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ABSTRACT OF THE DISSERTATION

Architectural Issues in Fault-Tolerant, Secure Computing Systems
by
Mark Kenneth Joseph
Doctor of Philosophy in Computer Science
University of California, Los Angeles, 1988

Professor Algirdas Avizienis, Chair

"It is perhaps surprising that more attention has not been paid to
fault tolerance techniques in order to achieve security in computer—
based systems" [Dobs86].

To this date, multilevel secure computer systéms have not adequately
considered fault tolerance as a design goal. In fact, there is la classical bit of
wisdom among security analysts, which says that, if the computer system stops,
then it is secure since no leakage of sensitive data is possible. However, more
than just the concern for leakage of data is becoming important in secure sys-
tems, and that is that they provide service in the presence of malicious attacks.

This dissertation explores several facets of the applicability of fault
tolerance techniques to secure computer design, these being: (1) how fault
tolerance techniques can be used on unsolved problems in computer security
(e.g., computer viruses, and denial-of-service), (2) how fault tolerance tech-
niques can be used to support classical computer security mechanisms in the
presence of accidental and deliberate faults, and (3) the problems involved in
designing a fault-tolerant, secure computer system {(e.g., how computer
security can degrade along with both the computational and fault tolerance

capabilities of a computer system).

xi



The approach taken in this research is almost as important as its results. It
is different from current computer security research in that a design paradigm
for fault-tolerant computer design is used [Aviz87a}. This led to an extensive
fault and error classification of many typical security threats. Throughout this
work a fault tolerance perspective is taken (i.e., faults, such as design flaws,
are assumed to always exist in a computer system, and that run-time mech-
anisms are necessary to tolerate them).

However, we have not ignored basic computer security technology. For
some problems we have investigated how to support and extend basic security
mechanisms (e.g., trusted computing base), instead of trying to achieve the

same result with purely fault tolerance techniques.
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CHAPTER 1
INTRODUCTION

1.1 THE NEED FOR FAULT-TOLERANT, SECURE COMPUTING

The need for fault-tolerant, secure computing systems is becoming quite
evident (e.g., the SDI application). This has sparked the exploration of the
issues concerning the design of computing systems that possess both attributes.
Fault tolerance and security concerns are not disjoint. For example, security
considerations may prevent the use of rollback to recover from an error
[Turn86].

Attacks on a computer system can take one of three forms: from
completely outside the computing system, from a legitimate, authorized user
trying to extend his or her allowed access rights, and from within the computer
system itself due to design flaws purposely planted by its designers. It should
no longer be acceptable to consider only the classical security concerns of
preventing unauthorized disclosure of sensitive information, and unauthorized
modification of information and programs. The elimination of the effects of
malicious logic must be addressed, and this reveals many similarities to
problems in fault tolerance. Two of these effects that this discussion is mainly
concerned with are, denial-of-service and compromising integrity.

It is envisioned that in the near future most military computer systems will
require both fault tolerance and security properties. Other critical systems
may soon follow {e.g., financial, point-of-sale, and airplane reservations) where

failures, deliberate or otherwise, are potentially unacceptable due to loss of



life, finances, and/or privacy. For example, as of 1987, an average of a trillion
dollars in payments, on a typical day, are exchanged by banks over electronic
telecommunications networks [FRBS87]. This represents a potential financial
disaster if fault-tolerant, secure, and high integrity communications and

processing are not guaranteed.

1.2 SIMILARITIES BETWEEN FAULT TOLERANCE AND COMPUTER
SECURITY

Several authors have observed many similarities and interrelationships
between fault tolerance and computer security [Dobs86] [Turn86]. In fact, in
[Dobs86], denial-of-service is viewed as the classical unreliability problem. For
example, the concept of fault avoidance (i.e., to prevent, through high quality
of hardware and software, the occurrence of faults) can be found in both fault
tolerance and computer security.

In computer security the use of formal verification technology [Cheh83] is
a form of fault avoidance. Formal verification is used to prevent, and to
provide assurances that malicious logic does not appear in secure computing
systems. This parallel is complete, since in both disciplines fault avoidance is
inadequate by itself.

Additionally, the concept of system partitioning is used in both disciplines.
In computer security trusted (e.g., trusted computing base (TCB) [DoD85a]} and
untrusted software are separated in order to prevent the untrusted software
from causing improper service. This is similar to partitioning in the design of
fault—tolerant computing systems. Here, it is also used to prevent errors from
propagating and resulting in improper service. However, the main distinction

between fault tolerance and computer security is that security is mainly



concerned with faults in the fault class of "by intent.” Computer security is
concerned with deliberate faults while fault tolerance mainly addresses
accidental ones [Turn86].

Another important similarity is that malicious logic can be viewed as
deliberate faults (see Chapter 2 and 3). Taking this point of view raises a
question yet to be asked: "Can we apply techniques from fault tolerance to
solve some of the unsolved problems in computer security?” [Jose87] has
started to approach this question and its treatment is included in this
dissertation.

From these obvious similarities the question which arises (and is discussed
in this dissertation) is: "Can one set of concepts and techniques be applied to

fault—tolerant, secure computing systems?" [Dobs86].

1.3 SECURITY AS PART OF THE DEPENDABILITY CONCEPT

In [Aviz86] the concept of dependable computing is refined. Dependability
is defined "“as the property of a computer system that allows reliance to be
justifiably placed on the service it detivers." This is a qualitative property
consisting of the following components: reliability, availability, readiness,
maintainability, testability, and safety.

The achievement of dependable computing is measured via the
performance of a system as perceived by its users. It is one of the main theses
of this dissertation that security is also a component of dependability. This is
also the point of view presented in [Dobs86]. This is due to the observation that
lack of security in specific environments can result in improper service. Thus,
unauthorized disclosure of sensitive information, unauthorized modification of

information or programs, denial-of-service, and compromising integrity can be



viewed as errors resulting from some deliberately placed fault (in hardware,
firmware and/or software). The failure of a system from deliberate faults is

just as dangerous as any others.

1.4 APPLICATION OF FAULT TOLERANCE CONCEPTS TO COMPUTER
SECURITY

[Jose87) was a preliminary investigation into applying concepts from fault
tolerance to two largely unsolved problems in computer security. These
problems are the denial-of-service and compromising integrity threats. Part of
this study revealed that malicious logic can be viewed as deliberate design
faults and that techniques such as N-Version Programming (NVP) [Aviz85a] can
be useful in masking out their effects. Additionally, it was shown that concepts
such as program flow monitors [Osde79], and software safety [Leve86] are also

applicable.

1.5 OBJECTIVES OF THIS RESEARCH

It is the intent of this research to: (a) determine the issues involved in the
design of fault-tolerant, secure computer systems, such as common solutions
and incompatibilities, and (b} to explore the application of concepts from fault
tolerance to eliminate the effects of malicious logic on computing systems.
Experiments with an N-version system were performed to determine the

effectiveness of NVP against malicious logic (see Chapter 5).

1.6 OFF-LINE VERSUS ON-LINE TECHNIQUES
Off-line techniques are directed at preventing the insertion of malicious

logic (i.e., deliberate faults) for a system's entire life—cycle. Examples of



these are formal verification, fault-tree analysis, code reviews, and config—
uration control. On-line techniques include additional software, hardware, and
partitioning methods aimed to counter the effects of malicious logic that has

successfully made its way into a deployed computer system.

1.7 FAULT AVOIDANCE IS NOT ENOUGH

Off-line techniques (which are just instances of fault avoidance methods)
are severely limited in their effectiveness. Malicious logic can be effective
from many locations in a system's software and/or hardware. This large search
space provides many opportunities and makes it difficult to prevent or detect
malicious logic. Current formal verification techniques and tools can
effectively examine only small pieces of software and hardware (e.g., a security
kernel in an Al certified computer system {DoD85al).

One of the main differences between fault tolerance and computer security
is that the later has not fully recognized the limitations of off-line (fault
avoidance) techniques as a serious problem. It is a main thesis of this
dissertation that on-line fault tolerance techniques are essential. As is also
expressed in [Dobs86], run time checks must exist in a system in order to
protect the security of a system from some dormant fault. This is not to say

that off-line techniques are not needed, just that they can be less effective.

1.8 ISSUES IN BUILDING A FAULT-TOLERANT, SECURE COMPUTER
Pioneering work on this subject appears in [Turn86]. The issues explored

were how to make the security mechanisms employed provide proper service in

the presence of faults. Additionally, the impact on security when complex fault

tolerance mechanisms are added to a computing system is addressed. The



significant list of questions posed in [Turn86] are:

O nAre the techniques for achieving fault tolerance and data security fully
compatible? If not, what are the problems, and how can they be
resolved? What tradeoffs are available?”

o "How does the architectural design for fauilt tolerance impact the design
for security, and vice versa? How can the designs be made compatible?"

a "Can data security be gracefully degrading? Can gracefully degrading

systems be data secure? Is there a difference in achieving each?"

1.8.1 CAN ONE SET OF TECHNIQUES SOLVE BOTH PROBLEMS?

It would be cost-effective for a computing system required to be both
fault-tolerant and secure to use one set of mechanisms to achieve both. To
achieve this, both the similarities and incompatibilities between fault tolerance
and computer security must be understood.

[Turn86) explores the question of whether security can be degradable. That
is, as certain security mechanisms become unavailable due to failures can the
remaining mechanisms still provide some level of security (e.g., B2, C2
[DoD85a]). This is an interesting concept and one that would undoubtedly
require proper functional partitioning, and lessons learned from fault tolerance.

It has been alluded to in [Dobs86] [Turn86], and by some preliminary work
done in [Jose87], that fault tolerance techniques can be used to tolerate the
effects of deliberate faults. Deliberate faults have a parallel problem in
computer security that being malicious logic which includes Trojan horses
{DoD85a], denial-of-service threat, compromising integrity threat, and others.
Also, the addition of fault tolerance mechanisms to a secure system adds to the

deliberate faults possible. One such example, is the deliberate invocation of



false fault alarms, thus causing some degree of denial-of—-service [Turn86].
Certainly, software cannot be guaranteed to be error free, therefore, run
time checks should be added to provide assurances of correct operation. Thus,
instead of relying on only fault avoidance, computer security (e.g., trusted
computing base) can use design diversity to handle accidental design faults

[Dobs86].

1.8.2 INCOMPATIBILITIES

In order to actually use one set of techniques for both problems the
incompatibilities of both must be determined. Again, [Turn86] has the most
recent list. First, many security violations will not be able to be recovered by
backward recovery techniques. Once sensitive data has been compromised,
bring the system back to a previous state is irrelevant. Another example of
where backward error recovery is ineffective, is in firing a missile. Only
forward recovery, such as self-destruct is effective here.

Adding fault tolerance mechanisms to a secure system can significantly
increase its complexity. Complexity makes it much more difficult to provide
assurance of the security of a system. For instance, the fault tolerance
mechanisms may provide new covert channels [DoD85a] for data leakage, and
new locations for Trojan horses [Turn86) (see Chapter 4).

Often fault tolerance requires maintaining multiple copies of data and/or
performing multiple computations with voting. In security the more copies of
sensitive data that are around the more vulnerable is that data to disclosure,
thus violating the computiﬁg system's security policy {Hsia79].

Lastly, for secure systems which handle muitiple levels of secure data

(muitilevel secure) only highly trusted mechanisms are allowed to access all



levels of sensitive data. This restriction prevents sensitive data from one
sensitivity level from being copied into data of another, likely violating the
security of the system. Most fault tolerance mechanisms will have access t0
data at several security levels, thus requiring it to be trusted. The assurances
needed for this type of trust are expensive, difficult to prove, and very time

consuming to perform.

1.9 AN EXERCISE IN FAULT TOLERANCE OR COMPUTER SECURITY?

It is likely that the fault tolerance community of researchers will view this
research as an exercise in computer security. This should be due to the fact
that fault tolerance does not typically deal with deliberate faults, which are
addressed in this work. On the other side of the coin, it is also likely that the
computer security community of researchers will view this work as an exercise
in fault tolerance. This should be due to the fact that this study does not
explicitly concentrate on security policies nor security models.

However, this work represents research in both specialties. This can be
justified because the discussion herein mainly takes a combined view of the
problem (i.e., it does not discuss fault tolerance or computer security
separately, but interrelates the two). Also, the references that were relied
upon for this work represent some of the most fundamental work in both fault
tolerance and computer security.

Specific reasons why this research is an exercise in fault tolerance are: (a)
a fault tolerance perspective is used (i.e., fault avoidance is not enough), (b) a
fault, error, and failure analysis is performed and is a basis for addressing
security threats (see Section 3.2), and (c) standard fault tolerance techniques

(e.g., program flow monitors for error detection) are applied to counter security



threats, and to propose design choices for fault-tolerant, secure computers.
Specific reasons why this research is also an exercise in computer security
are: (a) a wide range of typical security threats (e.g., covert channels, computer
viruses) are addressed, (b) some standard computer security techniques (e.g., a
trusted computer base (TCB) [DoD85a]) are used along with fault tolerance
mechanisms, and (c) some fault avoidance techniques typically used for
computer security (e.g., formal verification) are advocated to be used according
to there limitations (e.g., formal verification is only effective on small pieces

of code) and are complementary with fault tolerance mechanisms.

1.10 A NOTE TO THE PROSPECTIVE READER

The research contained in this dissertation involves advanced concepts in
both the computer science subfields of fault-tolerant computing and computer
security. Throughout this discussion concepts from each subfield are freely
intermixed. As such, this can make it difficult for the reader, without the
proper technical background in both subfields, to follow the discussion.

It is envisioned that the readers of this work will have a technical
background in fault tolerance or computer security, but not both. There is no
desire, nor anything gained, by making this dissertation tutorial in nature, since
substantial background material exists in the open literature. However, some
help for the prospective reader is essential. In this vein, it is strongly
recommended, that the reader review, read, and use as a constant reference,
the following references on fault tolerance [Renn84) [Aviz86], and on computer
security [Denn82] [DoD85a] [Gass88]. Additionally, glossaries of important

terms and concepts are included on fault tolerance and computer security.



CHAPTER 2
INTERACTIONS BETWEEN FAULT TOLERANCE AND MALICIOUS LOGIC

The techniques presented in this chapter are only for highly critical
systems. They address the threat of a malicious, but presumed to be trusted,
engineer inserting malicious logic into the computing system he or she is
developing or maintaining. We do not agree with the basic definitions of closed
and open security environments presented in [DoD85¢, Appendix C]:

A closed security environment includes those systems in which both
of the following conditions hold true:

a. Applications developers (including maintainers) have sufficient
clearances and authorizations to provide an acceptable presumption
that they have not introduced malicious logic.

b. Configuration control provides sufficient assurances that
applications are protected against the introduction of malicious
logic prior to and during the operation of system applications.

An open security environment is basically the opposite of this.

We believe that no clearance is enough assurance to prevent the insertion
of malicious logic. Additionally, some implementations of configuration control
can be bypassed by the trusted engineer (e.g., making code changes to previ-
ously frozen versions). The justification for this viewpoint is that even people
with the highest clearances "sell out.” Perhaps the most famous of these cases
is the Walker espionage case [Bamf86]. These cases have been sO numerous
that, for example, 1985 was labeled "The Year of the Spy" (i.e., many Ameri-

cans in sensitive positions sold out to foreign powers). The malicious logic

threat (though not called that) has already made its way into the popular press
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[Boor87], concerning its insertion into military software, especially the SDI. We
prefer techniques that severely limit the trust of any system or application,

hardware and software.

2.1 A MULTI-PRONGED DEFENSE

Malicious logic can disrupt a computer system's normal operation from
many locations in its software (i.e., application and operating system code)
and/or hardware. This large search space provides many opportunities and
makes it difficult to prevent or detect malicious logic insertion by malicious
engineers. A multi-pronged defense, composed of off-line and on-line tech-
niques, is proposed to reduce the risk posed by malicious logic. Off-line
techniques (e.g., verification) are directed at preventing the insertion of
malicious logic for the entire life-cycle of software and hardware. On-line
techniques (e.g., execution monitoring) attempt to counter the effects of
malicious logic that has successfully made its way into a deployed computer
system.

All the on-line techniques presented in this chapter are completely
application dependent, whereas the off-line techniques can be more general.
The reason for this lies in the fact that the on-line techniques are used in single
threat—countermeasure pairs, whereas each off-line technique can cover many
threats.

Tradeoffs of performance versus the degree of risk are essential and should
be carried out from the onset of a project. Additionally, to determine the
effectiveness of a chosen collection of ad hoc techniques, an error seeding
approach directed by penetration teams could be used. Each of these topics is

examined in this dissertation.

11



Other recent work addressing protection techniques against malicious logic
appears in [Denn86] [Pozz86] [Sche86] [Lai88]. These techniques could be used

in conjunction with those presented here.

2.2 PROPERTIES OF MALICIOUS LOGIC

It is useful to extend the notion of malicious logic, as held by the security
community, by giving it a fault tolerance definition. As such, malicious logic
can be defined as deliberate design, specification, or algorithm faults, and
computer virus er'rorsl (see Section 3.4.2) implanted in a computer system with
the intent to cause loss or harm to the user (a human or another system). This
new definition provides a perspective that motivates the use of fault tolerance
approaches to counter malicious logic in all its forms.

Classical examples of malicious logic are Trojan horses, trap doors, and
computer viruses. However, other forms of malicious logic are a more general
threat than these examples. Specifically, malicious logic can be similar to trap
doors, but can cause harm from many places in the system, not just from the
TCB (some security mechanisms will be placed outside the TCB, see Section
2.2.3). Also, it can be similar to Trojan horses, but to be effective it does not
have to contain an added hidden function, it just has to force a malfunction of
the software or hardware's intended function, and it can be implanted by a
trusted engineer. Two possible effects of malicious logic, which are addressed
throughout this dissertation, are denial-of—service and compromising integrity.

It should be noted, that in [Turn86] the deliberate nature of faults was

1This is a fault tolerance characterization of viruses. The virus error is
the modification of a program. Any subsequent malicious actions by the virus
code (e.g., deleting files), are errors propagated from the initial error stage.
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mentioned and that such faults are believed to be very complex. Thus, design
faults, accidental or deliberate, are a shared problem for both fault tolerance
and computer security.

Malicious logic is designed to avoid detection by both off-line and on-line
techniques. To escape detection by off-line techniques, malicious logic is
typically hidden in the complexity of the system's software and/or hardware
(i.e., large size, sophisticated algorithms, confusing software and/or hardware
layout). For example, in software this can be done by the use of multiple levels
of macro calls, and by the deliberate use of improper and tricky coding
practices (see Chapter 5 and Appendix B).

To hide from on-line techniques, malicious logic can try to create errors
which appear to be results of naturally occurring faults. For example, mali-
cious logic could deliberately cause errors in network messages by flipping bits
after a checksum has been calculated, or by simply using an incorrect check-
sum, to achieve a higher error rate and to impair the performance of the
network.

Malicious logic need not cause major system malfunctioning to be effec—
tive, since just discrediting confidence in a system can be very disruptive (e.g.,
the SDI [RADCS87]). Under this scenario, malicious logic can be simpler than

usual, and thus, likely easier to hide.

2.2.1 DENIAL-OF-SERVICE THREAT

As presented in [Glig83] [Glig85a] a service is a general term used to
represent the ability to access data, the ability to access programs (e.g., to
edit), the ability to execute programs, and the ability to use hardware resources

(e.g., a network path, a printer, a CPU). Of course, this includes that access to
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any object has first been authorized.

The correct functioning of a process or hardware component (e.g., for
missile targeting, bank account transactions) is a service. If the process mal-
functions due to some deliberate malicious act, then the proper functioning of
that process is denied to the using subject. [Glig83] terms this a "misbehaved
service,” but limits the deliberate act to a malicious user exploiting flaws in
access mechanisms or policies in order to modify the service (e.g., a computer
virus). By analogy, the correct value of a data item is also a service (e.g.,
forcing stale, that is, old data into a file [G1ig83D).

Denial-of-service is a failure, with the property, that at the service
boundary the intended user is prevented, for some amount of time [Glig83],
from using the computing system as was specified. This can take many varied
forms some of which include: the hoarding of system resources (e.g., CPU,
memory) so they are not available when needed, incorrect operation (e.g., never
allowing a user to invoke an editor), locking out all accesses to part of a data-
bése, omission of action, timeliness of action (e.g., doing something too late),
and forcing the machine to completely stop functioning. In short, many
different types of errors can result in this same type of failure.

Definitions, examples, and derivation of fundamental principles of denial-
of-service in operating systems and computer networks appear in [Glig83]
[Voyd83] [Cerf85) [Glig85a] [Voyd85b] [DoD871 [Yu87] [Yu88]. It is important to
recognize that several of the ideas presented in [Glig85a] support the applica-
tion of fault tolerance concepts to the denial-of-service threat. These ideas
include the detection of, and recovery from, denial-of-service (see Section

3.4.1).
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2.2.2 COMPROMISING INTEGRITY THREAT
In [Port85] several definitions for integrity in a security context are
presented, the pertinent ones are:

1. How correct (we believe) the information in an object is.

2. How confident we are that the information in that object is
actually from the alleged source, and that it has not been altered
from its original form.

3. How correct (we believe) the functioning of a process is.

4. How confident we are that the functioning of a process [or any
software or hardware] is as it was designed to be.

5. How concerned we are that the information in an object not be
altered.

Each item above is referred to by: "integrity " Integrity~2 and integrity-5
are classical concerns, since these are what the current state—of-the-art can
ensure [Biba77] [Voyd83] (GC84].

[Port85] later continues with the very interesting statement that "..., we
first eliminate integrity-3 and 4, until we have a way to deal with design
jssues.” Integrity-1 is also bypassed for approximately the same reason.
However, through the use of fault tolerance techniques we plan to demonstrate
that integrity-1,3, and 4 can be supported. Integrity-3 and 4 from a fault
tolerance perspective involves ensuring proper service of a function (software
or hardware) with respect to a defined fault class. Integrity-1 can be partially
provided by preventing a failing function from generating incorrect data (e.g.,
for missile targeting).

So we designate the items integrity-1, 3 and 4 as ensuring “integrity of
function and data." Two examples of violations to be avoided are: inaccurate
(old) data deliberately placed into a database, and incorrect actions (e.g., fire a

missile at an ally). In Section 3.2, we go into detail to define a set of examples
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which delimit these concerns.

RELATION TO OTHER INTEGRITY CONCERNS
Integrity of function and data is not the classical integrity concerns pre-
sented in [Biba77] [Voyd83]. Those address the unauthorized modification of

programs and data, and the authentication of a data item's source (i.e., integ-

rity-2 and 5 above). (See definitions of integrity level, integrity policy,
integrity simple condition, and integrity *-property [pronounced star property}

in the glossary for computer security terms and concepts.)

The integrity concerns presented in [Clar87] [WIPC87] are relatively new to
security technology and so a brief description is needed. Basically, this type of
integrity can be viewed as data (can be extended to all objects) being controlled
by a type manager. The data is encapsulated by the type manager in the
following ways: (a) operations on a data item can only be performed by
programs defined by the type manager, (b) an accessing user (can be extended
to all subjects) has limited access to those operations defined by the type
manager (i.e., in [Clar87] users are allowed to execute only a few of the defined
operations in order to prevent fraudulent manipulation of the data), (c) an
operation can define additional constraints on its use (e.g., what time of the day
it is allowed), (d) the integrity of the encapsulated data item is periodically
validated by verification programs, which are also defined by the type manager
(i.e., they detect an invalid state), and (e} the type manager must be protected
from unauthorized modification (i.e., its programs and control data).

Essentially, this type of integrity policy restricts what a user (subject) can
do to data (object) that it is authorized to modify. This is not possible in the

Biba integrity policies. (Of course, it also prevents unauthorized access.)

16



It is also the aim of integrity of function and data to prevent any software
and/or hardware that is authorized (or unauthorized) to modify an object in a
malicious way. It goes beyond the type manager approach, because it addresses
the design correctness of the operations on data provided by the type manager

by the use of run~time mechanisms.

2.2.3 TRUST IN NETWORK SECURITY

Trust that components of a computer system will not violate its security
policy is relied upon to build current day secure systems. Typically, such trust
is backed by assurances of correctly built components (e.g., development in a
closed security environment, use of formal verification). However, the current
viewpoint on the degree of trust needed to protect against loss of integrity and
denial-of-service in networks is excessive and is not adequately ensured.

The following excerpt from [DoD87, pp.149-150}, for class B3 and Al
secure computer networks, states this over reliance on trust.

It should be clear that some integrity and denial of service features
can reside outside the NTCB. [Network Trusted Computing Base]
Otherwise all software in a network would be in the NTCB. Every
piece of software that has an opportunity to write to some data or
protocol field is "trusted" to preserve integrity or not cause denial
of service to some extent. For example, it is necessary to "trust"
TELNET to correctly translate user data, and to eventually transmit
packets. FTP also has to be "trusted" to not inappropriately modify
files, and to attempt to complete the file transfer. These protocols
can be designed, however to exist outside the NTCB (from a protec-
tion perspective). It is beneficial to do this type of security engi-
neering so that the amount of code that must be trusted to not
disclose data is minimized. Putting everything inside the NTCB
contradicts the requirement to perform "significant system engi-
neering ... directed toward ... excluding from the TCB modules that
are not protection critical,” .... If everything has to be in the TCB
to ensure data integrity and protection against denial of service,
there will be considerably less assurance that disclosure protection
is maximized.

This excerpt indicates that the notion of a NTCB and the use of trust are
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inadequate solutions to the possible effects of malicious logic in a network
context. This occurs for the reason stated in Section 1.7, that is, the relevant
logic that could cause integrity or denial problems is just o0 big for current
fault avoidance techniques to be effective. Thus, to protect against such

threats fault tolerance techniques, as presented here, are required.

2.3 APPLYING FAULT TOLERANCE (ON-LINE) TECHNIQUES

The application of fault tolerance techniques to the problem of malicious
logic is derived from the observation that its effects can be classified under the
fault class of "by intent." This class of faults includes both accidental and
deliberate faults.

On-line techniques include additional software, hardware, and partitioning
methods aimed at preventing the effects of existing malicious logic in a
deployed computer system. It would be useful if, during execution, these tech-
niques could also explicitly determine the location of such logic. Once located,

it could then be targeted for removal as soon as possible.

2.3.1 CAN THE EFFECTS OF MALICIOUS LOGIC BE MASKED OUT?
N-Version Programming (NVP) is an approach that aims to provide reliable
software by means of design fault tolerance fAviz85a). N > 2 versions of one
program are independently designed and implemented from a common specifi-
cation {or even from two or more specifications). All N versions are executed
concurrently, typically on an N-processor computer system. During execution,
the versions periodically form a consensus on intermediate results and on the
final result. As long as a majority of versions produce correct resuits, design

faults in one or more versions will be detected and masked out. The strength of
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this approach is that reliable computing does not depend on the total absence of
design faults.

A natural extension of this approach is to employ NVP to maintain the
integrity of function and data by masking out the incorrect outputs of
deliberate design faults. The probability of identically behaving versions of
malicious logic appearing in a majority of the N versions of programs is
diminished due to the independent design, implementation, and maintenance of
multiple versions (i.e., planting more than one mole [malicious engineer] in
many environments, especially a classified one, is difficult).

In Section 2.3.3, and 3.4 an extensive look into the characteristics of and
solutions to the denial-of-service threat are presented. Here, it is appropriate
to introduce the idea of using NVP against denial-of-service. Instances of
denial-of—service threats which involve the hoarding of system resources (e.g.,
CPU time, disk space) may be prevented by NVP. The specification(s) of the N
versions must clearly state a set of restrictions that all versions must adhere
to. For example, it can be specified that a version can have only a limited
number of open files and/or child (forked as in UNIX)2 processes. (Each child
consumes CPU time, main memory, and disk space.) Now, the voting mech-
anism used in NVP can be applied to a version's actions, such as system calls
made, rather than to generated data values only (see Section S.1.1). Thus, if
less than a majority of versions try to obtain excess resources, the remaining
versions will prevent such hoarding by masking out the resource requesting
system calls.

It is important to note, that voting on a version's actions should not exces—

2UNIX is a trademark of AT&T Bell Laboratories.
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sively decrease the possible diversity between versions. This is an important
consideration, since an N-version system may be used in an application that
requires both fault tolerance and computer security. This issue is discussed in
Chapter 5.

A new instance of the denial-of-service threat may be possible for 2VP
systems. Malicious logic need only be placed in one version, and would be
designed to deliberately cause the two versions to disagree. Typically, a
majority of versions is needed in order to produce a result. Thus, continued
disagreement could cause some degree of denial-of-service.

At least two solutions exist for this new problem. The above example
emphasizes an important feature of most NVP systems, that of masking. Only
when N is greater than or equal to three can incorrect actions be masked out.
Thus, one solution is to prohibit the use of 2VP systems.

Another solution is to use a hybrid form of NVP and Recovery Blocks
[Aviz84] [Aviz85a] to prevent the malicious version from voting and forcing a
disagreement. This is done by adding trusted self—checking code (i.e., the
acceptance tests used in Recovery Blocks [Rand75]) to both versions. Accept-
ance tests are additional program statements that are used to test whether a
section of code performs as it was specified. Each time the malicious version
failed an internal acceptance test its outputs would be ignored, thus preventing
the denial-of-service. Such a hybrid form has already been shown to be effec-
tive for handling non-deliberate design faults in NVP systems [Aviz84].

It is noteworthy that NVP also addresses completeness which is part of
integrity concerns, and timeliness of action. Several versions ensure (through
consensus decision) that all specified actions are performed. A timeout mech-

anism at all decision points prevents prolonged periods without action (e.g.,
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slowing down a computer system can lead to denial-of-service [Glig83]).

Additionally, the acceptance tests in the hybrid form of NVP and Recovery
Blocks could attempt to distinguish deliberate and non-deliberate design faults.
Thus, detection of deliberate design faults could be used to trigger an alarm
notifying the appropriate authorities. It appears that more than just masking
out design faults is needed if locating deliberate design faults is also desired. It
should be made clear that in general all design faults are important. However,
the discussion in this chapter concentrates only on deliberate ones.

NVP is application dependent in two ways. First, determining how much,
and which parts, of a software system will be built using NVP may be different
for each application. Second, if used against denial-of-service threats, then
restrictions placed in the specification(s) will likely be different for many

applications.

BACKGROUND DEVIOUS ACTIONS

| Can a Trojan horse, inadvertently used by an NVP system, perform devious
actions in the background while producing valid results to be voted on? The
following points can be made.

First, the whole idea of NVP is that many of a version's actions (e.g., calls
made as well as data generated) are voted on (via some decision function).
Thus, these background devious actions will either be masked out entirely or
severely limited. An obvious tradeoff between degree of risk and performance
exists here.

Second, input to each version of an NVP system needs to be obtained from
different sources. If each version obtains the same bad data, then the masking

capability of NVP could be defeated. By analogy, if each version of an NVP
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system calls one version of a common program that contains a Trojan horse,
then masking out its devious actions will not be possible.

Third, a multi-pronged defense is advocated. Thus, a collection of on-line
and off-line techniques should be used. If one technique fails to detect and
prevent a devious action then it is hoped that others will catch it. This concept
is very similar to the idea of hierarchical error recovery in fault tolerance

[Wens78] [Renn84].

2.3.2 CAN THE EFFECTS OF MALICIOUS LOGIC BE DETECTED AND
RECOVERED FROM?

In this section we examine several techniques which could be used to
detect malicious behavior from any software in a computer system. Addi-
tionally, for these techniques to be effective they must include provisions for

recovery from the undesirable effects of malicious logic.

SOFTWARE SAFETY

Software safety techniques [Leve85] [Leve86] have been applied to safety
critical systems. An entire system view is taken in applying these techniques
(i.e., both computer and non-computer hardware). System conditions which
could lead to unsafe failures, called hazards, are hypothesized. Fault-tree
analysis is used to locate where, if at all, in the system's software these series
of conditions could occur.

Safety assertions are used to detect hazards and are a form of the accept-
ance test used in Recovery Blocks. Safety assertions are placed in the software
along with recovery routines which are used to restore a system to a safe

operating or fail-safe state. The strength of this method is in the total system
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view taken.

These techniques are also applicable to prevent the effects of malicious
logic. A typical example of denial-of-service is an overloaded use of a
system's processing resources (e.g., CPU time). Here the unsafe failure state is
denial-of-service, while the hazard is the overloaded processing.

Assume (for this example) that fault-tree analysis determines that in the
executive's scheduler this hazardous state could be observed. To counter this
threat, the safety assertion appearing in Figure 2.1 could be placed in the
scheduler.

assert underload: if utilization <= max_limit
on failure do
assert diagnosis1: [condition]
assert diagnosis2: [condition] od

Figure 2.1 Safety Assertion to Detect Overioaded System Use

When the "underload" assertion becomes false, special recovery routines will be
invoked via the "on failure do" clause. These routines are application dependent
and can be grouped in a safety executive as described in [Leve85].

To handle this possibly intentional overload condition the recovery routines
would preempt running application tasks.3 This should continue until the load
on the system's computing power decreases to a point where real work can

progress.

MONITORS

Let us consider a large banking institution's transaction processing system

3Essential security functions, such as audit, should never be preempted in
such a manner.
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as a target of malicious logic. In the peak of business activity, the bank's
computer network of automated teller machines and mainframes is forced into
a self-test operational mode. These tests could require such a significant
amount of computing power that the bank's computers are unable to process
any significant number of incoming transactions.

This situation could result in a large financial loss to the bank in question
[WSJ87]. In fact, the bank could be held for ransom, such that its computers
would occasionally be rendered inoperative unless a sum of money were paid.
To counter this particular threat and, possibly, others like it, a trusted comput-
ing base (TCB) can be defined that mediates actions which are meaningful at
the application level [DoD85a, p.67). Access to objects involves not only reads
and writes, but how and when application and operating system functions are
invoked. Here, programs are the objects, and access to them is equated to their
execution.

Now, invocation of the self-test function can be accomplished only after
the TCB scrutinizes the request. All such potentially damaging use of basic
system functions can be placed behind this defined security perimeter. All
requests which are disallowed can then be viewed as auditable events. This
technique requires defining a different security perimeter for each application.
The potential for misuse of system functions is typically different for each
application.

The signature concept used in program flow monitors (PFM) {Mahm88] can
be extended in order to prevent incorrect actions of a program on data items.
To do this, each of the defined data manipulation functions (e.g., remove
network packet header) is given a unique signature; for example, a sequence of

bits in a bit vector. Also, each data item is initially given an empty signature.

24



The result of a sequence oi_‘ data manipulations is a combination (i.e., logical
AND) of all the performed functions' signatures stored in the data item's
signature.

For each sequence of acceptable data manipulations, an associated
sequence of acceptable signatures exists and is stored in the PFM. That is, one
signature exits for the result of each data manipulation. At the application of a
data manipulation function, the PFM precomputes what the resultant signature
will be if the operation is performed. This precomputed, dynamically generated
signature is tested by the PFM to see if it represents a valid signature. If the
signature is not acceptable, then the data manipulation is not performed and
some response depending on the particular application is necessary (e.g., audit-
able event, drop packet).

To strengthen this approach, the number of times that the same function is
applied to a data item can also be encoded in the signatures [Osde79]. This is
done by treating a data manipulators's signature as a number and adding it to
the data item’'s signature. However, a problem with this, is that an invalid
sequence of data manipulations can generate a valid resulting signature sum.
For example, given signatures with values 2 and 3, three applications of the
data manipulation with signature 2 will result in the signature sum of 6, which
could be misinterpreted as two applications of signature 3 (i.e., assuming that
three applications of an operation with signature 2 is invalid).

To handle this problem two conditions must be met: (a) one signature
cannot be a multiple of any other, and (b) invalid applications of a data manip-
ulator cannot generate the same sum generated by a valid sequence of opera-
tions. To achieve condition "a,” requires all data manipulation signatures to be

relatively prime. For condition "b," all common multiples of each pair of signa-
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tures are disallowed, or one of the multiples before a common multiple is
disallowed (i.e., given signatures 2 and 3 as above, either 6i or 4i is disallowed,
where i = 1,2,3,...).

An example of where this can be used is a network protoco! function that
removes a packet header. Correctly functioning protocol software should
remove the header only once. However, malicious logic may try repeatedly to
remove the header in order to obtain a packet's data. Assuming that the
protocol software is not authorized for access to the packet's data, such access
would generate an invalid signature. Thus, program flow monitors can be used
to ensure the integrity of function and data. This could also be viewed as just

another example of part of a TCB, as mentioned above.

2.3.3 REDUCING THE RISK OF DENIAL-OF-SERVICE IN COMPUTER
NETWORKS BY USE OF REDUNDANCY

The scheme presented in this section is specifically designed to prevent
some of the intruder-generated denial-of-service [Glig85a] attacks possible in a
computer network. An intruder could be an authorized user of a switching node
(e.g., IMP in ARPANET) and/or of a gateway, malicious logic such as a Trojan
horse program in a switch, or even a party tapping a communication link. An
attack could involve the deliberate flooding of a network path with packets,
and/or the deliberate dropping, delaying, or modification of packets.

The basic idea is to deliberately transmit duplicate network packets in 2
datagram network, at the same time, and on different routes in order 1o
prevent an attacker from denying message delivery from any source to any
destination host. The standard sliding window protocols used for flow—control

in the transport layer (e.g., TCP [Cerf74] [DoD83a)), will automatically accept
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the first valid message (i.e., in TCP a byte stream) while ignoring all
deliberately transmitted duplicates. Obviously, this scheme is only applicable
to networks that contain multiple paths between most of the nodes in the
network. Typical networks with this property are long-haul ARPANET type,
and multiconnected local area networks such as the rings presented in [Ragh85].
It is also immediately obvious that the duplicate packet scheme could cost
a great deal in network bandwidth and buffers. Therefore, two specific appli-
cations are foreseen for its use. First, some high priority communications have
a well defined time limit of significance. For example, a network packet
indicating the Japanese attack on Pearl Harbor would have had a small real-
time limit, after which a military response would have been too late. Second, it
is noted in [Cerf85] that for a network to recover from denial-of-service all
forms of network control (e.g., routing update packets, checksums) must be
protected from subversion. Thus, control packets can be transmitted using the
duplicate packet scheme (and are also given a sequence number). The cost of
the duplicate packet scheme is too high for general use in a computer network.
A similar scheme of transmitting duplicate packets on different network
routes appears in [Koga82]. This scheme differs from the one presented here in
the following ways: (a) in [Koga82), each packet is fragmented into several
blocks, and transmitted over a different route, (b) each of these blocks is
transmitted redundantly (2 copies) again over separate routes, (c) no considera-
tion is presented on how to implement such a scheme with typical long-haul
network protocols (as is done here), (d) the scheme presented in this section,
would use encryption techniques rather than packet fragmentation to prevent
information disclosure, and (e) [Koga82] is not specifically concerned with

maliciously caused denial-of-service in communication networks.
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TYPES OF THREATS ADDRESSED

The duplicate packet scheme addresses all cases of denial of message
delivery due to dropping or delaying of packets. However, it does not address
message stream modification (see active wiretapping definition 2), and thus,
must be used with the schemes presented in [Voyd83}] [Voyd85a] [Voyd85b].

Physical attacks directed towards causing denial of message delivery on a
geographically dispersed network would be relatively easy. These attacks
include sabotaging (e.g., destroying) switching nodes, telephone switching
stations, microwave stations, and telephone lines that can make up a network.
Additionally, it covers tapping of communications links. Active taps could be
used to increase link noise in order to corrupt data packets traveling on
telephone lines. Local area networks which span an entire building are
certainly targets for a mole working inside an organization. Ethernet cables
are typically wired unprotected in false ceilings.

Attacks originating from a user or malicious logic in a switching node could
delay a packet past its allowed time to live, as in IP [DoD83b], for example.
Initially, it seems that basic retransmissions could overcome this deliberate and
malicious loss of packets. However, an attacker could achieve denial of
message delivery by dropping, delaying, or modifying enough packets in a row so
that the combined retransmission times add up to the time needed to achieve
the denial. In fact, in the ARPANET, a datagram can repeatedly traverse the
same route over several retransmissions, thus, allowing repeated attacks on the
same packet by a stationary attacker. To defeat the scheme in this section
would require intercepting all the duplicates transmitted on different routes, a
feat not likely to be easy.

Deliberately flooding a particular part of a network [Glig85a] could also
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result in dropping and delaying of packets due to the burden on network
resources and to flow—control mechanisms limiting traffic. This attack could
be effective in denying one or more network routes from being used, but would
be unlikely to prevent all duplicates transmitted from reaching their
destination. This again assumes a network with sufficient multiple paths so
that at least one duplicate packet could be routed around the congested area.
If this is not the case, then denial of message delivery would occur. This is not
to say that the duplicate packet scheme is to replace standard flow--control
mechanisms [Gerl82). It is used to supplement them in the presence of
deliberate faults.

It seems unlikely that some type of priority scheme can be devised so that
packets generated to deliberately congest the network would be dropped. The
reason for this, is that, there is no guaranteed distinguishing factor between
packets that indicate which were maliciously transmitted. Schemes based on
learning that certain hosts contribute excessively to network congestion will
likely be too slow to prevent the denial-of-service. Additionally, the attackers
could periodically move around the network.

A nice feature of deliberately transmitting duplicate network packets, is
that multiple concurrent attacks could be countered at once. As long as one of
the packets reaches its destination the attack is defeated. An interesting
observation to make is that we can view the duplicate packet scheme from a
fault tolerance perspective. Then, we can characterize it as tolerating
multiple, coincident, deliberate faults by the use of redundancy of data, the
sliding window protocol, and message stream modification protection mech-
anisms to ignore redundant and corrupted packets.

The duplicate packet scheme will not by itself be able to counter network--
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wide attacks. An example of this is if all the outgoing links from one source
host are destroyed. Another example is when every or most nodes in the
network are programmed with malicious logic which is designed to prevent
packets from one source to reach a particular destination (or any variant of this
[e.g., all packets from one source are to be dropped]).

Traditional routing algorithms will route packets around down sites and
even congested areas of a network [Gall77] [Tane81). What is of importance
here, is the time it takes to achieve packet delivery in the presence of deliber-
ate physical and logical faults. If detection of transmission loss and rerouting
are fast enough to guarantee packet delivery, in a malicious environment, and
before some defined maximum time, then the scheme presented here is

redundant.

DELIBERATELY TRANSMITTING DUPLICATE PACKETS

The implementation approach chosen is designed to keep the fact that
duplicate packets are being sent transparent above the network layer. The
network layer is chosen to handle transmitting duplicate packets in order to
ensure that each packet is sent over a different route. The obvious advantage
of this approach is that no protocol above the network layer need be modified
(e.g., TCP [DoD83al).

The scheme is as follows. First, the source host transport layer protocol
(TCP) hands a message (segment) to the network layer interface. If necessary,
the network layer protocol (e.g., 1P [DoD83b]) will break the message into
several network packets (i.e., transport layer messages can be several packets
in size, or may even be of equal size). Second, the network layer protocol is

extended to transmit the packet repeatedly the required number of times (i.e.,
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up to the number of different routes to the destination). A distributed, adap-
tive, multipath, network layer routing algorithm, similar to the one presented in
[Gall77], routes each duplicate to the destination host over separate paths.
Third, at the destination host the sliding window protoco! used by a transport
layer connection only accepts the first valid received message, while simply
dropping all the duplicates.4

In the multipath routing algorithm, each switching node has a routing table
that can contain several outgoing link entries for each final network destina-
tion. For example, to destination B the three outgoing links Ll’ L2' L3 could be
used. Associated with each Li entry, is a fraction (F) of traffic that would be
transmitted over that link towards the final destination, and where } F = 1 per
destination (e.g., B: (Ll' 10), (LZ' .50), (L3, .40) ). At each switching node, the
routing decision is made that picks one of the outgoing links to transmit the
packet on. Thus, if several duplicates cross paths at an internal switching node
they would again be transmitted along different paths, if possible. This would
occur if the multiple paths between a source and destination are not completely
disjoint. (If the network layer supports source routing [e.g., IP at the gateway
level], then path intersections may be minimized.) Setting F evenly among each
outgoing link will evenly distribute the duplicate packets over all available
paths.

Sliding window protocols allow several packets (bytes of a message for
TCP) to be in transit and unacknowledged at the same time. This is done by

defining a subset or window of sequence numbers for packets (or bytes) in

4No'ce, for example, that TCP will treat deliberate duplicate byte streams
the same way as accidental duplicates.
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transit out of a defined maximum range of sequence numbers. The window
moves along the range of sequence numbers as acknowledgements for packets
are received. This window defines which packets and how many packets can be
sent and received at any instance in time [Cerf74] [Tane81]). After a valid
packet is received any duplicates that arrive with an identical sequence number
will be outside the receive window, and thus, simply dropped.

Since the multipath routing algorithm is distributed (i.e., each switching
node builds its own routing tables based on periodic updates of network state
from neighboring nodes [Gall77)), it is resistant to single point of failures and
intruder-generated denial-of-service. Obviously, central site routing algo-
rithms are susceptible to denial-of-service (i.e., switch over to a back up
routing site may take too long).

Additionally, the routing algorithm could be extended to use a subset of the
available multiple paths between a source destination pair. Periodically, a
different subset of paths could be switched to in order to prevent an attacker
from being sure which paths were currently being used. Switching to alterna-
tive routes could be signaled on certain routing information updates.

The duplicate packet scheme presented above can be used by itself, or
incorporated with a detection of denial of message service mechanism as
presented in [Voyd85a] [Voyd85bl. Once the "request-response" protocol
detects the denial-of-service, the duplicate message scheme could be used as
part of the recovery action. This will ensure that subsequent message
transmissions will not be denied. After some time interval, duplicate message
transmission can be automatically turned off, until the next denial-of-service

detection.
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2.4 APPLYING FAULT AVOIDANCE (OFF-LINE) TECHNIQUES

Off-line techniques are used to remove malicious logic throughout the
entire life-cycle (e.g., the development, testing and maintenance stages of a
project). Removal of malicious logic follows its explicit detection in the
software or hardware of a computer system.

These techniques are applied to all types of software in a computer system
(e.g., both operating system and application code). In particular, the on-line
security mechanisms chosen to protect a system from attacks are themselves
targets for malicious logic insertion. The trust placed in these mechanisms
must be validated. This can be done by one or some combination of the follow-
ing methods: fault-tree analysis as mentioned above, formal verification,

testing, simulation, and code reviews.

2.4.1 WEAKNESSES OF CURRENT FORMAL VERIFICATION TECHNOLOGY

In designing secure computer systems, it is important to understand the
limitations of all available security technology. This measure of effectiveness
can aid in guiding the degree of reliance on each security mechanism or assur-
ance. This section highlights several limitations of current formal verification
technology applied to software and hardware. The overall purpose of this
section is to dispel any belief that verification (fault avoidance) is a panacea to
all computer security problems.

First, the current accepted practice of formally verifying the TCB, does
not include verifying system initialization nor built-in-test code. It is simply
assumed that formal verification should only prove that from an initial secure
state all following state transitions are security-persevering. However, this

ignored software is a perfect location for malicious logic insertion. It is
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important to note, that whereas code correspondence (i.e., matching parts of
the specification to the actual code) identifies all code not contained in the
specifications, it does not analyze this code in detail.

If malicious logic was disguised to appear as valid software or part of valid
software (see Chapter 5), then it may go undetected by the code correspond-
ence process. For example, malicious logic can take the form of a simple extra
term added onto a pre—existing and correct equation. This extra term would
contain a simple trigger (e.g., x10 is a variable alternating between 0 and 1 in:
correct equation + (x10*5.0)), which would control when the equation's result
will be incorrect. Another example, could be to force an off-by-one error in a
program loop of the initialization code. If a descriptor based machine was used,
for example, then this could be designed to write a privileged descriptor over a
less privileged one when the system was booting up and configuring access
rights. This off-by-one error would also be trigger enabled. Whereas, the
above examples could be detected by verification, they will be hard to find by
inspection.

Second, to ensure that malicious logic could not be the cause of certain
undesired system states (e.g., denial-of-service), large amounts of software and
hardware would have to be verified. This is currently beyond the state-of-the-
art and will be for some time [Wing86] [Youn87]. Additionally, wanton use of
this technique is very likely to lead to extremely expensive developments.

Third, program handling tools such as compilers, editors, and loaders, are
currently not themselves verified. As such, they can easily insert malicious
logic into the code that they manipulate, thus bypassing formal verification
assurances [Thom84] (see Section 3.6).

Fourth, specifications used for formal verification are an abstraction of
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the actual implementation (both for software and hardware). This provides the
possibility that malicious logic in the implementation is missed, either by
human error or due to detail being abstracted away.

Fifth, recent experience has shown that the act of writing a formal
specification and performing the code correspondence, uncovers many existing
flaws or design faults. Far fewer are found by the actual proof process.

Sixth, what happens to the assurances provided by formal verification as
the computer system changes throughout its life time? As parts of the system
are changed (both software and hardware), parts of the formal proofs must be
redone. In a real world environment of deadlines this runs strongly counter to
schedules. If not carefully controlled, then the result can be more abstraction
as the pressure to do the best possible job in the time allotted is pursued, rather
than performing the complete job.

Seventh, problems with current hardware formal verification technology

for computer security are presented in Section 3.6.

2.4.2 THE USE OF FORMAL VERIFICATION TECHNOLOGY

Current formal verification techniques and tools can effectively examine
only small pieces of software [Youn87] (e.g., a security kernel in an Al certified
computer system [{DoD85a]). If the security mechanisms used are too large,
then formal verification can be done on selected pieces.

For NVP, formal verification or any validation method should be concen~
trated on the support software, since this is where malicious logic could have
its effects. For example, parts of the DEDIX [Aviz85a] [Aviz85b] (DEsign
DIversity eXperiment) system developed at the UCLA Center for Experimental

Computer Science should be formally verified (e.g., the voter logic). If each
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version of the support software was itself from a diverse design, then the
importance of verification could be reduced.

For software safety techniques, the safety assertions and recovery routines
are candidates for formal verification. Finally, the same extensive methods

used for TCBs seem to apply to all types of monitors.

2.4.3 TESTING

Malicious logic could be designed to trigger on particular state conditions
(e.g., the date, or number of enemy targets seen) [Myer80]. The trigger could
also be disabled until a command was sent enabling it. This enabling command
could simply be a sequence of legal but odd system requests (e.g., one hundred
health status system requests in a five-minute time interval) (see Section 5.2.3).

Standard testing methods would likely be ineffective in locating such
malicious logic, since they would probably miss enabling the triggers. There-
fore, new testing approaches aimed at detecting possible enabling command
sequences (i.e., channels) and trigger devices should be used. This requires a
separate test plan from the normal functional testing.

In addition, the use of independent testing teams from alternate contrac-—
tors has been shown to increase testing effectiveness. Component testing, at
the module level by the independent teams, also seems necessary, since testing
at only the device level is of insufficient depth for our purposes.

Alternatively, computer security surveillance technology may be effective
in detecting suspicious actions used to enable triggers during normal system
operations [Denn86} [Clyd87]. This system monitoring would be useful if it can
be done in real-time (i.e., both data collection and analysis) with reasonable

performance impact, high detection coverage, and small detection latency.
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2.4.4 CONFIGURATION CONTROL

Very strict configuration control software and procedures are essential.
This will help to ensure that malicious logic is not added after all tests are
made to ensure its absence. To guarantee that proper procedures are followed,

surprise inspections could be used in order to monitor the developer.

2.4.5 CODE REVIEWS FOR MALICIOUS LOGIC

It is a straightforward extension to perform code reviews specifically to
discover malicious logic. This review process should be done by teams in order
to ensure its validity. Reviews are conducted during the development process
rather than afterwards by penetration teams.

These last two techniques (i.e., configuration control and code reviews) can
go a long way to prevent insertion of malicious logic into a computer system. It
is this author's opinion that they should always be a part of the selected

off-line techniques.

2.5 TRADEOFFS

It is frequently difficult to satisfy all the desired objectives of a system
(e.g., performance, security, fault tolerance, compactness, etc.). Since re-
sources are always limited, it is essential to decide from the onset of a project
the amount to dedicate to security concerns. Resources are both computer
resources, such as millions of instructions per second, and project resources,
such as a budget to perform verification.

To determine the amount of resources to dedicate, an acceptable degree of
risk from the threats posed by malicious logic must be defined. Tradeoffs

should be performed between security and other desired system objectives using
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a defined and acceptable degree of risk as a control on the investment in secu-
rity mechanisms. Of course, in order to perform these tradeoffs, some idea of
the costs and effectiveness of the proposed security mechanisms must exist.

Additionally, an analysis of the proportion of off-line versus on-line tech-
niques to be used in the total security budget should be performed. Decisions of
this type can be made based on the cost, effectiveness, and performance impact
of each approach. For example, NVP can be very expensive in development and
maintenance. Therefore, widespread use of this technique in certain software
systems may be unlikely. Instead, it could be used selectively, as determined
from a tradeoff study (see definition of selective redundancy in the glossary of
fault tolerance terms).

Obviously, off-line techniques have the advantages of not affecting per-
formance, weight, or power (i.e., attributes of the physical computer system).
However, on large software programs or hardware components, their effec-
tiveness may be too limited. This is evident from experiences with current

formal verification technology.
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CHAPTER 3
FAULT-TOLERANT, SECURE COMPUTING SYSTEMS

3.1 FAULT, ERROR, AND FAILURE IN SECURE COMPUTER SYSTEMS

The closest term to fault in computer security jargon is "flaw."” This is
defined as "An error of commission, omission, or oversight in a system that
allows protection mechanisms to be bypassed" [DoD85a). Clearly, this only
includes design faults and not physical faults that can manifest themselves in
computer hardware. Current computer security requirements and technology
only deal with physical faults in a very superficial way. The following two
excerpts from [DoD85a], under operational assurances, is the only treatment of
this issue:

System integrity - hardware and/or software features shall be
provided that can be used to periodically validate the correct
operation of the on-site hardware and firmware elements of the
TCB.

Trusted recovery — procedures and/or mechanisms shall be pro—
vided to assure that after an ADP [Automatic Data Processing]
system failure or other discontinuity, recovery without a protec—
tion compromise is obtained.

System integrity is a requirement for secure computer systems throughout the
class range of Cl to Al, while a trusted recovery requirement is only neces-
sary for classes B3 and Al.

The problems with this limited treatment of physical faults are as follows:

(a) system integrity has typically been interpreted as built-in-test on power up
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and reset, (b) such diagnostics are ineffective in detecting transient, and not
very effective for intermittent permanent faults, and (c) trusted recovery has
typically been interpreted as a secure reboot, not the recovery from the effects
of errors. Even current research in hardware verification [Bevi87] addresses
correctness only in the absence of faults.

An error in the fault tolerance sense, that results in compromise or
unauthorized modification, cannot occur in secure computer systems currently
in use or being built. Such a security relevant error would be a violation of a
computer system's security policy (i.e., the specification of its security
requirements), and would thus be a system failure! In secure systems, an error
is immediately a failure whether or not a user has observed improper service at
a service boundary. This is true by definition and use of security policies such
as mandatory and discretionary access control [DoD85al. (Note, that we are
only addressing unauthorized disclosure of information and/or modification of
information or programs.)

An example should make the above clear. Let two files exist in a secure
computer system, file A at Top Secret, and file B at Secret. Lets suppose that
due to some fault (physical fault in hardware, hardware or software design
fault, accidental or deliberate) some of the Top Secret information from file A
ends up in file B at Secret {thus a violation of the *-property [DoD85a}).
Whether or not any Secret user has read the Top Secret data in file B or not,
this error is immediately a failure of the security mechanisms of the system.

As discussed in [Turn86], the only fault tolerance technique that seems to
be compatible with the security perspective discussed above is fault masking.
This way the error never occurs, in the security sense, as long as the masking

mechanism is not overwhelmed by errors. Clearly, another way to express this
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absence of errors in secure systems is that computer security techniques
require fault avoidance. As soon as a fault manifests itself into a security
relevant error a secure system will fail. Yet, another way to express this as
done in [Turn86], is that security relevant errors are likely to be unrecoverable.

An exception to the above concerns is the unauthorized modification of
data or programs in which there is a unharmed backup copy. For example,
modification of network packets or data packets sent to a device. When the
modification is detected (e.g., a cryptochecksum is invalid) it can be recovered
from by retransmitting a copy of the original packet. Additionally, unautho-
rized modification of programs can be detected in the same way and recovered
by simply obtaining another copy from a backup on disk. If a ROM with no
backup is damaged by some deliberate hardware fault, then this will cause an
immediate failure. Likewise, any modification of data values in a secure
computer system seem likely to eventually lead to failure of its security
mechanisms.

[Turn86] suggests a less strict interpretation of the standard application of
security doctrine. A security relevant error will turn into a failure only if a
compromise occurs. For example, in our file example above, the Top Secret
data in file B (remember this is due to some fault) is only a failure of the secure
system when a Secret user reads that data in file B, thus compromising it. This
is closer to the fault tolerance notion of error, and thus, allows the application
of other fault tolerance techniques than just fault masking.

To allow this approach, extensions to the accepted security policies and
models of today (e.g., Bell-LaPadula Model) are needed (see Section 6.4.2).
This seems inevitable for secure systems to provide proper enforcement of

security policies in the presence of all types of faults with other than fault
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masking. Whereas, fault masking may be effective, total dependence on it can
be very costly.

Specifically, current computer security technology relies on fault avoid-
ance for the proper construction of a trusted computing base (TCB) [Dobs86],
which is composed of both hardware and software. The trusted computing base
encompasses all of the security mechanisms of a computing system. Its trusted
components (e.g., security kernel, trusted processes (subjects) [Bell75] [GC84]
[DoD85al) are relied upon to provide proper service with respect to a system's
security policy. This trust is validated via fault avoidance technology, which
includes: formal specifications, software and hardware verification, testing, and
code reviews. If a design fault (accidental or deliberate) exists in the TCB of a
deployed system, then that system will likely fail since the TCB is void of any
fault tolerance mechanisms. An example, of the lack of fault tolerance mech—
anisms in security relevant hardware, is the hardware implementation of a
reference monitor {DoD85a] in the Secure Ada Target (SAT) [Boeb85b]
[Boeb85c] (this is now called "LOCK" [Sayd87], and will be called this through-
out the remainder of this dissertation).

Secure systems tend to have more self—checks, or acceptance tests, than
normal computer systems. These acceptance tests are designed to enforce a
security policy, and thus, scrutinize the actions of less trusted code, but not the
actions of the TCB itself. These extra acceptance tests are likely to catch
several errors resulting from both hardware and software faults that regular
systems would fail on. However, by no means do these tests come close to
providing the fault tolerance desired. The faults caught in this way will likely
be mistaken, for at least a short time, as security violation attempts. One such

example of this, are the restrictions placed on information flow in the Bell and
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LaPadula model [Bell75). When this is implemented in a secure system any
fault, which causes or aids a subject to violate this security policy, may be
caught by one of the numerous acceptance tests that enforce it. (Notice, that
such restrictions on information flow set up error containment barriers to pre-
vent the leakage of information.) However, since these defenses where not
designed to cope with physical and design faults some of these security viola-
tions are likely to go unnoticed.

Additionally, security requirements are directed at ensuring that the TCB
is functioning correctly. If faults occur that leave the TCB functioning
correctly, then they are of no concern to the security mechanisms of a system.
Only faults that can compromise the TCB, directly or indirectly, are impor-
tant. Now, if we enlarge our security concerns to include denial-of-service and
integrity of function and data the above restriction changes. The rest of a
computer system (i.e., even outside the TCB) is now important in order to

provide proper service.

3.2 FAULT, ERROR, AND FAILURE CLASSIFICATION OF SECURITY
THREATS

Fault Environments for a Secure System

The entire life—cycle of a secure computer system must be covered
[Myer80]:

1. Development: requirements, specifications, algorithm design, hardware

and software design, and implementation.

2. Pre-deployment: engineering changes, maintenance.

3. Deployment: maintenance (hardware, firmware, and software), and new

releases.
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Fault Classes for a Secure System

1. Malicious Logic-—deliberate faults: computer viruses, Trojan horses,
trap doors, software design faults, hardware design faults, algorithm faults, and
specification faults (the first 3 cases are design faults, which have specific
names assigned to them in the security literature).

2. Accidental—nondeliberate faults: (i.e., classical security concerns
—flaws) software design faults, hardware design faults, algorithm faults (e.g.,
crypto algorithm not adequate), specification faults, requirements faults (e.g.,
in the last 2 cases, insufficient security policy and/or models), and physical
faults.

3. Covert Channels—deliberate, accidental, or unavoidable faults; these
can be thought of as breaks in the error isolation boundaries of a multilevel
secure system (i.e., imperfect coverage of the security mechanisms): storage
covert channels, timing covert channels, and tempest (i.e., the study and
control of spurious electronic signals emitted from ADP equipment [DoD85al}).

4. Interference—deliberate faults: radiation, physical attack, overloading
input, and jamming.

5. Interaction—deliberate or accidental faults: hardware or software
maintenance (e.g., insertion of malicious logic), and operational (e.g., improper
system initialization, see Figure 3.8). This fault class describes the situation
where an authorized, trusted user (i.e., human) performs actions against a

defined security policy, and is termed the "Insider Threat" [Clyd87].

Error Classes for a Secure System

1. Unauthorized disclosure of sensitive information, examples: (1) access-

ing data in a file system, computer’'s state (e.g., register file), or data base, (2)
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intercepting authorized communication in transmission channels, (3) having
authorized access but performing unauthorized dissemination, (4) unauthorized
execution access to programs [Glig83], and (5) issues in database security, such
as, inference [Denn82], aggregation, and penetration [Henn86).

2. Invalid modification of objects:

Unauthorized modification of information, progr:ams,1 and hardware
(includes firmware) (i.e., these are classical integrity concerns {Port85]), (1)
making changes to data values or programs [Shir81]}, (2) intercepting communi-
cations, making changes, and then retransmitting [Voyd83], (3) loading data or
programs into the system during run time, and (4) computer viruses errors.

Preventing fraud and errors [Clar87], (1) a user must be prevented from
manipulating data in an arbitrary manner, even if given modify access to it, and
(2) a user must be prevented from performing all subactions of a well defined
transaction for fear that he/she will do so to commit fraud (see Section 2.2.2).
Manipulations must be constrained in ways that preserve internal consistency of
data, since multiple data items may be used to derive the state of a real world
object.

Note, that if either unauthorized modification or preventing fraud and
errors are extended from a user to a subject (i.e., include software and/or
hardware actions), then there is overlap of this error class and class 3 (see
Figure 3.15 b).

3. Integrity of function and data:

In i f functi n2 (i.e., proper service or design correctness, how

correct the functioning of a process is [Port85], software and/or hardware

1Includes database queries before invocation.
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authorized to perform a specified function, but maliciously provides incorrect
service—authorized misuse), (1) performing the wrong functions, performing
functions the wrong number of times, and/or in the wrong order, (2) per-
forming actions that a function was not specified for (i.e., added functions), (3)
omitting functions, lack of completeness, (4) generating incorrect r'esu]ts,3 {5)
providing erroneous input to a function (e.g., switch order of parameters), (6)
producing outputs without inputs (i.e., arbitrarily) [Ezhi86), (7) producing
outputs too early or too late, and (8) performing functions during the wrong real
world time (e.g., wrong time of day, wrong day in the week, wrong quarter of
the year).

Integrity of data (i.e., how correct information in an object is [Port85]), (1)
a subject (i.e., just hardware and software subjects) authorized to modify a data
item, but maliciously does so resulting in an incorrect data item [Shan77, p.61]
(e.g., using old data), (2) data from the wrong source, improper authenti-
cation, (3) structural integrity of data structures (i.e., the correct manipulation
and state of a data structure, for example, the incorrect removal of an entry in
a linked list) [Tayl80], (4) accuracy, precision, completeness, timeliness, and

consistency, and (5) obviously, loss of integrity of function can result in loss of

2An interesting instance of a possible malicious attack to cause a loss of
integrity of function in databases appears in [Henn86). The integrity of data-
base queries have several facets: (a) proper query interpretation, the requested
information is what is actually returned (i.e., loss of data, wrong data), and (b)
malicious logic insertion into a query when it is translated into database
actions. In case "a," the desigh correctness of the database operations are in
doubt, and in case ™b,"” the correctness of the translator is in question.

3 TR
For example, false alarm indication from hardware and/or software error
detection mechanisms.
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integrity of data.

4. Denial-of-Service: is when "a group of authorized users of a specified
service is said to deny service to another group of authorized users if the
former group makes the specified service unavailable to the later group for a
period of time which exceeds the intended (and advertised) service MWT"
(Maximum Waiting Time) [Glig83]. That is, denial-of-service is a lack of
guaranteed access to a shared service.

"Guaranteed access ensures that authorized users cannot prevent any other
authorized users from accessing shared data, programs, and hardware resources.
... In more general terms, no authorized user is able to deny the access of any
other authorized user to a shared service" [Glig83].

The above definitions, and a scheme for detecting denial-of-service based
on setting a watchdog timer [Glig83), imply that another authorized user does
not actually have to be waiting for the service for denial to occur. Just the
fact that a service is inaccessible is sufficient.

In [Glig85a], it is presented that loss of the integrity of data results in
denial-of-service (access) to that data. In [Glig83] [Glig85al, many examples of
denial-of-service not caused by integrity are given (e.g., incompatible or
inadequate resource control algorithms and policies). Thus, not all denial-of-
service instances are caused by loss of integrity. Also, [Glig85a] defines
denial-of-service as occurring only when services are shared. However, we
extend this to include denial of specified behavior of any software and/or
hardware (i.e., loss of integrity of function, and thus, is integrity-based). We
call this “insider-generated" denial-of-service, since it is caused by deliberate
design faults, and requires no interuser dependency. In fact, [Glig83] includes a

"misbehaved service"” as a denial-of-service, because the specified service is
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unavailable, even if it performs in the MWT. However, he limits it to the case
of a service being modified by an intruder (i.e., another instance of intruder-
generated denial-of-service), that takes advantage of some flaw in the access
mechanisms or policies (e.g., computer viruses). In [Neum78}, denial-of-service
is defined as maintaining the integrity of a resource.

5. Spoofing: (1) trick a system into doing something it should not do (e.g.,
enemy gives the system commands or status information), and (2) trick user to
believe that the enemies’ system is the real system.

6. Learning a system's capabilities: in SDI, the Russians learn through
small engagements what the system can and cannot do.

7. Traffic analysis of networks.

Fault and Error Relationships
A fault appearing on the left hand side implies, that at least one particular
instance of a fault from that class can cause that error, NOT necessarily

that all can.

FAULT CLASSES: ERROR:

Malicious Logic

Covert Channels Unauthorized disclosure of sensitive
Accidental (e.g., flaw) information

Interaction (e.g., operational)

Malicious Logic

(e.g., trap door, virus) Unauthorized modification of
Accidental information, programs, and hardware
Interaction

Malicious Logic
Accidental Integrity of function and data
Interaction
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Malicious Logic

Accidental Denial-of-Service
Interaction

Interference

Malicious Logic Spoofing
Accidental

Accidental Learning a system's capabilities
Interaction

Malicious Logic Traffic analysis of networks
Accidental

The rest of this section presents the remainder of the fault, error, and
failure classification by the use of a standard fault and error classification
procedure [Aviz87a], and by the use of fault trees. Tables 3.1 and 3.2 contain
the standard classification with its key provided below. Figure 3.1 presents a
graphical characterization of a computer virus fault and error. Figure 3.2 to
3.13 present the fault trees for all the security threats presented above. Figure

3.14 and 3.15 describe the relationships between errors.

KEY: Elements of a Fault Classification [Aviz87a])

By Count: Single(S) Versus Multiple(M)

By Origin: Physical(P) Versus Human-Made(H)

By Activity: Dormant(D) Versus Active(A)

By Intent: Accidental(A) Versus Deliberate(D)

By Duration (of activity): Transient(T) Versus Permanent(P)
{or Intermittent(I))

By Extent: Local(L) Versus Distributed(D)

By Value: Fixed(F) Versus Variable(V)

By Time (multiple): Coincident(C) Versus Separated(S)
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By Consistency: Time(T) Versus Value(V)
By Cause (multiple): Independent(I) Versus Related(R)

XEY: Elements of an Error and Failure Classification
ERRORS:

By Count: Single(S) Versus Multiple(M)

By Manifestation: Latent(L) Versus Detected(D)

By Form: Identical(l) Versus Similar(S) Versus
Distinct{D)

By Cause: Independent(I) Versus Common(C)

By Nature: Value(V) Versus Time(T) Versus
Consistency{C)

FAILURES:

By Consequence: Ordinary Versus Catastrophic
(Benign Versus Malign)
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C

Executable file

RAM
Fault

> O

fault —»error—®fault—®error
The computer virus error propagates.

1: Initially a computer virus can be a special Trojan
horse that injects the virus into a computer system
[Pozz86]. This is a deliberate design fault.

2: e.g., the virus writes to an executable file, or
unprotected part of RAM such as a process's stack
space in the Intel 8086 processor.

Figure 3.1 Computer Virus: A Fault and an Error
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Computer Virus (fau!t)1

|

Loss of Integrity of System design flaw
function and data (e.g., DAC inadequacy)

\/

Unauthorized

modification of
2 programs :
Computer Virus (error)
/ + - \
5 \3
Deniat / 4 v Unauthorized
of Spoofing disclosure

Service

1: Initially a computer virus can be a special Trojan
horse that injects the virus into a computer system.
This is a deliberate design fault.

2: Infection property (i.e., error propagation), or loading
a program into a privileged domain (i.e., gain of privileges).
3: e.g., insert use of a covert channel.

4: [Glig83, p.140]: "...it is possible that a malicious user
can modify the intended service behaviour in a non-
obvious way by exploiting design flaws in the service
access mechanism or policy. ..misbehaved service..”
[Cohe84]: place all infected executables into an

infinite loop, thus resulting in CPU resource denied.

5. e.g., computer virus runs before original program,
and pretends to be the original program.

Figure 3.2 Fault Tree for a Computer Virus
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Trojan Horse

System design flaw Losé of Integrity of
(e.g., DAC inadequacy) function and data
+
1‘/ \ 5
Unauthorized Unauthorized Unauthorized
disclosure modification of modification of
information, and programs
programs
4
Denial Unauthorized Computer
of disclosure Virus
Service

1: e.g., dissemenation via covert channel [Lamp73]

[Scha77] [Loep85].

2. Add functionality which does not cause denial-of-
service directly, e.g., trap door insertion [Thoma84).

3. Includes unexpected and malicious side effects [Denn82].
4: e.g., a Trojan horse can change the discretionary access
rights for all (or part) of the subject's objects, so that the
Trojan horse's owner can access then at any time [Down85].

Figure 3.3 Fault Tree for a Trojan Horse
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Requirement Faults
#1 - inadequate sharing policies,
#2.3 - inadequate concurrency control {(policies),
#3.2 - combinations of incompatible policies.

Alqgorithm Faults

#2 - inadequate sharing mechanisms,

#2.1 - inadequate bounds on resources (example b-
bad mechanism design of processor sharing, example
d- inadequate enforcement {circumvention] of
resource bounds, and example f- inadequate
handling of resource-bound exceptions),

#2.2 - inadequate access control mechanisms (example
b- built-in system dependency on user's behavior
[a good general example of inadequate access control
is discretionary Trojan horses [Down85] 1]),

#2.3 - inadequate concurrency control (mechanisms),

#3 - combinations of seemingly adequate sharing
mechanisms and policies,

#3.1 - combinations of mechanisms (example a-
legitimate denial of service, example b- concur-
rency and recovery control}, #3.2 - combina-
tions of incompatible (mechanisms).

Design Faults
#2.1 - inadequate bounds on resources (examples a, b,

c- deliberately improper use of sharing mechanism
[i.e., authorized user is not specified to take all
of the available resources [Jose87] ], example e-
inadequate handling of resource - bound exceptions),
#3.1 - combinations of mechanisms (example c-
incompatible conventions).

Non-classified Cases

Examples *"a* and "c" in section 2.2 - inadequate
access control mechanisms, does not seem to fit in
any fault class (example a- built-in user depen-
dency on other users' behavior, and example c-
built-in system dependency on user's behavior).

Table 3.3 Classifying denial-of-service examples from
[Glig83] into fault classes. Each "#" above
is an example from [Glig83, Appendix A].
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~srrrsrpsunsn s

CAUSES ‘ Loss of

) —

_ I Integrity
Denlal yortrrretnntEn R nnnn
of
Service Note, integrity used here includes the

unauthorized modification of information
and programs, as well as, the broader
meaning of correctness of function and
data.

All cases of loss of integrity result in some form of
denial-of-service, since some service is denied to a

user. However, not all cases of denial-of-service are
caused by loss of integrity [Glig85a]).

(a)

Integrity of function and data

Software and/or
hardware's actions

Unauthorized modification of

o rcz information, programs, and

i hardware, and invalid authentication
=9 [Biba77] [Voyds3].

o

£8

C w

o @

2

o o User's

actions
User's

actions

Figure 3.15 Error -- Error Relationships
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3.3 CRITICAL STATE FOR A SECURE COMPUTER SYSTEM

Before we start to devise detection and recovery schemes to handle both
deliberate and accidental faults in a fault-tolerant, secure computer system,
we must first define what its critical state is. This is the state that must be
protected for an effc_active recovery to be possible. Once this last element of
the characterization of faults and their effects is obtained then detection and
recovery schemes can be devised.

The following definition of fault-tolerant security helps identify the
critical state: "The security function is fault-tolerant if, despite of faults in
the system [a reasonable set of faults to protect against must be defined, since
protection against all faults is impossible], the security decisions correctly
enforce the system's security policy, the associated decision support data (i.e.,
identifications, security labels, access rules) remain correct, no sensitive data
are erroneously released, no covert channels are introduced, and no denial of
service event takes place.” [Turn86].

Critical state is composed of the following elements:

1. Encryption Keys [Denn82] [Wu87): (a) data—encryption keys (likely to
have different keys per security level of data), (b) key—-encryption keys or the
master key(s)—most (or groups) of other keys are encrypted in the master.

2. Access control data is used to enforce discretionary access controls
[Denn82] [Down85]. Every object (e.g., can be a network connection) in the
system has a list of subjects and their allowed access rights. Objects cannot be
accessed (read/write/execute) without checking the defined access rights first.

3. Security level data is used to enforce mandatory access controls and is
implemented by security labels. Every subject and object in a computer system

must have one (i.e., the actual extent of this depends on the class of secure
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system [DoD85a]). For a subject to access an object both must have valid labels.

4. Unauthorized modification control data is used to ensure only authorized
modification of information and programs. Biba's integrity4 levels [Biba77],
and LOCK's type enforcement are possible implementations. Important aspects
of this critical state are: (a) integrity levels are implemented by integrity labels
[GCR4], and (b) type enforcement is implemented with a type and domain indi-
cation for each object.5

5. Subject identification data is used to identify a user of the computer
system for access control purposes, and audit of actions. Examples are, pass-
word files (i.e., authenticates a users authorization to use the system), and user
jogin names.

6. Unmodified copy of TCB code is essential, any non-security relevant

code is of lesser importance.

3.4 DETECTION, MASKING, AND RECOVERY SCHEMES
In this section, we apply techniques for the detection, isolation, recovery,
and/or masking of the security threats presented in Section 3.2. Only those

faults and errors from Section 3.2 that have viable solutions are included.

4C13ssica] computer security technology uses the term integrity for the
prevention of unauthorized modification of information and programs. This is
in contrast to this studies use of integrity to mean design correctness or proper
service.

5Objects can only be modified by operations in the domain that its type

places it in. Subjects must have access rights to domain operations in order to
invoke them.
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3.4.1 NON-INTEGRITY CAUSED DENIAL-OF-SERVICE ERRORS

This section presents a scheme to deal with the fairness aspect of non-
integrity caused denial-of-service errors. Fairness is often used for service
sharing policies (and mechanisms) that eventually—no stated time limit—
provide a fair allocation of services to users [Fran86, p.4] {Yu88). However,
using the definition of denial-of-service with hard time bounds [Glig83] requires
the meaning of fairness used in real-time applications. Thus, from now on, we
will use fairness to mean service allocation with the following quantitative
measures: (a) amount of service used, and (b) a specific time interval {Jaha86]
in which a service can be held by one user.

Denial-of—service cannot be prevented solely by a fairness policy, since it
cannot prevent a conspiracy by a group of users from monopolizing a shared
resource [Glig85a] [YuB8]. However, the extended notion of fairness presented
in this section applies to the following problems:

u] A user, holding some service, becomes blocked or terminates before
releasing that service. This can result in a service becoming unavailable
for an arbitrary period of time [Yu88).

O A user monopolizing the entry queue to a service.

o Service-generated denial-of-service caused by requirement, specifi-
cation, and algorithm faults that result in undesired interuser depend-
encies (seé Figures 3.9 to 3.13).

Thus, our fairness policy actually contains some aspects of "user agreements"” as

presented in [Yu87] [Yu88].

One computer security technique addressing denial-of-service in operating
systems and networks is based on the construction of models of system behavior

and on how services are provided [Cerf85] [Glig85a} [Yu87] [Yu88]. These
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models are analyzed in order to detect weaknesses in the system design that
could lead to denial-of-service (e.g., incompatible resource allocation mech-
anisms and policies [Glig83]). This approach has the significant benefit that no
covert channels are added to the computer system. Run-time mechanisms,
such as resource bound enforcement, will likely add channels [GligB5a). Thus,
great care must be used if run-time means are employed to cope with
denial-of— service (i.e., limit channel bandwidth, and/or ensure the channels are
very noisy).

[Glig85a] actually utilized basic concepts in fault tolerance, that is, the
detection of an undesired state (here denial-of-service), and then recovery via
the use of an alternate service which provides the save service (i.e.,
redundancy). A count down timer was set when a service was first acquired,
and when it expired denial-of-service was detected. This approach is clearly
straight-out of fundamental fault tolerance concepts [Renn84].

The scheme introduced here does not rely on detection, but on prevention
of denial-of-service. This approach is used because once denial-of-service is
detected the error turns immediately into a failure.6 Concepts from resource
allocation in real-time scheduling [Hami87] are used to guarantee access at a
specified time. Action is taken before a service is denied to ensure that a
waiting user will be able to use the service in question.

General sharing rules are essentially that of forced fairness:

(1) Services can be held for as long as desired if no other authorized user
requests them. Here, denial-of-service can only happen if other users are

waiting for the busy service. This is different from the definition appearing in

6One of the reasons that this occurs is that some user has witnessed
improper service at a service boundary.
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[Glig83], which does not require a waiting user. This was chosen because it
appears to be more flexible and usable for a real-world computer s:,rstem."l

(2) Once a request is made that cannot immediately be satisfied, because
the requested service is being used by another authorized user, a timer is set
for the IDS for that service. [Glig83] sets a watchdog timer any time a service
is used. IDS stands for imminent denial-of-service: MWT = IDS + time to
release the service (TTR). TTR is needed because all services include some
fixed time for deallocation (e.g., memory buffers need to be zeroed when
released,8 process context switch).

(3) When a timer expires, enough of the requested service is automatically
freed to satisfy the waiting user(s) (i.e., the system deallocates only those
services needed from the current users).

(4) If the service is released before the timer expiration, then the timer is
turned off.

(5) What if multiple users are waiting for the same service, including entry
into the computer system? Authorized users granted access to a service have a
guaranteed minimum time of IDS, if desired. Prevention of too many users ina
system can be done by setting bounds on users: (a) bound the number of users or
network traffic being processed by the system, (b) maximum time that a user
can be in a system, and (c) bounds on the number of requests from one source
(e.g., number of packets sent from one host in a network). Of course, this

includes bounds on the amount of resources (e.g., memory), that any subject can

TAny covert channels introduced by this approach will be hard to use due to
a great deal of scheduling noise.

8When a buffer is deallocated any remaining sensitive data must be
removed before allocation to a new subject.
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possess (i.e., bounds on a particular resource or group of resources held at any
one time [Glig83]). These bounds will lead to the system idling at times.
Currently, this seems a necessary evil in order to guarantee access to the
system before some MWT expires.

(6) This approach of forcing held services free changes the way services are
used in current computer systems. The authorized user, who may lose the
acquired service (resource) before his/her work is done, must save its state so
that work can continue where left off (i.e., once the service is reacquired).
This is identical to the time quantum in CPU sharing. State saving is limited to
services with small states for efficiency reasons.

(7) Forced fairness can be improved if the TTR is decreased. This can be
done for some services by providing immediately available spares. The used
service is still forced free and is used to replace the spares in the spare pool.

(8) Forced fairness imposes an underlying policy on all applications no
matter what higher level sharing policies are used.

(9) In order to respond to a real need of guaranteed throughput (e.g., FTP in
ARPANET) the concept of deliberate, degradable service sharing is used. First,
there are strict bounds on the amount of, total frequency of, and frequency of
one requester for degradable sharing. Also, any service must have several
active copies in order to allow it to be degraded in the first place.

A shared service (e.g., network path) can degrade (temporarily) to a private
resource for a time much longer than MWT. It must eventually (a liveness
requirement) return to a shared resource, unless non—deliberate system degra-
dation prevents it. Now, since this service is private it cannot be denied to any
other authorized user [Glig83). Obviously, limits on allowing degradable service

sharing are essential in order to prevent denial of a specific level of perform-
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ance.

(10) Lastly, we could take this notion of forced fairness to the extreme,
and end up with a frame-based real-time system with the following properties:
(a) a process runs for multiple frames, and (b) the allocation and deallocation
times of all services are predefined (off-line generated) and strictly enforced

{i.e., services are freed even if no user is requesting their use).

3.4.2 COMPUTER VIRUS ERRORS

Figure 3.1 is a fault tolerance oriented characterization of the behavior of
a computer virus. Initially a computer virus can start as a special type of
Trojan horse that injects or infects an executable file with a virus. The Trojan
horse is a deliberate design fault, and causes an error by changing the state of
the executable file resource. Next, the infected executable spreads or propa-
gates the error to other executables. Thus, the error becomes the fault causing
other errors, and a typical error propagation occurs just as it does in the case of
a random (i.e., accidental) fault. The characterization of a virus as both a fault
and an error indicates that viruses should be countered with two mechanisms,
rather than just one.

Figure 3.2 provides a somewhat different perspective by indicating the
types of damage a computer virus can cause. The figure shows that a computer
virus design fault can potentially cause the following errors: loss of integrity of
function and data, unauthorized modifications of programs, unauthorized
disclosure, denial-of-service, and spoofing. Note, that "DAC" in the figure
refers to discretionary access control.

The two life stages of a virus can be detected and recovered from

differently. The deliberate design fault via a Trojan horse can be masked out
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with the use of N versions of a program (e.g., 3 versions of a compiler, see
Sections 3.4.6, and 3.6). However, since NVP is too expensive to be applied
everywhere, it must be accompanied by a mechanism that can detect the
computer virus in its error stage. A scheme to detect and recover from the
viral infection is presented in this section and is an extension of Program Flow

Monitors (PFM) [Mahm88].

PROGRAM FLOW MONITORS

A PEM is a concurrent error detection mechanism that can be used in the
design of a fault-tolerant computer. It is basically a watchdog processor, which
is "a small and simple coprocessor used to perform concurrent system-level
error detection by monitoring the behavior of the main processor" {Mahm88]. It
is used to detect control flow error due to transient (e.g., single event upset)
and permanent faults.

Detection of control flow errors is done by comparing dynamic character—
jstics of program behavior with the expected behavior. One approach is to
associate a signature to a sequence of assembly language statements that do
not contain any control flow instructions (e.g., branches, subroutine calls). The
signatures are derived from the assembly language statements. After
generation, the signatures can be stored in a control flow graph (CFG),
embedded graph program, Or embedded in the executable code. The signatures
and control flow graph are generated by a compiler and linker [Mahm88].

As a program runs on a CPU, the fetched instructions go through a
signature generator which is based on a linear feedback shift register (LFSR)
[Bard87). Thus, a signature is computed by a given primitive polynomial (e.g.,

X16+X12+X3+X+1). When a control flow change instruction passes through the
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signature generator, the current signature value is passed to the PFM. The
PFM then compares the run-time generated and link-time generated signatures,
and a disagreement indicates an error condition. If a control flow graph is used,
then it is traversed as these signature comparisons are made.

The applicability of a PFM-based scheme to the detection of computer
viruses is based on the observation that actions of a virus also represent an
invalid sequence of instructions. However, the basic PFM schemes must be

extended to prevent a virus from hiding from it.

EXTENDED PFM TO HANDLE VIRAL INFECTIONS

The present PFM schemes are designed to detect random physical and
possibly some design faults, but not deliberate faults. Thus, the existing
schemes are susceptible to all but a few viral attack scenarios.

The first weakness against viruses is that PFMs use only one primitive
polynomial to compute all signatures. Thus, a computer virus fault compiled on
the monitored machine will have valid signatures generated for it. If a CFG is
used, then the virus would have to add its signatures to it.

A computer virus error propagating over a network may not have valid
signatures, and thus, would be detected by even the existing PFM designs.
However, the backward recovery mechanisms used with a PFM (e.g., rollback)
would end up mistaking the virus as a permanent fault. This inability to distin-
guish between viruses and random faults is the second weakness of existing PFM
designs. Any PFM-based scheme must have a recovery approach that can iden-
tify a viral attack, since the recovery action is different for transients, perma-
nents, and viruses.

The following five extensions are made to a PFM scheme that utilizes a
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contro! flow graph (CFG) or embedded graph program:

(1) The signature generator must be able to employ many different primi-
tive polynomials (many such polynomials exist, see [Pete72} and [Bard87, p.71]).
This is easily done by constructing an LFSR with sufficient D-flip-flops, XOR
gates, and feedback loops to generate an entire range of polynomials. The PFM
specifies to the LFSR which polynomial to use by enabling/ disabling XOR gates
and feedback loops. The polynomial is represented as a 32 bit wide vector that
is latched at the LFSR. The bits of this vector control the enabling /disabling.

(2) The compiler and linker pair must randomly assign a primitive polyno-
mial for each compiled program. This polynomial must be protected from
disclosure and modification. Thus, the polynomial bit vector can be stored in
the CFG along with the link-time generated signatures, and then the entire
CFG is encrypted.

(3) Immediately before program execution the PFM must decrypt the
delivered CFG to obtain the pre—calculated signatures and the polynomial.
Thus, this approach must also provide management of different encryption keys
per CFG, and must ensure executable file - CFG association. Once the polyno-
mial bit vector is obtained, it is transferred to the LFSR. Note that the exe-
cutable file can itself be both readable and writable.

(4) All /O operations are atomic. They are performed only if the signature
comparisons for their code sequence is valid. This feature blocks the infection
capability of the virus. For fault-tolerant computer systems that use backward
error recovery this is a necessary requirement, since most 1/0 operations can-
not be rolled back without adversely affecting the service.

(5) At least two features are required in order to apply our modified CFG

scheme to general purpose computers: PFM local memory capable of holding
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several CFGs [Toma85}, and detection of context switches. Instead of detec-
ting context switches the main processor could inform the PFM of a switch
(e.g., over private data lines from CPU to PFM). These suggestions would be
validated by the PFM before acceptance (e.g., context switches can only occur
if the operating system's CFG is being used).

(6) The PFM will store each program code sequence over which it computes
a run-time signature. If a mismatch between the run-time and link-time
generated signatures occur, then the captured code sequence can be used by
diagnostics to facilitate fault location, or used to indicate part of the detected
virus code. (Note, a location of the virus code will be pointed to by the current
value of the PFM's program counter emulator.) If no mismatch occurs, then
this captured code sequence is overwritten by the next sequence. It is expected
that these code sequences should range from 5 to 20 words in length [Schu87]
[Mahm88].

(7) The current PFM designs concentrate on error detection and do not
explicitly address the methods of subsequent recovery. However, details of
recovery are important for our application of PFMs, since we need to distin-
guish between virus errors and physical faults. Upon detection of an error
condition the program's execution is resumed with a rollback, and proceeds
from a rollback point in the program that immediately follows a previous
signature check.

Cohen [Cohe85] has shown that precise detection of a virus by its appear-
ance or behavior is undecidable. Thus, we rely upon imprecise behavioral
detection, which can result in false alarms or some undetected viral infections.
We choose a recovery technique that will provide a high probability of correct

virus identification, with a few false alarms rather than undetected cases.
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The rollback procedure helps in the identification of the type of fault as
follows. If the initial error was caused by a transient fault, the recomputation
will succeed, and the program will continue on after a successful sighature
check. However, if the initial error was due to a permanent fault or a virus,
either will still cause an improper dynamically generated signature after the
rollback. These dynamically generated signatures cannot, by themselves, be
used to distinguish a permanent fault from a virus error. For example, a virus
error could be designed to alter its control flow upon each execution—even
after rollback—thus generating a sequence of signatures similar to those caused
by many instances of permanent faults (i.e., mimics the error behavior).

To further distinguish between permanent faults and virus errors, diagnos—
tics are run when a rollback immediately results in a second error condition. If
diagnostics do not locate a fault, then a high probability exists that a virus
error has been detected. This imprecise method may wrongly identify a hard to
locate intermittent fault as a virus. Nevertheless, the spreading and planned
malicious actions of a virus are prevented. The executable file and its run-time
image, both of which can be infected, are clearly identified, thus allowing
human analysis. (Note, diagnostics could be PROM based in order to prevent its
infection.) Depending on the infection mechanism and damage done, recovery
from viral infection can be done by recompilation of a program, reload of a
binary executable file from backups, or creation of a new run-time image.

For computer architectures without effective process isolation, the
memory address for writing to memory can be monitored by the PFM. This will
detect a viral infection of an executable during run-time by noticing that the
write address is outside a process's address space (e.g., a block move of virus

code into another process's unused stack space). This approach is a design
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option of a PFM, not a real extension of the technique. In fact, all externally
visible actions of a CPU can be monitored by the PFM.

A PFM-based virus detection approach offers some significant advantages.
First, it protects an executable even during run-time, while the schemes
presented in [Pozz86] and [Cohe87] do not provide this protection. Second, it
also provides detection of errors caused by physical, and possibly certain design
faults. Third, standard PFM schemes can be extended for virus detection at a
modest additional cost. Fourth, no run-time performance degradation occurs,
after CFG decryption. Finally, the PFM is virus proof, since all of its compo-
nents are either hardwired or ROM based, and the PFM local memory, as well
as the LFSR can only be accessed by the PFM.9

The additional costs of the PFM-based approach are as follows: (a) the
compiler and linker pair must assign polynomials; (b) the CFG should be
encrypted, and the keys for each CFG must be managed and protected; (c)
modifications to existing compilers and linkers are needed; and (d) extra mech~
anisms for atomic I/Q are required.

The scheme presented in [Denn86] also monitors system behavior to detect
viruses and other threats; however, it does that at a course—grain level of moni-
toring. The virus detection approach described above utilizes a fine-grained
monitoring of program control flow for detection.

A basic—and simple—architectural solution exists for computer viruses
that infect executable files and the run~time image of a process. First, all
executable files stored on disk or resident in RAM must be execute-only.

Second, only execute—only code segments can be run by a CPU.10

9Note, that extended PFM, by itself, does not protect against denial-of-

service due to repeated infection of the same executable.
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3.4.3 LOSS OF INTEGRITY OF FUNCTION ERRORS

Most software fault tolerance techniques are applicable (see Chapter 2):
NVP [Aviz85a), Software Safety [Leve86], and possibly persistent process-pairs
plus transactions [Gray86] (i.e., deliberate software design faults appear to be
similar to Heisenbugs in several aspects). Hardware design diversity [Aviz86]
can be used to tolerate deliberate hardware design faults.

Insider-generated denial-of-service can be prevented by the use of design
diversity in software and hardware. This occurs because loss of integrity of

function results directly in denial-of-service (see Figures 3.14 and 3.15a).

3.4.4 LOSS OF INTEGRITY OF DATA ERRORS

Several fault tolerance techniques address the age of data and the integrity
of data structures. One technique that prevents the use of stale data is validity
timestamps from fault-tolerant real-time systems [Kope85]. A timestamp is
associated with each data item, and should only be accessed by the TCB. It
contains the time in the future when the data item is no longer meaningful.
Once the data item's time expires, its value is automatically removed.

Thus, this technique is effective against a malicious subject using valid but
out of date data for updates. For example, a data item can be valid if it is
within reasonable limits (e.g., a person's age is greater than 0 but less than
120), but incorrect because it is old data.

Structural integrity of data structures is important. Two techniques that
at first appear useful are: (a) periodic data structure audits [Wall84] test that a

data structure is intact (e.g., no dangling pointers), and (b) redundancy in data

10'l‘he Intel 80286 and 80386 already provide such protection to a process's

run-time image.
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structures [Tayl80] may enable detection of data structure modification and
correction of invalid changes. However, these techniques seem too weak to
defend against deliberate design faults, which will try to hide their malicious

changes to data structures.

3.4.5 UNAUTHORIZED MODIFICATION AND SPOOFING ERRORS

A fault tolerance technique that is applicable to unauthorized modifi-
cation is to maintain multiple copies of information and programs, such a
technique is fragmentation-scattering [Frag85] [Desw86]. This makes it harder
to change all the copies for two reasons: (a) they may be hard to find, and (b} it
is easier to detect multiple unauthorized modifications via security auditing
techniques.

Current computer security techniques to protect against this threat are:
integrity-lock [Grau84], discretionary access controls (e.g., privileged modes
[instruction subsets] and rings which limit data access, and capability based
addressing [Denn82]), integrity controls such as MLI (i.e., multilevel integrity,
based on Biba's integrity levels [Biba77]), and LOCK's type enforcement.

Spoofing errors are similar, in that, they may be masked out by use of
multiple (redundant), independent command sources with voting. Current
computer security techniques include: authentication, trusted path [DoD85a},

trusted channel [DoD87], encryption, and access controls.

3.4.6 TROJAN HORSE, COMPUTER VIRUS, AND TRAP DOOR FAULTS
Deliberate use of a storage and/or timing covert channel (e.g., by a Trojan
horse) results in unauthorized disclosure of sensitive information. Software

fault tolerance, specifically NVP, can detect and prevent the use of some
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covert channels (see Figure 3.4). This was also observed in [Dobs86]. For this
scheme to work the action that uses the covert channel must be voted on (see
Chapter 5). However, NVP does not seem effective against many forms of
covert timing channels (e.g., the amount of CPU time spent once a process is
scheduled can indicate a binary 0 or 1 [Scha77)). Current computer security
techniques include: minimizing a covert channel's bandwidth, locating and
removing all unnecessary channels, formally proving that they are not used, and
audit all channels [DoD85a}.

Using NVP is also applicable to all actions taken by a Trojan horse.
Current computer security techniques include: MLS/MLI design, strengthening
discretionary access controls [Smit86] [Lai88], integrity-lock [Grau84], LOCK
type enforcement, and auditing.

The repeated infection of the same executable file (or running process) by
a computer virus fault can lead to a special type of denial-of-service. Recov-
ery involves a program reload from some uninfected backup. Denial-of-service
is possible now in two cases: (1) program reload exceeds the MWT, or (2) the
virus corrupts the reloaded program fast enough in order to prevent any signifi-
cant program Progress (i.e., the program results are not available before some
MWT). Note, that only when the computer virus is treated as a design fault is
this denial-of-service error prevented (i.e., assuming executables are writable,
of course).

Deliberate implantation of a trap door, by a trusted engineer, into an
operating system oOr hardware component of a computer system can be
countered by design diversity with consensus voting. For example, N-diverse
versions of DEDIX [Aviz85b] can tolerate trap doors placed in less than a

majority of the DEDIX nodes (i.e., if DEDIX actions are voted on).
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3.4.7 SPECIFICATION AND ALGORITHM FAULTS

Typical techniques to handle specification faults in fault tolerance are to
use N versions of a specification [Rama81], and to deliberately include redun-
dancy in the specification. Current computer security techniques rely on fault
avoidance and are based on automatically producing a prototype from a specifi-
cation, and symbolic execution of a specification [Kemm85].

It is important to properly represent maximum waiting times (i.e., MWT)
for denial-of-service requirements in a formal specification language. In
[Wing86]), Ina Jo is enhanced with temporal logic in order to be able to prove
time, precedence, and safety properties of computer systems. The following is
from [Wing86]: "An example of liveness requirement for a computer network
system is that no message should be indefinitely delayed at a node before being
serviced or forwarded." Liveness refers to ensuring that something good event-
ually happens, and is represented by the temporal operator eventually.

The above example from [Wing86] comes close to stating a denial-of-
service requirement. However, representing denial-of-service requirements
with liveness is inadequate, since denial-of-service occurs only after a specific
time period has elapsed [Glig85a). The following example should make this
clear. Using the specification example above from [Wing86], a network
message that happened to be a warning that the Russians where invading the
U.S. could, for example, arrive over six months late and it would still satisfy its
specification. However, it is clear that there is a specific time period in which
that message must be delivered to its destination. Beyond this time period
denial of message delivery occurs.

A better approach for specifying denial-of-service concerns is the use of

Real-Time Logic (RTL) [Barb86] [Jaha86] [Jaha87]. Here explicit time varia-
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bles (absolute and relative times) are included in a specification which can
exactly indicate a time limit for a function (e.g., a sample specification: Vi [tl
<= @({A,i) - @(TA,) <= t2], where tl, t2 are time variables (an integer value),
"tA," "1A" represent events, "t" indicates the start of an event, "l" indicates
the completion of an event, "i" indicates the ith occurrence of an event, and
"@(e,i)" is used to represent the real time of the occurrence of event e;.
Therefore, this sample specification simply restricts the execution time for
operation A to start at or after t]1 and end at or before t2.).

Algorithm faults can be countered by fault tolerance techniques such as:
robust algorithms, and functionally rich algorithms {Bast85] [Abbo87]. Func-
tionally rich algorithms are designed with functions that have overlapping
capabilities (i.e., if one function is lost another can achieve the same result via
a different approach). No current computer security techniques other than

fault avoidance exist.

3.5 FAULT-TOLERANT, SECURE COMPUTER ARCHITECTURES

In this section we will address the issue of how to make the security
features of a computer system fault-tolerant (i.e., fault-tolerant security
[Turn86]). In Chapter 4 we will explore the security issues resulting in adding
fault tolerance features to a computer system (i.e., secure fault tolerance
[Turn86]). This separation is made in order to keep the complexity of the issues
manageable and to keep concepts clear.

Current security certification techniques [DoD85a] do not adequately
address physical faults, and as such, are not considered in the evaluation
process. However, we are concerned with security in the presence of acci-

dental physical faults, and so we extend the requirements in {DoD85a] beyond
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the current criteria (i.e., beyond Al). Additionally, the current security
certification techniques do not adequately address design faults (in software
and hardware), since they rely solely on formal methods (e.g., verification,
specification, and models [Cheh83] [Kemm85]). This section concentrates on
the effects of accidental faults on secure computer systems, since deliberate
faults are discussed elsewhere.

The PRIME project [Fabr73], is an early example of a computer designed to
maintain process information separation for data privacy in the presence of
faults. PRIME was a multiprocessor, multimodule main memory computer.
Single hardware or software faults were to be detected by: (1) all actions
required approval of two executives—the local executive on an application
processor and the one control executive on the one control processor, (2)
application processes can have monitoring processes On separate processor
hardware, which verified interprocess communication (IPC) messages, and (3)
redundant representation of main memory and disk access mappings—one at the
executive level and one at the hardware component level (i.e, each main
memory page, and disk cylinder contained a process-id like marker).

The PRIME design was to detect and recover from illegal access of virtual
memory, disk space, mixing of IPC message contents, ensure source, destination
pairs on IPC, and to ensure proper object reuse (i.e., clear a data item before
given to a new user). It assumed nonmalicious hardware and software system
components protected from outside attack.

A later example, of protecting the access control data portion of a secure
computer's critical state, from both physical and some design faults, is reported
in [Namj82]. A watchdog processor, containing a copy of a running program's

capability lists, monitors all accesses to main memory made by a central
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processing unit (CPU). Accesses by the CPU, that do not correspond to the
capability lists stored in the watchdog processor, trigger a recovery sequence.
This is actually, just another example of a run-time monitor as presented in
Section 2.3.2.

Contradictory requirements between fault tolerance and security, as
discussed in Section 3.1, lead to the following design approaches: (a) the use of
fault masking to prevent a security relevant error [Turn86], that would violate
the system's security policy, and result in a failing s:,rstem,11 (b) the use of
pearly (i.e., to a defined coverage(s)) fail-stop or fail-secure [Molh73] computer
subcomponents,12 thus also preventing an error, and (c) the redefinition of a
security policy (e.g., mandatory access control) to allow a security relevant
error to occur.

A few comments are needed before we proceed. First, option "b" is very
hard, since current fault tolerance technology cannot provide fail-stop capabil-
ity past a limited probability. Second, option "c¢" is also hard, since detecting
security relevant errors (e.g., top secret data in a secret file) may not be
possible. For example, a top secret file has a security label on it, but if part of
its contents are copied into a secret file, then that data will no longer have an
associated label, making it impossible to detect its presence. Plus, this option
is likely to be either rejected by the security community as unsafe, or take

many years to be appropriately defined. Lastly, fault-tolerant systems provide

11‘l'he meaning of proper service is application dependent, and for many

security policies an error directly leads to a system failure (i.e., a security
violation) [Bell75] [DoD85al.

12Due to Jacob Abraham, University of Illinois.
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proper service with two caveats: (1) they only handle fault classes chosen in the
design phase (this is a reasonable limitation), and (2) proper service is always
with respect to a probability. Secure systems work more on absolutes (e.g., the
TCB must be tamperproof [DoD85al). An exception is in providing assurances
of a proper design, since requirements cannot ask for heyond state-of-the-art
tasks.

OPTION A — FAULT MASKING: Use forward error recovery only, for
example, [Dobs86] describes releasing misinformation after a security violation
as a compensating action. In [Turn86], as already mentioned, a better approach
is to restrict fault tolerance techniques totally to masking. Voters can be
cascaded (i.e., each computer subcomponent masks faults), and if a voter is
overwhelmed the resulting errors should be masked by other voters further
down in the hierarchy. Such generated errors must not be sgg_uﬂx_r_elelamn
(i.e., against the system's security policy). For example, if unauthorized access
can occur by the following error propagation: <ey, €y, o €2, "en" being the
disclosure, then a system failure could be prevented by stopping error
propagation before e (i.e., only e, is security relevant). Of course, the system
must also be able to recover from the damage done.

Hybrid redundancy (i.e., NMR with standby spares), can degrade to two
active elements. One additional failing element will force an NMR computer
subcomponent, and possibly a system, into a fail-safe state. Another approach
can be Pair and Sbare, as used in Stratus machines [Frei82]). Essentially, all

that is required for this fault-tolerant, secure design, is to blindly place a TCB

13Security relevant errors may be the result of non-security relevant
errors (e.g., loss of integrity of function, which is not directly a security
relevant error, but can lead to unauthorized disclosure of information).
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on top of such a hardware base.

The last voter in a hierarchy should be placed at the same boundary as the
information flow boundary defined by the security m.echanisms14 (e.g.,
boundaries between sensitivity levels enforced by a TCB, or the domain and
type checking in LOCK). Any error produced at this boundary would be
equivalent to the e in the previous example.

It is important to notice that identifying hardware in which a fauilt could
generate a security relevant error should include all basic hardware support.
Software implemented security mechanisms depend on proper service of even
the simplest hardware components (e.g., arithmetic operations for compar-
isons). Currently, most computer security systems implement a significant
portion of security mechanisms in software.

This simple, brute force approach can be used for all types of secure
computer systems (i.e., C1 through Al), since the fault tolerance approach is
consistent with, and helps achieve, the current state—of-the-art security
policies and models (e.g., [Bell75]). Interestingly, this fault tolerance approach
is behavioral [Shen86] [Gill87], since it takes the application into account.
However, the resulting solution, at first glance, appears structural.15 This is,

obviously, due to the fact that the application is itself very ridged in its defini-

14'Obser'vation of matching security boundaries to fault tolerance error
containment boundaries is due to Jacob Abraham, University of Illinois.

15Structural Fault Tolerance—Applying basic fault tolerance techniques to
preserve a computer'’s processing capabilities and critical state, while ignoring
the behavior of the application (e.g., an occasional error in a signal processor is
not a problem, since over time it is smoothed out via finite element
mathematics).
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tion of proper service.

It is important to note that errors, €,, .. e 1’ need not be handied by
masking techniques (i.e., detection and recovery can be used). Control flow
errors caused by transient faults can be a good example of this. The control
flow error can be detected and recovered from, via a program flow monitor,
since by itself, it does not violate a security policy. A possible, e resulting
from a control flow error is unauthorized disclosure of sensitive information
(e.g., when a control flow error forces a jump past an access control test).
This, e, will be prevented by quick detection of the control flow error.

OPTION B — FAIL-STOP: Computer subcomponents would be built using
self—checking logic [Cart68] [Renn84], and software aimed at detecting hard-
ware problems [Hua86]. Fault-tolerant systems do not rely solely on this
approach, because it makes the false assumption that errors will not propagate
past the self-checked components. With this approach error recovery is
significantly simplified (e.g., a node in AOSP would halt due to a fault, rather
than babbling on an internode bus). If only a limited coverage is required, then
this approach may be feasible, and it is certainly less expensive than fault
masking.

OPTION C -—- ALLOW SECURITY RELEVANT ERRORS: This approach
would allow the use of backward error recovery techniques. One such approach,
that seems directly applicable, are atomic actions. If a security relevant error
propagates, then the chance of detecting it becomes rather small. Therefore, it
must be detected very close to where and when it first appeared. That is, a
small detection latency is necessary, or in other words, small error containment
boundaries are needed. This will facilitate a complete recovery from the error

(i.e., remove the insecure state and repair the cause of the error). Obviously,

93



sufficient hardware is needed to achieve this concurrent error detection.

For this approach t0 work, all security relevant errors must be recover-
able. A non—recoverable security event is when an outside user (ie., a human)
is able to se€ the effects of an error. The difficulty of this is not as obvious as
it first appears. What if, one of the actions of a security relevant error
propagation, involved the us€ of a covert channel t0 distribute leaked data?
The use of the covert channel must then be recoverable. This involves restoring

the state of the receiving process and the resources used as the channel.

3.6 DESIGN OF A SECURE“ DEVELOPMENT ENVIRONMENT

The design fault stage of a computer yirus can exist in a program handling
tool (e.g., 3 compiler), as well as, in an ordinary application program [Cohe84]
[Pozz86]. Thompson [Thom84] gives an example of how 2 Trojan horse in a
C-language compiler can jmplant a trap door into 2 UNIX login program. In
this example, the Trojan horse is particularly insidious in that it is designed to:
(a) detect its own compilation (i.e., the C compiler’s source code) and then tO
implant a copy of itself into the generated executable, and (b) the actual code
for the Trojan horse can be removed from the compiler's sourceé after its first
compilation pecause of item "a." Part w" makes the detection of this Trojan
horse attack by source code inspection and verification jmpossible. Currently,
addressing the correctness of program handling tools is beyond the requirements
for class Al securé systems [DoD851, and thus, is 3 hole in any current defense.

In summary, 2 virus can infect a program during an editing session, compilation,

16we prefer not to use trusted development environment, since we do not
plan to trust any logic 1O follow 3 security policy without some run—-time
assurances.
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assembly, linking, or loading.

In addition, assurance of the correctness of hardware and firmware (i.e.,
the absence of random and deliberate hardware design faults) for the TCB of a
system is also beyond Al for the hardware of both development environments
and operational systems. Current research in secure execution environments is
directed towards the use of advanced formal verification techniques for both
hardware and software [Bevi87]. While this research looks promising, it has the
following limitations: (a) it is hampered by the same problems that all formal
verification suffer—it does not scale up well to large, complex systems,” (b)
using the verification language Gypsy [Good86] as a software implementation
language would be cumbersome (i.e., Gypsy does not include: global variables,
own [static] variables, pointers, or floating point arithmetic), and {c) the
approach used for hardware verification does not include timing, nor system
behavior in the presence of faults (i.e., the system may be broken into due to
deliberately induced faults—not fail-secure [Molh73]).

In this section we propose a design for secure development tools based on
N-Version Programming, and secure development hardware based on hardware
design diversity. A secure :’.—\wersiom}s C-language compiler, for example,
would operate as follows. Consensus voting between versions would periodically

occur on several items; (a) parts of the local state, (b) temporary output at each

11’The Gypsy environment [Good84] allows specifications to be verified by
run-time validation (i.e., a specification is evaluated to true or false at each
program state), as well as formally verified. This can be used to decrease the
difficuity of verifying some specifications.

18'l‘wo version systems are susceptible to denial-of-service attacks
[Jose87].
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phase of compilation, (c) actions which manipulate files, and (d) the final
generated code. The voting locations ("cc-points") and the values to be voted
on ("cc-vectors") need to be clearly defined in the compiler's design specifi-
cation before it was built. (Note, for this to work strict guidelines on code
generation and optimization must be provided.) Item "c" above includes the
waction voting” extension to NVP, which was introduced in Section 2.3.1 and is
further developed in Section 5.1.1.

It has been discussed in [Dobs86] and Section 3.4, that NVP could be used to
prevent a program from making use of many instances of covert channels. This
fits in well with our use of NVP-based program handling tools, because a Trojan
horse in an editor attempting to leak sensitive information would be stopped.

Experiments at UCLA have already demonstrated the feasibility of
constructing a reliable NVP text processor [Chen78]). However, an NVP-based
tool is just as vulnerable to a computer virus error as any other executable file.
Thus, if a virus infects a majority of the versions the NVP scheme would be
defeated. So to prevent this from occurring, each version must be monitored by
a PFM (see Section 3.4.2), or protected by a8 scheme such as presented in
[Pozz86], [Cohe87].

In summary, the reason why NVP-based program handling tools c¢an counter
the design fault stage of a virus, and also many actions of general Trojan
horses, is that all maliciously generated actions are masked out by the N
version consensus operation. See Chapter 5 for a discussion on the resistiveness
of NVP to implanted maticious logic.

To provide securew development hardware traditional approaches to
verifying correct hardware function [Glig85b], such as testing and simulation,

are also a far cry from providing the needed assurances. In [Aviz86], hardware
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design diversity is proposed as a technique to tolerate accidental design faults,
and should also be applicable to deliberate hardware design faults. One draw-
back of this approach, is that proper synchronization of diverse hardware
components is not trivial.

Lastly, a development environment should contain standard computer
security techniques used in systems that allow sharing, these include: config-
uration control, access controls, and auditing. The final result of the design
presented here is a developmental computer system, which is tolerant of both
deliberate and accidental design faults. Certainly, the application of design
diversity can be expensive, and so in that respect not glaringly better than
formal verification. However it has two important pluses: (a) it is a run-time
mechanism, and so it is always on guard, and (b) it can be effectively used for

an entire computer system today, unlike formal verification.

3.7 HIERARCHIES AND FAULT-TOLERANT, SECURE SYSTEMS |

This section should be read using the less strict interpretation of the
application of security doctrine (i.e., that an error in a secure system does not
immediately lead to a failure, as discussed in Section 3.1).

Presented in [Neum86]} is a design approach for critical systems, where
criticality encompasses the following system properties: human safety, fault
tolerance, high availability, security, privacy, integrity, and timely respon-
siveness for the entire life-cycle of a computing system. Neumann proposes
that a hierarchical layering of a system with allocations of safety, security, and
fault tolerance mechanisms at each layer (depending on the function of that
layer), will provide a much better system design than is achievable with current

methods.
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Also presented is a careful analysis of critical functions and how these are
placed into the hierarchy. Essentially, it proposes a hard core approach where
each layer handles its own critical requirements, and some of the requirements
of the layers above it.

One disturbing notion used throughout [(Neum86] is the computer security
notion of trust. For example, observe its use in the following sentence from
[Neum86]: "In any event, design decompositions should be sought that require
only a small portion of the system to be trusted (in the broader sense of the
critical requirements)." This notion of trusting a piece of software or hardware
to correctly perform its function is foreign for fault tolerance practitioners.

On page 916 and 917 of [Neum86), a strawman design for a critical system
is based on a TCB that enforces a multilevel secure (MLS) and multilevel
integrity (MLI) environment. Limiting this discussion to only the computer
security and fault tolerance concerns reveals several problems with this scheme.

If the fault tolerance mechanisms in a particular layer are defeated, either
by being overwhelmed by faults or by insufficient coverage, then either of two
actions can occur. An error(s) can be detected and recovered from by a layer
below the failing one (e.g., voters in DEDIX), or by a layer above (e.g., GOS in
AOSP [RADCS5)). If the latter occurs then a serious security violation can
occur. It is a basic tenet of secure systems, that the level of trust increases
towards the innermost layers of a system (e.g., the kernel is the most trusted
layer), and that a more trusted layer cannot be compromised from above (i.e., a
more trusted layer cannot rely on a less trusted layer for anything). As an
example of this, a less trusted layer doing detection and recovery of a failed,
more trusted lower layer, can declare false alarms, ignore detection of real

errors and thus perform recovery at the wrong times or not at all!
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without using the notion of trust presented above for the MLS/MLI based
design, no layer, above a failed layer can detect or recover for it. Additionally,
it is unreasonable to assume that any layer will not fail completely, and thus,
need help from above. For example, lets put the above discussion in the
context of a system based on DEDIX. DEDIX provides most of the error detec-
tion and recovery mechanisms for the N versions of application running on top
of it. However, such an application can still fail and if it does all DEDIX could
do is to shut it down. Still more global detection and recovery mechanisms
would be needed if such an N-version application ran in one of the hierarchy
layers in Neumenn's MLS/MLI based design [Neum86].

Now, if we allow the use of the notion of trust, then at each interface
between layers the detection and recovery mechanisms would have to be
trusted. This would result in a need for too much trust to be practically
verified. Also, detection and recovery mechanisms often deal with very strange
combinations of faults and errors. Exact details of each combination expected
and how it is handled will not be easy to define, if possible at all. This detail
will likely be needed in order to have trust in its behavior. (This is essentially
detailed verification and validation of detection and recovery mechanisms.)

An interesting observation to make is that the hierarchical design of a
secure system is meant to keep intruders out, while the hierarchical design of a
fault-tolerant system is meant to keep errors in (i.e., from propagating). A
question to ask is: Can we place all the fault detection and recovery mech-
anisms into the innermost trusted layers of a system? One problem with this, is
that in such a hierarchy lower layers are not supposed to know what the higher
layer application is (also see Chapter 4). Lower layers only provide a virtual

machine interface for the higher layers to use. Lastly, none of the important
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issues brought up in [Turn86] are addressed in [Neum86].

3.8 GRACEFUL DEGRADATION OF COMPUTER SECURITY

Fault-tolerant computer systems gracefully degrade in performance (i.e.,
go to a lower level of service) when all spare units for one resource are deplet-
ed, and less than the minimum required units of that resource are working.
Additionally, the error detection and recovery coverages can degrade at the
same time as performance, since the hardware used by the fault tolerance
mechanisms can be lost with dwindling hardware and software capabilities.19

The idea to apply this general concept to computer security was first
presented in [Turn86]. Its purpose is to provide high availability to a system,
with some degree of computer security, and thus partly avoiding undesired
exposure to attack. Security can be forced to degrade due to some hardware
and/or software fault, causing the loss of a required security mechanism in that
system's initial security evaluation class (i.e., division: C,B,A, classes: Cl, C2,
B1, B2, B3, Al [DoD85a]). As an example, loss of a trusted path capability due
to a physical, permanent failure of a hardware component, could force class Al,
B3, or B2 system to degrade to a class Bl system. In this example, once the
failure has been required, the secure system could then perform a recovery to
its original evaluation class. However, in the future, it is likely that not all

secure computer systems will be accessible for maintenance (e.g., the SDI).

The DoD security criteria20 [DoD85al, uses four basic types of system

19An exception to this, is when self-checking computer modules are
employed. Upon degradation, error detection and recovery are preserved, since
each self-checking module contains all its local detection and recovery mech-
anisms [Renn78].
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attributes in an evaluation: security policy enforced (i.e., the security require-
ments), accountability of system subjects, assurances of proper design and
implementation, and documentation. A fault in a deployed secure computer
system, specifically in the implementation of the security policy, accountability
mechanisms, and/or the system architecture section of assurances, can force
security degradation.

Degradation of computer security occurs from a system's initial evaluation
class, downward in the defined DoD security criteria's divisions and classes per
division.21 In a deployed, operational system, this will involve a loss of system
functionality {(e.g., from handling multiple levels of sensitive information, to
degrading to a single level of information), flexibility of use, and penetration
proofness of the system. In exploring this topic, we will first outline in Section
3.8.2, all possible security degradations that can occur by removing a specific
security mechanism required for each class in [DoD85a] (e.g., remove all audit
capabilities). Then in Section 3.8.4, we will describe which degradations, out of
all enumerated, make sense and can be implemented.

Two fundamental goals must be achieved to allow the use of security
degradation. First, security degradation must not allow any compromise. If for
example, all security labels in a secure computer where lost due to some
unchecked error propagation, then a valid security degradation would not be to
logically upgrade all subjects and objects to the highest security level of the

previously working system. (It could be done simply by ignoring all mandatory

2O’I'his determines what type of trust can be placed in the system and what
threat environments it can be used in.

21This is the approach described in [Turn86é].
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access controls and relying only on existing discretionary controls.) This is
undesirable, because it allows previously unauthorized, less privileged users
access to privileged data.

Second, a reasonable recovery time is likely to be required. This requires
security degradation to be handled by the computer system (i.e., no user inter-
vention). Later, once the system is operating again in a secure mode,22
authorized human intervention can be allowed to ensure a tolerable working
environment.

An important question to ask is: does a fault or flaw in any of the remain-
ing assurances (i.e., off-liné techniques, not including the system architecture
section, such as configuration control [DoD85a)) and documentation require~
ments also force security degradation? In fact, this is feasible, if the inade-
quacy of the off-line techniques, or of the way they are applied, result in
undetected flaws in the security mechanisms.

However, these type of security degradations are very open ended, since a
wide class of faults can result from them. These type of faults overlap signifi-
cantly with the previous work done in this Chapter and Chapter 2, and as such,
have already been discussed.

In order to use some of the advanced concepts presented in the previous
sections of this dissertation, and also to be forward looking, we include the
security evaluation class of A2, which is not yet officially defined and is viewed
to be beyond the state—of-the-art. Before we proceed with discussing security
degradation, we first define a portion of the run-time requirements that we

believe should be included in this security class.

22Thus a true trusted recovery, rather than the current concept in

[DoD85a).
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3.8.1 PARTIAL REQUIREMENTS FOR A CLASS A2 SECURE COMPUTER
SYSTEM

First, add to Section 4.1.1 Security Policy in [DoD85a] the following sub-
sections: "4.1.1.5 Modification Access Control - The TCB shall enforce a
formally specified data integrity policy that ensures cither condition 1 alone or
both condition 1 and 2. (1) Prevent the unauthorized direct or indirect modifi-
cation of information and programs. (2) Manipulations on objects must be
constrained to well defined and controlled software and hardware. Sequences
of object manipulations must be constrained to well defined and controlled
sequences.

If only condition 1 is to be supported, then this can be provided by using
Biba's simple integrity property and integrity *—property [Biba77] [GC84].

If condition 1 and 2 are to be supported then they can be provided by using
a Clark-Wilson based integrity policy [Clar87]. [see Section 2.2.2] The type
enforcement mechanism introduced in LOCK [Boeb85a], provides the basic
capabilities for implementing this polie:y."23

"4,1.1.6 Integrity of Function and Data — Run-time mechanisms shall be
dispersed throughout a computer system's hardware and software to ensure its
proper service in the presence of deliberate faults [Jose87]. This includes the
integrity (correctness or proper service) of a development environment."

Second, add to Section 4.1.3.1.1 System Architecture in [DoD85a] the
following statement: "Errors due to physical faults (both transient and inter—

mittent) in a computer system's hardware, and design faults in hardware and

23'1‘he Clark-Wilson integrity policy includes condition 1 to protect the

well defined, constrained object manipulators (e.g., programs), and the database
of authorized manipulation sequences from unauthorized modification.
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software shall be tolerated, and thus, maintain a computer system's security in
the presence of faults from defined fault classes."”

All other requirements, such as, improving off-line techniques (e.g., verifi-
cation techniques applied to covert timing channels, and enhanced security
testing) are not of interest here, since they are purely fault avoidance tech-

niques.

3.8.2 ALL POSSIBLE SECURITY DEGRADATIONS

Computer security can be forced to degrade for the followir;g reasons: loss
of some portion of the critical state (see Section 3.3), design fault (accidental
or deliberate) in the hardware and/or software of a security mechanism, and
computer system degradation due to physical faults. All security mechanisms
and policies appearing below where taken from each secure computer class
appearing in {DoD835a].

1. Degrading from A2-Al can occur if any of the added run-time
requirements presented above are completely or partially lost.

2. Degrading from Al-B2 or B3~B2 can occur due to any one of the
following: (a) loss of the discretionary access control to list individual or groups
of individuals who are not to be given any access to an object (enforcement of
security policy), (b) loss of the capability of the TCB initiating a trusted path,
and that a trusted path is always used when a positive TCB-to~user connection
is required (e.g., login, change subject security level) (enforcement of account-
ability), and (c) loss of the capability of the TCB monitoring occurrences of
auditable events, which may indicate an imminent violation of the security
policy; if thresholds are exceeded the TCB reports to the security officer, and

after which if these events continue take action to prevent such further events
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(enforcement of accountability).

3. Degrading from B2~B1 can occur due to any one of the following: (a) loss
of a significant amount of labels on system resources (i.e., can be on hardware:
ROM, I/0 device) that are directly or indirectly accessible outside the TCB,
loss of the ability to inform a subject when his/her security level is changed,
and loss of the ability of a physical device to have a range of security levels of
objects that can be written to it, (enforcement of security policy), (b) loss of
mandatory access control over all resources, to only control over subjects and
storage objects (e.g., ROM is not a storage object but at B2 it can have a label)
(enforcement of security policy), (c) loss of the capability of identifying audit
events that may be used in the exploitation of covert storage channels
(enforcement of accountability), and (d) loss of the capability to have a trusted
path (enforcement of accountability).

4. Degrading from B1-C2 can occur due to any one of the following: (a) loss
of a significant amount of all security labels (enforcement of security pc;licy),24
and (b) loss of process isolation maintained by the TCB via distinct address
spaces under its control (operational assurances).

5. Degrading from C2~C1 can occur due to any one of the following: (a)
loss of the capability of discretionary access control defining groups of
individuals, with controls to limit propagation of access rights, and the ability
to include or exclude access at the granularity of a single user (enforcement of

security policy), (b) if not defined by a user, the discretionary access control

24Loss of object importation from or exportation to a multilevel device

(e.g., /O device, communications network) can be recovered from by using
several single level devices. That is, the loss of multilevel devices, by them-
selves, do not seem to warrant a security degradation.
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mechanisms will by default protect objects form unauthorized access (i.e., set
initial default access rights so only owner can touch data), (c) loss of all object
reuse provisions (i.e., ensure all old data is removed) (enforcement of security
policy), and (d) complete loss of audit (enforcement of accountability).

6. Degrading from C1-D can occur due to any one of the following: (a)
complete loss of discretionary access controls (enforcement of security policy),
(b) complete loss of all capabilities of user identification and authentication
(enforcement of accountability), and (c) the TCB is unable to protect itself
from modification (e.g., running the Intel 286 in non-protect mode).

Above we have detailed all the security mechanisms that can be lost at
run-time, and what the resulting degradations would be. However, this does
not, by itself, specify how such a degradation would be done. For example, if
given a secure system in division A or B, and a significant amount of all
security labels where lost, how would the security degradation to a C2 system
be done?

An interesting case is if a class A2 system loses a significant amount of its
integrity labels, while the normal security labels are intact. In this case, the
security simply degrades to a class Al system. If the reverse happens (i.e.,
integrity labels are intact and the security labels are lost), then security
degrades to a class C2 system. However, integrity labels can still be used to
enforce a type of access control. These type of issues are discussed in Section

3.8.4.
3.8.3 TRANSITIVE CLOSURE OF THE SECURITY DEGRADATION FUNCTION

The point to be made here, is that a sequential degradation down the

security evaluation criteria (i.e., A2~A1-B3~B2...) is not essential. Several
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divisions or classes can be skipped directly depending on the security mech~
anism(s) lost. The security degradation function (SD) can be represented as —
SD: 1-P, where I is the initial security evaluation class of secure systems,
I={A2, Al, B3, B2, C2, Cl }, and P are all the possible security evaluation
classes to degrade to, P = {A1l, B3, B2, Bl, C2, C1, D}.

SD is defined as follows: SD(A2) = Al, SD(Al) = 32,25 SD(B3) = B2, SD(B2)
= B1, SD(B1) = C2, SD(C2) = C1, SD(C1) = D. The transitive closure of SD, sp*
is:

{ (A2,Al), (A2,B2), (A2,B]), (A2,C2), (A2,C)), (A2,D),
(A1,B2), (A1,B1), (A1,C2), (A1,C1), (A1,D),
(B3,B2), (B3,B1), (B3,C2), (B3,C1), (B3,D),
(B2,B1), (B2,C2), (B2,C1), (B2,D),
(B1,C2), (B1,C1), (B1,D),

(C2,C1), (C2,D),
(C1,D) }

This closure shows all possible security degradations.

An example of a security degradation is the loss of a hardware device that
ensures that a terminal user can directly contact the TCB (e.g., a special func-
tion key on a keyboard), that is, the loss of the trusted path. This can be
explicitly represented by another function, SDE (for SD Extended): IxS~P, where
S = {set of all required security mechanisms}. Examples of elements in S are

trusted path, audit storage covert channels, and mandatory access control. For
this example, SDE is defined as: SDE(A2, trusted path) = Bl, SDE(A1, trusted

25 Degradation from Al-B3 can only occur due to loss in effectiveness of

an off-line technique. In this section we are only considering degradation due
to run~time faults.
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path) = Bl, SDE(B3, trusted path) = Bl, SDE(B2, trusted path) = Bl, and SDE(D,
trusted path) = undefined. These degradations form the following subset of
sp*, { (A2,B1), (Al,BI), (B3,B1), (B2,Bl) }.

As a last example, consider the loss of all audit capabilities. Again for this
example, all possible security degradations is a subset of spt, { (A2,CD),
(Al1,C1), (B3,C)), (B2,C1), (B1,Cl), (C2,C1) }. Some values of SDE for this
example are: SDE(B3, all-audit) = C1, SDE(C2, all-audit) = C1, and SDE(C1, ali-
audit) = undefined. As done above, SD"', is used to help enumerate all possible
values of SDE.

These two examples, should make it clear that the loss of an essential run~
time security mechanism (e.g., audit), forces the security evaluation class to
degrade below the security class at which that mechanism was first introduced
(e.g., trusted path first introduced at class B2). Degradation should occur even
if other higher security class mechanisms are still effective (e.g., loss of ade-
quate discretionary access controls can force security degradation to Cl or D,
even if security labels used for mandatory access controls [needed for Bl and

above] are intact).

3.8.4 MEANINGFUL AND MEANINGLESS SECURITY DEGRADATIONS

All possible security degradations of Section 3.8.2 are based on the classes
{e.g., Al, C2) appearing in [DoD85a]. However, for the following discussion it is
more appropriate to discuss secure computer modes of operation, which
actually encompass these classes [Air84] [DoD85b] [DoD85c].

These modes of operation include: multilevel security mode which
corresponds to, class Bl through Al systems, controlled security mode which

corresponds to, class Bl through B3 systems, system high security mode which
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corresponds to, class C1 and C2 systems, and dedicated security mode which
corresponds to class D and C1 systems. Definitions for each of these modes can

be found in the glossary of security terms and concepts.

MULTILEVEL AND CONTROLLED MODE TO SYSTEM HIGH

Degradations that force a secure computer system from a multilevel or
controlled mode of operation [Air84] (i.e., basically, this allows multiple levels
of sensitive information concurrently in one machine, or network), to a system
high mode of operation (i.e., basically, only one level allowed), require the
removal of certain subjects or objects in order to avoid compromise. An
example of this, is SDE(A2, all-audit) = Cl, SDE(A1, all-audit) = C1, SDE(B3,
all-audit) = C1, SDE(B2, all-audit) = C1, and SDE(B!, all-audit) = Cl.

The loss of an audit facility could be due to, for example, a design fault
(accidental or deliberate) in its implementation, or a physical fault in its
storage facility (e.g., disk head crash reduces audit archive storage in half).
This particular example is justified, since it would be exceedingly difficult, if
not impossible, to track down any abuse of privileges by trusted subjects (e.g.,
use of covert channels), or a general system penetration without an audit
facility.

Specifically, to degrade to a system high mode, the highest level of
sensitive information to exist in the computer must be picked. Two choices
exist: the current highest security level or the lowest security level. If the
highest level is maintained after a security degradation, then all subjects below
that level must be removed, (see Figure 3.16 (a)), and all security labels in the
system are logically deleted. This essential causes all objects to be upgraded,

and can easily be implemented by setting all labels to the same value. The
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degraded system will provide access to all objects for a limited set of users,

If the new highest security level of the degraded system is set to the pre-
viously lowest security level (i.e., the later case), then all objects above that
lowest level in the system are removed, (see Figure 3.16 (b)), and again all
remaining security labels are logically deleted. This causes the entire system
to be downgraded in security level, and will then be less useful for the most
users.

The following set of security degradations represent all the possible cases
for this section and is a subset of SD"', { (A2,C2), (A2,C}1), (A1,C2), (A1,C)),
(B3,C2), (B3,C1), (B2,C2), (B2,C1), (B1,C2), (B1,C1) }.26 Any of these security
degradations can occur due to the following loss of security provisions in
[DoD85a], and were presented in Section 3.8.2: 5d- loss of all audit, 5c~- loss of
object reuse, Sb- loss of default access setting, 5a- loss of control on
propagation of access rights, and the ability to include or exclude access to a
single user, 4b~ loss of process isolation enforced by the TCB, and 4a~ partial
loss of security labels.

This last example (i.e., 4a), actually represents the case of partial loss of
critical state information (see Section 3.3). The loss of a significant portion of
object security labels can also cause security degradation to a system high
mode of operation. This is done the same way as previously presented when the
single security level chosen, for the degraded mode, was the current highest
ievel. The loss of a significant portion of subject labels results in the single

security level chosen to be the current lowest security level. Thus, if only the

26Class D systems are not important, since they represent a total loss of
security.
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lowest security objects exist in a secure system with subjects of unknown
trustworthyness, then no compromise is possible.

Loss of a portion of the encryption keys in a secure network can result in a
MLS network degrading to a SLS network. This loss of encryption keys can
occur for a period of time when a key distribution center (i.e., a special node in

the network) becomes malfunctional.

MULTIPLE LEVELS OF BIBA'S INTEGRITY TO SINGLE LEVEL OF BIBA'S
INTEGRITY

All references to integrity levels in this section refer ognly to Biba's
integrity levels [Biba77). If the secure computer system before a security
degradation was a class A2 system, then degradations might be required to
prevent a Biba's integrity compromise or information sabotage [Biba77]. To
accomplish this, we need only extend the scheme presented in the previcus
subsection.

The first possibility is to degrade the multiple level integrity (MLI) system
to a single level integrity (SLI) system at a Biba's high integrity level. To do
this all objects below the highest integrity level are removed (see Figure 3.17
(a)). This prevents high integrity subjects from being spoofed by low integrity
objects. Next, all remaining integrity labels are logically deleted (i.e., set to
one value). At first glance this may appear as if the previously low integrity
subjects can now sabotage high integrity objects, since write access is possible
after degradations. However, since only high integrity objects remain in the
degraded system, a low integrity subject will not be able to contaminate a high
integrity object with low integrity objects.

The last possibility is to simply downgrade all objects to the lowest
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integrity level. This requires the removal of all subjects above the new low
level (see Figure 3.17 (b)). Now, it does not matter that high integrity objects
can be contaminated with low integrity objects, since there are no high
integrity subjects to be spoofed. Notice, that these two integrity cases are the
dual of the multilevel and controlled mode to system high mode degradation
cases, as are integrity concerns the dual of security [Biba77).

The following two possible degradations, { (A2,C2), (A2,C1) }, introduce an
interesting example. A MLS/MLI system degrading to an SLS/SLI system. This
is possible by integrating the approaches in this section and in the last
subsection. However, great care must be taken, if the security levels do not
correspond to the integrity levels (i.e., a subject with a high security level also
has a high integrity level), then it may be possible to degrade to a system with
no subjects or objects. Figure 3.18 a&b describe security degradations were

security and integrity levels correspond with each other.

MULTILEVEL MODE TO CONTROLLED MODE

This type of security degradation would be done to reduce the damage of a
possible compromise, while still allowing the flexibility of MLS system use. In
controlied mode of computer system operation, at most two classification
levels of subjects in the system is allowed. However, object classification can
range from the lowest security level possible to the system's highest security
level (e.g., lowest subject clearance is confidential, then unclassified to top
secret objects can exist concurrently) [Air84]. A class Bl secure system can be
used for a controlled mode of operation. All possible security degradations to it
are a subset of SD”, { (A2,B1), (A1,Bl), (B3,Bl), (B2,B1) }.

A plausible example of such a degradation is represented as: SDE(A2,
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storage channel audit) = Bl, etc. Allowing, MLS system to operate normally
under these conditions can result in a serious compromise. The security
degradation to a restricted number of security levels uses the same basic idea
of degradation to only one level.

In general, to degrade security to a restricted set of security levels the
new lowest and highest security levels allowed must be chosen. All levels in
between will also be allowed. First, all subjects below the new lowest security
level will be removed. All objects below this level can either be upgraded to
the new lowest security level or simply removed. Second, all subjects above the
new highest security level are downgraded to the new level once all their state
information is reinitialized (i.e., prevents old data from being leaked out—Ilike
object reuse). All objects above the new highest security level should also be
removed from the secure computer system.

Since controlled mode allows low security level objects, the above upgrad-
ing or removing of low level objects can be bypassed. Degrading to a controlled
mode does not require logical deletion of security labels, since they are still
needed. Instead, they are downgraded by rewriting then with the appropriate
new security level.

Specific losses of security provisions that can force these type of degra-
dations, and were presented in Section 3.8.2 are: 3d- partial loss of all trusted
paths, 3c- loss of potential storage channel audit, and 3b- partial loss of
security labels on system resources (e.g., ROMs, and I/0 devices).

It is interesting to observe that the above scheme to restrict security
levels can be used for two additional purposes. First, any security degradation
between MLS systems (i.e., multilevel mode systems) may require security level

restriction (e.g., SDE(Al, TCB activated trusted path) = B3).27 Second, this

116



scheme does not only have to be used in conjunction with a security degra-
dation. It can be used to dynamically restrict security levels in any multilevel

mode system, for whatever purpose.

MEANINGLESS SECURITY DEGRADATIONS

There are several security degradations in Section 3.8.2, which are very
hard to justify as plausible. To start with, all security degradations due to a
significant or complete loss of security and/or Biba's integrity labels are not
possible (i.e., part of 1, 3a, 3b, and part of 4a). Since this information is part of
a secure computers system's critical state, it is the job of the fault tolerance
mechanisms to protect it. If loss of this type of information occurs anyway,
then it will be nearly impossible to reconfigure the system such that no security
or Biba's integrity compromise can occur. This actually pertains to a total loss
of any part of the critical state (see Section 3.3).

Another meaningless security degradation occurs in the context of a
computer network. The loss of all trusted path capabilities could be handled in
a single computer as a multilevel mode degrading to a controlled mode of
operation. However, loss of the trusted channel, for a significant period of
time, between the network access control center (ACC) and its key distribution
center (KDC) (i.e., special nodes in the network), for example, should prevent
any multilevel secure communications. This is because the ACC and KDC are
part of the network trusted computer base (NTCB) [DoD87]. Breaking apart the

NTCB should force degradation into, a minimum, single level C division system.

27This is not meant as a panacea. For example, 2d from Section 3.8.2 -
loss of specifying which user cannot have access to an object, does not warrant
this action.
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CHAPTER 4
SECURITY PROBLEMS IN ADDING DEPENDABILITY GOALS TO SECURE
COMPUTER SYSTEM DESIGN REQUIREMENTS

This chapter explores what has been termed "secure fault tolerance"
[Turn86]. Essentially, this involves ensuring that the fault tolerance techniques
used in a fault-tolerant, secure computer design do not accidentally or delib-
erately violate its security policy. The impact that fault tolerance and
computer security concerns have on each other is discussed. As an example,
the first section of this chapter, testability versus tamperproofness, reveals
how a simple fault tolerance requirement, if not carefully integrated with a
secure system's design, can lead to a decrease in the trust that can be placed in
a design.

Perhaps the most obvious impact of fault tolerance on a secure system
design is one of increased complexity [Turn86]. This can be a significant prob—
lem for current computer security technology. This is due to the decreased
effectiveness of the fault avoidance techniques employed by computer security

technology as the complexity of the design increases.

4.1 TESTABILITY VERSUS TAMPERPROOFNESS

The reference monitor [DoD85a] of a secure computer system (which is
part of the TCB) has a fundamental requirement to be tamperproof. In order to
guarantee this, the LOCK program is implementing the entire reference mon-

itor in hardware [Boeb85a] [Boeb85b] [Boeb85c] [Sayd87]. Additionally, all
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secure computer systems from classes C1 through to Al require some hardware
and/or software features that periodically validate the proper operation of the
hardware and firmware elements of the TCB (i.e., diagnostic capabilities, see
Section 3.1) [DoD85a].

In order to provide effective diagnostic capabilities (i.e., with reasonable
coverage), hardware should be designed to be testable [Will73] [Funa78). This
facilitates the location of hardware faults so that a failed hardware unit can be
replaced or switched out. This is viewed as so important that all IBM main-
frames, starting with the early 360 series, include extensive testability mech-
anisms as hardware standards.

Testability involves the observation and control of a computer system's
state. Testability can be utilized for run—time diagnostics or in initial hardware
checkout for manufacturing defects. A commonly used technique for testable
processor design is Level Sensitive Scan Design (LSSD) [Sto179]). Here, a set of
registers in a processor can be connected into one long shift register. Obser-
vation of system state is accomplished by shifting all register contents out, and
control is accomplished by shifting in test patterns in order to force errors to
manifest themselves. This mode of operation is invoked upon the de"cection of
an error.

The issue here is obvious: how to allow the most trusted part of a secure
system to be tested, by a technique like LSSD, without compromising its ability
to maintain the security of the system? Obviously, if a reference monitor's
state is subject to unauthorized modification via LSSD, then it is not tamper-
proof. The following is a discussion of this issue with LSSD specifically in mind.

After the testing mode is entered, the current state in the affected area of

a processorl is typically read out and stored for later analysis. For any
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secure computer system such state information will likely be sensitive. There-
fore, its transfer and storage must be protected against unauthorized access
(i.e., by analogy, if deliberate hardware design faults are at work, then treat
this state information as audit data).

Control of a testable circuit via LSSD involves placing test patterns into
the shift register. This implies the need for two distinct modes of hardware
operation: test and normal. If this is not enforced adequately, then the
reference monitor could be subverted by using LSSD to place it into an insecure
state. For example, changing copies of access rights temporarily stored in a
processor's register while data is being accessed (e.g., the Intel 286 [Inte83] has
segment registers that cache access information when a segment is in use).
Also, changing the program counter while in privileged mode can lead to
untrusted code running with the privileges of the reference rnon.itor.

Therefore, hardware used to implement testability, hardware used to
detect errors that initiate a test mode, and any diagnostic software are targets
for malicious logic insertion. Formal verification of both hardware and
software is typically used against this type of threat, thereby including all logic
associated with testability as part of the TCB (i.e., making it trusted not to be
malicious). Following one of the main goals of this study, this reliance on trust
should be eliminated. Thus, fault tolerance techniques should be used along
with security fault avoidance techniques [Dobs86] to reduce the risk of

hardware testability features being used to penetrate a secure system. One

1Note, that if one failed hardware component in a system enters test mode
this does not necessarily mean that the whole computer system stops providing
service. Many designs, such as the IBM 3081, isolate the regions of hardware to
be tested from the rest of the system.
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final note, any other solution to the above problems, that includes the absence
of all testability features in a computer system, is unacceptable from a fault

tolerance and availability perspective.

4.2 POSSIBLE VIOLATIONS OF A SECURITY POLICY BY FAULT TOLER-
ANCE MECHANISMS

How can the added mechanisms to a computer system for fault tolerance
result in compromise and/or denial-of-service? In designing a fault-tolerant,
secure system each new mechanism must be evaluated for its potential threat
to system security. This section discusses the following standard security
concerns. Do any subjects (i.e., here fault tolerance mechanisms) access
multiple levels of sensitive data? Can fault tolerance mechanisms be used as

covert channels? What can malicious logic in fault tolerance mechanisms do?

4.2.1 ACCESSING MULTIPLE LEVELS OF DATA

Memory scrubbing is a standard fault tolerance technique used to prevent
the accumulation of latent errors in memory. It periodically reads every
memory location in order to force error correcting codes to fix errors.2
Otherwise, if a memory word is not accessed frequently enough, then two or
more errors can occur in the same word preventing error correction and perhaps
resulting in loss of data with a memory failure.

In a MLS system, such a memory scrubber would likely access memory

modules that contain data at multiple levels of sensitivity. If it is able to

2]E.:-ror correcting codes for memory can only detect an error when a
memory word is read out.
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determine the security levels of this data, then it could violate the *-property
by use of a covert channel. Placing a memory scrubber entirely in hardware
[Renn86] should make it much more difficult—~-though not impossible—to cause
a compromise.

Recovery logic can similarly access multiple levels of sensitive data.
First, switching in a cold spare (e.g., for a processor) may include bringing it up
to date with the computation that was running before the error. This can
involve the transfer of an entire processor's state to a cold spare. Thus, since
the recovery logic will supervise this action it can access any of this data.

Second, recovery logic will receive health and status information from
every processor under its care. Again in a MLS system, either each processor
will be of a different security level or contain a range of levels. Thus, this
information will also be at several levels [Turn86). Third, fault location diag-
nostics often can use special hardware maintenance channels to examine the
state of a malfunctioning subsystem (processor) from another subsystem
(processor). If these subsystems contain different security ranges, then this

communication channel can result in access to multiples levels of sensitive data.

4.2.2 FAULT TOLERANCE MECHANISMS INTRODUCING NEW COVERT
CHANNELS
The added complexity due to fault tolerance mechanisms is likely to result
in new information flows and covert channels [Turn86]. Here we present unique
instances of both that can be directly attributed to fault tolerance techniques.
Several new information flows are: (a) error reporting from error detection
logic to recovery logic (this can be hardware or software), (b} health and status

information including diagnostic results (e.g., as in AOSP [RADCS85] and
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Tandem computers in the form of interprocess messages), and (c) reconfigura-
tion and state restoration control signals from recovery logic to redundant
hardware and state. One aspect determining if these information flows could
be used for covert channels, is whether or not system defined and protected
data objects are used for communication [Kemm83]. Low-level hardware
signals can and are used in most designs, and these are not included under the
security mechanisms’ control (e.g., serially transmitted error reporting
messages are too low-level to be audited).

When analyzing computer systems for covert channels the following issues
must be addressed: bandwidth of the channel, natural causes of channel noise,
type of channel: storage or timing, its ease of use, determining the necessary
shared resource used as the channel (i.e., without a shared resource no channel
is possible), determining whether the sending and receiving subjects are from
different security domains (i.e., different subjects at different security levels,
otherwise no channel exists),3 determine how the sender uses the shared
resource to transmit information, how the receiver senses the information sent,
and how the sender and receiver synchronizes the information transfer
[Lamp73] {Scha77] [Kemm83] [Loep85]. The following subsections present
several obvious examples of covert channels due to fault tolerance mech-
anisms. These are not meant to be a complete list nor the most likely used

channels.

Covert Channel 1 — Storage Channel

Figure 4.1, shows a simple N—-Modular Redundant (NMR) computation con-

3'We are currently ignoring discretionary covert channels.
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figuration. Each processor (i.e., CPU) contains the same process (subject). The
voter compares the outputs of all processes at predetermined times, and the
majority of all values is the output result. If any processor(s) disagrees with the
majority decision, then it is recorded by the disagreement detector [Kuehé9]
and this information is sent to some recovery logic and/or error log.

Thus, the shared resource for this storage channel is whether a processor
produces a correct or incorrect result (i.e., the correctness state). The sender
is a process and the receiver is the recovery logic or any subject that can read
the error log. The storage variable, which is indirectly written by the sender, is
in the recovery logic and/or error log which is directly written by the disagree-
ment detector.

The following is the scenario for sending information on this channel.
First, one or more processors force a disagreement, by the pfocess running on
it, deliberately performing an incorrect calculation. The disagreement detector
will detect this and give the processor number(s) to the recovery logic. Obvi-
ously, the number of deliberately incorrect processors must be a minority.
There are many ways to encode information in this way: (a) each processor may
have a value associated to it, or (b) for a SMR configuration, for example, a 2
out of § and/or a 1 out of S code can be used to encode many values. The more
redundancy used in an NMR configuration, the more information that can be
encoded in a single covert transmission.

Each process in Figure 4.1 is actually identical. To send a code by the
above method they must produce errors at different times and in different
patterns. This can be done by distinguishing each version by a call to a random
number generator in each version. This number can then be used to determine

when a version should produce an error.
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Additionally, the receiver must know the relative order of the processes,
determined by this random number, in order to relate their failure patterns to a
signalling code value. This can easily be done by a calibration sequence, where
for the first few covert transmissions the sender runs through the entire code in
some predetermined order.

The bandwidth of this channel can be very high, since it does not interrupt
normal system functioning and the recovery logic is the receiver. Thus, the
recovery logic can ignore the generated errors. This last point is important,
because permanent faults are distinguished from transient faults by their per—
sistence over a time interval. If the recovery logic was not the receiver or at
least a "cooperating sc:heduler,"4 then the covert channel would force many
permanent faults to appear likely closing off the channel and raising suspicion.

Channel noise will occur naturally due to real errors that force some of the
processes to occasionally produce an incorrect output when they are not sup-
posed to. This reduction in bandwidth is dependent on: (a) the rate of occur-
rence of faults, and (b) the probability that faults occur in processors that are
not supposed to fail, versus hitting processors that are already supposed to fail.

If real errors should cause degradation of the number of processors in the

4A "cooperating scheduler,” as described in [Scha77], is a scheduler that a
subverter [Myer80] has written to help facilitate the transmission of
information through the resource that it schedules. This is in the context where
the sender and receiver are both processes.

Here we use this concept in a more general form, since a fault tolerance
mechanism as a sender or receiver does not have to be a process. Thus, it is
used here as any mechanism with some control authority (e.g., recovery logic),
which a subverter built, that facilitates the transmission of information through
a covert channel.
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redundant configuration, then an extra channel used to synchronize the sender
and receiver can be used by the recovery logic to inform the sender of this
condition. There is no way for the sender to notice a degradation by itself, and
thus, the channel would be closed due to noise. So upon receipt of the degrada-
tion information, the sending processes can recover by using a simpler signalling
code with lower bandwidth.

The sending processes can be at any security level, and over time will
change as new processes run on the processors. The recovery logic and any
subject that can read an error log will thus, at some time, be at a different
security level than the sending process. Additionally, this is not an overt
channel of the following reasons: (a) the disagreement detector is not meant as
a communication path between a process and the recovery logic [Scha77], and
(b) the storage cell is not a system protected data object, and is not normally
viewed as a data container [Kemm83]. Thus the above example is a valid covert

channel.

Covert Channel 2 — Storage and Timing Channel

Use of a watchdog processor that utilizes derived signatures or assigned
tokens as control flow markers [Mahm88] (see Section 3.4.2 on computer
viruses), adds both a storage and timing channel to a computer design. The
sending process is the program running on the normal CPU being monitored by
the watchdog. The receiving subject is the watchdog itself. The main idea, is
that the sending process can transfer information by modifying its control flow
at specific times. The watchdog will easily detect this by recognizing the
generated signatures.

The following is the scenario for sending information on the storage
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channel. Special loops (i.e., code sequences) are associated with a value. The
correspondence between the signature generated by the code loops and the
signalling code is done as in covert channel 1 above, that is, via a calibration
sequence. To send a code number a process simply runs a special loop. The
receiving watchdog processor dynamically generates the signature and
compares it with its known signalling code to signature relation.

The following is the scenario for sending information on the timing channel
variant. The only difference from the storage channel is that the receiving
watchdog senses the information transfer by the number of times that a
particular signature is executed in a row, length of time it takes to receive the
next signature (i.e., the actual length of the loop), or by the order of a sequence
of signatures generated [Scha77).

In order to accomplish the signalling of information via this channel, the
extra executions of signaling code loops must not affect the final result of a
process. These signalling code loops can be routines that perform some check
function, such as reading through a link list to find a special entry. Or, they
can be specially implanted code that perform useless functions, and have no
effect on the program's results (e.g., extra, useless variables are added to a
program and functions are performed on them).

Bandwidth can be restricted if a process has a time limit on it, since the
use of the covert channel incurs added execution time. Additionally, as with all
the channels presented in this section, noise can occur due to naturally occur-
ring errors.

This covert channel is unique in that it does not require the recovery logic
to be a cooperating scheduler, since information is not transferred by forcing

errors. This channel is very easy to use, but as just indicated may be detected
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by changes in execution time {Denn86). The justification for why this is indeed
a covert channel is essentially the same as covert channel 1 above, and is the

same for all following channels presented.

Covert Channel 3 — Timing Channel

This charnel involves the degradation and reinsertion of hardware
resources by the recovery logic. The receiving processes rely on multiple
hardware resources of some type(s), such as, memories and processors in order
to perform their job. It injects an error the same way as presented for covert
channel 1 above, which activates the recovery logic. Then the recovery logic
can send information to a process by changing the hardware resources that are
available to it by unnecessary degradation and reinsertion of previously de-
graded resources.

The change in performance observed by a process encodes the transmitted
information. The bandwidth of this channel is limited by the overhead of the
recovery logic in degrading and reinserting hardware resources, and again, by
the occurrence of real errors forcing degradation. The channel is easy to use,
but can be detected by watching the frequency of the change of state of redun-

dant resources.

Covert Channel 4 — Timing Channel

This timing channel involves the delaying of a process by the use of diag-
nostic procedures which are periodically run on the entire computer system.
The sender is the diagnostic routine and the receiver is a process. The shared
resources are simply any hardware resources that a process uses, such as pro-

cessors, memory, and input/output devices.
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The transfer of information can occur either by the order in which the
diagnostics are performed, or by the length of time they take. Diagnostics can
only be used as a transmission media if they are performed in the background
while other hardware resources are still working on an application. This results
in an application waiting until a particular diagnostic is over if it needs the
hardware resource under test.

The bandwidth of this channel is reduced by these factors: (a) it can only be
used when the diagnostics are run, and (b) diagnostics have a reasonable limit on
their execution time. Thus, if either of the two above properties are violated,

this channel will be easy to detect.

4.2.3 MALICIOUS LOGIC IN FAULT TOLERANCE MECHANISMS

The contents of this section are rather straightforward. Fault tolerance
mechanisms tend to have very significant control over the resources (e.g.,
memories, application tasks), and data of a fault-tolerant computer. This
degree of control is typically deemed necessary in order for it to be able to
recover the system in complex fault conditions.

Malicious logic in the error detection and/or recovery mechanisms can lead
to both compromise and denial-of-service. Several general examples of this
are: (a) error detection can force a high false alarm rate resulting in denial-of-
service [Turn86], (b) either detection or recovery mechanisms can ignore errors,
thus likely leading to improper service and denial-of-service, and (c) the error
recovery mechanism could maliciously perform its recovery task. There are
many examples of malicious error recovery. First, error recovery could place
the secure system into an insecure state by changing the state of subjects'

privileges. For example, in the Intel 286 [Inte83], the segment tables define a
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subject's access to objects. Recovery of such tables, due to some accidental or
deliberate error, could include unauthorized adding or removing of subjects’
privileges. Second, in switching in a cold spare memory module, data is
typically copied from the working module(s), as such, data of different
classifications could be intermixed. Lastly, recovery logic could perform
unnecessary degradation resulting in denial-of-service.

With this degree of power, computer security technology would place much
of the fault tolerance mechanisms into a secure system's TCB. The next

section discusses the problems with attempting to do this.

4.3 THE IMPACT OF FAULT TOLERANCE ON THE SECURITY DESIGN

.The use of purely fault avoidance techniques to build a TCB results in two
effects: (1) it limits the TCB's functionality, since it must be small and simple
enough for the off-line techniques to be effective, and (2) it has no run-time
protection from the unavoidably remaining design faults nor any physical faults
[Dobs86].

Thus, the most obvious impact of fault tolerance concerns is the clash of
views on the use of fault avoidance techniques. The fault tolerant design will
include the possibility of faults anywhere in the system. Thus, the entire TCB
will have to be able to tolerate a defined set of faults, including unintentional
and deliberate design faults. The use of additional mechanisms to tolerate
design faults (both hardware and software) remaining in the TCB is clearly in
clash with the current computer security design approach. First, from the
security viewpoint, what assurances will be provided that these additional

mechanisms will not violate the security policy? Second, the fault avoidance

techniques relied upon are supposed to provide enough assurances of the
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absence of design flaws (faults).

The first point is a very valid concern. Examples of how fault tolerance
mechanisms can violate a security policy were presented in the last section.
The use of NVP previously in this dissertation is, however, an example of a fault
tolerance technique that polices itself (also see Chapter 5). The additional
versions cannot violate the security policy, and it is just the support software
and hardware that must either be diverse or evaluated using security fault
avoidance techniques. Thus, all fault tolerance mechanisms that are used in a
fault-tolerant, secure computer, must be designed to tolerate accidental and
deliberate design faults! However, the second point is not valid, and should be
handled by a judicious use of both fault avoidance and fault tolerance tech-
niques.

Placing most of the fault tolerance mechanisms of a fault-tolerant, secure
computer design into the TCB, as was suggested in the last section, and adding
fault tolerance techniques to make the TCB itself fault-tolerant will present a
major difficulty for current computer security technology. All the fault toler-
ance mechanisms in the TCB would have to be proven to correctly implement
their design specifications in both the absence and presence of faults. Also, the
design would have to be proven to be fail-safe (i.e., a fail-secure design
[Molh73]). The prospect of effectively applying computer security technology's
formal verification and certification techniques to such a TCB is bleak. First,
error recovery mechanisms work in a very large state s;:»aceS with potentially

several (different) recovery mechanisms working in parallel. Second, error

5Recovery logic has to deal with many different types of errors, degrees of
error propagation, locations of errors, and number of errors.
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detection and recovery will be asynchronous to normal system functioning. This
makes formal verification, simulation, and testing infeasible under all fault
conditions for which the system is designed.

As an indication of the difficulty of this, current techniques used in fault
tolerance to assess the effectiveness (i.e., coverage) of fault tolerance mech-
anisms (i.e., fault and error injection into hardware and simulations) have diffi-
culty in deriving believable numbers, and are extremely difficult to apply.
Also, detection and recovery mechanisms used may be many, and of several
different types.

Nevertheless, there exists a precedent for the application of formal
methods for verification of a fault-tolerant computer design. The SIFT (Soft-
ware Implemented Fault Tolerance) project at SRI applied a formal specifica-
tion and verification approach to aid the evaluation of the computer system's
reliability [Wens78] [Gold80] [Meli82].

An actual code level proof of the small SIFT operating system (less than
1,000 lines of Pascal [Gold80]), plus a standard hierarchy of formal specifica-
tions was employed for system design verification. An interesting aspect of
this study was the association of both reliability and error rate Markov models
to the formal specification hierarchy. This was done in order to include in the
formal specification the probability that the system had enough working parts
to support the functional aspects modeled.

The verification process on the SIFT design did result in uncovering four
significant design errors. Whereas this work is fundamentally important, the
SIFT computer system has a simple design, thus allowing a fairly complete

verification. This is not typical of many other computer systems.
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4.4 THE IMPACT OF SECURITY PRINCIPLES ON THE FAULT TOLERANCE
DESIGN

A basic principle in dependable computer design is that a reliable computer
can be built from unreliable parts (or that a reliable distributed system can be
built from unreliable nodes [Dobs86]). However, this does not extend to secure
system design [Neum86). The following observation should help clarify this.
Fault tolerance techniques are mainly concerned with preventing errors from
propagating out to a service boundary, thus causing a failure. However,
computer security techniques are instead mainly concerned with preventing
subjects from obtaining unauthorized privileges, and thus, breaking into the
system.

If a secure system were composed of layers of insecure parts as suggested
in [Dobs86}, then all an attacker needs to do is to penetrate the lowest insecure
layer in order to overcome the entire system [Paan83] {[Neum86, p.908}. This
was one motivation behind the creation of the TCB concept. Current computer
security technology builds secure distributed systems from secure parts [Fell87].

Thus, the view that distributed secure systems can be built from insecure
parts, as presented in [Dobs86], is flawed. We propose a design of a fault-toler-
ant, secure system (i.e., a single computer or a network of computers), that
follows basic security principles (i.e., it still relies on a TCB). However, in
order to alleviate some of the above mentioned deficiencies of TCBs, fault
tolerance techniques are used to make the TCB the hard core of the system.6

One should note, that this design in itself is not effective against the

6A TCB has always been the hard core of a secure system, but now we
advocate using fault tolerance techniques along with fault avoidance techniques
to achieve it in the context of a fault-tolerant, secure design.
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denial-of-service threat. For this threat, techniques presented throughout this
dissertation should be applied throughout the entire computer system. That is,
to all software and hardware, where appropriate, since no boundary can be
drawn to deal with this threat [Glig85za].

A general design of a fault-tolerant, secure computer system contains the
following properties. (1) A TCB (or one for each computer in a network
{Fell87]) is used to address standard security and integrity policies. (2) Fault
tolerance techniques are used for software and hardware to prevent the effects
of malicious logic, and physically occurring faults (both accidental and deliber-
ate).7 Reliance on trust that these mechanisms will not violate a security
policy must be reduced. Thus, whenever possible, fault tolerance techniques
that police themselves should be used (see the last section). (3) A fail-safe
mechanism(s) is used so that if the hard core TCB fails, then the entire system
stops with minimal damage and compromise (i.e., a fail-secure design
[Molh73]). Since the TCB is the hard core, if it fails to provide security from
outside attacks and from malicious logic contained in itself, then the system
will fail entirely.

This design approach is compatible with all design options presented in
Section 3.5. However, option C-allow security relevant errors requires a new
definition for compromise in a fault-tolerant, secure computer system.

In [Hsia79] [{Turn86] {RADCS87], it is stated that state redundancy (e.g.,
checkpoints used in backward error recovery) increases the exposure potential

of sensitive information. However, this can be reduced to an acceptable level

7This does not mean that every piece of software runs as an N-version
system. See Section 2.5 on tradeoffs.
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by the use of fragmentation-scattering. Additionally, to prevent unauthorized
modification of information and programs, data redundancy will make it harder
for a malicious subject to corrupt all valuable data. This holds because it will
take more modifications to corrupt data, and this increased activity may be

easier to detect.
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CHAPTER 5
EXPERIMENTATION AND EVALUATION

Effectiveness measurements of the countermeasures chosen can be used in
design refinement. If serious protection problems are discovered during
measurement, steps can be made to compensate.

To obtain this measure, deliberate insertion of malicious logic similar to
the technique of fault and error injection used in fault tolerance to determine
fault coverage [Schu87], and error seeding techniques used in software testing
[Rama81], can be employed. The determinations of what mali_cious logic should
be used and where to implant it can be made in several ways. First, use a
penetration team whose experience in security CONCerns helps them devise
implants. Second, test specific conditions addressed by existing on-line
security mechanisms. And last, use analysis techniques such as fault-tree
analysis as employed in software safety [Leve85] [Leve86].

Deliberate insertion of malicious logic for testing purposes obviously must
be done with great care. The process of implanting must be well documented
and performed by a team. Implants should be placed only in experimental
versions used solely for testing. These versions should never be placed in the
same configuration library where the real operational software is stored.
Otherwise, some malicious logic used for testing may be deliberately left in an
operational system.

Measurements of effectiveness of both on-line and off-line techniques can

be performed. For on-line techniques, malicious logic is placed in operating
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software during normal system testing. For off-line techniques, such as formal
verification, malicious logic is deliberately placed in preverified code during
early design stages.

Performing such measurements requires defining what is to be measured
(the metric) and how the results are to be evaluated (the criterion). The metric
is the percentage of instances, where implanted malicious logic goes undetected
out of the entire body of tests [Schu87]. The criterion is composed of two
parts. First, it must take into account the coverage, or quality of the error
seeding cases [Rama81]. Second, the calculated percentage is interpreted rela-
tive to the acceptable degree of risk defined in the design phase [Jose87]. Two
results should be generated: one for all on-line, and one for all off-line tech-
niques used. This way, the return on investment of each approach can be com-

pared.

5.1 N-VERSION PROGRAMMING (NVP) USED FOR SECURITY

Security is used here in relation to the prevention of the effects of
malicious logic on computer systems. This section is a discussion of the general
issues in using NVP for security.

To overcome the use of NVP, malicious logic must be able to cause a
majority of coincident errors at a voting point(s) (multiple malicious actions
may be necessary to do real harm). If the coincident errors are similar, then
the result would be a loss of integrity of function and data (i.e., deliberate
improper service), since the voter (through consensus decision) would accept
malicious actions. However, if the coincident errors are dissimilar, then the
result would very likely be denial-of-service, since NVP systems typically do

nothing without a majority decision (also see Section 2.3.1).
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5.1.1 ACTION VOTING

A deliberate design fault (DDF) in just one version could easily circumvent
most NVP decision mechanisms. A DDF, for example a Trojan horse, would
perform devious actions (e.g., delete necessary files) in the background, while
producing valid data results to be voted on. To assure defenses against such a
threat, "action voting" (as introduced in [Chen78]) is needed (i.e., actions taken
by a version are voted on, as well as, the data generated). Thus, if less than a
majority of versions try to perform an action at the same time, then a
malicious attempt will be masked out.

The actions (e.g., system function calls) that need to be voted on, are
external manipulations of system state. An editor with an embedded Trojan
horse may attempt to make an extra copy of a file it is editing for the Trojan
horse's author (a classic example). This unauthorized copying is an external
action, since it leaks information to another subject. Internal version actions
(e.g., call to an internal sort routine) cannot directly cause malicious changes to
the system state. Thus, since internal actions do not immediately cause
malicious results, and in order to reduce the possible performance impact that
extensive voting may incur, only external version actions should be voted on.
Note, preventing all unspecified external actions is part of the standard NVP

design concept.

5.1.2 THE MONITOR MUST DIRECTLY MAKE ALL VOTED ACTIONS

Of still greater importance, is that all actions that will be voted on must
only be made by the monitor (e.g., DEDIX [Aviz85b]). The reason for this is two
fold: (a) this will prevent a malicious version from lying about what action it

will perform (i.e., for voting it advertises that it wants to perform action a,
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but after a successful vote it performs action a, instead, which is a malicious
action), and (b) a version must be prevented from performing an external action
any time it wants to (i.e., at a non-voting point). This can be implemented by
requiring the monitor (i.e., the operating system) to only perform a function
that has been favorably voted on by the majority of the versions. This is easily
accomplished since the voting mechanism is part of the monitor. Thus, for
NVP-based programs the interface for executing external actions is designed to

be through the monitor.

5.1.3 RESTRICTING A VERSION'S EXECUTION SEQUENCE

In order to vote on generated data items, current NVP-based systems
restrict, to some degree, the general sequence of execution and voting points
(i.e., cc—points) [Kell86] [Aviz87b). In fact, in a recent experiment using NVP
for an airplane’s automatic landing system prototype [Aviz87b], only one basic
execution sequence was plausible. As an analogy, in order to make action
voting manageable, the execution sequence of external actions should also be
dictated. To prevent excessive voting points, data and action voting should be
done at the same time whenever possible.

Restricting the execution sequence naturally forces the question: "How
does this effect the diversity of the versions?" If we are designing a fault-
tolerant, secure computer system, then this question is of great concern.
However, if NVP is used solely to prevent the effects of malicious logic, then
loss in diversity is not important, since it will still prevent malicious actions by
a minority of versions regardless. In two NVP experiments at UCLA [Kell86]

[Aviz87b], restriction of execution sequence did not cause a large decrease in

diversity.
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5.1.4 ATTACKS ON NVP-BASED SECURE SYSTEMS

One criticism that has already been made of an NVP-based system involves
a classical form of denial-of-service. If one of the versions deliberately delays
its execution in order to slow down the processing of the entire computer
system, then the required performance could be denied.

This threat is simply fnot possible, since all voting points are timed. This
timing delay attack is a classical fault case [Kope85] [Ezhi86], and is easily
handled in NVP-based systems. Thus, if one version slows down its execution
and does not reach the proper voting point on time, it will then be marked as
failed and the NVP-based system will continue without it. NVP systems are
being used in real-time applications, such as the flight control system of the
European designed Airbus 320 [Rouq86] [Avia87].

However, NVP-based systems are vulnerable to at least two types of
attacks: computer virus errors (see Figures 3.1 and 3.2), and malicious logic in
support hardware and software. A computer virus could infect all or just a
majority of the versions, resulting in malicious actions being accepted by the
voter. Additionally, the NVP software monitor (i.e., the executive) could also
be a target for viral infection.

In regard to both of these types of attacks, it should be obvious, that a
fault-tolerant, secure computer must ensure that its support mechanisms are
protected from accidental and deliberate faults (also see Section 2.3.1, sub-

section on background devious actions, and Section 3.6).

5.2 IMPLANTING MALICIOUS LOGIC IN NVP SYSTEMS
To explore the ability of NVP to resist DDFs, injections of DDFs into an

NVP-based application were performed. This experiment was designed to
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gather insights on the difficulties, if any, of forcing an NVP-based system to
fail in the case when an attacker could modify a majority of the versions.
Please note, that the assumption made in Chapter 2 was that an attacker (i.e., a
malicious engineer) could only modify one version. We relaxed this constraint
in order to explore the effect of design diversity on the effectiveness of
implanted DDFs. This experiment used no off-line techniques to detect
malicious logic, but the injections were performed with the constraint that

malicious logic should be hard to find by such techniques.

5.2.1 ASSUMPTIONS, LIMITATIONS, AND ORGANIZATION OF EXPERIMENT

It was assumed that the best method of hiding malicious logic entailed its
insertion into the complex parts of a version. Such an implant would be
designed so that the malicious logic was essentially jnvisible to code inspec-
tion (see Section 5.2.5).

The malicious logic injection experiment was constrained by several
limitations. First, no action voting was done. This occurred because the mech-
anism to ensure that only the monitor could perform an action (see Section
5.1.2) was not available. Thus, injected malicious logic was designed only to
affect data generated by the N-version experimental testbed (see Section 5.2.2).

Second, only one form of malicious logic was injected, that being, DDFs.
Malicious logic can also take the form of specification faults, algorithm faults,
and computer virus errors (see Section 2.2). Injection of the other types of
malicious faults were not possible, since the experimental N-version system
was already designed and running.

Third, and last, enabler components of DDFs (see Sections 2.4.3 and 5.2.3)

were also not injected. Enablers require a computer system to have a user
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interface, that allows human interaction with the system, in order for it to be
useful to DDFs. However, the N-version system used had no such interface.

The malicious logic injection experiment was organized into two parts.
Part 1, as described in Section 5.2.3, involved DDF injection in order to deter-
mine the difficulty of causing coincident errors, and while doing so to study
their makeup and behavior. Part 2, as described in Section 5.2.4, is aimed at
determining if DDFs that involve added functions (i.e., extra, unspecified
actions by a version) can be made to cause timing faults, and thus, be detected

at an NVP system's voting point.

ANALYSIS CONDUCTED BEFORE INJECTION

The design of, and locations to inject DDFs was done by a careful and
thorough procedure. An extensive, non—computer based analysis of the design,
and implementation of each version of the NVP testbed was conducted. This
involved the following steps:

(a) familiarization with the specification of the application software com—
posing the NVP-based testbed,

(b) code inspection of each version, and flow charting of parts of each
version in order to determine its structure and locations of c:omplexity,l and

(c) fault trees were employed, so that working from the error and its
desired location of manifestation, all places where a fault could cause the error
were derived. Locations to inject DDFs were finally derived by using these
fault trees, and the complexity profile of each version derived in "b" above.

In order to derive DDFs that were essentially invisible to code inspection,
the uniqueness of each version was taken into account. Each version's style of

coding and formatting were imitated, and common faults (bugs) that occur in
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its implementation language (see Section 5.2.2) were exploited. Additionally,

each version's type of complexity was also imitated.

5.2.2 THE EXPERIMENTAL SYSTEM

The testbed for the malicious logic injection experiment was an NVP-
based system for the automatic (i.e., computer—controlled) landing software for
a commercial airliner (from here on we will refer to this as "Autoland"). The N
versions were developed as part of another research project at UCLA, that
focused on exploring issues in N-version software [Aviz87b).

The NVP-based Autoland system was originally developed with 6 diverse
versions, in 6 different programming languages (namely, Ada, Pascal, C,
Modula~2, T [a dialect of Lisp}, and Prolog). For the malicious logic injections,
only the Ada, Pascal, C, and Modula~2 versions were used.

The basic structure of one version of the Autoland system appears in
Figure 5.1. The locations of all the voting points used in N-version operation
and the important data flow paths are indicated.

During Autoland operation pitch (vertical motion) modes entered in the
landing process are: Altitude Hold, Glideslope Capture and Track, Flare, and
Touchdown. Flight mode entry and exit is determined by the Mode Logic

equations, which use filtered airplane sensor data to switch the controlling

1What comprises program complexity is difficult to define. However, it
can be described by example: tricky and hard to understand coding practices,
hard to understand algorithms, poor program format (i.e., fails to indicate
program semantics), lack of meaningful comments and variable names, dense
code, many variables used as flags for conditionals, large run-on procedures,
etc. Complexity can be qualitatively and quantitatively expressed (e.g., number
of IF statements in one procedure).
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equations at the correct point in the trajectory.

Flight begins with the initialization of the system in the Altitude Hold
Flight mode, at a point approximately ten miles from the airport. Initial
altitude is about 1500 feet, initial speed 120 knots, with zero flight path angle.
Responding to turbulence-induced errors in altitude and altitude with automatic
elevator control motion, the aircraft maintains the reference altitude until the
edge of the glideslope beam is reached (i.e., the Altitude Hold Control Law
controls this phase of flight).

If the capture conditions are met, the airplane enters the Glideslope
Capture and Track Flight mode and begins a pitching motion to acquire the
beam center. A short time after capture, the track mode is engaged to reduce
any static displacement towards zero (i.e., the Glideslope Capture and Track
Control Law controls this phase of flight).

The airplane maintains a constant speed along the glideslope until an
altitude of about 50 feet is reached. Flare logic equations determine the
precise altitude at which the Flare flight mode is entered. In response to the
Flare Control Law, the vehicle is forced along a path that targets a vertical
speed rate of two feet per second at touchdown.

Upon entering Touchdown flight mode (altitude less than 10 feet), the
automatic portion of the landing is complete and the system is automatically
disengaged by the Flight Mode Logic. This completes the automatic landing
flight phase. This Autoland system is designed to run with 2 or more separate
processing units each with diverse software.

The Command Monitor, in Figure 5.1, compares locally computed elevator
(an airplane's control surface) commands with ones generated by the other

versions. This provides the basic fault detection function in critical flight
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control systems. The Display module provides continuous information to the

flight crew on autopilot mode, including the Autoland’s fault status.

5.2.3 PARTI: FORCING COINCIDENT ERRORS

Implanting well concealed malicious logic into a majority of versions to
force similar or dissimilar coincident errors is dependent on two points. First,
and obviously, a mole must have access to a majority of the version's source
code.

Secondly, a static analysis of the four UCLA versions from the Autoland
experiment (i.e., of the program code), indicates that versions have their
complexity in a different portion of their design [Schue87] (e.g., the C version is
complex in its Flight Mode Logic computation, while the Ada version is complex
in its main control loop). However, some similarities do occur (e.g., both the
Ada and Pascal versions have compiex main control loops).

This analysis leads to the following two observations: (1) to force coin-
cident similar errors may require different faults in each or several of the
versions, and (2) similar design faults may be placed in different portions of
each version, but that each fault will then generate an error at different times
and probably in different system states. This may result in difficulties in
triggering and controlling the malicious logic in each version for producing
errors at the same voting point.

Injected DDFs were designed to force errors at the following voting points
in the NVP-based Autoland system (see Figure 5.1): case 1 - V4 and V5 to force
the failure of the Control Laws, case 2 — V2 to force the failure of the Glide-
slope Complementary Filter, case 3 - V3 to force the failure of the Flight Mode

Logic, and case 4 - at any voting point by forcing improper initialization
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at flight mode changes. (Note, that mini-initializations are performed as flight
modes change in the Autoland application. Faults were designed to force one of
these initializations to occur too soon or not at all.)

Tables 5.1 to 5.4 present the number and location of DDFs injected for
each case outlined above. In Tables 5.5 to 5.8, the total number of coincident
errors (part "a" of the tables), and the number of coincident similar errors (part
"b") forced by the injected DDFs are presented. Out of the total number of
coincident errors forced, many combinations of coincident dissimilar error
exist. In Table 5.6(b), a large number of coincident similar errors is noted. This
was due to a common location in the Pascal and C language versions where an
absence of diversity was found. Note, this was the only point where such ease
in forcing coincident similar errors was found.

These numbers are not for the immediate use in deriving coverage esti-
mates (i.e., an effectiveness measure). They are too small a sample and were
injected only by one person (i.e., the author). They are to be used only as an
indication of the relative difficulty of forcing coincident similar errors in NVP-
based systems where a malicious engineer has access to more than one version.
Annotated samples of the most interesting injected DDFs are presented in
Appendix B (which includes comments about hiding DDFs).

What is of more importance than the above mentioned numbers are the
insights gained from this part of the experiment. As a result of the experimen-
tal injections it was observed that DDFs have the following general structure:

DDF = [Enabler(s):Trigger(s) = Error Producing Logic].
This notation indicates that the enabler compdnent of a DDF enables/disables
the triggering device, and the trigger once fired, executes the error producing

logic. Note, that all three components make up the fault (e.g., the error pro-
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Version Location of fauits Number of faults
Pascal —-Glideslope Capture 6
and Track Control Law,

Flare Control Law 2
C -Flight Mode Logic 9
Modula-2 -Display Module 12
Ada -Main Control Loop 12

& Utility Functions

Table 5.1 Case 1 Injected Faults to Fail the Control Laws

Version Location of faults Number of faults
Pascal —Glideslope

Complementary Filter 13
C ~Glideslope

Complementary Filter 12
Modula-2 -Display Module 9

Table 5.2 Case 2 Injected Faults to Fail the Filters

Version Location of faults Number of faults
C -Flight Mode Logic 10
Modula-2 -Display Module 9
Ada -Flight Mode Logic 9

Table 5.3 Case 3 Injected Faults to Fail the Flight Mode Logic

Version Location of faults Number of faults
Pascal —Flight Mode Logic" 3
C ~Glideslope

Complementary Filter 4

Tabie 5.4 Case 4 Injected Faults to Force Improper Initialization

*Not justifiably complex to hide DDFs. Was done to observe the diversity
of errors produced.

A total of 110 faults were injected.

Note, in each table above, missing versions mean that DDFs could not be
injected to cause the specific error, because of insufficient complexity in the
version.
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Pascal

Modula-2
Ada

Pascal

Modula-2

Modula-2
Ada

Version

Pascal
C

Total Coincident
E im

Number
of Failed
Versions

F e )
OWWE‘

®)

Table 5.5 Case 1 Coincident Errors

Total Coincident
Errors by Time

Number
of Failed
Versions

2
3

®)

Table 5.6 Case 2 Coincident Errors

Total Coincident
Errors by Time
T T7Tg

5 2 1
6 1 1
6 10
(a)

Number
of Failed
Versions

2
3

®)

Table 5.7 Case 3 Coincident Errors

Total Coincident
Errors by Time
T1 T2

1 1
2 0
(a)

Number
of Failed
Versions

2

®)

Table 5.8 Case 4 Coincident Errors

Instances
of Similar
Coincident

Instances
of Similar
Coincident

n,
1

Instances
of Similar
Coincident
E!IQ!E

;*

Instances
of Similar
Coincident
Errors

0

*Different input cases can lead to non—coincident and/or dissimilar errors.
TThe rest of the coincident errors are dispersed in time.

Tj to Tg represent different real-time va
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ducing logic, by itself, is not a Dl)l-‘).2 This last point is important, since the
enabler and trigger have a significant impact on the DDF's behavior.

The trigger component can be designed so that the DDF becomes a stuck-
at or intermittent fault (i.e., once turned on it stays on, or it changes state
according to some distribution). The trigger can simply be set to fire on system
state conditions (e.g., the date, or the number of enemy targets seen), or even
be counter based [Myer80].

The enabling component is designed as an input from a system's user.
Otherwise, the enabler behaves just as another trigger. For example, the
enabler could be a sequence of legal but odd system requests.

The error producing logic component, once executed, can result in an error,
either immediately, or after some delay. This delay occurs because some
instances of error producing logic must affect a system's state over several
iterations in order to force an observable error. The trigger and a delayed error
producing logic together allow a DDF to be enabled with a delay, so that the
enabling user does not have to be present at system failure.

Devising DDFs that were well hidden was a difficult task. So the question
was asked: "Why is it hard to implant malicious logic into an existing NVP
system?" The answer is that the degree of complexity required to hide
malicious logic is not necessarily present in enough of the versions (e.g., the
Modula-2 version was very well built with only one complex part). A designer
whose aim it is to implant malicious logic into his/her version would purposely

make it complex (e.g., the C version uses all global variables and is very hard to

2Computer virus faults and errors are an exception, because they do not
need enablers.
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understand due to its poor coding style). Placing malicious logic into a version
after implementation can involve adding complexity to that version. This may
require too many changes to go unnoticed.

The diversity of the location of complexity in each version restricted
where and what kind of errors could be produced. Only the Control Laws
(voting points V4 and V5) where relatively easy to corrupt. In fact, in case 4 -
forcing improper initialization, no coincident errors were produced.

It was observed that similar injected faults could result in different errors.
The best example of this was again the DDFs designed to force improper
initialization (i.e., case 4). The manifested errors were significantly different
in degree, with the Ada version changing most of its variables to zero, while the
Pascal version changed only a few key variables.

Synchronization problems did occur with the Modula-2 version, because its
implanted DDFs were quite different from the faults in the other versions. It
was hard to design triggers so that the versions would cause coincident errors
over variable inputs. Well design triggers kept errors coincident, but errors
would still appear at different flight times depending on the input.

Overall, coincident similar errors were possible to a limited extent, but
required a great deal of work even when all versions were accessible to the
malicious engineer. However, coincident dissimilar errors were much easier to

force, and could potentially result in denial-of-service.

5.2.4 PARTII: CONSTRAINING MALICIOUS LOGIC WITH TIMING
RESTRICTIONS
If all external actions cannot be voted on, due to performance consider-

ations, what can be done to decrease malicious activity of the non-voted
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actions? Unspecified actions of malicious logic use up extra time, and perhaps,
can be detected as timing faults.

Each voting point in an NVP-based system is timed, meaning that every
version must provide data to the voter within a time window. If a version
misses the time window it is marked as failed and the rest of the NVP system
continues on without it. This mechanism exists to detect timing errors. The
time used by the extra malicious actions may delay the version's progress and
make it miss a voting point.

Thus, in a NVP system design, a tight but workable limit should be set on
all voting points, and adding a few extra voting points than are actually neces-
sary is advisable. This will constrain malicious logic into being careful of how
much time each action takes, and on the cumulative time of all actions between
voting points.

A possible result of the above constraints on a version's execution time
may be to slow down the malicious logic's unspecified actions. These harmful
actions will probably have to be spread out over its entire execution sequence.
This may make them easier to detect, and may even prevent some unspecified
actions completely (e.g., mounting a tape to read unauthorized data may simply
take too long).

In order to derive tight but workable time limits on voting points, time
measurements were performed on the 4 Autoland versions. The estimated
times do indicate diversity in execution times throughout the versions. How-
ever, during the beginning of DDF injection in this part of the experiment, a
DDF was devised that can hide from the proposed timeout detection mechanism.

The basic structure of a DDF, as introduced in Section 5.2.3, is extended to:

DDFT = [not(Enabler(s)) = Time Consumption Logic ] &
[Enabler(s):Trigger(s) ~ Error Producing Logic].
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The difference from the basic DDF is the first clause, which is designed to
consume time equal to, or greater than, the time required for the error
producing logic. Note, that the two clauses of the DDFT do not have to be
textually adjacent.

A DDFT alludes detection as follows. Initially, detection by a timeout
mechanism was based on the assumption that malicious logic would not execute
during test or during time measurements (these are needed for real-time appli-
cations). Thus, the time spent for malicious logic would not be counted.
However, DDFTs always run, but do not generate errors while the enabler is
off. Note, that DDFTs are still somewhat constrained by an applications
real-time limits. Lastly, the time consumption logic will likely appear as some
useful function.

An obvious variant of DDFT is:

DDFp' = [not(Enabler(s):Trigger(s)) ~ Normal Function,
{ else: }  Error Producing Logic],

where the time required for the error producing logic is less than, or equal to,

the time required for the normal function.

5.2.5 QUESTIONS ABOUT THE INJECTION EXPERIMENT

Two questions concerning the malicious logic injection experiment,
described above, have already arisen. These are: "Why can't DDFs be hidden in
simplicity, instead of complexity, in order to force coincident similar errors?,"
and "Can branch coverage analysis be used to detect enablers and triggers?”

The idea of hiding DDFs in a version's simplicity (i.e., a small change that
is obvious enough to be overlooked during code inspection), allows identical
faults to be implanted in all or a majority of versions to hopefully force

jdentical errors. Some fault injections of this form have already been done on
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an N-version app]ication.'?’ The injected fault was a slight modification to a
constant value in all versions (e.g., change 65.44 to 65.22). Under normal
operating conditions and many test cases this fault never generated an error.
However, during some rare and/or stressful input state all the versions failed
identically. (This is an example of each version obtaining the same bad data
and was discussed in Section 2.3.1, subsection on background devious actions.)
Notice, that the trigger for this type of DDF is implicit (i.e., the rare and/or
stressful state). Also, this fault, as described, had no enabler.

For this type of fault to be used deliberately, it would most likely be
generalized. Thus, the fault would be a very slight and simply done modifi-
cation to some calculation (e.g., adding or subtracting a value from a formula
or variable).

This type of DDF seems to have several problems. First, since good testing
methods try to determine system behavior in rare and/or stressful input condi-
tions the DDF may need an enabler. Thus, this fault may not be as easy to
implant as it first appears. Second, it seems that code inspections would catch
many of even the simplest faults (i.e., obvious faults have a tendency to jump
right out of the page to the reader). Nevertheless, this type of attack seems
more feasible than hiding DDFs in the complexity of a system (due to the
observations of the experiment), and thus, warrants further study.

Concerning the second question, branch coverage analysis measures the
percentage of branches (i.e., conditionals) that have been forced to execute by
test cases. If all branches are forced to execute, then all code in a program

will be forced to run at least once. Therefore, if all code runs at least once,

3Done at North Carolina State University by Dr. Vouk [Private
Communication].
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then won't all triggers and enablers be found? This argument seems valid at
first, but a simple counter is possible.

A trigger (or enabler) can be designed so that it requires an obscure path of
program execution to run in order to fire (i.e., turn it on). Thus, since branch
coverage analysis, nor any testing technique, can test all paths of computation
through a program, the trigger (or enabler) will not be detected. As an
example, consider a trigger consisting of the multiplication of two variables: t1
and t2. Each are initialized to zero, and set to one in different |F statements
of a program. Thus for the trigger to fire, both JF statements must be exe-
cuted, and thus, a particular path. The error producing logic could then take
the form of a simple extra term added onto a pre—existing and correct equation
(see example 6 in Appendix B)—thus not detectable by branch coverage
analysis. This extra term would contain the trigger.

Whereas the above example describes a counter to branch analysis, this
off-line technique seems useful in detecting obvious triggers and enablers.
However, it should be obvious that as a system becomes larger and/or more

complex, such an analysis becomes more costly and less effective.
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CHAPTER 6
CONCLUSIONS AND FUTURE WORK

This chapter has been written with the intent to put the dissertation in
perspective. Therefore, Section 6.1 outlines what is considered to be the
achievements of this research, Section 6.2 discusses where this work can be
used, Section 6.3 presents much of the related, previous work that formed a
basis for this research, and lastly, Section 6.4 presents several important,
challenging, and time consuming directions for future work. These future
research directions are viewed as essential in order to move fault-tolerant,
secure computing research into engineering practice.

A great deal of ground has been covered by this dissertation, but much
remains to be done. Fault-tolerant, secure computing systems have been, and

still are a rich area for research.

6.1 CONTRIBUTIONS

In the beginning of this dissertation (Section 1.8), a set of guestions from
[Turn86], which starts to define this area of research, was introduced. Progress
has been made in answering these questions, and the relevant sections of this
dissertation that do so are outlined below. Since these questions overlap on
issues somewhat, several of the sections will be relevant to more than one
question.
o "Are the techniques for achieving fault tolerance and data security

fully compatible? If not, what are the problems, and how can they
be resolved? What tradeoffs are available?"
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In Chapter 3, definitions were developed of what a fault and an error are in
a secure computer system (Section 3.1). General computer architectures for
fault-tolerant, secure computing were presented in order to deal with compati-
bility issues (Section 3.5). In several places in Chapter 3 and throughout the
dissertation, fault tolerance techniques were shown to be effective against
security problems. The extension of PFMs is an excellent example of a fault
tolerance technique that solves both accidental and deliberate faults: the
detection of computer virus errors, and of control flow errors due to transient
and intermittent faults (Section 3.4.2). The application to fault-tolerant,
secure computing of a basic design technique for MLS systems was discussed in
Section 3.7.

The entirety of Chapter 4 is relevant to the above questions. It directly
follows several of the leads from {Turn86} by delving into specific examples of
fault tolerance mechanisms that cause security problems.

Lastly, in Chapter 5, details of how to extend a basic NVP system design
for fault-tolerant, secure operation were presented (Sections 5.1).

In general, the above issues from [Turn86] are partly political and partly
technical. The political aspect is related to the definition of compromise (see
security glossary) and how it should be interpreted in an fault—tolerant, secure
computing environment (see Section 3.1).

a "How does the architectural design for fault tolerance impact the
design for security, and visa versa? How can the designs be made
compatible?”

In Chapter 3, it is shown that the large size of the critical state that a
secure system can contain makes it difficult to protect it from faults (Section
3.3). Furthermore, Section 3.5 is relevant to the above questions, and the

partial definition of requirements for a class A2 secure system, as presented in
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Section 3.8.1, includes the coping with faults.

Due to the overlap of issues addressed by these questions, all of Chapter 4
is again relevant to the above questions. Lastly, Section 6.4.2 outlines what
extensive, future work is needed in order to make fault-tolerant and secure
computer designs compatible.

0o "Can data security be gracefully degrading?"

Section 3.8 addresses this half of the degradation question in depth. The
design choices presented in that section must be included in a design that can
properly trigger security degradation recovery. This should be tied to, if not be
a part of, the fault tolerance detection and recovery mechanisms. The second
half of the degradation issue is discussed in Section 6.4.1 as future research
work.

In summary, the questions in [Turn86] have led to the beginnings of design

approaches for fault-tolerant, secure computers.

In dependable system design (computer security) a mode! of the faults
(threats) to cope with, as well as a model of the computing environment, are

essential in any research project or for any specific computer design. An

inf 1 model of i addressed in this dissertation is presented in
Section 3.2.

This model is considered a research contribution, in itself, for the following
reasons: (a) it is original, since it is in terms of a fault, error, and failure
analysis of security threats, thus providing a new perspective, (b} the model
provides a clear characterization of the threats, which facilitates the devising
of countermeasures, (c) the model includes the representation of the inter-
relationships between security threats, which is needed for construction of

complete countermeasures (e.g., to prevent denial-of-service completely,

159



computer viruses must also be prevented [see Figure 3.14}), and (d) such a model
can aid in the development of formal models.

This model has proven its usefulness by motivating several new counter-
measures to old threats (e.g., computer viruses, Trojan horses). It has also
confirmed an observation about covert channels presented in [Dobs86]} (i.e., that

NVP can prevent programs from using some covert channels, see Section 3.4.6).

Partial solutions to service- and intruder-generated denial-of-service have
been presented in detail (Sections 3.4.1 and 2.3.3 respectively). Additionally,
denial of a function's (hardware and/or software) correct performance, due to
deliberate design faults introduced by a designer, has been added to the
categories of denial-of-service (termed insider—generated, see Section 3.2).
Design fault tolerance has been shown to provide a solution to this integrity
based form of denial-of-service (see Sections 2.3.1, 3.4.3, 3.4.6, 3.6, and
Chapter 5).

The three solution approaches presented can be further characterized.
First, all are directed towards prevention of denial-of-service. This was chosen
since the potential damage of an actual denial is viewed as too great. For
example, denial-of-service of a battlefield communication network could led to
catastrophic results.

Second, all the schemes can be expensive in resources used to ensure
guaranteed access. For a specific application to use these solutions, and
perhaps prevention in general, it must be highly-critical for the investment to
be cost—-effective.

The scheme presented to deal with part of the service-generated denial-
of-service case is not for general purpose systems. The interfaces to the

computer system they provide to a user and application designer are very
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different from the current off-the-shelf computer systems.

Lastly, this research has explored possible methods for the specification of
denial-of-service concerns. Methods that incorporate variables that hold
numbers to represent time are preferred over representations of systems in
temporal logic. Temporal logic represents the time of events by only describing
their relative order. Denial-of-service requires real-time constraints as they

are used in real-time systems (see Sections 3.2 and 3.4.1).

An enhanced definition of malicious logic has been derived that moti-
vates the use of a fault tolerance perspective for devising countermeasures.
The derivation of the basic properties of such an attack has been contributed
(e.g., malicious logic tries to hide from detection, see the introduction to
Chapter 2, Sections 2.1 and 2.2).

Several countermeasures to the forms of malicious logic presented have
been devised and discussed. In fact, for the deliberate design fault type of
malicious logic, an experiment was conducted to explore the natural resistive—
ness of one such countermeasure against injected malicious logic. It was
observed that maliciously trying to force coincident, similar errors in the
NVP-based airplane Autoland system [Aviz87b] was hard, and often not
possible. However, forcing coincident, dissimilar errors was often easy to do
(i.e., both observations are valid only in relation to the assumptions made for

the experiment, see Chapter 5).

The connection between fault tolerance and computer security has been
made by the observation, that the effects of malicious logic can be classified
under the fault class of "by intent” [Aviz87a). The use of design fault tolerance

and NVP is alluded to in {Dobs86], however, the possibility of the deliberate
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nature of the faults is not mentioned. This dissertation has taken a first look at
how design diversity—in both hardware and software-—could be used against

malicious logic.

6.2 APPLICABILITY OF THIS WORK

In Chapter 2, it was stated that our work was applicable to highly critical
systems. The reasoning behind this was that only such systems could justify the
expense of our protective measures. While this is still true, it has been
observed that malicious logic can hit almost any type of syrstem.1

Attacks on computer systems can originate from many sources. From a
spy trying to obtain sensitive information, from a malicious person trying to be
a nuisance to others, and from an inquisitive person, who means no harm, but
just wants to see if an attack can be successful.

This wide spectrum of potential attackers increases the chances that
almost any system will be targeted for penetration or subversion [Myer80].
Thus, the increase in attacks on many different types of systems may result in
justification for the application of the protection mechanisms introduced here,

or others, to all computer systems.

6.3 RELATION TO PREVIOUS WORK
The purpose of this section is to outline and compare work that is related
to and precedes this dissertation. The references below are not exhaustive, but

are extensive and representative of previous work. Most of these references,

1A computer virus has recently infected many privately owned personal
computers. The virus has made its way via pirated and public domain software
physically transmitted over computer networks or on shared diskettes.
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except the more recent ones, discuss reliability rather than fault tolerance.
This is not surprising, and was in fact expected.

For clarity, it should be clear, that fault tolerance is an approach to
achieve system reliability, just as is fault avoidance. The proper system design
approach employs a balanced mix of both.

In all the references below one common theme is present. It is that
reliability (of software and hardware) is needed to ensure that security mech-
anisms work constantly; otherwise the system must be made to stop functioning
[Shan77]. This is currently a well accepted principle of computer security.

The early work in [Molh73] was actually concerned with both accidental
and deliberate hardware failures, and their impact on security. One threat
described in detail are deliberate design faults inserted during maintenance, and
thus, they are deliberate interaction faults. An example of this is a CPU fault
that can be triggered by an unusual sequence of instructions. This proposed
fault (trap door) would cause a system's protection mechanisms to be
temporarily bypassed.

Solutions proposed in [Molh73] for all types of failures are: (a) periodic
testing of hardware via software and/or microcode, (b) redundancy such as TMR
and redundant control signal paths to prevent failures that can cause holes in
security, and (c) fail-secure design.

Fail-secure design protects secure information from compromise (and
destruction) regardless of failure. To achieve this, detection of failure condi~-
tions is essential. However, fail-soft designs are not by themselves fail-secure,
since during degradation hardware vital to security may be lost.

The above work describes some of the difficulties involved in trying to

detect deliberate hardware design faults with run-time mechanisms. No
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effective schemes are presented to deal with these faults. Additionally, the
schemes presented to handle accidental faults are dated, since testing is
ineffective in locating transient faults (i.e., transients disappear by the time
the tests start, leaving behind errors).

[Fabr73] is discussed in Section 3.5, and involves the design of a system to
maintain process separation for data privacy in the presence of faults.

A survey describing operating system structures to support counter-
measures for a wide range of security threats appears in [Lind76]. The view-
point taken, is that certain operating system facilities could be used to achieve
both security and reliable software. This connection is made simply by pointing
out that reliable software is essential to secure system design.

Faults and inadequate fault recovery mechanisms are potential sources of
security violations. For example, unprotected checkpointed data can be read by
unauthorized subjects (thus leading to compromise), or modified by unautho—
rized subjects (thus leading to penetration or denial-of-service). Solutions
proposed for both reliable and secure software are: small protection domains
and extended typed objects.

Small protection domains are essentially an implementation of the least
privilege principle (see security glossary). A program or submodule of a
program is only allowed to have access to resources that are essential to its
job. Extended typed objects is very similar to type enforcement used in LOCK
(see security glossary). The results of using both of these mechanisms are: (a)
natural error containment boundaries, and (b) small system state needed for
recovery.

In [Hsia?79], it is proposed that the added mechanisms used to achieve

reliability may be used, possibly with a few extensions, to detect some security
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violations. This is exactly the point of view taken in this dissertation and is
demonstrated in Sections 2.3, 3.4, 3.6, and Chapter 5. However, the use of
redundant copies of information (e.g., backup copies of files), is considered to
increase a system's exposure to security violations.

[Namj82] is also discussed in Section 3.5, and it presents a design for
protecting the access controls of a secure computer from physical faults and
some accidental design faults.

[Kak83] is an example of an attempt to use one technique to provide both
fault tolerance and computer security. A scheme for a joint encryption and
error—correction code is proposed. Whereas this scheme does not yield a
computationally practical approach, it does demonstrate a logical link between
fault tolerance and computer security (also see [McEI81]). This idea of one set
of mechanisms to solve both problems was first discussed in Chapter 1 and has
been a major goal of this dissertation.

A rather limited view on the nature of reliability, security, and safety can
be found in [Frie84]. In this paper, a supposedly fundamental distinction
between both security and safety with reliability is made. Security and safety
are properties of a system in which a designer defines what are the acceptable
states for the computer system. However, reliability only has to do with tran-
sitions between states of a system that are related to physical properties of the
system (i.e., such as failure rates of components). The problem with this
distinction is that reliability, and more generally the dependability of a system,
is also defined by the designer. A designer chooses or defines which fault
classes will be handled by the computer design. This selection takes place for
the obvious reason that addressing all faults is too expensive, if possible at all.

[Dobs86), [Neum86], and [Turn86] have all been frequently referred to
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throughout this dissertation. As such, only a few comments are appropriate
here. One problem with the work in [Dobs86) is that it almost completely
ignores the deliberate and insidious nature that faults can possess in a secure
system. This property can make errors generated by such faults very difficult
to detect, as well as make the faults themselves very hard to locate.

The work presented in [Neum86] proposes the current design technique used
for MLS systems as a starting point for critical system design (i.e., fault-
tolerant, secure, and safe). This is justified by the natural error containment
boundaries that exist for different levels of sensitive data in an MLS system,
and because of the rigorous design approach used to develop such systems.
However, it completely ignores the impact that local and global error recovery
can have on security and on the proposed standard design approach (see Section
3.N.

In [Koga82) [Desw86], intrusion tolerance rather than intrusion avoidance is
used to foil penetrators in a local area network environment. Cryptography is
an example of an intrusion tolerance technique, whereas access controls and
identification are an example of intrusion avoidance. The main idea is to break
up data into fragments and scatter them around the entire network (i.e., frag-
mentation-scattering). Thus, any one or several fragments are meaningless to a
penetrator. Several fault tolerance techniques are integrated with fragmen—
tation-scattering, such as redundant storage of each fragment in order to make
the network tolerant of faults and intrusions.

The approach taken in [Koga82] [Desw86] is obviously complementary to
the viewpoint taken in this dissertation. This can be seen by noting that both
rely on the basic fault tolerance viewpoint, that avoidance of anything is

impossible to guarantee, and that therefore run—time mechanisms are needed as
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a defense.

As previously mentioned in Section 2.2.1 and [Jose87], the approach used in
[Glig85a) for coping with the denial-of-service threat clearly uses fault toler-
ance techniques. The setting of a timer on the acquisition of some service, and
the expiration of that timer on the occurrence of denial-of-service is nothing
more than a watchdog timer detecting a timing error. The switching to alter-
native services, which follow the same functional specification as the denied
service, is nothing more than sparing redundancy. The work in this dissertation
has also applied techniques from fault tolerance toward a solution to this threat.

Last, [Wu87] describes one particular feature of a secure computer that
must be reliable. The storage of a master key that is used to encrypt other
encryption keys is a part of the critical state of a secure system. To achieve
reliability the master key is decomposed into several subkeys of which only a
subset is needed to form the master key. The important parameters in a system
design, are the number of subkeys that are essential and the time required for

reconstruction of the master by key combination.

6.4 SUGGESTIONS FOR FUTURE WORK
6.4.1 AN UNANSWERED QUESTION FROM [TURNBS6]

In Section 3.8, we addressed the question: *Can data security be gracefully
degrading?" from [Turn86]. However, this was only half of the problem. The
other question not addressed from [Turn86} is: "Can gracefully degrading
systems [i.e., systems degrade by switching between different levels of service]
be data secure? Is there a difference in achieving each?"

This unanswered question is important for computer security, since degra-

dation could cause: (a) covert channels—the way degradation is done may
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convey information (e.g., the sequence of subsystem shut downs and repairs can
signal information), (b) denial-of-service—unnecessary degradation due to loss
of integrity of control data (e.g., malicious modification of health and status
messages to GOS, in the AOSP design, (see fault tolerance glossary) can lead to
the turning off of healthy processors), and (c) compromise—due to incompatible
policies (e.g., availability versus security: provide emergency network commu-
nication even upon loss of cryptographic facilities).

Such security failures as (a), (b) and (c) above could conceivably be caused
by accidental faults causing degradation, and deliberate faults forcing degrada-
tion. In any case, the design of degradation sequences in a fault-tolerant,
secure computer system2 should use the fail-secure system design philosophy
discussed in Section 6.3 and in [Molh73] (i.e., degradation should not result in

compromise, [destruction of data] nor deliberate denial-of-service).

6.4.2 SECURITY POLICIES AND MODELS WITH FAULT TOLERANCE
CONSIDERATIONS

In order to integrate fault tolerance and security into a truly fault-
tolerant, secure (i.e., MLS) computer design, fault tolerance concerns and
mechanisms used should be included in the system's security policy and model.
The reasons for this are both political and technical.

Politically, the security community does not seem to support (new) design
approaches that are not represented in a form that they are accustomed to.

Technically, as discussed in Chapter 4 and Section 6.4.1, fault tolerance can

2For any computer system to be able to degrade in performance, and/or
functionality, it must contain fault tolerance mechanisms to detect when to
degrade, and to control the actual degradation.
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have a definite impact on the security of a system. Additionally, a policy and
formal model provide credibility to a design, and furthermore, the rigor
required to construct a model may uncover additional problems and/or
similarities between fault tolerance and security.

Thus, the suggestion to derive policies and models with fault tolerance
concerns built-in, is viewed here as an essential step toward an actual design of
a fault—tolerant, secure computer. Below, is a suggested outline of the issues
that should be addressed in the construction of such policies and models.

To derive an adequate policy, the following issues should be addressed: (a)
is a fail-secure system design required? (b) which architectural option (i.e.,
option A-fault masking, B-fail-stop, and C-allow a security relevant error), as
presented in Section 3.5, is desired, and in what environments should it be used?
(c) for highly available systems, when and where should degradable security be
allowed and under what restrictions (e.g., no covert channels)?, and (d) when
and where should extensions, similar to those defined in Section 3.8.1 for class
A2 systems be used? For example, for item "c" above, if option-C is chosen,
then a new definition of compromise would have to be derived and incorporated
into the security model (see Section 3.1 and {Turn86]).

To derive an appropriate (formal) model of a fault-tolerant, secure
computer system the following issues should be considered: (a) how should a
fail-secure system design be represented in standard security models? (b) how
can degradable security (see Section 3.8) be represented and what are the
solutions to the problems mentioned in Section 6.4.1?, and (c) how can basic
fault tolerance mechanisms, such as error detection and recovery, be repre-
sented (e.g., as subjects)? An additional problem with representing fault toler-

ance mechanisms, is that they are only guaranteed to work in relation to a
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specific set of faults and to a derived probability (i.e., coverage). This seems to

impact the way a fail-secure design would be {formally) modeled.

6.4.3 SECURITY POLICIES, MODELS, AND MECHANISMS TO ADDRESS
DENIAL-OF-~SERVICE

To derive a complete solution to the denial-of-service threat a detailed
analysis of the problem is suggested. This analysis should use a framework
composed of techniques from both computer security and fault tolerance. This
would combine the formal analysis used in many secure system designs [Cerf85],
with the case-by—case analysis of specific faults and errors used in fault toler-
ance design. The two approaches fit quite well together, and are described
below.

First, it is necessary to clearly define the policy or policies (i.e., a policy
may be required for different environments, such as a single computer or a
network) addressing the denial-of-service threat by determining: (a) a standard
and accepted definition of denial-of-service in a specific environment, (b)
where and when to worry about denial-of-service, and (c) what consists of a
basic set of defenses [DoD87].

Next, in order to derive a formal model(s) of denial-of-service, and mech-
anisms to cope with it (i.e., again, a separate model and mechanism may be
needed for each environment), a through understanding of the threat is likely to
be necessary. Therefore, the steps below are recommended to acquire and
document the necessary knowledge base.

(1) Perform a careful and detailed classification of all known cases of
denial-of-service into classes (e.g., service~-generated [Glig83]). Document all

known cases in detail.
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(2) Determine all interactions of denial-of-service with all other security
threats and anomalies (see Figures 3.2, 3.3, 3.5 to 3.12, 3.14, and 3.15a).

(3) Perform experiments (in different environments) on the ease of causing
a denial-of-service, on the varying effects of different instances of denial-of-
service, and to derive new forms of denial-of-service.

(4) Derive solutions for each specific case of denial-of-service documented
by task 1 through 3 above.

(5) Search for commonalities of the types and effects of the denial-of-
service cases documented, and of the specific solutions derived.

(6) The five previous steps, or tasks, were essentially meant to form an
extensive informal model of the denial-of-service threat in multiple environ-
ments. Now, with this information attempts can proceed to derive one or more
formal models of denial-of-service.

Whereas some of the above tasks have been attempted in the past {Glig83]
[Glig85a], these attempts have been completely informal, incomplete (e.g., this
dissertation has defined a third class of denial-of-service, called insider-
generated, see Section 3.2), and have not used an integrated fault tolerance and

computer security approach as suggested above.

6.4.4 REMAINING ISSUES IN FAULT-TOLERANT, SECURE COMPUTING

Several basic issues still remain to be explored in fault-tolerant, secure
computing. First and foremost is the problem of secure global recovery in MLS
systems (this was discussed in Chapter 4 and in [Turn86]). Some effort has been
spent on this issue, but still more work is needed to derive an adequate
approach.

The approach for detecting computer virus errors (see Section 3.4.2)
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includes the overhead of encryption. Further work is needed to devise a similar
scheme, based on [Schu87], that does not utilize encryption. This would possibly
result in a detection mechanism that was only resistant to viral infections, not
completely virus proof.

The bandwidths (or range of bandwidths) for the four covert channels
presented in Chapter 4 need to be calculated. Currently, only a qualitative
estimate has been provided. In order to determine quantitative bandwidths,
each channel should be analyzed with a specific computer design in mind.
Additionally, these four channels were meant only as examples of possible
covert channels. More work is needed to find other general channels (i.e, only
due to general fault tolerance mechanisms outside of a specific computer
design), as well as specific cases in existing fault-tolerant computers.

Are other fault tolerance techniques and mechanisms applicable to security
problems? While this dissertation has been a good first step, the next section
will suggest an approach to continue the perspective used here.

Lastly, examples of malicious logic in hardware are needed [Faul82]. These
are needed to provide a clear understanding of this threat, and will be used to
ensure proper countermeasures (e.g., hardware design diversity, see Section
3.6). These examples should have the same properties as all forms of mali-
cious logic. Several such properties are: hidden in complexity, hard to find by
testing and mechanical inspection, triggerable, and can be mistaken for

accidental design faults.
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6.4.5 EXTENSION OF FAULT, ERROR, AND FAILURE CLASSIFICATIONS

The fault, error, and failure classification scheme presented in [Aviz87a]
was used in Section 3.2 (see Tables 3.1 and 3.2) to capture characteristics of
deliberate faults, errors, and failures. The design of this classification scheme
was influenced by observed characteristics of naturally occurring, and human-
made accidental faults. It is used as the beginning step in a design paradigm for
fault~tolerant computer design.

Using this classification scheme has been beneficial in this dissertation for
the construction of an informal, fault tolerance oriented model of security
threats. It was essential to determine what security threats could be viewed as
faults or errors in order to attempt to find fault tolerance countermeasures
(i.e., detection, recovery, or masking approaches). For example, the determi-
nation that a computer virus is both a fault and an error (see Figure 3.1)
directly led to the idea of applying Program Flow Monitors to detect computer
virus errors, and N-Version Programming to prevent computer virus faults from
generating computer virus errors (see Sections 3.4.2 and 3.6).

The basic classification scheme [Aviz87a)] can be used to specify particular
instances of a security threat (e.g., a non-evolving computer virus). This can
then be used to pick an appropriate detection mechanism for the one (specific)
case specified. However, deliberate attacks can take many forms, so that a
more encompassing description is also desirable.

It is proposed that the classification scheme presented in [Aviz87a] be
extended to include other characteristics of deliberate faults and their
consequent errors (e.g., how vulnerable to exposure does a malicious engineer
make himself by implanting different types of malicious logic). Once this is

done, the classification attempt represented by Tables 3.1 and 3.2 should be
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redone. It is envisioned that this work will lead to the additional insight
necessary to determine whether other fault tolerance techniques are applicable
to security problems.

Two important points must be made clear to the reader before the close of
this section. First, we propose an extension rather than a redesign of the clas-
sification scheme. This is due to two simple facts: (1) deliberate faults can
easily force errors that appear to have been caused by accidental faults, and (2)
deliberate faults can be made to appear as if they occurred accidentally (e.g.,
deliberate software design faults).

Lastly, the existing classification scheme already includes the intent
characteristic of faults. Thus, we have already informally modeled the delib-

erate nature (or malice) of the security threats addressed in this dissertation.

6.4.6 DATABASE SECURITY

This topic has not been directly addressed in this dissertation. However, it
is obviously important, since most computer systems have some form of data-
base. Points of interest, that would guide future work in applying the perspec-
tive used in this dissertation to secure databases are listed below.

(1) Address threats unique to databases (e.g., inference in statistical
databases [Denn82]), by determining how they fit into the informal models
presented in this dissertation, and by determining what fault tolerance tech-
niques, if any, are applicable.

(2) Determine what threats, already addressed, are present in secure data-
bases.

(3) Study new instances of threats already addressed (see footnotes 1 and 2

in Chapter 3), and perform a similar analysis as outlined in item 1 above.
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GLOSSARY OF FAULT TOLERANCE TERMS AND CONCEPTS

Acceptance Tests—Are additional program statements that are used to test
whether a section of code performs as it was specified [Rand75]. Since design-
ing these tests as correctness tests is not possible they end up being reason-
ableness tests.

Algorithm Fault—Incompleteness or incorrect algorithm solution. Can lead to
improper service of the function utilizing the algorithm.

AOSP-—Advanced On-Board Signal Processor is a computer system with
multiprocessor nodes, where each node is connected to a planar-4 interconnec-
tion network. It is a supposedly fault-tolerant computer due to its ability to
detect when a node is not performing its specified actions, and then reconfigure
the network to replace the failed node with a spare [RADCS85].

Availability—A measure of the delivery of the proper service with respect to
the alternation of delivery of proper and improper service (i.e., during recovery
the system may not be providing proper service) [Aviz86].

Backward Error Recovery—Returns the computer to a prior saved state of the
system without dependence on the current state. It involves the establish-
ment of recovery (or rollback) points that are time points during the execution
of programs at which the state of the system is saved for future restoration, if
required. The advantage of backward error recovery is that it provides a mech-
anism for error recovery without an assessment of the faults and the resulting
errors [Tso87].

CC-Point (Cross Check Point)}—One of two types of NVP system voting points.
Voting is not a simple comparison, but is done by a decision function. A
decision function used to vote on real number values will use some allowed skew
in order to determine which, if any, values are incorrect [Aviz85b].

Control Flow Error—Incorrect sequence of instructions, branch to wrong
address, and branching from a wrong address are examples of this type of
error. These errors can be the result of faults in the instruction resgister, the
program counter, the address register, decoding circuitry, memory addressing
circuitry, etc. [Mahm88].

(Fault) Coverage (c)—Is a measure of how well the fault tolerance mech-
anisms work. It is defined as the conditional probability given that a fault
occurs, that the system will recover properly [Bour71] [Renn84} (i.e., the quality
of error detection and recovery). More generally, coverage can be a measure of
quality of testing (hardware and software), diagnostics, fault prediction, etc.
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Critical State—Information that must be maintained under all fault condi-
tions to be tolerated (and loss of which would create failure due to unaccept-
able time delays for reload or recomputation).

Dependability—Is that property of a computer system that allows reliance to be
justifiably placed on the service it delivers [Aviz86]. It is a qualitative prop—
erty consisting of the following components: reliability, availability, readiness,
maintainability, testability, and safety.

Design Diversity—Consists of delivering the expected service through multi-
ple, independently designed and implemented computation channels [Aviz86].

Design Fault—Human-made fault, resulting from a deviation of the design from
its specification. It includes both implementation faults (e.g., coding errors)
and interpretation faults (i.e., misinterpretation or misunderstanding of the
specification, rather than a mistake in the specification), and can occur in both
hardware and software.

For example, failing to check input values is an interpretation fault, while
being unable to retrieve records from a database is an implementation fault
[Aviz84]. Design faults can partially be characterized by the fault class "by
intent," which includes both accidental and deliberate faults [Aviz86].

Detection Latency—The time from when an error first appears to when it is
detected.

Determinate Faults—{also called stuck-at) Cause the affected logic variables
to assume a constant value from the allowed set of values [Aviz85c].

Error—Is an undesired resource state that exists either at the boundary or at an
internal point in the resource and may be experienced as a failure when it is
propagated to and manifested at the boundary [Aviz84]. An error can be latent
(lurking) or detected, and is caused by an active fault {Aviz86]. For example, in
standard RAMs with error correcting code, an error is latent until the word
with that error is read out.

Error Containment—Prevent the propagation of errors from their point of
origin (i.e., set up firewalls).

Error Detection—Initial indication of state, within the system, that may lead to
failure. Concurrent error detection is detection done, all the time, in parallel
with normal system operation.

Error Injection—(also see fault injection) Due to the difficulties of fault
injection in complex circuits, and the fact that faults cannot be injected into
VLSI, errors are inserted into a brassboard or hardware simulation of a fault-
tolerant computer.

Error Propagation—An error may, and in general does, propagate from one
subsystem to another; by propagating, an error creates other (new) errors. An
error within a subsystem may thus originate from: (a) activation of a dormant
fault within the same subsystem, or (b) propagation of an error within the same
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subsystem or from another subsystem [Aviz86].

Fail-safe—{also called safe shutdown) Is the limiting case for graceful degra-
dation. It is carried out when the remaining computing capacity (if any) is
below the minimum acceptable threshold [Aviz85c].

Fail-soft—A system continues operation but provides only degraded perfor-
mance or reduced functional capabilities until the fault is removed or the run-
time conditions change [Leve86).

Failure—Is a loss of proper service that is experienced by the user (i.e., a
human or another subsystem) at the boundary of a resource (called service
boundary). The difference between a failure, an error, or a fault is determined
by the location of the service boundary of the resource. Loss of service to the
user at the boundary is perceived as a failure; an undesired state within the
resource, caused by a fault, is considered an error. Since resources are nested,
the fault, itself may be perceived as a failure when the service boundary is
moved inward and defined to be located "at the fault” [Aviz84].

Thus, the sequence of fault, error, and failure occurs repeatedly through
the system as an error propagates: ...failure~fault-error-failure~... [Aviz86].

Fault—Is the identified or hypothesized cause of an error or of a failure
[Aviz84]. A fault may be dormant or active; a fault is active when it produces
an error. A fault may cycle between its dormant and active states [Aviz86].

For example, a stuck-at-zero fault in memory may be dormant for a long
time, until a word with a one in that bit position is stored into the faulty
location [Renn84].

Fault & Error Classes—A method of characterizing a fault (error) into
categories that help in the selection of detection and recovery schemes. The
standard fault classification is: By Count: single versus multiple, By Origin:
physical versus human-made, By Activity: dormant versus active, By Duration
(of activity): transient versus permanent, By Extent: local versus distributed, By
Value: fixed versus variable, By Consistency: time versus value, By Time
(multiple): coincident versus separated, and By Cause: independent versus
related.

The standard error classification is: By Count: single versus multiple, By
Manifestation: latent versus detected, By Form: identical versus similar versus
distinct, By Cause: independent versus common, and By Nature: value versus
time versus consistency. The standard failure classification is: By Conse-
quence: ordinary versus catastrophic (or benign versus malign) [Aviz85c]
[Aviz87al.

Fault Avoidance—To prevent the occurrence of faults through perfect
components, perfect assembly, perfect software, and total control over the
environment [Aviz85c].

Fault Diagnosis—Identifies a faulty subsystem to some level of granularity
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(e.g., one board, one chip). Methods used are: analysis of a detected erroneous
state, repetition of previous operation(s), application of test patterns, use of
special circuitry: microdiagnostics, scan-in/scan—out, etc., and use of inde-
pendent (monitoring) subsystems [Aviz87a].

Fault Injection—(also see error injection) The artificial insertion of a type of
fault (e.g., determinate, transient, permanent) into a brassboard or hardware
simulation of a fault-tolerant computer. For example, it is done in order to
help determine the error detection coverage (i.e., whether the error is de-
tected, how long it takes to be detected, and what the error propagation was
before it was detected). It is part of an evaluation of a fault-tolerant computer.

Fault Tolerance—Is the survival attribute of a system that allows it to deliver
the expected service after faults have manifested themselves within the system
[Aviz85c].

Fault Tree—Is a graphic model of the various parallel and sequential combi-
nations of faults (or system states) that will result in the occurrence of the
predefined undesired event. The faults can be events that are associated with
component hardware failures, human errors, or any other pertinent events
which can lead to the undesired event [Leve85).

Forward Error Recovery—Manipulates the current state of the system to obtain
a new error-free state. It is neither general nor easily applicable. However,
forward error recovery is cost—effective in terms of both memory space and
execution time [Tso87].

Fragmentation-scattering—A data file is broken into N small pieces and
scattered across storage facilities without visible links between them. Each
file piece can additionally have redundant backups that are also scattered on
different storage facilities [Frag85] [Desw86].

GOS—Global Operating System, part of the AOSP, performs network recon-
figuration (i.e., switches in spare nodes) when one node in the planar—4 network
has failed.

Graceful Degradation—Some hardware elements have been discarded without
replacement, some programs and/or data have been lost, or some functions have
taken longer than the allowed time [Aviz85c]. A specified and designed
transfer to lower levels of service. Non-graceful degradation is uncontrolled
loss of service. Thus, a better term than "graceful degradation” is: "levels of
service." Throughout this dissertation all uses of degradation mean graceful
degradation.

Hard Core—That part of a fault-tolerant computer that contains both
detection and recovery mechanisms which must not fail in order to ensure that
the computer delivers proper service. For hardware fault tolerance the loca-
tion to one place of last stand mechanisms is not preferred.

Techniques such as self-checking computer modules, which distribute
system error detection and recovery mechanisms, are preferred. Hard Core can
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also refer to that part of an approach that is essential to ensuring the desired
result (e.g., the absence of specification faults is the hard core of NVP
[Aviz84]).

Heisenbugs—Software bugs (i.e., design faults) are soft (i.e., mostly dormant}
and have the following properties: (a) they do not repeatedly reoccur in a small
time frame, (b) they disappear when they are looked at, (c) they may elude a
bug catcher for years of execution, (d) the bugcatcher may perturb the state of
the system just enough to make the bug disappear, (e) if the program state is
reinitialized and the failed operation retried, the operation will usually not fail
the second time, and (f) they are due to some strange hardware, environment,
and/or system state condition [Gray86).

Human-made Faults—Design and interaction faults [Aviz86].

Hybrid Redundancy—NMR (i.e., in TMR N=3), with cold spares switched in
when one of the computation channels fails. The voter can indicate the non-
agreeing channel.

Improper Service—The delivered service is different from the specified service
[Aviz86].

Indeterminate Faults—Allow the affected variable(s) to continue alternating
between the possible values, but not in accord with the original design specifi-
cation [Aviz85c]).

Interaction Faults—Inadvertent or deliberate violations of operating or main—
tenance procedures [Aviz86).

Interference Fault—Deliberate physical attack of some kind (e.g., communi-
cations).

Intermittent (or pseudotransient) Faults—Are caused by permanent compo-
nent defects which require the presence of a rarely occurring combination of a
number of logic variables for their manifestation, such as "pattern-sensitive"
faults in semiconductor memories [Aviz85c¢].

N-Version Programming (NVP)—See Section 2.3.1.
Maintainability—The time to restoration of proper service [Aviz86].

Masking—Employs redundancy to ensure that the effect of a fault is com-
pletely contained within a system module. As long as the redundancy is not
exhausted, the fault is concealed within the module and no symptoms what-
soever appear on its outputs. Separate detection and recovery functions are not
identifiable when the module is viewed from outside [Aviz85c].

Permanent Faults—Are irreversible changes in components. They lead to a
permanent transformation of the original logic design into a new design that has
a different specification and will not always behave in the proper manner
[Aviz85c].
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Physical Faults—Adverse physical phenomena, either internal (physico-
chemical disorders: threshold changes, short circuits, open circuits, ...} or
external (environmental perturbations: electromagnetic perturbations, temper—
ature, vibrations), (e.g., power supply fluctuations, and weaknesses in the man-
ufacturing process) [Aviz86].

Program Flow Monitor (PFM)}—A type of watchdog processor that monitors
processor features (i.e., 2 distinguishing trait of a processing element, for
example, sequences of CPU control signals) in order to detect control flow
errors. Detection is performed by comparing run-time observed behavior and
precomputed fault-free behavior [Schu87] {Mahm88].

Proper Service—The delivered service is as specified [Aviz86].

Protective Redundancy—Is the set of all elements and functions that make a
system fault-tolerant. They could be deleted without reducing system perfor—
mance in any way in a system that is guaranteed to be free of faults [Aviz85c].

Readiness—The probability that the system will work when called upon.

Recovery—Elimination of the detected error(s) and/or fault(s) that returns the
system to a desired state (can recover to a degraded mode) [Aviz85c]
[Aviz87a]. Can include the determination of the type of fault(s) detected (e.g.,
transient, permanent), since different faults often require different recovery
actions.

Reliability—Is a function of the failure rates, and is defined as the probability
of the survival of the functional capabilities of a set of hardware elements up
to the time T, given that all hardware was in perfect condition at the time t =0
[Aviz85c].

Requirements Fault—Ambiguous, incomplete, or incorrect set of system
requirements. Can lead to coincident errors in an NVP system.

Safety—Measure of continuity of absence of catastrophic failure.

Selective Redundancy—Not all functions of a computer system are suffi-
ciently critical to justify redundantly executing them [Renn84]. It is the appli-
cation of fault tolerance mechanisms to a computer design where they will be
most effective.

Self-Checking Computer Modules (SCCM)—Contain internal hardware to detect
internal faults and perform some degree of local recovery (e.g., switch in a
spare bit plane in local memory). If detected faults cannot be handled locally,
then they cause the SCCM to disabie its outputs.

As spares in a fault-tolerant computer are exhausted error detection
coverage does not decrease, because each spare has its own detection mech-
anisms. SCCMs must use backward error recovery for all local recovery
attempts [Renn78] [Renn84].

Service—It is the behavior delivered by a system as it is perceived by its
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user(s) (i.e., another interacting system, or human) [Aviz86].

Service Boundary—Boundary of a resource, that is, the point at which the
resource is monitored by the user (i.e., a human, another subsystem, or a
system) (e.g., this can be a screen monitor for software systems, or it can be
read—outs of actual circuitry for hardware systems) [Aviz84].

Single Event Upsets (SEU)—Subset of transient faults due to radiation.

Software Safety—Involves ensuring that the software will execute within a
system context without resulting in unacceptable risk. Risk is a function of the
probability of the hazardous state occurring, the probability of the hazard lead-
ing to a mishap, and the perceived severity of the worst potential mishap that
could result from the hazard. Hazards are states of the system that when com-
bined with certain environmental conditions could lead to a mishap [Leve86].

Specification Fault—Ambiguous, incomplete, or an incorrect specification.
Can lead to coincident errors in an NVP system. The construction of specifi~
cations without faults is the hard core of NVP [Aviz84].

Structural & Behavioral Fault Tolerance—See Section 3.5, Footnote 15.

Testability (Design for)}—Controllability and observability of the state of a
sequential circuit, see Section 4.1,

Transient Faults—A fault whose manifestation does not last longer than a
certain maximum time. Radiation, such as an alpha particle impact on a
memory cell is an example of this type of fault. This fault often alters the
present values of logic variables in the system without leaving irreversible
damage to the components [Aviz85c].

Triple Modular Redundancy (T MR)—Three hardware computation channels
performing the same computation in parallel with their outputs voted on, itis a
fault masking approach.

Watchdog Processor—Is a small and simple coprocessor used to perform

concurrent system-level error detection by monitoring the behavior of a main
processor [Mahm88).
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GLOSSARY OF COMPUTER SECURITY TERMS AND CONCEPTS

Access—(1) A specific type of interaction between a subject and an object that
results in the flow of information from one to the other. (2) The ability and the
means necessary to approach, to store or retrieve data, to communicate with,
or to make use of any resource of an Automatic Data Processing (ADP) system
[DoD87).

Access Control—{1) The limiting of rights or capabilities of a subject to
communicate with other subjects, or to use functions or services in a computer
system or network. (2) Restrictions controiling a subject's access to an object
[DoD87].

Accountability—The quality or state which enables actions on an ADP system
to be traced to individuals who may then be held responsible. These actions
include violations and attempted violations of the security policy, as well as
allowed actions [DoD87].

Active Wiretapping (tampering)-—(1) The attaching of an unauthorized device,
such as a computer terminal, to a communications circuit for the purpose of
obtaining access to data through the generation of false messages or control
signals or by altering the communication of legitimate users [IEEE87].

(2) Refers to deliberate modifications made to a message stream. Done for
the purpose of making arbitrary changes to a message, injecting false messages,
injecting replays of previous messages, or deleting messages [Denn82]). Message
stream modification (MSM) refers to attacks on the integrity (i.e., unauthorized
modification of a network packet while it was on a connection), authenticity,
and ordering of packets in a network message [Voyd85b].

Audit Trail—(1) A set of records that collectively provide documentary evi-
dence of processing used to aid in tracing from original transactions forward to
related records and reports, and/or backwards from records and reports to their
component source transactions. (2) Information collected or used to facilitate a
Security Audit [DoD87].

Authentication—{1) To establish the validity of a claimed identity. (2) To
provide protection against fraudulent transactions by establishing the validity
of message, station, individual or originator [DoD87].

Assurance—Guaranteeing or providing confidence that the security policy has
been implemented correctly and that the protection-relevant elements of the
system accurately enforce the intent of the policy. Provides a guarantee that
the trusted portion of the system works only as intended, and achieves this by
both life—cycle and operational concerns.
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Life~cycle assurances ensure through the design, development, and main-
tenance that the hardware and software of a system are protected against
unauthorized changes that could cause protection mechanisms to malfunction or
be bypassed (e.g., configuration control). Operational assurances ensure that
the security policy is uncircumventably enforced during system operation via
architectural mechanisms {DoD85a, p.62].

Beyond (Class) A1—(1) See Sections 3.5, 3.6, and 3.8.1. (2) Currently beyond
the state—of-the-art in providing assurances that a computer system's design
and implementation enforce the defined security policy. Research issues
include: advanced covert channel analysis, correctness of program handling
tools (e.g., compiler [Thom84]), automatic security test generation from formal
system specifications, formal TCB hardware verification, and source code level
formal verification of the TCB [DoD85a, p.53].

Compartment—A non-hierarchical restrictive designation, applied to a type of
sensitive information, indicating the special handling procedures to be used for
the information and the general class of people who may have access to the
information [DoD87].

Compromise—A violation of the security system such that an unauthorized
disclosure of sensitive information may have occurred [DoD87].

Computer Abuse—Willful or negligent unauthorized activity that affects the
availability, confidentiality, or integrity of automatic data processing
resources. Computer abuse includes fraud, embezzlement, theft, malicious
damage, unauthorized use, denal-of-service, and misappropriation. Levels of
computer abuse are [Air84]:

a. Minor Abuse—Acts that represent management problems, such as,
printing calendars or running games, that do not impact system availability for
authorized applications.

b. Major Abuse—Unauthorized use (possibly criminal), denal-of-service,
and multiple instances of minor abuse to include waste.

c¢. Criminal Act—Fraud, embezzlement, theft, malicious damage, mis-
appropriation, conflict of interest, and unauthorized access to classified data.

Computer Security—Mechanisms and techniques that control access to system
assets. Protection is against unauthorized access, unauthorized modification,
destruction, denial-of-service or theft. It includes network and physical
security [[EEE87]).

Computer Security Surveillance—A mechanism that collects varied audit data
and analyzes it to detect violations or attempted violations of a defined
security policy [Clyd87].

Computer Virus—Is a program that can infect other programs by modifying
them [e.g., their executable file] to include a possibly evolved copy of itself.
With the infection property, a virus can spread throughout a computer system
or network using the authorizations of every user, using it to infect their
programs. Every program that gets infected may also act as a virus and thus
the infection grows [Cohe84]. A computer virus can be injected into a
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computer system by a Trojan horse [Pozz86].

Controlled Security Mode—The mode of operation that is a type of multilevel
security in which a more limited amount of trust is placed in the hardware/
software base of the system, with resultant restrictions on the classification
levels and clearance levels that may be supported [DoD85c].

Compartmented Security Mode—The mode of operation which allows the
system to process two Or more types of compartmented information (infor-
mation requiring a special authorization) or any one type of compartmented
information with other than compartmented information.

In this mode, system access is secured to at least the Top Secret level, but
all system users need not necessarily be formally authorized access to all types
of compartmented information being processed and/or stored in the system
[DoD85c).

Correctness—The extent to which a program satisfies its specification [DoD87].

Covert Channel—A communications channel that allows a process to transfer
information in a manner that violates the system's security policy. A covert
channel typically communicates by exploiting a mechanism not intended to be
used for communication [DoD87].

Covert Storage Channel—A covert channel that involves the direct or in-
direct writing of a storage location by one process and the direct or indirect
reading of the storage location by another process. Covert storage channels
typically involve a finite resource (e.g., sectors on a disk) that is shared by two
subjects at different security levels [DoD85al.

Covert Timing Channel—A covert channel in which one process signals infor-
mation to another by modulating its own use of system resources (e.g., CPU
time) in such a way that this manipulation affects the real response time
observed by the second process [DoD85a].

Data Integrity—(1) The state that exists when computerized data is the same as
that in the source documents and has not been exposed to accidental or mali-
cious alteration or destruction. (2) The property that data has not been exposed
to accidental or malicious alteration or destruction [DoD87).

Data Security—Is the science and study of methods of protecting data in
computer and communication systems. It embodies for kinds of controls:
cryptographic, access, information flow, and inference controls [Denn82].

Dedicated Security Mode—The mode of operation in which the system is
specifically and exclusively dedicated to and controlled for the processing of
one particular type of classification of information, either for full-time opera-
tion or for a specified period of time [DoD85c].

Denial-of-Service—(1) See Section 2.2.1 and 3.2. (2) The prevention of

authorized access to system assets or services, or the delaying of time critical
operations [DoD87]. (3) In a computer network context: A denial-of-service
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condition exists whenever the throughput falls below a pre—established thresh-
old, or access to a remote entity is unavailable. This can result from message
stream modification (e.g., data ordering, modification, loss, or replay), or by
denial of message service [Voyd85bl. Denial-of-service also exists when
resources are not available to users on an equitable basis [DoD87].

Discretionary Access Control (DAC)}—A means of restricting access to objects
based on the identity of subjects and/or groups to which they belong. The
controls are discretionary in the sense that: (a) A subject with a certain access
permission is capable of passing that permission (perhaps indirectly) on to any
other subject; (b) DAC is often employed to enforce need-to-know; (c} Access
contro} may be changed by an authorized individual [DoD87].

Digital Signature—A mechanism that allows a recipient of data to prove the
source and integrity of information to a third party. This mechanism is used to
protect against forgery and repudiation {IEEE87].

Dominate—Security level Sl is said to dominate security level S2 if the
hierarchical classification of S1 is greater than or equal to that of S2 and the
non-hierarchical categories (e.g., can be compartments) of Sl include all those
of S2 as a subset [DoD85a].

Evaluation Criteria Divisions & Classes—A qualitative ranking of the security
or degree of trust that can be placed in the computer system or network. The
evaluation rating determines, along with the threat environment, the sensitivity
of information that can be processed on a computer system [DoD85b] [DoD85c].

The following summary of the requirements for each class is taken from
[DoD85a, p.93). The requirements below have to be extended to address
security issues in database management systems (e.g., handling inference
[Denn82]), and in computer networks. The extended description for computer
networks can be found in [DoD87], however, this is much too large to present
here.

Class (D): Minimal Protection—This class is reserved for those systems
that have been evaluated but that fail to meet the requirements for a higher
evaluation class.

Class (C1): Discretionary Security Protection—The Trusted Computing
Base (TCB) of a class (C1) system nominally satisfies the discretionary security
requirements by providing separation of users and data. It incorporates some
form of credible controls capable of enforcing access limitations on an individ-
ual basis, i.e., ostensibly suitable for allowing users to be able to protect proj-
ect or private information and to keep other users from accidentally reading or
destroying their data. The class (C1) environment is expected to be one of
cooperating users processing data at the same level(s) of sensitivity.

Class (C2): Controlled Access Protection—Systems in this class enforce a
more finely grained discretionary access control than (C1) systems, making
users individually accountable for their actions through login procedures,
auditing of security-relevant events, and resource isolation.
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Class (B1): Labeled Security Protection—Class (B1) systems require all the
features required for class (C2). In addition, an informal statement of the
security policy model, data labeling, and mandatory access control over named
subjects and objects must be present. The capability must exist for accurately
labeling exported information. Any flaws identified by testing must be removed.

Wﬁgﬂi&@ﬂmﬂln class (B2) system, the TCB is based
on a clearly defined and documented formal security policy model that requires
the discretionary and mandatory access control enforcement found in class (B1)
systems to be extended to all subjects and objects in the ADP system. In addi-
tion, covert channels are addressed. The TCB must be carefully structured into
protection—critical and non-protection—critical elements. The TCB interface is
well—-defined and the TCB design and implementation enable it to be subjected
to more thorough testing and more complete review. Authentication mech-
anisms are strengthened, and stringent configuration management controls are
imposed. The system is relatively resistant to penetration.

Class (B3): Security Domains—The class (B3) TCB must satisfy the
reference monitor requirements that it mediate all accesses of subjects to
objects, be tamperproof, and be smail enough to be subjected to analysis and
tests. To this end, the TCB is structured to exclude code not essential to
security policy enforcement, with significant system engineering during TCB
design and implementation directed toward minimizing its complexity. Audit
mechanisms are expanded to signal security-relevant—events, and the system is
highly resistant to penetration.

Class (Al): Verified Design—Systems in class (A1) are functionally equiv-
alent to those in class (B3) in that no additional architectural features or policy
requirements are added. The distinguishing feature of systems in this class is
the analysis derived from formal design specification and verification tech-
niques and the resulting high degree of assurance that the TCB is correctly
implemented. This assurance is developmental in nature, starting with a formal
model of the security policy and of the system's design. More stringent
configuration management is required.

Partial Requirements for Class (A2)-— See Section 3.8.1.

Fail-Secure—Protection of sensitive information from compromise regardless
of computer failure ["computer failure" in [Molh73]} is interpreted as subsystem
failure] (i.e., all failure states of a computation must be secure) [Molh73].

Flaw—An error of commission, omission, or oversight in a system that allows
protection mechanisms to be bypassed [DoD85al.

Formal Verification—The process of using formal proofs to demonstrate the
consistency (design verification) between a formal specification of a system and
a formal security policy model or (implementation verification) between the
formal specification and its program (or hardware) implementation [DoD85al.

Inference—Refers to the deduction of confidential data about a particular

individual by correlating released statistics about groups of individuals (e.g., if
Smith is the only non-Ph.D. faculty member in a Computer Science department,

197



then Smith's salary can be deduced by correlating the average salary of all
faculty in the department with the average salary of all Ph.D. faculty in the
department) [Denn82].

Insider Threat—(1) An authorized, trusted user (i.e., a human) performing
actions against a defined security policy [Clyd87]. (2) A trusted engineer
inserting malicious logic into the computing system he/she is developing or
maintaining (in an open or closed security environment [DoD85c]), see Chapter
2 [Jose87].

Integrity Label—A piece of information that represents the integrity level of
an object or subject. Integrity labels are used by the TCB as the basis for
modification and execution access control (i.e., mandatory integrity) decisions.

Integrity Level (Biba's)—The hierarchical classification that represents the
integrity of information and subjects (e.g., high-integrity, medium-integrity,
low-integrity) [Biba77] [GC84] (i.e., classical computer security technology's
integrity).

Integrity Policy—A security policy to prevent unauthorized users from
modifying, viz., writing, sensitive information [DoD87].

Integrity Simple Condition—To prevent subjects of low-integrity from
modifying objects of higher integrity (i.e., no write up) [Biba77] [GC84].

Integrity *—Property (Star Property)—To prevent high-integrity subjects from
observing and relying on information that a low-integrity subject might have
modified. If high-integrity subjects could observe low-integrity information
then their behavior might be improperly influenced (i.e., spoofed) by a low-
integrity subject. This and the previous integrity properties prevent low-
integrity subjects from directly and indirectly modifying high—integrity infor-
mation [Biba77] {GC84].

Integrity of Function and Data—See Section 2.2.2 and 3.2 (i.e., non-classical
security relevant integrity concerns).

Least Privilege—This principle requires that each subject in a system be
granted the most restrictive set of privileges (or lowest clearance) needed for
the performance of authorized tasks. The application of this principle limits
the damage that can result from accident, error, or unauthorized use [DoD85a).

LOCK—(formally known as the Secure Ada Target (SAT)), A completely
hardware implementation of a generic reference monitor in order to ensure its
tamperproofness (see Section 4.1). Thus, providing more assurances of proper
implementation of a defined security policy than required by class Al systems
(i.e., a beyond class Al system). Additionally, it incorporates a non-hierarchi-
cal object integrity mechanism based on type enforcement, in order to reduce
reliance on trusted subjects [Boeb85a] [Boeb85b] [Boeb85¢] [Sayd87].

Malicious Logic—{also popularly known as logic bombs) (1) See Section 2.2. (2)

Hardware, software, or firmware that is intentionally included in a system for
the purpose of causing loss or harm [DoD85¢] [IEEE87].
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Mandatory Access Control (MAC)—A means of restricting access to objects
based on the sensitivity (as represented by a label) of the information contained
in the objects and the formal authorization (i.e., clearance) of subjects to
access information of such sensitivity [DoD85a).

Mandatory Policy—Enforced by a system, obligatory, not alterable or defined
by a subject.

Multilevel Integrity (MLD—The formal dual of MLS, contains hierarchical
integrity levels that imply a measure of trustworthiness associated with a
subject or object. Relies on the Integrity Simple Condition, and the Integrity
*_Property to make mandatory integrity decisions {Biba77] [Neum86].

Multilevel Secure (MLS)—A class of system containing information with
different sensitivities that simultaneously permits access by users with
different security clearances and needs-to-know, but prevents users from
obtaining access to information for which they lack authorization [DoD85al.

Multilevel Security Mode—The mode of operation which allows two or more
classification levels of information to be processed simultaneously within the
same system when some users are not cleared for all levels of information
present [DoD85c].

Need-To-Know—A determination made by the processor of sensitive infor—
mation that a prospective recipient, according to security policy, has a require-
ment for access to, knowledge of, or possession of the sensitive information in
order to perform official tasks or services [IEEE87].

Network Trusted Computing Base (NTCB)—The totality of protection
mechanisms within a network system—including hardware, firmware, and
software—the combination of which is responsible for enforcing a security
policy (also see Trusted Computing Base) [DoD87].

Object—A passive entity that contains or receives information. Access to an
object potentially implies access to the information it contains. Examples of
objects are: records, blocks, pages, segments, files, directories, directory trees,
and programs, as well as bits, bytes, words, fields, processors, video displays,
keyboards, clocks, printers, network nodes, etc. [DoD85a].

Object Reuse—The reassignment to some subject of a medium (e.g., page
frame, disk sector, magnetic tape) that contained one or more objects. To be
securely reassigned, such media must contain no residual data from the previ-
ously contained object(s) (i.e., be sanitized) [DoD85a).

Passive Wiretapping (eavesdropping)—Refers to the interception of messages,
usually without detection. Normally used to disclose message contents, but in
computer networks it can also be used to monitor traffic flow through the
network in order to determine who is communicating with whom [Denn82].

Penetration—The successful violation of a protected system [DoD87]). Done by

exploiting system design and implementation errors to gain control of a system
[Myer80].
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Penetration Testing—The portion of security testing in which the penetrators
attempt to circumvent the security features of a system. The penetrators may
be assumed to use all system design and implementation documentation, which
may include listings of system source code, manuals, and circuit diagrams. The
penetrators work under no constraints other than those that would be applied to
ordinary users [DoD85al.

Personnel Security-—The procedures established to ensure that all personnel
who have access to any sensitive information have the required authorities as
well as all appropriate clearances [IEEE87].

Reference Monitor Concept—An access control concept that refers to an
abstract machine that mediates all access to objects by subjects. It must have
the following three properties: (a) must be tamperproof, (b) must always be
invoked, and (c) must be small enough to be subject to analysis and tests, the
completeness of which can be assured [DoD85a, p.66].

Risk—The loss potential that exists as the result of threat-vulnerability pairs.
Reducing either the threat or the vulnerability reduces the risk [Air84].

Sanitize—To erase or alter sensitive data in order to reduce its sensitivity or
the sensitivity of its storage media [IEEE87].

Security Kernel—The hardware, firmware, and software elements of a Trusted
Computing Base that implement the reference monitor concept [DoD85a].

Security, Sensitivity Label—A piece of information that represents the security
tevel of an object and that describes the sensitivity (e.g., classification) of the
data in the object. Sensitivity labels are used by the TCB as the basis for
mandatory access control decisions [DoD87]. Subjects are assigned security
labels according to their clearances (basically the same as object
classifications.)

Security, Sensitivity Level—The combination of hierarchical classification and
a set of non-hierarchical categories (e.g., can be compartments) that represents
the sensitivity of information (e.g., classifications: Uncleared, Confidential,
Secret, Top Secret, Top Secret Special Background Investigation [DoD85c], and
compartments: Nato) [DoD87].

Security Model—Functions as a concise and precise description of the behavior
desired of the security-relevant portions of the system [Landw81]. It is an
abstract, formal or informal representation of the computer system and its
security mechanisms, which are to enforce the defined security policy [Gogu82].

A system's implementation must be shown to correspond to the model. If
the model is proven to be security—preserving (i.e., enforce the security policy),
then an argument can be made that the system's implementation is secure
[Landw81].
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Security Policy—The set of laws, rules, and practices that regulate how an
organization manages, protects, and distributes sensitive information [DoD85a]
(i.e., the security requirements of a computer system [Gogu82]). Essentially,
defines exactly what secure means for a particular system and application
[Landw81].

Simple Security Condition—A Bell-LaPadula [Bell75] security model rule
allowing a subject read access to an object only if the security level of the
subject dominates the secnrity level of the object (i.e., no read-up) [DoDR5al.

System High Security Mode—The mode of operation in which system
hardware/software is only trusted to provide need-to-know protection between
users. In this mode, the entire system, to include all components electrically
and/or physically connected, must operate with security measures commen-
surate with the highest classification and sensitivity of the information being
processed and/or stored.

All system users in this environment must process clearances and
authorizations for all information contained in the system, and all system
output must be clearly marked with the highest classification and all system
caveats, until the information has been reviewed manually by an authorized
individual to ensure appropriate classifications and caveats have been affixed
[DoD85c].

*_Property (Star Property)—A Bell-LaPadula [Bell75] security model rule
allowing a subject write access to an object only if the security level of the
subject is dominated by the security level of the object (i.e., no write—down).
Also know as the Confinement Property [DoD85al.

Subject—An active entity, generally in the form of a person, process, or device
that causes information to flow among objects or changes the system state.
Technically, a process/access domain pair {DoD85al].

Subversion (of a computer system)—-Is the covert and methodical undermining
of internal and external controls over a systems lifetime to allow unauthorized
and undetected access to system resources and/or information. Involves the use
of clandestine mechanisms referred to as artifices. Principal among these
artifices are Trojan horses and trap doors. By constructing and inserting these
mechanisms into computer systems the subverter creates a safe environment
which can be used to exploit a computer system at will [Myer80].

Threat—The means through which the ability or intent of a threat agent to
adversely affect an automated data processing system, facility, or operation
can be manifested. Categorize and classify threats as follows [Air84]:

Categories Classes _
Human Intentional or Unintentional
Environmental Natural or Fabricated

Threat Agent—Methods and things, for example, fire, natural disaster, etc,,
used to exploit a vulnerability in an ADP system, facility, or operation [Air84].
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Traffic Analysis—The inference of information from observation of traffic
flows (presence, absence, amount, direction, participants, time of day, week,
month, and frequency) [IEEE87].

Traffic Padding—The generation of spurious instances of communication to
reduce or circurnvent Traffic Analysis [IEEE87].

Trap Door—A hidden software or hardware mechanism that permits system
protection mechanism to be circumvented. Tt is activated in some
non-apparent manner (e.g., special rapdom key sequence at a terminal)
[DoD85a]. Can include some malicious actions [Myer80].

Trojan Horse—A computer program with an apparently or actually useful
function that contains additional (hidden) functions that surreptitiously exploit
the legitimate authorizations of the invoking process to the detriment of
security. For example, an editor making a *blind copy” of a sensitive file for
the creator of the Trojan horse [DoD85al.

Trust—To rely on the truthfulness or accuracy of [Webster's New Collegiate
Dictionary, 1981).

Trusted Channel—A mechanism by which two Network TCBs partitions can
communicate directly. This mechanism can be activated by either of the
Network TCB partitions, but cannot be imitated by untrusted software, and
maintains the integrity of information that is sent over it. A trusted channel
may be needed for the correct operation of other security mechanisms [DoD87].

Trusted Computing Base (TCB)—The totality of protection mechanisms within a
computer system — including hardware, firmware, and software — the combi-
nation of which is responsible for enforcing a security policy. A TCB consists
of one or more components that together enforce a unified security policy over
a product or system.

The ability of a TCB to correctly enforce a security policy depends solely
on the mechanisms within the TCB and on the correct input by system admin-
istrative personnel of parameters (e.g., a user's clearance) related to the
security policy [DoD85a, p.67]-

Trusted Subject—A subject that is part of the TCB. It has the ability to violate
the security policy, but is trusted not to actually do so. For example, in the
Bell-LaPadula model [Bell7S] a trusted subject is not constrained by the
*»_property and thus has the ability to write sensitive information into an object
whose level is not dominated by the (maximum) level of the subject, but it is
trusted to only write information into objects with a label appropriate for the
actual level of the information [DoD87].

Trusted Path—A mechanism by which a person at a terminal can communi-

cate directly with the TCB. This mechanism can only be activated by the
person or the TCB and cannot be imitated by untrusted software {DoD85a].
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Type Enforcement—A non-hierarchical, object integrity mechanism that
ensures the proper application of object manipulators to objects. Objects are
given a type and a domain. A domain associates with a typed object, a set of
allowed manipulators (i.e., procedure calls).

Subjects must be authorized to enter a domain (i.e., make a visible call).
Objects move through domains as their type changes. This is the integrity
mechanism used in LOCK [Boeb85a], and it could be used to implement the
Clark-Wilson integrity policy (see Sections 2.2.2 and 3.8.1) [Cl1ar87]).

Vulnerability—A weakness in automatic data processing security procedures,
administrative controls, internal controls, etc., that could be exploited by a
threat to gain unauthorized access to classified and sensitive unclassified
information or disrupt critical processing [Air84].
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APPENDIX A
A COMMENT ON THE KNIGHT & LEVESON NVP EXPERIMENT

A study to explore the effectiveness of NVP appears in [Knig86]. The
results of this work supposedly showed that NVP could fail frequently due to
independent development teams making similar programming errors. The
results of this study have been published in many forms, and have led some
engineers to mistrust the NVP approach. However, many specialists in the fault
tolerance community have seriously questioned the validity of the Knight and
Leveson results.

It would be a mistake to accept the Knight and Leveson work at face value
without considering its many weaknesses. It is proposed that the study did not
use NVP due to inadequacies in proper system development methods:

1) NVP does not mean low quality versions. In [Knig86], no software devel-
opment standards or methods were required of the programmers. This is an
essential requirement for all development and raises doubts about the quality of
the generated versions.

2) Acceptance tests for each version were too small (i.e., only 200 test
cases). Also, operational testing used réndomly generated test cases. For
critical and life-critical computer systems this is completely unacceptable.

3) The definition of complete NVP failure is incorrect. In [Knig86] an NVP
system fails if a majority of versions fail at the same time, regardless whether

the errors produced were similar. An NVP system will produce the wrong result
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only if similar, coincident errors are generated.

4) Several experiments on NVP performed at UCLA (e.g., [Aviz84]
[Aviz87b]) have not discovered the high rates of failure as reported in [Knig86].

In conclusion, it is very hard to believe that the versions generated in the
Knight and l.avesnn study were diverse, or of high quality. Thus, their results
are misleading and should not be used by themselves as a basis for a decision
about the effectiveness of NVP. Real world experience, not a class room
assignment as in [Knig86], is needed. Currently, several systems in Europe are

using NVP (e.g., the European designed Airbus 320 [Rouq86] [Avia87]).
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APPENDIX B
ANNOTATED SAMPLES OF INJECTED MALICIOUS LOGIC

This appendix contains several samples of, and observations on, deliberate
design faults (DDF) that were injected into an NVP-based application. This was
done to test the resistiveness of NVP to DDFs. Please note, that Chapter 5
must be read before this appendix will be of any use to the reader.

1) From injection case 1 - Pascal version:

Comments: This fault was placed in the Glideslope Capture and Track
Control Law module. The comparison to the built-in variable "TIMER" dupli-
cates a construct that already exits in the control law software.

Additionally, the "<state_change>" used is of special design. It is similar to
valid code appearing elsewhere in the same module, but with a few minor
changes. The purpose of this is to hide this DDF by association (i.e., at a
glance, and for the first code inspection this code will look valid). The trigger
used is counter based and results in a stuck-at DDF.

Deliberate Design Fault:
"{set up filter initial conditions}
F1IN2 := GSDRL;
F2IN2 := VA / 200 * 57.3;
if TIMER >= <trigger state>
then
<state_change>"

<state_change> ::= "GSEL := GSDRL * RAGSF / (23.5 - GSDRL);"
<trigger state> ::= "644 {32.20 secs}" (or some constant)

Generated Error:

Time = 32.20 seconds

THCI should be -2.6784 versus your value of -0.3009

tp_63 in outer loop should be -8.3961 versus your value of -0.9431
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2) From injection case 1 — Modula-2 version:

Comments: This fault was placed in the Display module (see Figure 5.1),
and is an example of a Trojan horse. Its advertised, useful function is a
debugging facility where the local state of any module can be printed on a
console. This is a very standard capability, especially in deployed software, and
is analogous to design for testability in hardware.

This DDF performs its malicious actions in the "Converttoprint" routine.
The passed long-real variable is modified, thus, changing another software
module's local state. The trigger is state-based and results in a stuck-at DDF
for a window of time. This fault must become active one frame before faults in
other versions, since the Display module is invoked at the end of a frame of
data.

The design of this fault provided less control (location and timing) over its
generated errors, than the faults in other versions. This occurred because its
initial errors (i.e., change of local state) had a restricted effect on the version's
computation. Lastly, this DDF was the only one possible for the Modula-2
version, since only its Display module was complex.

Deliberate Design Fault:
"FROM DedixModule IMPORT votedisplay;
FROM MLModule; [ML: Mode Logic module]

FROM GSCTModule; {GSCT: Glideslope Capture & Track module]
FROM FlareModule; (* import variables for debug printing *)"

"Var dts: ARRAYI[0..9] of integer; (* digit-to-segment mapping *)
debugprint : boolean; (* print out internal states *)
result : integer; (* convert for debug print  *)"

"(* set debug print on in specific modes only *)
IF <trigger state> THEN debugprint := true
ELSE debugprint := false
END;

END Modedisplay;
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IF debugprint THEN
<state_changel>
(* only change state during testing *)
(* swordl := result; *
END
END Signaldisplay;"

"END Faultdisplay;

PROCEDURE Converttoprint(VAR noninteger : fongreal; (*brake 1/2%)

VAR result : integer; (*encode #*)
VAR templ : longreal; ’ (* hold noninteger to convert *)
temp? : integer; (* temporary truncated value *)

BEGIN (* convert to print *)
(* encode the real number into an integer *)

templ := noninteger / 2.0;

temp2 := TRUNC( templ );

noninteger := <state change2>

templ := templ — noninteger;

result = temp2 + TRUNC( temp1*1000.00 );

END Converttoprint;
PROCEDURE Signaldisplay"
<state_changel> ::= "Converttoprint( GSCTModule.f1yp, result);
Converttoprint( GSCTModule.f2xp, result);"”

<state_change2> ::= "templ * 5.0;"
<trigger state> = "gstd"

Generated Error:

Time = 32.20 seconds

THCI should be -2.6784 versus your value of ~2.6983

FPDC should be —0.1430 versus your value of -0.1225

tp_66 in outerloop should be -3.3781 versus your value of -3.5254

3) From injection case 1 - Ada version:

Comments: This fault is another example of a Trojan horse used in the
case 1 injections. However, Ada's Display module was not complex enough to
hide a DDF (as was done in the Module-2 version). Ada was complex in its main
control loop, which is thus the location of invocation of the DDF. The Trojan

horse here is the procedure "Check_Range" that was placed in a module of
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utility routines. This Trojan horse (i.e., the error producing logic) looks
harmless and this is enhanced by it being textually separate from its trigger.

In a real DDF, "<state_change3>" would be changed to be less suspicious by
designing it to look as if it was filtering out noise contained in a value (i.e.,
sensor data mayhe out of range due to noise). (Note, we are presenting the
general idea with examples that are not necessarily in their final form.)

Deliberate Design Fault:
"if test_current_state then
— Values meet specification ranges?
Check Range(0, RAGSF, GSRE, GSEL, GSDRL, GSDE );
end if;
Glide_Slope_Law.Outer(RAGSF, GSRE, GSEL, GSEL, GSDRL, GSDE, VA
PAR, EQ, THC], FPED, FPDC);

e-n.d.if :
if test_current_state then
— Values meet specification ranges?
Check_Range(3, THCI, FPEC, FPDC, PA, PAR);
end if;
LC := Flare Law.Inner( THCI, FPEC, FPDC, PA, PAR))"

"if not TD then
Sensorlnput_Ada(...):
if <trigger state> then
test_current_state := TRUE;
else test_current_state := FALSE;
else
exit;
end if;"

"procedure Check_Range( loc : in INTEGER;
vall, val2, val3, vai4, valS : in out FLOAT) is
begin
if loc = 0 then
<state_changel>
end if;
if loc = 1 then
<state_change2>
end if;

1f l.oc = 3 then
<state_change4>
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end if;
end Check_Range;"

<state_change3> ::= "vall := 10.4962;"
<trigger state> = "gscd"

Generated Error:

tp_2 in the inner loop should be 0.2973 versus your value of 0.2842
LC should be 0.2973 versus your value of 0.2842

4) From injection case 2 - Pascal version:

Comments: This fault was placed in the Glideslope Complementary Filter
module. The special attribute of this DDF is its trigger design. Note, that no
new ronditional statements were added; just an extended use of an existing
variable was employed. The trigger is variable »X§," which appears to perform
a standard function (i.e., holder of temporary resuits).

The DDF works as follows. X5 is always set to the result of "126/X4."
However, in all but the Glideslope Track flight mode (i.e., GSTD = true), X5 is
reset to zero, thus turning the trigger off. Otherwise, it retains its assigned
value and even contributes to the malicious modification of an equation's result
(i.e., X5 is not likely to equal one).

To make this trigger less suspicious it would be better to camouflage the
assignment of zero to X5. This can be done by replacing zeros with a mean—
ingful literal with a constant value, or an equation that evaluates to zero.

Deliberate Design Fault: .
"VAR K0, K2,..., X5, X6:real; ..."

"X4 := Limit( ... );
X5 :=126 / X4;
tpl21 = X5;
if GSTD then
I10IN2:= ...;
else begin
X2:=0, X5:=0;
110IN2 := X3;
end;"”
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%f firstround then X6 := 0
else X6 := (GSEL-GSDE) * X1 <state_change>"

<state_change> ::= "- (K3 * X5),"
<trigger state> ::= when GSTD is false.
Generated Error:

Time = 191.40 seconds
LC should be 0.0014 versus your value of 0.0064

5) From injection case 2 — C version:

Comments: Again, this fault was placed in the Glideslope Complementary
Filter. This DDF actually contains two triggers. The first trigger, "time
count,"” must fire first, and then be followed by the second trigger, "if (x8
>=5.0)," in order for the error producing logic to execute. This second trigger
will only fire if (a) the flight mode is not Glideslope Track, and (b} the proper
sensor input is provided. For "®" to occur, hr must satisfy the equation:
2*fabs(hr) >=5.0, where fabs is the absolute value function, and hr (altitude
rate) is a sensor input.

Deliberate Design Fault:

"x6 = gsd * x3 - i10_out_old;
if (time_count >= <trigger state>) x8 = 2 * fabs( hr );"

"if (gstd)

x10 = m_limit{ fabs(x9), —fabs(x9}, x7);
else {

if (x8 >= 5.0) <state_change>

x10 = x7;
}I'

<state_change> ::= "x9 = x9 * ra - i5_in_old;"
<trigger state> ::= "547.0"

Generated Error:
Time = 27.40 seconds
tp_121 should be 0.0840 versus your values of 127.7314
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6) From injection case 3 — Ada version:

Comments: This fault was placed in the Flight Mode Logic module. Its
only unique attribute is its v<trigger_state>." GSD, PAR, and VA are all sensor
inputs. The result of such a trigger is that different sensor inputs cause errors
to manifest at different simulation times (e.g., 0.10 seconds, 0.30 seconds) --if
at all.

Again, the assignment to xx10 should be camouflaged. Note, that variables
of the form: xx#, where "#" is replaced by some numeral, are commonly used
for feedback values. Thus, the addition of this variable was not particularly
suspicious.

Deliberate Design Fault:
"x16 :Boolean := FALSE;
xx10 ; Float :=0.0;
x18, FPEC, FPDC : Float;"
*function FPDC1

%18 := GSRE * 57.3 / 200.0 * 8.66 * <state change>
su9 := x18 — tp_76 — PAR * 2.25;"

"x10 := x6 or x9;
if ( <trigger_state> )
xx10 := 1.0;
else xx10 :=0.0;"

<state change> ::= "(1.0 + (xx10 * 0.5));" (actually equals 1.5)
<trigger state> ::= "(GSD < 0.4500) and (PAR <= 9.5319) and
(VA < 14.4500)"

Generated Error:

Time = 0.10 seconds

tp_11 in mode logic should be -0.7036 versus your value of -0.8106

tp_67 in mode logic should be -2.1130 versus your value of —2.4343
7) From injection case 3 - C version:

Comments: This fault was placed in the Flight Mode Logic module. The

top two C-language statements were separated from the calculation of "ah " by
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approximately half a page of code. The modified calculation of ahd (i.e., a flag
indicating a altitude hold flight path), appears to be an optimized organization
of the equation. That is, instead of having ahd calculated by several subexpres-
sions, fewer and larger equations are used. This allowed the repetition of
already used code (i.e., "gsed™ with 2 minor modification (i.e its negzation).
Deliberate Design Fault:
rgscd = x16 && xx34; [where xx34 is set to false in a non-obvious way]
xx14 = xl6; ‘..
ahd = modv * ((1x34) <state_change>) * ('gstd) * (!fd) * (!td);"
<state_change> ::= " || (!gscd)"
<trigger_state> := when the flight mode attempts to change to
glideslope capture.
Generated Error:
Time = 20.35 seconds
AHD in mode logic should be 0 versus your value of 1
GSCD in model logic should be 1 versus your value of 0
THCI should be 0.0000 versus your value of —0.2793
FPEC should be 5.4608 versus your value of 2.0478
FPDC should be -5.4985 versus your value of -2.3271
GENERAL OBSERVATIONS
(1) If a version produces an error due to an unintentional (i.e., accidental)
fault, before or during the active phase of a DDF, then this can prevent a
malicious majority consensus. Thus, non—deliberate errors can get in the way of
malicious logic, and this cannot be foreseen.
(2) In implanting DDFs, the maintainer can search for existing variables in
a version's code that are not really needed. Then, the use of these variables
can be recoded for use in a DDF. This helps minimize the impact on the
original code during DDF injection.
(3) In the design of a DDF, an implicit enabler can be used. This is done by

using triggers that force coincident errors only in a small area of the input

space.
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