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Abstract

This paper presents the parallel implementations of the preconditioned conjugate
gradient method on the Connection Machine. A number of preconditioners, including
the incomplete LU (IL.U) factorization with natural ordering, modified ILU (MILU) fac-
torization with natural ordering, symmetric successive overrelaxation (SSOR) with
natural ordering, TLU with red/black ordering, MILU with red/black ordering, SSOR
with red/black ordering, and polynomial preconditioners, were evaluated based upon the
convergence rates and execution times on the Connection Machine.
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1. Introduction

The conjugate gradient method, coupled with "good" preconditioning, has been
known as an efficient technique for solving large sparse symmetric positive definite linear
systems of equations such as those generated by the discretization of elliptic partial
differential equations in two or three dimensions. In the past, many preconditioners have
been proposed which helped to make the PCG method very competitive for computer
implementation. Many of such preconditioners, however, are sequential in nature; and
thus are unable to exploit efficiently the computational resources offered by massively
parallel computers. In search for more parallel preconditioners, one method is to re-order
the unknowns in the system of equations so that the data dependency can be reduced, and
higher degree of parallelism can be obtained. Nevertheless, experiments and analyses
have shown that more parallel preconditioners often give slower convergence rates than
their sequential counterparts, The conflict between convergence rates and degree of
parallelism for a preconditoner should prompt researchers to look for preconditoners that
offer high degree of parallelism while preserving fast convergence rates to achieve the
best overall computation time performance.

This paper presents the results of implementation of a number of preconditioners on
the Connection machine. Among these preconditioners are incomplete LU (ILU) fac-
torization with natural ordering, Modified incomplete LU (MILU) factorization with
natural ordering, symmetric successive overrelaxation (SSOR) with natural ordering, ILU
factorization with red/black ordering, MILU with red/black ordering, SSOR with
red/black ordering, and a few polynomial preconditioners. Section 2 will cover the basic
conjugate gradient method, different types of orderings, as well as a number of precondi-
tioners. Section 3 will present a brief description of the Connection Machine used in this
experiment. Section 4 will discuss the detail of implementation. Finally, in section 5,
both the convergence rates data as well as execution times on the Connection Machine
for different preconditioners will be presented.

2. The Preconditioned Conjugate Gradient Methods

2.1 The Preconditioned Conjugate Gradient (PCG) Algorithm

The PCG algorithm for the solution of a large sparse symmetric positive definite
linear system of equations

Au=f

where A is an N x N symmetric positive definite matrix and « and fare N x 1 vectors, is



given as follow [11] :

r=f-Au ; initial residual

r=0

Repeat
z=M"1r ; preconditioning
B=new <r, z>/old <r, z>
p=z+Pp ; updating direction
a=new <r, z>/ <p, Ap>
u=u+op ; updating solution
r=r—aAp ; updating the residual

until <r, r> < tolerance

where <, -> denotes the usual Euclidean inner product, and r and p are
N x 1 residual and search direction vectors respectively.

The matrix M is called the preconditioning matrix and the speed with which the
algorithm converges depends strongly on the choice of M. It is desirable to have M
approximating A so that the condition number x (M~! A} is smaller than that of A alone,
that M retains the sparsity feature, and that the computational overhead to solve the sys-
tem of equations

Mz=r

is relatively small.

2.2 Model problems and orderings

The model problem used in this experiment is the discrete Poisson equation on the
unit square Q = [0,1]® with Dirichlet boundary condition. The 5-point finite difference
approximation of the problem is :

P A =1
Wikt Ui e+ Wikl ¥ UjE—1 -4uj_k —f}'k h Lk=1, ,hn—1 where n = e

where A is the grid spacing in both the x and y directions ,and u; ; is used to approximate

the value of u (jh,kh). In terms of the shift operators, the problem can be rewritten as :

h? £
4

1 - -
Aji i =~ : Aj.k=1--&—(Ex+E,1+Ey+Eyl),
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where E; and E, are shift operators along the x and y directions, such that
-1 -1
Exujpe=ujs1k > Ex ju=uj1k » Eyujp=tjpsr , Ey ujp= Ujk-1 .

Therefore, A} ; is a local operator at the grid point (jk,kh) [1]. A stencil representation of
operator A; , is described in Figure 1. A collection of local operators A; ; at all grid
points, together with the way that the grid points are ordered, form the coefficient matrix
A,

The ordering of grid points on a 2-dimensional grid determines the form of the
coefficient matrix A and also that of the preconditioners. Using the natural ordering, grid
points are ordered in row-wise (or column-wise) manner. And using the red/black order-
ing, grid points are first partitioned into red and black groups such that a grid point (j,k)
is red if j +k is even and black if it is odd. Then the grid points within red group are
ordered, followed by the ordering of the grid points within the black group. In the context
of parallel computation, the natual and red/black orderings evolve into their parallel ver-
sions, which are called diagonal and parallel red/black orderings respectively. These two
(partial) orderings are defined as follow :

Diagonal ordering :
.k)<(@m,n) if j+k<m+n,
Parallel Red/black ordering :
G.kY<(m,n) if (j,k)isred and (m ,n)is black,

where the order of updates during preconditioning is determined by the inequality condi-
tion (e.g. in ascending or descending order). These two orderings for the grid points on a
uniform 6x6 square grid are illustrated in Figure 2. For the diagonal ordering, the grid
points that have the same sum j + k can be performed in parallel, and the same is true for
the red/black ordering where the grid points are of the same color. This means that if this
problem is solved on a parallel computer, then a sweep (or one iteration) using red/black
ordering can at best be computed in constant time (independent of the number of grid
points) while a sweep using diagonal ordering can at best be computed in O (N* ) time,
where N is the number of grid points. Here we can see that the parallel red/black order-
ing offers higher degree of parallelism ( O (N) operations can be performed in parallel )
than the diagonal ordering (which has degree of parallelism O (N “)). Nevertheless, the
convergence rates improvement of the preconditioners using diagonal ordering are usu-
ally better than those using parallel red/black ordering.



2.3 Preconditioners

The preconditioners under investigation in this experiment are described in the fol-
lowing sub-sections.

2.3.1 Incompiete LU (ILU) preconditioners [1,3,12]

2.3.1.1 ILU with diagonal ordering

The ILU preconditioner is defined to be the product M; = LU, where L and U are
lower and upper triangular matrices respectively, and U has unit diagonal. The L and U
are constructed such that the entries of M; have the same values as those of A wherever
the corresponding entry in A is non-zero. For model problems such as 2-D Poisson equa-
tion with Dirichlet periodic boundary conditions, one way is to perform LU factorization
on the M matrix to obtain the exact local operators. An easier way is to get an matrix
which is an approximate of M so that following local operators L j.k and U g can be used
on all grid points (this easier method is implemented since it was found that there is no
convergence rate loss by using this method) :

1 -1 -1 _ 1 1
Lj.k=2(a_Ex _Ey )y Uj,k—l“‘&'Ex—;Ey'

where a is a constant to be determined. The product of L; ; and U}  is thus :

1 2 _ _ 1 _ _
M,U,,‘)=I[a+-a--(5x+5,+gx 1+Ey 1)+-;(E,Ey L4 E, YENH]

By matching the entries of M and A according to the requirement formulated above
(again, since an approximate M is used, the requirements are not obeyed for a few rows),
the following condition is obtained :

The solutions of this equation are 2 =2++2. We choose a =2++2, since the
coefficients of the corresponding difference operator R; = M; — A have smaller absolute
values. Thus, the diagonal-ordered ILU preconditioning consists of a forward solve
(L) followed by a backward solve (U™!). Due to the sequential nature of the diagonal
ordered ILU preconditioning, these forward and backward solves can at best be per-
formed in O (V¥ ) time on parallel computers.

2.3.1.2 ILU with parallel red/black ordering
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The local operators L; ; and U; ; for the parallel red/black ordering are :

1, (k) red
L=
sk 1--%(15“1?;I +E,+E;') |, (k) black

1—?11-(EI+E;1+E),+E;1), (.k) red
Ui = 3

T (j.k) black

Therefore, we obtain the parallel red/black ordered ILU local operator as :

My iy =
1 - - : .
I- 2 (Ex+E +Ey +E51), k) red
2 L B BB +E )+ B v ET 4B 4B 2 . (i) black
44(;,+J,+,, ’)+16(’+"+’ y Y, (k) blac

Again, this preconditioning consists of a forward solve (L) foliowed by a back-
ward solve (U~1). In this case, however, since all the red points can be updated in paral-
lel and so can the all the black points, the solves can at best be done in constant time. The
stencil representations of the local operators for the diagonal-ordered and parallel
red/black ordered ILU preconditioners are shown in Figure 3.

2.3.2 MILU preconditioners {1,3,13]

2.3.2.1 MILU with Diagonal Ordering

The MILU preconditioner with diagonal ordering is defined so that the entries of
My have the same values as the corresponding off-diagonal entries of A which are non-
zero, and the sum of the entries of each row of the error matrix Ry = My, — A equals
8 = ch?, where h is the grid spacing and c is a nonnegative constant that is independent
of h (as in the ILU case, only an approximate M is used in this experiment, which means
that the row sum criterion is violated for a few rows). Thus, here again :

2 _ - 1 - _
My o = [a+;—(Ex+Ey+E, '+ E, 1)+;(E,Ey '+EE))]

1
4

Again, equating the entries of My, and A according to the requirement, we have :



By solving the above equation, we obtain :

a=2+2+ L @5+e

2 2

The steps involved in this preconditioning are the same as those of the [LU with
diagonal ordering. Hence, this preconditioning can at best be completed in O ( VN ) time
on paralle] computers.

2.3.2.2 MILU With parallel red/black ordering
The local operators L;  and U, for the parallel red/black ordering are :

L+8, (j.k) red
L=
s 118 —%(E‘+E;1+Ey+551), (J.k) black
IO U L
Uje= ! 4(148) (Ex+Ey" +Ey+Ey ), (k)red

1, (j,k) black

where 8 was defined in the previous sub-section.

Again, we obtain the parallel red/black ordered MILU preconditioner as :

MMrb(j,k)=
1+8—%(E,+E,'1+Ey+E;l), (k) red
1+8- “1_8 —%(E,+E;‘l+E,+E;1)+F(ll—+-8—)~'(E,+E;1+E,+E;1 2. (k) black

This preconditioner, as in ILU preconditioner with parallel red/black ordering, takes
constant time independent of the number of grid points, N, on parallel computers. The
stencil representations of the local operators for the diagonal-ordered MILU is the same
as that for the ILU case, and those for the parallel red/black ordered MILU



preconditioner are shown in Figure 4.
2.3.3 Symmetric Successive Overrelaxation (SSOR) precondtioners [1,3,14]

2.3.3.1 SSOR with diagonal ordering
The SSOR preconditioner is defined to be :

Ms=(D-wL)D Y (D-wLT),
where D and L are diagonal and strictly lower triangular matrices respectively such that :
A=D-L-LT,

and o is the relaxation parameter.

For the model Poisson problem with diagonal ordering, the partitioning leads to the
following local operators :

1 - - r_1
Dix=1, Lie=7(E'+E™), Lik=—(E+E).
The product Mg (; &y is thus :
@ -1 -1 w? -1 -1
Msu_k)=l—T(E,+Ey+E, +E, )+E(2+EJIF E,+E,E, ).

Again, as in ILU and MILU preconditioners with diagonal ordering, this precondi-
tioning also takes O (VN ) time on parallel computers.

2.3.3.2 SSOR With parallel red/black ordering

For the model Poisson problem with parallel red/black ordering, the partitioning
leads to the following local operators :

Dj.k=1s

0, (j,k) red
L=
el 1—%-(EI+E;1+E,+E;1), (j,k) black

L= (B +E;' +E, +E51 ), (i) red
Uj.k = 4
0, (j,k) black
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Therefore, we obtain the parallel red/black ordered SSOR preconditioner as :
Msrp (i) =

1- L (B, +E+E, +EY, (k) red
4 ¥ ¥
{

2
1= 3 (Ext 5 4+ By + ') + S B+ B + By + B3 2, Gk black

\

The stencil representations of the local operators for the diagonal-ordered and parallel
red/black ordered SSOR preconditioners are shown in Figure 4.

2.3.4 Polynomial preconditioners [1,4,6]

The polynomial preconditioner attempts to approximate the inverse of
A=(I-B)P! marix by truncating its Neumann series expansion,

ATl =PU~-BYy'=P(I+B+B%+ - +B")=M;\, ,

where, in operator form, B = E, + E;' + E,+Ej ! and we can use Mp () as the polyno-
mial preconditioner. This preconditioner will be called m-step Jacobi preconditioner in
the subsequent sections.

In general, we can consider the polynomial preconditioner as :
1 - !
Mcpmy= 3 NB°,
1=0

so that the coefficients y;, 0 S/ S m, can be chosen to minimize the condition number of
the preconditioned system M;,l A for fixed m, or minimize the mean square error with
respect to some weight functions [4].

The polynomial preconditioners formulated above is a very good candidate for
parallel computation. If the P matrix is the identity matrix, then the m — 1 steps for the
m-step Jacobi preconditioning amount to m — 1 iterations of the basic Jacobi method fol-
lowed by accumulating the results of the iterations. As the basic Jacobi method offers a
very high degree of parallelism (all grid points can be updated at the same time), so is
this m-step Jacobi preconditioning. Thus, on massively parallel computer systems such as
the CM, the m-step Jacobi preconditioning takes O (m) time.

2.4 Convergence Rates
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The convergence rates of the conjugate gradient method with different precondition-
ers for the model Poisson problem, which depend on both the corresponding condition
number as well as the distributon of the eigenvalues of the preconditioned system, can
be studied either by matrix iterative analysis or by Fourier analysis. The result of Fourier
analysis on the preconditioners mentioned above is presented in the following table [1].

preconditioner Convergence rates
basic CG 0 (N°3)
ILU (diagonal) O (N%)
MILU (diagonal) O (N%3)
SSOR (diagonal) O (N%3)
ILU (R/B) O (N%3)
MILU (R/B) O (N%)
SSOR (R/B) 0 (N%3)
m-step Jacobi 0 (N3

Table 1 : the theoretical convergence rates for different preconditioners

3. The Connection Machine

The Connection Machine (CM) is a massively parallel computer consisting of
65536 single bit processors. The CM system consists of two parts - a front end machine
and a hypercube of 64k processors. The front end computers, currently supported by the
Symbolics and the VAX machines, provides instruction sequencing, program develop-
ment, and low speed I/O. The CM programs contain two types of statements - those
operating on single data items and those operating on whole data sets at once. The
single-data-item instructions are executed in the front end, whereas the large-data-set
instructions are executed in the CM hypercube for parallel processing.

The CM hypercube consists of 4096 (2!2) chips, each with 16 processors and a
router, to form a 12 dimensional hypecube. The router is 2 communication processor that
allows any on-chip processor to communicate with any other processors in the system.
In addition to the router hypercube network there is a separate communication facility
called the NEWS grid. That is, each processor is wired to its four nearest neighbors in a
two-dimensional regular grid. Machine instructions allow message to be sent, a bit at a
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time, to the processor to the north, south, east or west on this grid. Communication on
this NEWS grid is very fast compared to the router communication and is encouraged for
short distance communication between processors. Moreover, on the CM-2, there are 8k
bytes of random access memory associated with each physical processor; and also the
Weitek floating point processors are incorporated into the system, with one Weitek chip
shared between 2 16-processor CM chips.

An important feature of the CM systemn is its support for virtual processors. A run-
time configuration command cold-boot may be used to specify how each physical proces-
sor is to simulate a small rectangular array of virtual processors - except that such virtual
processors appear to be correspondingly slower and have only a fraction of the memory
of a physical processor.

The CM supports three software environments : Common LISP, Fortran, and C. In
each case, a standard extension to the language is provided that supplies the complete
interface to the hypercube. The extensions are *LISP, CM Fortran, and C* respectively.
The basic idea in each case is that scalar variables reside on the front end, while vector of
parallel variables are distributed over the cube [5].

4. Implementation

4.1 The Connection Machine

The CM used in the present experiment is a 16k-node CM-2 without the Weitek
floating point hardware running at a clock frequency of about 6.47 MHz. The front end
computer used is the Symbolics machine and the language used for program develop-
ment is *LISP.

4.2 Processor mapping

The model 2D Poisson problem was mapped onto the 2D NEWS grid of the Con-
nection Machine so that each grid point is mapped to by a different processor. For exam-
ple, to run a 128 x 128 grid problem, the following configuration command can be used :

(*cold —boot :initial ~dimensions (128 128))

In this case, since there are altogether 128 x 128 = 16384 grid points and we have 16384
(16k) physical processors, each physical processor can perform the computations for a
single grid point. Suppose 65336 (256 x 256) grid points are to be simulated but the same
number of physical processors (16k) are available, then each physical processor has to
take the computation load of 4 grid points. By using the virtual processing capability of



-11 -

the CM, this mapping (the mapping of 4 grid points to one physical processor) is tran-
sparent to the users and is performed automatically when the

(*cold —boot :initial —dimensions '(256 256))

statement is executed.

An advantage of mapping the problem on the 2D NEWS grid is that the neighboring
grid points are mapped to neighboring processors; and since the communication over-
head between neighboring processors using the NEWS communication is extremely fast,
and that most of the computations are between local grid points, good total execution
time performance can be expected.

One major concern is that if each processor simulates one grid point and red/black
ordering is used, then only half of the processors will be active during updating the black
or the red grid points, resulting in low processor utilization. It happens that the virtual
processing capability on the CM can handle this problem elegantly : if the number of grid
points is less than or equal to the number of physical processors available, then some pro-
cessors will be idle in any case, and there is no way to improve the utilization of the pro-
cessors. Suppose the nu;mber of grid points is 4 times as many as the number of physical
processors, then by using the *cold—-boot as described above, two black and two red
points will be mapped to each physical processor. Here we can see that the physical pro-
cessors will be kept busy all of the time, computing either black or red points.

Another concem is how the boundary grid points are handled. Since no computa-
tion is needed for the boundary grid points other than providing data to their neighbors,
one way is not to map them to any processors and the neighbors of these boundary grid
points are maped to the boundary processors. During computation, these boundary pro-
cessors will be performing slightly different task from the other interior processors. An
example is the local operator A;,; which requires fetching data from four neighbors (to
the north, south, east, and west). Since the boundary processors have one or two neigh-
bors missing (e.g. the processor at the upper right hand corner will not have neighbors to
its east and north directions), they have to execute this operator a little differently.
Because the CM is a SIMD (single-instruction-multiple-data) machine and cannot exe-
cute two different active operations simultaneouly, the updating of interior and boundary
processors have to be done in two separate steps, resulting in longer execution time.
Another way is to map boundary grid points also to actual processors. The drawback to
this scheme is that these boundary processors will be idle most of the time. However,
since the operations to be performed on all processors will be the identical, the updating
takes only one step, resulting in shorter execution time compared to the first scheme.
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This latter scheme is chosen for our implementation for reasons that it is simple to imple-
ment and it will probably give better performance.

To distinguish between the boundary processors and the interior ones, a boolean
variable, grid—interior —flag, is declared which is set to true for the interior processors,
and false for the boundary processors. Every time computation is to be performed only
on the interior processors (or grid points), the following *LISP statement can be used to
achieve the desired results.

(*when grid-interior-flag
(do something to the grid points)

4.3 The preconditioned conjugate gradient method on the CM

One iteration of PCG method requires 3 inner products (including the residual cal-
culation), 3 multiply-and-add operations, 1 matrix-vector product calculation, 2 scalar
divisions, one comparison, plus the calculation required for preconditioning. Let’s look
at how each of these operations is performed on the CM : '

a. The multiply-and-add operation

This operation is in the form of y=ax+b where x and b are vectors and g is a scalar.
If each processor takes care of one element in the vector and the scalar a is supplied by
the host system, then the tasks performed by each processor are first to receive the a, then
multiply a by the x which is stored within the processor, and lastly add to the product the
variable & which is also stored within the processor. The *LISP version of this operation
is:

(*when grid-interior-flag
(*set pvar-y (+!! (*!! pvar-x (!! a)) pvar-b))
)

The time to perform this operation depends only on the virtual processor ratio
(number of grid points per physical processor) and this ratio depends on the total number
of grid points and the total number of available processors. For a particular virtual pro-
cessor ratio, this operation takes constant time.

b. The matrix-vector product (ap = A p)

The matrix in this case is A, which, when operating on a vector, is equivalent to
parallel execution of the local operator A; , (defined previously) on each element of the
vector. As described in Figure 1, each processor adds the data fetched from the
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processors to its north, south, east, and west, divides the sum by 4, and subtracts the quo-
tient from its own data. In *LISP code, it can be represented as :
(*when grid-interior-flag
(*set pvar-ap

(-1t
pvar-p
(/1!
(+!
(pref-relative-grid!! pvar-p (1t 1) (1! 0))
(pref-relative-grid!! pvar-p (11 0) (1! 1))
(pref-relative-grid!! pvar-p (!! -1) (1! 0))
(pref-relative-grid!! pvar-p (1! 0) (!! -1))
)
(114.0)
)
)

)
where the 'pref-relative-grid’ function has 3 arguments - the variable to be fetched from
the destination processor, the relative distance of the destination processor in the x-
direction, and the relative distance of the destination processor in the y-direction respec-
tively.
Again, this operation can be done in constant time for a particular virtual processor
ratio.

¢. Inner Product

The inner product has been known as a bottleneck to the performance of PCG
method. It is important that this inner product operation can be done efficiently. It can be
observed that the hypercube configuration of the CM helps to speed up the inner product
computation. It allows multiplication to be done in parallel in all processors, and the the
partial sums are accumulated in the form of a binary tree. The execution time of this
inner product is thus O (log N) where N is the total number of grid points. The *LISP
code for inner product calculation is :



-14-

(*when grid-interior-flag
(setq inner-product (*sum (*!! pvar-r pvar-r)))

d. Others

Other computational needs include 2 scalar divides and 1 comparison for conver-
gence. These computations are performed on the host and require constant time.

In summary, without considering the preconditioning, the overall computation time
for each iteration is dominated by the inner product operation and thus takes O (log N).

For preconditioning, depending on whether diagonal ordering or red/black ordering
is used, the order of computation times can be quite different. For diagonal ordering,
since there are O (VN ) diagonal in a 2D grid, the corresponding preconditioning takes
O (VN ) time. For red/black ordering, since ail the red points can be updated in parallel,
and so are the black points, the corresponding preconditioning only takes constant time.

Thus, depending on whether diagonal ordering or red/black ordering is used, the
order of execution times per iteration are O (VN ) and O (log N) respectively.

4.4 Experiments

In this experime'nt, the 2-D Poisson equation with Dirichlet boundary condition was
solved using the PCG method. Specifically, the Poisson equation,

Uy + Uy =4
is used and the boundary conditions are :

u@y)=x2+y? for the boundary grid points.

The PCG method was run on grid spacing (k) of 1/7, 1/15, 1/31, 1/63, and1/127
(for some preconditioners, grid spacing of 1/255 is also experimented). The initial guess
was 0.0, and the number of iterations needed to reduce the residual to less or equal to
10™* as well as the corresponding CM execution times were recorded and plotted. The
experiments being run are as follow :

1. Conjugate gradient method without preconditioning (CG),



10.

11.

12.
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PCG - ILU with diagonal ordering (ILU diagonal),

PCG - MILU with diagonal ordering (MILU diagonal), also performance as a func-
tion of ¢,

PCG - SSOR with diagonal ordering (SSOR diagonal),
PCG - ILU with red/black ordering (ILU (R/B)),

PCG - MILU with red/black ordering (MILU (R/B)),
PCG - SSOR with red/black ordering (SSOR (R/B)),

PCG - m-step Jacobi polynomial preconditioner (different m were experimented
with),

PCG - polynomial preconditioner with minimum mean square error (m = 2), where
Yo=7/6andy, =5/6[4] (MMSE, m=2),

PCG - polynomial preconditioner with minimum mean square error (m = 3), where
Yo =35/32,v; =50/32, and y; =35/32 (MMSE, m = 3),

PCG - polynomial preconditioner with minimum mean square error (m = 4), where
Yo = 37/40, 1 =49/40, v, =91/40, and ¥ = 63/40 (MMSE, m = 4).

For the purpose of evaluating the PCG method with the other iterative methods,
both the Jacobi and the successive overrelaxation (SOR) method with red/black ord-

ering and with optimal @ = was also included in this experiment. Only

1 + sin(nh)
the results from SOR method is shown in this paper.

5. Results and discussion

5.1 Results

The convergence rates are plotted as a function of N, the number of grid points

used, in Figure 7 and 8 (Figure 8 shows the convergence rates of the polynomial precon-
ditioners while Figure 7 shows the convergence rates of the best polynomial precondi-
tioner among those experimented, together with other preconditioners). The convergence
rates, expressed in O (M%), can be obtained by examining the slope of the corresponding
curve and the results are summarized in the following table.
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preconditioner analysis CM results
CG O (N®) | O(N™)
ILU (diagonal) | O (N%) | O (N®¥)

MILU (diagonal) | O (N®Z )| 0 (N%?)

SSOR (diagonal) | O (N®*B )| 0 (N®Y)
ILU (R/B) 0 (N%) 0 (N4
MILU R/B) | O(N®) | O (N®)
SSOR (R/B) 0 (N%) | 0 (N*)
6-step Jacobi 0 (N%3) 0 (N9

Table 2 : Theoretical and experimental convergence rates for different preconditioners
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The overall execution times for different preconditioners are listed in table 3 below.

preconditioner 64 x 64 128 x 128 | 256 x 256
SOR (R/B) 4.0 sec 7.7 sec 30.5 sec
CG 7.7 sec 17.1 sec 74.1 sec

ILU (diagonal) 139 sec 530 sec -

MILU (diagonal) 72 sec 202 sec -

SSOR (diagonal) 86 sec 245 sec -

ILU (R/B) 6.1 sec 12.3 sec 51.8 sec
MILU (R/B) 9.4 sec 14.1 sec 66.5 sec
SSOR (R/B) 5.1 sec 10.1 sec 47.3 sec
4-step Jacobi 3.6 sec 7.2 sec 37 sec
6-step Jacobi 3.4 sec 6.6 sec 38 sec

MMSE, m =2 5.0 sec 9.6 sec 50 sec
MMSE, m=3 4.2 sec 8.8 sec 43 sec
MMSE, m =4 3.6 sec 6.9 sec 38 sec

Table 3 : CM execution time for PCG’s

The convergence rates of the PCG method using MILU with diagonal ordering as
preconditioner for different ¢ is plotted and shown in Figure 9.

The convergence rates of m-step Jacobi preconditioner as a function of the number
of terms used for different N is shown in Figure 10 and the corresponding CM execution
times are plotted in Figure 11. The convergence rate as well as the CM execution times
for SOR (R/B) method are shown in Figure 12 and 13.

5.2 The Connection Machine Statistics

In an attempt to identify bottlenecks in the implementation of the PCG method on
the CM, some execution time statistics were gathered on some basic operations of the
PCG algorithm. Table 4 shows a breakdown of the execution times for these operations
for the polynomial preconditioner with minimum mean square error and m = 4.
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64x64 grid 128x128 grid 256x256 grid

operation | total time | CMtime | total time | CMtime | total time | CM time
init 0.05 0.035 0.049 0.035 0.079 0.066
solve 0.063 0.051 0.068 0.051 0.21 0.182
precond 0.026 0.025 0.026 0.025 0.095 0.091
inner 0.012 0.0056 0.012 0.0056 0.024 0.017
mv_prod 0.0075 0.0056 0.0075 0.0056 0.022 0.020
ax+y 0.006 0.003 0.006 0.003 0.014 0.012

Table 4 : CM execution time for different operations in the PCG algorithm

The above table distinguishes between total time and CM time, all in seconds. CM
time refers to the time the CM hardware is active, while the total time includes both the
front end computer execution time as well as the CM time. The total time varies from
time to time on the same operation due to system overhead such as paging. Thus, this
total time statistics are taken from the average of 5 - 10 sample runs. The ’solve’
includes the operations required for one iteration of the PCG algorithm (including the
preconditioning), and excludes the residual calculation. Also ’init’ refers to initialization
time, ’precond’ refers to preconditioning time, ’inner’ refers to inner product time, and
'mv_prod’ refers to the time to calculate matrix-vector product.

From the table, we can observe that as long as the total number of grid points is less
or equal to the number of available processors, the execution time per iteration remains
more or less the same. Consequently, the execution time depends primarily on the
number of iterations to achieve convergence.

Going from the 128x128 to the 256x256 grid (the CM used in this experiment has
16k processors), the virtual processor ratio (VP ratio) goes from 1 to 4 (now 4 grid points
are mapped to 1 physical processor). The data from Table 4 show that the execution
times for all operations (including the inner product) go up 2 - 4 times. (The reason that it
is not exactly 4 times is probably due to speedup as a result of the pipelining of opera-
tions in the CM) Therefore the execution time per iteration is a linear function of the VP
ratio, and thus the overall execution time is a function of both the VP ratio and the itera-
tion count.
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5.3 Discussion

Table 2 shows that the orders of convergence rates obtained from the experiments
confirm those obtained from analysis. From Figure 7 and Table 3, we can see that
although the diagonal-ordered preconditioners give much better convergence rates than
the red/black-ordered ones, their performance on the CM is not very encouraging (even
much worse than the performance of CG method without preconditioning), due to their
sequential nature. The execution time of the diagonal-ordered MILU preconditioner, for
example, is about 20 times that of the red/black ordered MILU, spending over 90 % of
the time in preconditioning. Moreover, data in Table 2 also shows that while the increase
in execution time for the other preconditioners is less than a factor of 2 going from
64 x 64 grid to 128 x 128 grid, the diagonal-ordered preconditioner takes about 3-4 times
as much. From these results, we can conclude that the diagonal-ordered preconditioners
are more not suitable for massively parallel machines such as the CM. They are more
suitable for machines where the number of processors is much less than the number of
grid points.

The red/black ordered preconditioners do effectively utilize the hardware resources
on the CM. However, the convergence rates of the red/black ordered preconditioners
show only slight improvement (about a factor of 2) over that of the CG method without
preconditioning, resulting in execution time improvement of only less than 2.

From Figure 10, it can be observed that with increasing number of terms used in the
m-step Jacobi preconditioning, the number of iterations needed to achieve convergence
oscillates but continues to decrease slowly. This agrees with the theoretical analysis, as
discussed in [8]. However, from Figure 11, it can be seen that the best CM time perfor-
mance occurs at small number of terms (around 6 for the most cases). So there is a point
at which the improvement of convergence rate is counter-balanced by the increase in the
amount of work for preconditioning,

The convergence rate plot in Figure 7 and 8 shows that polynomial preconditioning
is very competitive among all other preconditioners. The minimum mean square error
preconditioner (MMSE) shows only slight improvement over the m-step Jacobi precondi-
tioner when the same number of terms is used. The execution time improvement should
be more pronounced if the floating point hardware is used since the time for multiply by
the coefficients is reduced. Overall, it seems worthwhile to search for better coefficients
to achieve better convergence rate for this class of preconditioner.

The CM performance of the SOR (R/B) method shows that it is still one of the most
efficient methods on massively parallel machines. However, this excellent performance is
due to the use of optimal parameter, which, in a lot of applications, are difficult to
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obtained. It is shown from Figure 12 and 13 that the convergence rate is very sensitive to
the parameter used, and slight deviation from the optimal parameter can result in poorer
convergence rate and thus longer execution time. Moreover, even with the use of
optimal parameter for SOR (R/B), the execution time performance is still worse than the
6-step Jacobi PCG method. However, even though the execution time performance of
the SOR (R/B) is worse than that of the 6-step Jacobi PCG for the 128 x 128 grid, it is
better for the 256 x 256 grid. The reason is that for the 128 x 128 grid, the VP ratio is 1,
meaning that the each black and red point is mapped to a different physical processor.
Since each sweep involves only either all black points or all red points, the machine utili-
zation is at most 50 %. However, when the VP ratio goes up to 4, 2 black points and 2
red points are mapped to the same physical processor, and we can observe that all physi-
cal processors are active during sweeping, updating either the black points or the red
points. Thus, the processor utilization is increased to close to 100 %, and the total execu-
tion time is reduced by a factor of 2.

The conclusions that can be drawn from the result are first that fast convergence rate
offered by a preconditioner does not guarantee lowest execution time on parallel
machines (degree of parallelism in the preconditioner also has to be taken into considera-
tion); and that parallel preconditioners such as the R/B SSOR only improves the perfor-
mance by a small amount (due to its slight improvement in convergence rate). Thus, the
best preconditioner for parallel machines should strike a balance between total parallel-
ism and fastest convergence rate.

6. Conclusion

The conclusion from this CM experiments is that to search for a better precondi-
tioner on parallel machines, tradeoffs have to be made between fast convergence rate and
the degree of parallelism in the preconditioner, as these two are mutually conflicting on
execution time performance on these machines. A preconditioner showing promises of
better performance in both the convergence rate and the degree of parallelism is the
hierarchical basis preconditioning [10]. Its analysis and performance on the CM is
currently under study.
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Figure 1 : stencil representation of A, , operator
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Figure 2 : (a) diagonal and (b) parallel red/black orderings for 6 x 6 grid
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(b) red/black ordering
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