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ABSTRACT

Every reasoning task requires the gathering of information. This process is costly, and therefore,
to solve a problem efficiently, one should have a method of distinguishing relevant facts from irrelevant
facts. Otherwise a system would spend precious time processing facts which are irrelevant to the task at
hand.

This paper analyses a formalization of relevance called dependency models ([Pearl 1986a)).
These models consist of a finite collection of propositions U/ and a three place predicate / over disjoint
subsets of these propositions. The statement I(x, z,y) is assigned a truth value if the propositions in x
are irrelevant to the propositions in y, once z is known.

In particular we examine the limitation of representing the truth assignment of / by Directed
Acyclic Graphs (DAGs). We prove that these graphical models cannot be characterized as Horn-axioms,
and conjecture that neither are disjunctive axioms powerful enough for this goal. This conjecture is pro-
ven for a subclass of disjunctive axioms called functional-restricted axioms. Finally, we examine depen-
dency models comprising families of graphs, directed as well as undirected. We find a complete axiomat-
ization for these multi-graph models which consists of three axioms: Symmetry, Decomposition and
Weak-union. We propose these models as a scheme for representing semi-graphoids and graphoids.
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Computer Representation for Dependencies and Relevance in Automated Reasoning (Computer Information
Science)” and the Navy research Laboratory contract #N0001408-K-2209.
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1. INTRODUCTION

Every reasoning task, whether as simple as scheduling your next day appoint-
ments, or as complex as planning a space voyage, requires the gathering and learning of
information. The learning process however, is costly in time and, hence, to solve a prob-
lem efficiently, one should have a clear idea of which facts are relevant and worth acquir-
ing. This might be the main characteristic of expert’s specialization; The skill to identify
the relevant facts and learn these facts, rather than having an immediate answer for every

query.

The ability to distinguish relevant facts from irrelevant facts is also important in
any reasoning engine that deals with knowledge and beliefs. Otherwise this engine
would spend precious time processing facts which are irrelevant to the task at hand. For
example, knowing the grade point average (GPA) of student A, usually tells us nothing
about the GPA of student B. However, once we learn that the two students are taking the
same courses and always study together for exams, their GPAs become related. This
change of dependencies is called nonmonotonic, since propositions which were irreievant
before, become relevant when new information is learned. On the other hand, a mono-
tonic change of dependencies occurs when propositions that were relevant before become
irrelevant. For example, deciding whether one will go swimming in the ocean depends on
the expected temperatures. However, once one hears on the radio that a tomado has

swept the shore, no longer are the temperatures relevant to one’s decision.

Dependency models are formal ways of representing such informational depen-
dencies. A dependency model M is a list of triplets (x, z, y) for which the propositions
represented by the set x are irrelevant to the propositions represented by the set y, once
we know z. Equivalently, a dependency model can be regarded as a truth assignment rule

for the predicate 7 (x, z, y)), where ! stands for "x is irrelevant to yonce z is known",



Clearly, to keep an explicit list of all triplets is impractical, due to the enormous
number of combinations of events. Moreover the list changes in time. As new informa-
tion is learned, triplets might be added or deleted, making the update of the list an insur-
mountable task. Therefore, instead of an explicit list, an efficient mechanism of assigning

truth values to [ (x ,z, y)y is necessary.

The device of conditional independence in probability theory is an example for
such a mechanism ([Pearl 1986a]). Associating the notion of irrelevancy to conditional
independence suggests that we define I (x, z, y)p to be true (i.c. irrelevant) iff the vari-
ables x and y are conditionally independent given z, in some probability distribution P.

ie.,

Py lz)=P(x12)-P(y | 2)

This definition captures our intuition about how dependencies are changed when learning
new facts. Two independent variables which become dependent upon learning a new
fact, exhibit a nonmonotonic behavior, while variables that were originally dependent
and become independent present a monotonic change. Thus, probability theory has the
expressive power to represent the changes that occur when learning new facts and there-
fore, as suggested in [Pearl & Verma 1986], "probability theory can provide the
machinery for identifying which propositions are relevant to each other with any given
state of knowledge".

Relational database gives rise to another machinery, Embedded Multivalued
Dependencies (EMVD, [Fagin 1977]), which is also capable of capturing the dynamics
of informational dependencies. An Embedded Multivalued Dependency is a restriction
defined on a collection of tuples R called a database. Each tuple is an unordered list of
attributes, or sets of attributes, whose values belong each to its own domain. For exam-

ple, attributes of a Personnel database might be: name, age and phone number. A sample



tuple of this database might be < Dan Geiger, 29, 825-6010 >. Conventionally,
<x, y, z> denotes a tuple over the attributes x, y and z. Let xy, x5 ¥y, y; and z; be
values from the domains of three disjoint sets of attributes x, y and z respectively, then an

Embedded Multivalued Dependency I (x, z, ¥)gpvp bolds iff
<Xy, V1. 21> & <X2, ¥, 21> 3 <X1,¥2, 21>

In other words, this restricion means that if the two tuples <x;,y;,z;> and
<X2, Y2, 21> appear in a database then the tuple <x, y;, z; > must appear as well. The
idea behind this definition is that once the value of z is fixed, knowing the value of y can-
not further restrict the permissible values of x. Hence, in this sense, EMVD captures the
notion of irrelevancy between x and y. This definition was also used in {Shenoy & Shafer

1987] to devise a "qualitative” extension of probabilistic dependencies.

The use of similar syntactic notation (i.e. /(x, z, y)) does not assure us any se-
mantic relation between the two classes of models. Nevertheless, the following proper-

ties are shared both by probabilistic models and by relational database EMVD models.

(Symmetry)
I(x, 2, ) =1, 2, x)
(1.a)
(Decomposition)
Ix,z,yuw)=1I{x, z, y)
(1.b)
(Weak Union)
Ix,z, wuy)=I(x, zUw,y)
(l.c)
(Contraction)
Ix, z, )& I(x, z0y, w1, z, yuw) (1)



Surprisingly, these common properties have an eiegant interpretation that cap-
tures our basic demand from a reasoning system, consistency. By consistency we mean
that acquiring irrelevant facts does not change the relevance status of other propositions
in the system. Any information that was irrelevant remains irrelevant (1.¢), and every fact
that was relevant stays relevant (1.d). This interpretation is most easily seen by rewriting

axioms (1.c) and (1.d) in the following way:

I(x,2,y) = [I(x, z, woy) <=> I(x, zUy, w)]

Hence, if (w) is irrelevant to (x) then it remains irrelevant after learning an irrelevant fact

(), and if (w) was relevant, it stays relevant.

A dependency model obeying axioms (1.a) through (1.d) is called a semi-
graphoid. For example, probabilistic and EMVD models, can readily be shown to obey
these axioms, hence they are semi-graphoids. The converse, namely, that for every
semi-graphoid there exists an equivalent probabilistic model, has been conjectured in
[Pearl 1986a]. This conjecture, called the completeness conjecture, is also equivalent (as
shown in section 3) to the assertion that every property of conditional independence re-
lation is logically implied by the semi-graphoid axioms.

This intuitively-appealing interpretation of semi-graphoid axioms motivated Pearl
to propose these constraints as a formalization of the notion of informational dependen-
cies. The completeness conjecture, if validated, would further imply that probabilistic
conditional independence offers an equivalent formalization. Accordingly, two obvious
ways to maintain a system that obeys these axioms follows. The first is to keep all tri-
plets (x, z, y) for which /(x, z, y) holds. The impracticality of this implementation was
already discussed. The second is to employ either a probabilistic model or a database
model because both models are guaranteed to obey axioms (1.a) through (1.d). The



deficiency of these representations is twofold. First, to answer a query "Does I{x, z, y)
hold 7", requires, on the average, an exponential amount of work. Clearly, no reasoning
system can allow such a cost, because the answer to this query is the preliminary tool that
these systems should provide. Moreover, the ease and conviction by which people judge
this query suggest that the answer can be obtained by a few primitive and quick opera-
tions on the representation scheme. Secondly, probabilistic models, as well as database
models, involve derivational steps which do not match human reasoning, i.e., adding and
multiplying many numbers. Therefore, even though a system based on probability might
give "right" answers, it would be extremely difficult for it to give a meaningful interpreta-

tion as to how these conclusions were drawn.

A step towards resolving these deficiencies comes in the form of dependency
graphs. Dependency graphs are Undirected Graphs (UG) or Directed Acyclic Graphs
(DAGs) along with some criteria for determining the validity of a statement I (x, z, y).
The nodes in these graphs represent propositional variables. The arcs represent local
dependencies among related propositions and the criterion could, for example, be wheth-
er the nodes in z separate the nodes in x from those in y. In dependency graphs the vali-
dity of a statement /(x, z, y) can be determined in time proportional to the number of
nodes in the graph. Hence the first problem of exponential calculations is resolved in
these graphs.

The graph model also seems to be closer to the human reasoning process. The use
of graph-related concepts (such as "threads of thoughts”, "lines of reasoning”, "connected
ideas"” etc) in everyday language suggests that derivational steps made on graphs are far

casier to explain then any numerical calculation ([Pear] 1986a]).



These promising features of dependency graphs motivated the work reported in
this thesis, The sections are organized as follows: Section 2 reviews dependency graphs
in more detail. It is based on [Pearl 1986a), [Pearl & Paz 1986], [Pearl & Verma 1987]
and should be viewed as a summary of these papers. Section 3 explores formal issues re-
garding the notion of completeness, Section 4 and 5 examine the restrictions imposed by
the DAG model on the truth assignment of / (x, z, ¥). We show that these restrictions
cannot be formalized as Horn-axioms and therefore are too complex to be used as an
inference mechanism. Section 6 suggests an alternative scheme for Tepresenting semi-
graphoids. Finally, section 7 summarizes the results and outlines the relation between

dependency models and relational databases.



2. DEPENDENCY GRAPHS

The topic of dependency models is best introduced by quoting excerpts from
[Pearl 1986a], [Pearl & Paz 1986] and [Pearl & Verma 1987].

"Despite the prevailing use of graphs as metaphors for communicating and rea-
soning about dependencies, the task of capturing dependencies by graphs is not at all
trivial. When we deal with a phenomenon where the notion of neighborhood or connect-
edness is explicit (e.g., family relations, electronic circuits, communication networks,
etc.), we have no problem configuring a graph which represents the main features of the
phenomenon. However, in modeling conceptual relations such as causation, association
and relevance, it is often hard to distinguish direct neighbors from indirect neighbors; so,
the task of constructing a graph representation then becomes more delicate. The notibn
of conditional independence in probability theory provides a perfect example of such a
task. For a given probability distribution P and any three variables x, y, z, while it is
fairly easy to verify whether knowing z renders x independent of y, P does not dictate
which variables should be regarded as direct neighbors. In other words, we are given the
means to test whether any given element z intervenes in a relation between elements x
and y, but it remains up to us to configure a graph that encodes these interventions. We
shall see that some useful properties of dependencies and relevancies cannot be
represented graphically and the challenge remains to devise graphical schemes that

minimize such deficiencies.

Ideally, we would like to represent dependency between elements by a path con-
necting their corresponding nodes in some graph G. Similarly, if the dependency
between elements x and y is not direct and is mediated by a third element, z, we would
like to display z as a node that intercepts the connection between x and y, i.e., z is a cutset

separating x from y. This correspondence between conditional dependencies and cutset



separation in undirected graphs forms the basis of the theory of Markov fields [Lauritzen
1982]).

Definition: An Undirected Graph Dependency model (UGD) Mg is defined in terms of
an undirected graph G. If X, ¥ and Z are three disjoint subsets of nodes in G then by
definition / (X, Z, Y)¢ iff every path between nodes in X and ¥ contains at least one node
in Z. In other words, Z is a cutset separating X from Y.

Ideally, we would like to require that if the removal of some subset S of nodes
from the graph G renders nodes x and y disconnected (written I(x, S, y)g), then this
separation should correspond to conditional independence between x and y given S,

namely,

I(x, S, y)g =1, S, Y)u
and, conversely,

Ix, S, )y =1 S, y)g
This would provide a clear graphical representation for the notion that x does not affect y
directly, that its influence is mediated by the variables in §. Unfortunately, we shall next
see that these two requirements are too strong; there is often no way of using vertex
separation in a graph to display ail dependencies and independencies embodied in some
probabilistic models, even those portraying simple, everyday experiences.

Definition: An undirected graph G is a dependency map (D-map) of a dependency model
M (over variables U) if there is a one-to-one correspondence between the elements of U/

and the nodes of G, such that for all disjoint subsets, x, y, z, of elements we have:

I(xv Z,)’)M = I(X, 2, y)G



Similarly, G is an Independency map (I-map) of M if:

I 2, y)y = I(x, z, y)q
G said to be a perfect map of M if it is both a D-map and I-map.

A D-map guarantees that vertices found to be connected are, indeed, dependent; howey-
er, it may occasionally display dependent variables as scparated vertices. An I-map
works the opposite way: it guarantees that vertices found to be scparated always
correspond to genuinely independent variables but does not guarantee that all those
shown to be connected are, in fact, dependent. Empty graphs are trivial D-maps, while

complete graphs are trivial I-maps,

It is not hard to see that many reasonable models of dependency have no perfect
maps. This occurs, for example, in models where J (x, z, ) exhibits nonmonotonic
behavior; totally unrelated Propositions become relevant to each other upon leamning new

facts. A nonmonotonic model M, implying both /(x, 21, ¥)yy and ~J(x, z, U 22, y)M

cannot have a graph representation which js both an /-map and a D-map, because graph

separation always satisfies I(x,2y,y g =1(x, z, \J 22 ,y)G for any two subsets

zy and z; of vertices. Thus, D-mapness forces G to display z, as a cutset separating x
and y, while /-mapness prevents z, () z; from separating x and ¥. No graph can satisfy

these two requirements simultaneously.

This weakness in the expressive power of undirected graphs severely limits their
ability to represent probabilistic dependencies. A simple example illustrating this point
is an experiment with two coins and a bell that rings whenever the outcomes of the two
coins are the same. If we ignore the bell, the coin outcomes, x and y, are mutually in-
dependent, i.e., / (x, ©, y). However, if we notice the bell (z), then learning the outcome



of one coin should change our opinion about the other coin, namely, = 7 (x, z, y).

How can we graphically represent these simple dependencies between the coins
and the bell or, in general, between a set of multiple causes leading to a common conse-
quence? If we take the naive approach and assign links to (z, x) and (z, y), leaving x and
y unlinked, we get the graph x—z—y. This graph is not an /-map because it asserts that x
and y are independent given z, which is wrong. If we add a link between x and y as well,
we get the trivial /-map of a complete graph, which no longer alerts us to the obvious fact
that the two coins are genuinely independent since the bell is merely a passive device
which does not affect their interaction. Such dependencies, however, can be represented

completely by using the richer language of directed graphs.

Definition: A Directed Acyclic Graph Dependency model (DAGD) Mp is defined in
terms of a directed acyclic graph (DAG) D. If X, Y and Z are three disjoint subsets of
nodes in D, then by definition /(X, Z, Y)p iff there is no bi-directed path from a node in X
to a node in Y along which every node with converging arrows either is or has a descen-

dent in z and every other node is outside Z,

The latter condition corresponds to ordinary cutset separation in undirected
graphs while the former conveys the idea that the inputs of any causal mechanism be-
come dependent once the output is known. This criterion was called d-separation in
[Pearl 1986b]. In Figure 1, for example, X = {2} and Y = {3} are d -separated by Z = {1}
(ie. (2,1, 3)e Mp) because knowing the common cause 1 renders its two possible
consequences, 2 and 3, independent. However X and Y are not d-separated by Z’ = {1, 5}
because learning the value of the consequence 5, renders its causes 2 and 3 dependent,
like opening a pathway along the converging arrows at 4.

10



© (3)
©
©

Figure 1. A DAG displaying d-separation: (2, 1, 3)e Mp
while (2,{1, 5}, 3) e Mp

The introduction of directionality, enables us to perfectly represent the dependen-
cies embodied in the bell and coins example. The fact that the sound of the bell is func-
tionally determined by the outcomes of the two coins is represented by the network
coin 1 — bell « coin 2, without connecting coin I to coin 2. This pattern of converging
arrows is interpreted as stating that the outcomes of the two coins are normally indepen-
dent but may become dependent upon knowing the outcome of the beil (or any other

external evidence bearing on that outcome)."

The success of capturing some non-monotonic dependencies still does not
guarantee that DAGD models are capabie of capturing all the dependencies of an arbi-
trary probabilistic model. In fact, it is easy to construct a probabilistic model that cannot
be perfectly represented by a DAG. Before presenting such an example, we state the fol-
lowing axiom which is Wen in section 4 to hold for every DAG:

I(AZ:A].’ A3) & [(A3s sz A‘) & I(Alw ASv Al) =>I(Al| zr A4)-

The conditional independence relation in probability theory, however, is not constrained

to obey this axiom and allows the co-existence of the following conditions:

11



satisfies conditions (1) through (4), The covariance matrix is constructed as 3 possible
solution to the following ®quations, each of which forces one of the four conditions (we

assume that each A; consists of one variable simply denoteqd :
P23 =p13 - py4
P14 =pasy - P24

Pra =p;13 "P34

tic model) bue jt i8 capable of Capturing many of the dependencies common in rea]-ife

12



Having realized that simple graphical representation are not powerful enough for
perfectly representing semi-graphoids, researchers have aimed towards a less ambitious
goal. Instead of a perfect map of semi-graphoid M they searched for approximations, i.e.,
an I-map that exhibits all the dependencies of M but not all of M’s independencies. The
natural requirement from these I-maps is that the number of undisplayed independencies

be minimized.

The task of finding a DAG which is a minimal I-map of a given semi-graphoid M
was solved in [Pearl & Verma 1987]. Their algorithm consists of the following steps: as-
sign a total ordering to the variables of M. For each variable n of M, identify a minimal
set of predecessors S, that makes n independent of all its other predecessors (in the ord-
ering of the first step). Assign a direct link from every variable in Sy to n. The resulting
DAG is an I-map of M, and it is minimal in the sense that no edge can be deleted without

destroying its I-mapness.

No equivalent algorithm is known to work for undirected graphs, unless the gen-

erating semi-graphoid model obeys the following additional axiom:
(1.H

intersection  I(x, zUy, w) & I(x, 2Uw, y) =1(x, 2, yUw).

This axiom, in addition to the semi-graphoid axioms (1.a through 1.d), define a class of
dependency models called graphoids. The name for this class is derived from the fact
that these five axioms hold both in UGs and DAGs. The intersection axiom aliso holds
for non-extreme probabilistic models, where the distributions are limited to be strictly po-
sitive. Without this limitation intersection would not hold. For instance, as argued in
[Pearl 1986a], if y stands for the proposition ‘“The water temperature is above 0°C,"” and
w stands fof ““The water temperature is above 32°F,”” then, clearly, knowing the truth of
either one of them renders the other superfluous. Yet, contrary to (1.f), this should not

render both y and w irrelevant to a third proposition x, say, whether we will enjoy swim-

13



ming in that water,

The ability to construct graphical I-maps (DAGs) for an arbitrary semi-graphoids
is an additional superiority of DAGD models over UGD models. UGD models, so far,
can be constructed as minimal I-maps only for graphoids ([Pearl & Paz 1986]). Thus, as
pointed out in [Pearl & Verma 1987], the use of UGD models as a representation scheme
rules out logical, functional and definitional constraints (which cannot be represented by
non-cxtreme probabilistic models). This explains our focus on DAGD models as a possi-

ble scheme for approximating semi-graphoids.

14



3. COMPLETENESS

Dependency graphs, as shown in the previous section, are insufficient for perfect-
ly representing an arbitrary semi-graphoid. The natural question to ask is which semi-
graphoids lend themselves to a graphical representation or equivalently, which additional
constraints should / (x, z, y) obey in order to be perfectly represented by a UG or a DAG.
This question is formalized in this section using the concept of completeness. We start by

stating the completeness theorem for UGD models.

Definition: [Pearl & Paz 1986] A dependency model M is said to be a graph-isomorph if
there exists a graph G = (U, E) which is a perfect map of M, i.e., for every three disjoint

subsets x, y and z of U, we have:
I(x, z, )y <=> I(x, 2, ¥) g
Theorem 1: [Pearl & Paz, 1986] A necessary and sufficient condition for a dependency

model M to be graph-isomorph is that / (x, 2, y)y satisfies the following five independent
axioms (the subscript M dropped for clarity):

(symmetry)
(2.2)
Ix, 2, y)= 103, 2, x)
(decomposition)
(2.b)
Ix,z, yuw) =1, z, y) & I(x, z, w)
(intersection)
Ix, zuw, )& Ix,zUy, w) 21X, 2,y UWw)
2.c)

(strong union)

15



I, 2,5) =1(x, 2w, y)
2.d)

(ansitivity)

I 2, y) =1, 2,9) or Iy, 2, y)
2.e)

Remark: Throughout this thesis we use the convention that in every instantiation of f the
arguments are disjoint and that Greek letters indicate single variables. For example in

(2.¢) vis a single element disjoint of xU y\U z. We further assume that / (x, z, @) always
holds.

The proof of theorem 1 first verifies that the axioms in (2) are obeyed by vertex
separation. Then it gives a constructive algorithm that produces a graph G which is a per-
fect map of an arbitrary dependency model M that obeys these axioms. The proof uses
the fact that (2.c) and (2.d) imply the converse of (2.b) which makes 7 completely defined
by the triplets (a, Z, B) where o and B are singletons. The construction of G is achieved
by starting with a complete graph and simply deleting every edge (a, B) for which a ti-
plet of the form (o, Z, B) appears in M. Using induction, the resulting graph is shown to
be a perfect map of M.

Axioms (2.)-(2.¢) are said to be complete because these axioms delineate pre-
Cisely the dependency models that are graph-isomorph, thus reflecting the definitional
role of the axioms. A different definition of completeness is often used emphasizing the
derivational role of axioms, i.e. the ability to infer new independency statements from a
given set and be guaranteed that all statements that are logically implied by the set (i.e.,
true in all graphs that obey the initia] set ) are indeed derivable by successive application
of the axioms. In all definitions that follow, we assume a fixed family of models M. For
cxample M can be taken to be the set of graph-isomorph dependency models, or the set
of all dependency models induced by probabilistic distributions.

16



Definition: An axiom

Ix1,y121) & o & Tp,Yna20) DT E1,51,21) 08 -+ 0F I (Gmsmsim)

is sound for M if every model in M that obeys the antecedents of the axiom also obeys at
least one of the statements of the disjunction on the right-hand-side of the implication.

When m =1 the axiom is said to be a Horn axiom.

Definition: Let £ be a set of statements and let S be a single statement. Let A be a set of
axioms. @ is logically implied by L iff every model in M that obeys I also obeys o, i.c,
there exists no "counterexample" model in M that satisfies T but does not satisfy ©.
When o is logically implied by I we use the notation: £ I=¢, and say that & is a single
consequence of Z. When ¢ can be derived from I by using the axioms in A we write:

Z |=4 0, and say that © is derivable from X.

Definition: A set of axioms is weakly complete if for every set of independency state-

ments Z and for every single statement ¢ we have:
Zil=ciff Li=, 0.

In other words every logical consequence of I can actually be derived by using
the axioms in A and visa versa every statement that can be derived is a logical conse-
quence. Clearly, a necessary condition for A to be weakly complete is that every axiom
in A is sound for M.

Intuitively, one would desire that completeness of a set of axioms A would imply
that every sound sentence be derivable from A. However the definition of weak com-
pleteness does not imply such a property. Weak completeness, as will be shortly shown,
only implies that sound Homn axioms are derivable from A but not necessarily an arbi-

trary non-Horn axiom. For this reason we define the following:

17



Definition: A set of axioms is complete if for every set of statements ¥ and for every dis-

junction @, or G2 0r - -+ G, we have
z l=01 O?‘Gzor e GI!I. iﬂzle 01 arczor “ea cm.

The symbols |= and |=4 are defined in the Same way as for single statements. When

Ll=oyoroyor --- Om we say that 6, or --- o Om is a disjunctive consequence of
Z.

The following lemmas present equivalent definitions for weak completeness and
completeness. These concepts are taken from database theory ([Fagin 1977]). In thas pa-
per, Fagin proves a theorem similar to lemma 2, assuming that A consists of Horn ax-
ioms. The origin for this assumption is twofold: first, every universally quantified sen-
tence in EMVD can be expressed in terms of Homn axioms (due to the Armstrong relation
property that holds for EMVD ((Fagin 1980])). Second, it Seems natural to associate
weak completeness with Horn axioms, because both concepts focus on derivations of sin-
gle statements, However, the restriction is not hecessary as can be seen from the example
of axioms (2.a) through (2.e): They are weakly complete for UGD models and, yet, in-
clude a nor Hom axiom, Therefore, in our proof, the restriction of A to consist of Horn

axioms is relaxed.

Lemma 2: The following conditions are cquivalent,
a) Aisa weakly complete set of axioms,
b) Every sound Hom axiom is derivable from A.

<) For every set of statements Z closed under a set of sound axioms A and for every
G ¢ I there exists a dependency mode] M o that obeys all statements in ¥ but does

18



not obey o©.

Lemma 3: The following conditions are equivalent.
a) A is a complete set of axioms.
b) Every sound axiom is derivable from A.

¢) For every set of statements Z closed under a set of sound axioms A there exists a

dependency model M that obeys exactly the statements in I,

Proof: We prove only the first lemma. The second proof is very similar and there-

fore omitted.

a—>b: Let A1: 0 &03& -+ &£6,=0 be a sound Hom axiom. Let
L={G), ", O4}. Due the soundness of A; we have I |=0. A is weakly complete.

Therefore given I we can derive o by the axioms in A. Thus A is derivable from A.

b—c: Assume, by contradiction, that X is closed under A and that exists a state-
ment o€ Z such that every model M that satisfies I also satisfies ©. Let
Z=(0¢y, '+, Ox). Consider the axiom A, : 0y & 6, & -+ & 6, = 0. By our as-
sumptions this axiom is sound for M. Clearly, I !#, o because X is closed under A and
o is not included in Z. Therefore, the axiom A, cannot be derived from A contradicting

our assumption that A is weakly complete.

c—a: Assume A is a set of sound axioms that is not weakly complete in M.
Thus, there exists a set I and a statement © such that £ |=0 and T I#40. Let £ be a
supper set of X that is closed under A and does not contain ©. Such a set always exists be-
cause X |#,0 (note that £ is not necessarily unique, however, when A consists of Horn-

axioms then £ can be taken to be the unique closure of Z under the axioms in A). By (¢),
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Construct M 4 that satisfies Tand—o. M o also satisfies Z and therefore o is not logical-

ly implied by Z, contradicting our selection of . []

From the above definitions it is clear that completeness implies weak complete-
ness. The converse, however does not always hold (an example can be found in [Fagin

1977)).

Axioms (2) were found to be complete for UGD models. However, they suffer
from computational disadvantages since the transitivity axiom has a disjunction on the
right-hand-side of the implication. To emphasize this property we refer to such axioms as
disjunctive axioms. The following example shows the computational disadvantages im-
posed by a non-Hom axiom (2.e). Moreover, it demonstrates that in some cases transi-
tivity must be applied in order to infer a single consequence (and not only a disjunctive

consequence) from a given set of independency statements.

Example: Let S={I(x,2,y), I(z,wy,Y), [(z,wx,Y)} be a set of three independency state-
ments (wy stands for w U y). We show that 7 (y,w,z) isa consequence of X that cannot be

derived without applying the transitivity axiom.

Using (2.¢) on I'(x,2,y) we get I (x,2,Y) or I (,2,y). Assume /(x,z, ¥). Then using
(2.d) we get I(x,zw,y). Adding the independency 7(z,xw,Y) (which is in S) and using
(2.¢) yields the independency I (y,w,xz) which using (2.b) yields / (Y, w.z). On the other
hand, assume 7(¥,2,y). Then using (2.d) we get I(y,zw,). Adding the independency
1(z,yw, %) (which is in S) and using (2.c) yields the independency / (y,w,yz) which using
(1.b) yields / (y,w,z). Thus, /(y,w,z) is a single consequence of S, because it was derived
by sound axioms of UGD models. It is left to show that / (y,w,z) cannot be derived from
S without the transitivity axiom. This is done by finding the closure of S under the ax-
ioms (2.2)-(2.d) and verifying that I (y,w,2) is not in the closure. Indeed the closure is the
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set.

(1 (x,2,y), I(z,wy, V), [ (z,wx, ), T (x,2w,y), I (x,2Y.y), I (x,2wY,y), I (z,wyx, Y)]

and symmetric images.

This example demonstrates two important issues. The first is that in order to ap-
ply a non-Horn axiom one needs to reason by cases, i.e., assume each term in the disjunc-
tion separately, and for each assumption reach a common conclusion. Such a process is
computationally expensive because for each application of transitivity in a derivation,
two new statements need to be considered independently, and each might require the use
of transitivity once again. The second is: is it possible to establish a weakly complete set
of Hom axioms for UGD models by replacing the transitivity axiom with a finite set of

Horn axioms, say,

I'x,2.y) & I1(z,wy,Y) & I (z,wx,Y) = I (Y,w,2).

We do not have the answer for this question; however, the example above shows the
computational benefits of obtaining a complete set that consists solely of Horn axioms.
Moreover, the problem of deciding whether an independency statement is implied by a
given set of statements is not just of theoretical interest, rather it is a formalization of the
following practical problem: Given a set of graph separation measurements (i.e.,
I(x;, z;, yi) ) and a single graph connectivity measurement - / (&, w, v), it is required to
determine whether these measurements are consistent. A possible paradigm for a solution
would be to confirm that J (4, w, v) is not implied from { 7 (x;, z;, y;) }. For this sake a
weakly complete set of Homn axioms would have been very useful,

It is worth noting that we seek only a weakly complete set of axioms (not com-
plete). There are two reasons for this. First, weak completeness is strong enough to assure

that every single consequence is derivable, and second, a complete set of Horn axioms
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cannot possibly exist for UGD models.
Lemma 4: There exists no complete set of Horn axioms for UG dependency models.

Proof: Assume by contradiction that such a set, say A, exists. Examine the transitivity

axiom:
I(x,z,y) =2I(x,z, V) or Iy, 2, y)

Let Z={I/(x, z, y)}. Since transitivity is a sound axiom for UGD models, clearly
I(x, z, Yor I(Y, z,y) is a consequence of X. Examine a derivation of this disjunction
(there exists one because A is complete). The assumption that all axioms in A are Hom-
axioms implies that to derive this disjunction one of the individual statements would
have been derived first, suggesting that one of the individual statements is logically im-
plied by Z. This is clearly not so, thus A could not have been complete. [

One of the results of this thesis is showing that, while the task of finding a weakly
complete finite set of Horn axioms for the UGD model is worthwhile, a similar task for

DAGD models cannot be fruitful since such a set does not exist.

A recent result, reported in [Verma 1987a), states that the following axioms are
complete for DAG-isomorph dependency models.

(weak transitivity)
Ix, 2, )& I(x, 2V, y) =1(x, z,Y) or I(y, 2, ¥) )
a
(chordality)
I(on(v, 8}, B) & I(y, {o,B}.8) = I(a, ¥, B)or I (e, 8, P) Gb)
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Go IX.ZY i xerer

{ch—xy Ix, S, y)ori(y, S, x)}

and

{:Yz ch-zy I(x, Sc, y)or 1(y, Sc, x)}

and

r

A,

or

[:z sd. 1@ Sc.b)or i, e, a)]
and
[
Yy 1@zy)or [kg_ﬂl (x, S, ayor I(a, S, x)]

or

U—wx Sc

and

Y, 1@z byor [, 16.5.9)0r16.5.5)]

or

SelU~-wy

wé
\

These axioms express the d-separation criteria in terms of independency state-
ments, while defining precisely the restrictions that 7 (x, z, y) should obey in order to be
perfectly represented with a DAG. Axioms (3) cannot be used as a derivational tool be-

23

a‘xul(x. Z,b)orHa, Z y)or [ch—cb —I{(a, S, byand =i (b, S, a)]

[»Eu [Se 3 &S worIw. S, x)] and [ gﬂﬂl(x. Sa, w) and —/(w, Sa, x)]]

3 Iw,S, 1(. S, Y =I(w,Sh, —1(y, Sb,
[BU[ w, S, y)or I(y “')]”“'[scu.w, (w, Sb, y) and =/ (y bw)]]

4




cause each application of axiom (3.c) requires exponential (in the number of variables)

amount of work. The next two sections, though, show that this is probably the best that

we can hope and that these complex axioms cannot be replaced with an equivalent set of

Horn axioms or even disjunctive axioms.

The following axioms are a partial (i.e., not complete) list of sound axioms for

DAGD models and are taken from [Pearl 1986a):

(symmetry)

I(x, z, y) <==> [(y, 2, x)
(decomposition-composiﬁon)

I(x, 2, y Yw) <=w>1(x,2,y) & I(x, 7, w)
(intersection)

I 2w )& Ix, 2y, w) 1, LygUw)
(weak union)

Ix, 2,y) =I(x, 2 yw,y)
(weak transitivity)

I, 2, )& IGx, 2%, y) =10, 2,9 or Iy, 2, )

(chordality)

Ioufv. 8}, B) & 1 (v, (.B).8) = I (ex, 7, B) o7 I (a, B, B)

(4.a)

(4.b)

(4.0)

4.d)

(4.¢)

@n

Theaxiomin(4)lreﬂldﬂivablcﬁumaxiom(3.a)tlnmgh(3.c)whichmoomplew.
howwer.ﬂwymfuusiumpmvedirecﬂyﬁmtbepmpuﬁuofd—mﬁon.mm

axiomsmﬁswdmfacilimthediscuuioninsubseqmswdm



4. NON AXIOMATIZABILITY OF DAGS

In this section we prove the incompleteness theorem. The theorem states that
there exists no finite weakly complete (nor complete) set of Homn axioms for DAGD
models with the d-separation criteria. We use two lemmas (5 & 6) in the proof. In lem-
ma (5) we present a Horn axiom, called R (n), with n antecedents, denoted S, and prove
that R g(n) is sound for DAGD models. In lemma (6) we list all single consequences of S
(for n 27) and prove that neither of them is a single consequence of any proper subset of

S. The proof of the incompleteness theorem then follows using the following argument:

Define the arity of an axiom to be the number of antecedents of that axiom. Using
this definition, lemma 6 states that for 2 7 the axiom R o(n) is irreducible to a chain of
smaller arity Horn axioms. We proceed by contradiction. Assume A is a complete finite
set of Hormm axioms. Let k& be the largest arity of ail the axioms in A. Pick
n=max (k+1, 7). Consider the axiom Ry(n). By lemma 6, this axiom is irreducible to a
chain of smaller arity Horn axioms. All axioms in A have smaller arity then the arity of
Ro(n). Therefore, the consequence of Rg(n) can not be derived from its antecedents by

using only the axioms in A. This contradicts our assumption that A is weakly complete.
We now prove the two lemmas.

Lemma §: The axiom R o(n):

I(Az,Ay,Ay) & I(Ay, Az A & + I(Ay,Ay_1,Ap) & I(Age1,AnAy) = I(Auﬂvg-AnUA 1)

holds in DAGD models.

Proof (By contradiction): Assume R y(n) does not hold. Consider a DAG that obeys all
antecedents of R(n) and does not obey I(4,,;, @, A,\0 A1). In this DAG, there exists a
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path between an element &, of A,4; and an element B of A,U A, that is not d-
separated by . Clearly, this path does not contain a head-to-head node. Let
P = (041, P) be the shortest such path. Two cases need to be examined: B belongs to A
and B belongs to A,,.

Case 1: P= (01,4, ;) where o belongs to A;. The statement [{A, ., A,, Ay
implies that A, d-separates the path P. P does not contain a head-to-head node and there-
fore, in order to block two successive arrows, an element o, of A, must reside on P.
Consider the path (a4, 0,). It does not contain a head-to-head node because P does not
contain such node. Hence, (tt,;, @) is a path from Anyl to ApU A, that is not d-

scparated by &. This path contradicts our definition of P, because it is shorter then P.

Case 2: P=(a,,1, @, ) where a, belongs to A,,. the statement T(Ani1, A1, Ap)
implies that an element o,,_; of A, is on P. Consider the path (a,_;, @,). This path
has no head-to-head nodes, therefore the statement 7 (A4, _;, A,_3, A,) implies that an ele-
ment o, of A, must reside on (a,_;, o). Similarly, an element of each of the sets
Ap3, Apy4,..., Ay mustreside on P, Consider the path (0,41, @;) where @ is an ele-
ment of A, that is on P. This path contradicts our definition of P because it is shorter
then P. (0

Lemma 6: Let S be all the antecedents of Ro(n). Then the only non-trivial single conse-
quences of S for 27 are: [(Apy1. D, AJUA L), 1(Ansy, Ay, Ay, [ (Ans1. D, A),
1(Ap41, @, Ay) none of which is a consequence of any proper subset of S.

Proof: Let VALID be the set { 7(Ay41, D, Ay VA ), [(Aner, A1y AR, [ (Aney, D, A,
1{(Ap41, D, Ay)). From lemma 5 we know that I (A,.1, D, A, A;)isa consequence of
S while the other three statements in VALID can immediately be derived from it using
decomposition (4.b) and the weak union (4.d) axioms.
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Assume /(x, z, y) is an arbitrary non trivial independency statement not in
VALID. We will show that I (x, z, y) is not a consequence of S by constructing a DAG
that obeys S and does not obey /(x, z, y). Without loss of generality assume that the
A;’s are singletons, A;={a;} i=1..n+1 and that these are all the nodes of the DAG (It
suffices to contradict the axiom for any assignment of A;s). Also w.l.o.g, x and y can be
considered as singletons due to the decomposition axiom (4.b):

I(xy, 2, Y1Vy2) > 1(xy, 2, y1) & I (xy, z, y3).
Namely, if 7 (x1, z, y1) is not a possible consequence then neither is / (x, z, y) where x, y
are any sets containing x, and y, respectively. For any assignment of x, y and z, our task

is to construct a DAG that satisfies all the » antecedents of R (n) but violates / (x, z, y).

Assume x=A;, y=A;, j< k and examine the statement [ (A;, Z, Ay) for all Z and
for all possible values of j and k. We will say that j and k are consecutive if
abs(j-k mod(n+1)]=1. All subscript expressions here will be taken modulo n+1. For ex-
ample: k= j+1 when j< n+1 and k=1 when j=n+1. Also, to clarify the figures, we la-
bel the nodes i, j,... instead of a;, : P

Case 1: j and k are not consecutive.

Examine the following DAG :

@@"'m“@@

Figure 2

I(A;, A;_y, A1) holds for all i because i and i+1 are always disconnected.
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However, the proposed conclusion I (A j» Z, Ay) is false for any set Z (includ-

ing @), because j and k are connected with a direct link.

Case 2: j and & are consecutive.

Subcase 2.1: Z contains a variable i which is not consecutive to either jork.

Examine the following DAG:

ONT/

Figure 3

I(A;, Z, Ap) is clearly false. Yet, all independencies in S hold be-

cause i is not consecutive to either j or k.
Subcase 2.2: Z is a subset of A -1\ Apy .

Subcase2.2.1: Z=A;_ U Apy
Construct The DAG of Figure 4 where i is an arbitrary node other
then j-2,.., k+1, k+2. Such an i always exists for n27. Once
again, S holds, but I(Aj, Aj_ |\ A1, Ayy is false, because
Aj_1 U Ag, activate a path (j, k+1, i, j—1, k) between jand k.
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®

Figure 4

Subcase 2.2.2: Z=A,; ;.

The DAGs of Figures 5 and 6, realize S & —[(A;j, Ags1, Ay for the

cases 2< j< n, and j=n+1 or 1 or 2, respectively.

FRT A" TRV O - 66

Figure 5

Figure 6
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In case j=n, I{Aj, Ag1, Agy reduces to I (A,, Ay, Apyy) Which is a
member of VALID.

Subcase 2.2.3: Z=A4;_;.
For j=1 the DAG of Figure 6 realizes § & (A, Apsr, Ag),
while for all other values of j, the statement /(A j»Aj1, Ag) is a

trivial consequence because it is a member of S.

Subcase 2.2.4: Z=0
For j< n the DAG of figure 5 realizes S & ~l(A;, D, A;), while
J=n and j=n+1 yield I{A, D, Ayy1) and I (A4, D, Ay), which
are in VALID.

So far, we have shown that all single non trivial consequences of S are listed in

VALID. To complete the proof, we have to verify that every statement in VALID can-
not be inferred from any proper subset of S.

Consider the statement /(A,, A}, A,41) that belongs to VALID. Let S’ be a
proper subset of S. The following DAG satisfies any §’ not containing [ (An.;, A, A ;)

but does not satisfy the consequence I (A,, A, A,41).

® O

Figure 7
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The other possibility is that / (A,.;, A,, A1) is included in S’ but one or more of
the first n-1 independencies is not. Define m to be the maximal i such that
I(Aj41, Aiy Ais2) is not in 8°. Again, the following DAG satisfies S* but not the conse-

quence [ (Ap, Ay, Ags1) (When m= n—1, only one link between n and n+1 is needed ).

0 OFRIRY 0V

Figure 8

Following similar arguments, the other three statements in VALID, can also be shown
to require all n antecedents of Ro(n). O

We have completed the proof of the following theorem:

Theorem 7: There exists no finite weakly complete (nor complete) set of Horn-axioms
for DAGD models. |
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5. EXTENSIONS OF THE INCOMPLETENESS THEOREM

The non existence of a finite complete set of Horn axioms for DAGD models, still
leaves us with the question of whether one could establish a finite complete set of dis-
Junctive axioms for DAGD models (like that of UGD models). Such a set, though, would
most likely be computationally intractable and would be useful only as a theoretical tool
for studying the properties of the /(x, z, y) relation in the DAGD model. We conjecture
that even disjunctive axioms would not render DAGD models axiomatizable, i.e. a com-
plete finite set of disjunctive axioms does not exist. We emphasize that this conjecture
does not exclude the possibility of a finite weakly complete set of disjunctive axioms for
DAGD models. The concemn of this section is only in the existence of a complete set of
disjunctive axioms while the existence of a weakly complete set remains an open prob-

lem.

Conjecture: There exists no bounded complete set of disjunctive axioms for DAGD

models with the d-separation criteria.

Although, we have not been able to prove this conjecture in general, it can be

shown to hold for a large subset of disjunctive axioms.

Before proceeding, we need the following classification of axioms. An axiom

T1(x11.%12:%13) & - T (X, 1,Xn,2:%n,3) T (V11,¥12:Y13) OF ** - IOm, 1:Ym, 2:Ym. 3)

is a functional-restricted axiom if every set y; j is a result of applying boolean functions
on the sets x; ;. Namely, each y; ; is the result of applying the set-functions: union, inter-

section and negation on the x; ;'s. For example, the weak transitivity axiom:

I, 2, y) & I(x, 20, y)=1(x, 2, Yor I(y, 2, )

is a functional-restricted axiom because all the arguments on the right-hand-side of the

32



implication are functionally dependent on the arguments on the left-hand-side.
Specifically, y that can be written as (zU¥) N — z where both z and zU Y appear on the
left-hand-side of the implication. On the other hand, the transitivity axiom (which does

not hold for DAGD models):

Ix, 2, y)=1I(x, 2z, YorI(y, z, y)
is not a functional-restricted axiom because ¥ is not functionally dependent on x, y and z.

Theorem 8: There is no bounded complete set of functional-restricted axioms for

DAGD models with the d-separation criteria.

Remark: Theorem 8 does not exclude the possibility of a weakly complete set of
functional-restricted axioms for DAGD models, the existence of which remains an open

problem.

proof: This proof uses similar techniques to the ones used in the proof of theorem 7.
Consider the axiom R (1) of lemma 5. It is sufficient to prove that this axiom can not be
reduced to a chain of lower arity functional-restricted axioms. The reason that the proof
of lemma 6 can not be immediately applied is that there, we only showed that all single
consequences need the full set of antecedents S in order to be concluded. However now,
we need to show that all disjunctive consequences has this property as well, else a dis-
junctive consequence might turn R ¢(n) reducible to disjunctive axioms. Thus, for each
disjunction of independency statements & that is not a disjunctive consequence of S, one
needs to find a DAG that obeys S but does not obey the disjunction x. Such a task is in-
feasible because the length of the disjunction in « is arbitrary and an infinite number of

constructions are needed.

33



To overcome this problem we use, for each term T; in , a DAG called D; that
obeys S but does not obey T;. Then we define an operation that collapses the sequence of
D;’s to a single DAG denoted ®D; that obeys S but does not obey x. This construction,
as will be shown latter, is made possible due to the restriction on the axioms to consist
solely of functional-restricted axioms. @D, is the required DAG showing that & is not a

disjunctive consequence of S.

Let A; be the set (ag1,a14, +-- Q¢ m } wWhere a; ; are single elements and Jet
"=l (X1,20.91) or [(x3,23,y;) or - - I (X2, V)
be an arbitrary disjunction of statements using the same attributes of §, Assume that all
terms in % are not members of VALID, otherwise trivialy, © is a disjunctive consequence
of §.

The restriction on the axioms to be functional-restricted constrains the disjunc-
tions & that need to be examined. Namely, the sets x;s, Yi’s and z;’s are all functionally
dependent on the Ag’s. However, the A,’s are a partition on the nodes of @D; and there-
fore negation and intersection can be reexpressed in terms of union only. Thus w.lo.g,
We can assume that each of the x;’s, yi’s and z;’s is a union of some Ap’s. Moreover, due
the decomposition axiom, we can further assume that X; and y; are each equal exactly to
some A;. This is shown in the following argument: if 7 is not obeyed by some DAG D,
then none of its terms are obeyed. By the decomposition axiom, each term can be aug-

mented by a set w; and the resulting disjunction,

R'-_J(XI,ZI,)’I Uw,)or I(x2s221y2U wyor - [(stzms)'m U Wiy

is not obeyed by D. Thus a DAG not satisfying x does not satisfy t* as well.

Consider the following construction of ®D;:
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D, D,

Figure 9: Construction of ®D;.

Ay

An+l

>

o
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®D; is a collection of m disconnected components D;, one for each term in 7. The
nodes of each D;, denoted N(D;), are labeled { @1,i5>a2i, ' Guyy,; }. Thus, each
component D; contains exactly one variable from every 4, (namely, ag ;). In the follow-
ing discussion the term, I (x, z, y) holds in D;, means that
Ix"ND;), znND;), yn N(D))) holds in D;.

D; is constructed as in lemma 5, in such a way that S holds in D; and the i-th
term of %t (namely, I(x;,z;,y;)) does not hold. For example, if [ (xi,z:,y;)) =[{A,A5,A3)
then we use the DAG of Figure 2 so that all members of S hold in D; and
I(a,,;,as,;.a3;) does not hold. Hence, we have used those elements which are in D; o
construct a path between A, and A3 that is d-separated by as;. This path is also d-
separated by A s because all other elements of A 5 reside in components which are discon-

nected from D; (This claim is made more rigorous in lemma 9).

This construction is made possible because the x;’s, y;’s and z;'s are each a union
of some A,’s and therefore have elements in each component D;. These elements are

needed to establish a path, entirely within D; that is not d-separated by z;.
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For example, assume that / (x1,z1,y,)=1(Apn.y, {az2}.A1) (Note that a, 5 is not
functionally dependent on the A,’s). For this term our construction is not adequate. The
elements of D, are not sufficient to realize S and —J(a,,;, »@22,d11), because
1(ay+1,1.0,a1 ) (and 1 (Ap41,9,4 1)) is a consequence of S. Therefore, a link must be
drawn between Dy and D ;. This destroys the disconnectness of the components D; and
therefore, as is shortly shown, no longer can we prove that @D, obeys S. It should be
emphasized, though, that for each disjunction &, even when such terms are present, it is
easy to construct the required DAG. This is the reason for our belief that DAGD models
are indeed non axiomatizable with disjunctive axioms. However, in general, we could
not establish the proof without the restriction on the axioms that excluded the need to

consider such terms.

We now prove that ®D; satisfies S and not n. For this purpose, we present the

following lemma (the proof is given latter).

Lemma 9: Let D be a DAG that consists of m disconnected components D; and let V; be

the nodes of D;. Then, the following two statements are equivalent.
(9.2) I(x, z, y) holdsinD

(9.b) For every i, the projection of /(x, z, y) on D; hoids, namely, the statement
I(xV;, znV; , ynV;) holds in D;.

We employ this lemma in two ways. First, by our construction, every member of
S satisfies (9.b) therefore every member of S holds in ®D;. Second, each term T;of n
has one component in which 7; does not hold and therefore T; does not hold in @D;.
Hence, ® does not hold in @D;.

36



To complete the proof of ﬂwomm 8 we argue that if & has a term 7;_ that is a
member of VALID then it cannot be inferred from any proper subset S’ of S. This is evi-
dently true because for each subset $°, a DAG was constructed (Figures 6 & 7) that obeys
S’ and not T;, . The use of these DAGs in the same fashion described earlier, shows that 1t

is not a disjunctive consequence of any proper subset of S. Thus, the axiom Ry(n) is ir-

reducible to a chain of functional-restricted axioms of lower arity then n. O

Proof of lemma 9: Define x;=xNV;, ymynV,; and z;= z V;. In words, x; means the

projection of x on the nodes of the ith component. Note that since V; are partitioning the

nodes of D, we have x=_; x;, y=_) y; and z= ;.
i i i

(@)=(b): Assume /(x, z, y). We prove that /(x;, z;, y;) holds for all i, Due to
the decomposition axiom (4.b), / (x, z, y) implies that 7 (x;, z, y;) also holds. That is, z
d-separates all paths between x; and y;. It remains to show that also z; d-separates these
two sets. Two cases need to be examined; first, if a path is d-separated because the ex-
istence of an clement of z on it. Then, this element must also be a member of z; because
D; is a disconnected component. Second, if a path is d-separated because none of the ele-
ments of z reside on it (i.e a head to head node) then the removal of some elements of z

leaves this path d-separated.

(a)e=(b): Assume /(x;,z;,y;) holds for all i. Let u and v be two sets each con-
tained in a different disconnected component of D. Then clearly, for each set w the state-
ment /(u,w,v) holds in D. In particular, assign u=x;, w=z; and v=2z; j=i. The state-

ment /(x;,2;,2;) holds for every j, j#i. Using the composition axiom (4.b) we obtain
I'(x;,2;,( Zj}0 ¥;). Applying the weak union property we obtain 7(x;,\_z;,y;) which
i i

reduces to I(x;,z,y;). We now use the assignment u=x;, w=z and v=y; j#ito obtain
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1(x;,2,y;) for every j, j#i. Using composition we obtain [ (x;,z,y). This statement holds
for every i, therefore applying the composition axiom again, we obtain that / x, z, )

holds. O

Note that lemma 9 states that, when a reasoning system based on DAGs is com-
posed of components that are disconnected, then the reasoning can be done separately in

each component.

The next lemma shows that the construction of theorem 8 is made possible only
because we restricted the allowed axioms and thereby restricted the domain of disjunc-
tions of independency statements that need to be examined. In other words, there is no
way to construct an operator @ that produces from a sequence of arbitrary DAGs D;, a
DAG for which an independency statement holds iff it holds for each D;. This lemnma is a
restricted version of a theorem found in ([Fagin 1980]). The original theorem is stated in
a more general terminology that is useful for both relational database theory and Depen-
dency models theory. We supply only the proof of the part that we use, because it is

closely related to the construction of of theorem 8.

Lemma 10: Let M be a set of dependency models. The following properties of

M are equivalent,

(10.a) There is an operation @ that maps families of models into models, such that if o is
an independency statement, and if { M; :ie/ } are models of M, then ¢ holds for
@®<M; : iel > iff o holds for each M;.

(10.b) Whenever Z and { 0; : ie] } are sets of independency statements, then
Gy or Gy or '+ O, is a consequence of L iff there exists an i such that o; is a conse-

quence of Z.
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Proof:

(a)=(b): By contradiction assume ¢, or 6 0r - G,, isa consequence of X and
that each o; is not a consequence of Z. Then for cach o; there exist a model M; that obeys
Z but does not obey o;. Consider the model ©M;. This model obeys I but does not obey

any ¢;, contradicting our assumption that 6; or 6 or - 0; is a consequence of . O

The application of this lemma for DAGD models is straight forward. Consider
the weak transitivity axiom (4.¢) that holds in DAGs. This axiom does not satisfy the
conditions in (10.b). Lemma 10 assures us that an operation @ that meets the require-

ments in (10.a), does not exist for DAGD models.

A dependency model obeying the conditions of lemma 10 is called an Armstrong
relation ([Fagin 1980]). For Armstrong relations the concepts of completeness and weak
completeness are equivalent. This is due to (10.b) which suggests that
Oy or Gy or - Oy is logically implied from I only if some o; is implied from .
Moreover, if a complete (weakly complete) set of axioms exists for an Armstrong rela-
tion then an equivalent complete (weakly complete) set of Homn axioms must exist as

well,

This observation can be exploited to extend the result reported in [Parker and Par-
saye 1980]. They have proven that there is no finite weakly complete (nor complete) set
of Horn axioms for EMVD models. However, EMVD models are Armstrong relations,
because there exists an operation @ that satisfies the requirements of lemma 10 ([Beeri &
Fagin 1977),[Fagin 1980]). Therefore, we can also conclude that there is no finite weakly
complete (nor complete) set of disjunctive axioms for the EMVD model. This result was
never explicitly stated neither in [Parker & Parsaye 1980] nor in [Sagiv & Walecka 1982]
perhaps because it was presummed to be self-evident.
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6. MULTI-GRAPHS DEPENDENCY MODELS

The inability of DAG and UG dependency models to fully represent an arbitrary
semi-graphoid has lend to the following generalization: Instead of one graph over a set of

nodes we consider a collection of graphs.

Definition : [Paz 1987} A Multi Undirected Graph dependency model (MUG) N is a col-
lection of m undirected graphs over a set of nodes U with the following modified vertex-

separation criteria:
I(x, z, y) holds for N iff there exists a graph G in N that satisfies / x, z, ¥)

G satisfies /(x, z, y)iff (1) Zisacutsetofxandyin G

(2) The vertices of G are contained in x\U yuz

As the next example shows, the second condition is essential because a single graph in a

MUG might contain a partial set of U as its nodes.

Example:

Q) (2)
(4

Figure 10: An MUG displaying I (1, 3, 2) and I (1, 4, 2)

In this example 7(1,3,2) and 7 (1,4,2) are the only non-trivial statements that hold while
1(1,34,2) does not hold (due the second condition of the separation criteria), thus, the

strong union axiom (2.c) does not hold in MUGs.



A similar definition of MDAGs is obtained by modifying the d-separation criteria

as follows:
Definition: Let N be an MDAG.
I(x, z, y) holds for N iff there exists a DAG D in N that satisfies / (x, z, y)

D satisfies / (x, z, y) iff (1) Z d-separates x from y in D

(2) The vertices of D are contained in x\U YUz

The main interest in these classes of models is their ability to perfectly represent
an arbitrary semi-graphoid. This is non trivial, because semi-graphoids involve set-to-set
relationships while graph separation is a property that is made up from separation of sin-

gleton nodes, i.c., the composition axiom (4.b) holds.

Definition: A dependency model M is said to be a multi-graph-isomorph if there exists a
mult graph MG = {(U;, E;)} which is a perfect map of M, i.e., for every three disjoint

subsets x, y and z of U, we have:

I(x, 2, y)y <=> Ix, 2, y) MG
Theorem 11: A necessary and sufficient condition for a dependency model M to be
multi-graph-isomorph is that /(x, z, y)y satisfies the three (independent) axioms (the
subscript M dropped for clarity):
(symmetry)

Ix, 2, y)=1(, z, x) (5.2)

(decomposition)
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I, 2,y gw) =1, 2, y) & I(x, 2, w)
(5.b)

(weak union)

Ix, z, yyw) =21(x, z Yw, y)
(5.¢)

Proof: We first show that the axioms in (5) are obeyed by MUGD models. This is due
to the following three properties of these axioms: first, they hold for UGD models.
Second, they are all unary (i.e., have only one antecedent) and third, they do not intro-
duce any new elements in the right-hand-side of the implication. The first property is
necessary because a MUG might consist of a single graph. The second property guaran-
tees that whenever the left hand side of an axiom is obeyed by some MUG N then it is
obeyed by a single graph of N. (contrary to the Contraction axiom (1.d) where each of
the antecedents might be obeyed by a different graph of N, in which case, the conse-
quence need not be represented). Due to the third property, any graph that obeys the an-
tecedent of a unary axiom must also obey the consequence (unlike the strong union ax-
iom (2.d) where the introduction of new elements renders this axiom unsound for MUGD
models as shown in Figure 10). We note that the arguments for the soundness of axioms
(5) for MUGD models are applicable, without change, also for MDAGD models.

The second part of the proof is the construction of a MUG that is a perfect map of
M. This is done in an adaptive manner; for each independency statement o of M we con-
struct an undirected graph G4 that satisfies only ¢ and statements derivable from o. In
other words, if we define ¢/ (G) to be the closure of & under the axioms in (5) then our re-
quirement is that G 4 is a perfect map of ¢l (). To complete the proof we will prove that
the constructed collection of G4 is the desired MUG representation of M.
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Let o=1I(x, z, ). Gq is constructed by removing the links (a,B) where e x
and Be y, from the complete graph (over the variables in xU y\ z), What remains are
three cliques representing the sets x, y and z and the links between the cliques of x, z and

¥, 2. This construction is demonstrated in figure 11.

Figure 11: The construction of Gy(fx, x, X3} {22220 s {91 y2 7))

Our claim is that G is a perfect map of ¢/ (o). First we show that if &’ ecf (o)
then ¢’ holds for G 4. By definition of ¢/ (), we know that o is derivable from o, Let
G=0p, 0y, 03, ‘' O, =0 be asequence of statements generated in a derivation of ¢,
where each o; in the sequence is derived for the previous statements by the axioms in (5).
Since @ is obeyed by G4 and because each of the statements were derived using axioms
that hold in every UGD model then by induction, every o; holds in G 4. In particular, ¢’
holds G 4.

The converse, namely, that 0’ holds for G, implies o’ € ¢l(0) involves a charac-
terization of all statements that hold in G and show that all of them are derivable from

C.

Let I(u, v, w) be an arbitrary statement over the variables in G4. We assume
that u and w are not empty, because, by definition, / (4, v, @) holds in every dependency
model and therefore derivable from 6. We show that if / (4, v, w) holds then it must be

of the form / (x”, zL XU ¥, y”), where X’ x”’, y’ y” are subsets of x and y respectively.
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If u contains an element of x then w must consist only from elements of y, be-
cause otherwise there would be a path from « to w. Since w consists of elements from ¥,
u must be a subset of x. We are left with a statement of the form / (x”, x’u yuz', ¥y
This statement holds iff all paths from x” to y” are blocked and this happens only when
Z’=z. The resulting statement / (x”, zU X'V ¥, y™) is clearly derivabie from o. If u or w
contains an element of z then / (4, v, w) does not hold, because every element in z is con-
nected to all the nodes in the graph. All other cases, namely if u contains an element of
¥ w contains an element of x or w contains an element of y can be proven identically, be-

cause of the symmetric roles of x, y and u, w respectively.

It remains to argue that the collection of these graphs Gy = {GoglCeM}isa
perfect map of M. By our construction, every staternent o’ that holds in G ¢ holds also in
some graph G4 & Gy. Since G4 is a perfect map of ¢l (G) we know that ¢ is derivable
from © and therefore holds in M. Thus, Gy is an I-map of M. The other direction holds
as well. Every statement & that holds in M has a graph in Gy where it holds and there-
fore ¢ holds in G 3. Thus Gy is a perfect map of M. O

Identical result can be proven for MDAGD models. Dependency models that
have a perfect MDAG representation are called multi-DAG-isomorph and are also fully
characterized with the axioms in (5). The only change in the proof of theorem 11 is that
instead of an undirected graph G, we construct a DAG, called D ;.

The construction of D ¢ is very similar and the only change required is to present
directionality on Go. The directions are added in the following way; For every
o€ x, Be yandye z the links (a, ¥) become a—»yand The links (Y,B) become y—f .
All other links, are within the cliques x, y and z, and are assigned arbitrary directions that
leave the corresponding cliques acyclic. This construction is demonstrated in the next

figure.



Figure 12: The construction OfD;({xl X173} {21220+ (3; Y2 ¥5h)

The proof of theorem 11 implies a polynomial algorithm for finding the closure
under the axioms in (5) of an arbitrary set of independency statements. The algorithm
simply constructs the MUG model that represents this closure. The input list itself consti-
tute an economical encoding of the constructed MUG which requires O (k'n) space and
time (k is the number of triplets and » is the number of variables ). Similarly, this algo-
rithm solves the membership problem for MUG and MDAGD models. The problem is to
determine if a given set of independency statements I logically implies a candidate in-
dependency statement G (i.e. to determine if 6 holds in every MUGD (MDAGD) model
that obeys Z). The validity of o is verified by querying the constructed MUG which
represents the closure of Z. This algorithm also implies that given a single statement o
it is enough to apply the axioms (5) in order to get the closure of & under the graphoid
axioms or semi-graphoid axioms. The reason is simple; only a single graph is needed for
representing one statement and this graph is automatically closed under Intersection (1.f)

and Contraction (1.¢) which are the remaining axioms in the graphoid definition.

However, the main importance of theorem 11 is the assurance that every semi-
graphoid (and graphoid) have both a MUG and MDAG representations, because these
classes of dependency models obey the axioms in (5). Two issues arise with this
representation scheme: The first is algorithmic, to efficiently construct a MUG represen-

tation for semi-graphoids that are not given explicitly, but in the form of a given set of
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statements %. The second issue is the amount of space required to store the MUG of an
arbitrary semi-graphoid. Unfortunately, it has been recently proven ([Verma 1987b]),
that any representation scheme, as clever as possible, would require on the average, ex-
ponential amount of space to store a randomly chosen semi-graphoid. Thus, while we
cannot hope to use MUGs or MDAGs as perfect-maps for an arbitrary semi-graphoid, it
is still interesting to explore their effectiveness in representing semi-graphoids specified

as the closure of a modest number of independency statements.

A similar algorithmic problem of finding MUG representations is addressed in
[Paz 1987]. Paz defines a class of dependency models, called pseudo-graphoids, which
consists of dependency models that obey the axioms of graphoids, excluding Contraction
(i.e., Symmetry, Decomposition, Weak union and Intersection ). His algorithm produces
a MUG representation for an arbitrary pseudo-graphoid M, by adding undirected graphs
to an initial MUG until all independencies of M are represented and a perfect-map is
achieved. The algorithm has the desired property that in every step the resulting MUG is

an [-map of M, and in every step a better approximation of a perfect-map is obtained.

Unfortunately, a similar algorithm for generating a MUG representation for
semi-graphoids has not yet been found, though some initial suggestions are given in [Paz
1987). If found, it would render MUG dependency models well suited to represent infor-

mation about relevancies and dependencies.

The use of MDAGsS has not been discussed in [Paz 1987] and it remains for future
research to inquire how MDAGs and MUGs can be incorporated to create more compact
graphical representations.



7. CONCLUSIONS

In this thesis we have presented the concepts of completeness and weak com-

pleteness. We have established the following results:

1) There exists no finite complete set of Horn axioms for UGD models.

2) There exists no finite weakly complete (nor complete) set of Horn axioms for DAGD
models.

3) There exists no finite complete set of functional-restricted axioms for DAGD models.

4) Muld-graphs dependency models (MUGD and MDAGD) have a complete
axiomatization which consists of the following axioms: Symmetry, Decomposition

and Weak-Union.
Related problems which remain open are:

1) The existence of a finite weakly complete set of Horn axioms for UGD models.
2) The existence of a finite weakly complete set of disjunctive axioms for DAGD
models.

The first two results can be classified as "negative”, since the existence of a com-
plete set of Horn axioms in relational database has lead in the past to important resuits. In
[Beeri & Fagin 1977], functional dependencies (FD) and Multi Valued Dependencies
(MVD) were given a complete axiomatization that consists solely of Horn axioms. This
result enabled Beeri ([Beeri 1980]) to solve a problem known as the membership prob-
lem, i.e., to find whether a candidate functional dependency or a multi valued dependen-
cy is implied by a given set of FDs and MVDs. A similar result would, clearly, be impor-
tant for DAG dependency models, i.c., to verify whether a single independency statement
is implied by a given set of independency statements. This paragraph also explains the
importance of the first open question, namely, finding a finite weakly complete set of
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Horn axioms for UGD models.

The similarities between relational database theory and dependency models
theory were intensively used in this thesis. The proof of theorem 7 is similar to a con-
struction found in [Parker and Parsaye 1980). Lemma 9, due to Fagin, was found useful
in clarifying the difficulties we encountered trying to prove the incompleteness conjec-
ture (section 5). These similarities motivate a promising search for a more general setting
in which independency statements are replaced by constraints (i.e., constraints are not
limited to triplets and might, for example, be FDs or MVDs which are characterized by a
pair of parameters rather then by three parameters) and dependency models are replaced
with constraints models that assign truth values to the constraints (for example, a data-
base that assigns truth values to functional dependencies). In such a setting results from
database theory, even those involving dependencies different from our three-place in-
dependency statemcntﬁ. could be stated side by side with results from dependency
models theory, and by that, unify the two seemingly different fields. The results of this
thesis indicate that this is a feasible and a worthwhile effort.

The completeness theorem of section 6 (the forth result) assures that MUGD
models and MDAGD models are able to represent an arbitrary semi-graphoid or gra-
phoid. In particular this means that the most important dependency model for databases,
EMVD, is fully representable by a collection of graphs, directed as well as undirected. It
is surprising that database researchers have not used these graphical representations as a
theoretical or a practical tool. This result motivates a future search for an algorithm that
would efficiently generate multi-graph representations for semi-graphoids, Suggestions
for such an algorithm are given in [Paz 1987] (without a full proof) and our result assures
that the task addressed by Paz is a feasible one.
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GLOSSARY

Dependency modei: A three place predicate 7 (x, z, y) defined over disjoint subsets of
«_:Iei(rnnents of a fixed finite universe. I(x, z, y) stands for "x is irrelevant to y, once z
is known",

Graphoid: A dependency model that satisfies the following five axioms: Symmetry,
Decomposition, Intersection, Weak union and Contraction.

Semi-Graphoid: A dependency model that satisfies the following four axioms: Sym-
metry, Decomposition, Weak union and Contraction.

Pseudo-Graphoid: A dependency model that satisfies the following four axioms: Sym-
metry, Decomposition, Weak-union and Intersection.

Probabilistic dependency model: A dependency model that is defined in terms of a
probability distribution P.

I(x,2,y) <=> P(x,y | 2)=P(x | 2Py | 2)

EMVD model: An Embedded Multi Valued Dependency model is defined in terms of a
database R. / (x, z, y) holds in R iff whenever the wple <X1, Y1, 21> and the tuple
<X2, Y2, 21> appear in the database R then the tuple <x,, y,, z;> appears as well
(x;, y; and z; are instatiations of x, y and z respectively).

Dependency Graph: A dependency model that is defined in terms of an Undirected
Graph (UG) or a Directed Acyclic Graph (DAG).

UGD model: An Undirected Graph Dependency model (UGD) Mg is defined in terms of
an undirected graph G. If x, y and z are three disjoint subsets of nodes in G then
I(x, z, y)g iff every path between nodes in x and y contains at least one node in z.
In other words, z is a cutset separating x from y.

DAGD model: A Directed Acyclic Graph Dependency model (DAGD) M, is defined in
terms of a directed acyclic graph (DAG) D. If x, y and z are three disjoint subsets of
nodes in D, then by definition /(x, z, y)p iff there is no bi-directed path from a node
in x to a node in y along which every node with converging arrows either is or has a
descendent in z and every other node is outside z.

Dependency, independency and perfect maps: An undirected graph G is a dependency
map (D-map) of a dependency model M over variables U if there is a one-to-one
correspondence between the elements of U and the nodes of G, such that for all dis-
joint subsets, x, y, z, of elements we have:

I(x,z, y)y = I(x, z, ¥)g

Similarly, G is an Independency map (I-map) of M if:
Ix, z,y)y &= I(x, 2, ¥)g

G said to be a perfect map of M if it is both a D-map and /-map.
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Independency statement a statement of the form / (x, z, ¥).

Sound axiom: a disjuncrive axiom

Ix,ynL,z2)& ++- & I (X, Yni2n) ST (X1, 91,2 ) 0r -~ or I X\ YmsZm)

is sound for a class of dependency models M if every model in M that obeys the an-
tecedents of the axiom also obeys at least one of the statements of the disjunction on
the right-hand-side of the implication. When m=1 the axiom is said to be a Horn
axiom.

Functional-restricted axiom: An axiom

I(xlvxZaxE’o) & --- I(xn—l 1Xp—1,Xp) => I(yhyl,J’f}) or --- I(ym—lvym-lvym)

is functional-restricted if every set y; is the result of applying the set-functions: un-
ion, intersection and negation on the X;’s.

Weak Completeness: A set of axioms A is weakly complete if for every set of state-
ments X closed under A and for every ¢ £ there exists a dependency model
M5 € M that obeys all statements in I but does not obey ¢ (M is a class of depen-
dency models).

Completeness: A set of axioms A is complete if for every set of statements X closed

under a set of sound axioms A there exists a dependency model M € M that obeys
exactly the statements in X (M is a class of dependency models).
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