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ABSTRACT

This report presents and compares four non-Bayesian formalisms for managing uncer-
tainty in reasoning systems: (1) The Dempster-Shafer approach (2) Truth-maintenance systems
(TMS) (3) Incidence Calculus and (4) Nilsson’s Probabilistic Logic. The unifying framework of
this comparison treats each of these formalisms as an attempt to deal with partially specified pro-
babilistic information. The first three approaches are shown to have common semantics; they
are based on the notion of provability as the basic relationship between evidence and conclusion.
The fourth maintains the traditional probabilistic relationships but allows the latter to vary over
‘he space of all models consistent with the specifications available.

Also discussed are: comparisons with Bayes formalism, the nature of probability inter-
‘als, the use of TMS for interval computations, and applications to rule-based systems and de-
i ault reasoning.
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Overview

Pure Bayesian theory requires the specification of a complete probabilistic model before
reasoning can commence, namely, determining for each variable X the conditional probabilities
that govern the values of X, given their causal factors. When a full specification is not available,
Bayes practitioners have devised approximate methods of completing the model, in line with
prevailing patterns of human reasoning. For example, the noisy-OR-gate model of causal in-
teractions represents such a model-completion approximation; if we are given the strength of
each individual cause but not the combined impact of several causes, we assume that they com-
bine disjunctively, and that all exceptions to the rules are independent [Pearl, 1987b]. A more
extreme example of model completion approximation is demonstrated by the Certainty-Factors
formalism, used in the Mycin system {Shortliffe, 1977]. Originally proposed as a departure from
probability theory, this formalism has been shown to be equivalent to a restricted probability
model, one that corresponds to a tree-structured Bayes network (as in [Pearl, 1982]) with infer-
ences restricted to flow from evidence to hypotheses [Heckerman, 1985).

An alternative method of handling partially specified models is provided by the
Dempster-Shafer theory [Shafer, 1976], which is the main topic of this report. Rather than com-
pleting the model, the D-S theory sidesteps the missing specifications and resigns instead, to less
ambitious inference tasks: computing probabilities of provability rather than probabilities of
truths. The partially specified model is used only for extracting qualitative relationships of com-
patibility (or possibility) among the propositions involved, and these qualitative relationships are
then used as a logic for assembling proofs, leading from evidence to conclusions. The stronger
the evidence the more likely it is for a complete proof to be assembled.

The current popularity of the D-S theory stems both from its readiness to admit partially
specified models and its compatibility with the classical, proof-based style of logical inference.
As such, the approach matches the syntax of deductive databases and logic programming but
may inherit many of the problems associated with monotonic logic, some of which are demon-
strated in Sections 1.2, 1.4, 1.5. and 1.6.

Section 2 presents two additional formalisms for dealing with uncertainty: truth-
maintenance systems (Sections 2.1 and 2.2) and Incidence Calculus (Section 2.3). Although in-
dependently developed from different motivations, these two approaches are discussed as
cousins to the Dempster-Shafer theory because, like the latter, they are based on provability as
the basic relationship connecting evidence with a conclusion. Truth maintenance systems pro-
vide a symbolic machinery for identifying the set of assumptions sufficient for assembling the
desired proofs and, hence, when we are given probabilities on these assumptions, the systems
can be used as symbolic engines for computing the belief functions sought by the D-S theory.
Incidence Calculus (Section 1.3) provides a stochastic simulation approach to computing these
belief functions -- subjecting a theorem prover to randomly sampled facts and counting the frac-
tion of time that a proof can be assembled.



Still a third way of dealing with partially specified models is to consider the space of all
models consistent with the specifications available, and compute bounds, instead of point values,
for the probabilities required. Nilsson’s probabilistic logic (Section 3) represents such an ap-
proach. It differs from the D-S approach in that it uses complete probabilistic models to do the

basic inferences, while logical relationships between sentences are used to define the bounds on
the probabilides computed.

1 THE DEMPSTER-SHAFER THEORY

1.1 Basic Concepts

We introduce the Dempster-Shafer (D-S) theory of Belief functions using the classical
3-prisoner puzzle. The story involves three prisoners A, B, and C awaiting their verdict, know-
ing that one of them will be found guilty and the other two released. Prisoner A asks the jailer,
who knows the verdict, to pass a letter to some other prisoner who is to be released. Later, pris-
oner A asks the jailer for the name of the letter recipient and, having learned that the jailer gave
the letter to prisoner B, the problem is to assess the chances of A being the guilty one. The
problem can be formulated in terms of three mutually exclusive and exhaustive propositions
Ga,Gg, and G where G; stands for ‘‘prisoner i was found guilty™’. Coupled with these, we
also have the jailer testimony which could have been either ‘B’ or ‘C’, so, can be treated as a
bi-value variable L (connoting ‘‘letter recipient’’) taking on the values {Lg, L}

In the Bayesian treatment of the problem we make two tacit assumptions. First, we as-
sume that not having any prior knowledge regarding the verdict translates to equal prior proba-
bilities on the component of G ; T(G, ) =®(Gg) =m(Gc) = 14 Second, we assume that, in case
G, was true, the jailer would choose the letter recipient at random, giving equal chance to B and
C. These two assumptions yield the Bayesian network of Figure 1(a), where Figure 1(b) depicts
the link matrix M; ; necessary for full characterization of the information source L. The
answer obtained from this model is P(G, | Lp),= "4 meaning that the jailer testimony is totally
irrelevant relative A ’s prospects of release. In general, if the letter is not handed at random, we
then assume P (Lg | G4) =g, and obtain P (G4 | Lpy=q(1+¢)™" which varies continuously
from O (if B is avoided, g =0) to Y2 (if C is avoided, g = 1).
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Figure 1. (a) A Bayes network representation of the 3-prisoners puzzle
and (b) the conditional-probability matrix characterizing the link G — L

Logically speaking, having no idea about the sentencing process only means that either
one of the prisoners can be the guilty one, i.., none can be ruled out conclusively. Similarly, not
knowing the process by which the letter recipient was chosen, all we can assert with certitude is
that Lg is compatible with both G4 and G and is incompatible with Gp (assuming the jailer is
truthful). Thus, upon obtaining the testimony Lg, the only possible states of affairs are the two
combinations: {(G4,Lg),(Gc,Lg)}; all the others are ruled out. These legal states are called
““extensions’’ in the language of logic, ‘‘solutions’’ in the language of constraint processing
[Montanari, 1974], ‘‘tuples’’ in the language of relational databases, "possibilities” in the
language of Fuzzy Logic [Zadeh, 1981] and ‘‘singleton hypotheses’” in the Dempster-Shafer
theory. The constraints that determine which extensions are legal are called compatibility rela-
tions (e.g., that only one prisoner will be found guilty) and represent items of information that
one is forced to cast in hard, categorical terms, for lack of a more refined model.

Clearly, not having the parameters ®(G;) and P (L; | G;), prevents us from constructing a
complete probabilistic model of the story and prevents us from answering probabilistic queries
of the type: ‘‘How certain is G4 in light of the jailer’s testimony”, previously encoded as
P(G,|Lg). In the partial model available, the probability P (G4 |Lg) could be anything
between zero and one depending on the prior probability . On the other hand, if by certainty
we mean the assurance that G, can be proven true then the certainty of G, is, logically speak-
ing, zero.

The Dempster-Shafer theory stands between these two extremes, claiming that, even in
the logical interpretation of certainty, the assurance of proving a proposition A can take on vari-
ous degrees, depending on the strength of the evidence available, namely, how close it is to in-
ducing ? logical proof of A. This degree of assurance is called ““BELIEF”’, and is denoted by
Bel(A) . In our story, both Bel (G, ) and Bel (-G, ) are zero because, having total ignorance re-

T Bel (A ) is to be distinguished from BEL (A ), which is defined by: BEL (A) APp(A1 all evidence)



garding the trial and verdict process means we have no evidence that is capable of enabling a
logical proof of either G4 or =Gy .

Under what conditions would these beliefs become anything but zero? One obvious con-
dition is when the negation of a proposition becomes incompatible with the evidence. For exam-
ple, since G is incompatible with Lg, we have Bel(—Gg) =1, stating that —Gy is compelled by
the evidence. But the more interesting condition occurs when parrial evidence becomes avail-
able in favor of some propositions. For example, had the jailer said "Gee, I forgot who I gave
the letter to, I bet it was B but I am only 80% sure", we no longer are able to prove —Gp. Yet,
taking the jailer testimony literally, we could say that there is 80% chance that his memory is
correct, compelling the truth of =Gy and, so, Bel(—Gg)=0.8. Similarly, if we have good rea-
son to believe that the testimonies in the trial are equally supportive of each prisoner’s innocence
and that the verdict process would reflect these testimonies fairly, then, and only then, we would
take the liberty of assigning equal weights to the components of G .

Let us first focus on the equal weight case, ignoring for the moment the jailer informa-
tion. The weight distribution process is modeled as a chance event: Imagine a switch that oscil-
lates randomly between three positions G, , G, and G¢ and, in each of these positions assigns
the value frue to the corresponding proposition and to that proposition only (Fig. 2(a)). If we
are asked now about the chance of G, being provable, the answer would be %, because the
switch spends one third of the time in position G4 where G, is fully confirmed. In this portion
of the time the truth of G, is established externally while G and G¢ can be proven false by vir-
tue of being incompatible with G4. Thus, averaging over all three positions of the switch,

Bel(G,)=Bel(Gg)=Bel(Gc)="
and
Bel ("'!GA ) = Bel (_IGB) = Bel (ﬂac) = ‘2/3,

exactly as in the Bayesian treatment.

(a) ®

Figure 2. Random switch model representing: (a) equal prior probabilities, and
(b) an alibi, weakly supporting A ’s innocence.



The departure from Bayes formalism surfaces when we venture to devise more fanciful
mechanisms for the weight-distributing switch so as to form more faithful models of how, ac-
cording to D-S advocates, people encode incomplete knowledge. Assume, for example, that the
evidence gathered during the trial is not available to us in its entirety, but, rather, we have access
to only a small portion of it, containing an alibi weakly supporting prisoner A ’s innocence. As-
sume, further, that the alibi bears exclusively on A’s whereabout at the time of the crime but
bears no direct relationship to B’s or C’s involvement. The D-S theory will model this case by
the switch shown in Fig. 2(b): m percent of the time the switch will force the truth of =G,
while the remaining 1 —m percent of the time it will stay in a ‘‘neutral’’ position, lending sup-
port to no specific hypothesis, or, equivalently, supporting the universal hypothesis
B=G, vGg vGc.

To calculate the belief functions Be! (G, ) and Bel (—~G,) we first identify the positions of
the switch in which G, can be proven true, then calculate the percentage of time spend in these
positions. In the first position, representing the validity of the alibi, the switch forces the truth of
—G,4, while in the neutral position, it is compatible with both G, and ~G, so none can be pro-
ven. Hence, Bel (=G, ) =m and Bel (G, ) = 0. The belief acquired by the other elementary pro-
positions is zero (prior to the jailer’s testimony) because, even in the first position, the switch is
compatible with each of the four propositions: Gg, G¢, ~Gg, —Gc.

The parameter m (A ), measuring the strength of argument in favor of a proposition A, is
called basic probability assignment and the proposition A, upon which the argument bears
directly, is called focal element. If there is only one focal element A then the weight 1 —m(A) is
assigned to the universal proposition  and the belief in any other proposition, B , is given by

{ 1 if B=6
Bel(BY=<m({A) if ADB (1)
0 otherwise

A complex piece of evidence may be represented by a switch with more than two posi-
tions, each position forcing a different constraint on the knowledge base for a certain fraction of
the time. For example, if an evidence was found suggesting that the guilty suspect was left-
handed (with weight m ) and black-haired (with weight m,), and if suspects A and B are left
handed while B and C have black hair, then the constraint G, v Gg will be imposed a fraction
m, of the time, Gg v G¢ a fraction m, of the time, and the rest of the time, 1 -m; —m,, no
external constraint will be imposed.

In general, if there are several focal elements A, the total weight still sums to unity

yYm@A)=1 @
A

and Bel (B ) may be affected by all the A’s, via



Bel(B)= Y m(A) (3)
A:ADB

The summation reflects the fact that if B can be proven from several positions of the switch then
Bel (B), the probability that B is provable, is the total time spent in all those positions.

The measure 1 — Bel (—A ) is called the plausibility of A, denoted
PI(A)=1-Bel(-A), 4)

and represents the probability that A is compatible with the available evidence, i.e., that it can-
not be disproven. In our example, PI(G,)=1—m, while Gz and G¢ have plausibility 1. The
interval

PlI(A)-Bel(A)=1-[Bel(A)+Bel(—-A)]20

represents the probability (fraction of time) that both A and —A are compatible with the avail-
able evidence.



1.2 Comparing Bayes and Dempster-Shafer Formalisms

We see that the D-S theory differs from probability theory in several aspects. First, it ac-
cepts an incomplete ;robabilistic model where some parameters (e.g., the prior or conditional
probabilities) are missing. Second, the probabilistic information that is available, like the
strength of evidence, :s not interpreted as likelihood ratios but rather as random switches that
distribute truth values to various propositions for a certain fraction of the time. This model per-
mits a proposition and its negation to be simultaneously compatible (with the switch) for a cer-
tain portion of the timz, and this may permit the sum of their beliefs to be smaller than unity. Fi-
nally, due to the incompleteness of the model, the D-S theory does not pretend to provide full
answers to probabilistic queries but, rather, resigns to providing partal answers. It estimates
how close the evidence is to forcing the truth of the hypothesis, instead of estimating how close
the hypothesis is to being true.

This last point is the most important departure between the two formalisms and is best il-
lustrated, in the three-prisoner’s puzzle, by trying to incorporate the jailer’s information Lg onto
the equal-weight model m (G, ) =m(Gg) =m(G¢) = s (see Fig. 3).

Lp L¢

Figure 3. The D-S representation of the 3-prisoners story,

incorporating equal prior probabilities and the evidence Lp = true.

Starting with Bel (G, ) = /3, we now ask for the revised value of Bel(G,) given Lg, i.e.,
the proportion of the time that proposition G, is provable, considering all the evidence avail-
able. Clearly, the time spent by the switch in position Gp is incompatible with the evidence Lg,
s0, we exclude this time from the calculation. The remaining % of the time is divided equally
between G, and Gc and, hence, G, is forced to be true with probability Y2, yielding
Bel(G,) = Bel (—G,) =%. By comparison, the Bayesian analysis gives P (G, | Lg) =" for
the random choice model of Figure 1, while for a partial model with unknown P(Lg | Gy), the
posterior probability P (G, | L) may take on any value between {0 and Y2 (See Section 1.1).



This disparity is not surprising in view of the fact that we still have an incomplete proba-
bilistic mode! on our hands, as the process by which B was selected remains unspecified. Con-
servatively speaking, it is quite possible that the jailer’s choice was not random but marred by a
deliberate attempt to avoid choosing C, whenever possible. Under such extreme circumstances,
the jailer’s answer Lg could only be avoided Y of the time (when B is guilty), thus leaving A
and C an equal chance of being the condemned. What may sound somewhat counter-intuitive is
that, from among all possible ways of completing the model, D-S theory appears to select the
one that puzzle books repeatedly wam us to avoid.

Actually the D-S theory never attempts to complete the model and, if such appears to be
the case, it is only an artifact of the procedure. Prior to the jailer’s answer, all four extensions
(G4, Lg), (Ga,Le), (Gg, L), (G, L)} are compatible with the evidence, each of the last two
receiving m = /s while the remaining weight (/) is assigned to the disjunction of the first two,
uncommitted to any one in particular. The facility of keeping some weight uncommitted (often
associated with the notion of postponing judgement) is a distinct feature of the D-S theory and
does not correspond to any probabilistic model. This uncommitted weight gets distributed only
upon receiving the jailer’s answer which, having excluded the extensions (G4, Lc) and
(Gg,Lc), routes all the uncommitted weight (¥5) to the remaining member of the first pair,
(G4, Lg). At this point the resulting weight distribution happens to be totally distributed to the
individual extensions, resembling the weight distribution of complete probabilistic models, but
this is where the resemblance ends.

The disparity between the answers produced by the two formalisms stems not from the
weight distribution but, rather from the sernantics of these answers. While the probabilistic ap-
proach interprets ‘‘belief in A *” to mean the conditional probability that A is true, given the evi-
dence e, the D-S approach calculates the probability that the proposition A becomes provable
given the evidence e. Phrased another way, it computes the probability that some set of hy-
potheses suggested by the evidence would materialize (e.g., that the judges become convinced
by the alibi), from which the truth of A can be derived out of logical necessity. Thus, instead of
the conditional probability P (A |e), the D-S theory computes the probability of the logical en-
tailment e = A . The entailment e = A is not a proposition in the ordinary sense, but a meta level
relationship between e and A, requiring a logical, object-level theory by which a proof from e
to A can be constructed. In the D-S scheme the object level theory consists of categorical com-
patibility relations among the propositions, stating, for example, that Ly is compatible with G,
but incompatible with Gz. Such compatibility relations are the only logical notions that precipi-
tate, once we refrain from committing numbers to certain probabilities. It is remarkable that,
while the calculation of P (A le) and even the probability of the material conditional P (e =>A)
require complete probabilistic models, P (e =A) does not. For example, in the incomplete
model of Figure 3, P (Lg E G,) was calculated to /2 without any assumption on the process by
which the letter recipient was selected; we simply take one minus the (normalized) weight as-
signed to all propositions compatible with both Lp and the negation of G, , namely, one minus
the (normalized) time the switch spends at G¢.

10



At this point, it is natural to ask whether conditional probability information, if available,
can be incorporated in the D-S model, and whether it will lead to the same answer as the Bayes
model. The answer is positive. Instead of dealing with individual variables, we now create the
set of all feasible extensions, and attach to each extension a weight m equal to the appropriate
joint probability dictated by the probabilistic model. To illustrate, if in the 3-prisoners example
we accept the equal prior and random selection models, then the four feasible extensions
{(G4,Lg NGy, Lc )Gy, Lc)(Ge, L)} inidally receive the weights {Vs, Vs, 13, 13} (see Figure
1(b)). This assignment can be modeled by a 4-position switch whose contacts represent exten-
sions rather than atomic propositions. When the evidence e = Lg obtains, it rules out two exten-
sions, (G4, L¢) and (Gg, Lc) and forces the switch to spend ¥ of its tme at (G¢, Lg) and /s of
the time at (G4, Lg). Thus,

g 14

Bel (Gy)= - =" Bel(=Ga) =

=2
15 4 Ye !

as in the Bayes analysis.

We see from this example that any complete probabilistic model can be encoded in the
D-S formalism, albeit in a somewhat clumsy manner. Probabilities are encoded as weights as-
signed to individual extensions, instead of conditional probabilities among propositions.

It is also natural to raise the converse question, can probability theory answer the kind of
queries that the D-S theory does, namely, how close the evidence comes to rendering a proposi-
tion provable? In principle, the answer should be positive, because possessing a complete model
should give one the power to do everything that can be done with a partial model and perhaps
more. Let us examine this point in detail.

Let us assume that we possess the complete probabilistic model specified in Figure 1, in-
cluding the evidence e =Ljp, and we now ask for the probability that G, can be proven true.
Obviously, after calculating P (G, 1Lg) =", the answer ought to be zero; there is no way to
prove a proposition true if that proposition has only %3 probability of being true. Moreover, be-
fore probability theory can answer questions of this sort , the process of proving or disproving
propositions must be integrated as part of the available probabilistic model, else the query is va-
cuous.

This was precisely the reason for invoking the random-switch metaphor in the D-S for-
malism (alternative metaphors, using databases [Zadeh, 1986] or voting [Hummel and Manevitz,
1987] models can serve the same purpose). The function of the switch is to cast the event of
proving or disproving a proposition in traditional probabilistic setting. Once the position of the
switch is determined and the compatibility relations agreed upon, the existence of a proof be-
comes an testable event, similar to the output of a physical logic circuit whose model is well un-
derstood (we leave out, at this discussion, questions of decidability). Thus, the random switch
together with the compatibility constraints, constitute a complete meta-level probabilistic model,
that can be interrogated to answer any probabilistic query within its vocabulary. Itis, in a way,
an autoepistemic model (i.e., concerning one’s own knowledge), as it involves hypothetical rea-
soning about what one ought to believe as true had certain facts (constraints) become known
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(i.e., forced by the switch).

Such meta-leve!l exercises are not foreign to probabilistic theories. In the Bayesian litera-
ture it is a common practice to compute the value of information sources by envisioning, hy-
pothetically, what the impact of a test result would be on the belief in some hypothesis
(Spiegelhalter, 1986, Pearl, 1987¢c]. This was computed by simulating the propagation of a
‘would be’ evidence through a knowledge base represented as a Bayes network. Similarly, we
can measure the confidence level of our beliefs by envisioning how they would vary in the face
of hypothetical events called contingencies [Pearl, 1987a]. It stands to reason, therefore, that
meta-level reasoning similar to that used in the D-S approach could very well be formulated in
purely probabilistic terms, for example, by taking Bayes networks as the object-level knowledge
base, instead of non-probabilistic compatibility constraints.

Let us demonstrate this exercise using the complete model of Figure 1. Assume that our
objected-level model is given by the Bayes network of Figure 1 (with
(G4 ) =1(Gg) =(G¢) ="5) and that, instead of giving a categorical answer, the guard replies
“Gee, I think I gave the letter to B but I am only 80% sure”. Taking this testimony literally, we
subject the model of Figure 1 to the infiuence of a random switch, forcing the truths of Ly and
L with probability 0.8 and 0.2, respectively. Conceptually, this amounts to submitting the
object-level model to a hypothetical meta-reasoner who observes the behavior of the former
under two different pieces of evidence, Lg = true and L = true.

We know the answer to this exercise; the Bayesian analysis of either e =Lg or e = L¢
gives BEL (G4) A P(G, le) =", hence, if someone asks for the value of Bel (G, ), the probabil-
ity of G, being provable, the answer is, of course, zero. Provability means BEL = 1. Things are
less trivial when we wish to calculate Bel (G¢) and Bel(—G¢). Under e =Lg, the object-level
model returns the probabilities P(G¢ 1e) =% and P (—Gc le) =", while under e =L these
probabilities become P (G le) =0, P(—~G¢ le)=1. This amounts to having zero chance of
proving G¢ and 20% chance of proving =G, i.e., Bel(G¢) =0 and Bel (—G¢)=0.20. Note
that these answers are totally different than those computed with the D-S model, where we ob-
tained Bel (G, ) =% even under e =Ly and even not knowing P (L 1G,). The reason is that
there, we modeled the trial process (n(G4 ) = /) as part of the meta-level reasoner, ina formof a
random switch oscillating between G4, Gg and G, while in the current exercise this informa-
tion is included as part of the object-level theory, in order to retain its completeness.

We now address the question raised earlier, whether one can do more having a complete
model as opposed to a partial model. The answer is, as anticipated, yes. Having a complete
model at our disposal permits us to answer more sophisticated queries, not just about the prova-
bility of certain propositions. We can ask, for instance, what is the probability that the posterior
probability BEL(G¢) =P (G¢ le) will not exceed some constant & The answer would yield a
parametrized belief function:

12



Bely(G4)=P (e F "BEL(Gc)Sa”) ={0i2 PP

This may sound like computing probabilities of probabilities, a notion rejected in [Pearl,

987a] on the basis of being ill-defined. The separation between object-level and meta-level rea-

soning, now endows this notion with clear semantics, the semantics of hypothetical envisioning
I :e the one used to reason about confidence levels (see [Pearl, 1987a]).

Why then hasn’t the D-S theory incorporated such parametrized belief functions or
:onfidence levels in its formalism? It turns out that to calculate these functions, one requires a
complete probabilistic model at the object level and, when such a model is not available, primi-
tive queries about provability is just about all that one can hope to answer.

1.3 Dempster’s Rule of Combination

When several pieces of evidence are available, their impacts are combined by assuming

1at the corresponding switches act independently of each other. For example, if in addition to

’s alibi the trial records also include a testimony supporting A's guilt to a degree m,, one

ould imagine two random switches operating simultaneously and asynchronously; the first as

¢ scribed in the preceding subsection, the second spending m, percent of the ume constraining
G . to the value frue, while staying neutral the rest of the time (see Figure 4).

Km,(l —m,) Kmi(1-my)
e
|l LLLLLLLL JI GA
ms 0 1
1=-Kmy1-my)
N
peceseeceeeree | Gp
0 1
1-Kmy(1—m,)
«
Faaamzq__] Ge
0 1

Kl=1-mim,
@ {b)

Figure 4. (a) Compatibility relations between the six elementary proprositions in the 3-prisoners puzzle.
m and m, represent the percentage of time each switch is closed.

(b) Belief intervals for the three propositions G4 , G and G
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Clearly, mm, percent of the time the two switches are in conflict with each other; one is
constraining G, to true, the other constraining ~G, to true, thus permitting no consistent exten-
sion. A fraction (1 —m )m, of the time G, is true while switch-2 is neutral, rendering G4, —~Gp
and =G provable. Similarly, a fraction m (1 — mj) of the time —G, is true while switch-1 is
neutral, rendering —G, but no other proposition, provable. Summing up and normalizing by the
no-conflict time 1 — m m, we have:

m 2(1 -m 1)

Bel(G) = Bel (—~Gp) =Bel (~Gc) = —— myma

my(1-my)

Bel (~Gy) = -7 =
1

Bel(Gy)=Bel(Gc)=0

The assumption of evidence independence coupled with the normalization rule above,
lead to an evidence pooling procedure known as Dempster Rule of Combination. The combined
impact of several pieces of evidence could be calculated, again, by computing the fraction of
time a given proposition A is compelled to be true by the combined action of all switches, as-
suming that they operate independently. Thus, the analysis of belief functions amounts to
analyzing the set of extensions permitted by a network of static constraints (representing generic
knowledge), subject to an additional set of externally imposed, fluctuating constraints, represent-
ing the impact of the available evidence. For any combination of the evidential constraints, we
need to examine the set of extensions permitted by that combination and decide whether the pro-
position A is entailed by the set; i.e., if every extension contains A and none¢ contains —~A. The
total time that a system spends under constraint combinations that compel A , divided by the total
time spent in no-conflict combinations, yields Bel (A).

The constraint network formulation of Dempster’s combination rule is illustrated
schematically in Figure 5.
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Evidence #1

Network of
Categorical

Constraints

[Bel(V =1), PIL(V =1)]

Figure 5. Multiple evidence modeled as random switches imposing additional

constraints on a static network of compatibility relations.

It shows a static network of variables X, ¥, Z,V - - - (the nodes) interacting via local constraints
(the arcs), subject to the influence of two switches that impose additional time varying con-
straints on various regions of the network. To illustrate the analysis of the extension sets, let us
assume that the static network represents the classical graph coloring problem: each node may
take on one of three possible colors, 1, 2, or 3, but no two adjacent nodes may take on identical
colors. The position of the switches represents additional constraints e.g., Cxy: either XorY
must contain the color 1, or, Cz: Z cannot be assigned the color 2 etc. The relative time that a
switch spends enforcing each of the constraints is indicated by the weight measures
m(Cx), m(Cxy), ma(Cz), etc. Our objective is to compute Bel{(A) and PI{A), where A stands
for the proposition V = 1, namely, variable V is assigned the color 1.

Figure 6 represents typical sets of solutions to the coloring problem under different com-
binations of the switches.

Type-1 positions 123 -+ , '
. 112 V =1 in all solutions
Time=a 132
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121 --- 1
Type-2 positions [% 31| v=1andV #1 are compatible
Time = ) _ with each position
321 -
121
Type-3 positions % :1; :I’ ] V 4 1in all soluti
Time =y 333 # 1 in all solutions
Type-4 positions [ .
Time = & Nil no solution
(a)
Bel(A) PlA)
l I//////////i ’l
o _a+p
0 a+P+y o+P+v 1
(b)

Figure 6. (a) Four types of constraints in the graph coloring problem and
(b) the resulting belief interval for the proposition A: V =1

Each row represents one extension (or solution) where the entries indicate the value assigned to
the variables (columns). The first set of solutions are characterized by having the value 1 as-
signed to V in each and every row. If the system spends a fraction « of the time in such combi-
nations of switches, we say that P [e | V = 1] = « namely, the proposition A:V =1 can be pro-
ven true with probability ¢, given the evidence e. A type-2 position is characterized by the
column of V containing 1’s as well as alternative values e.g., 2 and 3. Each such position (or
position combination) is compatible with both A and —A. Similarly, a type-3 position permits
only extensions that exclude V =1, while a type-4 position represents conflict situations; there
exists no extension consistent with all the constraints. Bel(A ) and P/(A) are computed from the
times spent in each type of constraint combination:

o

Bel(A)=m
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Y atp
=1-Bel(V #1)=1- = :
PIA)=1-Bel(V # )= 1 - ——g=— = ai

These are illustrated as a belief interval in Figure 6(b).

The proceeding analysis can be rather complex. The graph coloring problem, even with
only three colors, is known to be NP complete. Moreover, if each piece of evidence is modeled
by a 2-position switch and if we have n such switches, then a brute force analysis of Bel (A )
would require solving 2" graph coloring problems. Listing the solutions obtained under all
switch combinations and identifying those combinations yielding e FA seems hopeless. For-
tunately, two factors help alleviate these difficulties: the sequential nature of Dempster’s rule
and the ability to exploit certain topological properties of the constraint network. The latter re-
volves around the idea of decomposing the network into a tree of clusters, where solutions can
be obtained in linear time [Dechter & Pearl, 1987]. Adaptations of tree decomposition to belief
function computations are reported in [Shafer et al, 1987b] and [Tung & Kong, 1987].

Dempster’s rule, being associative and commutative, permits multiple evidence to be
combined sequentially without enumerating all switch combinations encountered in the past. It
is based on the fact that if two distinct switch combinations give rise to the same set of solutions,
we can replace the two by a single equivalent constraint that allows exactly that set of solutions,
for the total amount of time that the two combinations lasted. Thus, instead of recording all dis-
tinct switch combinations, it is sufficient to record all distinct solution sets induced by the com-
binations, and keep track of their weights.

The latter scheme will sometimes require much less space, especially under conditions of
tight constraints where many switch combinations would yield no solution. Metaphorically, the
set of recorded solution sets and their associated weights are equivalent to a single giant switch,
with one position per distinct solution set. The impact of each new piece of evidence e” can be
calculated by first calculating the constraints accumulated by all the previous evidence e ’, then
combining it with the constraints created by e” itself, as if no other evidence was in existence.
If the former induces a belief function Bel’ and the latter Be!”, the result of combining the two
by Dempster’s rule is denoted by Bel’ @ Bel” and is called the orthogonal sum of Bel’ and
Bel”. Mathematically, for any proposition B, Bel’ ® Bel”(B) = Bel (B ) can be computed from
m(A)=m’®m”(A), using Eq.(3), where m (A ), reflecting the constraints imposed by both e’
and e”, is given by

mAY=m'&m”A)=K Y m{Apm”"(A;) A=0D (5)
A1AA;=A
and
Kl'= 3 m@Apm”@Ay (6)
AIAA2¢Q

In other words, the weight m (A4 ) assigned to solution set A is the sum over all pairs of solution
sets A, A, whose intersection is A. Multiplying m'(4,) by m”(A,) reflects the independence
assumption; the probability that the two constraints will be enforced together is equal to the pro-
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duct of the probabilities that each holds separately. The intersection A; A A, reflects the fact
that the solution set resulting from the simultaneous imposition of two constraints is the intersec-
tion of the two solution sets obtained under the individual constraints. K is a normalizing factor

guaranteeing that 3 m(A) =1, and serves to discount the weights assigned to conflicting con-

A
straints (i.e., A A A, = @) and redistribute it equally among the remaining solution sets.

Figure 7 illustrates the essence of Dempster’s rule using the two-switch model of Figure
6. Assume that the evidence e, represented by the two switches in Figure 6, permits the follow-
ing set of four distinct solution sets:

123 121 121 213
Ay =31 12r A%=4231r A%y= A'y=123 1,
1 2 3 321 4

132 223 323

with corresponding weights (m”’y, m’, m’y, m’y). As before, the columns represent the variables
V,X,Y (with the other variables ignored for convenience) and the entries stand for the colors
assigned to these variables. Set A”; is of type-1, relative the propositionA:V =1, A ‘yand A,
are of type-2, while A, is of type-3. Now assume that a new piece of evidence e” is obtained,
represented by a 3-position switch which, in isolation, gives rise to the following three sets of

solutions: .
132
we{{1 el e

with corresponding weights (m”';, m”3, m”3). The combined effect of e” and e” is shown in
Figure 7. It displays the intersections of all pairs of solution sets, A”;, A ”; where A”; is taken
from e’ and A ”j from e”. A total of four distinct solution sets survive the intersection, while
seven intersections turn out empty. The weight destined for these empty subsets is equal to

i —K_l = m'4(m”1 + m"2+ m"3) + m”zm'3 +m"3(m'1 +m'2+m'3) =
=ml4+m112m13+mll3_m.fl3mf4
(using ¥, m(A) = 1), and will serve to normalize the weights of the surviving solution sets.

To calculate Bel(V =1), we combine the weight of the three type-1 subsets,
(12 1},{{ 3 %} and {1 2 3}, and divide by K%

m” m’y+my+m’y) +m”m’

Bel(V=1)= ’ ’” ,” ’
el( ) 1—-(m'y+m”sm'3+m”3—m”3m’y)
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213
A%,={231 %, 7 @
323
(m'4)
AB:{:I,’ 2 {} {1 2 1} %) %)
(m’3) (m’3m”y)
121
A'y=4231 121 223 %
223
(mfﬁ (mfszfl) (m-'szfz)
123
, 132
Af={112 123 %
‘ {1 3 2} {1 ! 2} { }
(m.fl) (mflmffl) (mflmI'»
132
”n rn” 1 2 3 r 4
A7 =4112 A", = A" ={232
’{121} 2{“3} 3{ }
(m ’Il) (m ’Iﬂ (m I’3)

Figure 7. Dempster’s Rule of Combination
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CONFLICT

UNDETERMINED

TRUE

]
| 1
' True |Undetermined, False 1 Conflict !

Figure 8. Set Intersection in Dempster’s Rule of Combination

Figure 8 displays the type of solution sets that emerge from Dempster’s rule. The solu-
tion sets of each evidence are grouped into four types and the type of the intersection is indicated
in the table. In principle, the intersection of any two subsets can be empty, i.e., type-4. In addi-
tion, a type-1 set combined with either a type-1 or a type-2 set can yield only a type-1 set (solu-
tions compatible with —~A are ruled out by type-1). Similarly, the intersection of type-3 with ei-
ther type-3 or type-2 must yield a type-3 set (or nil). However, the intersection of two type-2
subsets may be of any type. Manifestly, type-2 solution sets can only emerge from the intersec-
tion of two type-2 sets. Hence, once type-2 sets become extinct (i.e., by exposure to a zero-
interval evidence) they will remain extinct forever.
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TRUE

UNDETERMINED

FALSE

FALSE

UNDETERMINED

Y+ 4 o TRUE

\ . / UNDETERMINED

B' Bll
—_— -— FALSE
.Y ’ ,Y "

Figure 9. A 2-switch model for two pieces of evidence

bearing on the same proposition, A .

Y [L4

BII

a” g
1
A L
. Y !
I 1 !
| | |
! Troe  [Undetermined | False |
1 1 |

Figure 10. Dempster’s Rule of Combination
for the 2-Switch Model of Figure 9.9.

Dempster’s rule assumes a particularly convenient form when several pieces of evidence
bear on the same proposition (or its negation). This is illustrated in Figure 9, using, again, the
two switch model. Each switch is characterized by three parameters (., B, ¥), indicating the
fraction of the time that the switch spends in each state. In the first state, called TRUE, A is
forced to true, in the UNDETERMINED state the evidence is compatible with both A and —A,
while the third forces A to FALSE. The semantics of these states define what state is created by
any combination of them. For example, a FALSE state combined with an UNDERTERMINED
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state yields a FALSE state because all extensions compatible with A would be excluded by the
former. The weights assigned to the combined states are indicated by their corresponding areas
in the diagram of Figure 10.” For example, Bel’ ® Bel”(A) is given by the sum of the three areas
labeled «, divided by the active areas & + B +¥. These yield:

Bel(A)=Bel' ® Bel "(A) = —2— = X+ P +a’p

a+B+Y- l—a‘y -y
PIAY=PI"®PI"(A)=1 - —L— =1 - XY +Y BT+ YY"

P, ?

a+P+y 1-ay” -y

Expressed in terms of the belief parameters [Bel, P!], we use

b’=Bel'(A) p'=Pl'(A)
bf.':Bel"(A) p’f_—-PI”(A)
and obtain
_ F ”_ ’—b')(p”_b’f) p’p”
Beiay=-22 ~@ =030 b))  pyuya PP 7
=S IoB-phrbi-p T T -p o A=)l @

This combination rule, constitutes a convenient calculus for D-S intervals [Ginsberg,
1984, Hajek, 1986]. To compute the interval [Bel, PI] of proposition A, it is only necessary to
compute the parameters Bel, Pl associated with each separate piece of evidence, then combine
them incrementally using Eq.(7).

1.4 More on the Nature of Probability Intervals

At this point, it is worthwhile reflecting on the significance of the interval
PI(A) - Bel (A) in the D-S formalism. This interval is often interpreted to signify the degree of
ignorance we have about probabilities, namely, the amount of information needed in order to
construct a complete probabilistic model. If this were so, then the D-S approach would have an
advantage over Bayes methods, which always provide point probabilities and so, might give one
a false sense of security in the model.

Unfortunately, the D-S intervals have little to do with ignorance, nor do they represent
bounds on the probabilities that would ensure once ignorance is removed. This was already
demonstrated in the 3-prisoners puzzle (Section 1.1). We saw that despite our total ignorance re-
garding the process by which the jailer chose the letter recipient, the interval PI{G,) — Bel (G4)
was zero, thus giving one the false impression that the answer Bel(G,) = 2 is based on a com-
plete model (with the jailer attempting to avoid C whenever possible). At the same time,
knowledge of the selection process proved essential in Bayes analysis, as it could sway the pos-
terior probability P (G, ! ) all the way, from zero to /4.
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Figure 8 and Equation (7) reveal that the disappearance of the D-S interval is not an iso-
lated incident but will occur whenever a piece of evidence imparts all its weight to a proposition
and its negation. In other words, if e” induces P!{”(A)=Bel"(A), then regardless of the ig-
norance we possessed before (i.e., PI’(A) — Bel’(A)) and regardless of any ignorance that might
be conveyed by future evidence, P/(A) — Bel (A) will remain zero forever. In particular, when-
ever we start with a complete probabilistic model (where the belief interval is zero) no amount
of conflicting evidence will ever succeed in opening that interval to reflect the conflict.

The ramification of this effect is that many sources of ignorance or uncertainty about pro-
babilities are not represented in the D-S formalism. In particular the uncertainty caused by high
sensitivity to unknown contingencies, which are perfectly reflected in the structure of causal net-
works, is not represented by belief intervals. Reiterating the example from [Pearl, 1987a], sup-
pose we know that a given coin was produced by a defective machine -- precisely 49% of its out-
put consists of double-head coins, 49% are double-tail coins, and the rest are fair. This descrip-
tion constitutes a complete probabilistic model which predicts that the outcome of the next toss
will be head with probability 50%, and alerts us to the fact that the prediction is extremely sus-
ceptible to new information regarding the nature of the coin. While most people will hesitate to
commit a point estimate of 50% to the next outcome of the coin, the D-§ theory, nevertheless,
assigns it a belief of 50%, with zero belief interval. Now imagine that we toss the coin twice and
observe a tail and a head. This immediately implies that the coin is fair and, hence, most people
would regain confidence to assign the next toss a 50% chance of turning up head. Yet, such nar-
rowing of confidence interval would remain unnoticed in the D-S formalism; the theory will
again assign the next outcome a belief of 50% with zero belief interval.

The vanishing of the difference P/-Bel in the 3-prisoners puzzle is a by-product of the
normalization used in Dempster’s rule, Refraining from this normalization would have yielded
an interval [44, %3] for G, , reflecting the fact that both G, and —G, can each be proven only one
third of the time (assuming no proposition is truly provable from a contradiction). Indeed, the
normalization by the no-conflict time stands at odds with the basic definition of Bel as the proba-
bility of being able to force a proof. The normalized version of Bel no longer reflects this in-
tended probability but, rather, the probability of forcing a proof, conditioned upon having a
non-empty set of extensions. Valuable information seems to get lost in the process of this condi-
tionalization. A more reasonable approach would be to keep two intervals; one measuring the
degree of conflict and one measuring the degree of evidence non-commitment. That would en-
tail characterizing each proposition by four parameters, corresponding to the 4 types of solution
sets (see Figure 10).

Another criticism of the normalization used in the D-S approach was advanced by Zadeh
(1984), using the following example:

Suppose that a patient, P, is examined by two doctors, A
and B. A’s diagnosis is that P has cither meningitis, with proba-
bility 0.99, or brain tumor, with probability 0.01. B agrees with A
that the probability of brain tumor is 0.01, but believes that it is the
probability of concussion rather than meningitis that is 0.99. Ap-
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plying the Dempster rule to this situation leads to the conclusion
that the belief that P has brain tumor is 1.0 - a conclusion that is
clearly counterintuitive because both A and B agree that it is high-
ly unlikely that P has a brain tumor. What is even more discon-
certing is that the same conclusion, (i.e., Bel (brain tumor) = 1)
would obtain regardless of the probabilities associated with the
other possible diagnoses.

Abstractly, this example involves two pieces of evidence bearing on a variable S with
three values:

S = {meningitis, tumor, concussion }

The first rules out a concussion, and the second rules out meningitis, so taken together they leave
a tumor as the only possibility.

[Shafer, 1987a] has argued that the conclusion is not unreasonable, given our assump-
tions. If our experts are absolutely reliable and if we accept the initial assumption that mening-
itis, tumor, and concussion are the only possibilities, :

"then it is a matter of logic, not merely probability, that the patient
must have a tumor. As Sherlock Holmes put it, when you have el-
iminated the impossible, whatever remains, however improbable,
must be the truth.”

While Shafer’s defense is justified in the example cited (Bayes analysis would yield the
same result), nevertheless, normalization tends to disproportionally emphasize points of agree-
ment and deemphasize disagreements between items of evidence. The net result being that be-
lief intervals tend to narrow down much faster than they should, had we adhered to their original
definition of beliefs as probabilities of provability.

1.5 Applications to Rule-Based Systems

Formulating the Dempster-Shafer theory in terms of constraint networks becomes more
natural when the constraints are expressed in rule form. A rule, r, is a constraint among & group
of propositions, having an if-then format:

rray&ay& - a, =>c (8)
Propositions ay - - - @, are called the antecedents (or justifications) of the rule, and ¢ is its conse-

quent. The semantics of the rule lies in forbidding any extension in which the antecedents are all
true while the consequent is false, in other words, a rule is equivalent to the constraint
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r. -la, & a, & - a, & —c) 9)

Normally, rules are based on tacit assumptions, the failure of which (called exceprions)
may invalidate the rule. For example, I may assert the rule : "If it is Sunday John goes to the
ball game", tacitly assuming the prerequisites: "John is still unmarried” "John is not sick” etc.
Since such assumptions are too numerous to explicate, they are often summarized by giving the
rule a measure of strength, m. For example, the rule above might be given a strength of m = 0.8
indicating a 80% assurance that none of the implicit exceptions will materialize.

In the D-S formalism, the strength m translates to a switch that spends a fraction m of
the time imposing the constraint conveyed by the rule . The activity of the switch during the
remaining time depends on the nature of the exceptions anticipated. Some exceptions (e.g., John
being sick) lead to the negation of the conclusion while others (e.g., John is married) renders the
conclusion unknown or uncommitted. In the former case the switch will force the negation of
the conclusion while in the latter case it will spend the time in a neutral position. Thus, the rule
author must be aware of the type of assumptions summarized by the rule strength. For the sake
of simplicity we will characterize rules by a simple switch model, lending support to its conse-
quence ¢ but not to its negation. The more sophisticated model, such as the 3-position switches
in Figure 9, yields essentially the same results.

Combining Belief Functions in Rule Networks

Assume we have a system of rules, a list F of observational facts called premises, and we
wish to find the belief Bel () attributable to some proposition ¢. This amounts to computing the
probability that a proof exists between the premises in F and the conclusion ¢. Each proof con-
sists of a sequence of rules 7, 75, - * * ry, such that the antecedents in each ; are either premises
or are proven and the consequence of r,, is the desired conclusion ¢. Graphically, a proof can
be represented by a directed acyclic graph, like the one shown in Figure 11, where the root nodes
are all premises, the leaf node is ¢, and each bundle of converging arrows represent a given rule.
The arcs connecting the arrows represent the logical AND function between the antecedents of
each rule.
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(a) ®)

Figure 11 {(a) A proof graph for propositiori ¢, representing two rules
p&qg—s,s &t —candthepremisesp, g, f.

(b} An AND/OR graph representing four rules

The collection R of all rules available to a system can be represented by an AND/OR
graph like the one in Figure 11(b), where an OR function is understood to exist between any two
parent-bundles converging toward the same node. The graph in Figure 11(b) contains two
proofs for ¢, (ry, r) and (r3,74). In case r can no longer be asserted as a premise, the proof
(r1, ry) is no longer valid and ¢ can be proven via (r3, r ).

We are now in a position to calculate Bel (c), namely, the probability that ¢ is provable
in a system of uncertain rules, where each rule r; is characterized by a strength measure m;. In
the D-8 formalism, a system of uncertain rules is equivalent to an AND/OR graph intercepted by
a collection of random switches, as shown in Figure 12. The task of computing Bel(c), then,
amounts to calculating the percentage of time that some proof graph remains unintercepted,
between the premises F and the conclusion ¢. In the special case where every rule has a single
antecedent, the problem reduces to that of finding the percentage of time that an unintercepted
path exists between some premise and the conclusion. Such problems have been studied exten-
sively in the area of network reliability and, in general, they turn out to be rather complex, even
under the assumption that the interruptions are independent of each other [Grnarov, 1979].
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my 2

Figure 12. Random switch model for the rule network of Fig. 9.9(b).

A brute-force way of calculating Bel (c) would be to enumerate all switch combinations,
test if a proof exists in each combination, then total the times spends in combinations that pass
the test. For a system with n rules, this would require the enumeration of 2" combinatons. For-
tunately, the simple nature of the network in Figure 12, permits the calculation to be done
without enumerating all combinations. Since the network contains two disjoint proofs, the ac-
tive times of the two proof graphs are independent, hence the time that ¢ is non-provable is
equal to the product of the times that each of the two proof graphs is inactive, i.e.,
(1 = mamy)(1 — mym,). The rest of the time ¢ is provable, hence

Bel(c)=1-(1—-mymy)(1 -mmj) (10)

Note that in our example, instead of enumerating all 24 switch positions, it was necessary
to enumerate only the two proof paths (in general, proof graphs), (ry, ) and (r3, 7 4), calculate
the active time ¢; of each path, then calculate Bel (¢ ) using the formula

Bel(c)=1-T] (1 -¢) (1

Such shortcuts will not be feasible in general rule networks. For example, if we add to the sys-
tem of Figure 11 the rule, r5: § — u (ms), an additional proof graph is added {ry, r5, r 5} Whose
activation time is dependent on the other proof graphs and we can no longer calculate Bel(c) by
multiplying together the inactive times of the three proof graphs separately. Rather, we would
have to enumerate all distinct ways that at least one proof graph remains active, ¢.g.,

Bel(c)=1-=(1=-msmy)(1 —mim3y) +mmsmy(1 —my)(1l-m3)

The first term represents the condition that at least one of the proofs, (r, ry), (r3, ry), is active,
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while the second represents the proof remaining under the complementary condition.

The topological feature that permits shortcuts as in the network of Figure 11(b) is a pro-
perty called series-parallel. This features enables recursive computations of network flow, net-
work reliability and, naturally, belief functions and probabilities in rule-based system. Formally,
a rule network is said to be series-parallel if it can be reduced to a single rule by repeated appli-
cation of the following two operations:

m m mym
1. Series reduction - ol—->42—u => 0—1-2—b
a b c a ¢
mi
. ‘/_\ 1=-(1-m)1-my
2. Parallel reduction - » => —>r o
a~____"» a b
ms;

It is clear from this definition that series-paratlel rule networks permit the calculation of
belief functions in time proportional to the number of rules (as opposed to the number of switch
combination), since each reduction operation reduces the number of rules by one. For example,
the network of Figure 13 can be reduced in three operations, yielding

Be!(c)=m1(mzllm3-m4)=m1[l-(l—mz)(l—myn“)] (13)
a a a a
[ ] ® ) L
lml my lml
.b .b .b
mi/ => => => my(mollmam )
d ms msp mzllrn3m4
®
’"‘N mym c
e ¢ e

Figure 13. Reducing a series-parallel rule network to a single rule
{mllm stands for 1 — (1 —m)(1 - mj)).

However, in general network of rules, the calculation of Bel(c) may require exponential time.
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The Limits of Extensional Systems

The foregoing analysis delineates the class of D-S systems where extensional techniques
are valid. In an extensional system the uncertainty associated with the consequent of each rule,
is solely a function of the uncertainties associated with the antecedents of the rule and that asso-
ciated with the rule itself. In the D-S versions of such systems these uncertainties are represent-
ed by a pair of supports [b,p] and, so, the pair associated with the consequent of each rule is
presumed to be a function of only the pair which characterizes the rule and those which charac-
terize the antecedents [Ginsberg, 1984, Baldwin, 1987]. Moreover, when two rules converge to-
ward the same conclusion the pair associated with the latter is determined from those of the indi-
vidual rules via the interval calculus of Eq.(7). This is precisely where extensional systems devi-
ate from the principles dictated by the D-S theory. The combination rules of Eq.(7) were derived
under the assumption that the two items of evidence are independent of each other (i.e., the two
switches in Figure 9 work independently). Applying the rule (or any uniform combination rule)
to every pair of converging arrows in a large network may violate this independence assumption,
especially if the proof paths overlap. For example, given the truth of a in the initial network of
Figure 13, an extensional analysis will compute Bel (c) as follows:

Belb)=m,
Bel(d)=m,Bel(b) =mym,
Bel(c) =m Bel(d)lim,Bel(b) = mymsm iim,m,
=1~ -mgnym X1 -mym,)
=m(mymz+mq—mymamom,) (14)
The correct result should be
Bel(c) =m(myllmym) =m(my+mymy—mmymy),

as in Eq. (13). The difference between the two expressions is equal to momam4(m, - m) and,
clearly, it stems from counting the arc m; twice. An extensional system is too local to realize
that the beliefs at b and d originate from the same evidence.

Such analysis enables us to quickly come up with conceptual examples that amplify the
discrepancy between the two approaches and thus, highlight the conditions under which using
extensional systems leads to paradoxical conclusions. To maximize the difference m, —m1),
we let my =% and my=m3 =m4 =1, and assemble the following system of rules:

ry: If I flip the coin (a), then it will turn up head (b), (m, =2)
r: If the coin turns up head (b), then you win (c), (m; = 1)

rs: If the coin turns up head (b), then I lose (d), (m5=1)
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r4: If 1lose (d), then you win (c), (my=1)

Suppose I flip the coin (g = true), what is the belief attributable to your winning (c)? The correct
answer is clearly 4, since the path b — d — ¢ is superfluous. Yet, the answer computed by an
extensional system would be Be! (c) = %, as if my loss contributes an extra piece of evidence to-
ward your winning.

Relations to Bayes Analysis

It is interesting to note that a Bayesian analysis will produce the same result as (10) and
(11) under the assumptions that:

1. A rule r: a 5 b (n) is interpreted as two conditional probability statements:
Pblay=m,Pbl-a)=0

2, Converging rules interact disjunctively, via the noisy-OR model (see {Pearl, 1987b)).

These two assumptions permit the construction of a complete probabilistic model (i.e., a
Bayes network) for any acyclic rule network. The probabilities BEL(A) =P (A |e) calculated
from such models are identical to the belief functions Bel (A ) calculated from the D-S model, for
any proposition A in the rule set. However, the negations of these propositions obtain the proba-
bilities BEL (—A)=1—BEL(A) while in the D-S model they are assigned zero Bel{(’) values
(—A cannot be proven by a rule set unless —A appears as a consequent of at least one rule).

1.6 Bayesian vs. Dempster-Shafer: A Semantic Clash

The essential difference between the Bayesian and D-S interpretations of the rules shows
up in systems involving a mixture of conflicting rules; some supporting a proposition A and
some supporting its negation, —A. In such systems the semantic clash between the two ap-
proaches leads to qualitatively different conclusions. Whereas the D-§ scheme resolves conflicts
by the bold and uniform mechanism of Dempster’s normalization (see Figure 9), the Bayes ap-
proach resolves them by a more cautious mechanism, appealing to their semantics. As a result,
the D-S approach will inherent all the problems of classical monotonic logic when applied to si-
tuations requiring belief revision. We shall demonstrate these problems using a simple, 3-rule
example, called the penguin triangle.

Consider the rule set:
R: ri: p —=»—f (m,), meaning "Penguins normally don’t fly";
ry: b - f (my), meaning "birds normally fly";

rs: p = b (m3=1), meaning "penguins are birds”
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To emphasize our strong conviction in these rules, we make m; and m, close to unity
and write

mi=1-g my=1-¢

where €, and €, are small positive quantities. Assume we find an animal, called Tweety, that is
categorically classified as a bird and a penguin, and that we wish to assess the likelihood that
Tweety can fly. In other words, we are given the premises p and b, and we need to compute
Bel (f ), using the D-S approach, or P (f 1p, b), using the Bayesian approach.

The Bayesian approach immediately yields the expected result, namely, that Tweety’s
birdness does not render Tweety a better flyer than an ordinary penguin. The reason is that the
entailment p O b permits us to replace P(f Ip, b) by P (f ip), giving

P(flip,b)=P(fip)=1-P(=fIp)=1-m =¢§ (15)
In the D-S approach, on the other hand, if we treat the rules as a system of switches randomly os-
cillating between a TRUE and NEUTRAL position (as in the rule network of Figure 12), a
counter-intuitive result obtains; birdness seems to endow Tweety with exwra flying power. This
is shown in the following table, where the four states of the rules r, and r, are enumerated to-
gether with their associated probabilities and the provability state of the proposition fly.

Probabilities r ra " oy —fly
£1€y neutral | neutral || not provable | not provable
(1-¢gpe true neutral || not provable provable
£1(1 —&y) I neutral true provable not provable
(1-e)(1 -¢gy true true conflict conflict

Summing over the states where fly is provable and normalizing, we obtain

Bel (fly) =

g1(1-gp)

€1~ &8

£

(16)

1-(1-g)1-¢) B g +E— 18 e +e

We see that the belief attributable to Tweety’s flying, critically depends on whether she is a
penguin bird, or just a penguin. In the latter case, rule r, dictates Bel (fly) = €y, which is negligi-
bly small. In the former case, adding the superfluous information that all penguins are birds and
birds normally fly, renders Bel (fly ) subtantially higher, as in (16). It does not go to zero with g,
and €,, but depends on the relative magnitudes of these quantities. If the proportion of non-
fiying birds (g,) is smaller than the proportion of flying penguins (€y), Tweety’s flying will be as-
signed a belief measure greater than 0.5. Equipping the switches with FALSE-TRUE positions
or with FALSE-NEUTRAL-TRUE positions, as in Figure 9, would yield essentially identical
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results.

Identical results will also obtain when rule 75 is not asserted with absolute certainty
(my = 1) but is subject to exceptions, i.¢., m3 =1~¢€3 < 1. The Bayesian analysis yields:
€1
1- £3

P(flp,b)< am

meaning that, as long as €; remains small, bird penguins have very small chance of flying; re-
gardless of how many birds can’t fly (€,). The D-S analysis, on the other hand, would still yield
the paradoxical result

!
g +8’

Bel(f)= (18)

meaning that if non-flying birds are very rare, i.e., £,=0, then bird penguins have very high
chance of flying.

The clash with intuition does not revolve around the exact numerical value of Bel(f)
but, rather, around the unacceptable phenomenon that rule rj, stating that penguins are a sub-
class of birds, plays no role in the D-S analysis. Once we know that Tweety is both a penguin
and a bird, Bel (Tweety flies) is only a function of m, and m,, regardless of how penguins and
birds are related. The same results would obtain had Tweety been an elephant bird, a broiled
bird or a penguin with massive wings.

In common discourse, class properties are expected to be overridden by properties of more
specific subclasses. Yet, the D-S analysis yields a substantial increase in the belief that penguins
can fly if one adds the superfluous information that penguins are birds and birds normally fly.

This paradoxical result stems from the D-§ interpretation of if-then rules as randomized
logical formula of the material implication type, as opposed to statements of conditional proba-
bilities. While in classical logic the three rules in our example will yield an unforgivable con-
tradiction, the uncertainties attached to these rules, together with Dempster’s normalization, now
render them manageable. However, they are managed in the wrong way, because the material-
implication interpretation of if-then type rules is so fundamentally wrong, that it cannot be
rectified by allowing exceptions in the form of randomization. The source of the problem lies in
the property of transitivity, (@ - b,b - ¢)=>a — ¢, which is inherent to the material-
implication interpretation. There are occasions where rule transitivity must be totally
suppressed, not merely weakened, or else strange results will surface. One such occasion occurs
in property inheritance, where subclass specificity should override superclass properties. Ran-
domization, in this case, only weakens the flow of inference through rules in tandem but does not
bring it to a dead halt, as it should.
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This phenomenon is not unique to taxonomic property inheritance but is pervasive in
common everyday reasoning. For example, consider the rules:

ry: If I am sick, then I can’t answer the door (m )
r,. If I am home, then I can answer the door (m;)
ry: If T am sick, then I stay home (m4 1)

Rule 4 tells us that exceptions to rule r,, due to sickness, were already taken into account by the
measure m, and, moreover, exceptions to rule r, including those emanating from staying home,
were already summarized in the measure m,. Thus, given that I am sick, the conclusion is that I
can’t answer the door with confidence m; given that I am both sick and at home, the same con-
clusion applies and the same confidence as well.

The phenomena is further amplified in abductive tasks, where rule transitivity may lead
to truly strange results. Consider the rules

r4: If the ground is wet, then it rained last night (my,,

rs: If the sprinkler was on, then the ground is wet (ms=1)

If we find that the ground is wet, rule r 4 tells us that Bel (rain ) = m4. Now, suppose we
further observe that the sprinkler was on. Instead of decreasing (by virtue of explaining away
the wet ground), Bel (rain ) will remain the same. More seriously, suppose we first observe the
sprinkler. Rule rg would correctly predict that the ground ought to get wet and, without even in-
specting the ground, r, will conclude that it rained last night, with Bel (rain ) = m m .

These difficulties have haunted non-monotonic logic for years (see [Pearl, 1987d] and
[Ginsberg, 1988] for more detail) and will be transferred over to the D-S analysis as long as if-
then rule are treated as material implications, however weakened by randomization. They can
be circumvented by two methods, none of which is truly satisfactory. One method requires the
rule author to explicitly state the exceptions (or assumptions) underlying each rule. For example
rule 7, will be phrased: r’;: If I am at home, I can answer the door, unless I am sick, or asleep
or under, a gun threat ... in which case I will not be able to answer the door. This method would
work well under D-S analysis, however, the enormous number of exceptions to each rule
prevents it from being practical. The second method, used for example, in inheritance systems
[Touretzky, 1986} [Etherington, 1987] is to recognize that rule sets such as {ry, 7y, rsf lead to
multiple extensions, and use extra logical criteria to decide which of the extensions should be
preferred. For example, our rule set {7y, 75, 73} together with the facts: "I am sick” and "I am
home" would give rise to two extensions:

E, = {"I am sick", "I am home", "I cannot answer the door"}
E, = {"Tamsick”, "I am home", "I can answer the door"},

depending on which rule, r, or r, is activated first. E is preferred to E; because the rule r,
preempts the path (r3, r5) [Touretzky, 1986]. Ginsberg [1984] has proposed to handle preemp-
tions by special-purpose meta rules which "never apply a rule to a set when there is a
corresponding rule which can be applied to a subset”. In [Geffner & Pearl, 1987] we show that
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this notion of preemption can be integrated directly into the logic (thus preventing the generation
of multiple extensions) if only the rules are given their proper interpretation, namely, conditional
probability statements with probabilities arbitrarily close to one, short of actually being one.

2 TRUTH MAINTENANCE SYSTEMS

Introduction

Truth Maintenance Systems [Doyle, 1979] provide means of keeping track of beliefs and
their justifications developed during an inference process. Since our reasoning habits are built
largely on default assumptions and educated guesses, some of these assumptions may have to be
retracted in the light of new information. Moreover, all conclusions that were derived from
these assumption would have to be retracted as well, unless they can be supported by new argu-
ments. To manage this retraction process, a truth-maintenance system must maintain a depen-
dency record with each inferred fact indicating its justification in terms of both the presence and
absence of information. :

This retraction job is similar to the belief revision task of [Pearl, 1987b] with the excep-
tions that the interrelationships between propositions is not probabilistic but logical; a conclu-
sion is either justified by a set of facts or unjustified, with no grey levels of support strength. As
a result, the abductive task of finding the "most likely explanation" cannot be accomplished by
numerical means, as in [Pearl, 1987b], but, rather, relies on explicit diagnostic rules suggesting
hypotheses that account for observations. Second, uncertainty in these systems is represented,
not by numerical degrees of belief but rather, by symbolic annotations called assumptions, which
identify, by names, those uncertain facts which, if true, would justify our belief in a given propo-
sition (we referred to such entities as contingencies in [Pearl, 1987a]. In other words, instead a
numerical quantity, the truth value of a proposition is represented by a Boolean expression that
identifies the assumptions needed for believing in that proposition.

Although lacking numerical criteria for deciding among opposing hypotheses, these sys-
tems are nevertheless popular because they are compatible with the symbolic style of logical
inferences, and because, unlike monotonic logic, they do not take advantage of the rule of de-
tachment which permits one to dispose of the derivation once the conclusion is established. On
the contrary, by recording the history of derivations, these systems can retrace the source of be-
liefs, a feature necessary for generating explanations and for resolving contradictions.

The reason for introducing Truth Maintenance Systems in this report is two fold. First,
these systems can be viewed as symbolic engines for computing D-S belief functions. Second,
like the D-S theory, inferences in truth-maintenance systems are generated by hard, categorical
compatibility relations and, hence, the notion of evidential support is based on the notion of pro-
vability; the semantic clash of the proceeding section will have to be dealt with separately.
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2.1 Naming the Assumptions

Truth-Maintenance Systems (TMS) use rules as their elementary units of knowledge and,
similar to our treatment in Section 1.5, conclusions are drawn by piecing together rules to form
proofs. Likewise, rules may have exceptions that may cause the expected conclusion of the
proof to clash with observed facts or with other deductions, However, whereas the exceptions
and/or assumptions in Section 1.5 were summarized numerically, using the rule weight m, the
TMS approach maintains an explicit list of the main assumptions and exceptions that are in-
volved in each rule. For example,

TURN-KEY — START-ENGINE (m) (1%)
will be written

TURN-KEY & [GOOD-STARTER, BATTERY-NOT-DEAD, etc. ] — START-ENGINE 20

where the terms in the square brackets are the assumptions behind the rule in (19). Thus, each
rule in a TMS consists of two types of antecedents called justifications (e.g. TURN-KEY) and
assumptions (e.g. BATTERY-NOT-DEAD). The difference between the two is only that as-
sumptions are presumed to be true under normal conditions while justifications may be true or
false, depending on whether they can be proven or refuted from observed facts, called premises
in TMS’s terminology.

This distinction introduces a bias that would permit us to temporarily ignore the assump-
tions altogether; proofs constructed via the justification part of the rules are considered legiti-
mate, and their conclusions are tentatively adopted as firmly held beliefs. Indeed, in the original
TMS proposed by [Doyle, 1979], assumptions are manipulated only when an observation is ob-
tained that conflicts with proofs based on previously held assumptions, at which time, the TMS
produces an alternative set of assumptions consistent with the observation. For example, if in
addition to rule (20), we also have the facts (premises) that the key is turned and the engine does
not start, then the TMS will issue a new assumption set {BAD-STARTER} or, alternatively,
(BATTERY-DEADY}. rendering the observation consistent with the premises.

In a subsequent version of TMS, called ATMS (Assumption-Based TMS, [de Kleer,
1986]) the system maintains, not just one, but a whole list of assumption sets (called environ-
ments), any of which, if realized, could support our currently held beliefs. Each assumption set
is minimal, or non-redundant, in the sense that no assumption can be moved from the set without
destroying its support of the current belief. Minimality, parallels the notion of most-probable-
.xplanation (see [Pearl, 1987b]) if exceptions (i.e., negation of assumptions) are assumed to be
rare, equiprobable and independent events. Additionally, similar to the cautious attitude
displayed by the belief revision scheme of [Pearl, 1987b], the system also maintains a list of as-
sumption sets to support the negations of our current beliefs, in preparation for conflicting obser-
vations sometime in the future. In our example above, the list of assumption sets {{BAD-
STARTER}, {BATTERY-DEAD}} will label the proposition — (ENGINE-START), even prior
to such an unfortunate observation. Each assumption set in this list is sufficient to support a
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proof of —~(ENGINE —START).

Example. To see the relation between the ATMS mode of reasoning and the one analyzed in
Section 1.4 let us illustrate the former using the example of Figure 11, with a fifth rule added,
rs:s — u. Instead of switches and rule weights as in Figure 12, exceptions are formulated in
terms of propositional symbols A, A, - - - (connoting assumptions) that are added to the an-

tecedents of the corresponding rules. Altogether, we have the following 5-rule system as shown
in Figure 14:

ri:p&kq&lA)]-os
re:s&t&[Ag] ¢
ry: p & {Az]l —u
rg: u & [A4]-)C
rs: s & [Asl—u

Figure 14. A graphical representation of a five-rule ATMS with their
associated assumptions, Ay, * - - Asj

Note the striking similarity between Figure 14 and Figure 12; the switches and their weights
my, my, - are merely replaced by the proposition labels A, A,, - - - that represent the as-
sumptions. Accordingly, each assumption A; can be viewed as a valve which controls the posi-
tion of a switch and asserts ‘‘the switch corresponding to rule r; is ON.”” However, unlike the
switches in the D-S formalism, each A; can be a complex Boolean formula of propositions
which, in themselves, can be consequents of other rules.

Under normal operation, the ATMS is given a set of premises, e.g., {p. ¢, t}, and main-
tains for each proposition in the system a list of minimal sets of assumptions under which that
proposition can be proven. Such a list is called a label. In our example, the label of u would be
Lu)={{Ay,{Ay,As}}. The set {A;}, for instance, indicates that assumption A (together
with the premises) is sufficient to activate rule r,, which constitutes a proof of u. Proposition c,
however, will have a more extensive label:

L(c)={{A3,A4},{Al,A5,A4],{A1,A2}}, @21

where each set corresponds to the assumptions that enable one distinct proof-graph for c.
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A ATMS keeps separate labels for the negations of the propositions in the system. In our
system these labels will be empty because there is no rule with either — s , —u, or =~ ¢ as a con-
sequent and, so, there is no way to prove any of these propositions. However, had the system
been augmented with such a rule, say,

re =Vv —o-c,
we would then label — ¢ with:

L(—|C)={ {—\Al,"‘lAs} ,{—vA3,ﬂAs,-ﬂA?} , {-"!A4,—|A2} ,{ﬁAl,ﬂAd} (22)

These sets come from negating the disjunction of the sets in L (¢), and correspond, as the reader
might have expected, to the four (minimal) cutsets of the network in Figure 14.

Labels represent the contexts or environments under which propositions can be safely be-
lieved. The purpose of maintaining these labels explicitly is to propagate them quickly from one
proposition to another and to be able to retract the proper set of assumptions when a contradic-
tion arises. For example, in case — ¢ is asserted as a premise, assumptions which underlie ¢ are
no longer consistent with the premise set and at least one assumption must be retracted from
each of the three sets of L (c¢). This is accomplished by keeping a global stack of ‘‘nogood’” as-
sumption sets to be removed from any label in which they appear. In our example, the “‘no-
good’’ assumption sets resulting from observing —¢ would simply be the sets contained in L (c).
These, as well as their supersets, should be removed from the label of every proposition in the
system, in particular those derived prior to the observation of — c.

In summary, the ATMS can be viewed as a symbolic algebra system that produces a
Boolean expression L (c) for every given proposition ¢. L(c) contains a list of nonredundant
sets of assumptions called environments, each of which is sufficient to support a proof of ¢,
given the available premises. In logical terms, L (¢ ) enumerates the prime implicants entailing ¢
[Reiter and de Kleer, 1987]. In graphical terms, assuming that each rule contains a single
justification and a single assumption, L (c) enumerates all the paths (proofs) leading from the
premises to C.

2.2 Uncertainty Management in ATMS

From a purely logical viewpoint, the label L (¢) that the ATMS attaches to a proposition
yields only three possible truth values for ¢: believed, disbelieved and unknown. If any en-
vironment in L(c) is believed, then ¢ is believed as well, if we believe any environment in
L(—c), then ¢ is disbelieved. Otherwise, if we cannot confirm L (¢} nor L(—¢ ), then ¢ is unk-
nown.
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These three-value logic lacks the facility of rating the degree of uncertainty attributable
to unknown propositions and, thus, may lead to a stalernate whenever a decision is to be made
whose outcome depends critically on the truth of these propositions. However, there are three
very useful functions that one can perform, even within this limitation:

1) Produce Explanation. Once a proposition ¢ is believed, the ATMS can retrace back the
justification paths and identify the argument (proof) justifying that belief as well as the assump-
tions upon which it is founded. This is similar to tracing back the ® and A messages in proba-
bilistic belief networks and is facilitated by recording the justification part of the rules next to
each datum which amounts, essentially, to keeping a network structure in memory.

2) Managing Conflicts - Contradictions between expectations and reality are viewed as a signal
for modifying the currently held set of assumptions. New sets of assumptions are generated au-
tomatically which are consistent and maximal (i.e., contains a minimal set of exceptions)

3) Guiding the Acquisition of New Information - If a certain proposition is in an ‘‘unknown’’
state, then the label L (¢) provides clues as to what information is required to render it known,
i.e., believed or disbelieved. For example, if a confirmation of assumption A is all that is miss-
ing from one set in L (~¢) while the confirmation of — A is missing from some set in L (¢ ), then
a test leading to the confirmation or denial of A should be devised.

Introducing Numerical Uncertainties. The three features above do not fully replace the facili-
ties provided by numerical measures of uncertainty. For example, a pending decision may
depend crucially on the likelihood that a given ‘‘unknown’’ proposition ¢ will turn out true, and
this, in turn, depends on how certain we are in the assumption sets of L (¢ ) compared with those
of L (—c). Likewise, there could be several diagnostic tests that one can perform, each having
the potential of confirming or denying a crucial proposition ¢, yet some tests may be judged
more likely to yield that determination than others.

The information needed for calculating numerical measures of certainty can easily be in-
troduced within the ATMS setting. If we have the knowledge to assess the relative likelihood of
the various assumptions in the system, then the ATMS provides a symbolic facility for translat-
ing this knowledge into a certainty measure for any conclusion of interest. The semantics of this
certainty measure will be identical to that of belief functions in the D-S formalism, i.e., the pro-
bability of establishing a proof for the conclusion.

Since L(c) constitutes a Boolean expression whose truth signifies the existence of a
proof for ¢, Bel (¢ ) can be obtained by simply computing the probability of L (¢), i.e.,

Bel(c)=P[L(c)]. (23)
Moreover, since the atoms which make up L(c) are all assumption-type propositions, P [L (¢ )]
can be computed from the probabilities assigned to the assumptions. In particular, if one as-

sumes that assumptions are independent of each other, the computation of P [L(c)] can be done
symbolically and amounts to the same computation we have conducted for belief functions in
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rule-based systems (see Section 1.4).

To illustrate the computation, consider Figure 14, and let p; stand for the probability that
assumption A; is true. To calculate Bel (c ), the ATMS provides the label L (¢) from (21} and we
have:

Bel(c)=P[L(c)]=P[AsA;vA ,AAsv A A, (24)

Probability calculus permits us to calculate the probability of a disjunction or conjunction of any
two expression (in terms of the probabilities of the individual expressions) if the expressions are
either mutually exclusive or independent. Unfortunately the subexpressions in (24) are neither.
We therefore substitute

A3A4=A3A4(Al V—lAl)
and obtain
Bel(c)=PlAsA;—A VA (Ayv AAsvAS)] 25)

The first term in the square bracket is disjoint of the second, while the second is in series-parallel
format. This yields

Bel(c)=pyp 41 —p1) +p1[p2lpalpalps)]
=pp 41 =p ) +D1[P2+P4P3lps) —paps(Pillp 9]
=pws(1-p)+pip2+ps(1 -p)P3+ps—pPips) 26) -

This expression is identical to the one in Eq.(12), identifying p; with m;. Mechanical procedures
for computing the probability of an arbitrary Boolean expression of independent propositions
have been reported in the literature on network reliability (e.g., {Grnarov et al, 1979]) and can be
easily applied to the labels returned by the ATMS.

2.3. Incidence Calculus

Incidence calculus [Bundy, 1985] is a method of computing belief functions by logical
sampling, similar in spirit to the method of stochastic simulation, [Pearl, 1987¢]. A probabilistic
knowledge base is used to generate random samples of truth values for a select set of proposi-
tions and these are presented as input facts, or axioms, to a theorem prover. Different sets of
facts give rise to different theorems and Bel (¢ ) is given by that fraction of the time that ¢ can be
proven.

Consider again the rule network of Figure 14, where it is required to compute Bel(c),
given the probabilities on the assumptions A, - - - As. Instead of computing a symbolic expres-
sion for Bel (¢ ) in terms of p1, - - ps, as in the preceding subsection, one can actually simulate
the real-time behavior of the network under a random assignment of truth values to the assump-

39



tions, then count the frequency at which ¢ is proven true. The truth value of each assumption A;
will be represented by a random bit string of ones and zeros, in which the frequency of ones is
p;. In every time step, each assumption selects the next bit from its bit string, sets its value ac-
cordingly, and a theorem-prover attempts to prove the truth of ¢. The frequency at which a
proof is established is equal to Bel(c).

This scheme is a physical embodiment of the random switch model described in Section
1.3. The random position of each switch is replaced by the random bit string assigned to each
proposition (e.g., assumption) whose degree of certainty we wish to assert. The theorem prover
can be general purpose (e.g., First Order Logic), not limited to propositional constraint networks.
The scheme is not limited to simulating independent switches; dependencies can be simulated by
having the bit strings generated by a complete probabilistic model (e.g., a causal network) in
which these dependencies are encoded.

3 NILSSON’S PROBABILISTIC LOGIC

While Bayesian theory requires the specification of a complete probabilistic model, and
the D-S theory sidesteps the missing specifications by compromising its inferences, probabilistic
logic [Nilsson, 1986] considers the space of all models consistent with the specifications avail-
able, and computes bounds, instead of point values, for the probabilities required. Probabilistic
logic (PL) addresses the following problem. Suppose we are given a collections § of logical
sentences, some representing facts (e.g., "Socrates is a dog") and some representing generic laws
(e.g., "all dogs bark"), and suppose someone attaches probability measures to some of the sen-
tences, representing the degree of belief in their truth. Our task is to deduce the probability of
other sentences in the language whose probabilities were not specified explicitly (e.g., "Socrates
barks").

In some way this problem resembles the evidential reasoning tasks of [Pearl, 1986].
There, too, we started with probabilistic assessments on a small set of sentences (i.e., those used
in the construction of the Bayes network) and we were able to deduce the probability of every
query phrased in propositional form (see [Pearl, 1986]). However, in Bayes networks, the as-
signment of probabilities was done in a principled way, guaranteeing consistency and complete-
ness; merely assigning probabilities to a set of logical sentences does not, in general, define a
complete probabilistic model, even when the assignment is consistent. The logical relationships
between the sentences in S will, in general, admit a high number of truth value assignments,
called extensions, and, unless one assigns a probability rating to each such extension, the model
remains, in a probabilistic sense, incomplete.

To illustrate this point let us examine a simple example involving the following three
sentences:

Sl=p
Sy=p D¢q
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S3=q

If we regard these sentences as binary variables that may take on true-false values, then out of
the 22 = 8 such value combinations, the four consistent ones are extensions, and these are given
by the rows of the following table:

Extensions | S;:p | Sy p2q | S3=¢
W, true true true
W, true false false
W, false true true
W, false true false

Assigning probability measures to any two sentences does not fully specify a model and does not
yield a unique probability measure for the third sentence. The best way to see it, using the Baye-
sian style of representing dependencies, is to view S and S5 as parent variables of §,. Since §,
is a Boolean function of S, and S 3, its value is completely determined by the values assigned to
the latter two. This means that a complete probabilistic model can be defined by assigning arbi-
trary weights to each of the four possible truth values of (S, §3), just making sure that they sum
to unity. This requires a specification of three parameters, e.g., P(p,q),P(p,—q) and
P (—p,q). If we only specify P (p) and P (q), the model remains underspecified.

More interesting difficulties surface when someone assigns probability measures to S
and S, and seeks to deduce the probability of S5. This is a typical occurrence in rule-based sys-
rems, where S, is (falsely) taken to be the logical representation of the English sentence "if p
hen g". Since §; is not a Boolean function of S, and S, (for S, = false and S, =true, S5 can
_ttain either a true or a false value), even specifying the joint probability on the pair (5, §,) will
t.ot suffice; one still need to assess P (S4 = true | S, =false, S, = true ) before the model is com-
pletely specified. Moreover, since S, and S cannot both be false, one cannot specify the joint
probability on (S, S,) by an arbitrary selection of three parameters; caution must be exercised
to ensure that the selection is consistent with the requirement P (§; = false) + P (§, =false) < 1.

Violations of such consistency requirements may be very troublesome in rule-based sys-
rems [Duda et al, 1976]. P (S, = false) is often perceived as measuring one’s doubt in the validi-
1y of some generic rule, (e.g., exceptions to the rule S,: "dogs bark"), and hence, it is kept con-
s:ant. At the same time, since P (S, = false ) is allowed to vary, depending on the amount of sup-
port that S, receives from other rules, the consistency requirement above will occasionally be
violated. It is also not uncommon to find an expent providing the assessments:
P(S,=false)=.1, reflecing a rmle p>gqg with 10% exceptons, together with
P (S, = true) = .001, reflecting some rare event p. The two assessments are clearly inconsistent
because S, must be true whenever S is false, i.¢., at least 99.9% of the time. Aside from the ob-
vious conclusion that the material implication S,: p O ¢ is the wrong interpretation of the con-
ditional sentence "if p then q", the example illustrates the ease of introducing inconsistencies
while assigning probability measures to individual logical sentences.
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Probabilistic logic provides a formal way of testing when probability assignments are
consistent with each other. Once we have a criterion for testing consistency, we also possess a
device for determining bounds on the permissible probabilities that any given sentence may as-
sume, given the probabilities assigned to other sentences. Such bounds are said to be probabil-
istically entailed by the other assignments.

Conceptually, probabilistic consistency and entailment have simple semantics; the proba-
bility P (S;) associated with a sentence §; in S constitutes a constraint on any probability distri-
bution P that can be assigned to the extensions of §. Since those constraints are not sufficient to
determine one unique distribution, we seek a description of the set P of all probability distribu-
tions that comply with the given constraints. Each distribution P € P defines a probability value
P (¢) for any arbitrary sentence ¢; P (¢) is simply the sum total of the probabilities of those ex-
tensions in which ¢ is true. Given P, we can determine the range of admissible P (¢) values, let-
ting P span the entire set P.

Let W = {W,, W, -} stand for the set of all extensions of S, let P(W;) be the weight
-assigned to W; by some distribution P € P, and let w;; be a binary variable taking the value 1 if
sentence S; is in extension W;, zero otherwise. The constraints that the probabilities P (S;) im-
pose on the distribution P are given in the form of a linear equation

PSp= T PW)=Xw;PW) @7
W:>S; i

In our 3-sentence example above, we had four feasible extensions, each corresponding to
a row in the truth table, hence w;; are given by the (i, j)th entry of the table. If we demand that
our three sentences be given thc probability vector m=(P(S,),P(S,), P(S3)), then the three
equations in (27) constitute constraints on the distributions P = (P (W), P(W,), P(W3), P (W)
that could possibly be assigned to our extensions. Given any P satisfying (27) and an arbitrary
sentence 0, P (¢) can be computed simply by adding the weights P (W) over the extensions
where ¢ holds.

Eq.(27) also constitutes a description of the set of consistent probabilities, =, that can be
assigned to the sentences in §. Consistency means that Eq.(27) should have at least one solution
for P (W ). Since it is a linear mapping between P (W ) and P (S;), Eq. (27) maps extreme distri-
butions P (W;) to extreme assignments P (S;), and the convex hull of these extreme assignments
defines the set of consistent assignments ®. Moreover, since each extreme distribution on W
selects one row from the Wi table, we conclude that the set of consistent assignments T to the
sentences in § is bounded by the convex hull generated by the extensions of S .

To illustrate how probability bounds are entailed, assume that we start with a single sen-
tence S, to which we attribute the probability P (§,) =&, and we wish to find what values are
permitted for either P (S,) or P(S3) (For more elaborate examples, together with geometrical
representations of the convex hulls, see [Nilsson, 1986]).
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There are three feasible extensions permitted by S and §,, given by the table below:

Extensions | S;: p | S.: pDgq
W, 0 1
W, 1 0
W, 1 1

The three extreme distributions on these extensions, (1, 0, 0) (0, 1, 0) and (0, 0, 1), map into the
following values for the pair [P (S ), P(S2)]: (0, 1) (1, 0) and (1, 1). Each extension defines an
extreme point in the space [P (S ), P (S)], and the convex hull generated by these points defines
the permissible region for the pair of probability assignments [P (Sy), P (S,)] (see Figure 135).
Clearly, if P (S,) is set to T,, then P (S ) is bounded by the inequality

1-m,SP(SP<1 (28)
P(S)) s PSSy a
©,) g——= 4.1 RV (L)
R My -~~~ A
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Figure 15. The convex hull formed by the extensions of S
determines the region of consistence probability assignments 1o the sentences in S

The bounds on P (§3) can be found in the the same way. The three legitiméte extensions
are shown in Figure 15(b), which yields

mSPEy)<1 (29)

Summary: Probabilistic entailment is a method of dealing with partially specified probabilistic
models, where the specification is in the form of probability assignments to a select set of logical
sentences. Any such assignment defines a region of permissible complete models and, by
describing the boundaries of this region, one can deduce bounds on the probabilities of new sen-
tences.
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The way probabilistic logic (PL) deals with partially specified models is opposite to that
of D-S theory. Both methods accept specifications in the form of logical sentences and a proba-
bility assignment to a subset of these sentences. However, whereas PL treats probabilistic
models as the object-level theories and logical relations as meta-level constraints, the D-S theory
reverses these role; logical constraints serve as the object-level theory, within which deduction
takes place, and probabilistic information serves to govern the inputs that the object-level theory
obtains, This is described schematically in Figure 16

DETERMINE
BOUNDS ON
AR LOGICAL
PARAMETERS INFORMATION
[T | (ADMISSIBLE
EXTENSIONS)
SELECT ONE SET
OF PARAMETERS
o
COMPLETE P(0) COMPUTE
[ .. .| PROBABILITY BOUNDS L P SP(Q)<P,_
(a) : MODEL P4 ON P(Q)
* QUERY: Q
FREQUENCY
OF INPUT
PROBABILISTIC
FACTS . INFORMATION
STENGTH OF
VIDENCE)
ISQA COUNT
1;‘53:5“ THEQREM? | FREQUENCY L, Bel(Q)
OF THEOREMS
)]
f QUERY: Q

Figure 16. Meta-Level and Object-Level Theories in {a) Probabilistic Logic and
(b} Dempster-Shafer’s Formalism

PL is shown in Figure 16(a) to be using logical information for controlling (or bounding)
the set of parameters & which characterizes a complete probability model P ,. Object level
deductions are done in the probabilistic domain; computing P ,(Q) for an arbitrary query sen-
tence Q, then deducing bounds on P (Q) by considering the logical bounderies of & The D-§
scheme is depicted in Figure 16(b). It uses probabilistic information regarding the strength of
evidence to route certain facts (those supported by the evidence) as inputs to a logical inference
engine, i.e., a theorem prover. The frequency at which various input facts are presented to the
engine is controlled by the strength of evidence supporting these facts. For every set of input
facts, the inference engine verifies whether Q is a theorem, and Bel (Q') is computed as the fre-
quency with which this theorem is proved by the engine. This description of the D-S approach
best matches its Incidence Calculus implementation (Section 2.3).
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