Computer Science Department Technical Report
University of California
Los Angeles, CA 90024-1596

A DESIGN PARADIGM FOR MULTI-VERSION SOFTWARE

Michael Rung-Tsong Lyu October 1988
CSD-880076

UNIVERSITY OF CALIFORNIA
Los Angeles

A Design Paradigm for Multi-Version Software

A dissertation submitted in partial satisfaction of the
requirements for the degree Doctor of Philosophy

in Computer Science

by

Michael Rung-Tsong Lyu

1988

© Copyright by
Michael Rung-Tsong Lyu
1988

The dissertation of Michael Rung-Tsong Lyu is approved.

% (e Boi

Klrby A. Bakér

////L,é/ @%/

orko

Q/‘KW

David A. Rennels

Wpndi, Bediv)

Algirdas A%mems Commiittee Chmr

University of California, Los Angeles
1988

To my parents, Bor-Hua Lyu and Yu-Ying Chang.

ii

TABLE OF CONTENTS

page
1 INTRODUCGCTION ..oooioiitirccieieieseeersssessssesssaestssestassessss sessassssassssassnsesnssasasassscos 1
1.1 The Need for and Approaches to Dependable Computingc..e... 1
1.2 Fault Tolerance and Software Fault Tolerancec.ccinennn 2
1.3 Muld-Version Software for Fault Tolerance ... 3
1.4 Exploring Design Diversity in Multi-Version Software 3
1.5 A Design Paradigm ... s 5
1.6 Evaluation of the Design Paradigm by Experimentationcc...... 6
1.7 Objectives in this Research ... 6
2 PREVIOUS NVP EXPERIMENTS AND MVS DESIGNS ... 7
2.1 Experimental Approach to Design Diversity ...ocvocnecniinccninnnnn: 7
2.2 Experiments Performed at UCLA ..o 8
22.1 Step One: Developing a Methodology ...c.coeniniioniniinens 8
2.2.2 Step Two: Impact of Specificationccovivrirreviisiennsenncnns 9
2.2.3 Step Three: the NASA/Four-University MVS Experiment ... 10
2.3 Related Experiments at Other SIeS ... 11
2.3.1 Gmeiner and Voges” Experiment ... 11
2.3.2 PODS EXPEIMENT .occovcieiermetrrinsiesistssestsissississsssssssssssnsssssassans 12
2.3.3 Knight and Leveson’s EXperimentccoiimionncniasnnnss 12
2.4 Practical Design of Software Diversity Applicationsccecenees 13
2.4.1 ERICSSON Safety Systems for Railway Control 14
2.4.2 AIBUS A310 riiceertvsen e et 16
2.4.3 A320 Pitch CONTOl .ooeverieciiiiniiness st nessineenses 19
2.4.4 Honeywell/Sperry System SP-300 and Its Successors 20
2.5 Diversity Concerns of Previous Experiments and Designs 22
3 A DESIGN PARADIGM ...coiiievirrieinniintenenensssstsses st s b i s s s sssnasssssons 25
3.1 The Need for a Formal Theoretical Basisccconeninnnniiiinnn 25
3.2 An Overview of the Design Paradigm ..ot 25
3.3 State Precise Requirements with Dependability Goalscoveeenies 26
34 Define Method of MVS Supervision and Execution Environment 28
3.5 Choose Design Diversity DImensions ..., 29
3.6 Write High Quality SpecifiCationscooviiimiiniennonicinines 30
37 Install Error Detection and Recovery Algorithms ... 31
3.7.1 The Proposed AIGOTMhM .o.oorecnnmiiiiiiiitce 32
3.7.2 Cross-Check POINESoceveeneniiiminiieninnnsenesneestsssensssssissnasesens 32
3.7.3 Recovery POINLS ..o 33
3.7.4 Introducing Cc-Points and Recovery Points in the
SPECIfICALON ...evvireenercrinsernirscsss st st 34
37.5 Placements of Cc-Points and Recovery-Pointscceveee. 35
3.8 Avoid Uncontrolled Commonalitiesc.ccemeeiersiiimmiensiennsnii. 36
3.9 Build the SOftware VEISIONScccceiereerentmssessssininsinnsssassrssssssnssnns 37
3.10 Conduct High Quality TESHNE ..ocveunrieiiriiniitrmieseirice s 39
3.11 Execute Multi-Version Software SyStems ...oocccmiiirninnsnninmiens 39
3.12 Evaluate Effectiveness of MVS i 40
3.13 Refine the Design by [teration ... 41
314 Choose and Implement Modification (Maintenance) Policy 41

iii

4 AN INDUSTRIAL INVESTIGATION ..ot st censacene 43

4.1 A Practical and Complete Experiment Using the Design Paradigm 43
4.2 The Automatic Landing Problem ..., 45
4.3~ Applying the MVS Design Paradigm ... 48
43.1 State Precise Requirements with Dependability Goals 48
4.3.1.1 Requirements for Software TESHNZ ..coveeciiieirinncciiens 48

43.1.2 Apply Design Diversity to Achieve a Dependability
GOAL 1oeeeirevertvesbeeeteeeeeeseeseaestae st s e en e s r et e e st a e s R bR 50

4.3.2 Define Method of MVS Supervision and Execution

ENVITOMNITIENE .eecvveevrireresrersssnrssaeseeseersassssesssessessserssssnassssssasanssassntas 51
43.3 Choose Design Diversity Dimensions ..., 55
43.4 Write High Quality Specifications ..., 56
43.5 Install Error Detection and Recovery Algorithmsccceeeee. 58
43.6 Avoid Uncontrolled Commonalitiesccocoveiiuniininnininiia 61
4.3.6.1 Recruit Qualified Personnelcccvivieeniiiiniinn. 62
43.6.2 Define A Formal Communication Protocol 62
4.3.6.3 Experience with the Communication Protocol 64
4.3.7 Build the SOftWAre ..cceccoreiiiiiciniiiininnceisss et 66
4.3.7.1 Schedule of the EXpErimentcccveimecninnsninenies 66
4.3.7.2 The Programming Process ... 68
4.3.8 Conduct High Quality Testingccccnvmviniiiimminonninnns 69
4.3.9 Execute Multi-Version SYSIEmMS ...o.cciiviinininrirsisssanessninseninies 74
43.10 Evaluate Effectiveness of MVS and Refine the Process 77
5 EVALUATION AND REFINEMENToooiiiiiiiicininssnsnsstaissns s 78
5.1 Standard Software Metrics of the Programs ... 78
5.2 Distribution of Faults Detected during Program Development 80
5.3 Evaluation of the Six Programs during Operational Testing 84
5.3.1 Disagreements Detected by Flight Simulationscecccoveeee. 84
5.3.2 Faults Found During Inspection of Codecccnvniiiiinnnnen 85
5.4 Assessment of Structural DIVETSIY ..c.cooniniiminninnniinaes 88
5.5 QObservations from the Diversity ASSESSIMENT ...ccoccvviiriiicniimssiisinnne 94
5.6 Fault Diagnosis and Failure Analysis by Mutation Testing 96
5.7 Coverage Measurement of Multi-Version Softwarec.ceevenee. 103
5.8 Evaluation of Fault Tolerance Provisions in the Applications 105
5.9 A Comparison of Three Recent EXPErimentscvviiimescccriinens 108
5.10 Refinements of the Design Paradigmccoveniicnmniniininninn 112
6 CONCLUSIONS AND FUTURE WORK ... 115
6.1 Original Contributions of This Researchovvciimiisciniinnn. 115
6.2 Practicality of the Proposed Design Paradigmccooveirincrissinsinns 116
6.3 Effectiveness of the Design Paradigm ... 116
6.4 Future Research Issues in MVS e 117
6.4.1 Identify and Avoid Commonalitiesievemmessierscienssnninns 117
6.4.2 Measure and Promote Design DIVErsityccomininiennss 117
6.4.3 Developing Support Tools and Techniquesoooonecccriins 118
6.4.4 Exploiting the Presence of Multiple Versions for V&V ... 121
6.4.5 Cost-Effectiveness Measurement and Assessment 122
6.4.6 Incorporating Security Concems into the Design Paradigm 123
REFERENCES ...t tveseeiuesteosertesseseesrsatssassossasassessesasasss irasssssmastssasssss asassssanisssssss 124

iv

LIST OF FIGURES

page
Figure 1-1: Multi-Version Software SYStemsccoorniiiimiiinmininnecsissssnsinnns 4
Figure 2-1: Safety Layout of Two Computer Based Interlocking Systems 15
Figure 2-2: ERICSSON Work Organmizationcciimemisinnsssssnns 17
Figure 2-3: A310 System Configuration (Flap only) ...c.oiiiiinsiannnn. 18
Figure 2-4: Slat/Flap Control System PrnCiplecccveveveericniinniiiniicnsinns 19
Figure 2-5: A320 Pitch Control ... 21
Figure 2-6: Honeywell/Sperry”s Dual Architecturecccouimiimmninnniicniinnsinins 23
Figure 2-7: Protection from Generic Software and Processor Faults 24
Figure 3-1: A Design Paradigm for Multi-Version Softwareccccoceeeennne. 27
Figure 4-1: Pitch Control System Functions and Data Flow Diagram 46
Figure 4-2: The Usage of the Cross-check Points and Recovery Point 60
Figure 4-3: Communication Diagram of the UCL.A/Sperry Ex.pcriment 65
Figure 4-4: 3-Channel Flight Simulation Configurationceiesnsncene. 75
Figure 5-1: System Data Flow Diagram of RSDIMU cviiiiiinnniiinninenes 106
Figure 6-1: Classification of Design DIVETSIY ...ccovvininiimiiniicinesienons 119

Table 1:
Table 2:
Table 3:
Table 4:
Table 5:
Table 6:
Table 7:
Table 8:
Table 9:
Table 10:
Table 11:
Table 12:
Table 13:
Table 14:
Table 15:
Table 16:
Table 17:

LIST OF TABLES

Page

Summary of the UCLA Programmer and Coordinator Background 63
Different Schemes Used in the Testing Phases ... 70
Test Data in Unit Test PRASE ..ovveciiiniiinniminciiesnense st snnsnaseenans 71
Test Data in Integration Test Phase ..., 72
Test Data in Acceptance Test Phase ..., 73
Software Metrics for the Six Programs ..., 79
Fault Distribution by Subfunctions ..., 81
Fault Classification by Fault TYPES oo 82
Fault Classification by Phases ... reereeeressneenieaias 82
Fault Classification: Requirements Faults vs. Structural Faults 83
Potential for and Observed DIVETSItY oo, 89
Error Frequency Function of Each Mutant ... 101
Error Severity Function of Each Mutant ... 102
Reduced Error Similarity Function Matrix in Two-Mutant Sets 103
A Comparison of Three Experiments — The Scalecoveecccnnnns 109
A Comparison — MVS Software Development Procedure 110
A Comparison — Testing and Processing of MVS Systems 111

ACKNOWLEDGEMENTS

I would like to thank my committee members, Professors Algirdas AviZienis,
David Rennels, Mario Gerla, Harold Borko, and Kirby Baker for serving on my

dissertation committee with great enthusiasm.

I wish to express my sincere thanks to Professor AviZienis for his guidance,
advice and encouragement that have contributed significantly to the preparation of this
dissertation. Also thanks to Professor John P. J. Kelly for his early advice and support

of this research.

Special thanks to my pal, Mark K. Joseph, who helped and pushed me so hard
to complete this dissertation in time. Also to members of the UCLA Dependable
Computing and Fault-Tolerant Systems Research Group, Kam Sing Tso, Werner
Schiitz, Ann Tai, Johnny J. Chen, Chi-Sharn Wu, Bradford T. Ulery and Barbara
Swain, for invaluable discussions and support that have made this research possible.
It is also my pleasure to acknowledge Mr. John F. Williams for his help and

encouragement to my work.

Of course I cannot emphasize too much the importance of the dedication of my

lovely wife, Chih-Fen, together with our coming baby.

This work was supported by the Sperry Flight Control Systems Division of
Honeywell, Inc. and the State of California “MICRO" program, grant #86-091, under
the direction of Professor A. Avi¥ienis, Principal Investigator.

vii

VITA
March 19, 1959 Born, Taipei, Taiwan, Republic of China.

1981 B.S. in Electrical Engineering,
National Taiwan University

1684 M.S. in Electrical and Computer Engineering,
University of California, Santa Barbara

1983-1984 Teaching Assistant,
UCSB Computer Science Department

1985-1988 Research Assistant, Post Graduate Research Engineer,
Dependable Computing and Fault-Tolerant Systems Laboratory,
UCLA Computer Science Department

PUBLICATIONS

A. Avi¥ienis, P. Gunningberg, J.P.J. Kelly, R.T. Lyu, L. Strigini, P.J. Traverse, K.S.
Tso, and U. Voges, *‘Software Fault-Tolerance by Design Diversity; DEDIX: A Tool
for Experiments,” in Proceedings IFAC Workshop SAFECOMP’85, Como, Italy,
October 1985, pp. 173-178.

J.P.J. Kelly, A. AviZienis, B.T. Ulery, B.J. Swain, R.T. Lyu, A.T. Tai, and K.S. Tso,
““Multi-Version Software Development,”” in Proceedings IFAC Workshop
SAFECOMP' 86, Sarlat, France, October 1986, pp. 43-49.

A. Avisienis, M.R. Lyu, W. Schiitz, K.S. Tso, and U. Voges, ‘DEDIX 87 - A
Supervisory System for Design Diversity Experiments at UCLA,” in Software

Diversity in Computerized Control Systems, Springer-Verlag Wien New York, 1988,
pp. 129-168; also UCLA technical report No. CSD-870029, July 1987.

A. AviZienis, M.R. Lyu, and W. Schiitz, ‘‘In Search of Effective Diversity: A Six-
Language Study of Fault-Tolerant Flight Control Software,”” in UCLA technical
report No. CSD-870060, November 1987.

A. Avisienis and M.R. Lyu, “‘Design and Evaluation of Fault-Tolerant Multi-Version

Software,”” Annual National Joint Conference on Software Quality and Reliability,
Arlington, Virginia, March, 1988.

viii

A. Avizienis, M.R. Lyu, and W. Schiitz, ‘‘Multi-version Software Development: A
UCLA/Honeywell Joint Project for Fault-Tolerant Flight Control Software,”” UCLA
technical-report No. CSD-880034, May 1988.

A. Avi¥ienis, M.R. Lyu, and W. Schiitz, *‘In Search of Effective Diversity: A Six-
Language Study of Fault-Tolerant Flight Control Software,”” in Proceedings of the

Eighteenth Annual International Symposium on Fault-Tolerant Computing, Tokyo,
Japan, June, 1988.

ix

ABSTRACT OF THE DISSERTATION

A Design Paradigm For Multi-Version Software
by
Michael Rung-Tsong Lyu
Doctor of Philosophy in Computer Science
University of California, Los Angeles, 1988

Professor Algirdas AviZienis, Chair

In the multi-version software (MVS) implementation of fault-tolerant
software, design faults are detected and masked through the consensus of results from
two or more independently designed and functionally equivalent versions. To
maximize the effectiveness of the MVS approach, the probability of similar errors that
coincide at multi-channel decision (consensus) points should be reduced to the lowest
possible value. Design diversity is potentially an effective method to get this result. It
has been the major concern and effort of the author to formulate a set of rigorous
guidelines, or a design paradigm, for the application and implementation of design

diversity in building MVS systems for practical applications.

This design paradigm was developed and formulated based on the results of
fault-tolerant software research conducted at UCLA since 1975. The most recent of
these studies was a NASA-sponsored four-university MVS experiment, in which the
author participated as a site coordinator. Combining software engineering disciplines
and fault tolerance techniques, this design paradigm offers rigorous guidelines for the

design and implementation of MVS systems.

Using this design paradigm, the author took a major part in the design,
coordination and evaluation of a UCLA/Honeywell joint research project on a large-
scale MVS system, employing six different programming languages to create six
versions of software for pitch control in an automatic aircraft landing program. The
rationale, preparation, execution, and evaluation of this project are reported in detail.
Moreover, the assessment and refinement of the proposed design paradigm are also

presented as results from this project.

xi

CHAPTER 1
INTRODUCTION

1.1 The Need for and Approaches to Dependable Computing

Since the first computer was invented some forty years ago, men have been
depending more and more on computers in their daily lives. When the requirements
for computers increas-e, the crises of computer failures also increase. The impact of
hardware and software failures range from inconvenience (e.g., malfunctions of home
appliances), economic loss (¢.g., interceptions of banking systems) to life-threatening
(e.g., failures of flight systems). To obtain highly dependable computer systems in
such critical applications as nuclear power plant control and aircraft flight control, is a

major concern for today’s technically advanced societies.

Generally speaking, there are four ways to effect dependable computing

[Aviz86] :
) fault avoidance: to prevent, by construction, fault occurrence;
. fault tolerance: to provide, by redundancy, service complying with the

specification in spite of faults having occurred or occurring;

. fanlt removal: to minimize, by verification, the presence of faults;

) fault forecasting: to estimate, by evaluation, the presence, the occurrence, and

the consequences of faults.

Due to their inwminsic complexity, most computing systems currently apply a

combination of the above methods for the delivery of dependable service.

1.2 Fault Tolerance and Software Fault Tolerance

Since human activities are imperfect, there is always a need to incorporate
redundancy techniques into human designs. Fault tolerance is one such survival
attribute of computer systems, which allows delivery of expected service after faults

have manifested themselves within a system [Aviz78].

Since the first generation, computer systems have been designed to tolerate
faults in hardware components [Renn84, Siew84]. As computer systems get more
complicated, the incidence of design faults has grown. In traditional single-version
software environment, the provision of fault tolerance mechanisms was enhanced by
introducing special fault detection and recovery features, such as program modularity,
system closure, atomicity of actions, decision verification, and exception handling
[Aviz85b]. While these mechanisms have been explored to their limitations, the

achievement of highly reliable software are still much needed.

Since the early 1970s, researchers have been exploring the possibilities of
employing similar redundancy methods to create systems tolerant to design faults in
software components in a more efficient way. This gave birth to the idea of multi-

version software (MVS) T systems [Aviz75].

 The process of generating MVS is also known as NVP, N-Version Programming,
initially called "redundant programming.”

1.3 Multi-Version Software for Fault Tolerance

The NVP approach to fault-tolerant software systems involves the generation
of functionally equivalent, yet independently developed and maintained software
components, to be called multi-version software (MVS) [Aviz77]. These components
are executed concurrently under a supervisory system that uses a decision algorithm
based on consensus to determine final output values [Aviz85¢]. Whenever probability
of similar errors is minimized, distinct, erroneous results tend to be masked by a

majority vote during MVS execution. This is shown in Figure 1-1.

MVS systems are gaining acceptance in critical application areas such as the
aerospace industry [Mart82, Youn84, Hill85, Rouq86], nuclear power industry
[Rama81, Bish83, Voge85], and ground transportation industry [Tayl81, Hage88].
The construction of such systems is still, however, done mostly in an ad hoc manner.
There does not exist a definite procedure which would guarantee that MVS systems

could be engineered and evaluated to be software fault-tolerant systems.

1.4 Exploring Design Diversity in Multi-Version Software

Design diversity [Aviz82] is a potentially effective method to avoid identical
errors that are caused by design faults in multiple computation systems [Aviz85b]. To
build such systems, independent programming efforts are carried out by individuals or
groups that do not interact with respect to the programming process. Particularly,
different algorithms, programming languages, environments, implementation
techniques and tools are used in each effort wherever possible. The goal is to
minimize the probability of identical or similar errors at a decision point in the

execution of an MVS system. Exploring different dimensions of diversity, or a

Version
1

Version

Decision

Output

Function

Version
N

Figure 1-1: Multi-Version Software System

combination of them, may provide a high degree of diversity to the software versions.
This could lead to major improvements in system dependability when the multi-

version software thus developed is put to use.

1.5 A Design Paradigm

The word "paradigm,” used in the dictionary sense, means "pattern, example,
model”, which refers to a set of guidelines with illustrations. The unifying theme of
fault tolerance concept since its introduction [Aviz67] has been that the design of
fault-tolerant systems is most likely to succeed if a methodical approach is employed.
This suggests that a design paradigm is essential to guide the designer in considering
fault tolerance as a fundamental issue throughout the design process [Aviz72]. The

most recent version of such a design paradigm was presented in [Aviz87a}.

Moreover, research results and design experiences accumulated over the past
few years point to the need for another design paradigm for the implementation of
MVS systems, in order to achieve efficient tolerance of design faults in computer
systems. The formation of this design paradigm has been revealed in several previous
research activities. It is the major goal of this research to abstract and further refine
the methodology as developed earlier [Aviz77, Chen78a, Aviz84, Kell86] and then
state it as a the design paradigm by combining the knowledge and experience obtained
from both software engineering techniques and fault tolerance experiments. Such a
design paradigm should be a general scheme for building MVS systems in order to

gain acceptance in industry.

1.6 Evaluation of the Design Paradigm by Experimentation

Once the design paradigm is formulated, it is important to evaluate and refine
it through realistic applications. Evaluation of the paradigm covers the whole life
cycle of the design process itself. Due to cost reasons, an effective approach is to
apply it through experimentation, by either pre-constructing or prototyping a system.
However, these experimental investigations should reflect a real-world situation, and
should be very carefully conducted in a well-planed and controlled process. We shall
review the previous experiments and designs that have been conducted to develop
MVS, and present a UCLA/Honeywell joint project which thoroughly applied the

proposed design paradigm for the purposes of evaluation and refinement.

1.7 Objectives in this Research
In conclusion, the major activities of this research are:
(1) To state a design paradigm for MVS systems;

2) To conduct MVS development, following the paradigm and industrial software

engineering standards; and
(3) To evaluate and refine the paradigm as it was used in (2) above.

Other major concerns include exploring different dimensions of diversity that
researchers can investigate. The impact of different programming languages is of

special interest.

CHAPTER 2
PREVIOUS NVP EXPERIMENTS AND MVS DESIGNS

This chapter will survey previous experiments ¥ in generating multi-version
software, including those conducted at UCLA, and those conducted at other sites.

Some practical applications of design diversity will be reviewed as well.

2.1 Experimental Approach to Design Diversity

The scarcity of previous results and an absence of unified design guidelines on
MVS systems led to the choice of an experimental approach to implementation of
design diversity: to choose some conveniently accessible programming tasks, and then
proceed to generate a set of programs. Once generated, the programs were executed
as MVS units in a simulated system. The resulting observations were applied to refine

the developmental procedures and to enhance the concepts of MVS systems.

There are two advantages in this approach: First, it is easier to control and
observe the life-cycle of the whole procedure in a shorter period of time. Second, it is
more cost-effective and less risky in gaining the insights of this design technique,

especially at its very early stage.

+ Throughout the text, we use the word "experiment" as a general term to represent
"experimental investigation", instead of its original meaning of "experiment using
formal validation procedures”.

2.2 Experiments Performed at UCLA

A number of experiments to investigate the role of MVS in the production of

fault-tolerant software have been performed at UCLA since 1975 [Aviz77].

2.2.1 Step One: Developing a Methodology

The objectives of this initial MVS research effort at UCLA (1975-1978) were:
1) to study the feasibility and effectiveness of this strategy, and 2) to identify
problems or difficulties in using MVS as a means to tolerate software design faults.
Two experiments were carried out to study the ease of implementing an MYVS system,
to gain data on its effectiveness, and to identify problems or difficulties in this
approach. The first involved 27 distinct programs of a text editor, and the second used
three different algorithms to enforce another aspect of diversity among the resulting
16 programs of a temperature estimation application. Both applications were
specified in English and were programmed in PL/1 by students in satisfaction of their

class projects.

It was found that the implementation of a MVS system was relatively simple
and could be generalized to other applications. Some 3-version systems were
effective in preventing failure due to defects in only one of the versions. A number of
difficulties were identified, some of which were simply unanticipated implementation
constraints. Specification ambiguities and missing logic were discovered to be causes
of some similar errors. A hypothesis was raised that MVS could be more effective if
applied to the specification or testing phases of the software development rather than
only to run-time fault masking. Further research in this approach was deemed

necessary. This exploratory research demonstrated the practicality of the MVS

approach and the need for high quality software specifications [Chen78b, Chen78al.

2.2.2 Step Two: Impact of Specification

A common thread running throughout these experiments was the role of
specification ambiguities or errors in causing program errors. The objectives of the
next phase of UCLA research (1979-1982) concentrated on the investigation of the
relative applicability of various software specification techniques. An experiment was
conducted at UCLA in 1981 to study the role of specifications in MVS systems
[Kell82, Kell83]. Three specification languages were used to compare the effects of
using different specification techniques in MVS. They included a formal specification
written in OBJ {Gogu79], a non-formal specification written in PDL [Cain75], and a
"control" specification written in English. Eighteen programs designed to perform
airport scheduling transactions were developed, with an average length of about 500
lines of PL/1 code.

This research revealed again that the MVS approach was a viable supplement
to fault avoidance and removal techniques for producing highly dependable software.
It was also found that specification errors are the most serious, because they can lead
to similar errors in the final program versions. Such errors were the most difficult to
detect and occurred most often in versions written from the English specification.
Also, a few similar errors were discovered to have been caused by distinct faults in the

different programs.

In addition, it was observed that cosmetic errors (e.g., output misalignment or
spelling errors) were produced by several programs in disregard of the specification

[Aviz84]. Such errors could potentially cause the decision function to consider

functionally equivalent results as distinct (since a character by character comparison
will determine that the results are different). This points to the need for stronger
emphasis on exact compliance with the specification, and for more sophisticated
certification tests under more powerful decision algorithms when non-numerical

output is produced.

2.2.3 step Three: the NASA/Four-University MVS Experiment

Recognizing the importance of software reliability in modern computer
technologies, the NASA Langley Research Center sponsored the second generation
experiment in fault-tolerant software [Kell86, Kell88]. Four universities (North
Carolina State University, UCLA, University of Illinois at Urbana-Champaign,
University of Virginia) took part in this experiment. Two other'indcpendent institutes
(Research Triangular Institute, Charles River Analytics) wrote the specifications and
provided tools for testing the modules. Each of the four universities supplied five
two-programmer teams to work on the same specification of an aircraft control unit
during the summer of 1985. Each of these 20 software versions was required to pass
an initial acceptance test that included 75 test cases. This large-scale experiment was
designed to evaluate the performance of the MVS approach to fault-tolerant software
in a realistic application developed under a controlled software development process

that is indicative of industry practice.

A software development process, controlled as uniformly as possible across all
four universities, was designed to reflect standard industry practice. In order to
maintain a consistent and controlled environment for the 40 programmers and yet
ensure independence of the development efforts, the following formal environment

was established. The programmers were allowed for ten weeks from the time they

10

received the specification in which to produce a software version that could pass the
acceptance test. These ten weeks were nominally divided into four phases: 1) design;
2) coding; 3) testing phase; and 4) preliminary acceptance test. At the end of this
period, all 20 programs passed the preliminary acceptance test which was later proved
deficient, and a subsequent certification phase was ruled to be necessary. The average

length of these programs was 2500 lines of code, ranging from 1600 to 4800.

2.3 Related Experiments at Other Sites

2.3.1 Gmeiner and Voges” Experiment

Gmeiner and Voges reported an experiment in which software diversity was
applied to a prototype implementation of a reactor protection system [Gmei79,
Voge88)]. Three programs were generated, one in IFTRAN, one in Pascal, and one in
PHI2 (a structured macro assembly language), in hopes of incorporating diversity into
the programs both through unique programmers and languages. Each program was
tested first by its programmer, then by another person, and then in the 3-version
system (by automatic result comparison). It was discovered that some errors were
detected only through the automatic result checking of the 3-version system, and that
most of these errors were caused by ambiguities in the specification. Unfortunately,
no mention was made of any attempt to locate coincident errors in the 3-version

system.

11

2.3.2 PODS Experiment

The Project on Diverse Software, as known as PODS [Bish86], was conducted
in Europe to investigate the impact of a number of software development techniques
on software reliability. The application was a nuclear reactor safety system. Three
programs were written in two languages (FORTRAN and assembly language), and
two different specifications were used. Each program was developed under current
software development methods, which included a top-down design approach,
documentation, and inspection at each stage of development. After a thorough testing
of the individual versions, the three versions were run together to reveal discrepancies
between the programs. Some faults were discovered by this “back-to-back™ testing
which had not been uncovered by the standard development techniques. Seven faults
were discovered which were related to the specifications; two of them were due to an
error in one specification, and thus caused errors in the two programs which had been
developed based on that specification. The other five faults were related to
ambiguities in one of the specifications, and each occurred in only one of the versions.
Thus, the errors resulting from such faults were masked by the correct results
produced by the other two versions. Two additional faults uncovered by the back-to-
back testing had been introduced while making corrections to the versions. These
faults also occurred in only one of the versions and thus resulted in errors masked by

the MVS system.

2.3.3 Knight and Leveson’s Experiment

Knight and Leveson conducted an experiment based on their criticism of the
feasibility of MVS systems [Knig86). The experiment was conducted as a class

project at the University of Virginia and the University of California, Irvine.

12

Twenty-seven program versions written in Pascal were developed according to a
common specification of a launch interceptor function. The length of the resulting
programs ranged from 327 to 1004 lines of code. Each program was required to pass
200 pieces of test data for acceptance. There were 241 Boolean results to be
computed. A failure for a particular version on a particular test case was recorded
when there was any discrepancy between the 241 results produced by that version and

those produced by a "gold” program.

From the results of this experiment the investigators observed that the number
of coincident failures in this set of independently developed programs was too high.
They concluded that the reliability of an MVS system may not be as high as predicted
by the assumption of independent failures, an assumption which they felt most people

would take for granted while applying MVS techniques.

2.4 Practical Design of Software Diversity Applications

Some architectural designs with MVS approaches have recently been proposed
and developed for practical applications. An overview of some applications is given
here. The applicability of this technique has been demonstrated by the wide variety of
usage of diversity in different applications, especially in safety-critical environments.
In general, there is a strong acceptance in industry and government of the assumption
that this technique is a cost-effective and necessary one to increase the dependability

of computer systems.

13

2.4.1 ERICSSON Safety Systems for Railway Control

The application to software diversity in industrial applications (beyond an
experimental stage) was done first in ERICSSON Safety System for railway control
[Ande81, Hage88). The ERICSSON safety system applies two different packages of
software. They are both executed in the same process and the results are compared,
which must be equal. This principle is now applied in computerized interlockings and

automatic train control systems used in several European countries.

The basic design principle in ERICSSON safety systems is diversiry. In
software this means that vital functions (which should work in a fail-safe manner) are
designed independently by two teams. Both systems are executed in the processors.

The results of the calculations have to maich before they are considered correct.

Figure 2-1 shows how diversity is used in the interlocking system. The two
interlocking systems (A and B) are running in the interlocking computer. The
comparators and detectors are built together into units called object controllers. Each

signal and point machine in the station has an individual object controller.

Diversity is achieved by independent teams and design rules. Diversity is
enforced by external coding of data and different data organization. External coding
is achieved by coding the status messages from the object controllers. The Hamming
distance between A-message and B-message is in most cases equal to 4. The two
design teams are manned with different people. People are not allowed to move
between the teams. In some extreme cases they are even located in different cities.

Moreover, each team produces its own set of documentation.

14

CONTROL SYSTEM

INTERLOCKING INTERLOCKING -
SYSTEM SYSTEM
A 8

COMPARATOR [DETECTION
SYSTEM

SIGNALS
POINTS

Figure 2-1: Safety Layout of Two Computer Based Interlocking Systems

15

Safety validations are performed during all phases in development work (see
Figure 2-2). Validations are based on hearings. Fault Tree Analysis (which is based
on the questions "what can be dangerous and what can cause danger") and Fault Effect
Analysis (which is based on the questions "what happens if ...") are used. One
observation points out that it is very important to have a stringent development

method to utilize diversity to its greatest extend within software design.

The ERICSSON experience indicates that the diversity approach is cost-
effective: although cost of some software development steps is doubled (e.g., program
specification, coding, and program test), cost of other steps is not (e.g., requirement
specification, system specification, test specification, and system test). Most
importantly, they conclude that diversity does pay. Up till now they have detected
one error that could have been dangerous if the software were implemented in the

traditional single-version, non-diversity approach.

24.2 Airbus A310

The use of software diversity in the Airbus A310 is shown in [Wrig86,
Trav88]. The slat/flap control system of the A310 consists of two functionally
identical computers with diverse hardware (see Figure 2-3). Within each computer,
two diverse programs are executed with results compared via AND-logic (see Figure
2-4), which has a time-window mechanism to provide the synchronization of the two

versions.

The diversified architecture is chosen because 1) high integrity requirements
exist; 2) the availability is a less stringent requirement; 3) the extent of the task and

the ability to use avionic grade microprocessors; and 4) the certification risk. Design

16

L Safety Safety
Activity Documents Reviewing | Documents
':equﬁ;im:_:: Review | Inspection
pecificati
Require- Record
ments —
Speci- System
fication Test Review | Inspection
Specifi- Record
cation
System System Addition Review | Inspection
Design Description Record
VARRN
V4 AN Check
Prf-vgrf;_ﬂ'| Block || Block Addition Review Report,
Specifi- specs || Specs Descr. of
cation A A Principles
for Progr.
Descr. of
Programming | | Code || Code Procedure | Work
Lists Lists Routines
Module Tests Test Test
Block Tests Report | | Report
Test Report
System Test Test (Checked)
Test Report
Figure 2-2: ERICSSON Work Organization

17

PILOT'S
SELECTOR

COMMAND
SENSOR
UNIT

DUAL
COMPUTERS

7
|

e

HYDRAULIC
MOTOR

» VANE PROTECTION
MICROSWITCHES

BRAKE
POSITION SENSOR

Figure 2-3: A310 System Configuration (Flap only)

AN

Vol

LANE 1
PROCESSING

J

LANE 2
PROCESSING

Figure 2-4: SlayFlap Control System Principle

18

AND —— -

HYDRAULIC
MOTOR

diversity is ensured by independent design teams, use of diverse hardware and
separate host facilities for the software design environment. Besides applying very
rigorous testing before the release of the system, there is a continuous real-time test

during the use of the system.

Software diversity is applied to high level languages. Since two different
languages are used, validation of compiler is considered unnecessary. The use of high
level languages also increases the software productivity. As a further fault tolerance
means, the outputs of the two programs are compared not only with each other, but
also with an estimate generated from the previous cycle. Only the consensus of these

data is accepted by the actuators.

The system was certified in March 1983. Since its introduction to airline
service, only one revision to the software was necessary, mainly due to performance
improvements. No erroneous deployment of the surfaces has been reported, and the
reliability of the computers (in the sense of MTBF) exceeded the expectations.
Several aspects of this approach are also described in [Duga8l, Mart82, Hiil83,
Hili85, Rouq86]).

2.4.3 A320 Pitch Control

The A320 Fly-by-Wire system [Zieg84, Corp85, Roug86, Trav88] is intended
to improve the safety of the aircraft. It will provide a protection against windshear, a
protection of the flight envelope, and an alleviation of the burden on the pilots. Two
types of computers, each using processors manufactured by different suppliers, are
used in the design. Each computer is built with two computation channels and two

different application programs. Therefore, four different programs are used.

19

Four computers are used to control the aircraft on the pitch axis: ELACI,
ELAC2, SEC1, SEC2 (see Figure 2-5). At any time, only one computer is needed to
have full authority. The computer in charge of the pitch axis periodically sends "I am
alive” like messages to the other computers. If this computer fails, it shuts itself
down, and this will be detected by the other computers. According to a predefined

priority, one of them will take over the control of the pitch axis.

The whole system is said to be able to tolerate a special type of design fault,
namely, one type of computers shutting itself down abruptly [Trav88]. In this case,
one computer of the other type can successfully take over control, since it is very
unlikely that this computer will commit the same fault. As it turns out, the software
quality of this configuration is quite good: either no software error has been reported,
or the ones that have been detected are benign. As for related software error, none
have been reported. Report mechanisms are the pilots and on-line error logging

devices.

2.4.4 Honeywell/Sperry System SP-300 and Its Successors

The autopilot flight director system SP-300 for the Boeing 737-300 aircraft
was developed by Sperry Flight Control Division of Honeywell [Will83]. The SP-300
system consists of two redundant computers. Each computer again contains two
diverse processors from different manufacturers using different design techniques
(micro-chip versus bit-slice). One processor is mainly controlling the pitch axis, and
the other one the roll axis. The software for the two processors was developed by
independent teams. Part of the functionality is identical, so that a comparison check
can be made. The SP-300 system has been a very successful product since its

deployment. No software defect caused by the dissimilar processing mechanism has

20

AN SIDE STICK

COM
—
4 ELEV- THS
"4 MON |}e— ATOR
[y _
ELACT
MECH
TRIM . _.SSS.L1
. . ¢
.* COM i L4 . "
- i 1:{ E
MON 3 E,
o 9
e,
A
rﬁ
R
x
ELEVATOR
{ ELAC: Elavaior aral Adleron Compuiler
$EC: Spoiler and Blevator Computer
TMS: Trimmabile Horizontal Stablizer
N\ MECH TRIM: Mechanical Link between the ot
arvd the THS)
SIDE STICK

Figure 2-5: A320 Pitch Control

21

been recorded.

Furthermore, Honeywell/Sperry developed a dual redundant system with
diverse hardware and diverse software [Youn85a]. The system consists of two flight
control computers (FCC), each containing three diverse redundant CPUs that again
are programmed in a diverse way (see Figure 2-6). This system can tolerate single
systematic faults within one design unit (that is, CPU and its software). The
development process by which Honeywell/Sperry tries to reduce the amount of
generic faults is shown in Figure 2-7 [Youn86]. The main advantage of diversity is
seen to be the gain in overall system reliability. Moreover, the Boeing 757/767 is

equipped with a yaw damper making use of two version programming [Youn85b].

2.5 Diversity Concerns of Previous Experiments and Designs

Design diversity is the baseline concept for the application of MVS to achieve
software fault tolerance. The impact of different dimensions of diversity plays an
important role in MVS systems, since the correlation of faults tends to decrease as the
degree of design diversity increases. Here, "degree” could refer to either "the number
of different dimensions where diversity is applied," or “the degree within each
dimension." Design diversity concerns shown in previous experiments and designs
include specifications, programming languages, algorithms, data structures,
programming teams, tools (e.g., compiler), localities (programmer’s location), testing
methods, hardware environments, and software environments. However, the effect of
diversification in each of these dimensions and their potential usefulness still need to

be investigated and evaluated.

22

FCC1

INPYT HO MEMOAY (100 ¢ V])
" CONVERSION AND CONTROL CONVERSION

 ———

: LT | G MEMORY I ouTeyY —
) L CONVERSION AND CONTRAOL

: ~t CONVERSION
[MEMORY]
sor Il -

FCC2

——+
L4

170 MEMOAY

: INPYY QUTRUT Ly
CONVERSION AND CONTAO:

CONVERSION

=

: NG T 1O MIMORY q-_'——ak—l auteyr
CONVERSION AND CONTRAOL = P COMVERSION
é F

NOTE FCCVALIDIFMIORM? VALID

Figure 2-6: Honeywell/Sperry s Dual Architecture

23

CUSTOMER SPECIFICATION

AND FUNCTIONAL
REQUIREMENTS

1

SPERAY
SYSTEMS
ENGINEERING

—

!

t

'

" PAQTECTION FROM

GENEMC FAULTS
BELOW THIS LEVEL

SOFTWARE SOFTWARE SOFTWARE HARGWARE
DESIGNEN DESIGNER DESIGNER DESIGNER
1A-CPUI 18-CPU) 1C-CPYI
SOFTWanE SOFTWARE SOFTWARE oesigNEn OLSIGNER DESIGNER
CODER/TESTER CODEA/TESTER CODEM/TESTER 1A-CPUY 18-CPUI ic.crul

Figure 2-7: Protection from Generic Software and Processor Faults

24

CHAPTER 3
A DESIGN PARADIGM

3.1 The Need for a Formal Theoretical Basis

Each NVP investigation at UCLA and some elsewhere, discussed in the
previous chapter, contributed to an evolving methodology. This is an appropriate time
to merge the NVP methodology with the general fault tolerance design paradigm
[Aviz87a] and to formulate a set of rigorous guidelines to conduct the generation of
MVS. This set of rigorous guidelines for general consideration-and treatment of MVS
systerns will play a crucial role in the success of building such systems. The objective
of the design paradigm is to minimize the probability of oversights, mistakes, and
inconsistencies in the process of meeting the specified goals of dependable software

when an MVS system is under construction.

3.2 An Overview of the Design Paradigm

Based on the experience gained from previous research activities, especially
those conducted at UCLA, we have developed a rigorous design paradigm for MVS
systems. The overview of the paradigm can be described as follows. At the outset, a
software system is devised and the approach to its implementation is selected
according to the given dependability specifications, ensuring high quality conditions

by use of good software engineering disciplines. This defines the "baseline” design for

25

the use of fault avoidance as a means of assuring dependable performance. Next,
faulr-tolerance can be introduced into the baseline design through a systematic
sequence of design activities to guarantee error detection and recovery. At any point
where the design is incorrect or inappropriate, a fault-removal technique is applied
and a system refinement is required. After several iterations for improvements, fault-
forecasting can ensure that the system has achieved its dependability goal for

operation. The maintenance requirement can also be defined at this point.

This entire procedure is outlined below, and summarized in Figure 3-1.

3.3 State Precise Requirements with Dependability Goals

To begin, precise user requirements of the system and their dependability
goals are specified. "Dependability” is used here as a generic term meaning

"dependable performance”, and not as a specific quantitative measure [Aviz86].

1. First, the classes of design faults that are to be tolerated are explicitly
identified. For MVS systems, most independent faults can be identified and
tolerated easily by error masking, and some related faults can be tolerated with
proper error detection and recovery mechanisms (with system degradation
when necessary). Other types of faults, e.g., those which cause the aborting of

individual versions, should also be considered [Trav88].

2. Second, quantitative dependability goals are specified. This often is done for
all fault classes at once, but preferably should be detailed for individual classes
which have been previously identified. It is important that the numbers

specified here should be sensible; they cannot be unrealistic conjectures which

26

y

State Precise Requirements

with Dependability Goals

Define Method of MVS Supervision

and Execution Environment

\

Choose Design Diversity Dimensions

{

Write High Quality Specifications

Install Error Detection

and Recovery Algorithms

\

Avoid Uncontrolled Commonalities

!

Build the Software

!

Conduct High Quality Testing

y

Execute MVS Systems

y

Evaluate Effectiveness of MVS

Choose and Implement MVS
Modification (Maintenance) Policy

!

(Deployment)

Figure 3-1: A Design Paradigm for Multi-Version Software

27

lack integrity.

3. Third, the methods for the evaluation of the dependability actually attained by
the MVS system are postulated in detail. If adequate analytical modeling is not
likely, other methods, such as experimentation or simulation techniques,

should be chosen.

3.4 Define Method of MVS Supervision and Execution Environment

The number of versions and their configurations have to be decided before the
execution of MVS systems. The executing method and required resource should also
be defined and investigated. Generally speaking, a generic class of support
mechanisms forming the MVS execution support environment is necessary. A
prototype system called DEsign Dlversity eXperiment testbed (DEDIX) [Aviz85a,
Aviz85c] has been built to serve this purpose, which supervise the MVS execution on
a general operating system (UNIX). Moreover, it is possible to build a customer-
oriented, special-purpose supporting environment for the execution of MVS systems.
In this case, special tools or hardware processors would have to be implemented or
obtained in advance for the execution of MVS systems, especially when the MVS
supporting environments need to operate under certain stringent requirements (e.g.,

accurate supervision, efficient CPUs).

28

3.5 Choose Design Diversity Dimensions

The removal of the cause of common mode error is a traditional concern in
hardware, especially in VLSI designs. Most pioneering efforts introduce diversity
through multi-channel designs in a single chip [Sedm78, Tami84], or offer a more
general method of diversification by independently designed, redundant circuits
[Arla79]. The same idea should be employed in software systems as well. The major
reason for choosing design diversity is to eliminate the commonalities between the
separate efforts, as it has the potential to cause related faults among the multiple
versions. Examples of a commonality are: an ambiguous specification, a conversation
between designers from two separate efforts, use of the same faulty complier, use of
the same erroneous programmer’s manual, or a misleading source of information {e.g.,

reference books).

Fundamental development of MVS systems relies on "random" diversity due
to the programmers’ independent efforts. Choosing different dimensions of diversity
can lead to another level of controlled dissimilarities among program versions due to
specified diversity. This manner of enforcing design diversity for the best
configuration of the MVS system could have an important effect upon software fault

tolerance.

It was mentioned early in Chapter 2 that different dimensions of diversity can
be applied to the building of MVS systems. However, since adding more diversity
implies adding more resources, it is important to derive design diversity metrics for
the evaluation of the effect of these dimensions. These metrics will enable trade-off
studies between cost and efficiency. Such metrics might be application dependent,

and thus may need to be elaborated, possibly by several iterations of investigations.

29

Another interesting concept in examining diversity is the diversed
development methodologies in producing program versions. Different software
development methodologies, e.g., prototyping with incremental refinements, step-by-
step software engineering, or even the "clean room" approach which requires program
inspection and certification before applying any test data [Dyer88], could be

investigated, compared and evaluated.

Finally, in the idea of “international mail-order” experiments, the members of
fault tolerance research groups from several countries would perform design and
implementation from a common specification [Aviz85b]. This may include both
hardware and software. It is expected that the several versions produced at widely
separated locations, by different designers with different training and experience,
applying different software development methodologies, will contain substantial

design diversity.

3.6 Write High Quality Specifications

A completely documented specification for the required functions, interfaces,
and performance for the software product should be provided. Such specifications
should be as accurate and correct as possible. This is the "hard core” of design
diversity [Aviz86]. Latent defects in the specification such as incorrectness,
inconsistencies, ambiguities, and omissions are likely to bias otherwise independent
efforts toward related design faults, which could lead to unrecoverable system failure.
According to previous experiments, many related faults have been ascribed to this

cause [Bish86, Gmei79].

30

Thus, a conditon which is critical in avoiding related design faults is the
existence of a complete and accurate specification of the service to be delivered by the
diverse designs. In order to build high quality into the specification, two techniques

can be applied.

. Formal specification for fault-avoidance.
The use of formal, very high-level specification languages is the most
promising approach [Gogu79, Guut83, Kemm85, Zave86]. When such
specifications are executable, they can be automatically tested for latent

defects [Berl87].

. Independcntlj.(generated multiple versions for fault-tolerance.
The independent writing and subsequent comparison of two or more
specifications [Rama81], presumably by using multiple formal languages, is
the next step to be taken. This is expected to increase the dependability of

specifications beyond the present limits.

3.7 Install Error Detection and Recovery Algorithms

Next, error detection algorithms are selected and incorporated into the original
design. Their purpose is to generate the initial error signal. After error detection,
recovery algorithms are devised which are invoked by the error signals. Their goal is
to return the system to some level of proper operation or to shut it down safely.
Recovery consists of all actions that take place after the error signal has been

received.

31

3.7.1 The Proposed Algorithm

Error detection and recovery techniques in MVS systems have the following

objectives and constraints:

1) Recovery from design faults.

2) Minimal limitation on design diversity.

3) Matching the type and severity of the errors.
4) Minimal impact on system performance.

5) Simplicity in implementation.

This problem has been substantally studied and solved by the community error
recovery scheme in [Tso87a, Tso87b). Its method is based on two levels of recovery:
Cross-check points (cc-points), which provide a consensus result for immediate
masking and partial error recovery of the erroneous results, and recovery points (-
points), which are inserted between program modules (usually containing several cc-

points) for the complete recovery of the erroneous states of failed versions.

3.7.2 Cross-Check Points

A cross-check point (cc-point) is a decision point at which the redundant
versions produce their output results after a computation for comparison [Aviz77].
Each cc-point has the following attributes: 1) a cc-point id (ccp-id), which uniquely
identifies the cc-point; 2) a formar string, which indicates the types and number of
state variables to be compared; and 3) a set of pointers to the state variables (cc-
vector), which contains the values to be checked. The MVS supervisor compares the
results with a decision function and sends the decision result to the faulty version for

recovery. If the result is an output of the program, the supervisor will produce the

32

decision output so that errors due to a minority of versions will be masked. Hence the

cc-points serve the following functions in MVS:

° error masking - a decision result is obtained through comparison of the cc-

vectors, thus masking errors in the versions.

° error detection - faults in failed versions will manifest themselves as either
erroneous or missing cc-vectors to produce detectable errors. This information

is accumulated for the second level of recovery.

. error recovery - erroneous versions will obtain the decision result for its future

computation, in order to attempt a recovery from the effects of errors.

Error recovery at the cc-point level will not be effective if some state variables
(variables whose value affect further computation in the program) that are not in the
cc-point have been corrupted. Another level of recovery is necessary to deal with this

situation.

3.7.3 Recovery Points

Complete error recovery of failed versions is performed at recovery points
[Tso87b]. Each r-point specifies the following items: 1) a unique recovery point id
(rp-id), which uniquely identifies the r-point, and 2) two exception handlers, the
state-input exception handler and the state-output exception handler, which are
required for input and output, respectively, the internal state of the version (version
state) in a specified format. At a recovery point, the rp-ids of the versions are
submitted to the MVS supervisor and compared. Failed versions are identified by

missing or incorrect rp-ids, and by errors that have been detected at cc-points.

33

Exception handlers are invoked by the MVS supervisor upon any failed versions thus
detected. The state-output exception handler in every good version is then instructed
to produce its version state as output. The version states are compared by the decision
function of the MVS supervisor to produce a decision state which will be used as
input by the state-input exception handler to every failed version. Missing or
incorrect rp-ids indicate some versions have control flow faults. These versions are
restarted at the current recovery point by means of the decision rp-id. In this way,
failed versions will proceed to the next program module with a correct internal state

after the recovery point.

3.7.4 Introducing Cc-Points and Recovery Points in the Specification

When design diversity is applied to implement MVS, the common
specification must incorporate the specification of the cc-points and recovery points
described above. The two-way communication link between these two phases in the
design paradigm allows this activity to happen interactively. Very careful attention

must be paid to this endeavor.

Concerning fault tolerance techniques, an initial specification should define: 1)
the cross-check (and recovery) points at which the decision algorithm will be applied
to the results of each version; 2) the content and format of the cross-check (and
recovery) vectors to be generated at each cc-point (and recovery point); 3) the
decision algorithm to be used at each cc-point, as well as the exception handler to be
used at each recovery point; and 4) the responses to the possible outcomes of
decisions. The decision algorithm explicitly states the allowable range of variation in
numerical results, if such a range exists, as well as any other acceptable differences in

the version results, such as extra spaces in text output or other "cosmetic” variations.

34

In review, the specification procedure concerning the design of error detection

and recovery algorithms of a MVS system takes the following steps:

1. Draw the control and data flow diagram of the application,

2. Recognize the modularity of the application,

3. Identify cc-points across those modules,

4, Identfy the sequence of the cc-points,

5. Specify contents and formats of cc-points in the specification according to

their sequence,

6. Identify recovery points, and
7. Specify contents and formats of recovery points, together with their recovery
procedures.

3.7.5 Placements of Cc-Points and Recovery-Points

It was observed that the placements of the cc-points and recovery points were
very important in the MVS development, and that sometimes it tended to be treated
inadequately [Tso87a]. In the NASA Experiment [Kell86], the original specification
of cc-points for the application module had a state variable which caused a cyclic data
dependency problem. The variable was taken out from the cc-point in the initial
software development. It was later specified in a separate, additional cc-point in the
revised specification and implemented in the certified versions. Without the
certification phase, cc-point recovery would not be completed. Another inadequacy of
the cc-point specification in that experiment was that there was a large module in the

application which required the most complex computation. Most coincident errors

35

observed in the extensive testing occurred in this computation. Placing an additional
cc-point in the middle of that module should help in the detection of software errors
and their subsequent recovery. The inadequacy of the cc-point specification was due
to different people specifying the application and the cc-points, where the person
specifying the cc-points did not have an adequate understanding of the application.
The lesson from this experiment is that cc-points and recovery points should be
specified by the same people who write the specification of the application, or by

people who have a thorough understanding of the application.

3.8 Avoid Uncontrolled Commonalities

The main purpose in identifying and avoiding uncontrolled commonalities is
to prevent them from contributing to potential contamination of the whole design.
Any kind of contamination might lead to deterioration of the quality of the software to
be produced when related faults are introduced inadvertently. Examples of
uncontrolled commonalities include: other (unaddressed) dimensions of diversity,
defects in specifications, unqualified personnel in the design procedure, programmers’
common training and experience, technical information exchange during software
generation, supervisory system faults which cause identical errors in all the

application software, and other unknown factors.

A procedure to handle the uncontrolled commonalities can be stated as
follows: 1) list all the hypothesized uncontrolled commonalities; 2) decide which ones
to address before building the software; and 3) leave others as input to later
evaluations. There is a need for research to measure and elucidate what are the

possible uncontrolled commonalities that cause software deterioration. The purpose

36

of such research is to provide guidance on how to perform the design rigorously,

without disturbing the integrity of the system.

Another effective method to avoid commonalities lies in the control process in
the multi-version software development, which is conducted in the next phase.
Namely, communication protocols used during software development should be
rigidly prescribed. An example guideline for such protocol looks like this:
programmers are strictly admonished not to discuss any aspect of their technical work
with members of other teams directly. All work-related communications are allowed
only between programmers and a coordinator, and this is conducted via a formal

protocol (e.g., electronic mail) to avoid ambiguity and preserve retrospection.

3.9 Build the Software Versions

The methodology for building the software basically follows the well known
software life cycle practice. Each program should be developed in the environment as
if there is only one version in construction. There are two directions for the

discussion here:
1. Applying software engineering technologies

Well defined software development techniques should be applied
[Boeh81]. In short, the following design phases should be scheduled and

conducted to ensure high quality software development.

° Overall design: A complete, verified design of the overall software
architecture, control structure, and data structure for the system, along

with such other necessary components as draft user’s manuals and test

37

plans.

) Detailed design: A complete, verified design of the control structure,
data structure, interface relations, sizing, key algorithms, and

assumptions of each program component.

) Coding and unit testing: A complete, verified set of program
components.
. Integration: A properly functioning software product composed of the

software components.

) Validation testing: A validation process to ensure quality of the

functioning software system after integration.

Conducting MVS software development protocol

In addition to specifying the above phases, software development
communication protocols prescribed in the previous stage should be carefully
conducted. Careful coordination among multiple software programming teams
plays a crucial role in the success of such practices. Certain formal protocols,
especially those related to communication procedures defined previously,

should be carefully conducted and evaluated.

38

3.10 Conduct High Quality Testing

It should be emphasized that MVS systems require high quality programs. In
order to guarantee the quality of programs, we should apply high quality testing or
even extensive verification and validation procedures before we accept the usage of

any given version.

An integral part of the achievement of suitable program versions is to show by
the verification and validation (V&V) procedures that the intermediate software
products do indeed satisfy their objectives. Verification is to establish the truth of
correspondence between a software product and its specification. Validation is to
establish the fitness or worthiness of a software product for its operational mission.
Informally, verification concemns "building the software right” while validation

concerns "building the right software".

A more speculative, and also more general, application of MVS is its
reinforcement for current software V&V procedures. Instead of extensive
preoperational V&V of a single program, two or three independent versions can be
executed "back-to-back” in an operational environment, completing V&V

concurrently with productive operation [Aviz85b].

3.11 Execute Multi-Version Software Systems

The generic MVS support mechanisms provided by DEDIX includes the
following attributes: 1) a decision algorithm; 2) assurance of input consistency; 3)
interversion communication; 4) version synchronization and enforcement of timing

constraints; 5) local supervision for each version; 6) the global executive and decision

39

function for the treatment of faulty versions; and 7) the user interface for observation,
debugging, injection of stimuli, and data collection during multi-version execution of

application programs.

The approach of a customer-oriented, special-purpose MVS supporting
environment has the advantages of simplicity, efficiency, and maintainability. It is,
however, restricted to only several types of faults. Such supporting mechanisms, in
turn, need to be specified, implemented, and protected against failures due to physical
or design faults. This idea of multilayer design diversity is the pinnacle of software

fault tolerance.

3.12 Evaluate Effectiveness of MVS

After the implementation of the MVS and its fault detection and error recovery
algorithms, an evaluation of the software fault-tolerance of a design is performed by
means of analytic modeling, simulation, experiments, or combinations of these
techniques. Usually. the dependability prediction of the MVS system is compared to
that of the single version baseline system. The choice of suitable software models and
the definition of quantitative measures that characterize the level of fault-tolerance

present in a MVS system are two essential aspects of evaluation.

The usefulness of the MVS system depends on the validity of the conjecture
that residual software faults in separate versions will cause very few, if any, similar
errors at the same cc-points. Credible evidence should be statistically gathered and

analyzed for evaluation.

3.13 Refine the Design by Iteration

Refinement of the design is carried out as the final step. When a minimally
acceptable dependability value is specified, the software versions will reach that value
at different "mission times." Additional maintenance activities (including debugging
and upgrading) of the individual software versions or other choices of error detection
and recovery techniques can be made to raise the predicted dependability of the
inferior software. It is also possible that the software may prove to be overprotected,
and some fault-tolerance mechanisms may be removed. The goal of design refinement
is to balance the protection provided to MVS systems in such a manner that the
dependability goal " is attained without a single dominating contributor of
undependability, and at the lowest cost of additional resources. Interactive modeling
and evaluation tools, such as SURF [Cost81], CARE III [Stif79], ARIES 81
[Maka82], SAVE [Goya86], HARP [Duga86), and SHARPE [Sahn86], are essential

for cost-effective evaluation and refinement of the design.

3.14 Choose and Implement Modification (Maintenance) Policy

As for the modification and maintenance of the MVS system, the same design
paradigm should be followed, i.e., a common "specification" of the maintenance
action should be "implemented" by independent maintenance teams. The
modification of MVS due to a fix or improvement in functionality or performance
should take advantage of sufficient modularity of the specification so that a given
modification will affect only a few modules [Aviz85b]. The extent to which each
module is affected can then be used to determine whether the existing software should

be modified according to specification changes, or the existing versions should be

41

discarded and new versions generated from the appropriately modified specification.
Tt is even argued that patching the software, as has been widely used in industry,
might more easily reveal the existence of faults by exhibiting dissimilarities among
the independently generated software versions. This would be a valuable feature of
MVS systems since such a patching technique could create the potential of high risks

in an originally well (and possibly elegantly) designed single version software.

Notice that some of the above stages occur at progressively later times, but
backtracking from a given stage to its previous one may occur at any time. Alteration
of requirements arising from use, revision of specification, change in environment,
and erroneous implementation may interrupt the flow of the normal design paradigm

or spawn sub-processes having their own life cycles.

42

CHAPTER 4
AN INDUSTRIAL INVESTIGATION

For the purpose of self-contained completeness, Chapters 4 and 5 of this

dissertation includes portions of an early Technical Report [Aviz88al).

4.1 A Practical and Complete Experiment Using the Design Paradigm

The main purpose in formulating a design paradigm is to eliminate all
identifiable causes of related design faults in the independently generated versions of a
program, and to prevent all potential effects of coincident run-time errors while
executing these program versions. An investigation to execute and evaluate the
design paradigm is necessary, in which the complexity of the application software
should reflect a realistic size in highly critical applications. Moreover, this
investigation should be complete, in the sense that it should thoroughly explore all

aspects of MVS systems as software fault-tolerant systems.

An industrial investigation concerning this subject might be the most suitable
experiment in which to obtain an appropriate conclusion for applying the design
paradigm to implement MVS systems. This would be a very attractive approach,
since it reflects real-world situations under severe quality requirements. Based on this
reasoning, a joint project was initiated as a consequence of mutual research interests
in design diversity [Aviz82] at the UCLA Dependable Computing & Fault-Tolerant
Systems (DC & FTS) Laboratory and at the Sperry Commercial Flight Systems

43

Division of Honeywell, Inc., in Phoenix, Arizona (abbreviated as "H/S" in the
following discussion), which has been a very successful builder of aircraft flight
control systems for over 30 years. A recent major product of H/S is the flight control
system for the Boeing 737/300 airliner, in which a two-channel diverse design is

employed [Will83], as was previously mentioned in Chapter 2.

The main research interest of H/S is the generation of demonstrably effective
multi-version software in an industrial environment, such as exists now and is being
further developed by H/S [Youn85a]. Its objective includes most recent UCLA
research activities, referenced to the industrial environment, as well as the estimation
of the effectiveness of multi-version software and of its relative safety as compared to

a single-version approach.

It was mutually agreed that an experimental investigaﬁon was necessary, in
which H/S would supply an automatic flight control problem specification, specify
H/S software design and test procedures, deliver an aircraft model and sets of realistic
test cases, and also provide prompt expert consultation. The research was initiated in
October 1986 and carried out at the UCLA DC & FTS Laboratory, funded jointly by
H/S and Microelectronics Innovation and Computer Research Opportunities (MICRO)
program of the State of California. A six-version programming effort in which six
programming languages were used and 12 programmers were employed took place
during 12 weeks of the summer of 1987. An intensive evaluation followed, and is

continuing as of April 1988 [Aviz87b, Aviz88b].

4.2 The Automatic Landing Problem

Automatic (computer-controlled) landing of commercial airliners is a flight
control function that has been implemented by H/S and other companies. The
specification used in the UCLA/Honeywell experiment is part of a specification used
by H/S to build a 3-version Demonstrator System (hardware and scoftware), employed
to show the feasibility of N-version programming for this type of application. The
specification can be used to develop the software of a flight control computer (FCC)
for a real aircraft, given that it is adjusted to the performance parameters of a specific
aircraft. All algorithms and control laws are specified by diagrams which have been
certified by the Federal Aviation Administration (FAA). The pitch control part of the
auto-land problem, i.e., the control of the vertical motion of the aircraft, has been
selected for the experiment in order to fit the given budget and time constraints. The

major system functions of the pitéh control and its data flow are shown in Figure 4-1.

Simulated flights begin with the initialization of the system in the Altitude
Hold mode, at a point approximately ten miles from the airport. Initial altitude is
about 1500 feet, initial speed 120 knots (200 feet per second). Pitch modes entered by
the autopilot/airplane combination, during the landing process, are: Altitude Hold
(AHD), Glide Slope Capture (GSCD), Glide Slope Track (GSTD), Flare (FD), and
Touchdown (TD).

The Complementary Filters preprocess the raw data from the aircraft’s
sensors. The Barometric Aliitude and Radio Altitude Complementary Filters provide
estimates of true altitude from various altitude-related signals, where the former
provides the altitude reference for the Altitude Hold mode, and the latter provides the
altitude reference for the Flare mode. The Glide Slope Deviation Complementary

Filter provides estimates for beam error and radio altitude in the Glide Slope Capture

45

weibelq moj4 BIeQ Pur SUOIoUnd waisAg [0AIU0Q Yold : |- 8inbid

sindinQ Aefdsiq =

sindinQ J0NMUO puewwio) = WD

puewwo)) aue] =]

sinduy Josuag auepdny =] :pudde]

mmi.dm.n:ZOU
ZOE.S>mQ H
HdO1S 3dAI'TD

h

LT "dNOD

AANLILTV I
QIavd

MHLTH "dNOD

zZ A X
R e o
T
d <4 AVISIA =1
MOVIL % e
1 TANLAVD w%%h
qdo1s aaro~=— I J
@
WD < SAOLINOW
aNvnnoo |- 1
alod
AANLLLTV < |

JANLLLTV I
QNALHNOAVE

and Track modes.

Pitch mode entry and exit is determined by the Mode Logic equations, which
use filtered airplane sensor data to switch the controlling equations at the correct point

in the trajectory.

Each Control Law consists of two parts, the Quter Loop and the Inner Loop,
where the Inner Loop is very similar for all three Control Laws. The Altitude Hold
Control Law is responsible for maintaining the reference altitude, by responding to
turbulence-induced errors in attitude and altitude with automatic elevator control
motion. (The elevator is the surface of an airplane that controls the vertical motion.)
As soon as the edge of the glide slope beam is reached, the airplane enters the Glide
Slope Capture and Track mode and begins a pitching motion to acquire and hold the
beam center. A short time after capture, the track mode is engaged to reduce any
static displacement towards zero. Controlled by the Glide Slope Capture and Track
Control Law, the airplane maintains a constant speed along the glide slope beam.
Flare logic equations determine the precise altitude (about 50 feet) at which the Flare
mode is entered. In response to the Flare control law, the vehicle is forced along a

path which targets a vertical speed of two feet per second at touchdown.

Each program checks its final result (elevator command) against the results of
the other programs. Any disagreement is indicated by the Command Monitor output,

so that the supervisor program can take appropriate action.

The Display continuously shows information about the FCC on various panels.
The current pitch mode is displayed for the information of the pilots (Mode Display),
while the results of the Command Monitors (Fault Display) and any one of sixteen

possible signals (Signal Display) are displayed for use by the flight engineer.

47

Upon entering the Touchdown mode, the automatic portion of the landing is
complete and the system is automatically disengaged. This completes the automatic

landing flight phase.

4.3 Applying the MVS Design Paradigm

For the purpose of investigating and determining how much credit could be
given to the design diversity approach, the rigorous design paradigm described in the
previous chapter was applied to carry out the implementation of six versions of
diverse processing software. The general rules fit into the experiment domain are

described in the following sections.

4.3.1 State Precise Requirements with Dependability Goals

The techniques and methods used to develop and manage software for
airborne, digital computer-based equipment and systems are usually carefully
formulated under stringent regulations. The major tasks involved in a typical software
development program and the guidance and recommendations for performing these
tasks are provided in the document DO-178A [RTCAS85], which is the FAA-approved

software design and test standard for the acronautic industry.

4.3.1.1 Regquirements for Software Testing

The required control laws to be implemented in this experiment are part of the
H/S SDD that defines the system requirements for the Demonstrator Cat ITIb Digital
Flight Control System (DFCS). H/S, along with other avionics suppliers, must adhere

48

to the requirements of DO-178A. The following definitions apply to software testing,

as specified in [RTCAS85].

(a) Requirements-Based Tests (black box testing). Test cases are derived from the
software requirements independent of the software structure. Primarily, these are the
requirements specified in the Software Requirements Document (Software
Specification), but further requirements may emerge during the design process (e.g.,
scheduler requirements). These tests demonstrate that the software performs its
intended functions. Each software requirement should be traceable to an associated

verification test or tests.

(b) Software Structure-Based Tests (white box testing). Test cases are derived from
the software design itself. As such, they can address features of the implementation
which may or may not be apparent from a requirements perspective. Typically,
requirements-based tests are analyzed for structural coverage and augmented as
necessary. In this sense, the structure-based tests complement the requirements-based
tests to provide sufficient test coverage. Such structure-based tests are necessary to
provide some measure of protection from unintended functions in software that may
pass all of its requirements-based tests. All of the software must be exercised to a

degree commensurate with its software certification level.

Therefore, software errors are postulated to be caused by two types of human-
made faults: requirement faults and structural faults. A requirement fault exists when
a specified requirement is not or not completely complied with. A structural fault is
the complement of the requirement fault, ie., it is any fault that is not exposed by

system testing based on the system specification.

49

4.3.1.2 Apply Design Diversity to Achieve a Dependability Goal

Three categories of aircraft systems are distinguished by the FAA, namely
flight critical, flight essential, and non-essential, with different testing efforts required
for each. In general, avionics equipment is designated as critical when loss of the
function provided by the equipment can cause a catastrophic aircraft failure. The
probability of such an occurrence must be demonstrated by test or analysis to be 10°
or less over the duration of the flight. Avionics equipment is designated as essential
when loss of its function can significantly impact safety. For essential equipment the
probability of loss of function must be demonstrated to be 107 or less over the

duration of the flight. -

Thus, the software portion of the critical equipment must have a probability of
failure less than 107 depending on the failure rates in the remaining portions of the
system. To protect against failures in single-version software that cause total loss of a
critical function, a structure-based testing methodology is required in addition to
requirements-based testing. Any fault will manifest itself identically in all redundant
computation channels that use identical software; but this exhaustive testing procedure
(Level 1) is assumed to assure the desired reliability. For software that can fail and
cause loss of an essential function only, requirements-based testing alone is required

(Level 2).

While requirements-based testing may be extensive, the number of test cases is
bounded by the system requirements. Structure-based testing, on the other hand, is
likely to be very extensive, possibly involving permutations of all inputs together with
a rather subjective evaluation of each result. If more than a few inputs are involved,
the time required to prepare and run the test, and to analyze the results becomes

prohibitive and may present a serious scheduling and cost problem. Structural testing

50

appears to be analogous to the hardware “"failure modes and effects analysis"
procedure with LSI circuits, which is acknowledged to be extremely difficult to
implement fully [Trea82). Therefore, the FAA encourages manufacturers, where

practical, to reduce the level of testing by architectural means.

The architectural techniques to reduce test levels that the FAA has accepted, or
is likely to accept, employ design diversity as their central attribute. The application
of threefold diversity in critical software is based on the conjecture that the likelihood
of two identical, critical structural faults in 3-version software is, in the verified and
validated release, substantially reduced from the likelihood of a critical structural fault
in a single version; thus only Level 2 testing may be required in 3-version
architectures. The FAA has recognized, however, that the conflicting requirements
for design independence and of having the diverse elements perform the same
function impose an important design constraint. Therefore, these systems must be
shown to monitor each other under all forseeable conditions and critical modes of

operation.

4.3.2 Define Method of MVS Supervision and Execution Environment

For the purpose of industrial-standard validation and verification, a Model
Definition Document (MDD) was supplied by H/S. This document provides
mathematical models for functions within the landing/approach control loop but

external to the control laws defined in the System Description Document.

Consequently, a closed loop testing of multiple executions with random inputs
was conducted. Millions of test runs have been executed in a DEDIX-like

environment for suitable aircraft control and flight simulation. Moreover, another

51

open loop testing strategy, called "Square Wave testing," was also provided for extra
operational testing. Statistical data related to execution of MVS systems were

gathered.

The aircraft mathematical model provided in the MDD is representative of the
dynamic response of current medium size, commercial transports in the
approach/landing flight phase. In this model, the airplane is trimmed, by means of
flaps and engine thrust setting, to a landing speed of about 120 knots, and a level of
low altitude flight path is chosen. It is assumed that the pilot has engaged the
autothrottle while in the low-speed, approach condition, so that forward speed
variations are negligible. In addition, the pilot is assumed to have maneuvered the
aircraft to an altitude of 1500 feet in preparation for engagement of the Altitude Hold

mode.

The three control signals from the autopilot computation lanes are inputs to
three elevator servos. The servos are force-summed at their outputs, so that the mid-

value of the three inputs becomes the elevator command.

Sensed airplane attitude, attitude rate, altitude, flight path, and vertical
acceleration motions are directly measured by various sensors mounted in the
fuselage, which are modeled in MDD. It is assumed that these sensors are at the
center-of-gravity of the aircraft, and have unity gain characteristics. The reaction of
the airplane (e.g., the pitch attitude, PA) should be able to stablize the path of the

flight in responding to fluctuating inputs.

Several other models are associated with the Airplane simulator. They

include:

52

e Landing Geometry

The landing geometry mathematical model describes the deviation from
glideslope beam center as a function of aircraft position relative to the end of
the runway. Nominal glideslope beam characteristics are defined by a beam
angle of 2.5 degrees referenced to the touchdown point, and a width in the
vertical plane of * 0.5 degrees about the beam center. Interception of the
lower edge of the beam by the aircraft results in a pitch-over command and

acquisition of the beam center.
e Turbulence Generator

Turbulence generator is used to introduce vertical wind gusts. Vertical
turbulence is assumed to be frozen with respect to time. This is based on the
observation that for reasonable flight speeds, changes in vertical wind velocity
are smaller with respect to time than with respect to position. Dryden spectra
are readily simulated and show reasonable agreement with measured spectra.
Three more functions are required to compute the vertical turbulence: Random

Number Generator, Gaussian Noise Generator, and Dryden Vertical Filter.
¢ Gaussian Noise Generator

The derivation for the Gaussian Noise Generator utilized here is provided in
[Box50]. The requirement is to convert a uniform probability distribution
between 0 and +1 to a specified Gaussian distribution with a high degree of

statistical independence.
e Dryden Vertical Filter

The Dryden Vertical Filter is simplified to cover only low altitude conditions.

53

Filter constants are a function of several variables: gust intensity, altitude,
longitudinal speed, sample interval, and gust scale. Physically, gust scale is
the longest distance between two points in a turbulent field before correlation

becomes zero.

Another model for the purpose of verifying the Flight Control Computer
software is the Square Wave model. Unlike the Airplane model, this model applies
open loop testing strategy with various stringent conditions to saturate the execution
of the control laws. Specifically, the control laws receive constant values as all the
sensor input data for the computation of each time frame, and a clock is set to record
the Square Wave computation time. The input values are not changed until the clock
reaches half of a selected time period for the Square Wave. At this point the input data
are complemented (reverse the sign but remain the same magnitude) and the clock is
reset for the second half period of the computation, repeating for many executions of

the same period.

These models were programmed by the UCLA coordinating team to provide a
suitable control problem for the experiment. Two program versions of the aircraft
models, one in C and the other in Pascal, were independently generated. They were
rather short programs of about 100 lines of code. Nevertheless, "back-to-back” testing
between these two versions effectively revealed a bug in one of them. These versions
were later certified by H/S personnel. Generation of input data and interpretation of

the results were also performed and suggested by H/S experts.

54

4.3.3 Choose Design Diversity Dimensions

Design diversity is a potentially effective method to avoid similar errors that
are caused by design faults in multi-version software systems. The choice of diversity
dimensions in this experiment was based on the experience gained from: (1) previous
experiments at UCLA [Chen78a, Kell83, Aviz84, Kell86], (2) recommendations from
H/S, and (3) published work from other sites [Gmei79, Ande85, Bish86, Knig86].

Independent programming teams are the baseline dimension for design
diversity. This allows the diversity to be generated with an uncontrolled factor of
randomness. However, different dimensions of design diversity, including different
algorithms, progMng languages, environments, implementation techniques and
tools, should be investigated and explored, and possibly used to assure a certain level
of enforced diversity [Aviz85b]. It was decided that different algorithms were not
suitable for the scope of FCCs due to potential timing problems and difficulties in
proving their correctness (guaranteed matching among them). The investigation of
different programming languages was attractive since it provides protection from
subtle compiler errors and avoids the need to certify compiler correctness. Moreover,
although research was initiated in this direction [Gmei79, Bish86], significant
comparisons of different high order programming languages for the same critical

application have not yet been reported.

Under the budget constraint and availability of the compilers, six programming
languages were determined for the design diversity investigation for this project. The
six programming languages chosen consist of two widely used conventional
procedural languages (C and Pascal), two modem object-oriented programming
languages (Ada and Modula-2), a logic programming language (Prolog), and a

functional programming language (T, a variant of Lisp). It was hypothesized that

55

different programming languages will force people to think differently about the
application problem and the program design, which could lead to significant diversity
of programming efforts. Choices of the Prolog and T versions presented challenges to
this project, since it was thought that they might not be suitable for this computation-
intensive application. Nevertheless, it was still considered to be worthwhile to
investigate this unexplored area, especially to assess the impact of Prolog and T on the

structure of the auto-land programs.

4.3.4 Write High Quality Specifications

A high quality specification of the software requirement document has to be
provided. This was carried out under the cooperation of a three-member UCLA
coordinating team and H/S engineers. Previous experience from the NASA project in
Writing and maintaining specifications proved to be helpful in the fulfillment of this

task [Tai86).

The efforts to develop a specification that is suitable to be used by the
programming teams started early in 1987. Since it was clear from the beginning that
programming the complete autopilot system would be too complex and too large a
task for a twelve week programming experiment, the first major task was to find a
subset of the autopilot that, when programmed, would result in a program of
reasonable size. "Reasonable” was informally defined as "as large as possible while
still being manageable within twelve weeks." It was decided that the pitch function of

the autopilot with some added display functions should be programmed.

In the next step, representatives from H/S extracted the information needed for

the experiment from their original Demonstrator specification and provided it in a

56

System Description Document (SDD), which was subsequently reviewed by the
members of the coordinating team. The goal was to understand the problem as
thoroughly as possible, in order to avoid as many ambiguities as possible and to
provide a clear specification. Many meetings of the coordinating team with
representatives from H/S were devoted to clarify various aspects, partly on a very

detailed level.

To write the specification that was given to the programmers, the UCLA
coordinating team followed the principle of supplying only minimal (i.e., only
absolutely necessary) information to the programmers, so as not to unwillingly bias
the programmers’ design decisions and overly restrict the potential design diversity.
The diagrams describing the major system functions were taken directly from the

original SDD, while the explanatory text was shortened and made more concise.

In an appendix of the specifications document, the symbols used in the
graphical representations of the system functions were explained, and it was explained
how to deal with feed-back loops that appeared in the charts. In addition, the
coordinating team imposed the requirement that two input routines, seven so-called
vote routines, and one recovery routine be inserted at well defined points of the
computation sequence. The purpose of the input routines was to facilitate the reading
of sensor data for each channel. The purpose of the vote routines was to allow cross-
checking and comparison of different versions’ outputs of major system functions, as
well as of some selected intermediate results (test points). The purpose of the recovery
routine was to provide error recovery mechanism for the internal states of each
version. Detailed discussions in using these routines is presented in the next section.

A second appendix defined the syntax of all these vote routines.

57

The original specification given to the programmers was a 64 page document
(including tables and figures) written in English. Its development required about 10

weeks of effort by the coordinating team, plus consultation by H/S experts.

We have noted that a small number of errors in the original specification could
lead to numerous ambiguous and contradictory addenda in the form of question and
answer pairs [Kell86]. To prevent the confusion, the coordinating team at UCLA was
very careful about message replying in order to minimize the broadcast information.
Since there was always a quick response from H/S flight control engineers when the
question needed to be forwarded to them, the turn-around time for the programmers to

receive their answers was very short.

During software generation, many errors and ambiguities in the specification
were revealed. All questions by the programming teams were handled according to a
communication protocol described later. Throughout the program development
phase, the specification has been maintained as clear and precise as possible. The
specification has now been restored to a single document [Aviz88a], a document that
has benefited from the scrutiny of more than 16 motivated programmers and

researchers.

4.3.5 Install Error Detection and Recovery Algorithms

The original software specifications specified test points, ie., selected
intermediate values of each major system function that had to be provided as outputs
for additional error checking. Error detection was easily identified from the test points

with some modifications.

58

A further enhancement to the specification was the introduction of cross-check
points [Aviz77, Aviz85a] and a recovery point [Tso87b]. Error recovery could
happen at each cross-check point, and at the recovery point at the end of each
computation, before the result is fed back as input for the next computation in a close
loop testing environment. Cross-check points and recovery points were easily
specified with their proper format and sequence. These have been elaborated as part of
the specifications. The usage of the cross-check points and recovery point in this

application program is shown in Figure 4-2.

In Figure 4-2, execution scenario of the application was designed to iterate
through the following computations: 1) airplane sensor input generation; 2) lane
command computation; 3) command monitors and display computation; and 4)
recovery mechanism when necessary. The airplane simulator was designed by the
coordinating team. Lane command, command monitors and display module were
implemented by the programming teams. The recovery mechanism was provided in a

DEDIX-like environment [Aviz8&7c, Aviz88c].

Under this scenario, the application software was instrumented by some fault
tolerance mechanisms. Two input points (sensor.input, lane.input) were specified to
receive external sensor input from an airplane, and to receive flight commends from
the other channels. Moreover, seven cross-check points (ccp.filterl, cep.filter2,
ccp.modelogic, cep.outerloop, ccp.innerloop, ccp.monitors, ccp.display) were used to
cross-check the results of the major system functions (Complementary Filters, Mode
Logic, Outer Loop, Inner Loop, Command Monitors, Display) with the results of the
other versions before they were used in any further computation. They were executed
in a certain predetermined order, but again great care was taken not to overly restrict

the possible choices of computation sequence. Finally, One recovery point

59

i

Airplane Sensor /| Complementary Filters Processing

Input Generation /| cep.filterl, ccp.filter2
! ’,’ Mode Logic Processing
sensor.input ! ccp.modelogic
¥ / Outer Loop Computation
ccp.outerloop
Lane Comrr‘land Inner Loop Computation
Computation i ccp.innerloop

(lane.input)

Command Monitors, Command Monitors Computation

. . ccp.monitors
Display Computation Display Computation

h ccp.display

Issuing
Recovery?
yes

state.recovery

Recovery
Mechanism

Figure 4-2: Usage of Cc-points and Recovery-point in the Application

(state.recovery) was used to recover a failed version by supplying it with a set of new
internal state variables that were obtained from the other versions by the Community

Error Recovery technique [Tso87b].

In summary, these fault tolerance mechanisms introduce 14 external variables
(for input functions), 68 intermediate and final variables (for cross-check functions),
and 42 state variables (for recovery function) in this application. State variables were
identified as those variables whose value in its current iteration would affect that of its
next iteration. Integrators, filters, and rate-limiters in the system denoted these

variables.

4.3.6 Avoid Uncontrofled Commonalities

Uncontrolled commonalities include inexperienced programmers, technical
information exchange among programmers, and design defects in the simulation
environment. For the purpose of avoiding them, special effort was devoted in
recruiting the programmers, and in assigning tasks to each programming team.
Furthermore, a formal communication protocol was applied to monitor the
information flow in the experiment and to impose isolation requirements among
programming teams. Experience gained from the previous NASA experiment
facilitated the necessary coordination [Kell86]. And finally, the UCLA research team
was very careful in implementing the airplane simulation model and the associated
recovery mechanism in order to prevent any possible contamination due to a

supervisory fault.

61

4.3.6.1 Recruit Qualified Personnel

The recruitment and interviewing of programmers started about 3 months
before the 12-week version generation phase in June, 1987. The summer is an
especially favorable time to recruit highly qualified personnel from the about 260 CS
graduate students at UCLA, since about 20 Teaching Assistants (many of them from
programming classes) and several fellowship holders are able to accept summer
employment. About 20 candidates, most of them graduate students at UCLA,
submitted applications. The final choice of 12 programmers and their assignment to
six teams were made one month before starting the software generation. Table 1
shows the specialties, graduate standing, and qualifications of the programmers
identified by their assigned languages. The data indicate a mature, experienced, and
well qualified group of research programmers. The effort was directed by the
Principal Investigator, and coordinated by a three-member coordinating team, who
started the work of writing the specification and developing guidelines and
procedures, with support of H/S personnel, in November, 1986. A senior staff expert
in flight control computing from H/S maintained continuous contact and regularly

made visits to UCLA.

4,3.6.2 Define A Formal Communication Protocol

The purpose of imposing isolation rules on the teams was to assure the
independent generation of programs, which meant that programming efforts were
carried out by individuals or groups that did not interact with respect to the
programming process [Aviz85b). In order to keep this constraint, the programming
teamns were assigned physically separated offices for their work. Additionally,

programmers were strictly admonished not to discuss any aspect of their work with

62

Degree held CS standing Programming
Team member - .
Field | Degree | Year | Program | Year experience
Ada-1 CS B.S 1984 M.S. 2nd 3 years
ECE BS. 1982
Ada-2 ECE M.S. 1984 Ph.D. 2nd 3 years
IE B.S. 1981
C-1 cs MS. 1983 Ph.D. 3d 2 years
CS B.S. 1982
C-2 cs MS. 1984 Ph.D. 2nd 5 years
ECE B.S. 1982
Modula2-1 ECE MS. 1984 Ph.D. 2nd 3 years
Modula2-2 ECE B.S. 1984 M.S. 2nd 2 years
Pascal-1 EE BS. 1584 M.S. 4th 6 years
EECS B.S. 1984
Pascal-2 ECE MS. 1986 Ph.D. 2nd 2 years
EE B.S. 1984
Prolog-1 cs MS. 1986 Ph.D. 2nd 3 years
Prolog-2 CS B.S. 1986 M.S. 2nd 3 years
T-1 EECS B.S. 1983 M.S. 3rd 2 years
T-2 CS B.S. 1986 M.S. 2nd 3 years
ECE B.S. 1981
Coord-1 cs MS. 1984 Ph.D. 4th 6 years
CS B.S. 1984
Coord-2 cs M.S. 1986 M.S. 2nd 3 years
Coord-3 ECE B.S. 1986 M.S. 2nd 2 years

Table 1: Summary of the UCLA Programmer and Coordinator Background

members of other teams. The coordinating team monitored the progress of each team.

Work-related communications between programmers and the coordinating team were

conducted orly via a formal tool (electronic mail). The programmers directed their

questions to the coordinating team, who then tried to respond as quickly as possible.

Whenever necessary, the help of the H/S flight control experts was provided by

telephone and meetings to resolve questions.

63

Generally, each answer was only sent to the team that submitted the
corresponding question. The answer was broadcast to all teams only if the answer led
to an update or clarification of the specification, if there was an indication of a
misunderstanding common to some teams, or if the answer was considered to be
important or relevant for other teams for some other reason. In the first case, a
broadcast constituted an official amendment to the original specification. This
contrasts with the communication protocol used in the NASA experiment [Kell86},
where the answers to all questions were broadcast, regardless of which team
submitted the question. The resulting flood of messages proved to be a bothersome
overload, that was avoided this time. The communication diagram among H/S
experts, the UCLA coordinating team and the programming teams is presented in

Figure 4-3.

4.3.6.3 Experience with the Communication Protocol

The communication protocol was designed in order to: (1) prevent the
ambiguity of oral cornmunications; (2) give the coordinating team time to think and
discuss before answering a question, and to summon the help of H/S flight control
experts, if necessary; (3) provide a record of the communication for possible analysis;
(4) reduce the number of messages sent to each individual team; and (5) adhere to the
principle of supplying only absolutely necessary information to the programming
teams, thus aiming to avoid any bias on a team’s design decisions by supplying

unnecessary and/or unrequested information.

With respect to the first three goals the protocol was very successful.
However, it frequently proved to be more difficult to write the answer to a certain

question, whereas oral communication would have been easier and more efficient.

64

Honeywell/Sperry CFSD

Meetings,
Phone Calls
UCLA Coordinating Team
/ Em\\\
Ada C Modula-2 Pascal Prolog T
Team Team Team Team Team Team

Figure 4-3: Communication Diagram of the Experiment

The communication with H/S was very efficient; thus it was possible to answer all

questions within a short time — usually less than one day.

Altogether, about 120 questions were sent by the programming teams. The
answers to only 30 of them were broadcast. The total number of broadcast messages
was 40, three of which required an additional follow-up message, to provide further
clarification or to correct errors in the original message. Ten broadcast messages were
not triggered by questions: five of them were sent because either the coordinating
teamn, or H/S detected an error in the specification or for some other reason decided to
update it, and the other five were a result of the Design Review at which some
common misinterpretations of the specification were observed. The individual teams

received between 53 and 64 messages. This constitutes a reduction by a factor of 2 in

65

comparison with the number of messages that would have been received if the

communication protocol of the NASA experiment [Kell86] had been used.

4.3.7

4.3.7.1

phases:

1)

2)

Build the Software

Schedule of the Experiment

The software version generation for this experiment was conducted in six

Training meetings (five in total, 24 hours each):

One project-introduction meeting was offered to all the applicants, and all
other four meetings were held after the selection of personnel. H/S presented a
discussion of flight control systems as background information. Introductory
presentations were made summarizing the experiment’s goals, requirements
and the multiple version software techniques. Issues of different programming
languages were also discussed. A kick-off meeting was held on the first day of
the software development phase. At that meeting, the programmers were
given the written specifications and documentation on system tools to start
their 12-week effort. Rules and guidelines about schedules, deliverables, and
communication protocols were also clearly defined. The programmers were
strongly motivated and showed serious concerns about the project in these
meetings. The need for inter-team isolation was thoroughly discussed and

clearly acknowledged by all programmers.

Design phase (4 weeks):

At the end of this four-week phase, each team delivered a design document

66

3)

4)

5)

6)

following the guidelines and formats provided at the kick-off meeting. Each
team delivered a design walkthrough report after conducting a walkthrough
that was attended by UCLA, H/S principal investigators, the UCLA

coordinating team, and an H/S software expert.

Coding phase (3 weeks):

By the end of this 3-week phase, programmers had finished coding, conducted
a code walkthrough by themselves, and delivered a code development plan and
a test plan. Code Update Report forms were distributed for them to record

every change that was made after the code was generated.

Unit testing phase (1 week):

Each team was supplied with sample test data sets (generated by H/S) for each
module that were suitable to check the basic functionality of that module.
They had to pass all the unit testing data before they could proceed to the next
phase. One week was allotted to this phase. At the end of this phase, each
team conducted a coding/testing review with UCLA coordinators and H/S

representatives to present their progress and testing experience.

Integration testing phase (2 weeks).

Four sets of partial flight simulation test data were produced by H/S and
provided to each programming team for integration testing. This phase of
testing was intended to guarantee that the software was suitable for the

closed-loop simulation of the integrated system.

Acceptance testing phase (2 weeks):
Programmers formally submitted their programs. Each program was run in a

test harness of nine flight simulation profiles. When a program failed a test, it

67

was returned to the programmers for debugging and resubmission, with the
input case on which it failed. By the end of this two week phase, five
programs had passed the acceptance test successfully, The T program
encountered difficulties in using the T interpreter, and it was necessary to do
additional work over the next month before that version passed the acceptance

test.

All the participants of this project presented concluding talks and met each
other socially at a final one-day workshop when the software generation phase ended.
During that occasion programmers were free to talk with each other and exchange
their experiences. A large variety of experiences, viewpoints and difficulties

encountered were brought out during this final workshop and following party.

4.3.7.2 The Programming Process

The software engineering process involved in this project for the program
generation included periodic formal reviews, step-by-step milestone deliverables, and
standard documentation facilities. This controlled process provided continuous

interactions between the coordinators from UCLA and H/S, and each individual team.

The design review, the coding/testing review, and the final review and
workshop were the three formal reviews within this project, all with the participation
of H/S experts. These reviews were designed to follow industrial standards as much
as possible. Moreover, they served as checkpoints to observe the progress of each

programming team and to adjust the development process according to their feedback.

68

For the purpose of keeping a complete record, several deliverables were
required from each team. These deliverables, representing the products of the project,
included two snapshots of each module (before and after unit tests), four snapshots of
the complete program (those before and after integration tests, and before and after
acceptance tests), two design documents (preliminary and final versions), program
metrics, design walkthrough reports, and code update reports. These deliverables
helped to set up the bug removal history of each program, and to facilitate the retrieval

of on-line program faults for mutation testing reported in the evaluation phase.

Since fault-reporting was considered extremely important for this project, each
team was required to report all the changes made to their program, starting from the
time when the program first compiled successfully. All changes had to be reported,
no matter whether they were due to detected faults, efficiency improvement,
specification updates, etc. For each change a Code Update Report, a standardized
form designed by the coordinating team, had to be turned in. If a code change was
made because of a design change, a Design Walkthrough Report (another
standardized form) had to be submitted as well. For subsequent analysis, we

considered only those changes that were done to correct faults in the programs.

4.3.8 Conduct High Quality Testing

A high quality design for testing should consider the effect of different high
order programming languages used in this project. For efficiency purposes, a general
interfacing routine between C (in which the airplane simulator was implemented) and
other languages was resolved and provided by the coordinating team (with some
special treatments for Prolog and T). With the suggestions from H/S engineers,

proper testing granularities were elaborated. They were roughly at the same order of

69

magnitude as the resolution of the application, which was a very fine calibration.
Meaningful input test data (with high coverage) were generated together with their
validated output values. Tests were carried out at each defined cross-check point by

an error comparator in the interfacing routine.

To emphasize the importance of testing, three phases of testing: unit tests,
integration tests, and acceptance tests, were introduced for error detection and fault
removal. Different strategies for program testing were provided, during the program
generation phase, in order to clean up programs before they were subjected to a final

evaluation. Table 2 lists the differences among these phases.

category unit test integration test acceptance test
test case open loop by closed loop by closed loop by
generator || PC Basic PC Basic multiple languages
test data file i/o by each interfacing C interfacing C
access version routines routines

tested by | individual teams | individual teams | coordinating team

tolerance | 0.01 for degrees | 0.01 for degrees | 0.005 for degrees
fevel (0.05 for Prolog)

Table 2: Different Schemes Used in the Testing Phases

At first, a reference model of control laws was implemented and provided by
H/S flight control software engineers. This version was implemented in Basic cn an
IBM PC to serve as the test case generator for unit tests the integration tests. Criteria
of "open loop testing” and "closed loop testing” were used, respectively. Detailed
descriptions for these two testing strategies are provided later in this Chapter. Due to
the wide numerical discrepancies between this version and the other six versions, a

larger tolerance level was chosen.

70

Later in the acceptance test, this reference model proved to be less reliable
(several faults were found) and less efficient, since the PC was quite slow in numerical
computations and I/O operations. Thus, it was necessary to replace it with a more
reliable and efficient testing procedure for a large volume of test data. For this
procedure, the outputs of the six versions were voted and the majority results were
used as the reference points to generate test data during the acceptance tests. This was
also the test phase during which programmers were required to submit their programs
to the coordinating team and wait for the test results. A finer tolerance level was used
based on the observation that less discrepancies were expected if programs computed
the right results. An exception had to be made for the Prolog program due to the lack

of accuracy in its internal representation of real numbers.

As to the numbers of test cases performed in each phase, the detailed

information is presented in the following three tables.

name of the module number of test cases
Baro Altitude Filter 7
Radio Altitude Filter 11
Glideslope Filter 7
Mode Logic 11
Altitude Hold Mode Outerloop 10
Glideslope Mode Cuterloop 12
Flare Mode Quterloop 15
Innerloop 23
Command Monitor 5
Display Module 32
total 133
total frames about 1330

Table 3: Test Data in Unit Test Phase

71

In the Unit Test phase, each module of the program received a variant number

of test cases (see Table 3). A Total of 133 test cases were executed, and since each

test case contained 10 frames ¥, there were 1330 frames in this phase.

id testing time | involved modes wind turbulence

data.l | 12 sec AHD mode only no wind turbulence
data.2 | 12sec AHD-GSCD-GSTD | no wind turbulence
data.3 | 12 sec AHD mode only average wind turbulence
datad | 12sec AHD-GSCD-GSTD | average wind turbulence
total frames 960 frames.

* Each second has 20 frames of execution.

Table 4: Test Data in Integration Test Phase

Four testing profiles were provided for the Integration Test as shown in Table
4. Each test profile contained 12 seconds of flight simulation, and in total 960 frames
were executed. These four test data sets differed from each other in the flying modes
that were involved (either Altitude Hold Mode only, or from Altitude Hold Mode to
Glide Slope Capture and Track Modes), and by the level of wind turbulence (either no

wind turbulence or an average wind turbulence) being superimposed.

+One frame denotes one execution run for the module or the program.

72

id time involved modes turbulence | other test
data.1 | 100sec | AHD-GSCD-GSTD no no
data.2 | 180sec | AHD-GSCD-GSTD-FD-TD | no no
data.3 | 100sec | AHD-GSCD-GSTD average no
data.4 | 180sec | AHD-GSCD-GSTD-FD-TD | average no
data.5 | 100sec | AHD-GSCD-GSTD large no
data.6 | 180sec | AHD-GSCD-GSTD-FD-TD | large no
data.7 | 30sec AHD mode only large recovery
data.8 | 22sec AHD-GSCD-GSTD-FD-TD | large recovery
data.9 | 30sec AHD mode only large display
total frames 18440 frames

* Each second has 20 frames of execution.

The Acceptance Test was a stringent testing phase. As indicated in Table 3,
nine testing profiles were designed for this test phase. Data sets 1, 3, and 5 executed
for 100 seconds, drove the airplane from Altitude Mode to Glide Slope Capture and
Track Modes, with either no, average, or large wind turbulences, respectively. Data
sets 2, 4, and 6 were designed similarly, except they exercised all five flying modes
for 180 seconds. Data sets 7 and 8 were designed to carry out the recovery command,

and Data set 9 tested the Display module. The total executions required in this phase

Table 5: Test Data in Acceptance Test Phase

were 18440 frames.

In summary, there were 20730 executions imposed on these programs before

they were accepted and subjected to the final evaluation in the following stage.

73

4.3.9 Execute Multi-Version Systems

Since the software generation phase was completed in early September 1987,
the UCLA coordinating team has conducted H/S approved stress testing for nine
months The major strategy in this requirements-based testing is so-called dynamic
closed-loop tests, which have the purpose of verifying performance, detecting any
tendency towards dynamic mistracking between the different program versions, and

exposing requirements faults not caught in static testing.

In practice, the three channels of diverse software each computes a surface
command to guide a simulated aircraft along its flight path. To ensure that significant
command errors could be detected, random wind turbulences of different levels are
superimposed in order to represent difficult flight conditions. The individual
commands are recorded and compared for discrepancies tﬁat could indicate the

presence of faults.

The configuration of the flight simulation system (shown in Figure 4-4)
consists of three lanes of control law computation, three command monitors, a servo

control, an Airplane model, and a turbulence generator.

The lane computations and the command monitors are the redundant software
versions generated by the six UCLA programming teams. Each lane of independent
computation monitors the other two lanes. However, no single lane can make the
decision as to whether another lane is faulty. A separate servo control logic function
is required to make that decision, based on the monitor states provided by all the
lanes. This control logic applies a strategy that ignores the elevator command from a
lane when that lane is judged failed by both of the other lanes, and these lanes are

judged valid.

74

JOLYHIANID
HONFTNHUNL

AYLINOID DNIANVT
/ SYOSNFS / ANV IdAIV

uonesnbyuos uonenw!s b4 |suuey-g p-v ainbiy

SCAYHS

{ TOUINOD

-OAYHS

O HOLINOW
ANVININOD

g JOLINOW
ANVININOD

NOILV.LNdWOD

D ANVT

NOILV.LNdWOD

HANVT

Y JOLINOW
ANVINNOO

NOILV.ILNdWOD

VHNV1

75

The Airplane simulator computes the response of an airplane to each elevator
command. In a real aircraft these values would be directly measured by sensors. The
landing geometry model describes the deviation relative to the glide slope beam.
Moreover, in order to provide a set of inputs to the Airplane model that create large
error magnitudes, and thereby force off-nominal software operating conditions,

turbulence in the form of vertical wind gusts is introduced.

One run of flight simulation is characterized by the following five initial
values: (1) initial altitude (about 1500 feet); (2) initial distance (about 52800 feet); (3)
initial nose up relative to velocity (range from O to 10 degrees); (4) initial pitch
attitude (range from -15 to 15 degrees); and (5) vertical velocity for the wind
turbulence (0 to 10 ft/sec). One simulation consists of 5000 time frame computations

of 50 msec/frame, for a total landing time of 250 seconds.

For the purpose of efficiency, a testing procedure equivalent to Figure 4-4 was
used (approved by H/S): first, each lane by itself guided the airplane for a complete
landing; second, the whole history of the flight simulation was recorded; and finally,
the flight profiles of all versions were compared and analyzed to observe discrepancies
and determine faults. In this manner, over 1000 flight simulations (over 5,000,000
time frames) have been exercised on the six software versions generated from this

project.

In addition to the flight simulations, a structural analysis was also carried out.
The six versions were compared to find the differences in structure and
implementation that resulted from the application of the multi-version software
methodology. The efforts of finding more faults (either requirements-based or

structure-based) and the search for evidence of structural diversity among these

76

programs have been the major concerns. An additional benefit of this analysis was
that it necessitated a thorough code inspection, during which some additional faults

that were not caught by any tests were detected [Schu87].

4.3.10 Evaluate Effectiveness of MVS and Refine the Process

Detailed evaluation of MVS generated in this UCLA/Honeywell joint project
has been a major final result. Moreover, there have been several improper treatments
of in the software development (e.g., incorrect test data supplied by H/S), and
backtracking to a previous stage in the paradigm has proven necessary. Proper
coordination in conducting the overall design procedure played an crucial role in the
success of the design. Although the paradigm allows the entire design procedure to be
repeated if necessary, the experiment did not suffer this overhead since the product
was shown to meet the original requirements. The final evaluation of the experiment
also contributed to the refinement of the proposed design paradigm. All the final

observations are provided in the next chapter.

77

CHAPTER 5
EVALUATION AND REFINEMENT

For the purpose of assessment and refinement of the design paradigm, we have
evaluated many aspects of the UCLA/Honeywell investigation, in order to assess the

impact of the proposed design paradigm during the design of a MVS system.

5.1 Standard Software Metrics of the Programs

At first, we should evaluate the quality of the programs produced in the
UCLA/Honeywell joint project. The objective of software metrics is to evaluate the
quality of the process or product in a quality assurance environment. However, our
focus here is the comparison among the program versions, since design diversity is

our major Concern.

Table 6 gives several comparisons of the six versions with respect to some
common software metrics [Li87]. These comparisons were based on the report

delivered from the programmers, and certified by the UCLA coordinating team.

78

Metrics ADA C MOD-2 PASCAL | PROLOG T Range
LINES 2253 1378 1521 2234 1733 1575 1.64:1
STMTS 1031 746 546 491 1257 1089 2.56:1
LN-CM | 1517 861 953 1288 1374 1263 1.76:1
OBIJS 85.6k 83.7k 51.9k 375k N.A. N.A. 2.28:1
MODS 36 26 37 48 77 44 2.96:1
STM/M 29 25 15 10 16 25 2.950:1
CALLS 97 68 65 93 81 87 1.49:1
LIBS 2 2 2 10 7 N.A. 5.00:1
LCALL 3 9 6 12 61 N.A. || 20.33:1
GBVAR 139 141 91 81 50 97 1.74:1
LCVAR 117 197 132 127 209 251 2.15:1
CONST 68 21 18 16 N.A, N.A. 4.25:1
BINDE 74 114 78 118 74 86 1.59:1
COMP 2°3” 23" 422" 33> N.A. NA. || 11.39:1
EXEC 5730 2’417 12'18” 237" 19°17” 250’ || 95.54:1

N.A. = not applicable

Table 6: Software Metrics for the Six Programs

The following metrics are considered in Table 6: (1) the number of lines of
code, including comments and blank lines (LINES); (2) the number of executable
statements, such as assignment, control, I/O, or arithmetic statements (STMTS); (3)
the number of lines excluding comments and blank lines (LN-CM); (4) the size of the
object code (OBJS), we note that this metric is not applicable to the PROLOG and the
T programs; (5) the number of programming modules (subroutines, functions,
procedures, etc.) used (MODS); (6) the mean number of statements per module
(STM/M); (7) the number of calls to programming modules (CALLS); (8) the number

of library functions used (LIBS), we note that this metric is not applicable to the T

79

program since there is no notion of "library functions;" (9) the number of calls to
library functions (LCALL), we note that this metric is also not applicable to the T
program; (10) the number of global variables (GBVAR); (11) the number of local
variables (LCVAR); (12) the number of constants (CONST), we note that this metric
is not applicable to the PROLOG and the T programs, since their local or global
variables have to be used as constants; (13) the number of binary decisions (BINDE),
(14) the compile time to generate the final object code (COMP); and (15) the

execution time for one flight simulation profile (EXEC).

Note that the ;rnaximum value of each row is typed in bold, while the minimum
is typed in italic. The ratic between these two values is shown in the last column to
represent the range of each item. Also note that the compile times and the execution
times were measured on a lightly loaded Sun-3/280 machine (except that Modula-2
version was measured on Vax-11/750 system, which was estimated to be four to five
times slower). Moreover, the T interpreter (Yale University Version 3.0) ran very

slowly due to the tremendous overhead spent on its garbage collection facility.

5.2 Distribution of Faults Detected during Program Development

A total of 82 faults was found and reported 'during program development. The
following four tables present the distribution of these faults in the six versions under

different categories. Detailed descriptions of these faults can be found in Appendix A.

80

Table 7 shows the fault distribution in each system function. The total adds up
to more than 82 since all the modules affected by one fault are counted. An asterisk

indicates such a case.

Subfunction ADA C MOD-2 | PASCAL | PROLOG T Total
Main Program 1 2 0 0 7 6 || 16
BACF 1 0 1 0 2" 3" 7
RACF 0 0 0 0 1° 1’ 2
GSCF 1 1 1 4 7 2" 16
Mode Logic 1 4 0 0 1" 2* 8
AH Outer Loop 0 0 0 1° 0 0 1
GS Outer Loop 0 1 0 0 0 0 1
Flare Outer Loop 1 2 0 1 2° 1 7
Inner Loop 1 3 0 4* 4 2 || 14
Command Monitor 0 0 0 0 1 2 3
Display 0 0 1 3 1 1 6
General, other 0 0 1 0 5" 4 10
Total 6 i3 4 13 31 24 || 91

*: This fault affected more than one subfunction.

Table 7: Fault Distribution by Subfunctions

Classification of faults according to fault types is shown in Table 8. This
category considers the following type of faults [Kell82] (1) typographical (a cosmetic
mistake made in typing the program); (2) error of omission (a piece of required code
was missing); (3) unnecessary implementation (an unintended extra piece of code
which was deleted); (4) incorrect algorithm (a deficient implementation of an
algorithm); (5) specification misinterpretation (a misinterpretation of the
specification); and (6) specification ambiguity (an unclear or inadequate specification

which led to a deficient implementation). In this category, items (1) through (4) are

81

implementation related faults, while items (5) and (6) are specification related faults.

Item (2) and (3) are complementary to each other. It is also noted that "incorrect

algorithm" of item (4) is the most frequent fault type, which includes miscomputation,

logic fault, initialization fault, and boundary fault. The "other" fault was introduced

by the Modula-2 compiler.

Fault Class ADA | C | MOD-2 | PASCAL | PROLOG | T | Total
Typo 0 1 0 0 9 0 10
Omission 1 3 0 0 8 5 17
Unnecessary 1 0 0 1 0 2 4
Incorrect Algorithm 3 5 2 7 9 13 39
Spec. Misinterpretation 1 3 1 4 0 1 10
Spec. Ambiguity 0 1 0 0 0 0 1
Other 0 0 1 0 0 0 1
Total 6 13 4 12 26 21 82
Table 8: Fault Classification by Fault Types
Table 9 shows during which phases of testing the faults were detected.

Test Phase ADA | C { MOD-2 | PASCAL | PROLOG | T || Total

Coding/Unit Testing 2 4 4 10 15 7 42

Integration Testing 2 5 0 2 7 4 20

Acceptance Testing 2 4 0 0 10 20

Total 6 13 4 12 26 21 82

Table 9: Fault Classification by Phases

Finally, Table 10 shows the classification of faults according to the categories

of "requirements fault" and "structural fault."

82

ADA | C | MOD-2 | PASCAL | PROLOG | T | Total
Requirements 5 12 3 11 21 19 71
Structural 1 1 1 1 5 2 11
Total 6 13 4 12 26 21 82

Table 10: Fault Classification: Requirements Faults vs. Structural Faults

All cross-check and recovery point routines were written in the C
programming language, and therefore five of the six programs had the additional
problem of interfacing to another language. The Prolog and the T team had the most
severe problems. The Prolog team had to modify the Prolog interpreter; the solution
of the T team was to convert all parameters to ASCII strings, pass them to a C routine,
convert them back into numbers, do the cross-checking, convert the results into

strings, and pass them back to the T functions.

Three compiler or interpreter bugs were found during program development:
the Ada compiler did not support nested generic packages (which resulted in a design
change to avoid using this feature). With the Modula-2 compiler the expression "i+i"
had to be used as an array index instead of "2*1" to achieve the desired result. This
fault is classified as the type "other” in Table 8. The T interpreter had a problem with
its garbage collection which resulted in uncompleted long test runs. This problem

delayed the T program’s passing of the acceptance test for over a month,

In addition, we experienced a computing environment change during the
experiment. This did cost some time, but finally all teams were moved to the new Sun
workstations. Only the Modula-2 team had to continue to use the original VAX

computers, due to their compiler not being available on the Sun.

83

disagreement. This fault is traceable to an ambiguity in the specification: the graphical
language used was not powerful enough to express the exact semantics of the required
operation. The third fault discovered in the C version is the too frequent initialization
of a state variable (it is re-initialized at every pitch mode change, while it should be
initialized only once at the entry of Altitude Hold mode). In this case, the team did
not follow a specification update that was made very late in the programming process

(during integration testing).

Two disagreements were traced to an identical fault; they occurred in the
Prolog and T versions. Both teams made the same design decision to update a state
variable of the Inner Loop twice during one computation of the Inner Loop. This fauit
is due to the same specification ambiguity as mentioned above, but in addition these
teams did not pay attention to a broadcast clarification that addressed exactly that
problem. Although similar in nature, the two versions disagreed in slightly different

ways from the other versions.

It is noteworthy that all observed disagreements were very small, and further
experiments showed that the versions with these discrepancies are always able to
achieve proper Touchdowﬁ. Furthermore, all these faults are specification related. It
is interesting to note that the Inner Loop was the program part that was most

thoroughly tested during all test phases.
5.3.2 Faults Found During Inspection of Code

The following faults were detected during the code inspection performed as

part of the structural analysis:

85

One requirements fault was found in the Display, where rounding to 5
significant digits was not done correctly. The error occurs only when rounding
overflow (e.g., 6 or more subsequent 9°s) changes the decimal point position. This
special case was not triggered by any of the acceptance test or flight simulation data.
Other teams, however, had discovered the same kind of fault during unit testing.
Therefore one explanation might be that this team did not perform the unit test

sufficiently carefully.

The other six faults were three types of structural faults, discovered in the C,
Modula-2, Pascal, Prolog, and T versions. They and their possible impacts are

discussed next.

One fault was Type 1, as described next. Normally, the boundaries within
which the output of certain functions (integrator, rate limiter, and magnitude limiter)
had to be limited was a finite constant. There were a few cases (in the Inner Loop and
the Command Monitor), however, where the bound was either +eo or -ee. To
implement these special cases, the C version used the arbitrarily chosen values
+99999.0 or -99999.0 and passed them as parameters to the subprogram that
implements the functions mentioned above. This is a structural fault because an
unintended (unspecified) function (i.e. the limiting of an output value) is performed if
this value exceeds the arbitrarily chosen values. In this application, however, this
might not be a problem since the output of the Inner Loop (elevator command) will be
further limited to £15 degrees. Similarly, the Command Monitor will indicate a

disagreement between two versions long before this structural fault has any effect.

Type 2 faults are more serious. They are caused by the introduction of new,
unspecified state variables which we call "underground variables,” since they are

neither checked nor corrected in any cross-check or recovery point. This may lead to

86

an inconsistent state that is impossible to recover from. An example follows: the C
team decided to move the computation of some parameters for the Glide Slope
Deviation Complementary Filter outside of this Filter. Unfortunately, this
computation depends on some other, state dependent computations in this Filter.
These latter computations were re-implemented outside the Glide Slope Deviation
Complementary Filter which also led to a duplication of their state variables.
Therefore, a new design rule for multi-version software must be stated as "Do not
introduce any underground variables." Note that this rule is irrelevant if only cross-
check points are used, since these do not attempt to recover the internal state of the

version. Only one Type 2 fault was uncovered.

Type 3 faults occurred when the C, Modula-2, Prolog, and T teams used the
output of the Mode Logic in some further — but different — computations before it was
voted upon. This was in violation of a rule stated in the specification, explicitly
forbidding that. If the Mode Logic output is corrected by the Decision Function, a
fault of this kind could lead to a situation where the Mode Logic output is correct, but
the variables dependent on this output are not, since they were computed using the
old, uncorrected values of the Mode Logic output. Then an inconsistent state between
different variables of the version might exist which could be impossible to recover
from. Apparently, more programmer training is necessary to prevent these types of
mistake since the reason for this fault is obviously a misunderstanding or unawareness
of some of the multi-version software design rules. Although this might seem a
dangerous possibility of introducing common faults, faults of this kind are easily
checked for. Thus they can be eliminated by the acceptance test. We conclude that
the acceptance test should always check for compliance with all the N-version

software design rules specified.

87

The six discovered structural faults that are described above are uncorrelated,

and thus will be tolerated by the multi-version software approach.

5.4 Assessment of Structural Diversity

A fundamental first step in assessing the diversity that is present in a set of
versions must be an assessment of the potential for diversity (PFD) that is indicated by
a given specification. Some reasonable evidence that meaningful diversity can occur
is needed in order to justify the effort of multi-version programming. Here we
exclude the "pseudo-diversity” that can be attained by rearranging code, using simple
substitutions of identities, etc. It is introduced too late in the programming process to

be effective, and is likely to replicate and camouflage already existing faults.

After the PFD assessment, a decision must be made whether certain diversity
shall be "enforced”, i.e., specified; examples would be a requirement to use different
algorithms [Chen78al, several versions of the specification [Keli83], different
compilers, programming languages, etc. The alternative is to depend on the isolation
between programmers and on the differences in their backgrounds and approaches to
the problem as the means to get diversity. This is the "random" approach to the

attainment of diversity.

It is our position that the minimal requirement must be (1) the isolation of
programming efforts, and (2) "enforced” diversity that is needed to avoid predictable
causes of common faults, such as compiler bugs and other defects that could existin a

shared support environment.

88

In the present investigation the only additional choice of "enforced” diversity
is the use of six different programming languages. One of our goals is to evaluate the
effectiveness of this choice in attaining meaningful diversity between the six versions

that originated from one specification. A summary of the observations follows

[Schu87].
Program Module PFD Observed Diversity

Main Program good level of detail implemented, information
handling, organization of state variable
initialization, placement of calls to vote
routines

Radio Altitude | poor grouping, sequence

Complementary

Filter

Barometric Altitude | medium | grouping, sequence

Complementary

Filter

Glide Slope | medium | grouping, sequence, time-dependent

Deviation computation

Complementary

Filter

Mode Logic good constants, sequence, algorithm

Altitude Hold | poor constants, grouping, sequence

Control Law, Outer

Loop

Glide Slope Capture | good constants, grouping, sequence, time-

and Track Control dependent computation

Law, Outer Loop

Flare Control Law, | good constants, grouping, sequence

Outer Loop

Inner Loop poor constants, grouping, sequence, organization

Command Monitor poor grouping, algorithm, organization

Mode Display poor algorithm

Fault Display poor algorithm

Signal Display medium | algorithm

Primitive Operations | poor choice, organization

Table 11: Potential for and Observed Diversity

89

The "PFD" column of Table 11 presents our assessment of the extent of
diversity (structural differences) that may be expected for each program module. A
module has poor potential for diversity if it is either so small and simple, or else if its
computation sequence (in terms of primitive operations) is so well-defined by data
dependencies, that there is little room for diversity in implementation and
organizational aspects. In the modules with good potential for diversity, many
(between 5 and 10) independent computation paths exist which could be traversed in
any order. In the case of the Main Program the sequence of the major system
functions is determined by data dependencies (cf. Figure 4-1); here the PFD lies in the
organizational aspects. Modules with "medium” PFD are estimated to lie somewhere
between these two limiting cases. It must be noted that the PFD assessment is
somewhat subjective; the factors used in the assessment include the specification of

each program module as well as the observed structural differences.

The column "Observed Diversity” of Table 11 lists the attributes in which
structural diversity actually was observed between two or more of the six versions.

Further explanations and comments on this column follow.

The first notable difference between the Main Programs is the level of detail
implemented there. The Ada version is one extreme example; it deals with all the
organizational details, such as initialization of state variables, or determination of
which function to perform at a given instant, in the Main Program. This leads to a
calling hierarchy which is exactly one level deep, if some auxiliary subprograms and
the calls to primitive operations are ignored. The T version is similar in the sense that
all the system functions are called directly by the Main Program. However, most of
the organization (especially initialization of state variables) is done locally by these

system functions. The other versions (C, Modula-2, Pascal) generally show a two-

90

level calling hierarchy, i.e., they define relatively general subprograms like "Filter
Module," "Mode Logic," or "Altitude Hold Control Law," and deal with the
organization of the appropriate system functions locally. Nevertheless, there are some
differences between these latter versions too. For instance, the C and Modula-2
versions organize the Control Laws into three different Control Laws (one for each
pitch mode), each consisting of an Outer and an Inner Loop. The Pascal version, on
the other hand, divides the Control Laws into an Outer and an Inner Loop, where the
Quter Loop consists of three different Outer Loop procedures. Finally, the C and
Modula-2 versions differ also in the organization of their Filter Module, or their Mode
Logic. The Prolog version is a special case. It has a rather large and complex calling
hierarchy because the language is such that [F-statements have to be implemented by

function calls.

Another important difference that was noted is the strategy chosen to handle
information, i.e., state, interface, and output variables. Solutions range from extensive
parameter passing (Pascal) to the exclusive use of global variables (C, Prolog). We
note that this choice was unavoidable for the Prolog version because of the language
properties. The other versions use solutions between these two extremes, by trying to
define as many variables as possible locally. The choices are partly programming
language dependent, e.g., dependent on the availability of local static variables. A
related aspect is the organization of state variable initialization: the two basic
solutions are initialization by the Main Program, or initialization within each program

module.

The third aspect of diversity in the Main Program concerns the placement of
vote routines: either all vote routines are called in the Main Program, or they are

called in the system function whose result they check. The recovery point routine,

91

however, is always called by the Main Program.

The notation "constants” in Table 11 indicates that some teams chose to
simplify the computation by manually evaluating some expressions consisting of
constants only. "Grouping" refers to the fact that different teams chose different ways
of combining primitive operations into statements of their programming language.
"Sequence” denotes that some versions use a different computation sequence (in terms
of primitive operations) to implement a system function than others. Sometimes the
differences are very minor, for instance in the Quter Loop of the Altitude Hold

Control Law or in the Inner Loop.

“Time-dependent computation" means that this system function contains an
algorithm that is dependent on real time. In both cases, we observe much variety
among the strategies chosen (1) to keep track of real time; and (2) to guard against
effects of limited precision of real number representation. (Note: Real time was

simulated in this application.)

"Algorithm" indicates that different versions use different algorithms to
implement a certain system function. These differences are mostly minor ones; only
in the Signal Display more interesting differences can be found, both in the structure

of the algorithm and in implementation details.

"Organization” refers mainly to the fact that some versions chose to implement
a certain subprogram as a procedure (results are returned via parameter passing),
while other versions used a function (a RETURN statement or similar construct is
used). In the case of the Inner Loop, slightly different requirements existed for

different pitch modes. A variety of solutions to cope with these has been found.

92

Primitive operations are integrators, linear filters, magnitude limiters, and rate
limiters. The algorithms for these operations were exactly specified, however,
different choices of which primitive operations to implement as subprograms have
been made, mainly whether the integrators include limits on the magnitude of the
output value (as is required in most cases), or not. Only the Prolog version
implemented a "switch” subprogram; this choice has clearly been influenced by
programming language properties — all other versions just use IF-statements. The T
version defined only a subprogram for magnitude limiting, all other primitive
operations are implemented directly in each system function. The Prolog version uses
procedures to implement these operations, all other versions use functions. Lastly, the
Ada functions also do the state update, in the case of state dependent primitive

operations; all other versions have to do this within each system function.

Due to space constraints, no examples could be given here. More detailed
discussions and presentations can be found in [Schu87]. In conclusion, we note that
both the PFD assessment and the search for meaningful structural differences were
based on individual judgements of the investigators and are somewhat subjective.
However, it is evident that (1) aspects of meaningful diversity can be identified; and
(2) diversity in programming languages definitely motivates structural diversity
between the versions. We hope that our modest first steps will stimulate further
investigations into the problems of qualitative and quantitative assessment of

meaningful diversity in a set of program versions.

93

5.5 Observations from the Diversity Assessment

In general, it can be said that more diversity was observed in a module with
the aspect that its implementation method was not explicitly stated in the
specification, such as the Signal Display, the organization of different Inner Loop
algorithms (depending on the pitch mode), the organization of state variable
initialization, or the implementation of time-dependent computations. Furthermore,
not all the design choices outlined above can be made independently. For instance,
whether a primitive operation is defined as a function or a procedure determines if it
can be combined with other operations in a single statement, or not. Similarly, if the
update of state variables is performed as part of the primitive operation, then the upper
levels do not have to concern this. As a last example, if the state variables of a system
function are defined as local static variables, then they cannot be initialized by the

Main Program.

Two factors that limit actual diversity have been observed in the course of this
assessment. One of them is that programmers obviously tend to follow a namral
sequence, even when coding independent computations that could be performed in
any order. The observation made was that algorithms specified by figures were
generally implemented by following the corresponding figure from top to bottom. In
this case the "natural” order was given by the normal way to read a piece of paper, i.c.
from left to right and from top to bottom. Only when enforced by data dependencies,
a different order was chosen, e.g. from bottom to top. It can be safely assumed that
the same phenomenon would occur if the specification was stated in another form than
graphical; this is especially true for a textual description. The latter can be
exemplified by the Display Module: only one team chose the order of computation

Fault Display, Mode Display, Signal Display; all other teams chose the order Mode

94

Display, Fault Display, Signal Display which was also the order used in the
specification. This means that if there is a number of independent computations that
could be performed in any order there exist some permutations of these computations
that are more likely to be chosen than other permutations, due to human,

psychological factors.

The Outer Loops of the Glide Slope Capture and Track and the Flare Control
Law, and the Mode Logic were affected the most; their good potential diversity was
not exploited as much as expected and possible, due to this phenomenon. In
retrospect, a second reason for this lack of diversity is that we have concluded that the
logic part of the Mode Logic was overspecified. A description of the conditions that
have to be met to enter the next pitch mode would have been more appropriate than
the logic diagram which biased the programmers too much towards using identical or

very similar algorithms.

One possible solution to the natural sequence problem is to provide different
specifications to individual teams. They could either be required to follow a specific
unique computation sequence, or the order of presenting the independent
computations could be different in each specification while still having each team
decide which sequence to follow. The problem of this approach is the possibility of
introducing additional faults into the specification, i.e., more faults than would have
been made in a single specification, unless the process of generating different Versions

of a specification can be proven to be correct.

The H/S concept of test points is the second factor that tends to limit diversity.
Their purpose is to output and compare not only the final result of the major
subfunctions, but also some intermediate results. However, that restricted the

programmers on their choices of which primitive operations to combine — efficiently —

95

into one programming language statement. In effect, the intermediate values to be
computed were chosen for them. These restrictions are rather unnecessary and can
easily be removed. An additional benefit is that output and the use of vote routines
would become simpler. On the other hand, the test points proved very beneficial in
version debugging. A way to preserve this useful feature is to add test points only
during the testing and debugging phase, and to remove them afterwards. Each team
should be free to choose its own test points; in addition, the program development
coordinator can request specific test points if it is intended to compare the results of

two or more different versions.

5.6 Fault Diagnosis and Failure Analysis by Mutation Testing

Software failure behavior is affected by two principal factors [Musa87]:
€8 the execution environment or operational profile of execution, and
(2) the number of faults in the software being executed.

The Airplane model and the Square Wave model discussed in the previous
chapter provide the reference for extensive testing requirements of this project.
Moreover, faults were carefully analyzed to determine what faults the six programs
contained in order to facilitate their avoidance during development and during testing
in .evising the design paradigm. Special interest was devoted to the potentiality of

similar errors in order to evaluate the effectiveness of the MVS approaches.

Appendix I describes all the faults found in the programs. As has been
discussed before, there were two pairs of identical faults in the six versions: one pair

was uncovered before or during acceptance test (82 faults found in total), the other

96

pair was detected after the acceptance test (11 faults found in total). Both pairs of
faults were specification related. The first pair was severe, since it reduced a factor by
a thousand, but it was easily detected at an early stage. On the contrary, the second
pair was not detected until after the acceptance test; however, it was less severe and
the airplane always obtained proper touchdown in the flight simulation. Moreover, the
errors that resulted from each of these faults appeared a little bit different from each
other numerically, due to the discrepancies of different programming languages and
compilers; i.e., they are not 100% correlated. Here we observe that error frequency
and error severity are two major attributes of an error, and error similarity is an
important property in describing a pair of errors. These concepts facilitate the

following discussion.

To uncover the impact of faults that would have remained in the software
version, and to evaluate the effectiveness of MVS mechanisms, a special type of
regression testing, similar to mutation testing which is well known in the software
testing literature [Budd78, Howd82], was investigated in the six versions. Mutation
testing, like other testing schemes, applies test data to the program and to a reference
of what is expected from the software, and compares the results. However, the testing
is done with "mutants" instead of the original software that is being validated.
Mutants are programs derived from the original software by the inclusion of some
faults. However, there is a major difference in the objective: the original purpose of
the mutation testing is to ensure the quality of the test data used to verify a program,
while our concern here is to evaluate the similarity of program errors and their

treatment by MVS systems.

In order to do this, the mutants created for the testing should be real mutants,

that is, they contain real programmer errors. Thus we injected all the program faults

97

(93 in total) back into the versions where they originally occurred. The procedures of

this testing is described in the following steps:

Step 1: First, one should obtain the final version of the six programs from the project.
They are executed to provide consensus “reference values” for the testing
procedure. Then we can identify and compose the fault removal history of
each version according to the audit of faults in Appendix I. These data will be

used to derive a representative set of mutants.

Step 2: In this step, one should generate mutants by injecting faults into the final
version (from which they were removed) one by one. Thus a representative
sample of programs that can be executed for comparisons is created. For
simplicity, each mutant is injected with only one fault. The definition of data

to be applied to the versions is also done at this step.

Step 3: This step is the main body of the mutation testing. Each mutant is executed
by the same set of input data both in the airplane simulation environment and
the Square Wave testing environment. Testing results are carefully collected

and logged for further analysis.

Step 4: Finally, analysis of the error behavior due to each fault is examined. This
includes the definition and the measurement of certain functions (error
frequency function, error severity function). Special interest is devoted to the

similarity of coincident errors in each program version.

Using the fault removal history of each version, we have created 6 mutants for
Ada (al - a6), 18 mutants for C (c1 - c18), 5 mutants for Modula-2 (ml - m5), 12
mutants for Pascal (pl - p12), 29 mutants for Prolog (pgl - pg29), and 23 mutants for

T (tl - £23). Each mutant contains one fault introduced by its original designers.

o8

In order to present the execution results of the above steps, applied to the
Flight Control Computer software in our project, let us define the following two

functions for each mutant:

e Error Frequency Function (for a given set of test data) — the frequency of the error

being triggered by the specified test data set in this mutant.

e Error Severity Function (for a given set of test data) — the severity of the error when

manifested in the system by the specified test data set.

An Error Frequency Function of version x mutant i for test set T, denoted as A(x;,T), is

computed by

total number of errors when executing test set T on mutant x;

Ax,T) = -
(%, T) total number of executions

Since each mutant contains only one known fault, it is hypothesized 1 that errors
produced by that fault are always the same for the same test inputs. Therefore, we can

define an Error Severity Function of version x mutant i for test set T, i(x;,7), to be

.) reference value — error of x;
,if0 g <E
0 reference value
x.0) reference value — error of x; " reference value — error of x; .
X;,T) = Jife< <
e) reference value reference value
1 , otherwise
-

where € is a specified allowed deviation.

+ This hypothesis is valid for all the mutants in our experiment here.

99

If x; produces run-time exceptions or no results, then u(x;,t) is defined to be 1.

The Error Frequency Function and Error Severity Function applied to each
mutant (for a test set of about 15000 executions) are shown in Table 12 and Table 13,

respectively.

As to the nature of errors in two or more channels, three types of relationships
are identified: distinct errors, similar errors, and identical errors [Aviz86). Distinct
errors are produced by faults whose erroneous results could be distinguished from one
another. Similar errors are defined to be two or more results that are within a small
range of variation, and the results are erroneous. If the results of the similar errors are

identical, they are called identical errors.

Thus we can define a Error Similarity Function, G(xy,..Xp), for a set of

mutants {X;,...X,} and a test set T, to be

0 if (xy,..,X,) produce distinct errors in test set T

O(X 1y Xy T) = W

1 if (x;,..,.x,) produce identical or similar errors in test set T

Based on these definitions, we have obtained the Error Similarity Functions for
populations of two versions. Table 14 shows the Error Similarity Function matrix for
two-mutant sets. The complete layout of this matrix is 93 by 93, but since it is a

sparse matrix (most entries are zero), we can reduce it by removing many of the zero

100

d | ADA C MOD-2 | PASCAL | PROLOG | T

1 00002 | 1 0 1 0 1

2 0.001 0.0037 | 0.001 0 0.0006 | 1

3 L 0.5 0.005 0 1 1

4 1 -0 0 00001 | 1 1

5 | -0 0.0037 | 0 1 0.0005 | 1

6 0 0 - 0.002 1 0

7 - 0.001 - 0.001 1 1

8 - 0 - 0.001 0.1 1

9 - 0 - ~0 0.0005 | 1

10 - 0 - 0 1 0.5 |
11 - 0.0005 | - 0.001 1 1

12 - 0 - 00002 | 1 0

13 - 0 - - 1 0

14 - 0 - - ~0 0

15 - 0.03 - - 1 0.002
16 - 0 - - 1 0

17 - 0 - - 1 0.0028
18 - 0 - - 0 0

19 - - - - 1 0

20 - - - - 1 0

21 - - - _ 1 0

22 - - - - 1 0.001
23 - - - - -0 0

24 - - - - 0 -
25 - - - - ~0 -
26 - - - - 0 -
27 - - - - 0.001 -
28 - - - - 0 -
29 - - - - 0 -

"_" means the mutant for that version does not exist.

Table 12: Error Frequency Function of Each Mutant

101

1d u ADA C MOD-2 | PASCAL | PROLOG T
1 1 00251 0 1 0 1
2 | 051 |1 0.51 0 1 1
3 1 1 1 0 1 1
4 1 1 0 0.03 1 0.017
5 1 0.05 0 1 1 1
6 0 0 - 0.017 1 0
7 - 1 - 1 1 1
8 - 0 - 0.004 0.1 1
9 - 0 - 1 0.038 1
10 - 0 - 0 1 1
11 - 0.001 - 0.23 1 1
12 - 1o - 1 1 0
13 - 0 - - 1 0
14 - |0 - - 0.022 0
15 - 0.6 - - 1 1
16 — 0 - - 1 0
17 - lo - - 1 1
18 - 0 - - 0 0
19 - - - - 1 0
20 — - — - 1 0
21 —~ - - - 1 0
22 - - - - 1 0.02
23 — — — - 1 0
24 - - - - 0 -
25 - — — - 1 -
26 - — - - 0 -
27 - - - - 0.02 -
28 - - — - 0 -
29 - - - — 0 -

"_"* means the mutant for that version does not exist.

Table 13: Error Severity Function of Each Mutant

102

entries (see Table 14).

o a2 | m2 | pg27 | 122

a2 - 10| 00 | 0.0
m2 10 | ~ 00 | 0.0
pg27 |} 0.0 | 0.0 - 1.0

122 0.0 { 0.0 1.0 —

Table 14: Reduced Error Similarity Function Matrix in Two-Mutant Sets

Analysis of three-mutant sets becomes much more tedious since a three-
dimensional matrix will be needed. However, it should be similar to the analysis of
two-mutant sets, whose error similarity is shown to be weak. Moreover, since we
have not seen any common errors affecting more than two mutants, the results that
would be obtained from the analysis of higher-order mutant sets should also be

promising in MVS schemes.

5.7 Coverage Measurement of Multi-Version Software

Coverage is an important measurement for the effectiveness of fault-tolerant
systems. It is defined as the conditional probability of successful recovery, given that a
fault has occurred [Bour69]. In MVS systems, the coverage value depends on the
similarity of errors, and the efficiency of the recovery mechanisms to cope with such
errors. Obviously, this is an important justification of MVS as a valuable software

fault tolerance technique. Thus, we need to derive a definition of coverage and

103

measure it, using the software produced in this project, and perform a proper analysis.

Since our main interest currently is the analysis of the program versions
themselves, without loosing generality, let us assume the supervisory system in
supporting MVS executions is outside this analysis. In this case, the main contribution
of the "leak" of the MVS schemes, as applied to the FCC software, would be the error
similarity defined in the previous section. Furthermore, let us assume a uniform
distribution for all the mutants. Consequently, the coverage factor of an n-mutant
system (out of a total population m) with respect to the test set T, denoted C, (1), could

be defined as:

1
C(m,n)

C(n=1- Y (X1, Xy T) * Pmedian_of(x,...xy) » T)

1x,5..SX,5m
For example, the coverage factor Cy(7) of a two-version system from our sample
mutants is:

1 =93 x=92

GO =1~ @ x,:xz,ﬂ ,E'l Olxx) THOWT

1-0.000234 (1*0.51 + 1*0.02)

0.99988

104

Other C_’s could be computed similarly. Such a coverage factor can serve to
validate previous software reliability models [Cost78, Litt80, Rama82, Lapr84].
Coverage can also refer to a representative measure of the situations to which the
system is submitted during its validation with respect to the actual situations it will be
confronted with during its operational life. It is important to note that coverage
defined and measured in our experiment is limited to the particular mutant population
and the specific test data set. Neverless, it might be useful to provide an evidence of

the effectiveness of MVS methodology for the assigned application.

5.8 Evaluation of Fault Tolerance Provisions in the Applications

It is interesting to compare the selected application for the two large scale
fault-tolerant software experiments [Kell88, Aviz88b] to see how fault tolerance
attributes were introduced in the application, and how these attributes could be
explored by our design paradigm. The application of the Flight Control Computer
(FCC) software was shown in Figure 4-1. The application of the Nasa/Four-
University Experiment, Redundant Strapped Down Inertial Measurement Unit
(RSDIMU), is show in Figure 5-1. From these two applications, we can observe the

following characteristics:

§)) System Partitioning

Both systems employed modular designs, and each module was self-contained

T W(x,) is picked as the median (for n = 2).

105

AWIASH o weibeiq mol4 eleq waisks |-G einblyg

(19m0781p “daddnsip S10SU3IS PaIre]
‘apowstp)doa snotAdd (astouuyp ‘1asffoury}das
A H A
! 1
! 1
1 |
1 t
1 |
JOAU(T n sainqreJ i s3upe
Aedsiq snoyAald H A uoneiqIe)
suowudiesiw
105U9S "
e L ===
SIS IDIYIA uone[os[puy
oreumsg Ll om0 uonesuadwo)) o p— P supes
1] w3y I w3yl
i UONEI[IIY 1 nneq _
| _ “
| |)
v v v
(aapfupyd ‘Isautys {monofun (mouty)dao
‘821529)das ‘Smpissas)dao

106

2)

3

and relatively independent. Partition of systems naturally facilitates the
placement of error detection and recovery mechanisms. This characteristic
helps to establish isolation requirements and to select isolation mechanisms

against propagation of errors.

Self Acceptance Test

In the application of the FCC software, magnitude limiters and rate limiters
were required to limit the output and output changes of the landing command,
in order to prevent unbounded values or any dramatic changes. These limiters
were designecll not only from the physical requirements (e.g., pitch degrees
must be between +/- 15 degrees), but also from certain safety considerations.
This introduces the possibility of incorporating the acceptance test idea of the
Recovery Block approach [Rand75] into MVS systems, and thus each version

could disqualify itself in order to ensure early treatment of errors [Kell82].

Internal Redundancies

Internal redundancies are very important if only one software version is relied
on to produce results. In the application of RSDIMU, eight linear
accelerometers were used for the inertial measurement to decide the movement
vector of an airplane, while only three accelerometers would suffice to make
the required computation. Redundancies are used for fault detection, error
isolation, and more precise computation. The MVS approach combined with
such features provides multi-level redundancies in protecting highly-critical

software systems.

107

(4) System Monitoring
System monitoring is usually achieved by using independent subsystems. In
single-version software environment, a monitoring subsystem could be very
complicated. In MVS environment, however, such a subsystem could easily
be designed and provided. In RSDIMU, while used in a single-version
environment, the monitoring function (which declared the error of one
accelerometer, or the failure of the whole system) was provided by using the
complicate redundant information of the accelerometers. In FCC, designed as
a 3-channel system, the monitoring function was merely a simple
combinatorial logic circuit, and it could detect a single failure twice. These
applications indicate that the existence of an MVS facilitates the requirement

of system monitoring.

5.9 A Comparison of Three Recent Experiments

Tables 15, 16, and 17 compare among three recent MVS experiments,
including the Knight and Leveson study (experiment A) [Knig86], NASA
investigation (experiment B) [Kell88], and Honeywell/lUCLA project (experiment C)
[Aviz88b]. We focus our attention on the methodology of developing MVS each of

these experiments has applied, since it displays the rigor of MVS development and

execution that each experiment employed.

108

category experiment A | experiment B | experiment C

specification size 6 pages 64 pages 64 pages

lines of code 327-1004 1600-4800 1253-2234

of programs 27 20 6

duration one Quarter one Summer one Summer
(10 weeks) (12 weeks)

members per team 1 2 2

programmers’ reward |i class grade full RA pay full RA pay

Table 15: A Comparison of Three Experiments — The Scale

From Table 15 we can see that experiment A was of rather small scale, since
the specification was 6 pages long and could be programmed in 327 lines of code.
The scale of both experiments B and C, with 64 pages of specification and at least
over one thousand lines of code, were significantly larger. experiment A was a class
project during one Quarter term. Motivated by wanting to pass the class, each student
carried out his program alone. On the contrary, programmers in experiments B and C
worked in two-member teams and were paid a full-time research assistant (RA) salary

during a class-free period (in summer).

Regarding the software development concerns (see Table 16), there was no
industrial involvement (except description of the application) in experiment A. There
were infrequent contacts with industrial consultants for the application in experiment
B, while there were frequent technical meetings and communications with Honeywell
in experiment C. The diversity required in experiment A and B was programmers’
locality. Team separation was enforced in experiment C and the extra diversity
investigated in experiment C was several high order programming languages. The

team coordination, team synchronization, and software engineering practices were not

109

category experiment A experiment B experiment C
industrial involvement none weak srong

of involved academia || 2 4 1

programming Pascal Pascal Ada, C, Modula-2
languages Pascal, Prolog, T
team coordination none weak strong

team synchronization none loosely controlled | tightly controlled
software engineering none incomplete complete
practices

team separation effort no yes yes
communication poorly defined | well defined, well defined,
protocol poorly executed well executed

Table 16; A Comparison — MVS Software Development Procedure

employed in experiment A. They were of concern but caused difficulties in
experiment B, and were systematically and successfully treated in experiment C.
There was no communication protocol for the programmers in experiment A, and
programmer separation was not emphasized. The communication protocols for
experiment B and C were well defined, but it was inadequately executed in

experiment B.

For the testing and processing of the MVS systems (shown in Table 17), the
failure detection granulity for experiment A was coarse since it used one Boolean
variable to represent 241 Boolean conditions for a "missile launching decision.”
Experiments B and C both incorporated real number comparisons for inexact
matching with specified tolerances. Error detection and recovery mechanisms were
missing in experiment A, while the cross-check points and recovery points for
experiments B and C were specified. The recovery point in experiment B was injected

after the software generation, however. Both experiment A and B did not apply high

110

category experiment A | experiment B experiment C
testing granularity coarse fine fine
error detection no yes yes
€ITOr TECOVErY none post-injected pre-designed
testing schemes acceptance acceptance phased test:

test only test only unit, integration,

and acceptance test

of test cases before || 15 runs 4 runs 2290 runs
acceptance test
of test cases 200 runs 75 runs 18440 runs

for acceptance test

testing discipline one-at-a-time, | one-at-a-time, open loop execution
random random + closed loop flight
executions executions simulation
required deliverables || only one several, several,
poorly recorded | well recorded
project delays no yes no

Table 17: A Comparison — Testing and Processing of MVS Systems

testing before program acceptance, whereas experiment C employed three testing
phases by different testing criteria (open loop testing, close loop flight simulation)
with a reasonable amount of meaningful test data. There was only one required
deliverable in experiment A: the final code. There were several required deliverables
in experiments B and C, but they were inadequately recorded in experiment B.
Lastly, both experiments A and C were continuously conducted and completed on
time; however, the original acceptance test of experiment B was judged inadequate
during its software generation, which caused overhead in its software certification and

delayed the project.

111

The comparison of the results in experiment A and experiment C (the final
results of experiment B are unavailable due to the delays in certification) also shows
major disagreements. Unlike experiment C [Aviz88b], experiment A [Knig86] found
a number of faults in the program versions after their acceptance, and according to
their definition of "coincident errors,” a significant number of such errors were
identified. We have reviewed experiment A and find reasons that may account for this
outcome: the small scale of that experiment (Table 15), lack of MVS software
development disciplines (Table 16), and inappropriate as well as inadequate testing
and processing of MVS systems (Table 17). It is our conjecture that a rigorous
application of the des.ign paradigm, as described in this thesis, would have led to the
elimination of most faults described in experiment A [Knig86] before acceptance of

the programs.

5.10 Refinements of the Design Paradigm

In the UCLA/Honeywell project, thus far we have found only two pairs of
identical faults that caused similar errors. Both pairs of faults were caused by readily
avoidable procedural deficiencies. In the first case, a handwritten comma was misread
as a period because of excessive reduction of the size of a diagram. In the other case,
two teams failed to respond properly to a broadcast clarification of an ambiguity in the
specification. This pair of faults could be avoided by requiring a positive
acknowledgment that the clarification had been understood and accounted for. Asa

consequence, several important points have been observed in refining the design

paradigm:

1) Educating and requiring programmers to obey MVS design rules

112

2)

3

4)

As has been pointed out earlier, certain peculiar mistakes have been committed
by the programmers due to disobeying the MVS design rules. The Type 3
structural faults are due to disregard of clearly stated multi-version software
design rules. They are potentially identical and therefore dangerous. This is

also true of the Type 2 underground variable fault (see Section 5.3.2).

Designing special cases for recovery

To guarantee that recovery routines function properly, special test cases could
be designed beforehand to certify their effectiveness. In any case, a strict
verification process must be a part of the acceptance test to ensure that MVS

design rules are followed.

Acknowledging each broadcast message and verifying each update message

Ignorance of a specification update message is a potential commonality for
related faults, thus should be carefully prevented. Such incidence could be
caused by overlooking the message, or even loss of a broadcast message.
Under this circumstance, each broadcast message during the software
development phase should have acknowledgement from each programming
team, and each specification update message should be confirmed by a
mandatory code update report for the corresponding changes in the code.
Special mechanisms, e.g., program testing or code inspection, could also be

applied to verify the completion of the update message.

Prototyping the system prior to the sofiware generation phase

System prototyping has been accepted as an important approach in evaluating
a large software system before its deployment. Many insights can be gained
when a compact prototype system is built and exercised. Additionally, the

main purposes of a fast prototyping of the system are to clean up the

113

specifications, and to clarify how the recovery mechanisms are to work. Both
specifications and recovery mechanisms have been proved to be key issues for

the effectiveness of MVS systems.

114

CHAPTER 6
CONCLUSIONS AND FUTURE WORK

6.1 Original Contributions of This Research

In summary, the major contributions of this research include the following

activities:

1. An MVS design paradigm has been formulated, applied, and evaluated. Its

practicality and effectiveness are elaborated in the following sections.

2. The design paradigm has been used during the entire life-cycle of the
UCLA/Honeywell experiment. This experiment served to execute and
evaluate the proposed paradigm. With some refinements, the design paradigm

has been demonstrated to be effective in MVS development.

3. The experiment has been the first to apply six high-level programming
languages to a real-world critical software application. The use of different
programming languages has supported effective inter-team isolation, since
different support environments were used. It has also promoted the

appearance of diversity in versions that began with a common specification.

115

6.2 Practicality of the Proposed Design Paradigm

The proposed design paradigm for MVS design and development, which
integrates software engineering discipline and fault tolerance system design paradigm,
is simple and efficient. It explores and supports design diversity to its full extent, and
prevents commonalities that could produce related software faults. This design
paradigm has been successfully applied in conducting the UCLA/Honeywell
experiment. Overall, the UCLA paradigm for systematic generation of multi-version
software is judged to be sufficiently complete and stable for application to industrial

environment.

6.3 Effectiveness of the Design Paradigm

The effectiveness of the design paradigm is shown by the experimental result
that identical faults in two versions have occurred very rarely. In the experiment, only
one identical pair existed in the 82 faults removed from the six versions before
acceptance, and it was due t0 a comma being misread as a period. During post-
acceptance testing and inspection, eleven faults were uncovered. One pair again was
identical, and this fault was due to failure to properly incorporate a clarification to a
specification ambiguity. Identical faults involving more than two versions have never
been observed. This is very different from previously published results by Knight and
Leveson [Knig86]. Upon reviewing that reference, we conclude that there are several
significant differences: the previous problem had limited potential for diversity, the
programming process was rather informally formulated, testing was limited, and the
acceptance test was totally inadequate according to industrial standards that we have
followed. It is clear that the dcsign paradigm would be efficient to eliminate the

design defects in that experiment.

116

6.4 Future Research Issues in MVS

Several research issues have been brought to consideration for the MVS
technique in achieving efficient fault-tolerant software. These topics are discussed

one by one in the following sub-sections.

6.4.1 Identify and Avoid Commonalities

Related design faults existing in the major population of the software versions
are the Achilles heels of the MVS techniques. To rule out these faults, all possible
commonalities that have the potential to create them should be identified and avoided.
Identification and prevention of the common links of design faults is very important,
since programmers should have few chances to make identical design faults if no
design commonalities exist. Moreover, observable dissimilarities among program
versions could serve as reasonable evidence for the certification of a software product,
especially when the justification of its reliability requirement is impossible to

demonstrate experimentally (e.g., 107 failure rate).

6.4.2 Maeasure and Promote Design Diversity

In the UCLA/Honeywell project, we observed that the order of computations
that was implied by the specification had a strong influence on the programmers’
choice, even if other alternatives existed. This is especially true of graphical
specifications used in this effort. Test points given in the specification also tend to
limit diversity. There is a need to develop effective means to minimize these

diversity-limiting factors.

117

Improving design diversity from other dimensions should also be considered.
A tentative classification of possible diversification means is in Figure 6-1. Design
diversity could be achieved either by randomness or by enforcement. The "random"
diversity, such as that provided by independent personnel, leaves the dissimilarity to
be generated in an uncontrolled manner. The enforced diversity, on the other hand,
investigates different aspects in several dimensions, and deliberately requires them to

be implemented into different program versions.

In any case, quantitative evaluations of design diversity have proven to be very
important. Investigation of branch coverage testing [Adri82, Prat83, Swai86] might
be an intriguing approach in demonstrating the assurance of diversity, and giving

guidance for the enforcement of this attribute in each program.

6.4.3 Developing Support Tools and Techniques

Different support tools and techniques could be investigated for the MVS

development. They include:
. Specification

Although writing of the original English specification was carefully conducted
by the UCLA coordinating team and H/S avionics and software specialists, it
was found to contain errors and ambiguities. The original specification was
improved, according to the feedback from the programmers and preliminary
testing results obtained in the validation phase. This indicates that English

specifications are inherently ambiguous and error-prone.

118

Hardware

— Different microprocessors
— One more microprocessor in the control channel
— Two different types of computer

Project organization

— Different Software Design Teams
(One in Los Angeles, one in Toulouse, and one in Tokyo)
— Two test sets designed by two different teams
— Different optimization goals: Timing performance vs program size
— Validation oriented vs. testing oriented

Inherent differences

— Hardware differences
— Some functions are required in only one channel
— Different input
— Different necessary precision
12 bits for the control
8 bits for the monitoring
— Function in the control channel, inverse function in the monitoring
channel

Forced differences

— Different languages
— PASCAL vs ASSEMBLER
- PLM vs ASSEMBLER
— Division of the instruction into two subsets

— Different automatic programming tools

— Different software specifications

- Different algorithms

— Different flowcharts

— A function can be tabulated or calculated

— Interrupts allowed in only one channel

~ Trigonometric functions (polar coordinate vs Cartesian)

Figure 6-1: Classification of Design Diversity

119

Specifications need to be as complete as possible; however, providing too
much information may tend to limit diversity. In order to encourage design
diversity, concentrated effort should be devoted to reduce the specifications as
much as possible to address "what should be done” and remove "how it is
done.” To provide accurate problem specifications, formal specification
methods [Gogu79, Gutt83, Kemm85, Zave86], especially executable
specifications [Berl87], should play an important role in the future

development of MVS systems.
Facilitate software development tools

A full complement of development tools was used (e.g. csh script, vi and
emacs editors, makefile facility, rcs revision control, etc.) in the project. The

following tools could be further investigated:

Branch coverage testing tool — to provide branch coverage analysis of each

program and adjust the quality of the test data [Swai86].

Statistics collector — to gather the pertinent data in order to make adaptations

to the testing process.

Software reliability measurer — to monitor the operational performance of
software and to control new features added and design changes made to

the software.

Diversity measurer — to reveal diversification of different pieces of software
during program generation. This is considered a very difficult tool to

build.

120

6.4.4

Supervisors

DEDIX was designed to supervise and observe the execution of multiple
diverse versions functioning as a fault-tolerant MVS system [Aviz88c].
However, the system (implemented in the C programming language) does not
support the execution of programming languages other than C and Pascal.
Modification of DEDIX was necessary in order to provide the interface for
object oriented languages (e.g., Ada, Modula-2). Moreover, some
fundamental problems would have to be resolved in order for DEDIX to
support the execution of applicative languages (e.g., Prolog, Lisp) running on

interpreters.

Exploiting the Presence of Multiple Versions for V&V

In both the NASA/Four-University Experiment and the UCLA/Honeywell

Experiment, the majority results of existing multiple versions are conjectured to be

more reliable than those of a "gold" model or version (usually provided by an

application expert). This is true during most of the later stages in the software life

cycle, including the testing phase and the operational phase. Running back-to-back

comparison and cross-checking of MVS system is a simple testing configuration;

moreover, the criteria for correct results are easily determined by applying a tight

skew for allowable numerical discrepancy. Therefore, the V&V process, a process

that is usually very complex and costly, would be much easier to achieve by using the

existence of multiple versions. This argument has been recently supported in

[Knig88].

121

Another strong reason of using MVS for verification and validation is to
provide protective redundancy around specification misinterpretations and
ambiguities. Any single version approach gets a single interpretation of the
specification, no matter how carefully a development procedure is followed.
Especially when the software development group is small, everyone can share a
misunderstanding. MVS approaches force the specifications to be assessed from
independent observations and viewpoints, and any inconsistency and incorrectness
between the specifications and the V&V process should be uncovered more

effectively and thoroughly.

6.4.5 Cost-Effectiveness Measurement and Assessment

Another dimension of evaluation of a system is in cost investigations. The
generation of multiple versions of a given program instead of a single version results
in an immediate increase in the cost of software prior to the verification and validation
phase. The question is whether the subsequent cost can be reduced because of the
ability to employ two or more versions to attain mutual validation under testing and
operational conditions. Cost advantages may accrue because of 1) the faster
operational deployment of new software; and 2) replacement of costly verification and
validation tools and operations by a generic MVS environment in which the versions
validate each other. However, cost of modifications and maintenances of MVS

systems is also significant.

In summary, successful completion of the design of an MVS system requires a
convincing verification of two properties: the completeness of the design and its
potential to meet the stated goals of availability, reliability, maintainability, and

safety. The verification therefore must consist of the application of two distinct

122

evaluations: first qualitative, then quantitative. The qualitative evaluation requires
realistic assumptions to prevent unjustified simplifications, while quantitative
evaluation requires system reliability models. Both these two factors need to be

formally established and validated.

6.4.6 Incorporating Security Concerns into the Design Paradigm

Several issues involving fault tolerance and computer security have been
recently addressed [Tum86]. These include the methods to make the security
mechanisms employed provide proper service in the presence of faults, and the impact
on security when complex fault tolerance mechanisms are added to a computing
system. Moreover, faults deliberately designed and hidden in the complexity of the
system’s software or hardware, with the intent to cause loss or harm to the system,
(e.g., malicious logic: Trojan horses, trap doors, and computer viruses) are an
important issue. The introduction of MVS techniques as an approach in treating
malicious logic has been explored in [Jose88]. We believe that computer security
considerations could be incorporated into our design paradigm for a unified and
general treatment of MVS systems that provide both fault tolerance and security

attributes.

123

{Adri82]

fAndeg35]

[Ande81]

[Arla79]

[Aviz67]

[Aviz72]

[Aviz75]

[Aviz77]

[Aviz78]

REFERENCES

W.R. Adrion, M.A. Branstad, and J.C. Chemiavsky, ‘‘Validation,
Verification, and Testing of Computer Software,”” ACM
Computing Surveys, Vol. 14, No. 2, June 1982, pp. 159-192,

T. Anderson, P.A. Barrett, D.N. Halliwell, and M.R. Moulding,
“‘Software Fault Tolerance: An Evaluation,”” IEEE Transactions
on Software Engineering, Vol. SE-11, No. 12, December 1985,
pp. 1502-1510.

H. Andersson and G. Hagelin, ‘*‘Computer Controlled Interlocking
System,’” Ericsson Signal Systems, Stockholm, Sweden, Tech.
Rep. 2, 1981.

1. Arlat, Design of a Microcomputer Tolerating Faults Through
Functional Diversity, Toulouse, France: National Polytechnic
Institute, 1979.

A. Avizienis, ‘“‘Design of Fault-Tolerant Computers,”
Proceedings AFIPS Conference, 1967 Fall Joint Computer
Conference, 1967, pp. 733-743.

A. AviZienis, ‘‘The Methodology of Fault-Tolerant Computing,’’
in Proceedings The 1st USA-Japan Computer Conference, Tokyo,
Japan: October 1972, pp. 405-413.

A. AvizZienis, ‘‘Fault-Tolerance and Fault-Intolerance:
Complementary Approaches to Reliable = Computing,”
Proceedings 1975 International Conference on Reliable Software,
April 21-23, 1975, pp. 450-464.

A. Avi¥ienis and L. Chen, ‘‘On the Implementation of N-Version
Programming for Software Fault-Tolerance during Program
Execution,”’ in Proceedings COMPSAC 77, 1977, pp. 149-155.

A. AviZienis, ‘‘Fault-Tolerance: The Survival Attribute of Digital

Systems,”’ Proceedings of the IEEE, Vol. 66, No. 10, October
1978, pp. 1109-1125.

124

[Aviz82]

[Aviz84]

[Aviz85a]

[Aviz85b]

[Aviz85c]

[Aviz86]

[Aviz87a]

[Aviz87b]}

[Aviz8Tc]

[Aviz88a]

A. Avitienis, ‘“‘Design Diversity - The Challenge for the
Eighties,”” Digest of 12th Annual International Symposium on
Fault-Tolerant Computing, June 1982, pp. 44-45.

A. AviZienis and J.P.J. Kelly, ‘‘Fault-Tolerance by Design
Diversity: Concepts and Experiments,”” Computer, Vol. 17, No. 8,
August 1984, pp. 67-80.

A. AviZenis, P. Gunningberg, J.P.J. Kelly, L. Strigini, P.J.
Traverse, K.S. Tso, and U. Voges, ‘‘The UCLA DEDIX System:
A Distributed Testbed for Multiple-Version Software,”” Digest of
15th Annual International Symposium on Fault-Tolerant
Computing, June 1985, pp. 126-134.

A. AviZienis, ‘‘The N-Version Approach to Fault-Tolerant
Software,”’ JEEE Transactions on Software Engineering, Vol.
SE-11, No. 12, December 1985, pp. 1491-1501.

A. AviZienis, P. Gunningberg, J.P.J. Kelly, R.T. Lyu, L. Strigini,
P.J. Traverse, K.S. Tso, and U. Voges, ‘‘Software Fault-Tolerance
by Design Diversity; DEDIX: A Tool for Experiments,”’
Proceedings IFAC Workshop SAFECOMP’85, October 1985, pp.
173-178.

A. AviZienis and J.-C. Laprie, ‘‘Dependable Computing: From
Concepts to Design Diversity,”’ Proceedings of the IEEE, Vol. 74,
No. 5, May 1986, pp. 629-638.

A. Avi¥ienis, ‘‘A Design Paradigm for Fault-Tolerant Systems,’’
Proceedings AIAA Computers in Aerospace VI Conference,
October 1987, pp. 52-57.

A. AviZienis, M. R. Lyu, and W. Schiitz, ‘‘In Search of Effective
Diversity: A Six-Language Study of Fault-Tolerant Flight Control
Software,”” UCLA Computer Science Department, Los Angeles,
California, Tech. Rep. CSD-870060, November 1987.

A. AviZienis, M. R. Lyu, W. Schiitz, K. Tso, and U. Voges,
“DEDIX 87 - A Supervisory System for Design Diversity
Experiments at UCLA,”’ Computer Science Department, UCLA,
Los Angeles, California, Tech. Rep. CSD-870029, July 1987.

A. AviZienis, M. R. Lyu, and W. Schiitz, ‘‘Multi-Version
Software Development: A UCLA/Honeywell Joint Project for
Fault-Tolerant Flight Control Software,’” Los Angeles, California,
Tech. Rep. CSD-880034, May 1988.

125

[Cain75]

[Chen78a]

{Chen78b]

{Corp85]

[Cost78]

[Cost81]

[Duga81]

[Duga86]

[Dyer88]

[Gmei79]

S.H. Caine and EXK. Gordon, ‘*‘PDL - A Tool for Software
Design,”” Proceedings National Computer Conference, 1975.

L. Chen and A. AviZienis, ‘‘N-Version Programming: A Fault-
Tolerance Approach to Reliability of Software Operation,” Digest
of 8th Annual International Symposium on Fault-Tolerant
Computing, June 1978, pp. 3-9.

L. Chen, ‘“‘Improving Software Reliability by N-Version
Programming,”” Ph.D. Dissertation, UCLA Computer Science
Department, Los Angeles, California, Tech. Rep. ENG-7843,
August 1978.

S. G. Corps, ‘‘A320 Flight Controls,”” in Proceedings The 29th

Symposium of the Society of Experimental Test Pilots, September
1985.

A. Costes, C. Landrault, and J.C. Laprie, ‘‘Reliability and
Availability Models for Maintained Systems Featuring Hardware
Failures and Design Faults,”’ /EEE Transactions on Computers,
Vol. C-27, No. 6, June 1978, pp. 548-560.

A. Costes, J.E. Doucet, C. Landrault, and J.C. Laprie, ‘“‘SURF: A
Program for Dependability Evaluation of Complex Fault-Tolerant
Computing Systems,”” in Digest of 11th Annual International
Symposium on Fault-Tolerant Computing, Portland, Maine: June
1981, pp. 72-78.

J. B. Dugan and D. J. Martin, “‘Dissimilar Redundancy for Fly-
by-wire Secondary Flight Controls,”’ in Proceedings Advanced
Flight Controls Symposium, Colorado Springs, Colorado: 1981.

J. B. Dugan, K. S. Trivedi, M. K. Smotherman, and R. M. Geist,
““The Hybrid Automated Reliability Predictor,’’ in AJAA Journal
of Guidance, Control and Dynamics, May-June 1986, pp. 319-
331.

M. Dyer, “‘Certifying the Reliability of Software,”” in
Proceedings Annual National Joint Conference on Software
Quality and Reliabiliry, Arlington, Virginia: March 1-3 1988,

L. Gmeiner and U. Voges, ‘‘Software Diversity in Reactor
Protection Systems: An Experiment,”” Proceedings IFAC
Workshop SAFECOMP’ 79, May 1979, pp. 75-79.

127

[Gogu79]

[Goya86]

[Gutt83]

[Hage88]

[Hil183]

[Hil185]

[Howd§2]

[Jose88]

[Kell82]

[Kell83]

JA. Goguen and JJ. Tardo, ‘‘An Introduction to OBJ: A
Language for Writing and Testing Formal Algebraic Program
Specifications,”” in Proceedings Specifications Reliable Software
Technology, Cambridge, Mass.: 1979, pp. 170-189.

A. Goyal, W. C. Carter, E. de Souza e Silva, S. S. Lavenberg, and
K. S. Trivedi, ‘‘The System Availability Estimator,”’ Proceedings
16th Annual International Symposium on Fault Tolerant
Computing, July 1-3, 1986.

J.V. Guttag and J.J. Homning, ‘“‘An Introduction to the Larch
Shared Language,” in Proceedings IFIP Congress 83, 1983, pp.
809-814.

G. Hagelin, “‘ERICSSON Safety System for Railway Control,’” in
Software Diversity in Computerized Control Systems, U. Voges,
Ed. Austria: Springer-Verlag/Wien, 1988, pp. 11-21.

A.D. Hills, ““A310 Slat and Flap Control System Management &
Experience,”” in Proceedings Fifth Digital Avionics Systems
Conference, Seattle, WA: November 1983, pp. 6.7.1-6.7.7.

A.D. Hills, “‘Digital Fly-By-Wire Experience,”’ Proceedings
AGARD Lecture Series, No. 143, October 1985.

W.E. Howden, ‘““Weak Mutation Testing and Completeness of
Test Sets,”” IEEE Transactions on Software Engineering, Vol.
SES, No. 4, July 1982, pp. 371-379.

M. K. Joseph, ‘“‘Architectural Issues in Fault-Tolerant, Secure
Computing Systems,”’ Ph. D. Dissertation, UCLA Computer
Science Department, Los Angeles, California, May 1988.

JPJ. Kelly, “‘Specification of Fault-Tolerant Multi-Version
Software: Experimental Studies of a Design Diversity Approach,”
Ph.D. Dissertation, UCLA Computer Science Department, Los
Angeles, California, Tech. Rep. CSD-820927, September 1982.

JP.J. Kelly and A. AviZienis, ‘‘A Specification Oriented Multi-
Version Software Experiment,”” Digest of 13th Annual

International Symposium on Fault-Tolerant Computing, June
1983, pp. 121-126.

128

[Kell86]

(Kellg88]

[Kemm85]

[Knig86]

[Knig88]

[Laprg4]

[Li87]

[Litt80]

[Maka82]

[Mart82]

I.P.J. Kelly, A. AviZienis, B.T. Ulery, B.J. Swain, R.T. Lyu, A.T.
Tai, and K.S. Tso, ‘‘Multi-Version Software Development,’
Proceedings IFAC Workshop SAFECOMP'86, October 1986, pp.
43-49,

J. P. J. Kelly, D. E. Eckhardt, A. Caglavan, J. C. Knight, D. F.
McAllister, and M. A. Vouk, ‘A Large Scale Second Generation
Experiment in Multi-Version Software: Description and Early
Results,”” Proceedings The Eighteenth International Symposium
on Fault-Tolerant Computing, June 27-30, 1988.

R. A. Kemmerer, ‘‘Testing Formal Specifications to Detect
Design Errors,”” IEEF Transactions on Software Engineering,
Vol. SE-11, January 1985, pp. 32-43.

J.C. Knight and N.G. Leveson, ‘‘An Experimental Evalvuation of
the Assumption of Independence in Multiversion Programming,’’
IEEE Transactions on Software Engineering, Vol. SE-12, No. 1,
January 1986, pp. 96-109.

J. C. Knight, ““Using Muliiple Version for Verification,”’ in
Proceedings Annual National Joint Conference on Software
Quality and Reliability, Arlington, Virginia: March 1988.

J.-C. Laprie, ‘‘Dependability Evaluation of Software Systems in
Operation,”’ IEEE Transactions on Software Engineering, Vol.
SE-10, No. 6, November 1984, pp. 701-714.

H. F. Li and W. K. Cheung, ‘‘An Empirical Study of Software
Metrics,”” IEEE Transactions on Software Engineering, Vol. SE-
13, No. 6, June 1987, pp. 697-708.

B. Littlewood, ‘‘Theories of Software Reliability: How Good Are
They and How Can They Be Improved?,”” IEEE Transactions on
Software Engineering, September 1980, pp. 489-500.

S.V. Makam and A. AviZienis, ‘‘ARIES 81: A Reliability and
Life-Cycle Evaluation Tool for Fault- Tolerant Systems,”’ Digest
of 12th Annual International Symposium on Fault-Tolerant
Computing, June 1982, pp. 267-274.

D.J. Martin, “‘Dissimilar Software in High Integrity Applications

in Flight Controls,”’ in Proceedings AGARD-CPP-330, September
1982, pp. 36.1-36.13.

129

[Musa87]

{Prat83]

{Ramag1]

[Rama82]

[Rand75}

[Renn84]

fRouq86!

[RTCASBS]

[Sahn86]}

[Schu87]

J. D. Musa, A. [annino, and K. Okumoto, Software Reliability —~
Measurement, Prediction, Application, New York, New York:
McGraw-Hill Book Company, 1987.

R. E. Prather, ‘‘Theory of Program Testing — An Overview,’’ The
Bell System Technical Journal, Vol. 62, No. 10, Part 2, December
1983, pp. 3073-3105.

C.V. Ramamoorthy, Y. Mok, F. Bastani, G. Chin, and K. Suzuki,
‘““Application of a Methodology for the Development and
Validaton of Reliable Process Control Software,’’ IFEEE
Transactions on Software Engineering, Vol. SE-7, No. 6,
November 1981, pp. 537-555.

C.V. Ramamoorthy and F.B. Bastani, ‘‘Software Reliability -
Status and Perspective,”” IEEE Transactions on Software
Engineering, Vol. SE8, No. 4, July 1982, pp. 334-370.

B. Randel], ‘“System Structure for Software Fault Tolerance,”
IEEE Transactions on Software Engineering, Vol. SE-1, No. 2,
June 19735, pp. 220-232,

D.A. Rennels, ‘‘Fault-Tolerant Computing -- Concepts and
Examples,”’ IEEE Transactions on Computers, Vol. C-33, No. 12,
December 1984, pp. 1116-1129.

J. C. Rouquet and P. J. Traverse, ‘‘Safe and Reliable Computing
on Board the Airbus and ATR Aitrcraft,”’ Proceedings
SAFECOMP ’ 86, October 1986, pp. 93-97.

RTCA, Radio Technical Commission for Aeronautics, ‘‘Software
Considerations in Airborne Systems and Equipment
Certification,”” Washington, D.C., Tech. Rep. DO-178A, March
1985. Order from: RTCA Secretariat, One McPherson Square,
1425 K Street, N.W., Suite 500, Washington, DC 20005.

R. A. Sahner and K. S. Trivedi, ‘‘A Hierarchical, Combinatorial-
Markov Method for Solving Complex Reliability Models,”” in
Proceedings ACM/IEEE Fall Joint Computer Conference, Dallas
Texas: November 1986.

W. Schutz, ‘‘Diversity in N-Version Software: An Analysis of Six

Programs,”” Master Thesis, UCLA Computer Science Department,
Los Angeles, California, November 1987.

130

[Sedm78]

[Siew84]

[Stif79]

{Swai86}

[Tai86]

[Tami84]

[Tayl81]

[Trav88]

[Trea82]

[Tso87a)

[Tso87b)

R. M. Sedmak and H. L. Liebergot, ‘‘Fault-Tolerance of a General
Purpose Computer Implemented by Very Large Scale
Integration,”” Proceedings 8th International Symposium on
Fault-Tolerant Computing, June 1978, pp. 137-143.

D.P. Siewiorek, ‘‘Architecture of Fault-Tolerant Computers,”
Computer, Vol. 17, No. 8, August 1984, pp. 9-18.

J. J. Stiffler, ““CARE III Final Report, Phase I, Vol. I and I1,”
Raytheon Co., California, November 1979.

B.J. Swain, ‘“Group Branch Coverage Testing of Multi-Version
Software,”” Master Thesis, UCLA Computer Science Department,
Los Angeles, California, Tech. Rep. CSD-860013, December
1986.

A. T. Tai, ““A Study of the Application of Formal Specification
for Fault-Tolerant Software,”’ Master Thesis, UCLA Computer
Science Department, Los Angeles, California, June 1986.

Y. Tamir and C. H. Sequin, ‘‘Reducing Common Mode Failures
in Duplicate Modules,”’ in Proceedings International Conference
on Computer Design: VLSI in Computers ICCD’ 84, Port Chester,
New York: October 1984, pp. 302-307.

R. Taylor, ‘‘Redundant Programming in Europe,”” ACM SIGSOFT
Software Engineering Notes, Vol. 6, No. 1, January 1981.

P. Traverse, ““AIRBUS and ATR System Architecture and
Specification,”” in Software Diversity in Computerized Control
Systems, U. Voges, Ed. Austria: Springer-Verlag/Wien, 1988, pp.
95-104.

J. J. Treacy, ‘‘Certification of Digital Avionics: A Review of
Recent FAA Experience,’’ in Aerospace Congress and Exposition,
Anaheim, California: October 1982, pp. 3-7.

K.S. Tso, ‘‘Error Recovery in Multi-Version Software,”’ Ph.D.
Dissertation, UCLA Computer Science Department, Los Angeles,
Califomnia, Tech. Rep. CSD-870013, March, 1987.

K.S. Tso and A. AviZienis, ‘‘Community Error Recovery in N-
Version Software: A Design Study with Experimentation,”’ Digest
of 17th Annual International Symposium on Fault-Tolerant
Computing, July 1987, pp. 127-133.

131

[Turn86]

[Voge85]

[Voge88]

[Will83]

[Wrig86]

[Youn84]

[Youn85a]

[Youn85b]

[Youn86]

[Zave86]

R. Turn and J. Habibi, ‘‘On the Interactions of Security and Fault
Tolerance,”” Proceedings 9th National Computer Security
Conference, September 1986, pp. 138-142.

U. Voges, ‘‘Application of a Fault-Tolerant Microprocessor-
Based Core-Surveillance System in a German Fast Breeder
Reactor,”” EPRI-Conference, April 9-12 1985.

U. Voges, ‘“Use of Diversity in Experimental Reactor Safety
Systems,”” in Software Diversity in Computerized Control
Systems, U. Voges, Ed. Austria: Springer-Verlag/Wien, 1988, pp.
29-49,

J. F. Williams, L. J. Yount, and J. B. Flannigan, ‘‘Advanced
Autopilot Flight Director System Computer Architecture for
Boeing 737-300 Aircraft,”” in Proceedings Fifth Digital Avionics
Systems Conference, Seattle, WA: November 1983.

N. C. J. Wright, “‘Dissimilar Software,”” in Proceedings Design
Diversity in Action Workshop, Baden, Austria: June 1986.

L.J. Yount, *‘Architectural Solutions to Safety Problems of Digital
Flight-Critical Systems for Commercial Transports,”’ Proceedings
AIAA/IEEE Digital Avionics Systems Conference and Technical
Display, December 1984, pp. 1-8.

L. J. Yount, K. A. Liebel, and B. H. Hill, *‘Fault Effect Protection
and Partitioning for Fly-by-Wire and Fly-by-Light Avionics
Systems,’’ in Proceedings AIAA/IACM/NASA/IEEE Computers in
Aerospace V Conference, Long Beach, California: October 1985,
pp. 275-284.

L. J. Yount, ‘‘Generic Fault-Tolerance Techniques for Critical
Avionics Systems,”” in Proceedings AIAA Guidance and Control
Conference, Snowmass, Colorado: June 1985.

L. J. Yount, ‘“Use of Diversity in Boeing Airplanes,’”” in
Proceedings Workshop of Design Diversity in Action, Baden,
Austria: June 27-28 1986.

P. Zave and W. Schell, ‘‘Salient Features of an Executable
Specification Language and Its Environment,”’ IEEE Transaction
on Software Engineering, Vol. SE-12, No. 2, February 1986, pp.
312-325.

132

[Zieg841 B. Ziegler and M. Durandeau, ‘‘Flight Control System on Modem
Civil Aircraft,”” in Proceedings International Council of the
Aeronautical Sciences (ICAS’84), Toulouse, France: September
1984,

133

APPENDIX 1

Summary of All Faults Found during Testing and Evaluation

With the help of the change documentation submitted by each team at the end
of each test phase (Coding and Unit Test, Integration Test, and Acceptance Test), the
following summary of faults was produced. Changes that were not made due to a fault

are ignored.

Starting with a particular id, each fault is described, the location and the type
of the fault is given (e.g. typo, omission, unnecessary, incorrect algorithm,
specification misinterpretation/ambiguity etc.), and the method of detection is
mentioned, followed by special remarks, if any. Reference to the corresponding
Design Walkthrough Report(s) (DWR) and/or Code Update Report(s) (CUR) is given.
Finally, a classification of the fault into requirements or structural fault (unintended

function) is attempted.

1.1 ADA Version

1.1.1 Faults detected during Coding and Unit Test

al. Some unnecessary statements in the initialization of the Inner Loop (CUR #1)

Type: unnecessary. Detected by: reading the code

134

Classification: structural fault

a2. Wrong constant (wrong place of the decimal point) for the upper limit in the

declaration of an integrator in the specification part of the Complementary

Filter Module (CUR #3)

Type: typo / spec misinterpretation { due to poor readability. Detected by: test
data data.2, data.13

Classification: requirements fault

The other changes were due to floating point representation problems (CUR

#2), compiler peculiarities (CUR #4), and a specification update (CUR #5).

L1.2 Faults detected during Integration Test

al. There were some unnecessary local variables in the main program which
interfered with global (imported) variables (CUR #6).
Type: incorrect algorithm. Detected by: test data data.l

Classification: requirements fault

ad. Two initialization statements were omitted when initializing the Glide Slope
Complementary Filter (CUR #8).
Type: incorrect algorithm (due to lack of communication with team mate).
Detected by: test data data.2

Classification: requirements fault

135

The other changes were due to a specification update (CUR #7) and to adjust

to the C interface (CUR #9).
1.1.3 Faults detected during Acceptance Test

as. In the outer loop of the Flare Control Law, some test points which are not used
in Flare Mode were not reset to the specified default value (CUR #10).
Type: omission. Detected by: test data data.2

Classification: requirements fault

a6. A new version of the Mode Logic was written because a numeric error
exception resulted from execution (CUR #11).
Type: incorrect algorithm. Detected by: test data data.2

Classification: requirements fault
L1.4 Faults detected after Acceptance Test
No faults were detected.
L2 C Version

1.2.1 Faults detected during Coding and Unit Test

cl. A wrong constant was used in the Mode Logic (CUR #4).
Type: specification misinterpretation (due to poor readability of Fig. 4.2).
Detected by: reading the code

Classification: requirements fault

136

c2. OR-gates in Mode Logic were implemented wrong (CUR #5).
Type: incorrect algorithm. Detected by: team’s own test data

Classification: requirements fault

c3. In the Inner Loop, another state variable for the determination of the condition
for switch SW2 was added (CUR #9).
Type: incorrect algorithm. Detected by: test data data.18.
Classification: requirements fault
Note: As it was detected during operational testing, this change resulted in an

incorrect algorithm.

c4. Part of the Outer Loop of the Flare Control Law was not implemented -
correctly (% was used instead of —2\%%) (CUR #10).

Type: incorrect algorithm. Detected by: reading the code and the coordinators’
test data.

Classification: requirements fault

The other changes were made in order to confirm to the C interface (CUR #1),
to obtain a clear structure of the program (CUR #2, 3), or were due to a specification

update (CUR #6, 7, 8).
1.2.2 Faults detected during Integration Test

c5. In the Outer Loop of the Glide Slope Control Law, a comparison statement of

“time >= 0.5" had to be changed to "time > 0.45", due to the lack of infinite

137

cb.

c7.

c8.

c9.

precision in real number representation (CUR #11).
Type: due to peculiarities of real number representation. Detected by: test data
data.l

Classification: structural fault of the C compiler

In the Inner Loop, initialization of the integrator I1 was not done upon the
transition from Altitude Hold to Glide Slope Track Mode (CUR #12).
Type: incorrect algorithm (due to specification ambiguity). Detected by: test

data data.2

Classification: requirements fault

In the Inner Loop, the state of the rate limiters LR1 and LR2 was not saved ;
correctly (CUR #13, 14).
Type: incorrect algorithm (count as only one fault here) Detected by: test data

data.2

Classification: requirements fault

In the main program, the test points of the Outer Loops were not properly reset

to the specified default value (CUR #135).

~ Type: omission. Detected by: test data data.l

Classification: requirements fault

In the Mode Logic, the values FPEC1 and FPDC1 were not reset to zero when

not in Altitude Hold mode (CUR #16).

| Type: spec misinterpretation or ambiguity. Detected by: test data data.l

138

Classification: requirements fault

I.2.3 Faults detected during Acceptance Test

cl0. Some functions used in the Outer Loop of the Flare Control Law were not
declared to return double precision values (CUR #17).
Type: omission. Detected by: test data data.2

Classification: requirements fault

cll. The constant K3 of the Glide Slope Complementary Filter was computed

incorrectly while in Altitude Hold mode. It was assumed that the factor

200
RAGSF

is always limited to 5—15- minimum, but this applies during Glide ;
Slope Capture and Track modes only (CUR #18).
Type: spec misinterpretation. Detected by: test data data.1

Classification: requirements fault

cl2. In the Mode Logic, a wrong variable was used in an expression (CUR #19).
Type: typo. Detected by: test data data.8

Classification: requirements fault

¢13. In the main program, all thé parameters of the routine "VOTESTATES" were
forgotten (CUR #20).
Type: omission. Detected by: test data data.2

Classification: requirements fault

139

L.2.4 Faults detected after Acceptance Test

cl4. In the Inner Loop, initialization of integrator I1 should be in the beginning of
the module (CUR #21).
Type: incorrect algorithm. Detected by: flight simulation test data.

Classification: requirements fault

¢l5. Introduction of an underground variable "rr_old” which made the internal
states inconsistent {CUR #22).
Type: specification ambiguity. Detected by: flight simulation test data.
Classification: structure fault (which happened to be detected by requirements

test)

cl6. LR1 and LR2 of the Inner Loop should be initialized only once upon entering
AHD mode instead of every mode change (CUR #23, #24 and #25).
Type: incorrect algorithm. Detected by: flight simulation test data.

Classification: requirements fauit

cl7. Using +/- 99999.0 instead of +/- o= in the Inner Loop and the Command
Monitor.
Type: incorrect algor'xthm-. Detected by: code inspection.

Classification: structure fault

c18. Output of Mode Logic was used in some further computations before it was

voted upon.

140

Type: incorrect algorithm. Detected by: code inspection.

Classification: structure fault

I.3 MODULA-2 Version

1.3.1 Faults detected during Coding and Unit Test

ml.

m3.

m4.

"2%i" as index to an array did not work; "i+i" had to be used instead (CUR #3).
Type: compiler fault Detected by: team’s own test data

Classification: structural fault of the compiler

In the Barometric Altitude Complementary Filter, the wrong constant (wrong
position of the decimal point) was used for the upper limit of the output of :
integrator I3 (CUR #4). |

Type: typo / spec misinterpretation / due to poor readability. Detected by: test
data data.2, data.13

Classification: requirements fault

Note: same as ADA team!

A wrong computation sequence was used in the Glide Slope Complementary

“ Filter: The constants KO0, K2, and K3 were computed without first computing

the value of the variable RAGSF (DWR #18; CUR #5).
Type: incorrect algorithm. Detected by: test data data.1

Classification: requirements fault

The Signal Display Algorithm (procedure todigit) could not handle a boundary

141

case (DWR #21; CUR #9).
Type: incorrect algorithm, partly due to language peculiarities (floating point
operations for LONGREAL variables). Detected by: test data sig_words

Classification: requirements fault

The other changes were due to specification updates (DWR #17; CUR #2, 6)
and to compiler peculiarities (too many LONGREAL parameters in a procedure call —
DWR #19, 20; CUR #7, 8 — and too complicated an expression in a RETURN

statement — CUR #1).

1.3.2 Faults detected during Integration Test

o

No faults were detected.

Changes were made because of an specification update (DWR #22; CUR #10),
and the interface to "VOTESTATES" had to be changed because the compiler could

not handle so many parameters (see above) (CUR #11, 12).
1.3.3 Faults detected during Acceptance Test
. No faults were detected.

1.3.4 Faults detected after Acceptance Test

mS. Output of Mode Logic was used in some further computations before it was
voted upon.

Type: incorrect algorithm. Detected by: code inspection.

142

Classification: structure fault

L4 PASCAL Version

L.4.1 Faults detected during Coding and Unit Test

pl.

p3.

p4.

The Signal Display did not round correctly (DWR #32, CUR #1).
Type: incorrect algorithm. Detected by: reading the code

Classification: requirements fault

A wrong constant was used in the Fault-word Display (CUR #2).
Type: incorrect algorithm. Detected by: test data fault_words

Classification: requirements fault

In the Signal Display, zero was displayed as "+.00000" instead of as ".00000"
(CUR #3).
Type: spec misinterpretation / incorrect algorithm. Detected by: test data
sig_words

Classification: requirements fault

The constants of the Glide Slope Complementary Filter were not computed

correctly in all system modes (CUR #4).
Type: spec misinterpretation. Detected by: test data data.18

Classification: requirements fault

The output of integrator I8 in the Glide Slope Complementary Filter was not

143

initialized correctly (CUR #5, 6).
Type: spec misinterpretation. Detected by: test data data.11

Classification: requirements fault

p6. The initialization of the variable HREF in the Quter Loop of the Altitude Hold
Control Law was incorrect (CUR #7, 8§, 10).
Type: incorrect algorithm. Detected by: reading the code

Classification: requirements fault

p7. The initialization of Inner Loop variables was incorrect (CUR #9).
Type: incorrect algorithm. Detected by: reading the code

Classification: requirements fault

p8. Logic Fault in the evaluation of the condition for switch SW2 in the Inner
Loop (DWR #36; CUR #19).
Type: incorrect algorithm. Detected by: test data data.20

Classification: requirements fault

p9. In the Outer Loop of the Flare Control Law, the function F4 was evaluated
incorrectly (wrong setting of parenthesis) (DWR #34; CUR #13).
Type: typo / spec nﬁsintex:pfctation. Detected by: test data data.11

Classification: requirements fault

pl0. Redundant computation of test point 7 in the Inner Loop (DWR #37;, CUR

#20).

144

Type: unnecessary. Detected by: test data data.20

Classification: requirements fault

Other changes were made in response to specification updates in the Mode
Logic (CUR #11, 21), to aid in debugging (CUR #14 - 16, 18), and to remove a

compiler warning message (CUR #12, 17).
1.4.2 Faults detected during Integration Test

pll. The variable RAGSF in the Glide Slope Complementary Filter was not
initialized correctly (CUR #26, 27).
Type: incorrect algorithm. Detected by: test data data.1

Classification: requirements fault

pl2. The integration of the integrator I8 in the Glide Slope Complementary Filter
was not performed during the very first computation frame (CUR #26).
Type: incorrect algorithm. Detected by: test data data.1

Classification: requirements fault

Other changes were made to be compatible with the C interface and to remove

debugﬁing facilities introduced before Unit testing.
1.4.3 Faults detected during Acceptance Test
No faults were detected; some changes were made for the sake of

compatibility with the C interface.

145

1.4.4 Faults detected after Acceptance Test

No faults were detected.

1.5 PROLOG Version

L.5.1 Faults detected during Coding and Unit Test

pgl.

pg2.

pg3.

pe4.

The names of some Mode Logic variables (Fig. 4.2) conflicted with variable
names in the Flare Control Law (DWR #24),
Type: incorrect algorithm. Detected during coding

Classification: requirements fault

i
3

In the Inner Loop, the variable names THETA_C and THCI were confused
(DWR #29; CUR #15).
Type: incorrect algorithm. Detected during coding

Classification: requirements fault

Integrator I8 in the Glide Slope Complementary Filter was not initialized
correctly (DWR #30; CUR #7).

Type: incorrect algorithm / spec misinterpretation. Detected by: test data

filter.gs/data.9

Classification: requirements fault

A comma was misplaced in the Barometric Altitude Complementary Filter

(CUR #2).

146

pgs.

pgs.

pg7.

pg8.

pgo.

Type: typo. Detected during coding

Classification: requirements fault

Initialization of the Inner Loop was forgotten in the main program (DWR
#32).
Type: omission. Detected during coding

Classification: requirements fault

The order of parameters in the definition of the integrator function was
inconsistent with its use (CUR #3).
Type: typo / incorrect algorithm. Detected by: test data filter.ba/data.1

Classification: requirements fault

The order of parameters in the definition of the linear-filter function was
inconsistent with its use (CUR #5).
Type: typo / incorrect algorithm, Detected by: test data filter.ba/data. 1

Classification: requirements fault

A wrong global variable was used in the Glide Slope Complementary Filter

(CUR # 8).

Type: typo. Detected by: test data filter.gs/data.9

Classification: requirements fault

The constant K3 in the Glide Slope Complementary Filter was computed

incorrectly (wrong magnitude limitation when not in Glide Slope Capture or

147

Track modes) (CUR #9).
Type: incorrect algorithm. Detected by: test data filter.gs/data.18

Classification: requirements fault

pgl0. In the main program, the initialization of the variable "first_ahd" was forgotten
(CUR #11).
Type: omission. Detected by: team’s own test data

Classification: requirements fault

pgll. Missing declaration of THETA_C as a global variable (CUR #14).
Type: omission. Detected by: reading the code

Classification: structural fault

pgl2. In the Inner Loop, a wrong algorithm was used (CUR #16).
Type: typo / incorrect algorithm. Detected by: test data inner/data.6

Classification: requirements fault

pgl3. In the Inner Loop, SU4 and LM1 are computed twice, but no new variable
names were used for the second computation (CUR #17).
Type: omission, due to language peculiarities (one cannot reassign a value to a
" bound variable). Detected by: test data inner/data.6

Classification: structural fault due to the language

pgl4. Wrong constants were used in the Quter Loop of the Flare Control Law (CUR

#49).

148

Type: typo (readability problems). Detected by: coordinators’ test data

Classification: requirements fault

pgl5. The value of SIGIN was not input to the Display procedure, to determine
which signal should be displayed (CUR #54).
Type: omission. Detected by: coordinators’ test data

Classification: requirements fault

The other changes were due to specification updates (DWR #23; CUR #53),
efforts to increase the efficiency (DWR #25, 27, 28; CUR #1, 4, 6, 51), were made to
add debugging facilities (CUR #10, 12, 13, 18), and to add an "absolute value” routine

to the Prolog interpreter (CUR #58).

CUR #55 is questionable: it seems that this update was actually not done

{comparison with code).

1.5.2 Faults detected during Integration Test

pgl6. Wrong initialization of Filter F10 in the Glide Slope Complementary Filter
(DWR #34, 35; CUR #19, 20, 33, 34, 35).
" Type: typo / incorrect algorithm. Detected by: test data data.1

Classification: requirements fault (count as only one fault)

pgl7. A wrong function name was used in the definition of "do_ahd" (main program)

(CUR #23).

Type: typo

149

pgl8.

pgl9.

pg20.

pg2l.

Classification: requirements fault

Incorrect organization of the command monitors (global variables) (CUR #24).
Type: incorrect algorithm. Detected by: reading the code

Classification: requirements fault

Syntax error in a comment in the main program (CUR #28).
Type: typo. Detected by: Prolog interpreter

Classification: requirements fault

Inconsistencies between the global database and the Barometric Altitude
Complementary Filter, the Radic Altitude Complementary Filter, the Inner :
Loop, and the routine "VOTESTATES". Also, a "'retract" statement was
forgotten in the initialization of the Barometric Altitude Complementary Filter
(CUR #29, 30, 37, 44).

Type: omission. Detected by: reading the code

Classification: structural fault

A state variable of the Glide Slope Complementary Filter was not entered into

the global database (CUR #31, 32).

pg22.

Type: omission, Detected by: reading the code

Classification: structural fault

A wrong variable name was used in the "VOTEFILTER2" function in the

interface (CUR #39).

150

Type: typo.

Classification: requirements fault

The other changes were due to adding/deleting debugging facilities (CUR #21,
22, 25, 26, 38, 42), to efforts to increase efficiency and/or clarity (CUR # 27, 43, 56,
58), to numerical difficulties (CUR #36), and to the installation of the Display
procedure in the Prolog interpreter (CUR #40, 41). CUR #33, 34 are duplications of

CUR #19, 20, respectively.

L5.3 Faults detected during Acceptance Test

pg23. Fault in "do_gscf" function: VOTEFILTER2 must be called for every frame ;
computation (DWR #33; CUR #47).
Type: incorrect algorithm. Detected by: test data data.4

Classification: requirements fault

pg24. The condition for initializing the Outer Loop of the Flare Control Law was
wrong (CUR #45).
Type: incorrect algorithm. Detected by: test data data.2

_ Classification: requirements fault

pg25. The function name "set_gsp” was misspelled in the main program (CUR #46).
Type: typo. Detected by: reading the code

Classification: requirements fault

pg26. In the definition of "callVotestates” for the C interface, new variable names

151

had to be introduced for the return values (CUR #60).
Type: omission, due to language peculiarities {one cannot reassign a value to a
bound variable). Detected by: test data data.8

Classification: structural fault due to the language
1.5.4 Faults detected after Acceptance Test

pg27. A state variable of the Inner Loop was updated twice during one computation
(CUR #61).
Type: specification ambiguity. Detected by: flight simulation test data.

Classification: requirements fault

pg28. Rounding errors in the Display module (CUR #62).
Type: incorrect algorithm. Detected by: code inspection.

Classification: requirements fault

pg29. Output of Mode Logic was used in some further computations before it was
voted upon.
Type: incorrect algorithm. Detected by: code inspection.

Classification: structure fault
L6 T Version

L6.1 Faults detected during Coding and Unit Test

ti. No magnitude limitation was performed on the output of integrator I2 in the

152

t3.

t4.

Barometric Altitude Complementary Filter (CUR #1).
Type: omission. Detected by: test data data.11

Classification: requirements fault

The output of integrator 12 in the Barometric Altitude Complementary Filter
was initialized by zero, instead of by HR (DWR #10; CUR #2).
Type: omission. Detected by: test data data.13

Classification: requirements fault

The output of integrator I8 in the Glide Slope Deviation Complementary Filter
was initialized by zero, but it should be initialized by the current value of the
output variable GSEL (DWR #8, 9; CUR #3).

Type: The team claimed the fault was due to a spec ambiguity, but we feel that _
it could be a spec misinterpretation or a oversight.

Classification: requirements fault

Several changes in the Mode Logic (CUR #5).
Type: wrong algorithm, typos, omissions. Detected by: test data data.1, data.6

Classification: requirements fault

In all the Complcrncmary. Fﬂtem, the variables of the current computation state
were initialized, instead of the variables of the previous computation state
(CUR #6).

Type: incorrect algorithm. Detected by: test data data.1

Classification: requirements fault

153

t6. Incorrect computation of the output of the Command Monitor, "smaller” and
"smaller or equal” was confused (CUR #7).
Type: incorrect algorithm. Detected by: reading the code

Classification: requirements fault

t7. Incorrect rounding in the Signal Display function (CUR #8).
Type: incorrect algorithm. Detected by: test data

Classification: requirements fault

Other changes were due to specification updates concemning the Mode Logic

(DWR #11; CUR #4).
1.6.2 Faults detected during Integration Test

t8. In the Inner Loop, the rate limiters and switch SW2 were implemented
incorrectly (CUR #9).
Type: incorrect algorithm. Detected by: test data data.l

Classification: requirements fault

9. The global variable definitions in the main program were incomplete (CUR
“#11). Type: omission. Detected by: reading the code

Classification: requirements fault

t10. The overall organization of the initialization (main program, Mode Logic) had
to be fixed, so that all functions would get properly initialized. Originally, a

flag indicating a mode change was erroneously reset by the Mode Logic (CUR

154

t1l.

#13, 14).
Type: incorrect algorithm. Detected by: reading the code

Classification: requirements fault

The arguments standing for global variables were deleted from the functions
VOTEMODE and VOTEFILTER1. Only test point variables are passed as
arguments (CUR #15, 16).

Type: unnecessary code. Detected by: reading the code

Classification: structural fault

The other changes were made to add comments, and to correct the interface

between C and T (CUR #10). To make the program more clear, arguments were

hiatd

explicitly added to the VOTEFILTER2 function (CUR #12) — this could also indicate v

a fault, however,

1.6.3 Faults detected during Acceptance Test

t12.

t13.

In the VOTESTATES function, some variables were omitted from the format

statements, and some variables were not assigned their value as returned by

_ VOTESTATES (CUR #19, 20).

Type: omission. Detected by: reading the code, test data data.7

Classification: requirements fault

In the VOTESTATES function, some wrong variable names were used when

assigning the return value (CUR #21).

155

Type: typo, incorrect algorithm, due to inconsistent naming conventions
among team mates. Detected by: test data data.7

Classification: requirements fault

tl4. The transition from Glide Slope Capture to Glide Slope Track mode was
considered a mode change requiring reinitialization of the Inner Loop (CUR
#22).
Type: incorrect algorithm. Detected by: test data data.3

Classification: requirements fault

t15. In the interface to the C routines, the parameters of VOTESTATES were
called by value instead of by reference (CUR #23).
Type: omission, incorrect algorithm. Detected by: test data data.7

Classification: requirements fault

t16. The current value of RAE was used in function F3 in the Flare Quter Loop,
instead of the value of RAE at Flare initiate (CUR #24).
Type: incorrect algorithm, possibly caused by typo or omission. Detected by:
test data data.2

™ Classification: requirements fault

t17. A parameter was omitted in the definition of VOTEOUTER (CUR #25).
Type: omission. Detected by: test data data.2

Classification: requirements fault

156

t18. A global variable was initialized twice in the Main Program (CUR #27).
Type: unnecessary statement. Detected by: code reading

Classification: structural fault (but did not cause any error)

t19. The routine LANEINPUT, the Command Monitors, and the Display are not
called when the mode is Touchdown.
Type: incorrect algorithm. Detected by: code reading

Classification: requirements fault

t20. The Command Monitors are re-initialized at every mode change.
Type: incorrect algorithm. Detected by: code reading

Classification: requirements fault

t21. The rate limiters LR1 and LR2 in the Inner Loop are re-initialized at every
mode change.
Type: incorrect algorithm. Detected by: code reading

Classification: requirements fault

1.6.4 Faults detected after Acceptance Test

22. - A state variable of the Inner Loop was updated twice during one corﬁputan'on
(CUR #28).
Type: specification ambiguity. Detected by: flight simulation test data.
Classification: requirements fault

Note: same as PROLOG team!

157

23, Output of Mode Logic was used in some further computations before it was
voted upon.
Type: incorrect algorithm. Detected by: code inspection.

Classification: structure fault

The other changes were made in order to increase storage efficiency (CUR
#17), to increase the size of the buffer in which arguments are passed from the C
routines to the T functions, just to be on the safe side (CUR #18), and to make the

structure of the Mode Logic more clear (CUR #26).

158

.

