Computer Sclence Department Technical Report
University of California
Los Angeles, CA 90024-1596

BOUNDING AVAILABILITY OF REPAIRABLE

COMPUTER SYSTEMS
R. R. Muntz September 1988
E. de Souza e Silva CSD-880070

A. Goyal

Bounding Availability of
Repairable Computer Systems *

R.R. Muntz t E. de Souza e Silva §
A. Goyal §

1 UCLA Computer Science Department
I Federal University of Rio de Janeiro, NCE
§ IBM T.J. Watson Research Center

February 2, 1989

Abstract
Markov models are widely used for the analysis of availability of computer /communication

systems. Realistic models often involve state space cardinalities that are so large that
it is impractical to generate the transition rate matrix let alone solve for availability
measures. Various state space reduction methods have been developed, particularly
for transient analysis. In this paper we present an approximation technique for deter-
mining steady state availability. Of particular interest is that the method also provides
bounds on the error. Examples are given to illustrate the method.

1 Introduction.

The importance of reliability and availability of computer systems clearly increases with
their use in life critical systems and where system failures can cause significant economic
loss. Analytic methods for dependability analysis of computer systems has been an ac-
tive area of research for some time (e.g., [GEIS85,GOYA86,GR0S84,DeS086b,HEIDSY,
TRIV82]) and a number of tools have been built to aid in the specification of system mod-
els and make the analytic methods more accessible (e.g., [CARR86,COST81,GOYASS5,
MAKA82,TRIV84]). Increased complexity of the target systems and the sophistication
of the reliability and availability measures that are of interest continue to challenge our
ability to analyze these systems.

*The work of R.R. Muntz and E. de Souza e Silva was supported in part by a grant from NSF INT-
8514377, CNPg-Brazil and IBM Brazil.

There are two major categories of dependability measures that are of interest. Transient
measures relate to dependability over a finite period of time, e.g. the duration of a mission.
An example of a transient measure is “mean interval availability” which, for a specified
interval length, would be the mean amount of time the system is operational during the
interval. This type of measure is more appropriate for the analysis of mission oriented
systems, e.g. a space mission. Steady state measures are associated with limiting behavior
and therefore are appropnate for systems with a lifetime that for modeling purposes is
viewed as being infinite. This is particularly appropriate for repairable systems for which
the hifetime of the system is expected to span many failures. We will be concentrating in
this paper on the problem of determining steady state availability.

A number of techniques have been used in dependability analysis including combi-
natorics, Markov or semi-Markov model analysis [TRIV82], and simulation [LEWI84,
CONWST]. Recent work on simulation techniques holds promise for broadening the appli-
cability of this technique [CONWS87]. Continuous time Markov models are still the most
widely used for dependability analysis. This class of models encompasses an extremely
broad range of dependability models. Unfortunately the characteristics of dependability
models (complex interactions between components, multiple repair facilities and schedul-
ing policies, complex criteria for a system to be operational, etc.) preclude the possibility
of closed form solutions in general. Thus numerical solution methods are most widely used.
The most pervasive limitation to the use of numerical solution techniques is the size of the
state space of realistic dependability models. State space cardinalities of real models can
outstrip current memory and processor capabilities by orders of magnitude; i.e. while tens
of thousands of states can be effectively handled, real models often have more than tens of
millions of states. The natural way to deal with this problem is via state space reduction
techniques; the most common of which involve truncation of the state space or aggregation
of states. A major difficulty with these methods (as with many approximation methods)
is providing a bound on the error that is introduced.

This paper presents an approximation method that not only provides the requisite state
space reduction for numerical analysis but also provides error bounds.

The following section provides a more detailed description of the problem domain and
discussion of some of the more closely related previous work on analysis of dependability
models. Section 3 presents the analytic development of the results. In Section 4 we present
several examples to illustrate the application of the results and Section 5 concludes with
a summary and discussion.

2 Problem Definition.

We are interested in continuous time, discrete state, homogeneous Markov processes and in
particular those which represent models for computer/communication systems reliability
analysis. We assume that the Markov processes involved are ergodic. We are not directly
concerned in this paper with the problem of translating a system specification into a state
transition matrix. A number of systems have been built that take a high level system
description and generate the state transition matrix for the underlying Markov process.
Among these are those particularly concerned with reliability modeling [MAKA82 TRIV84,
GOYA86,CARRS86,BERS8T]), as well as those for other application areas such as queueing
networks [IRAN71] and distributed algorithms [PLAT85]. A major limitation of such tools
is the memory and computation requirements as a function of the cardinality of the state
space. In this paper we will often refer to the state transition matrix as though it existed
although our ultimate aim is to obviate the need to generate the entire state transition
rate matrix and thus alleviate this limitation.

For availability analysis the state space & of a Markov model can be assumed to be
partitioned into two sets: the set of operational states @ and the set of failed states F.
The availability .A of the model is defined as:

A= EaEO P(S)

where P(s) is the steady state probability for state s.

Availability is a special case of a measure that can be expressed in terms of the expected
value of a reward function. In general let R[s] be the reward for state s. Then the expected
value of the reward is:

R =Y,es P(s) Rls].

Availability is easily expressed in terms of reward function that is 1 for states in © and
0 otherwise. It will be convenient to use the reward function notion at times.

We present in this paper a method by which the availability can be approximated and
moreover the error introduced by the approximation can be bounded. In addition the
method provides the means for avoiding generation of the entire state transition matrix;
often only a small fraction of the transition rate matrix is required. This method also
provides the flexibility to tradeoff computational resources and error; if one can generate
more of the state transition matrix then better error bounds can be obtained.

A good introduction to recent work in the area of numeric techniques for large de-

pendability models can be found in [TRIV82,GOYA86,GR0OS584,DeS0O86b,HEID87]. These
papers provide discussion of known results on convergence, sensitivity analysis, transient
analysis, etc. Our concern in this paper is limited to a specific problem which has up to
this point defied solution: determining bounds on steady state availability that are “tight”,
computationally feasible and require only a fraction of the state transition rate matrix to
be generated. The literature on availability modeling is useful background to the general
area but is not directly relevant to the technique developed here. More pertinent is the
work on decomposition [COURT77|. We assume that the reader is familiar with the basic
aggregation/disaggregation approximation procedure as described in [COUR77]. We will
also use the fact that exact aggregation is always possible regardless of the form of the
transition rate matrix or the states chosen to aggregate.

In [COURS4] Courtois and Semal showed how to compute bounds on the error intro-
duced by aggregation. Part of their results are repeated in the following section. While
their main concern was to bound individual state probabilities we will be concerned more
with bounds on a global measure, namely availability. Conceptually it is a simple matter
to apply their results to bounding a measure like availability. However there are several
problems with such a direct application of their results. The computation cost of a di-
rect application of the Courtois and Semal results would be prohibitive in many reliability
modeling applications. We leave the detailed justification of this claim to the next section
which describes the problems and our solutions.

In more recent work [COUR86a,COUR86b,SEMAB8T] Courtois and Semal have built
upon the [COURB84| results to show how properties of large Markovian models can be
estimated/bounded without resorting to generation of the entire transition matrix. This
paper is in the same vein as it reports the results of adapting the bounding techniques of
Courtois and Semal to availability modeling.

3 Upper/Lower Bounds on Steady State Availability.

In this section we describe how upper and lower bounds on steady state availability can
be calculated. The method can be used to bound any steady state measure based on
attributing rewards to each state of the Markov chain although the efficacy of the approach
depends on the characteristics of the model.

We start by discussing the intuitive motivation behind the method. As mentioned in
the introduction, continuous time Markov models encompass an extremely broad range
of availability models. Unfortunately, models of real systems can easily require tens of
millions of states. This enormous state size precludes not only the use of numerical solution
methods but even the generation of the Markov chain itself. However if we consider the
common characteristics of these models we find some helpful intuition. Each state of the
Markov chain corresponds to a system state in which some components have failed (and
so, need some form of repair) and others which are operational. Real systems are designed
to have a “high level” of availability, and so it is expected that most of the time the

system operates with the majority of its components operational. This observation simply
indicates that most of the probability mass is concentrated on a relatively small number
of states in comparison to the total number of states in the model. During its lifetime,
the systemn spends most of the time in this relatively small subset and very rarely reaches
other states of the system.

With the above observation in mind, our approach in brief, is to maintain a detailed
description of the system model for those states with few components failed (the most
popular states) and representing the complement of this subset (the remainder of the
system description) in a simplified way. This simplified representation of the complement
is achieved by aggregation of states. As will be shown later, the aggregates and transitions

between aggregates can be chosen such that we can obtain upper and lower bounds for
availability.

3.1 Background.

We will assume in this paper that the model is given in terms of the transition matrix
although the underlying model is a continuous time Markov chain. This causes no loss
of generality since if G is the generator matrix for an ergodic, continuous time Markov
process G, then the equilibrium state probability vector for G is the solution to zG = 0. If
we let M = G/A + I where A is the largest absolute value of any element of G, then z is
the solution to @M = z. Thus there is a simple relationship between the generator matrix
for a continuous time Markov chain and an underlying discrete time process.

Qoo Qun Qo2 ... Qon
Gio @u Q12 ... Ghn

QNN

Figure 1: Transition matrix.

Without loss of generality, we assume that models are described by stochastic matrices.
It is convenient to view the transition matrix as being organized as shown in Figure 1. Each
principal submatrix (Qgo, @11,...Qnn~) corresponds to a particular subset of states. These
subsets of states form a partition P, of the state space. Let F;(P) denote the subset of
states in partition P corresponding to Q. For simplicity of notation we will drop the
dependence on P in the notation F;(P) when the state partition is clear from the context
and refer to the i** partition as F;. To motivate what follows, we first consider the special
case of a partition of cardinality 2 (i.e. N =1 in Figure 1).

[Qoo Qo]
Qi Qu

5

In the context of availability modeling, suppose that Fg corresponds to states that
are most “popular”, i.e. states with relatively few failed components. F; consists of the
remaining states. As argued intuitively above we would like the F; states to account for
almost all of the probability mass but to contain only a small fraction of the total state
space. For the size of models that we will be dealing with (up to approximately 100
components) Fy will contain up to several thousand states while F; can contain millions
of states. The idea is that (13 and Q1o will never actually be generated. Since the matrix
is not actually ever explicitly represented the question naturally arises as to what can be
computed from only a portion of the transition matrix.

One specific question is “What can be said about the equilibrium state probabilities for
the states in Jy given only the submatrix Qg?” Note that Qo is not a stochastic matrix.
The rows of Qgg can be “deficient” since they can sum to something less than 1. Below we
state some results by Courtois and Semal [COURS84] which provides a partial answer.

Theorem 1 Let L be any n X n matriz with L > 0 such that each row sum i3 less than or
equal to 1.

Let (L) = {B|B 1s an n X n irreducible stochastic matriz and B > L}. !

Let L;,0 < i < n —1 be the stochastic matriz equal to L except in the i*h column. L;
is matriz L with elements in the i* column increased as necessary to make the matriz
stochastic.

Let z; = the vector of steady state probabilities corresponding to L;.

Let Vi, = {v|v i3 the vector of steady state probabilities for some B € S(L)}.

Let Zp = {v|3B;,0 < i < n—1 such that ©8; = 1,v = L) Biz} (ie., 21 = is the
convez hull of the Perron vectors of {L;}).

Then VL = ZL.

With respect to a matrix such as Qoo which is a principal submatrix of a larger stochastic
matrix, the theorem has a probabilistic interpretation [COURB86a). Qo plays the role of
the matrix L in the above theorem. Let Fp be the set of states corresponding to Qgq.
Consider that the system starts in a state in Fp and as it evolves, every time the original
system would have made a transition out of F; this is instead made a transition to state
¢ in Fy. For each choice of “return state” i, there is a corresponding matrix L; formed by
incrementing elements of the ¢** column of Qqy. The steady state probability vector of L;
(i.e. z;) is the conditional state probability vector under the assumption that each time
the set of states Fp is reentered, it is via state i. The theorem says that the conditional
state probabilities for states in Fy (denoted vg) are the solution (left eigenvector) of some
member of $(Quo). More importantly to us, the theorem states that given the vectors
2,1 < i < n (corresponding to incrementing the i** column), then v, the conditional state
probability vector, is a linear combination of the z;.

! An expression AOB where A and B are matrices means that corresponding elements in A and B satisfy
the relationship 4.

Let E be the reward vector for the model Q. Let Ro be the portion of R corresponding
to .770 Then ’UQR() is the conditional reward rate, voRo Yiex, P(i1Fo)R;. In other words,
vo Ry is the expected reward per unit time given that the system is in some state of F.

Let vo BBy = Azr,. Then we have the following corollary to Theorem 1 which concerns
the extreme values that the conditional reward rate can achieve given the matrix Qog.

Corollary 1 min,-{z,-fio} < Ag < max.—{z,-ffo}.

Proof
Eﬂ,z, for some ﬂ, >0,T 6 =1.

5o = volto = ¥ Bi(z:Ro) = ¥ Bir; where r; = 2 Ro.
mm,{r,} < Az, <max{r;}. O.

The above theorem and corollary show how bounds on the conditional reward rate
can be calculated. In our case, the reward for a state is either 0 (not operational) or 1

(operational) and Ax, would be the conditional availability given the system is in some
state of Fg.

We need one further result from [COURS4).

Theorem 2 (Ezact Aggregation) Let Q be partitioned as in Figure 1. Consider an N x N
stochastic mairic Qg such that

Qagll,J] = viQus1T (1)

Informally Qag[IJ) is the steady state probability of a transition to a state in aggregate J
(i.e. Fy) given the system is in some state of aggregate I. If X = (X1,X,,...,Xn) i3 the
steady state probability vector for Qag, then X;,1 < i < N 1s the steady state probability of
being in some state of F; in the original model Q.

To apply the above theorem requires that one first obtain all of the conditional state
probabilities. This is not possible with the models we consider due to the cardinality of the
state space. We can however make use of the existence of such an aggregation to explain
our approach.

3.2 Bounds on Mean Availability.

Different partitions or aggregates will be appropriate for different applications. For our
case, we choose to partition the states such that F; will contain all of the states corre-
sponding to exactly ¢ failed components. We will assume that the availability model has
a transition matrix organized as in Figure 1. The principal submatrices correspond to the
partition of the state space as described.

Consider now a (less refined) partition of the state space into two sets: D = UK A,
and R = UN, Fi

Informally, the intention is that the cardinalities of Fo, Fi, ..., Fx_1 are small enough
that it is practical to generate the portion of the transition matrix corresponding to these
states but that adding Fx would exceed resource limitations. In the notation, D stands
for “detailed” which is motivated by the fact that the transitions between these states will
be represented in detail. The R stands for “reduced” since we will be using a reduced
state space representation of these states. (For ease of exposition we assume that we do
not consider “splitting” one of the F; between D and R although this is not a problem).

Let P(D) (P(R)) be the steady state probability that the system is in a state in D
(R). Let Ap (Ag) denote the conditional reward rate given the system is in D (R). Then
we can express the availability A as:

A = P(D)Ap + P(R)Ar (2)
Since a lower bound on Ag is 0 and an upper bound on Ag, is 1 it is easy to see that:

P(D)Ap < A < P(D)Ap + P(R) 3)
Since Ap < 1 and P(R) = 1— P(D) it is easy to see that:

[P(D)]wlds]e < A < [P(D)s[Ad]us + (1 — [P(D)]n) (4)

The subscript “Ib” (“ub”) on a term in the above equation indicates a lower bound (upper
bound) on that term.

Direct application of Theorem 1 and Corollary 1 provides a means of obtaining bounds
on Ap. The problem with this approach is the number of models that have to be solved;
namely, one for each state in D to which there is a non-zero transition from a state in R.
This may be impractical for most applications, since the number of such states may be in
the order of thousands. For example if D consists of the states in partitions Fo,..., Fr_1
then typically there will be non-zero transitions into all of the states of Fx_;. This number
may be very large even for small values of K. In the second example presented in the next
section, with a total of 36 system components and K = 4 (i.e., all states representing up
to 3 failures are generated) then 1,532 (i.e., the cardinality of Fx_;) models would have
to be solved.

There is still the issue of determining a suitable lower bound on P(D). If we had a
lower bound matrix for the aggregate transition matrix then we could apply Theorem 1.
The tightness of this bound is going to be determined by the tightness of the bounds on
the elements of the aggregate transition matrix. The particular properties of availability
models can cause the bounds to be too loose for our purposes. This is discussed briefly in
the next section.

The above discussion indicates that direct application of Theorem 1 is not sufficient
for our problem. The remainder of this section is devoted to showing how these problems
can be overcome in the case of availability modeling.

Consider an exact aggregation of partitions Fx, Fx 41, ..., Fy. (The individual states in
D can each be considered to be a separate aggregate in which it is the only member state.)

8

The matrix @' obtained is illustrated below. In this figure px x ...pn N are each single
transition probabilities corresponding to the aggregate states while the Q;; are matrices.

[Qoo]
QIO Qll
0 Qun
. Qr-1,K-1
0 0 Qrx-1 Prk
0 PK-1,K
) 0 PN-1,N-1
| 0 0 0 pvnN-1 PNN

We note the following properties of this matrix which we will find useful.
(a) The only non-zero transition probabilities to states in D are from aggregate state K.

(b) We assume that there is zero probability of more than one component being repaired
at exactly the same time. (Note that this does not preclude representing multiple
repair facilities or components that are “unusable” due to failure of other compo-
nents. In the latter case, the unusable component should simply not be considered
as “failed” for the purpose of aggregation the states.) This assumption implies that
the transitions between aggregate states are “nearest neighbor” in one direction, i.e.
the transition probability psx is 0 for J < K — 1. Note that this also implies that
the only transitions from aggregate state K to D are to states in Fx_;.

(c) Since we assume that Q' was formed by exact aggregation it follows that the condi-
tional state probabilities for states in D are the same as in the original model and
that P(D) is the same as in the original model. It follows from this observation and
Equation 3 that upper and lower bounds can be obtained by assigning reward 1 or

0 respectively to the aggregate states while maintaining the same rewards for states
i D.

Q' as defined above gives us a “simpler” model to think about but is not a practical
solution to our problem since it requires exact aggregation (which in turn requires too much
computation). The following two lemmas provide part of the basis for computing bounds
on mean availability. The first lemma indicates that the exact transition probabilities from
Fk to D do not have to be known but only the total of all transitions probabilities from Fx
to D. The second lemma shows that the transition rates between aggregates (and between
Fx and D) do not have to be known exactly but rather bounds on these rates can be used.
(The former is a simple application of Theorem 1. The latter is different than the direct
application of Theorem 1 which uses only lower bounds on transition rates. This difference
is vital to the computation of reasonable bounds as is discussed in the next section.)

Lemma 1 Consider a stochastic mairiz of the form Q' as above. Then for each state s,
in Fi_1 to which there is a non-zero transition probabilily from aggregate state Sk, define
the stochastic matriz Q) as being equal to Q' ezcept that:

(a) the only non-zero transition from aggregate Sk to states in Fg_y is to state s,.

(b) the transition probability from aggregate state Sk to s, is equal to the sum of the
transition probabilites from aggregate Sk to states in Fx_; in Q.

Let the rewards for states in D be the same as in the original model.

Let the reward rate conditioned on being in D corresponding to matriz @), be denoted
A(n).

Then the conditional availability of the the original model is bounded by:

min{A(n)} < Ap < max{A(n)} (5)
Proof: This is a straightforward application of Corollary 1.0

The significance of this lemma is that we can (theoretically) determine extreme values
(upper and lower bounds) on the availability conditioned on being in a state of D by solving
each of the @/ models. A major difficulty with actually doing this is that the transition
rates between the aggregate states have not been specified. Obtaining these is not practical
for the sizes of the models we are considering. The following lemma shows that bounds on
the transition rates between aggregate states can be used in the @), matrices rather than
the actual values and that P(D) is minimized (as required in equation(4)).

In the lemma below, for convenience, we use generator matrices instead of stochastic
matrices. Recall that the matrix notation G represents a generator matrix for a continuous
time Markov chain.

Lemma 2 Maximum Holding Time

Consider & Markov process with generator G in which the states are partitioned into
subsets as indicated acbove and states in subset Fy, k > K, are exactly aggregated. Fur-
thermore, the partition into subsets satisfies the “nearest neighbor” requirement. From this
process let us construct ¢ new process with generator G' as shown in Figure 2. In this
figure, the “+” signs indicate that the upper trianguler elements (exzcept rows above the
horizontal line) are replaced by upper bounds and the “—” signs indicate that the transition
rates from aggregate Fi to Fi_, are replaced by lower bounds. Note also that there is only
a single transition from aggregate Fi to a state in Fp. More formally we have:

G'pp = Gpp

G'pr = Gox K<k<N
9er-1 < Grg— K<k<N
9'kp, < 9kD;

9’k = Gkl K<k<I<N

10

[Gopp Gpx Gon |
0 —-...0 ® -+ + +
— e + o+
0 - .+ +
— e 4+

| 0.0 |0 o .

Figure 2: Matrix G”: holding time lemma.

where g (g') is an element of malriz G (G') and the indez D; indicates the i*h state in
subset Fp. Let P(Fp) (P(F'p)) be the steady state probability that the system is in any
state of set Fp (F'p). Then

P(F'p) £ P(F») (6)

Proof:
The proof is in the appendix, O,

The two previous lemmas indicate a method for finding the bounds described in Equa-
tion 4. To summarize, the “recipe” is as follows:

1. Generate the portion of the transition matrix corresponding to transitions between
states in D and from states in D to states in R.

2. Find the upper and lower bounds on the transition rates between aggregate states
as defined in Lemma 2. Normally the minimum repair rate of all components would
suffice for the lower bounds and the sum of all failure rates would suffice for the

upper bounds. (These are the bounds used in our examples discussed in the next
section.)

3. For each state in Fx_; to which there is a non-zero transition rate from Fy, construct
and solve the matrix GJ,. For each such model, find the mean reward assuming first
a reward of 0 for the aggregate states and then a reward of 1 for these states. A
lower bound on the mean availability is the minimum of these values and an upper
bound is the maximum.

The bounding method just described can require a large number of submodels to be
solved and is often impractical. Fortunately, we can transform the original model so that
the number of submodels to be solved can be drastically reduced. First we partition the
states of a Markov chain model into subsets F;, as before and we assume that all states
that will be generated belong to D = {UX5! F}.

Let F' be any integer 0 < F' < K. Now form three sets of states:

11

Go = {Uis)

G = {ULF 7}

G, = {UXk 7}

Figure 3 illustrates the transition matrix G in which G;; is the principal submatrix
corresponding to states in G;. (The submatrix shown as 0 is a consequence of the “nearest
neighbor” property discussed previously.) Now construct a new transition matrix as shown
in Figure 4. It is clear that G’ is a stochastic matrix if G is stochastic. The relationship
between the process defined by G and that defined by G’ is illustrated in Figure 5. Basically,
in the new process there are two sets of states corresponding to the states §; of the
original model. Let us call them G{, and §;; as shown in Figure 4. The idea behind
this transformation can be explained as follows. Assume the system starts in the “all
components up” state, i.e. F5. As components fail and are repaired the system will stay
in states in Gj and], until the first time that there are K or more failed components. At
this point the system is in a state of G}. However when the number of failed components
falls below K, the system now enters a state in Gj;. (Now the notation is explainable;
“u” stands for “going Up” and “d” stands for “going Down”. As the number of failed
components goes up the system visits states in G;, and after K failures have been reached,
it visits the states in G{; as the number of failed components goes down.)

From the construction it is easy to show that the two transition matrices are such that
the steady state probabilities of the original process can be calculated from the steady
state probabilities of the second process. In other words, if {mp, 71, 73] is the solution of
©G = 7 and [7'y, 7'y, 7'1,, 73] is the solution of #'G’ = 7' then: mp = w'y; m = 7'y, + 7'y,;
M = 7'g.

There is a natural mapping of the states in G’ to states in G. In terms of rewards, the
reward function for states in G’ is simply to assign the same reward as the corresponding
state in G. It is clear then that the mean availabilities of the two systems are identical.

Goo Gn Go
Gio Gu Gy
0 Gu G

Figure 3: Matrix G.

Given a model &, the procedure would be to choose a value for F', construct the model
G’ and apply the “recipe” given above. In applying the recipe, the states corresponding to
D (whose detailed transitions are represented) are the states in Gj and G],,. The remainder
of the states correspond to R. As before the states in R are aggregated with each aggregate
containing states with the same number of failed components.

In summary, the sum of the cardinalities of G and G{, (which is also the cardinality
of {Fol...lUFk_1}) determines the size of the matrix used in the calculation and the

12

G Gu| 0 G
Gypo O I Gu Gu
0 0 |Gy Gal

Figure 4: Duplication of states. Matrix G'.

Figure 5: Relationship of G and G'.

cardinality of {FF_,} determines the number of availability values to be calculated for
upper and lower bounds. For example, if we choose F' = 1, since the cardinality of 7 is
one, only one submodel has to be solved. As a consequence, we can trade off computational
complexity with some accuracy of the bound.

In the next section we present two examples which will show the usefulness of the
approach. It is also easy to prove that this “state duplication” procedure although it
reduces computational costs to calculate the bounds on steady state probability, also gives
less tight bounds. (Note that the state probabilities associated with states in ¢, are split
between §], and §!; in G’ and that the states in ¢}, are lumped with the aggregates.)

However, as we will show in the examples, the loss in accuracy is insignificant for typical
availability models.

13

4 Examples.

In this section we present two examples to illustrate our method. The first is a simple
example taken from the SAVE manual [GOYAS87]. (Although the state space of this model
is too small to require the state space reduction technique, it is a simple example that is
easily understood and illustrates the concept.)

Front_end

Proc_1 ' | Proc_2s
R : Mam _1 Mem_2
Switch_1 h' [Switch_2
Proc_1b | ' . Proc_2b
Databass

Figure 6: A fault-tolerant database system.

It is a model of a fault-tolerant database system (see Figure 6). The components of this
system are: a front-end, a database, and two processing subsystems formed by a switch, a
memory and two processors. Components may fail and are repaired according to the rates
given in Table 1. Components are repaired by a single repairman who gives priority to
the front-end and database, followed by the switches and memory units, followed by the
processors. The repairman chooses components with the same priority level at random. As
in the SAVE manual, in this model no unit can fail once the system is down. Furthermore,
if a processor fails it contaminates the database with probability 0.01.

The complete model has 226 states, and the maximum number of concurrent failures
is 7. Solving this model one can obtain : steady state availability = 0.998835336 (unavail-
ability = 0.0011646636).

We can apply our approach to imit the number of states generated and yet obtain
bounds on the result. Table 2 presents the bounds when the states are generated in detail
up to k failures 0 < k < 4, and the other states are aggregated. Furthermore, the detailed
states are duplicated so that only one model is needed to obtain the bounds. We can
observe that the results are accurate to three decimal places for k = 2.

The bottom part of the table also shows the results when we generate detailed transi-
tions of the model between states of up to two failures and duplicate states with two failures

14

Mean Mean
Component Failure Repair

Rate Rate
Database 1/2400 1
Frontend 1/2400 1
Switch 1/2400 1
Memory 1/2400 1
Processor 1/120 1

Table 1: Failure and repair rates (per hour) for the first example.

only. Since there are 8 states with one failure, a search has to be made to determine the
bounds. In this case, 8 models have to be solved. As we observe, the duplication of states
does not significantly enlarge the bounds (only the sixth decimal place is affected), and so
computational savings are obtained in this case without losing much accuracy.

The second example is a model of a distributed architecture for a database system, as
shown in Figure 7.

processars

disk cluster t disk clustar 3 dlsk cluster 4 disk cluster

Figure 7: A distributed architecture for a database system.

In this model there are 2 processor types (A and B), 2 sets of dual ported controllers
with 2 controllers per set and 6 clusters of disks, each consisting of 4 dual ported disks
units. Each set of controllers controls half of the 6 disk clusters. In a disk cluster, data
is replicated so that one disk can fail without affecting the system. (The “primary” data
on a disk is replicated such that one third is on each of the other three disks in the same
cluster. Thus one disk in each cluster can be inaccessible without losing access to the
data.) Each processor is linked to both sets of controllers so that each one has access to

15

Detalled | o ooilability | Unavailability | Numbex
states (upper bound | (lower bound of
up to k lower bound) | upper bound) | states
fallures -
0 1.0 0.0 11
0.963821274 0.0361787261
1 0.999196564 8.03435669e-04 19
0.996639239 0.00336076077
2 0.998845751 0.00115424919 48
0.998763641 0.00123635926
3 0.998835667 0.00116433264 104
0.998834152 0.00116584751
4 0.99883534 0.0011646597 171
0.998835329 0.00116467095
[Bounds when detailed stales
with 1 failure are NOT duplicated
states
fg“;med 0.998845729 | 0.0011542714
failures
0.998764637 0.0012353634

Table 2: Bounds with varying number of states generated. First example.

all data stored in the system. If processor A fails, it has a 0.10 probability of affecting
processor B, There are 3 spare units for each processor. On occurrence of a failure of a
processor, the unit is immediately replaced by a “hot standby” if one is available. Each
unit in the system has two failure modes which occur with equal probability. (The failure
modes model can be used to model hyperexponential repair distribution for a unit since
each failure mode can have a different exponential distribution.) Components may fail
and are repaired according to the rates given in Table 3. The different failure rates for the
controllers and disk units can be motivated as modeling the different usage of the units
according to the type of data stored. (Furthermore, different rates preclude the use of
“lumping techniques” [GOYAS6] for reducing the state space of the model.)

Components are repaired by a single repairman which chooses components at random
from the set of failed units. The system is defined to be operational if all data is accessible
to at least one of the two processors, which means that at least the processors, one controller
in each set and 3 out of 4 disk units in each of the 6 disk clusters are operational. We also
assume that operational components continue to fail at the given rates when the system
is down.

The complete model has approximately 9 x 10'° states, which precludes both its gen-
eration or solution. The maximum number of concurrent failures is 36. However, we may
expect that most of the time the system will be in a small subset of the states of the

16

Mean Mean Mean
Failure Repair Repair
Component Rate Rate: Rate:
mode 1 mode 2
Processors 1/2000 1 1/2
Controller 1 1/2000 1 1/2
Controller 2 1/2000 1 1/2
Disk set 1 1/6000 1 1/2
Disk set 2 1/8000 1 1/2
Disk set 3 1/10000 1 1/2
Disk set 4 1/12000 1 1/2
Disk set 5 1/14000 1 1/2
Disk set 6 1/16000 1 1/2

Table 3: Failure and repair rates (per hour) for the second example.

system, representing operational states and states with a few components failed. Table 4
presents the bounds when the transitions are generated in detail for states up to k failures
0 £k < 3. As in the previous example the detailed states are duplicated so that only one
model is needed to obtain the bounds. The tightness of the bounds is clear.

The bottom part of the table also shows the results when we generate the model up to
three failures and do not duplicate states with one failure. Since there are 20 states with
one failure, a search has to be made to determine the bounds. In this case, 20 models have
to be solved. Again in this example, the duplication of states does not enlarge the bounds,
and so computational savings are obtained without losing much accuracy. Tighter bounds
would be obtained if state duplication is not used, but the number of states to be searched
would be infeasible in this case.

Earlier we indicated that the straight forward use of the results in [COUR84] to de-
termine bounds on the aggregate state probabilities would give less tight bounds than we
obtain via Lemma 2. We have solved models using both methods and verified this claim.
Informally, the bounds computed via Theorem 1 require that one use lower bounds for all
of the transition probabilities between aggregate states. The matrices L; in Theorem 1
correspond to all the possible states to which the “unknown” tramsition probabilities can
be assigned. One such state (column) corresponds to the state with all components failed.
It is intuitively clear that this choice will result in the minimum value for P(D). We have
found that when the repair rates (the largest rates involved) vary much (e.g. by a factor of
5 or 10) then this method can give poor bounds. In contrast the result of Lemma 2 serves
to limit the manner in which the “unknown” transition probabilities can be distributed.

17

States Availability | Unavailability | Numbe
generated (upper bound | (lower bound of
up to k lower bound) | upper bound) | states
failures]
0 1 0 37
0.990027574 0.00997242573
1 1 0 57
0.999660234 0.000339765689
2 0.999996769 3.23132725e-06 267
0.999991011 8.9886018e-06
3 0.999996683 3.31669666e-06 1799
0.999996582 | 3.41823502¢-06

Bounds when detailed stafes with

1 failure are NOT duplicated
states

generated
up to 3
failures

0.999996683 3.31669676e-06

0.999996607 3.39291503e-06

Table 4: Bounds with varying number of states generated. Second example.

5 Conclusions.

We have developed a method for determining bounds on the steady state availability
from the Markov model of a repairable computer system. The results are based on an
adaptation of bounding techniques borrowed from Courtois and Semal. Direct application
of the Courtois/Semal results can be prohibitively expensive for availability models. We
showed that by modification of the original model, bounds can be obtained with much
less cost with minor loosensing of the bounds. On the other hand certain properties of
availability models were used to tighten the bounds (thus confusing the issue). Examples
were given to illustrate the method and the tightness of the bounds that can be expected.

The development in the paper is couched in terms of models of repairable computer
systems and determining bounds on availability. However the methods appear to have
promise in other applications. The important relevent property of availability models is
that the equilibrium state probabilities are concentrated in very few states. It is reasonable
to expect that this same property will hold for example in modeling load balancing. In
this case there is presumably a policy for balancing the load on the resources in the
system. Thus we expect that a large number of possible states of the system will have
“small” equilibrium probability since the scheduler will be biasing the system toward a
small number of preferred states. Research into such applications is ongoing.

Acknowledgement: The authors gratefully acknowledge the help of Steven Berson
in preparing and running the examples,

18

Appendix
Proof of Lemma 2:
For each process, aggregate the states in Fp (F'p). Since there is a “single return”

state in Fp = F'p and G'pp = Gpp, then

ok = gDk k> K

Figure 8 illustrates the state transition diagram for any of the processes.

=0 NS

Figure 8: Transition diagram for the two aggregated processes.

From the flow equations for the process with generator G we have:

_ P(Fk)gk,p
P(F2) = Yok 9Dk M
P(}_k) — i<k P(f:)E,-»gz.j (8)

gk k-1
Equivalent formulas also hold for process with generator G'.

We will show that P(F'p) < P(Fp) by contradiction. Assume that P(F'p) > P(Fp).
From (7)

P(Fx) P(Fp) Ti>k 9Dk

- 9Kk, p ®)
P(F' '
P(f']{) — (f D?q?(::k;}(9ok (10)

Since ¢'p = gpi Yk > K and ¢'i p < gx,p then P(F'k) > P(Fk). From (8) it is easy to
see that P(F'k41) 2> P(Fk41), since

gb,.- = ¢gpy I>K
9k 2 9Kl [>K
g}c..l.K-z < gK-1K-2

Proceeding in this way we can show that

19

P(F)2 P(F) K<k<N.

However, since

P(Fp) + uox P(Fi) =1,

if P(F'p) > P(Fp) and P(F') > P(F) Yk > K,
then P(f!’p) + Ek?_K P(}-’k) >1

which is a contradiction. O

References

[BERS87] S. Berson, E. de Souza e Silva and R.R. Muntz, “An Object Oriented Method-
ology for the Specification of Markov Models”, UCLA Tech. Report CSD-870030,
June 1987 (revised February 1988).

[CARRS6] J.A. Carrasco, J. Figueras, “METFAC: Design and Implementation of a Soft-
ware Toll for Modeling and Evaluation of Complex Fault-Tolerant Computing Sys-
tems,” Proceedings of FTCS-16 pp. 424-429, July 1986

[CONWS8T] A. E. Conway and A. Goyal “Monte Carlo Simulation of Computer System
Availability /Reliability Models”, Proceedings of FTCS-17 1987.

[COST81] A. Costes, J.E. Doucet, C. Landrault, and J.C. Laprie, “SURF: A Program for
Dependability Evaluation of Complex Fault-Tolerant Computing Systems,” Pro-
ceedings of FTCS-11 pp. 72-78, June 1981.

[COURT7] P.-J. Courtois, “Decomposability: Queueing and Computer System Applica-
tion”, New York: Academaic, 1977.

[COURS84] P - J. Courtois and P. Semal, “Bounds for the Positive Eigenvectors of Nonneg-
ative Matrices and for Their Approximations” JACM” vol. 31, No. 4, pp. 804-825,
October 1984,

[COURS86a] P - J. Courtois and P Semal, “Computable Bounds for Conditional Steady-
State Probabilities in Large Markov Chanins and Queueing Models” IEEE JSAC,
vol SAC-4, No. 6, September 1986.

[COURS86D] P.-J. Courtois and P. Semal, “Bounds on Conditional Steady-State Distribu-
tions in Large Markovian and Queueing Models”, Teletraffic Anal. and Computer
Perf. Eval., O.J. Boxma, J.W. Cohen and H.C. Tijms editors, North Holland, 1986.

[DeSO86b] E. de Souza e Silva and H.R. Gail, “Calculating Cumulative Operational Time
Distributions of Repairable Computer Systems”, IEEE-TC vol. C-35, no. 4, pp.
322-332, April 1986.

20

DIMI88] Dragomir D. Dimitrijevic and Mon-Song Chen, “An Integrated Algorithm for
g g & &
Probabilistic Protocol Verification and Evaluation”, IBM Res. Rep. RC 18901
(#62470) 19 p., 8/4/88.

[GEIS85] R. Geist and K. S. Trivedi, “Ultra-High Reliability Prediction for Fault-Tolerant
Computer Systems”, IEEE-TC, C-32, 12, pp. 1118-1127, Dec. 1985.

[GOYAS87] A. Goyal, “System Availability Estimator (SAVE)” IBM Res. Rep. RC 12517
(#56267) 37 p., 2/18/87.

[GOYAS85] A. Goyal, W.C. Carter, E. de Souza e Silva, S.S. Lavenberg and K.S. Trivedi,
“The System Availability Estimator”, Proceedings of FTCS-16, Vienna, pp. 84-89,
July 1986.

[GOYAS86] A. Goyal, S.S. Lavenberg and K.S. Trivedi, “Probabilistic Modeling of Com-
puter System Availability”, Ann. of Oper. Res., vol. 8, pp. 285-306, 1986.

[GROS84] D. Gross and D.R. Miller, “The Randomization Technique as a Modeling Tool
and Solution Procedure for Transient Markov Processes”, Oper. Res., vol.32, no. 2,
Pp.343-361, 1984,

[HEID87} P. Heidelberger and A. Goyal, “Sensitivity Analysis of Continuous Time Markov
Chains Using Uniformization”, Proc. of the 2nd Intl. Workshop on Applied Math.
and Perf./Reliability Models of Computer/Comm. Systems, Rome, Italy, May 1987.

[IRAN71] K.B. Irani and V.L. Wallace, “On Network Linguistics and the Conversational
Design of Queueing Networks,” JACM, vol. 18, no. 4, pp. 616-629, October 1971.

[LEWI84] E. E. Lewis and F. Bohm, “Monte Carlo Simulation of Markov Unreliability
Models”, Nuclear Engineering and Design”, 77, 1, pp.49-62, 1984,

[MAKAS82| S.V. Makam, and A. Avizienis, “ARIES 81: A Reliability and Life-Cycle Eval-
uation Tool for Fault Tolerant Systems,” Proceedings of FTCS-12 pp. 276-274, June
1982,

[PLATS85] B. Plateau, “On the Stochastic Structure of Parallelism and Synchronization
Models for Distributed Algorithms”, Proc. of Sigmetrics Conference, 1985,

[SEMAS8T] P. Semal and P - J. Courtois, “Stability Analysis of Large Markov Chains”,
PERFORMANCE 87, pp.363-382, 1988.

[STEWS83] G. W. Stewart, “Computable Error Bounds for Aggregated Markov Chains”,
JACM, vol. 30, No. 2, pp. 271-285, April 1983.

[TRIV82] K.S. Trivedi, “Probability & Statistics with Reliability, Queuing and Computer
Science Applications”, Prentice Hall, 1982,

21

[TRIV84] K.S. Trivedi, J.B. Dugan, R.R. Geist, and M.K. Smotherman, “Hybrid Reliabil-
ity Modeling of Fault-Tolerant Computer Systems,” Comput. Elec. Eng., Vol. 11,
pp- 87-108 1984.

22

