8 */
VOTEFILTER2 /* supplied by coordinating team */

do_first AHD /* determines if this is the first Alt. Hold mode frame */
fp_init /* initialize the flight path part of the Mode Logic */

do_fp /* determines if mode is Alt. Hold */
fp_proc /* compute FPDC1 and FPEC1 of Mode Logic */
ml_proc /* compute Mode Logic output */
deter_td /* determine Touchdown */
deter_fd /* determine Flare */
pmil_tl /* computes some intermediate result */
pmi_t3 /* computes some intermediate result */
deter_gscd /* determine Glide Slope Capture */
deter_gstd /* determine Glide Slope Track */
update_gscd /* reset GSCD if GSTD changes */
deter_ahd /* determine Alt. Hold */
VOTEMODE /* supplied by coordinating team */
do_modv /* halts the program if Mode! Valid is false */
do_into_fd /* determine transition into Flare mode */
fd_init /* initialize Flare mode */
do_gs_bool /* determine transition to Glide Slope mode */
do_into_gs /* if transition to Glide Slope mode */
gs_init /* initialize Glide Slope mode */

Figure 6: Structure of the PROLOG Program

30

(autoframe) M this is only repeated to give a reference for indentation *f
Control Laws

do_fd /* if in Flare mode %/
fd_proc /* Flare Outer Loop */
limit_LM9 /* computes output of limiter LM9 */
do_sw4_bool /* determines state of switch SW4 »/
abs /* procedure to compute absolute valye */
do_init_F6 /* initialize linear filter F6 */
do_gs /* if in Glide Slope mode */
gs_proc /* Glide Slope Outer Loop ¥/

determine_sw?3 /* compute output of switch SW3 ¥/
sw3_open /* determine if switch SW3 is open */

do_ahd /* if in Alt. Hold mode */
ah_proc /* Alt. Hold Outer Loop */
VOTEOUTER /* supplied by coordinating team */
do_inner_bool /* determine if Inner Loop must be reinitialized */
do_inner_init /* if Inner Loop must be reinitialized */
set_gsp /* set old value of Glide Slope mode */
inner_init /* initialize Inner Loop */
inner_ /* compute Inner Loop */
init_LR1 /* initialize rate limiter LR 1 */
abs_LM1 /* determines condition for switch SW?2 %/
init_LR2 /* initialize rate limiter LR2 ./
do_ahdp_bool /* compute old value of Alt. Hold mode */
VOTEINNER /* supplied by coordinating team */
LANEINPUT /* supplied by coordinating team */
Command Monitors
¢m_proc /* computes one Command Monitor ¥/
abs /* procedure to compute absolute value */
do_sw6_bool /* compute condition for switch SW§ */
limit_LM14 /* compute output of limiter LM14 %/
limit_I11 /* limit the output of integrator [11 */
do_F13 {* compute output of function F13 */
VOTEMONITOR /* supplied by Coordinating team */
Display
set_sigmode /* encode current mode as an integer, store it */
set_sigdat /* select signal to be displayed, store it */
callVotedisplay /* interface routine */

Display_Signals /* C routine to do the bit manipulation */
calcnum /* break the signal value into an integer, */
/* a decimal position, and a sign indicator */

VOTEDISPLAY /* supplied by coordinating team */
do_Recovery /* check if recovery is necessary */

VOTESTATES /* supplied by coordinating team */
check_TD /* halt if mode is Touchdown */

Figure 6: Structure of the PROLOG Program (continued)

31

fly-airplane

SENSORINPUT /* supplied by coordinating team */
bacf /* initialization and call of Baro. Ajt. Comp. Filter */
b_alt_comp_ﬁlt /* Baro. Al Comp. Filter +/
racf /* initialization and call of Radio Al Comp. Filter ¥/
r_alt_comp_filt /* Radio Alt. Comp. Filter */
VOTEFILTER] /* supplied by coordinating team */
gscf /* constant computation, initialization
and call of Glide Slope Dev. Comp. Filter */
g_slope_comp_filt /* Glide Slope Deyv. Comp. Filter */
VOTEFILTER2 /* supplied by coordinating team */
mode_logic
fp_error /* compute FPEC] */
fp_damping /* compute FPDC] %/
pitch_meode_logic /* compute the Mode Logic output */
abs /* self-defined absolute value
that counts zero ag positive */
VOTEMODE /* supplied by coordinating team */
control-plane
VOTEINNER /* supplied by coordinating team */
AHDouterloop
VOTEQUTER /* supplied by coordinating tearn */
GSouterloop
VOTEOUTER /* supplied by coordinating team */
FDouterloop
VOTEQUTER /* supplied by coordinating team */
innerloop
YOTEINNER /* supplied by coordinating tearn */
LANEINPUT /* supplied by coordinating team */
Monitor /* for the two Command Monitors */
VOTEMONITOR /* supplied by coordi ating team */
disp /* Display Module %/
convert /* to encode a single digit in the code
required by the Signal Display #/
VOTEDISPLAY /* supplied by coordinating team */
VOTESTATES /* supplied by coordinating team */
fly-airplane /* tail recursion */

Figure 7: Structure of the T Program

32

THE IMPLEMENTATION OF THE MAJOR SYSTEM FUNCTIONS

In this chapter it will be examined how different teams translated the algo-
rithms (most of which were specified graphically
programs. Most interesting are the differences in the computation sequence with
respect to the primitive operations that are defined in the graphic specification. To
denote these operations, the same labels as in the specification are used: each label

consists of a combination of one Or two letters and a number. The letters denote the

CHAPTER 3

type of the primitive operation, as shown in Table 9:

SU summer

M multiplier

D divider

SwW switch

G gain (constant multiplication
factor)

I integrator

LM magnitude limiter

LR rate limiter

F function (cither a nonlinear
function or a linear filter)

ABS | absolute value

P predicate (returns a boolean
value)

L logic function (AND, OR)

Table 9: Primitive Operations

33

— as shown in the Appendix) into

Tables 10 — 18 give the computation sequence as a list of primitive operations.
This list has to be read as usual, i.e., from left to right. Furthermore, it is indicated
which primitive operations are combined into one statement of the programming
language in question by enclosing these operations in round parentheses. In this case,
operators that have equal precedence in the examined programming language are
assumed to be computed from left to right. Operations that are not enclosed in
parentheses are implemented as a single statement. In some cases, the sequence of
primitive operations cannot be determined (mostly because two or more constants
have been combined into a single constant); then the labels of the corresponding prim-
itive operations are written in a column. Please refer to the Appendix for a reproduc-

ton of the figures used in the specification.

The Display algorithms were not described graphically, but by text. For these,
any differences in the implementation, the data structures used, and any other differ-

ences will be listed and described.

The last subsection compares some aspects of the implementation of the primi-

tive operations themselves.

34

3.1 Barometric Altitude Complementary Fiiter

This function is defined in figure 3.1 of the specification (see Appendix, page

97).
ADA (SU23, LM9); (SU24, G2); (G4, 14, SU19, G3, SU22, SU20); (L2,
G1, SU21); I3
C SU23; LM9; G4; 14; (SU24, G2); (G3, SU22), (SU19, SU20); I2.
(G1, SU21); I3
MODULA-2 | (SU23, LM9); G4; 14; (SU24, G2); (SU19, G3, SU22, SU20); 12,
(G1, SU21); I3
PASCAL SUT9
(SU23, LM9); G4; 14; (SU24, G2); (G3, SU22); I2: (G1, SU21); I3
SU20
PROLOG SU19
SU23; (SU24, G2); LM9; G4; 14; (G3, SU22); I2; (G1, SU21): I3
SU20
T (SU24, G2); (SU23, LM9); G4; (G3, SU22); 14; ggig 12; (Gl,
SU21); I3

Table 10: Barometric Altitude Complementary Filter Computation Sequence

3.2 Radio Altitude Complementary Filter

This function is defined in figure 3.2 of the specification (see Appendix, page

98).

Table 11: Radio Altitude Complementary Filter Computation Sequence

ADA SU25; (G6, SU26); (GS, IS, SU27); F8; 16
C SU2S; (G6, SU26); 15; (G35, SU27), I6; F8
MODULA-2 | SU25; (G6, SU26), IS; (GS, SU27); 16; F8
PASCAL SU25; (G6, SU26); IS; (GS, SU27); 16; F8
PROLOG SU25; (G6, SU26); 1S; SU27, 16; F8
T SU2S; (G6, SU26), IS; SU27; F§; I6

35

Note: The PROLOG and the T programs omit the multiplication by gain con-

stant GS since it is 1.00.

3.3 Glide Slope Deviation Complementary Filter

This function is defined in figure 3.3 of the specification (see Appendix, page

99).

ADA (G11, SU34); F10; compute K0, K2, K3; (LM13, D12); F9; (M8,
SU32); (LM11, G10); (SWS, LM12); I10; (M9, SU33, D11);
SU31; (M7, LMI0); (G9, I9); (G8, SU30); (SU28, I7); (G7.
SU29); I8

C | sUaq> : F10'; compute KO, K2, K3; F9; (M8, SU32); LML1; G10;

(LM13, D12); LM12; SWS5; T10; 5%314; F10; (M9, SU33, D11);

(SU31, M7); LM10; G9; I9; (G8, SU30); SU28; I7; (G7, SU29); I8

MODULA-2 5%314; F10; compute KO, K2, K3; F9; (M8, SU32, LM11, G10);

(LM13, D12); (SWS5, LM12); I10; (M9, SU33, D11); (SU31, M7,
LM10); G9; I9; (G8, SU30); SU28; I7; (G7, SU29); I8

PASCAL &%132; F10; compute KO, K2, K3; F9; (M8, SU32); (LM11, G10);

LM13; D12; (SWS5, LM12); I10; (M9, SU33, D11); (SU31, M7);
LM10; G9; 19; (G8, SU30); SU28; 17; (G7, SU29); I8

PROLOG 8%1314; F10; compute KO, K2, K3; LM13; D12; F9; (M8, SU32);

LMI11; G10; LM12; SWS§; 110; (M9, SU33, D11); (SU31, M7);
LM10; G7; G8; G9; I9; SU30; SU28; I7; SU29: 18

T GIT,
T susss 5 F10' compute KO, K2, K3; F9; (LM13, D12); Qii;

(M8, SU32, LM11); F10; (G10, LM12); SWS5; 110; (M9, SU33,
D11); SU31; (M7, LMI10); G9; 19; (G8, SU30);, SU28; 17; (G7,
SU29); 18

Table 12: Glide Slope Deviation Complementary Filter Computation Sequence

Note: The C and the T programs compute the constants KO, K2, and K3 out-

side and independently of the Complementary Filter itself. Due to data dependencies,

36

they have to replicate (i.c., impiement twice) summer SU34 and the linear filter F10

because their outputs are needed to compute the constants. The C program maintains

the state of the replicated F10 and of the one used in the Complementary Filter itself

separately; the T program uses the same state variables to compute the constants and

in the Complementary Filter itself. In Table 12 above, a prime (') was added to the

labels of these replicated primitive operations.

34 Mode Logic

This function is defined in figures 4.1 and 4.2 of the specification (see Appen-

dix, pages 100 and 101).

ADA

in FLARE mode: P7; L14

in GST mode: P7; PS; P6; L.12; L13; L14: L11

in GSC mode: P7; P5; P6; L12; L13; L14; (ABS1, P3); (ABS2,
P4); L4; L9; L10; L11; L8

in AH mode: P7; PS; P6; L12; L13; L14; P1; (D2, LM5); (D3,
LM6); (F1, G12, LMS8, G13, D5, G14, SUS8); (M1, M3, G15); (D6,
G16, F2, G17); (G19, D7, G20, G18, SU9); M4; G21; SUI; P2;
(ABS1, P3); (ABS2, P4); L4; LS; L6; L7; L8; L9: L10; L11: LS;
L3;L2; L1

P5; P6; L12; P7; L13; L14; P1; D2; D3; LMS5; LM6; M1; FI; G12;
LMS; G13; (D5, G14); SUS; (G15, M3); (D6, G16); F2; G17;: G18;
(G19, D7, G20); (SU9, M4); G21; SU1; ABS1; P3; P2; ABS2; P4;
L4, L5 L6; L7;L8; L3; L2; L1; L9; L10; L11; L8

MODULA-2

(D2, LMS); (D3, LM6); F1; (G12, LMS, G13, DS, Gl14, SUS);
(M1, M3, G15); (D6, G16); F2; G17; (G19, D7); (G20, G18, SU9,
M4); G21; P7; (PS, P6, L12); (L13, L14); SUIL; P2; (ABSI1, P3,
ABS2, P4, L4); (P1, L5, L6); (L7, L8); (L9, L10, L11); SU1; P2;
(ABS1, P3, ABS2, P4, L4); (P1, LS, L6); (L7, L8); (L.3,L2); L1

Table 13: Mode Logic Computation Sequence

37

PASCAL GI2
(D2, LMS5); (D3, LM6); (LMS, G13, DS); F1; (SUS, and); (G15,

G14
M1, M3); (D6, G16); F2; G17: (G19, D7, G20, G18, SU9 Ma4),
G21; P7; (PS, P6, L12, L13, L14); (ABS1, P3, ABS2, P4, LA4);
SUL; P2; (LS, P1, L6, L7, L8); (L9, L10, L11); L8; (L.3,1.2); L.1

PROLOG G13
D2; LMS; D3; LM6; F1; LM8; (G12, DS, SUS); D6; G16;: F2:
{4
G19 G
G17; (D7, G18, SU9); M4; G21; (G1S, M1, M3); P7; Ps; P6;
G20
L13, ABS1 ABS2 5 Lo L3
L12; L13. : ; L4; SUL; P2; P1; 16, 1.10: Ls: 2
Li4 P3 ° p4 L7
L1l L1
L8
T Gi3
(D2, LMS); F1; (G12, LMS8, D5, SUS); (D3, LMS); (G15, ML

G19
M3} GIG’FZ G17; (D‘I G18, SU9, M4); G21; p7; (PS, P6, L12,
G20

L13, L14); (SU1, P2, ABS2, P4, ABS1, P3, L4, LS, P1, L6, L7,
L8); (ABS2, P4, ABS1, P3, 14,19, L10, L11); L8; (L3, L2); L1

Table 13: Mode Logic Computation Sequence (continued)

Note: Instead of multiplying each term of a sum with the same gain constant,
the PASCAL program moves the multiplication after the summation. Thus, G12 and

G14 are performed simultaneously.

38

3.5 Altitude Hold Control Law, Quter Loop

This function is defined in figure 5.1 of the specification (see Appendix, page

102).
ADA (LM4, G22); (SU1, G23, G24; (D1, G25); G26. SU3
C (LM4, G22); (SU1, G24, G23, D1, G25); G26, SU>

G23
MODULA-2 | LM4; G22; (SUL, %214); G26; SU2
G25
PASCAL (LM4, G22); (SU1, G24, G23, D1, G25), G26. SU2
G233
PROLOG LM4; SU1: %214; G26; G22; SU2
G25
T (LM4, G22); SU; (G24, G23, G23, DI, G26. SU3

Table 14: Altitude Hold Control Law, Outer Loop Computation Sequence

39

3.6 Glide Slope Capture and Track Control Law, Outer Loop

This function is defined in figure 6.1 of the specification (see Appendix, page

103).

ADA (LM4, G22); (D2, LM5); (D3, LM6); M1; (F1, G33); (LM7, G31,
D4, G32, SU7); (LMS, G34, D5, G35, SUS); (D6, G37, F2, G38);
(G40, D7, G41, G39, SU9, M4); (SW3, M2, SU11); (M3, G36);
G42

C (LM4, G22); D2; LMS; D3; LM6; M1; (LM7, G31); (D4, G32);
F1; G33; SU7; M2; (LMS, G34, G35, DS); SUS; (G36, M3); (D6,
G37); F2; G38; G39; (G40, D7, G41); (SU9, M4);, G42; (SW3,
SULD

MODULA-2 | 1 m4. G22: D2; LMS; D3; LM6; M1; LM7: %i‘; F1; G33; (G32,
34

SU7); M2; (SW3, SU11); LMS: %5 ; (G35, SUS8); M3, G36);

D6 G40
: F2; G38; (D7, G39, SU9); M4; G42
G37 G4l

PASCAL (D6, G37); F1; F2; (LM4, G22); (D2, LMS); (D3, LM6); G33;
(LM7, G31, D4); (G32, SU7); M1; (SW3, M2, SU11); (LM8, G34,
D3); (G35, SU8); (G36, M3); G38; (G40, D7); (G41, G39, SUS9,
M4); G42

PROLOG G31
LM4; D2; LMS; D3; LM6; M1; LM7; FI; G33; (D4 , SUT); M2;
G32

G34
SW3; LM8; (DS, SUS); D6; G37; F2; G38; (D7, G39, SU9);
G35 G4l
M4; G22; SU11; (G36, M3); G42
T (LM4, G22); (D2, LMS5); (D3, LM6); (LM7, G31, G32, D4); F1.
(LM8, G34, G35, D5); (G33, SUB); (G33, SU7); (G36, M1, M3);
(SW3, M1, M2, SU11); (D6, G37); F2; G38; (D7, G40, G41, G39,
SU9, M4); G42

Table 15: Glide Slope Capture and Track Control Law,
Outer Loop Computation Sequence

3.7 Flare Control Law, Outer Loop

This function is defined in figure 7.1 of the specification (see Appendix, page

104).

ADA

(LM4, G22); (SU11, LM9); (F4, G44); (F3, G43); DS; (F5, SU15,
SU14, G46, D9, M6); (G49, D10, G48, SU17, SU16); (Fs, G47y,
(G50, G51, F7); (SU12, M5, SU13, G45); (SW4, SU19); SU18

(LM4, G22); (SU11, LM9); Ds; (F3, G43); (F4, G44); (SU12,
M5); (SU13, G45); (SW4, SU19); (F5, SU15); (SU14, G46, D9);
MS§; (G49, D10, G48, SU17); SU16; F6; G47; (G51, G50); F7,
SU18

MODULA-2

LM4; G22; (SU11, LM9); (F3, G43); (F4, Gad); "D8"; (SUIZ, M5,
SUL3, G43); (SW4, SU19); (FS, SU1S); (SU14, Gas, DO); (D10

48’
G49, SU17); SU16; F6; G4T: 8§?; F7; SU18

PASCAL

SU11; LM9; (SU14, G46); (FS, SU15); D8; (D9, M6); (G49, D10,
G48, SU17); SU16; (G50, G51); F6; F7; G47; SU18; F3; F4; G43;
G44; (SU12, M5, SU13, G45); (LM4, G22); (SW4, SU19)

PROLOG

LM4; SU1L; LM9; F3; F4; (G44, G43, SU12); D8; MS; SU13;
SW4D: (G22, G4s, SU19):; SW4@; SU14; F5; SU1S; (G46, D9);
M6; D10; (G48, G49, SU17); SU16; F6; (G50, GS1); F7; (G47,
SU18); G45; G22; G44; G43; G47

(LM4, G22); (SU11, LM9); (F3, G43); (F4, G44); D8; (FS, SU15,
SU14, G46, D9, M6); (D10, G48, G49, SU17, SU16); F6; G47;
(GS0, G51); F7; SU18; (SU12, M5, SU13, G45); (SW4, SU19)

Table 16: Flare Control Law, Outer Loop Computation Sequence

Notes: In the MODULA-2 program, the division D8 is not really performed,

but the two constant inputs were divided manually and just an assignment to a "test

point” variable is made. Hence the notation "D§". In the PROLOG program, the com-

putation of switch SW4 is split into two steps: In the first step it is determined whether

the switch is open or closed, in the second step the appropriate output value is

selected, based on that condition. At the end of the PROLOG program some

41

multiplications are repeated to get the required test point values; thus a few gains

appear twice in the list above.

3.8 Inner Loop

This function is defined in figures 5.1, 6.1, and 7.1 of the specification (see

Appendix, pages 102, 103, and 104).

ADA (SU3, LM2); SU4; LM1; (SU10, G28); (P8, SW2, G27, SUS, 11);
SU4; LM1; LR1; (G29, SU6, G30); (LM3, LR2)
C SU3; LM2; SU4; LMI; SU10; G28; P8; SW2; (G27, SUS); II;

SU4; LM1; LR1; (G29, SU6); G30; LM3; LR2
MODULA-2 | (SU3, LM2); SU4; LMI; (SU10, G28); (P8, SW2, G27, SUS); I1;
SU4; LM1; LR1; (G29, SU6, G30); LM3; LR2
PASCAL (SU3, LM2); SU4; LM1; (SU10, G28); P8; (SW2, G27, SU5); I1;
SU4; LM1,; LR1; (G29, SUS6); G30; LM3; LR2
PROLOG SU3; LM2; SU4; LM1; SUI10Q; P8; SW2; (G27, G28, SUS); I1;
SU4; LM1; LR1; (G29, SU6); G30; LM3; LR2

T (SU3, LM2); SU4; LM1; (SU10, G28); P8; (SW2, G27, SUS); I1;
SU4; LM1; LR1,; (G29, SU6); G30; LM3; LR2

Table 17: Inner Loop Computation Sequence

42

3.9 Command Monitor

This function is defined in figure 8.1 of the specification (see Appendix, page

105).
ADA (SU35, F11); (F12, SW6); LM14; I11; F13
C (SU3S, F11); (F12, SW6), LM14; 111; F13
MODULA-2 | (SU35, F11); (F12, SW6); LM14; I11; F13
PASCAL (SU3S, F11); (F12, SW6); LM14;I11; F13
PROLOG SU35; F11; F12; SW6; LM14; I11; F13
T (SU35, F11); (F12, SW6); LM14; I11; F13

Table 18: Command Monitor Computation Sequence

Note: There are also some differences in the way the operation F13 is handled.
The MODULA-2, PASCAL, PROLOG, and T programs compute a boolean variable
which is assigned to the output variable. The C program does the same but reverses
the condition in F13, thus using "2" instead of "<". In the ADA program, the Com-

mand Monitor is declared as a function and a RETURN statement is used.

3.10 Mode Display

This function is described by text and figures in chapter 9 of the specification.
It displays a string of characters that indicate the flight mode. ASCII code is used to
represent characters. The PROLOG team used the C programming language to imple-

ment that function. Table 19 gives an outline of the algorithm used by each team.

43

ADA Upon initialization, all five possible outputs are "precomputed”
and stored in a static array variable. Constants are used for the
ASCII code. Depending on the current mode, the correct output is
selected and copied to the parameters of the procedure.

C Constants are used for the ASCII code. Depending on the current
mode, the output is computed and assigned to the global variables
reserved for the output of the Mode Display.

MODULA-2 | Depending on the current mode, the correct output string is
selected and assigned to an intermediate variable. The string is
then converted to ASCII (using the "ORD’ function) and assigned
to the output variables.

PASCAL Depending on the current mode, the appropriate values are
assigned to the output parameters. These values have been com-
puted by hand (in the decimal system), for every combination of
characters needed.

PROLOG Depending on the current mode, the appropriate values are
assigned to the output parameters. These values have been com-
puted by hand, using hexadecimal notation, for every combination
of characters needed.

T Depending on the current mode, the appropriate values are
assigned to the output parameters. These values have been com-
puted by hand (in the decimal system), for every combination of
characters needed.

Table 19: Mode Display Algorithm

3.11 Fault Display

This function is described by text and figures in chapter 9 of the specification.
For each Command Monitor, four characters denoting its status are displayed. Bit-
mapping to seven-segment display elements has to be performed. The PROLOG team

used the C programming language to implement that function.

In principle, all programs use the same algorithm: depending on the result of

each Command Monitor, the code for the correct string is assigned to the output vari-

ables. The only difference is found in the way this code is computed: for the

MODULA-2, PASCAL, PROLOG, and T programs, the codes for all possible two-

gram use constants for a single character display. In the C program the two-character
combinations are computed every time the Fault Display is called, whereas in the
ADA program all possible combinations are computed by the compiler (since in ADA

expressions are allowed as constants).

3.12 Signal Display

This function is described by text and figures in chapter 9 of the specification.
One of 16 possible signals, i.e., inputs or (intermediate) resuits of the current frame
computation, is selected by one of the values input by the SENSORINPUT routine.
This value is rounded to § decimal digits and displayed. Bit-mapping to seven-
segment display elements has to be performed. In addition, the sign and the position
of the decimal point have to be encoded. The PROLOG team used the C programming

language to implement that function.

In the following, we list the main steps of the algorithm for each program. The
purpose is to give an overview of the structure of the algorithms and to provide some

implementation details.

45

3.12.1 ADA

1)
2)
3)

4)
5)

6)
7)

8)

9
10)
11)

3.12.2
1
2)
3)
4)
5)
6)

7

select the signal to be displayed;
limit its value to the displayable range (-99999.0, +99999.0);

determine the sign, set the value to zero if its magnitude is smaller than
000005, and use its absolute value from now on;

encode the sign in an auxiliary variable:

determine the decimal point position and muitiply the value by a power of 10
such that the 5 digits to be displayed are to the left of the decimal point;

round the value to an integer:

adjust the value and the decimal point position in case rounding gave a value
larger than 99999;

encode the decimal point position in the same auxiliary variable that holds the
code for the sign;

extract the 5 single digits and store them in an auxiliary array;
encode each digit;
and put all digits, the sign, and the decimal point position into the output vari-
ables in the correct order.
C
select the signal to be displayed:
limit its value to the displayable range (-99999.0, +99999 0);
if the magnitude is too small, encode ".00000" in the output variables;
otherwise, encode the sign in the appropriate output variable;
use absolute value from now on;

add 0.5 to the 5th most significant digit (rounding can be done now as trunca-
tion);

determine the decimal point position;

8)
9)

10)

11)

3.12.3
1)
2)
3)

4)

5)

split the value into an integer part and a fraction;

get as many single digits as possible from the integer part, get the rest of the
digits from the fraction part of the signal value, and store them in an auxiliary
array;

encode each digit and put it into its place in its output variable;

and encode the decimal point position in its output variable.

MODULA-2
initialize an auxiliary array for the 5 single digits with all zeroes;
select the signal to be displayed;

if the signal magnitude is too small encode "no sign" and the leftmost decimal
point position in an auxiliary variable;

otherwise
a) encode the sign in this auxiliary variable;
b) use the absolute value from now on;

c) if the value is too large set all 5 digits to nine and encode the rightmost
decimal point position in the auxiliary variable;

d) otherwise
- determine the decimal point position while taking into account
future rounding errors, and multiply the value by a power of 10

such that the 5 digits to be displayed are to the left of the
decimal point;

- round the value to an integer;
- encode the decimal point position into the auxiliary variable;
- extract the 5 single digits and store them in the auxiliary array;

and encode each digit, and put it into its place in its output variable. Put sign
and decimal point position into the correct output variable.

47

3124
1)
2)

3)
4)
3)

6)
7

8)
9)
10)
1)

3.12.5
1y
2)

3)

PASCAL
select the signal to be displayed,;

compute the absolute value and limit it to the displayable range: 0 or (.00001,
+99999.0);

determine the sign and encode it in the appropriate output variable;
determine the decimal point position;

multiply the value by a power of 10 such that the 5 digits to be displayed are to
the left of the decimal point;

round the value to an integer;

adjust the value and the decimal point position in case rounding gave a value
larger than 99999;

encode the decimal point position in the appropriate output variable;
extract the 5 single digits and store them in an auxiliary array;
encode each digit;

and put all digits into the output variables in the correct order.

PROLOG
select the signal to be displayed;

determine the (integer) number to be displayed, the decimal point position, and
the sign for the three special cases:

a) the magnitude is too small;

b) the value is too big (> 99999.0);

c) the value is too small (< -99999.0);
for the normal case:

a) determine the sign;

b) determine the decimal point position and multiply the value by a power
of 10 such that the 5 digits to be displayed are to the left of the decimal

48

4)
5)

6)

3.12.6
1)
2)
3)

4)
5)
6)
7
8)
9

3.12.7

point;
c) round the value to an integer and take care of any rounding error;
encode the sign in the appropriate output variable;
encode the decimal point position in the appropriate output variable;

extract each of the 5 digits, encode it, and put it in the correct output variable,

T
select the signal to be displayed;
compute the absolute value of the signal;

use the absolute value to determine the decimal point position, encode it in an
auxiliary variable, add 0.5 to the 5th most significant digit, and multiply the
signal value by a power of 10 such that the 5 digits to be displayed are to the
left of the decimal point. In addition, if the absolute value is too small set the
signal value to zero;

limit the signal value to the displayable range (-99999.0, +99999.0);

truncate the signal value to an integer;

encode the sign in an auxiliary variable;

compute the absolute value of the signal and use that from now on;

extract the 5 single digits and store them in auxiliary variables;

and encode each digit, and put it into its place in its output variable, Put sign
and decimal point position into the cofrect output variable.

Additional Observations

Tables 20 — 22 compare some other aspects of the Signal Display which were

not mentioned in the survey above.

49

| sign DPP’ digits
ADA binary constants binary constants | binary constants
for each of the 6
possible posi-
tions
C bit shifting bit shifting hexadecimal
constants
MODULA-2 || decimal con- | partly decimal | decimal con-
stants constants, partly | stants
bit shifting
PASCAL decimal con- | decimal con- | decimal con-
stants stants stants
PROLOG hexadecimal hexadecimal hexadecimal
constants constants for | constants, dif-
cach of the 6 | ferent for digits
possible posi- | that have to be
tions put in the most
significant byte
and in the least
significant byte
of an output
variable
T bit shifting bit shifting decimal con-
stants

* DPP = Decimal Point Position

Table 20: Implementation of Encoding

ADA nested [F-statements

C nested [F-statements

MODULA-2 | nested IF-statements

PASCAL computed using logarithmic function
PROLOG "while” loop

T "CASE"-statement

Table 21: Determination of the Decimal Point Position

50

ADA least significant digit first

C least significant digit first for the integer part, most significant digit
first for the fraction part of the signal value

MODULA-2 | least significant digit first

PASCAL most significant digit first

PROLOG least significant digit first

T most significant digit first

Table 22: Sequence of Determining each Single Digit

3.13 The Implementation of the Primitive Operations

Most of the programs defined subprograms (either "procedures” or "func-

tions”) to implement some of the primitive operations which are used in more than

one major system function. Typically, the more complex of these operations were

chosen to be implemented by a subprogram. The following Table 23 shows the

choices different teams made:

ADA magnitude limiter, rate limiter, linear filter, integrator without
bounds, integrator with upper and lower bound

C magnitude limiter, rate limiter, linear filter, integrator with upper
and lower bound

MODULA-2 | magnitude limiter, rate limiter, linear filter, integrator without
bounds

PASCAL magnitude limiter with lower bound only or with upper and lower
bound, rate limiter, linear filter, integrator with no bounds, lower
bound only, or upper and lower bound

PROLOG magnitude limiter, rate limiter, linear filter, integrator without
bounds, switch

T magnitude limiter

Table 23: Choices of Primitive Operations

51

The T program is the only one that implements linear filters, rate limiters, and
integrators without the help of a subprogram. The magnitude limiter is used to imple-

ment the rate limiters and the integrators with bounds.

“Integrator without bounds" means that the subprogram integrates, but does
not do any magnitude limiting on the integration result, as is required in most cases.
“Integrator with upper and lower bound” means that the subprogram is designed to
integrate first, then perform magnitude limiting on the integration result according to
the upper and lower bound specified. As can be seen from the table above, different
teams chose differen-t variations as "their" primitive operation. The ADA team imple-
mented both variations as independent subprograms, whereas the PASCAL team
integrated all variations into one subprogram and used an additional parameter to
decide which variation to use at a given invocation. In addition, they also imple-
mented the case where only a lower bound is specified, both for the magnitude limiter
and for the integrator. All other teams just chose one of the above variations as "their"
primitive operation. The teams that chose “integrator without bounds" (MODULA-2,
PROLOG) implemented integrators with bounds by calling the magnitude limiter after

the integration.

The PROLOG program implements the "switch” operation as a subprogram.,
This choice has clearly been influenced by the programming language properties — all

other programs just use IF-statements.

52

The algorithms for these primitive operations are rather simple and have been
specified very clearly. So only very few differences can be observed here. However,
the ADA program is the only one that uses the magnitude limiter to implement the
rate limiter and the integrator with bounds. Then, the C program is the only one to use

two parameters to define a particular linear filter; all other programs just use one.

The PROLOG program only implements these subprograms as procedures,
where the result is returned in a parameter. All other programs use functions. Input
parameters are (with the exception of the ADA program) the input value, the state
variable(s) (for state dependent computations, i.e. integrators, linear filters, and rate
limiters), and bounds or filter constants (where appropriate). The ADA subprograms
for state dependent computation only use the input value as an input parameter. This
can be done because of the "generic definitions” in ADA: state variables can be stored
locally, and bounds and filter constants must be only specified once, at the actual
instantization of a single rate limiter, linear filter, or integrator. Therefore, the ADA
functions are the only ones that also perform the state update; in all other programs
this is done outside of these primitive operation routines. Thus, these ADA functions
are actually functions with side-effects; in all other programs these functions are side-

effect free.

Throughout the specification there are four special cases of integrators or mag-
nitude limiters: Magnitude Limiter LM9 in the Quter Loop of the Flare Control Law

has only a lower bound, Integrator Il in the Inner Loop has no bounds, Magnitude

53

Limiter LM14 in the Command Monitor has only an upper bound, and Integrator I11
in the Command Monitor has only a lower bound. The following Tables 24 — 27 give

a comparison of how different programs handle these special cases:

ADA current input used as upper bound
C arbitrarily chosen large number (99999.0) used as upper bound
MODULA-2 | system constant MAXINT (converted to double precision) used as
upper bound
PASCAL independent implementation (no call to magnitude limiter)
PROLOG independent implementation (no call to magnitude limiter)
T independent implementation (no call to magnitude limiter)
Table 24: Limiter LM9: Lower Bound Only
ADA primitive
C arbitrarily chosen large and small numbers (+99999.0, -99999.0)
used as bounds
MODULA-2 | primitive
PASCAL primitive
PROLOG primitive
T N/A
Table 25: Integrator I1: No Bounds
ADA system constant (smallest possible real number) used as lower
bound
C arbitrarily chosen small number (-99999.0) used as lower bound
MODULA-2 | independent implementation (no call to magnitude limiter)
PASCAL independent implementation (no call to magnitude limiter)
PROLOG independent implementation (no call to magnitude limiter)
T independent implementation (no call to magnitude limiter)

Table 26: Limiter LM14: Upper Bound Only

54

ADA system constant (largest possible real number) used as upper
bound

C arbitrarily chosen large number (99999.0) used as upper bound

MODULA-2 | independent implementation of output limiting (no call to magni-
tude limiter)

PASCAL independent implementation (no call to integrator or magnitude
limiter)

PROLOG independent implementation of output limiting (no call to magni-
tude limiter)

T independent implementation of output limiting (no call to magni-
tude limiter)

It is interesting to note that the PASCAL program actually does not use the
variations of the magnitude limiter and the integrator that perform limiting on the

lower bound only. LM9 and I11 are just these special cases. This is probably due to a

Table 27: Integrator I11: Lower Bound Only

communication problem between the two team members.

35

L 1.3

CHAPTER 4

COMPARISON OF VARIOUS OTHER ASPECTS

In this chapter, a number of aspects of the six programs that are not readily
classified as being relevant to either the overall structure and organization or the com-
putation sequence is examined. Some aspects, e.g., the use of variables or the use of
voting routines, are more related to the overall organization, others, e.g., the initializa-
tion, the implementation of time-dependent computations, or the implementation of
mode-dependent computations, are more related to the categbry of implementation

details.

4.1 The Declaration and Use of Variables

The purpose of this subsection is 10 compare how variables were used in the
different programs. This comparison is done in two ways: first, there will be an exten-
sive survey of the programs on a "variable by variable” basis, then the information

will be summarized on a "program by program" basis in order to try to expose the

strategy used by each programming team.

In the following Tables 28 — 44, for each group of variables the following

information is given: first, whether the variables in question are defined globally (i.e.,

56

in a way such that they are automatically known to all the subprograms of the Main
Program) or locally (i.e., within one subprogram). With programming languages that
explicitly support modularization constructs (ADA, MODULA-2) this distinction is a
bit tricky: it is possible to define variables locally in a module, but to explicitly import
or export them to other modules. Thus, it is possible to construct very specific name
scopes for different kinds of variables. The notation "global" will be used in these
cases. Then, it is indicated to which modules the variables in question are passed as
parameters, and which modules use these variables as global variables. The notation

- indicates a "chain” of parameter passing.

57

harnesses of Comp.
Filters — Comp.
Filters, Mode Logic

~> subprograms
thereof, Outer Loop

procedures, Inner
Loop, Display
Module

defined in passed as | used as global
parameter(s) to variable(s) bz
ADA Main Program | Comp. Filters, Mode
Logic, OQOuter Loop
procedures, Inner
Loop
C global Comp. Filters, Mode
Logic, Outer Loop
procedures, Inner
Loop
MODULA-2 || Main Program | Filter Module, Mode | Comp. Filters, Signal
Logic, Control Laws, | Display
Display Module
PASCAL Main Program | Filter Module —
Comp. Filters, Mode
Logic — subprograms
thereof, Outer Loop
— Outer Loop pro-
cedures, Inner Loop,
Display Module
PROLOG global Comp. Filters, Mode
Logic, Outer Loop
procedures, Inner
Loop, Display
Module
T global Organizational

Table 28: Parameters of SENSORINPUT

58

defined in

passed as
arameter(s) to

used as global
variable(s) b

ADA "global” Main Program
C global Main Program,
Comp. Filters
MODULA-2 §| "global" Main Program
PASCAL Main Program | Filter Module —
Comp. Filters
PROLOG global Main Program,
Comp. Filters
T global Main Program,
Organizational
harnesses of
Comp. Filters,
Comp. Filters
Table 29: State Variables of the Complementary Filters
J defined in passed as | used as global
parameter(s) to variabie(s) by
ADA "global” Main Program
C Filter Module { Comp. Filters
MODULA-2 | Filter Module Comp. Filters
PASCAL Filter Module | Comp. Filters
PROLOG global Main Program,
Comp. Filters
T global Main Program,
Comp. Filters,
organizational
harness of Radio
Alt. Comp. Filter

59

Table 30: Test Points of the Complementary Filters

defined in passed as | used as global
garamctcr(s) to variable(s) by
ADA Main Program { Comp. Filters, Mode
Logic, Outer Loop
procedures
C global Filter Module, Comp.
Filters, OQuter Loop
procedures, Signal
Display
MODULA-2 | Main Program | Filter Module, Mode Comp. Filters, Outer
Logic, Control Laws, | Loop procedures, Sig-
Display Module nal Display
PASCAL Main Program | Filter Module — :
Comp. Filters, Mode
Logic, Outer Loop —
Outer Loop pro-
cedures, Display
Module
PROLOG global Main Program,
Comp. Filters, Mode
Logic, Outer Loop
procedures, Display
Module
T global Glide Slope Comp. | Organizational
Fiter hamess —» | hamesses of Comp.
Glide Slope Comp. | Filters, Comp. Filters
Filter, Mode Logic —
subprograms thereof,
Outer Loop pro-
cedures, Inner Loop,
Display Module

Table 31: Results of the Complementary Filters

R .4

defined in passed as
arameter(s) to

used as global

variable(s) by

ADA "global" Main Program
C global Main Program,
Mode Logic
MODULA-2 || "global" Main Program
PASCAL Main Program { Mode Logic —
subprograms
thereof
PROLOG global Main Program,
Mode Logic
T global Main Program,
subprograms of
the Mode Logic

Table 32: State Variables of the Mode Logic

defined in passed as | used as global
gara.meter(s) to variable(s) bz
ADA "giobal" Main Program
C Mode Logic | subprogram
"flight path"
MODULA-2 | Mode Logic subprograms of
Mode Logic
PASCAL Mode Logic | subprograms of
Mode Logic
PROLOG global Main Program,
Mode Logic
T Mode Logic subprograms of
Mode Logic

Table 33: Test Points of the Mode Logic

61

harnesses of Comp.
Filters — Comp.
Filters, Altitude Hold
Outer Loop, Glide
Slope Capture and
Track Outer Loop,
Inner Loop, Display
Module

defined in passed as | used as global
arameter(s) to variable(s) by _
ADA "global" Main Program, Glide
Slope Dev. Comp.
Filter, Inner Loop,
Mode Display
C global Main Program, Filter
Module, Mode Logic,
Inner Loop, Mode
Display
MODULA-2 | Main Program | Filter Module, Mode | Glide Slope Dev.
Logic, Display | Comp. Filter, Mode
Module Display
PASCAL Main Program | Filter Module -
Glide Slope Dev.
Comp. Filter, Mode
Logic, Display
Module
PROLOG global Main Program, Glide
Slope Dev. Comp.
Filter, Mode Logic,
Display Module
T global organizational Main Program, Mode

Logic

Table 34: Results of the Mode Logic

62

a

defined in passed as | used as global
- garametcr{s) to variable(s) bz
ADA T “global” Main Program
C global Main Program,
Outer Loop pro-
cedures
MODULA-2 || "global" Main Program
PASCAL Main Program | Outer Loop —
Outer Loop pro-
cedures
PROLOG global Main Program,
Outer Loop pro-
cedures
T global Main Program,
Outer Loop pro-
cedures
Table 35: State Variables of the Outer Loop
defined in passed as | used as global
l _garametcr(s) to variable(s) by
ADA global Main Program,
Cuter Loop pro-
cedures
C global QOuter Loop pro-
cedures
MODULA-2 || each Quter Loop
procedure
PASCAL Outer Loop Outer Loop pro-
cedures
PROLOG global Main Program,
cedures
T each Outer Loop
procedure

Table 36: Test Points of the Quter Loop

63

I defined in passed as | used as global
_E_aramcter(s) to variable(s) bg
ADA Main Program Outer Loop pro-
¢edures, Inner Loop
C each Control | Outer Loop pro-
Law cedures, Inner Loop
MODULA-2 || each Control | Inner Loop Quter Loop pro-
Law cedures
PASCAL Main Program Quter Loop — Outer
Loop procedures,
Inner Loop
PROLOG global Main Program, OQuter
Loop procedures,
Inner Loop
T global Inner Loop Outer Loop pro-
cedures
Table 37: Results of the Outer Loop
defined in passed as | used as global
parameter(s) to variable(s) by
ADA "global” Main Program
C global Main Program,
Inner Loop
MODULA-2 || “"global" Main Program
PASCAL Main Program | Inner Loop
PROLOG global Main Program,
Inner Loop
T global Main Program,
Inner Loop

Table 38: State Variables of the Inner Loop

defined in passed as | used as global
arameter(s) to variable(s) b
ADA global Main Program
C Main Program | Contol Laws —
Inner Loop
MODULA-2 || Inner Loop
PASCAL Inner Loop
PROLOG global Main Program,
Inner Loop
T Inner Loop
Table 39: Test Points of the Inner Loop
defined in Passed as parameter | used as global vari-
10 able by
ADA Main Program | Command Monitors
C global Main Program, Inner

Loop, Command
Monitors, Signal
Display

MODULA-2 || Main Program

Control Laws -,
Inner Loop, Com-
mand Monitors,
Display Module

Signal Display

PASCAL Main Program

Inner Loop, Monitor
Module - Command
Monitor, Display
Module

PROLOG global

Main Program, Inner
Loop, Command
Monitors, Display
Module

T global Command Monitors, | Main Program, Inner
Display Module Loop
Table 40: Result of the Inner Loop

65

defined in

passed as
arameter(s) to

used as global
variable(s) b

ADA Main Program Command Moni-
tors
C global, Main Command Moni-
Program tors
MODULA-2 || Main Program Command Moni-
tors
PASCAL Main Program Monitor Module
— Command
Monitor
PROLOG global Main Program,
Command Moni-
tors
T global Command Moni- | Main Program
tors
Table 41: Parameters of LANEINPUT
defined in passed as | used as global
u arameter(s) to variable(s) by
ADA "global" Main Program
C global Main Program,
Command Moni-
tors
MODULA-2 || "global” Main Program
PASCAL Main Program | Monitor Module
— Command
Monitors
PROLOG global Main Program,
Command Moni-
tors
T global Main Program,

Command Moni-
tors

Table 42: State Variables of the Command Monitors

* defined in passed as | used as global
garametcr(s) to variable(s) bz
ADA Main Program | Fault Display
C global Command Monitors,
Fault Display
MODULA-2 || Main Program | Command Monitors, | Fault Display
Display Module
PASCAL Main Program | Monitor Module —
Command Monitors,
Display Module —
Fault Display
PROLOG global Main Program, Com-
mand Monitors
T global Main Program, Com-
mand Monitors,
Display Module
Table 43: Results of the Command Monitors
defined in passed as | used as global
I Eara.mcter(s) to ' ;aﬁablc(s) by
ADA Main Program Mode Display, Fault
Display, Signal
Display
C global Mode Display, Fault
Display, Signal
Display
MODULA-2 (| Display Module Mode Display, Fault
Display, Signal
Display
PASCAL Display Module | Mode Display, Fault
Display, Signal
Display
PROLOG global
T Display Module

Table 44: Results of the Display Module

Note: The variables for the Display results are not used in the PROLOG program

because the Display was implemented in the C programming language as part of the

67

C-PROLOG interpreter.

In the remainder of this subsection, the information given above is summar-

ized for each program:

ADA:

All variables that make up the interface between different Modules are defined
in the Main Program, and are passed by parameter to the other Modules. An excep-
tion is the results of the Mode Logic which are defined in the declaration of the Mode
Logic package; thus they arc "global” variables. This obviously was done because
these results are used by other Modules besides the Main Program, thus avoiding
excessive parameter passing. All test point and state variables are defined in the
declaration of their corresponding package. All packages are imported in the Main
Program, thus these are "global” variables. The exception are the test points of the
three Control Laws (Outer and Inner Loop): These variables are defined in a separate
package, so that common test point variables can be re-used in different Control Laws.

All other variables are local to the package they are defined in.

C:

All interface and state variables are declared global to the Main Program and
are used as global variables by the other Modules; there is no parameter passing.

There are two exceptions to that: first, the variables for the parameters of LANEIN-

68

PUT are defined twice, once global and once in the Main Program. Global variables
are used in the Monitor Module, but the locally defined variables are set by LANEIN-
PUT. This is a programming error, because the Monitor Module is required to use the
values supplied by LANEINPUT. Currently, we are investigating why this error does
not cause any failures during test executions. Secondly, the results of the Display
Module are defined locally, and are used as global variables by its subroutines. Test
point and other variables are defined locally to the subprogram where they are used.
The test points for the Quter Loops of the three Control Laws, however, are defined as
global variables, used by the Outer Loop procedures. The test points of the Inner
Loop are defined locally to the Main Program and are passed as parameters to the

Inner Loop.

MODULA-2:

The interface variables are defined in the Main Program and passed as parame-
ters to all Modules that use them. Typically, there is only one step of parameter pass-
ing, i.e., all subprograms in a given Module use the parameters as global variables.
Again, there are two exceptions: first, the interface variables between Outer and Inner
Loop are defined locally in each Control Law module. They are passed as parameters
to the Inner Loop and used as global variables by the Outer Loop. Secondly, the
results of the Display Module are defined locally; its subprograms use them as global
variables. All state variables arc defined in the declaration part of each module and

imported by the Main Program to be used with VOTESTATES. All test point and

69

other variables are defined locally.
PASCAL:

All interface and state variables are defined in the Main Program and are
passed as parameters to all subprograms that use them. Extensive parameter passing
takes place; no global variables are used in this program. Here, the only exception is
the results of the Display Module: these variables are defined locally and are passed as

parameters to its subprograms. All test point and other variables are defined locally.

PROLOG:

All interface, state, and test point variables are defined globally, in the PRO-
LOG database. Every subprogram accesses the variables it needs and updates them at

the end if they were modified.
T:

All interface and state variables are defined to be global to the Main Program.
State variables are used as global variables in the appropriate Modules and by the
Main Program, for the routine VOTESTATES. Interface variables are passed as
parameters to a Module if they are inputs, and are used as global variables if they are
outputs. This is obviously due to the fact that there is no parameter passing by address
in T. Only the output variables of the Display Module are declared locally since they

are not used by any other Module. Test point variables are usually defined local to

70

their Module. The test points of the Complementary Filters are an exception: these
are defined global to the Main Program because VOTEFILTER? is called in the Main
Program; thus the test points of the Barometric Altitude and the Glide Slope Deviation

Complementary Filters have to be passed to the Main Program.

4.2 Placement of Calls to Vote Routines

Vote Routines are the routines that were supplied by the coordinating team for
cross-checking and recovery. There are 8 Vote Routines, seven of which implement
one Cross-Check Point each, and one that implements the Recovery Point (cf. Chapter
1). The sequence and the syntax of the calls to these Vote Routines have been
specified exactly. But the programming teams could still decide where to place these

calls in their program.

Basically, two different approaches are found: The ADA and the PROLOG
program called all Vote Routines in the Main Program, whereas with all other teams
the vote routines are called in the appropriate function whose result they check. In the
latter case, there are two exceptions: VOTESTATES is always called by the Main
Program, and VOTEINNER is called by the Main Program in the case the mode is
TOUCHDOWN. This was necessary because VOTESTATES uses information from
all the Modules of the program, and because in the case of TOUCHDOWN the Inner

Loop is not computed, thus VOTEINNER has to be called by the Main Program.

71

The T program uses a variation of the latter approach: VOTEFILTER? is
called in the Main Program because it checks the results and test points of two dif-

ferent Complementary Filters; therefore, it cannot be called within any single Comple-

mentary Filter.

In addition, some peculiarities can be observed. It turned out that the
MODULA-2 Compiler could not handle the number of parameters of VOTESTATES
(there are 42). Therefore, the MODULA-2 program puts all the parameters in a
record, and passes this record to an auxiliary function XVOTESTATES (written in C)
which in turn gets all the parameters from the record and calls VOTESTATES. The
vote results are returned to the MODULA-2 program in the same manner. In the PRO-
LOG program, the Vote Routines are called by subroutines of the Main Program that
get the necessary values from the PROLOG database, call the Vote Routine, and store
the return values back into the database. The Vote Routines are actually installed in

the C-PROLOG interpreter,

4.3 Initialization

For the state dependent computations (rate limiter, integrator, linear filter), the
state has to be initialized before the corresponding primitive operation is performed
for the first ime. This is a rather tricky part of the problem, not only because of the
number of state variables, but also because different modules start to compute at dif-
ferent times. In addition, some states are not initialized by a constant, but either by an

input value or some intermediate value of the corresponding modules. In the

72

following paragraphs, the strategy of each team is briefly described.

In the ADA program, for each module that has internal states there is a
corresponding initialization routine which is called by the Main Program. The initiali-
zation of the Complementary Filters (with one exception — see below), the Mode
Logic, and the Command Monitors is done before the main loop of the Main Program,
after the first call to SENSORINPUT. Initialization of the Control Laws is performed
within the main loop; three boolean flags (AH_First, GS_First, FD_First) keep track
of whether the corresponding Control Law has already been initialized or not. The
iniialization of the Mode Logic is organized in a rather peculiar way which is due to0
the fact that originally an output of the Glide Slope Deviation Complementary Filter is
needed for the initialization. Thus, the Radio Altitude Complementary Filter has to be
initialized and computed to provide one of the inputs to the Glide Slope Deviation
Complementary Filter. Then, the latter can be initialized and computed which in turn
enables the initialization of the Mode Logic. Now, however, the state of the Radio
Altitude Complementary Filter and the Glide Slope Deviation Complementary Filter
are not what they should be at the beginning of the first time frame, so these two func-
tions have to be re-initialized. Despite a later specification change (which now
requires only constants for the Mode Logic initialization), this complicated approach
was not simplified. The initialization of integrator I8 in the Glide Slope Deviation
Complementary Filter is done within its computation procedure, with the help of a
local static variable "First". In the initialization procedures for the Quter Loop of the

Flare Control Law and the Inner Loop the intermediate values needed for initialization

73

"

are "precomputed”, i.e. the necessary part of the algorithm is implemented. This
applies to the output of linear filter F6 in the Outer Loop, and to the rate limiters LR1

and LR2 in the Inner Loop.

In the C program, an initialization procedure "init_main" is called by the Main
Program after the first call to SENSORINPUT. It initializes all states whose initial
value is defined at this point. Whenever the flight mode changes, "init_law" is called
by the Main Program to set some flags that trigger re-initialization of the Inner Loop.
All other initializations (these are in the Glide Slope Deviation Complementary Filter,
the three Outer Loops, and the Inner Loop) are performed within the procedures that
implement the corresponding functions. Global flags are used to keep track of

whether initialization must be performed or not.

In the MODULA-2 program, the results of the Mode Logic are initialized at
the beginning of the Main Program. All other initializations are performed within the
module computation. A static variable "first" (local to each module) that itself is set
in the initialization part of each module keeps track of whether initialization has to be
done or not. Only for the Inner Loop, this flag is passed as parameter from the three
Control Law procedures. Some state variables (Mode Logic, Command Monitor) are

initialized directly in the initialization part of their corresponding module.

In the PASCAL program, mostly initialization routines are used to perform the
initialization. The only exceptions are the output of the linear filter F10 and the output

of the integrator 18, both in the Glide Slope Deviation Complementary Filter, which

74

are initialized during their first computation, by using a flag "firstround” which is
passed as a parameter from the Main Program. The global time, the results of the
Mode Logic, and some other (auxiliary) state variables are initialized at the beginning
of the Main Program. After the first call to SENSORINPUT, the procedure AHDINI-
TIALIZE takes care of the Complementary Filters, the Mode Logic, the Command
Monitors, and the Inner Loop for Altitude Hold mode. The Outer Loop of the Alu-
tude Hold Control Law is initialized by the Main Program, after the Complementary
Filter processing. If the flight mode has changed, OUTERFLAREINIT or
OUTERGSCTCINIT, respectively, and INNERINIT are called by the Main Program.
In all cases, intermediate values that are needed for initialization are obtained by re-

implementing the corresponding part of the algorithm.

Similar to the ADA program, the PROLOG program has an initialization pro-
cedure for each of its computation procedures. Most of them (Complementary Filters,
Mode Logic, Inner Loop, and Command Monitors) are called before the main loop of
the Main Program, after the first call to SENSORINPUT. The Outer Loop of the Alti-
tude Hold Control Law and part of the Mode Logic are initialized after the Comple-
mentary Filter processing. (Note: To initialize the Mode Logic at this point of the
computation became unnecessary after a specification change — see the corresponding
remarks in the paragraph about the ADA team.) The initialization of the Outer Loops
of the Glide Slope Capture and Track and the Flare Control Law, and the re-
initialization of the Inner Loop are performed by subroutines of the Main Program

whenever the flight mode has been changed. All state variables which cannot be

75

initialized in either of these ways (e.g. because they need intermediate values) are ini-
tialized within the corresponding computation procedure. These variables are the out-
put of linear filter F10 and integrator 18 in the Glide Slope Deviation Complementary
Filter, the output of linear filter F6 in the Outer Loop of the Flare Control Law, and
the state of the rate limiters LR1 and LR2 in the Inner Loop. In these case, the

corresponding initialization procedures set a global boolean initialization flag.

In the T program, the results of the Mode Logic are initialized at the beginning
of the Main Prograrp. All other initializations are performed within the appropriate
Module. For the Complementary Filters, this is done within their organizational
harnesses. For all other Modules, it is done at the beginning or (if that is not possible)
during the Module computation,' by using global boolean flags and/or the results of the

Mode Logic.

4.4 Handling the Differences of the Inner Loop

Although the Inner Loop is basically the same in each flight mode, there are
slight differences, depending on the flight mode. The input "Pitch Attitude” (PA) is
only used in Altitude Hold mode, and the gain constant G27 (refer to the correspond-
ing figures in the Appendix) has a different value in each of the three flight modes.
Finally, the initialization of the output of integrator 11 is different in Altitude Hold
mode than in the other two modes. Table 45 shows how these differences were imple-

mented in each program.

76

ADA

The global flight mode variables are used in the Inner Loop and its
initialization procedure.

C

The global flight mode variables are used in the Inner Loop.

MODULA-2

The Inner Loop is called from different Control Law procedures,
depending on the flight mode. The correct gain constant and the
correct value of PA (zero if it is not used) are passed as parame-
ters. For correct initialization a flag indicating whether the system
is in Altitude Hold mode or not is passed as parameter,

PASCAL

The correct gain constant and a boolean flag indicating whether
PA should be used or not are passed as parameters. The gain con-
stant is set by AHDINITIALIZE (for Altitude Hold mode) and by
the Main Program (for the other modes); the flag is turned on by
AHDINITIALIZE and turned off by INNERINIT. The initializa-
tion for Altitude Hold mode is performed by AHDINITIALIZE,
the initialization for the other two modes is done by INNERINIT
(which is only called when the mode has been changed).

PROLOG

The Inner Loop uses special global variables for the gain constant
and the parameter PA. The correct gain value is set at the begin-
ning of the program and by the initialization procedures for the
G/S Capture and Track and the Flare mode, respectively. The
Outer Loop of the Altitude Hold Control Law copies the current
value of PA to the global variable used by the Inner Loop. This
global variable is set to zero by the initialization procedures for the
G/S Capture and Track and the Flare mode because PA is not used
in these modes.

The global flight mode variables are used in the Inner Loop.

Table 45: Implementation of Inner Loop Variations

4.5 Time-Dependent Computations

There are two references to the global time in the specification. The first one

is in the Glide Slope Complementary Filter where the algorithm to compute its con-

stants KO, K2, and K3 has to be changed after 10 seconds of Altitude Hold mode. The

second is in the Outer Loop of the Glide Slope Capture and Track Control Law where

switch SW3 should be closed 0.5 seconds after the Control Law has been entered.

Following is an overview of how different programs implemented these requirements.

77

The ADA program uses a local static variable that counts the frames in Alti-
tude Hold mode. The condition to detect that 10 seconds have not yet passed is:
"FLOAT(frame) <= (10.0/DELT)" where DELT is the length of a computation frame.
For switch SW3, a local static variable keeps track of the time since the Control Law

was entered. The condition to close switch SW3 is: "timer >= 0.5 - 1E-4".

The C program uses a global counter to count time frames; it is initialized by
zero and updated at the end of each computation frame. So, for the constant computa-
tion, the condition to detect that 10 seconds have passed is: "(time_count > 199.9)",
(Note: 10 seconds correspond to 200 computation frames.) For switch SW3, a global
variable is used that keeps track of the time spent in Glide Slide Capture or Glide
Slide Track mode. The condition to close switch SW3 is: "(gscd Il gstd) && (time >=
0.45)" where the expression "(gscd Il gstd)" is redundant because it is always true

when the Glide Slope Capture and Track Control Law is executed.

In the MODULA-2 program a local static variable counts the frames beginning
in Altitude Hold mode. The condition to detect that 10 seconds have passed is: "ctr
>= 200". For switch SW3, a local static variable keeps track of the time since the
Control Law was entered. The condition to close switch SW3 is: "framecount >=

0.5".

The PASCAL Program uses a variable that counts the time frames from the
beginning of the program. It is updated at the beginning of each time frame, thus the

first frame is counted as "1", etc. The Main Program encodes the algorithm to

78

K .

compute the constants in an integer variable which is passed to the Glide Slope Devia-
tion Complementary Filter. There, only a case selection has to be performed. The
condition for detecting that 10 seconds have not yet passed is: "TIMER <= 200". For
switch SW3, the time where SW3 should be closed is computed by "TIMER + 10"
upon Glide Slope mode initialization. It is stored in a variable of the Main Program
which is passed to the Outer Loop of the Glide Slope Capture and Track Control Law,
along with the current TIMER. Thus, the condition to close SW3 is: "TIMER >=

SW3CLOSETIME".

In the PROLOG program, a global variable keeps track of the elapsed time. It
is updated at the beginning of each computation frame. The condition to detect that
10 seconds have passed is: "elapsed_time > 10 + DELTA/2". For switch SW3, the
current time is stored in another global variable, "gs_timer", upon initialization of the
Glide Slope mode. If the switch is open it is determined if it should stay open by
"elapsed_time - gs_timer =< (0.45 + DELTA/2)". If it turns out that the switch should
be closed a global variable "sw3_closed” is created in the PROLOG database whose

presence indicates for all future computations that SW3 is closed.

The T program uses a local static variable "timer” to keep track of the time
spent in Altitude Hold mode. The condition to detect that 10 seconds have not yet
passed is: "(<= timer 10.0)". For switch SW3, a global variable counts the frames in
Glide Slope Capture and Glide Slope Track modes. The condition to determine that

switch SW3 should stay open is: "(< gscount 11)". (Note: 0.5 seconds correspond to

79

10 computation frames.)

4.6 Resetting of Test Points

The specification was augmented by UCLA researchers with the requirements
that whenever a module (or a part of it) is not computed then default values of 0.0
should be passed to the Vote Routines for the results and the test point values of this
module. This was done to ensure that comparison of these values did not result in
false alarms in situations where these values are not significant. Most programs use a
number of auxiliary procedures to reset the values of certain test point variables.

More often than not, this resetting is done in every iteration (computation frame).

Only the PROLOG program resets unused variables consistently only once
during the execution of the program. The resetting is done by the initialization rou-
tines that are called when the mode has changed. Variables .that are not used during
the new flight mode are set to zero. This strategy is possible because all variables are
global in PROLOG. The Mode Logic test points are reset only once also by the ADA

program, upon leaving Altitude Hold mode.

The MODULA-2 and the T teams were the only ones that realized that con-
stants can be passed directly to the vote routines, Thus, in the Outer Loops "0.0" and
“0", respectively, is passed to VOTEOUTER for all undefined test point variables. As
a result, there is no need to reset any of the Outer Loop test point variables. The same

approach is used for VOTEINNER when the mode is TOUCHDOWN,

80

CHAPTER §

CONCLUSIONS

5.1 Summary of Results

In the three preceding chapters, an attempt was made to examine and analyze
the structure of the six versions at different levels. In order to draw any meaningful
conclusions about the ability of the N-version programming methodology to produce
diverse versions, one first has to estimate the potential for diversity (PFD) that is indi-
cated oy a given specification. Thus, the PFD is an estimate of the amount of diver-

sity that can be expected to occur between different versions.

The "PFD" column of the following Table 46 gives an assessment of the extent
of diversity (structural differences) that may be expected for each program module. A
module has "poor” potential for diversity if it is either so small and simple, or else if
its computation sequence (in terms of primitive operations) is so well-defined by data
dependencies, that there is little room for diversity in implementation and organiza-
tional aspects. In the modules with "good" potential for diversity, many (between 5
and 10) independent computation paths exist which could be traversed in any order. In
the case of the Main Program the sequence of the major system functions is deter-

mined by data dependencies (cf. Figure 1); here the PFD lies in the organizational

81

aspects. Modules with "medium” PFD are estimated to lie somewhere between these

two limiting cases.

It must be noted that the PFD assessment is somewhat subjective; the factors
used in the assessment include the specification of each program module as well as the

observed structural differences.

The column "Observed Diversity” of Table 46 lists the attributes in which
structural diversity actually was observed between two or more of the six versions.

Further explanations and comments on this column follow.

82

|__Program Module PFD QObserved Diversity

Main Program good level of detail implemented, information
handling, organization of state variable ini-
tialization, placement of calls to vote rou-
tines

Radio Altitude Com- | poor grouping, sequence

_plementary Filter

Barometric Altitude | medium | grouping, sequence

Complementary

Filter

Glide Slope Devia- | medium | grouping, sequence, time-dependent compu-

ton Complementary tation

Filter

Mode Logic good constants, sequence, algorithm

Altitude Hold Con- | poor constants, grouping, sequence

trol Law, Outer Loop

Glide Slope Capture | good constants, grouping, sequence, time-

and Track Control dependent computation

Law, Outer Loop

Flare Control Law, | good constants, grouping, sequence

Outer Loop

Inner Loop poor constants, grouping, sequence, organization

Command Monitor poor grouping, algorithm, organization

Mode Display poor algorithm

Fauit Display poor algorithm

Signal Display medium | algorithm

Primitive Operations | poor choice, organization

Table 46: Potential for and Observed Diversity

The first notable difference between the Main Programs is the level of detail
implemented there. The ADA version is one extreme example; it deals with all the
organizational details, such as initialization of state variables, or determination of
which function to perform at a given instant, in the Main Program. This leads to a cal-
ling hierarchy which is exactly one level deep, if some auxiliary subprograms and the

calls to primitive operations are ignored (cf. Figure 2 in chapter 2). The T version is

83

similar in the sense that all the system functions are called directly by the Main Pro-
gram. However, most of the organization (especially initialization of state variables)
is done locally by these system functions. The other versions (C, MODULA-2, PAS-
CAL) generally show a two-level calling hierarchy, i.e., they define relatively general
subprograms like "Filter Module"”, "Mode Logic", or "Altitude Hold Control Law",
and deal with the organization of the appropriate system functions locally. Neverthe-
less, there are some differences between these latter versions, too. For instance, the C
and MODULA-2 versions organize the Control Laws into three different Control
Laws (one for each pitch mode), each consisting of an Outer and an Inner Loop. The
PASCAL version, on the other hand, divides the Control Laws into an Quter and an
Inner Loop, where the Outer Loop consists of three different Outer Loop procedures.
Finally, the C and MODULA-2 versions differ also in the organization of their Filter
Module, or their Mode Logic. The PROLOG version is a special case. It has a rather
large and complex calling hierarchy because the language is such that IF-statements

have to be implemented by function calls.

Another important difference that was noted is the strategy chosen to handle
information, i.e., state, interface, and output variables. Solutions range from extensive
parameter passing (PASCAL) to the exclusive use of global variables (C, PROLOG).
We note that this choice was unavoidable for the PROLOG version because of the
language properties. The other versions use solutions between these two extremes, by
trying to define as many variables as possible locally. The choices are partly program-

ming language dependent, e.g., dependent on the availability of local static variables.

84

A related aspect is the organization of state variable initialization: the two basic solu-
tions are initialization by the Main Program, or initialization within each program

module.

The third aspect of diversity in the Main Program concerns the placement of
calls to Vote Routines: either all vote routines are called in the Main Program, or they
are called in the system function whose result they check. The recovery point routine,

however, is always called by the Main Program.

The notation "constants” in Table 46 indicates that some teams chose to sim-
plify the computation by manually evaluating some expressions consisting of con-
stants only. "Grouping" refers to the fact that different teams éhose different ways of
combining primitive operations into statements of their programming language.
"Sequence” denotes that some versions use a different computation sequence (in terms
of primitive operations) to implement a system function than others. Sometimes the
differences are very minor, for instance in the Outer Loop of the Altitude Hold Con-

trol Law or in the Inner Loop.

"Time-dependent computation” means that this system function contains an
algorithm that is dependent on real time. In both cases, we observe much variety
among the strategies chosen (1) to keep track of real time; and (2) to guard against
effects of limited precision of real number representation. (Note: Real time was simu-

lated in this application.)

85

"Algorithm” indicates that different versions use different algorithms to imple-
ment a certain system function. These differences are mostly minor ones; only in the
Signal Display more interesting differences can be found, both in the structurs of the

algorithm and in implementation details.

"Organization” refers mainly to the fact that some versions chose to imple-
ment a Certain subprogram as a procedure (results are returned via parameter passing),
while other versions used a function (a RETURN statement or similar construct is
used). In the case ot_‘ the Inner Loop, slightly different requirements existed for dif-

ferent pitch modes. A variety of solutions to cope with these has been found.

Primitive operations are integrators, linear filters, magnitude limiters, and rate
limiters. The algorithms for these operations were exactly specified, however, dif-
ferent choices of which primitive operations to implement as subprograms have been
made, mainly whether the integrators include limits on the magnitude of the output
value (as is required in most cases), or not. Only the PROLOG version implemented a
"switch” subprogram; this choice has clearly been influenced by programming
language properties - all other versions just use IF-statements. The T version defined
only a subprogram for magnitude limiting, all other primitive operations are imple-
mented directly in each system function. The PROLOG version uses procedures to
implement these operations, all other versions use functions. Lastly, the ADA func-
tions also do the state update, in the case of state dependent primitive operations; all

other versions have to do this within each system function.

86

5.2 Observations and Implications for the N-Version Design Principle

In general, it can be said that more diversity was observed in the parts of the
program whose method of implementing was not explicitly stated in the specification,
such as the Signal Display, the organization of different Inner Loop algorithms
{depending on the pitch mode), the organization of state variable initialization, or the
implementation of time-dependent computations. Furthermore, not all the design
choices outlined above can be made independently. For instance, whether a primitive
operation is defined as a function or a procedure determines if it can be combined with
other operations in a single statement, or not. Similarly, if the update of state variables
is performed as part of the primitive operation, then the upper levels do not have to be
concerned with this. As a last example, if the state variables of a system function are

defined as local static variables, then they cannot be initialized by the Main Program.

Two factors that limit actual diversity have been observed in the course of this
assessment. One of them is that programmers obviously tend to follow a "natural”,
i.e., implied sequence, even when coding independent computations that could be per-
formed in any order. The observation made was that algorithms specified by figures
were generally implemented by following the corresponding figure from top to bot-
tom. In this case the "natural” order was given by the normal way to read a piece of
paper, i.e. from left to right and from top to bottom. Only when enforced by data
dependencies, a different order was chosen, e.g. from bottom to top. It can be safely

assumed that the same phenomenon would occur if the specification was stated in

87

another form than graphical; especially this is true for a textuat description. The latter
can be exemplified by the Display Module: only one team chose the order of computa-
ton Fault Display, Mode Display, Signal Display; all other ieams chose the order
Mode Display, Fault Display, Signal Display which was also the order used in the
specification. That means that if there is a number of independent computations that
could be performed in any order, then there exist some orderings of these computa-
tions that are more likely to be chosen than other orderings, due to human, psycholog-

ical factors.

The choice of an implied sequence affected the Outer Loops of the Glide Slope
Capture and Track and the Flare Control Law, and the Mode Logic the most; their
good potential diversity was not exploited as much as expected and possible, due to
this phenomenon. In retrospect, a second reason for this lack of diversity is that we
have concluded that the logic part of the Mode Logic was overspecified. A descrip-
tion of the conditions that have to be met to enter the next pitch mode would have
been more appropriate than the logic diagram which biased the programmers too

much towards using identical or very similar algorithms.

One possible solution to the implied “natural” sequence problem is to provide
different specifications to individual teams. They could cither be required to follow a
specific unique computation sequence, or the order of presenting the independent
computations could be different in each specification while still having each team

decide which sequence to follow. The problem of this approach is the possibility of

88

introducing additional faults into the specification, i.e., more faults than would have
been made in a single specification, unless the process of generating different versions

of a specification can be proven to be correct.

The "implied sequence” problem is only one example of a more general prob-
lem, i.e., "unintended implied messages" in a specification. This term denotes any
feature of the specification that does not reflect requirements of the application prob-
lem, and that somehow biases the programmers in their design decisions. An example
is the specification of the Mode Logic in two separate figures. This caused all teams
to partition the Mode Logic accordingly, and the PROLOG team even treated the two
parts almost independent from each other. The reasons for presenting the require-
ments in this way are the convenience of figure layout, and the fact that one part of the
Mode Logic is identical to another, completely unrelated algorithm. At present, no
general method is known to detect and prevent such unintended implied messages.
One possible approach might be the use of formal specification techniques. These are
(hopefully) able to express exactly what is wanted. Furthermore, they are more
difficult to understand and require more thought by the programmers; thus it may
become more likely that one obtains diverse programs by relying on the programmers’
different backgrounds and approaches to the problem. On the other hand, it is conceiv-
able that some unintended implied messages might also be used to enforce diversity:
include some subtle implied messages (these would then be intended) in the

specification, and rely on that some teams "get" the message and some teams do not.

89

The concept of "test points” is the second factor that tends to limit diversity.
Their purpose is to output and compare not only the final result of the major system
functions, but also some intermediate results. However, that restricted the program-
mers on their choices of which primitive operations to combine (efficiently!) into one
programming language statement. In effect, the intermediate values to be computed
were chosen for them. These restrictions are rather unnecessary and can easily be
removed. An additional benefit is that cutput and the use of vote routines would
become simpler. On the other hand, the test points proved very beneficial in version
debugging. A way to preserve this useful feature is to add test points only during the
testing and debugging phase, and to remove them afterwards. Each team should be
free to choose its own test points; in addition, the program dc\}ciopment coordinator
can request specific test points if it is intended to compare the results of two or more

different versions.

It is difficuit to make a general statement on the impact of different program-
ming languages on the diversity observed. Some single differences can easily be attri-
buted to programming language properties and have been pointed out in the appropri-
ate subsection of the thesis. The properties of the PROLOG language have been most
inftuential, examples are the exclusive use of global variables, implementation of IF-
statements as PROLOG-functions, and implementation of a "switch" primitive opera-
tion. The result was a program structure that was quite different from the other five
programs. The properties of the T language resulted in only very few differences,

because the programmers simulated the programming style of conventional languages

-

with the constructs available in T. Not much truly "functional programming” has
been observed. The other four languages are very similar with respect to instruction
semantics. Some differences can be attributed to the presence of explicit modulariza-
tion constructs in ADA and MODULA-2, such as certain aspects of using local versus
global variables, or information hiding. The unavailability of local static variables
and of the possibility to declare variables that are global to the Main Program led to
the scheme of extensive parameter passing, that the PASCAL program employed.
The C program, on the other hand did not use local static variables at all, although
they are available in C. In conclusion, it is felt that in these four programming
languages the programmers had more freedom to make decisions about their designs;
only very few decisions were forced upon them by properties of their programming

language.

5.3 Suggestions for Future Research

It is worthwhile stressing the fact that the particular application chosen for this
experiment is specified very accurately and unanimously in many aspects, especially
with respect to algorithms. Yet, many differences have been found between the six

programs produced in the course of this experiment.

The first question now is, are these differences already sufficient for reliable
system operation, i.¢., maybe the observed restrictions in the diversity of the computa-
ton sequence (see the preceding subsection) do not really matter. If that is the case,

then it would not be necessary to provide different specifications to different teams, or

91

to take any other kind of measures to increase the probability of diverse computation

sequences.

Furthermore, it is possible that this restriction of diverse computation
sequences occurs only with applications similar to the one used in this experiment,
where most algorithms were specified rather explicitly. In other applications, where
the function of the program is stated only in a very general way, this problem might
not occur. Then again, the additional effort of providing different specifications

would not be necessary in these cases.

Last, but not least, it would be interesting to develop some kind of a "diversity
metric” to be able to make statements about the degree of differences between two (or
more) programs. One possibility is to determine a list of criteria or aspects in which
programs can be different (such as the ones found in this study — in addition, standard
software metrics can be used), and then rank each program on each of these criteria.
For instance, one would have to determine that "Program A uses global variables to an
extent of 35%, while program B uses global variables to an extent of 100%". The
average difference of two programs in all criteria could then be used as a diversity
indicator. However, there are several problems with this approach: first of all, not all
criteria may be independent from each other. For example, if a team in this experi-
ment decided to call the vote routines from the main program, then the test point vari-
ables had to be cither global or made otherwise available to the main program. On the

other hand, if they decided to call a vote routine from within the module whose output

92

is checked by that vote routine, then it is possible to define the corresponding test
point variables locally only. Second, the list of meaningful criteria depends on the
application under examination, thus comparisons are only valid between programs
that implement the same application problem unless some general catalog of criteria
can be established. But then again, it is probably very difficult at least to get this cata-
log to be exhaustive, i.e., to contain all possible criteria by which two programs might
be different. Lastly, not all criteria might be equally important, i.e., it might be more
beneficial to system reliability if two programs differ with respect to criterion A than
if they differ with respect to criterion B. Thus any research in program diversity
should be done within the context of an evaluation of overall system reliability or reli-
ability improvement, since we are not interested in software diversity per se, but only

in the benefits software diversity has with respect to system dependability.

93

[Aviz84]

[Aviz85a]

[Aviz85b]

[Aviz87a]

[Aviz87b]

(Knig86)

[Lyu87)

REFERENCES

A. Avifienis and J.P.J. Kelly, ‘‘Fault-Tolerance by Design Diver-
sity: Concepts and Experiments,”’ Computer, Vol. 17, No. 8,
August 1984, pp. 67-80.

A. AviZienis, ‘“The N-Version Approach to Fault-Tolerant
Software,” IEEE Transactions on Software Engineering, Vol.
SE-11, No. 12, December 1985, pp. 1491-1501.

A. AviZienis, P. Gunningberg, J.P.J. Kelly, L. Strigini, P.J.
Traverse, K.S. Tso, and U. Voges, ‘“The UCLA DEDIX System:
A Distributed Testbed for Multiple-Version Software,” in Digest
of 15th Annual International Symposium on Fault-Tolerant Com-
puting, Ann Arbor, Michigan: June 1985, pp. 126-134.

A. Avifienis, M. R. Lyu, and W. Schiitz, “‘In Search of Effective
Diversity: A Six-Language Study of Fault-Tolerant Flight Control
Software,”” UCLA Computer Science Department, Los Angeles,
CA, Tech. Rep. CSD-870060, November 1987,

A. Aviiienis, M. R. Lyu, W. Schuetz, and J. J. Chen, *‘Multi-
Version Software Development and Processing: A
UCLA/Honeywell Joint Project for Flight Control System
Design,”” Technical Report, UCLA Computer Science Depart-
ment, Los Angeles, CA, December 1987.

J.C. Knight and N.G. Leveson, ‘‘An Experimental Evaluation of
the Assumption of Independence in Multiversion Programming,’’
IEEE Transactions on Software Engineering, Vol. SE-12, No. 1,
January 1986, pp. 96-109.

M. R. Lyu, W. Schuetz, and J. J. Chen, *‘FCS Design Utilizing
N-Version Processing: Software Requirements Document for a
Flight Control Computer,’”” UCLA Computer Science Department,
Internal Document, Version 1.3, Los Angeles, CA, September 4,
1987.

94

[Tso87]

K.S. Tso and A. Avifienis, ‘‘Community Error Recovery in N-
Version Software: A Design Study with Experimentation,” in
Digest of 17th Annual International Symposium on Fault-Tolerant
Computing, Pittsburgh, Pennsylvania: July 1987, pp. 127-133.

95

APPENDIX A

SYSTEM SPECIFICATION DIAGRAMS

This appendix contains reproductions of the diagrams that were used to specify

the system functions in the Software Specification Document.

96

aﬂ ‘a ™ MQ Ir_x
>%/n] 2™ (W) =%
M ﬁa\nu a Ty

o (Ye)="y

BRNS fpvan 3 SNan) M =4) acow DY 22931-

Jam -.-.J< u.t-wida<ﬂ

1'€ 32n9/4

£t s

19
(3vg) X
153
LY Oy ...M.
L%
26559
§z

h> T L

'@

4 'S
qg -‘
NK _
m @ ..M.W 1201
AT Nt 4
4 N

*

12 ny otng b1nS

ﬁﬂlu..wv Ardow Q .J oy d~|&
Adoyw @ o¥n npuq-é

(+) 30nu sy

(am) vy
Ienpr Ly

- thy1e 3 ' ¥ +
Q @ —r— R (W) yia
.S_A

%

wlny Avwirmeing ..GQ

Jangitry vy

CE 33094 \(d - «Q adory @ ¥y 03 7F -3

ndoy @ #¢ o2 U -1
00°) =)
S22 ="

{va)
REA 4

L2

(3vy)
Uy w3 .

Aw 0i2vf

(v

v ps3 Yy

Mo n

._Bﬂ_.s lins PG ¢
n\ \/

A2y orav¥ -

(ry)
- Ny
ordvy

STng

1

rrsry Ayviriaw Ealiils]
peAVIAI(} a1 Ralig

£°€ wnoid

£1 3982 2357 3]

Adely 1¥
yuro 3p VY - T2HeN

N.«HMP v (ava)
Qv ¢ A8
T ety _. vy
e ;
Ly s]
-ymtly - L - L 11
ra |1 hw
cens o tw (459)
f—i—
Pb» P = M A0 a_.-o
’ N
. - [}
A . al
. by i
(A4 I - 1
' v [0 Wb @
(2as9) h LG + (va)
Lis-a3g sfy —L _ ¥ 1357V Jmyn
s . iz~ 3108 "
A'wu DNNQ‘ z u-
. (4l

%

L

AHD

— GSCD

GSTO

>4

. TH
A€ ’ 0> _@5 £o

RAR € . Eg_

Y

Aoov

Elo)- . 70

=P

Pugcizaa(upes)
P> cct v g 0/3 0Ev 2 Y Pame e -
HAYC QPPOBTE SONS Gb MADETWE (20 CounTs Ag Poc:T1VE)

* PITCH MODE LCGIC
Feme 4|

0o

SWHLINOYY Trd oo 7S oysz oL v v

Uh b oagz oL FLINLINY </ q — 0ot
B AP
sy
{y=/L)
WSV 80
[ecc) e carnbn)
—N“ ’u ¥ T vss-uwe v wu
1
(1 >a43) 9 - " uoo.v
.- 3
[woo omawbg .mmn..”.w et _ ..uu\me<>u
MiVS LH1919 & ”° W e
TS < 9q !
m 2 tw B m&on&
R N ¢
N 20 | 3a5%)
(o) nevd Lrwwqw i I S
fLa)
(1274 |] .ua?uﬁou
Is
un Q —Ams

o]
| casdv)
ln/ - m.mud /9-v/y

ot

#YT YONINOD Q0N 1Ty
1's o,

(wve) aivg .
NN Y Wy
w1 q |
b NELALY S i va)
7 : MAug Y Mg
oy gy o 7+ LU
tSea0)

]

dnviag uszi O
LndmN ol satyiLing <)

1

[=~y N

(44

”

Mivg imang

U&l ool

VLT g

(»»)

oy IV T)

o

MY7? T08LNO> WAL

NG -BINLIYD F407S IMTY (>d44) 3&&3
Sy o G (g

on 7 £u? QOHPHUE :] s &\‘r
e Hu“mw. | . RG] YA

7
Jor=]_
oz+

WS/ wq T h 7 13

By's
14

Loy 1531 O

POILISNGYL Moy LY BRITHILING A&
0% o 3T <g]

Lodnt o O <J]

(03

MOLLISPB L. o Ly 321791Lw1 <E] LNy 24 LY 2308 ~)
033Z 9o} D] .
g B YILING IBYT LY 0N = H

tvogd 1331 O Lndmi o >T <
(dpdd) avi> INguwa hos, T+ | Dmmm.
MU7 108N 23024 LU R L L [LE L]
1¢ 330914
k7]
f a
o) Tu7 €47 € _..
v | ¥ o> Is]* k .
Oreh F o
.‘0 ouD WNgdy M ~* v
AV wiad LudNrd A
1uy has hdadd 5 -
>33 »f] I'o7= o
wWwhilfor+]| +
17 HIDN
ons* 1 ~ £y
L/
0o
93

- .

NS

IT<g] .mi
o= om0 Ty hH?

235/3247Th70 vl

oY

Yourpow ONYWWO)

I'8 3219

90 9 » LN DN

M-owohe IV
#%¢ 01 =WV
1 WL
Oe
() e
v>3 S

H asa [¥ \.
&4 rni _u_

-

oY

*

4 sros

1

