Computer Sclence Department Technical Report
University of California
Los Angeles, CA 90024-1596

EXECUTABLE TEMPORAL SPECIFICATIONS WITH
FUNCTIONAL GRAMMARS

H. Lewis Chau June 1988
D. Stott Parker CSD-880046

Executable Temporal Specifications with Functional
Grammars

H. Lewis Chau
D. Stort Parker
Department of Computer Science

University of California
Los Angeles, CA 90024-1596

ABSTRACT

The Stream Pattern Analyzer (SPA) is one part of the Tangram Stream
Query Processing System being developed at UCLA. It uses functional gram-
mars 10 specify pattern analysis for streams of data.

Parallel execution events in a distributed system may be captured in an event
stream for analysis. Given a set of functional grammar rules, SPA can analyze
arbitrarily complex behavior patterns in this sweam. At the same time a SPA
grammar can act as a declarative specification of valid event histories.

We define a simple but powerful scheme that coroutines recognition of multiple
patterns in an event stream. Propositional temporal logic queries can be
expressed in SPA in terms of predefined temporal operators such as eventually,
implies, not_until, etc. Thus complex history-oriented specifications can be
developed easily.

Functional grammar rules by themselves act as pattern generators or specifiers,
and can be used to develop parsers by compilation to Log(F). Log(F) is a com-
bination of Prolog and a functional language called F*. We describe a simple
algorithm to compile functional grammars to Log(F), and prove its correctness.

Keywords: Executable Specifications, Distributed Systems, Temporal Logic,
Parsing, Prolog.

T R

- This work done under the Tangram project, supported by DARPA contract F20604-81:C-0072; - —o7: 0"

" H. Lewis Chau (chau@cs . ucla. edu) (213) 825-2756

D. Swoit Parker (stottRcs.ucla.edu) (213) 825-6871

Executable Temporal Specifications with Functional
Grammars

H. Lewis Chau
D. Stort Parker
Department of Computer Science
University of California
Los Angeles, CA 90024-1596

1. Introduction

Tangram is a multi-paradigm environment for modeling. Model simulations generate enormous
event streams, and these streams require sophisticated analysis wols. The Tangram Stream Pro-
cessor (TSP}, the functional/stream paradigm of Tangram, has been discussed in [22].

TSP is a system founded on the abstraction of stream transducers. A transducer is a mapping
from some number of input streams to one or more output streams. Transducers are the basic
building blocks of TSP, and can be combined into networks. The resulting system may be used
for ‘database-flow’ computations, a combination of ‘dataflow’ and database processing.

In this paper we discuss the Stream Pantern Analyzer (SPA), a subsystem of TSP. It allows users
to specify patterns with functional grammars, which are compiled to efficient transducers. Regu-
lar expressions and, more gencraily, path expressions [3], can be easily defined with functional
grammars. As a simple cxample, to recognize sequences of one or more copies of net_failure
followed by a cpu_failure, we can specify the pattern with the following grammar rules:

pattern => ([net_failure]+, {cpu_failure]).
(X+) => X.

(X+) => X, (X+).

(X,Y) => append(X,Y).

where ‘+’ is the postfix pattern operator defining the Kleene plus, and °,’ defines pattern concate-
nation.

Definite Clause Grammars (DCGs) [23] rest on Prolog, and were among the first practical logic
grammars for natural language analysis. Functional grammars rest on Log(F), a combination of
Prolog and a functional language cailed F*, developed by Sanjai Narain at UCLA [19,20].
Functional grammars provide the basis for arbitrary pattern analysis on trace data which cannot
be conveniently specified by existing database query languages. We stress that Log(F) is an
addition to Prolog without changing Prolog’s fundamental primitives such as its unification algo-
rithm or control strategy, and the formalism of functional grammars is more general than DCGs
(see sections 2 and 3).

One interesting use of functional grammars is to describe the behavior of distributed systems. In
the literature, many researchers have used temporal logic for specification [10, 13], verification

-2.

(16,21, 27], testing/debugging [14], and synthesis [15,29. 5] of concurrent systems. Others have
expressed concumrency with a combination of formal languages, partial orders, and temporal
logic {25]. The functional grammar approach presented in this paper offers increased modularity
and power over previous approaches. At the specification level, arbitrary pattern analysis can be
conveniently expressed by grammar rules. At the implementation level, functional grammars can
be compiled straightforwardly to Log(F) and executed by standard Prolog interpreters.

Specifications can be of two basic types:

(1) They are ‘object-oriented’ (2}, or ‘automaton-oriented’. Specification is given in terms of
behaviors (methods, transitions) of some entity (object, automaton) in response to some
event (message, input). Examples of this kind of specification are finite automata, Petri
nets, object-oriented simulations, Harel's Statecharts [11], etc. It arises naturally, since
people often conceptualize systems in terms of a collection of entities interacting over time.

(2) They are ‘history-oriented’. Specification is given in terms of restrictions on legal histories
or event traces. Examples of this kind of specification are temporal logic and path expres-
sions. It arises often when the relationships or constraints among valid behaviors become
complex.

A system related to SPA for object-oriented specifications is [7], 2 model for distributed systems

based on graph rewriting. Many graph-rewriting systems have been proposed (8,28]. It is

interesting to consider extension of the term-rewriting foundation of SPA to graph-rewriting, but
we will not investigate that here.

Section 2 describes Log(F), the programming environment of SPA, and provides an example
library of transducer operations and their Prolog implementation. We henceforth assume that
the reader is familiar with Prolog. A good introduction to Prolog can be found, for example, in
[6]. Section 3 formally defines functional grammars, and how they apply to stream pattern
analysis. Section 4 presents a stream pattern analysis approach to describe a distributed system.
Section 5 then goes on to discuss implementation. A simple algorithm to compile functional
grammars to Log(F) ansducers is described. Finally, optimization issues will be addressed,
along with avenues for future work.

2. Log(F)

Log(F) is the integration of Prolog and a functional language in which one programs using
rewrite rules. This section reviews the major aspects of Log(F), and describes its advantages for

stream processing [17].

2.1. Overview of F* and Log(F)
F* is a rewrite rule language. In F*, all statements are rules of the form

LHS => RHS

where LHS and RHS are terms (actually Prolog terms) satisfying certain modest restrictions sum-
marized below.

Definition 2.1

A term is either a variable, or an expression of the form f{z,,..,z,) where f is a n-ary function
symbol, n 2 0, and each ¢; is a term.

Consider the following two rules, defining how lists may be appended:
appand ([], W) => W,
append ([U|V],W) => [U]|append(V,¥W}].
Like the Prolog rules for appending lists, this concise description provides all that is necessary.

Log(F) is the integration of F* with Prolog. In Log(F), F* rules are compiled to Prolog clauses.
The compilation process is straightforward. For example, the two rules above are translated into
something functionally equivalent to the following Prolog code:

reduce { append(A,B), C) :— reduce(A, (]), reduce(B,C).
reduce (append(A,B), C) :— reduce(A, {(DIE]), reduce((D|append(E,B)],C).

Unlike many rewriting systems, the reduce rules here can operate non-deterministically, just
like their Prolog counterparts. Many ad hoc function- or rewrite rule-based systems have been
proposed to incorporate Prolog’s backtracking, but the simple implementation of F* in Prolog
shown above provides this capability as a natural and immediate feature.

An important feature of F* and Log(F) is the capability for lazy evaluation. With the rules
above, the goal

?7—- reduce(lpp.nd([1'2:3]- [4,5,6]1), X).
yields the result
X = [I!IPP.M([2:3]:[4'5'5])]-

That is, in one reduce step, only the head of the resulting appended list is computed. The tail,
append([2,3], [4,5,6]), can then be further reduced if this is necessary. Demand-driven
computation like this is referred to as lazy evaluation or delayed evaluation, and is basic to
stream processing [1].

The astute reader will have noticed that, in order for the reducae rules above to work as we are
claiming, we will have to add two definitions:

reducet {1, []1).
reduce([X|Y], [X(|Y]).

Definition 2.2

In F*, functors like [] and [_1_] with this property are called constructor symbols. Terms
whose functors are constructor symbols are said to be simplified; they cannot be directly reduced
further.”

" The main restiction on Log(F) rules LHS => RHS is that LHS must be of the form

-4-

Ft1, ...)

where n 2 0, and each of the ¢; is either a variable or a term whose functor is a constructor sym-
bol. This restriction guarantees cfficient implementation. In order to guarantee soundness and
completeness properties, restrictions on variables are also made: first, no variable may appear
twice in LHS (the ‘linearity’ restriction), and second, every variable in RHS must also appear in
LHS [19,20].

There is one more important point about the integration of F* with Prolog. Where F* computa-
tions are naturally lazy because of their implementation with reduction rules, Log(F) permits
some eager computation as well. Essentally, eager computations invoke routines outside F*.
For example, in the Log(F) code

count ([XI|8],N) => count (8,N+1).

the subterm wN+1 is recognized by the Log(F) compiler as being eager, and the resulting code
produced is equivalent to

reduce (count. (A,N),2) :- reduce(A, [X{8]), M is N+1l, reduca{count (8,M),2Z).

Programmers may declare their own predicates to be eager. By judicious combination of eager
and lazy computation, programmers obtain programming power not available from Proiog or F*
alone.

It is easy to develop programs with compact sets of rewrite rules. For example, the following is
an executable Log(F) program for computing primes via the sieve of Eratosthenes:

primas => sieve{intfrom(2)).

intfrom(N) => [Nlintfrom(N+l)].

sieve ([U|V]) => [U!siave(filtex(U,V))].
1~ eager multiple/2.

mltiple{U,A,trua) :- 0 is Umod &, !.
multiple(_,_,false).

filter (A, [U]1V]) => i£{ multiple(U,A), filtexr(A,V), (U|filter(A,V)]).

The intfrom rule generates an infinite stream of integers. The rule for filtar uses the cager
Prolog predicate msltiple. As an example of execution, if we define the predicate

reducelrint (X) :- reduce(X, [H|T]), write(# - T), nl, reducePrint(T).
. then the goal
7- reducePrint (primas).

produces the fol_lfiwipg (non-terminating) output:

- siave(filter({2, intfrom(3)))

sieve(filter(3,filter(2, intfrom({4})}))

~ sleve(filter(5,filter(3,£filtar(2, intfrom(6)))})

- slave(filter(7,filter (5, filter (3, £filter(2, intfrom(8))))))

~N»nwN
]

For other useful examples of the combination of lazy and eager evaluation, see [18].

2.2. Advantages of Log(F)
From the examples above it is clear that the rules have a functional flavor. Stream operators are

casily expressed using recursive functional programs. The syntax is convenient, and can be con-
sidered a useful query language in its own right.

Furthermore, Log(F) naturally provides lazy evaluation. Functional programs on lists can pro-
duce terms in an incremental way, and incremental or ‘‘call by need’’ evaluation is an elegant
mechanism for controlling query processing.

It turns out furthermore that Log(F) has a formal foundation that captures important aspects of

stream processing:

(1) Determinate (non-backtracking) code is easily detected through syntactic tests only. This
avoids the overhead of ‘‘distributed backtracking’’ incurred by some parallel logic pro-
gramming Systems.

(2) Log(F) takes as a basic assumption that stream values are ground rerms, i.c., Prolog terms
without variables. Again this avoids problems encountered by other parallel Prolog sys-
tems which must attempt to provide consistency of bindings to variables used by processes
on opposing ends of streams.

These features of Log(F) make it a nicely-limited sublanguage in which to write high-powered

programs for stream processing and other performance-critical tasks. Special-purpose compilers

can be developed for this sublanguage that produce highly-optimized code.

3. Stream Pattern Analysis

In [22], we illustrated how Log(F) is a natural system for expressing transductions of streams.
Here we show how functional grammars also make a powerful language for specifying pattern
analysis against streams.

3.1. Functional Grammars and the Match Transducer
 Definition 3.1

* Functional grammar rdles have the form:

LHS => RHS.
Here LHS and RHS satisfy the following properties.

-6-

(1) LHS is any term except a variable or a simplified term (a constructor symbol with zero or
more argument terms). In addition, each of the arguments of LHS is either a variable or a
constructor symbol with variable arguments. This restriction guarantees efficient implemen-
tation.

(2) RHSis aterm.
(3) If RHS is a variable, it must appear in LHS.

Functional grammars relax Log(F) variable restrictions to obtain the power of unification. That
is, arguments of terms in rewrite rules can be used not only as inputs as in Log(F), but also as
grammar outputs (see example 3.1).

Regular expressions and, more generally, path expressions, can be easily defined with grammar
rules as in the following:

(X+) => X.

(X+) => X, (X+).

(x*) => [].

(X*) => X, (X*).

(X:Y) => X.

{(X;¥) => Y,

(X,¥) => append(X,Y).
appand{[],X) => X.
append([X]Y]), %) => [X|append(Y, X)].
if (tzue,X) => X.
if({trua, X, Y) => X.
if(false,X,X) => Y.
skipto(X) => X.

skipto(X) => [_],skipto(X).

Example 3.1

Suppose we wish to count the number of times one or more network failures were followed by a
cpu failure. That is, we want to count the occurrences of a specific pattern in the input stream.
We can use the pattern:

numbezr(([net_failure]+, {cpu_failure]), Total).
where we include the following grammar for numbes:

numbex {Pattern, Total) => number(Pattern,Total,O0).
nunbaz (Pattern, Total, Total) => [end of file].
number (Pattern, Total, Count) => skipto(Pattern), number (Pattern, Total,Count+l) .

Here the variable Total is used to return output values, and the variable Pattem is used as
input any pattems. Note such a grammar cannot be developed easily using DCGs.

" The rules for patiern‘analysis are very simple. The entire definition is based on the following
match transducer :

match{{),8) => 8.
match ([XIL], [X|8]) => match(L,8).

This transducer takes a pattern as its first argument, and an input stream as its second argument.
If the pattern reduces to the empty list [], match simply succeeds. On the other hands, if the pat-
tern reduces to some stream [XIL], it is matched against the input stream.

The match transducer can be thought of as gpplying a pattemn to a stream, in an attempt to find a
prefix of the stream that the grammar defining the pattern can generate. There is a certain
elegance to this; the rules of the grammar by themselves act as pattern generators, but when
applied with the march transducer they act like a parser. This acceptance/generation duality is
familiar to users of DCGs, and the ability to use grammars both as acceptors and as generators
has a number of uses.

Pattern analysis is signailed explicitly with the match transducer. For example,
match ({ [net_failurel+, [cpu_failure]), file_terms(’experiment.output’)).

matches the pattern ‘one or more copies of net_failure followed by a cpu_failure' against
the stream of terms produced by the file ‘axperiment.output’.

3.2. Transformation of Mutual Exclusive Grammar Rules to IF-THEN-ELSE Construct

A limitation of Homn clause logic as a practical programming language is the lack of an explicit
IF-THEN-ELSE construct {24]. The cut operator is used for this purpose in Prolog, which is
more powerful in a dangerous way. In functional grammars, a structured [F-THEN-ELSE con-
struct is available to serve a similar purpose.

if({trua, X, Y) = X.
if (false, X, Y) => Y,

The conditional part of "if" is only a logical testing of a Prolog goal which returns true or false.
However, sometimes we expect the conditional part be a pattern to be matched. That is, the con-
ditional part attempts to consume a part of the input stream and return the rest of the stream if
successful. We henceforth introduce a constructor symbol, "cond” which is similar to "if" except
that the conditional part is a pattern. We then need one more definition of the match transducer.

match (qpnd(l,l, C),8) »> Aif (match(A,S), match (B, match(A,S8)}) mateh(C,8)).

The declarative interpretation of the above transducer is as follows: if pattern A is matched, then
SPA tries to further maich pattern B, otherwise, it tries to match pattern C.

For example, the following mutual exclusive grammar rules generate ([a 1*[61" | n>0)

ab => a{0).

a{Count) => [a], a(Count+l). ==
"a(Count) => [b], biCount-1y.) =~ -
b(Count) => (b], B(Count-1). =~
b(0) => [end of_file]. =~

and could be rewritten as

ab => a(0).
a(Count) => cond([a],a(Count+l), ([b],b(Count-1))).
b{Count) => if {Count==0, [cnd_ot_:!:l.l.] , {[P],D{Count-1})).

The “"cond" takes a pattern, {a], as its conditional part while the "if" takes a Prolog goal,
Count==0, as its conditional part.

The following are some grammar rules together with their “cond” counterparts.

X*) => X, (X*). (X*) => cond(X,(X*),[]).

(X*) =>[]. :

XY) =>X. (X;Y) => cond(X,[],Y).

xX:Y)=>Y.

skipto(X) => X. skipto(X) => cond(3.[.([_],skipto(X))).

skipto(X) => [], skipto(X).

The use of "if" or "cond" eliminates the creation of some unnecessary choice points, ie., it
reduces the degree of nondeterminism. It encourages better programming style by its restricted
use of commitment and enhances readability of the grammar rules. Furthermore, "if" or "cond”
in functional grammars can be nested.

4. Stream Pattern Analysis Approach to Extract Behaviors of a Distributed System

Concurrent execution in a distributed system can be captured as a stream of interleaved events
from each process. The stream pattern analysis approach we use here captures time-dependent
relationships of events that occur in the execution of a concurrent program in an event stream.
SPA implements the match transducer and permits specification of sets of functional grammar
rules that can be used to discern specific patterns in an event stream, i.e., to recognize processes
specified by allowable sequences of operations. SPA parses the stream, extracting specific
behavior patterns of concurrent programs, such as serializability and mutual exclusion.

4.1. Specifying Propositional Temporal Logic Queries with Functional Grammars

Propositional temporal logic is an extension of classical propositional logic geared towards the

description of sequences. In propositional temporal logic, there are different time points which

may yield different truth values of propositions. We assume the set of time points to be finite,

discrete and linearly ordered. We further assume that only one event occurs at a time. The

events that occur during the set of time points can be mapped into a stream of events that
" abstracts a possible concurrént program éxecution sequences. The table below summarizes the
"1 'definitions of some ¢ommon tetporal operators. B T

L

-9.

eventually(X) Pattern X will be detected later

precedes(X,Y) Pattern X precedes pattern Y

not_until(X,Y) Y appears, and X does not appear before it
implies(X,Y) If pattern X is detected, pattern Y will be detected later,

X and Y are non-overlapping
always_implies(X,Y) After implies(X,Y) is detected, recursively apply
always_implies(X,Y) undl end of history

Temporal operators can be easily defined with functional grammar rules, as in the following:

evantually(X) => skipto(X).

pracedas (X,Y) => eventually(X), eventually(Y).

not_until(X,¥) => skipto_without (¥, X).

skipto_without (X,¥) => cond(X, [],cond(Y, fail, ([_],skipto_without (X,¥)))).

implias (X,Y) => cond(eventually(X) ;evantually(Y), []).

always_implies (X, ¥) =s>cond (eventually (X}, (eventually(Y) always implies(X.Y)),[]).
Note that the arguments in these grammar rules are normally instantiated to ground patterns dur-
ing query processing.

Example 4.1 :
The following pattern specifies that [a] is always immediately followed by {b]

always_impliaes([a], [B]).
which is invoked by the Prolog query
?7- reduce (match (always_implies([a), [b]), file terms(’'input.stream’)),).

SPA reduces the pattern, always_implias({s], [b]), to a simplified term by some predefined
grammar rules and matches against the stream of terms produced by the file input.stream

Example 4.2 : Two-phase Locking Protocol
Let a transaction event stream be a sequence of [lock]s, [unlock]s and other events of database

items. The following is one of the patterns that must be followed in the event stream of a single
transaction in order for it to obey the two-phase locking protocol [12]:

(eventually({unlock]), not_until([lock], [end of filae])).

That is, a transaction acquires locks as needed, and once it releases a lock it may issuc no further
lock requests.

4.2, Specifying Parallel Execution Events with Functional Grammars

In a distributed environment, concurrent execution can be modelled by arbitrary interleaving of
events from each process, and these events are captured into a stream. Disceming multiple pat-
terns in an event stream often requires sophisticated analysis tools. For efficiency purposes, we
avoid multiple scans of a stream. We define a grammar that coroutines recognition of multiple
patterns in an event stream, while requiring only one scan of the stream:

-10-

([X1L1} // (x112]) => [X|L1l//L2].
({1 // &) => L.
(L // 1) = L.

The coroutining operator, //, takes two patterns as arguments, reduces them to [XIXs] and
[Y1Ys] respectively and rewrites them to [ZIXs//Y's] where Z = X8 = YO and is a most general
unifier of X and Y. For example,

{aventually([a]) // eventually([b]))
(skipto({al) // skipto([bl)}))

(fal /7 ([_1, skipto([b])})

([a]l // append([_],skipto([b])))
((al // [_lappend([],skipto((b]))}])
[a | [1 // append([],skipto([b]))]

The match transducer matches [a) against an event stream. The reduction and matching process
repeat until the pattern is detected.

il

With this coroutining definition, we can relax the assumption that the patterns defined by
implies (X, ¥) are non-overlapping as in the following:

implies(X,¥Y) => cond((X // ¥),[(]},cond(aventually(X), fail, []1)).

The formalism of // is important. Suppose we have n specifications of a system, each of which
corresponds to a sequence of events to be matched in a stream, but these sequences are indepen-
dent to each other and are interleaved arbitrarily. We can specify each of these sequences
separately, and combine them with // in order to get a global specification of the whole system.

Example 4.3 : Two-phase Locking Protocol

In example 4.2, if one more constraint of the two-phase locking protocol is required : the number
of [lock]s must be equal to the number of [unlock]s. We can specify individual requirement as
follows:

number { [Llock] ,N1)
numbaer { [unlock] , ¥2)
(eventually([unlock]), not_until([lock], [end of_ file]))

and combine these patterns to get a global specification of the two-phase locking protocol with
the constraint Wise2.

numbaz({lock], W) // number([unlock],N) //
(eventually([unlock]), not_until([lock], (end of file]}).

Exampie 4.4 : Mutual Exclusion

Consider an example which is taken from [15]." Suppose we have two processes, P1 and P2, that
‘communicate with a synchronizer S. The signals sent to S by P1 are [begin_1] (begin critical
‘section) and fend_1] (end ‘critical section). Similarly the signals sent to S by P2 are [begin_2}
and [end_2].” The synchronizer should erisure that processes P1 and P2 are never simultaneously
in their respective critical sections. The following patterns must be recognized in an event

-11-

stream in order to ensure mutual exclusion.

S The first signal sent by Pl is (begin_1].
not_until([end 1], {bagin 11).

% Pl alternately sends [begin 1] and [end 1].
always_implies([begin 1],not until([begin 1], [end 1])}).
always_implies((end 1],not_until([end 1], (bagin 1])).

% Similar grammar rules are defined for P2.
not_until ((end 2], [bagin_2]).

always_implies([begin_2],not_until([bagin 2], [end_2])).
always_implies({end 2],not_until([end 2], [begin_21)).

¥ After letting Pl proceed into its critical saction by accepting
% a [begin_ 1], do not let P2 enter its owm critical section until
% Pl has finished, and vice versa.

alwvays implies({begin_1],not_until([begin 2], [end 11)}.
always_implies([begin_2],not_until([begin_1], {and _2])).

The global pattern for specifying mutual exclusion is combining all the above patterns by the
coroutining operator //.

4.3. Specifying Partial Ordering Events with Functional Grammars

In a distributed environment, the computation history consisting of a partial ordering of events
which abstracts from any particular interleaving of concurrent events. A directed acyclic graph
(DAG) is well suited for such a model. Given a DAG with a set of nodes representing events in
the system, an edge X — Y in the DAG represents an order constraint that event X occurs before
event Y which can be specified by precedes (x,Y). We can directly represent a global ordering
of events in a system by a pattern as follows:

... // precedas(X,Y) // ...

where each precedas (X,¥) corresponds to an edge X — Y in the DAG.
For example, given a partial ordering of events in a system which is represented by a DAG:

212 -

The pattern that describes the partial ordering is

pracedes (el,e2) // precedas(el,e3) // precedas (e3,e5) // precedas (a3, ed)
// precedas(e2,e6) // precedas(e5,e6) // precedas(ed, ef).

and can be optimized as

(eventually(el), (eventually(e2) // (eventually(e3),
(eventually(ed4) // eventually(eS5)))), eventually(eé)).

"o

Here // is right associative and has a higher precedence than ",".

4.4. Functional Grammars with Unbounded State Information

In previous sections, we have given examples illustrating the expressive power of functional
grammars for SPA. All grammar rules predefined in the library require bounded state informa-
tion. If a query requires unbounded state information, SPA summarizes all the necessary state
information when an event stream is scanned and tests whether the specification is matched.

Example 4.5 : First-in First-out Service
Consider a first-order temporal logic formula which specifies first-in first-out service:

YV (X, Y) [(request (X) Prcsde request (¥)}) O (sexve(X) Precedss seTva(Y))] A
Y(X) - searve(X) Uil request (X)]

where request and serve are events in a stream. That is, if request(X) precedes
request (Y) then serve(X) precedes serve(Y), and a request is not served until it is made. We
can capture the above formula by defining the following grammar rules:

£ifo => f£ifo({]).

fifo ([XIQueua]) => [serve(X)}], fifo(Queuae).

£1£0 (Queue) => cond([request (X)], £ifo (append(Quaue, [X])), ([_], fifo(Queue))).
£ifo([]) => [end_of_ file].

When matching against an input stream, £ifo StOTES any request cVents in a queue, and these
events are matched against their corresponding serve events. Note that the state information in
this problem is unbounded. Therefore, the predefined temporal grammar rules are no longer
sufficient.

In the literature, many researchers have used temporal logic to specify a distributed system.
Some systems are restricted to propositional temporal logic specifications, while functional
proposed here are not. Let us consider another example which goes beyond proposi-

grammars
tional temporal logic specifications.

Example 4.6 : Tree-protocol

If we have prior knowledge as to the order in which database items will be accessed, it is possi-
ble to construct locking protocols that are not two-phase but, nevertheless, ensure serializability.
" The tree-protocol [12] is one exampie. In the tree-protocol, we impose a partial ordering — on
the set D = {d,..dx) of all data items. If d; — d;, then any transaction accessing both d; and d;
must access d; before accessing d;. d; is called the parent of d;, and every data item except the

-13-

root has a unique parent.
The following rules must be obeyed for each transaction, T;, in the tree-protocol:

(1) The first lock by T; may be on any data item.

(2) Subsequently, a data item Q can be locked by T; only if the parent of Q is currently locked
by T,‘.

(3) Data items may be unlocked at any time.

(4) A data item that has been locked and unlocked by T; cannot subsequently be relocked by
T;.

A transaction trace is a sequence of [lock(X,Y)], [unlock(Z)] and other events of database items,
where X, Y, and Z are database items and Y is the parent of X. Correct tree-protocol histories
are specified by the following grammar on these events:

tree_protocol => not_until([unlock(_)], [lock(X,_)]}, tree([(X, lock)]).

% State is a list of ordared pairs (Data_item, (lock or unlock)).
trem(Stata) => cond([lock(X,¥)], tree(update(Stata /X X)),
cond(funlock(X)], tree(mark(State, X))},
cond([end_of_file], terminate(State), ([_], tree(State))))).

updata ([(A, lock) IC],X,A) => [(X,lock), (A, lock) [not_mamber(C,X)].
update ([(A,B) |C],X,Y) => Lif((Xm=A), fail, [(A,B) |update(C,X,1)]).

mark([(X, lock) |¥],X) => {(X,unlock)|¥Y].
mark ([X]Y]},2) => {X|mark(Y,Z)].

texminate((}) => [].
terminate ([(_,unlock}) |X]) => temminate(X).

not_membez([]l,_) => [].
not_member ([(X,A) [Y],8) => if((X==mZ), fall, [(X,A) |not_membex(X,Z)]).

Note that the state information ensures correct tree-protocol is unbounded which is stored in the
argument of tree.

For other useful examples of stream pattern analysis, see [4].

5. Impiementation

The main implementation issue in SPA is in finding a way to compile functional grammars and
match to efficient transducers. A straightforward approach is to adapt the techniques of compila-
tion of DCGs to Prolog [26], with certain modifications. The procedure for compiling DCGs to
Prolog is simple. It translates the LHS and RHS of a grammar rule to the head and body of an
appropriate Prolog clause. The basic idea is to add a difference-list to each nonterminal symbol
giving the input and output streams, Here we present a simpler and more elegant algorithm for
compilation of functional grammars to Log(F) transducers.

Algorithm 5.1

“Letn= - , and assume the theorem is true for all) n k.

-14 -

For each functional grammar rule f(4,...A,) => RHS where f is an m-ary, m 2 0, non-
constructor function symbol and each of RHS and Ay ,..,A is a term, perform the following:

(1) If RHS is a variable or a simplified term, generate
£(A1,..,An,8) => match(RHS,S).
(2) If RHS is of the form g(B,...B,) where g is an n-ary, n 2 0, non-constructor function sym-
bol and each of B,,..,B, is a term, generate
£(A1,..,An,8) = g(B1,..,B4,8).

where S is the input stream to be matched.

Definition 5.1
Let U, V be terms. We write
U-V

if there is a subterm T of U, a Log(F) rule L => H, a most general unifier 8 of T and L such that
V is the result of replacing T in U by H and applying 0. In other words, if U = U[T] then V =
U[H]O. We say U rewrites to V in one step.

More generally we write

ubv

if U rewrites to V in k steps, and
usv
if U rewrites to V in zero or more steps.

Theorem 5.1
Suppose F is a functional grammar term, and $ is a stream. Let CF be the result of "compiling"
F and S as follows:
-~ {f(Tl, e+ Tm,S) if F=£(Ty,...T,,) where f is not a constructor symbol
- match(F,S) if F is a variable or a simplified term
If match(F,S) 25 R using the grammar, then CF B, R using the compiled grammar where R is
some suffix of S.
Proof:
By induction on a, the length of the reduction sequence of match(F.S).

Basis: n'=1
In this case, F must be either a variable or a simplified term [X) or [], since these are only two
_ mles for reducmg ma:ch But then CF is just match(F,S), so CF =Ras clan:ned.

Inducnon stcp S R

A S S G

" IFF ig simplified, then CF=tnatch(F.S), therefore, it is trivilly true that both match(F.S) and CF

" '““__,;rcduce to the same term.

-15-

Let us consider the case where F is not simpljfied.

Here we assume match(F,S) — match(F’.S) »R,soF > F,

CF=f(Tl, e .Tn,S) whereF=f(T1. e ,Tm).

Cases for F:

(1) Fis a variable or a simplified term.
Let CF’ = match(F’,S) where CF' is the result of "compiling” F" and S.
Since F — F’, then L => H is in the grammar, where L=f(A,, ... ,A,,), LO=F8 and H8=F".
By (1) of algorithm 5.1, the compiled grammar rule corresponding to L => H is
f(Aq,...,AmS)=>match(H,S) where f(A pe A,..S)O CF8, and match(H,5)8=CF".
Therefore, CF = CF’, and inductively CF —)R, so CF HR.

(2) F'=g(,...,Y;) where g is an j-ary, j 2 0, non-constructor function symbol.
Let CF = g(Yl. .« ., Y;,8) where CF' is the result of "compiling” F’ and S.
Since F = F, r.hen L => H is in the grammar where L=f(4,,...,A,), H=g(B,,...,.B)),
LO8=F@ and HB=F"0. By (2) of algorithm 5.1, the compiled grammar rule corresponding to
L =>His f(A,,...,Am,S) => g(B1,...,B;,S) where f(Ay,...,A,,S)8 = CF0, and
gB1,...,B;5)0= CF'B
’Ihercfore, CF — CF’, and inductively CF’ -)R, so CF HR.

Therefore, both match(F,S) and CF reduce to R in k+1 reductions.

By induction, if match(F,S) LR using the grammar, then CF %, R using the compiled grammar.

Q.E.D.

Example 5.1
Consider the functional grammar:

net_crash => ([net_failurael+, [cpu_failure]).
(X,Y) => appand(X,Y)

(X+) => X.

(X+) => (X, (X+)).

This grammar is compiled to the following Log(F) transducers:

netcrash{8) => ', ’ ([nat_failure]+, {cpu_failure],).

’,7(X,Y,8) => appand (X,Y,8).

*4¢ (X,8) => match(X,8).

"+ (!g) -7, (X, (X+),9).
We have implemented 2 translator based on algorithm 5.1 to compile functional grammars to
Log(F) transducers and the implementation is simpler than the procedure for compiling DCGs to
Prolog. Theorem 5.1 ensures that the compiled Log(F) transducers reduce to the same term as
the functional grammars. See appendix A for the implementation.

-16 -

6. Conclusion

In this paper, we have given examples illustrating the expressive power of functional grammars
for SPA. Regular expressions or path expressions specifying patterns can be easily expressed
with functional grammars. Functional grammars are suitable for describing complex patterns in
streams of event data, which cannot be conveniently specified by existing database query
languages.

We have described an important application of functional grammars in specifying distributed
systems. Concurrent execution is modeiled by arbitrary interleaving of events from each pro-
cess. There is a natural mapping between the propositional temporal logic and our event stream
model. By predefining a set of grammar rules (corresponding to some common temporal opera-
tors) in the library, we can express temporal logic queries through patterns. Furthermore, a
scheme exists that coroutines recognition of multiple patterns in an event stream.

This paper has concentrated on temporal logic, or ‘history-oriented’ specifications, However
SPA can be used for many other types of specifications. In particular, it can be used in ‘object-
oriented’ specifications. Given a set of actors (automata, concurrent objects, etc.) Ay,....,Ax We
can produce SPA grammars with starting patterns S1,....5, for these, and then use §1//..//Sy as a
specification of valid histories for the entire system. SPA can therefore integrate both object-
oriented and history-oriented specifications. To our knowledge, this aspect of the system is
unique. Consider the following specification of a counter:

c(8) => cond{[cleax], <(0},
cond([up], c(8+1),
cond ([(dowm], <(8-1},
cond([show], ([count_value(8)],c(8)), (([_J,c(81))))).

The point is that this specification does two things: First, it describes the behavior of a counter
in terms of its reaction to specific messages. Second, it describes the sequence of valid messages
a counter process history can contain.

Once a specification mechanism becomes sufficiently powerful, its ‘expressive power’ is no
longer problematic, and other issues become important: ¢legance, usefulness in specifying real
systems, tractability of inference problems used in verification, and so on. SPA grammars are
very interesting in their properties here. Since they are grammatically based, they can be used
for both acceptance and generation of histories. Acceptance is equivalent to analysis of histories,
while generation is useful in producing hypothetical histories for testing [9]. Furthermore, since
SPA grammars are ultimately translated to Prolog programs (in a way that does not make use of
the meta-logical features of Prolog), it seems possible to perform verification of propertics of
these grammars using existing first-order logic theorem proving technology. Altogether SPA
appears to hold many advantageous properties for specification.

The main implementation issue in SPA is in finding a way to compile functional grammars and
match to efficient transducers. While grammar rules can act as pattem gencrators or specifiers,
the transducer resulting from their compilation acts like a parser. We have described a simple
algorithm to compile functional grammars to Log(F) transducers and proved that a functional
grammar term together with the march transducer reduces to the same term that the compiled
Log(F) transducer reduces to. We stress that all functional grammar specificatons here are

-17-

executable. The expressiveness of functional grammars together with an implementation for-
malism make SPA a nice system for stream pattern analysis.

A great deal of work remains in exploring performance issues of implementing SPA. A major
concem of optimization here is to reduce the degree of nondeterminism of the functional gram-
mars. The "if" and "cond" formalism propose here is one step towards this direction. It is not
difficult to observe that the order of the grammar rules is important for efficient processing of
grammar reductions. Much more work needs to be done in designing heuristics to guide rule
selection.

7. Acknowledgement

We thank Richard Muntz, Ted Kim, Lars Hagen, Richard Guy and Arman Bostani for their help-
ful comments.

o hmalmite

P Y SO bt iAW1 . ey
I Fu TOPIRF OIS s SIS WA i 14 400 AR ST e

P S o 0 e L s L
e g lTvent CUTUTAMS

JEG T 18P

alils
!
%

-18 -

Appendix A : Compilation of Functional Grammars to Log(F) Transducers

:- op(400,xfy,(=>)).

:- mode fg_rule_expansion(+,?).
fg_rule_expansion((H=>X),(Hl=>match(X,S0))) :-

X ==

L

macro(H,H1,S0).
fg_rulc_expansion((l—l=>X),(Hl=>match(X,SO))) :-

var(X),

!,

macro(H,H1,S0).
fg_mle_expansion((H=>X),(H1=>match(X,SO))) -

functor(X,’.’,2),

!

*

macro(H,H1,50).
fg_rule_expansion((H=>X),(H1 =>X1)):-
functor(H,F,A),
Alis A+1,
functor(H1,F,Al),
arg(A1,H1,50),
fg_rule_copy_args(H,H1,0),
functor(X,G,B),
Bl is B+1,
functor(X1,G,B1),
arg(B1,X1,50),
fg_rule_copy_args(X,X1,0).

:- mode fg_rule_copy_args(+,+,+).
fg_rule_copy_args(F1,F2,]) :-

I1 is I+1,

arg(11,F1,X),

arg(I1,F2,X),

i

.f's_nﬂe_copy.arss(Fl,Fle).
fg rule_copy_args(_, ,).

macro(H,H1,S0) :-
functor(HLF,A),
Alis A+l,
functor(H1,F,Al),
arg(A1,H1,80),
fg_rule_copy_args(H.H1,0).

term_expansion(X,Y) :- fg_rule_expansion(X,Y).

-19-

References

1.

10.

11.

12.
13.

14,

15.

16.

17.

Abelson, H. and G. Sussman, The Structure and Interpresation of Computer Programs,
MIT Press, Boston, MA, 1985.

Berson, S., E. de Souza ¢ Silva, and R.R. Muntz, *‘An Object-Oriented Methodology for
the Specification of Markov Models,”’ Technical Report CSD-870030, UCLA Computer
Science Dept., Los Angeles, CA 90024-1596, July 1987.

Campbell, R.H. and A.N. Habermann, *“The Specification of Process Synchronization by
Path Expressions,’’ Lecture Notes in Computer Science, vol. 16, pp. 89-102, Springer-
Verlag, New York, 1974.

Chau, H.L. and D.S. Parker, ‘‘Functional Grammars: A New Formalism for Stream Pattern
Analysis,”” Technical Report, UCLA Computer Science Dept., Los Angeles, CA 90024-
1596, May 1988.

Clarke, E.M. and E.A. Emerson, *'Synthesis of Synchronization Skeletons from Branching

Time Temporal Logic,”” Lecture Notes in Computer Science, pp. 52-71, Springer-Verlag,

1981.

Clocksin, W.F. and C.S. Mellish, Programming in Prolog, Springer-Verlag, 1984.

Degano, P. and U. Montanari, *‘A Model for Distributed Systems Based on Graph Rewrit-
ing,”’ JACM , vol. 34, no. 2, pp. 411-449, April 1987.

Ehrig, H., **Aspects of Concurrency in Graph Grammars,”’ Lecture Notes in Computer Sci-
ence, vol. 153, pp. 58-81, Springer-Verlag, Berlin, 1983.

Gorlick, M.D., C. Kesselman, D. Marotta, and D.S. Parker, ‘“Mockingbird: A Logical
Methodology for Testing,”” Technical Report, The Aerospace Corporation, P.O. Box
92957, Los Angeles, CA 90009-2957, May 1987. To appear, Journal of Logic Program-
ming, 1988.

Hailpern, B. and S. Owicki, **Modular Verification of Computer Communication Proto-
cols,” IEEE Trans. on Communications, vol. COM-31, no. 1, Jan 1983.

Harel, D., “‘Statecharts: A Visual Formalism for Complex Systems,’” Science of Computer
Programming, vol. 8, 1987.

Korth, H.F. and A. Silberschatz, Database System Concepts, McGraw-Hill, 1986.

Lampont, L., **Specifying Concurrent Program Modules,”’ ACM Transactions on Program-
ming Languages, and Systems, vol. 5, no. 2, pp. 190-222, April 1983.

LeDoux,"€&H., ‘A Knowledge-Based System for Debugging Concurrent Software,”
Technical Yport CSD-860060 (Ph.D. Dissertation), UCLA Computer Science Dept., Los
Angeles, CA 90024-1596, March 1986.

Manna, Z. and P. Wolper, ‘‘Synthesis of Communicating Processes from Temporal Logic
Specifications,”’ ACM Transactions on Programming Languages and Systems, vol. 6, no. 1,
pp. 68-93, January 1984.

Manna, Z. and A. Pnueli, **Adequate Proof Principles for Invariance and Liveness Proper-
ties of Concurrent Programs,’’ Science of Computer Programming, vol. 4, no. 3, pp. 257-
289, Dec 1984,

Muntz, R.R. and D.S. Parker, ‘‘Tangram: Project Overview,”’ Technical Report CSD-
880032, UCLA Computer Science Dept., Los Angeles, CA 90024-1596, April 1988.

18.

19.

20.

21.

22.

23.

24,

25.

26.
27.

28.

29.

-20-

Narain, S., ‘‘A Technique for Doing Lazy Evaluation in Logic,” J. Logic Programming,
vol. 3, no. 3, pp. 259-276, October 1986.

Narain, S.. “LOG(F): A New Scheme for Integrating Rewrite Rules, Logic Programming
and Lazy Evaluation,” Technical Report CSD-870027, UCLA Computer Science Dept,
Los Angeles, CA 90024-1596, 1987.

Narain, S., ‘‘LOG(F): An Optimal Combination of Logic Programming, Rewrite Rules and
Lazy Evaluation,”” Ph.D. Dissertation, UCLA Computer Science Dept., Los Angeles, CA
90024-1596, 1988.

Owicki, S. and L. Lamport, ‘‘Proving Liveness Properties of Concurrent Programs,”” ACM
Transactions on Programming, Languages, and Systems, vol. 4, no. 3, pp. 455-495, July
1982.

Parker, D.S., R.R. Muntz, and H.L. Chau, *‘The Tangram Stream Query Processing Sys-
tem,”” Technical Report CSD-880025, UCLA Computer Science Dept., Los Angeles, CA
90024-1596, March 1988.

Pereira, F.C.N. and D.H.D. Warren, ‘‘Definite Clause Grammars for Language Analysis,”
Artificial Intelligence, vol. 13, pp. 231-278, 1980.

Porto, A., ‘‘Two-level Prolog,”” Proc. Intl. Conf. on Fifth Generation Computer Systems,
1984.

Pratt, V., ‘‘Modelling Concurrency with Partial Orders,” Technical Report STAN-CS-86-
1113, Stanford Computer Science Depart., Stanford, CA 94305, June 1986.

Sterling, L. and E. Shapiro, The Art of Prolog, MIT Press, Cambridge, MA, 1986.

Vogt, F.H., *‘Event-based Temporal Logic Specifications of Services and Protocols,” /FIP,
1982.

Wileden, G., *‘Relationships between Graphs Grammars and the Design and Analysis of
Concurrent Software,”’ Lecture Notes in Computer Science, vol. 73, pp. 456-463,
Springer-Verlag, Berlin, 1979.

Wolper, P., *‘Specification and Synthesis of Communicating Processes using an Extended
Temporal Logic,”’ Proc. 9th ACM Symposium on Principles of Programming Languages,
pp. 20-23, Albuquerque N.M., 1982.

