Computer Science Department Technical Report
University of California
Los Angeles, CA 90024-1596

A FORMAL LANGUAGE FOR REPRESENTATION OF AND
REASONING ABOUT INDIRECT CONTEXT

Bijan Arbab June 1988
CSD-880045

UNIVERSITY OF CALIFORNIA

Los Angeles

A Formal Language for Representation of and Reasoning about

Indirect Context

A dissertation submitted in partial satisfaction of the
requirements for the degree Doctor of Philosophy

in Computer Science
by

Bijan Arbab

1988

© Copyright by
Bijan Arbab

1988

The dissertation of Bijan Arbab is approved.

Z_ 7 //%%

ich rd R. Muntz

Michel A. Me

.9 @wtf\oﬂ] Wja.l;\,

D. Anthony Martin

Alonzo Church

D. Stott Parker, Committee Chair

University of California, Los Angeles

1988

TABLE OF CONTENTS

Introduction

............................... 1
1.1 The Paradox of the Name Relation 2
1.2 Reasons for Eliminating the Paradox 7
1.3 Previous Solutiono oo 19
1.4 Proposed Soutiono 11
Alternative Interpretations of Equality 13
2.1 Altermative 2 e 14
2.2 Altermative 1 e 18
2.3 Alternative 0 L e e e 19
Proposition Surrogates e e e 22
3.1 Development of Proposition Surrogates 23
3.2 Proposition Surrogates Under Alt(1) and Alt(0). 27
3.3 Algorithm for Obtaining Proposition Surrogates. 28
3.4 The Problem of Proposition Surrogates 32
Proposition Surrogates and Pointers 34
4.1 Pointers v.s. Metalinguistic Devices 37
4.2 New Algorithm for Obtaining Proposition Surrogates 40
Formal Language, 45
51 Prnmitive Symbols, 47
52 Formation Rules, 48
53 Rulesoflnference. 48
54 Abbreviations L Lo e 50
5.9 AXIOMS e e e e e e 52
Examples 56
6.1 Touchy Yacht Owner 56
6.2 The Art Collector 57
6.3 TheWiseMen e 59
Implementation 66
Coneclusion e 73

il

A Contextual Descriptions 78
B MecCarthy’s Solution 79
C Prolog Code 86
References L 296

v

ACKNOWLEDGMENTS

I am grateful to my mentor, Professor Alonzo Church, for guidance and in
depth comments on this dissertation. In particular, his discussions and objec-
tions, raised so industriously, contributed to the solution as presented.

[am indebted to Professor Stott Parker for many contributions, both in
content and form, to this dissertation. He provided the insight needed to help
me through many hard corners. It is unreasonable to ask for a more patient and
careful mentor.

I am thankful to Professor Donald Michie for review of a preliminary draft
of this work. He encouraged me to continue the work, when it was nothing more
than some hastily made notes and half backed ideas.

The long term help and support provided by Dr. Farhad Arbab, Professor
Daniel Berry, and Professor Michel Melkanoft.

IBM Scientific Center not only for taking me off of a strict diet but also for
providing a very nice research environment.

Last but certainly not least, my family.

VITA

Published Papers

I

10.

Bijan Arbab and Daniel Berry, Operational and Denolational Semantics of

Prolog, Journal of logic programming, Vol. 4 No. 4, pp. 309-329, December
1987

Bijan Arbab, Object Identification from Parallel Light Strip, International
Joint Conference on Artificial Intelligence (IJCAI-87), Milano, ltaly, pp.
1145-1148, August 1987

. Bijan Arbab, MASK: An Object [dentification Algorithm, Spatial Reason-

ing and Multi-Sensor Fusion, pp. 107-117, Oct 1987

Bijan Arbab The Use of Ezamples as Concepl Specification Languages,
IBM Los Angeles Scientific Center Report, G320-2804, February 1987

. Bijan Arbab, Compiling Circular Atiribule Grammars inlo Prolog, IBM

Journal of Research and Development, Vol 30, Num 3, pp. 294-309, May
1986

. Bijan Arbab and Ivan Bratko, A Problem and its Solution with regards to

Warplan, IBM Los Angeles Scientific Center Report, G320-2779, February
1986

Bijan Arbab and Donald Michie, Synthesis of Human Understandable and
Efficient Rules, Machine Intelligence 11 (eds, D. Michie, Jean Hayes and
Judith Richards), Turing Institute, Scotland, May 1985

. Bijan Arbab and Donald Michie, Generating Rules From Ezamples, Pro-

ceeding of the Ninth International Joint Conference on Artificial Intelli-
gence (IJCAI-85), Los Angeles, pp. 631-633, August 1985

. Bijan Arbab, Building Ezpert Systems by Generating Rules from Ezamples,

IBM Los Angeles Scientific Center Report, G320-2763, March 1985

Bijan Arbab, Rule Generator User Manual, IBM Los Angeles Scientific
Center Report, G320-2762, February 1985

vi

ABSTRACT OF THE DISSERTATION

A Formal Language for Representation of and Reasoning about

Indirect Context
by

Bijan Arbab
Doctor of Philosophy in Computer Science
University of California, Los Angeles, 1988

Professor D. Stott Parker, Chair

The putpose of this dissertation is to present a method for elimination of a
paradox from formal langnages such as computer programming languages. Coun-
terintuitive conclusions which may arise once certain type of statements are for-
malized are called paradoxical. These statements involve words like search, think,
seek, know, want, believe, etc. The reasons for the desire to free formal languages
from this paradox are both theoretical and pragmatic.

The paradox was originally discussed by Frege (1892) who pointed out that
the fundamental problem involves the idea of sameness (identity). Particularly,
if identity is a relation, then is it a relation between objects or between names
of objects? The theoretical and philosophical issues regarding the paradox have
been discussed by many, including Russell (1905), Whitehead and Russell (1910},

Church (1950) (1951) (1983) (1986), and Ajdukiewicz (1960) (1967a) (1967b). All

vil

of these works are reviewed here. The practical reasons for elimination of the
paradox have to do with formally representing facts about knowledge, belief, etc.
Such a {ormal language should allow reasoning with statements about knowledge
and belief. A paradoxical formal language allows derivation of useless, possibly
contradictory, conclusions, making it harder to find valid and useful conclusions.

The method for the elimination of the paradox presented in this dissertation
is a modificatiorn of an approach originally pointed out by Ajdukiewicz (1960)
and Church (1983). One advantage of this approach is that it can be added to
many formal languages without modifying the underlying logic. The modified
proposition surrogates are then added to Church’s {1940) simple theory of types
and the computer programming language Prolog. This dissertation, however, is
not concerned with specifying a particular set of suitable axioms {or knowledge,
belief or other such words which introduce an indirect context. The purpose
is, rather, to conservatively extend a formal language such that it avoids cer-
tain problems arising in representing statements about knowledge, belief etc and
makes it possible to state desired set of axioms about knowledge, belief, etc. Ex-
amples as to how statements of the above type can be formalized in the modified

languages are presented.

viil

CHAPTER 1

Introduction

The identity relation (=) and substitution of equals for equals are among the
most primitive and intuitive ideas of formal languages. The fact that all of the
ordinary propositional connectives can be defined in terms of equalily by means
of quantified variables is due to Tarski (1923). The fact that classical quantifiers
themselves can be defined in terms of equality, with the help of A, is due to
Quine (1956) and Henkin (1963).

The substitutivity of identity, though simple, poses some challenging prob-
lems. For example, consider the historical fact that Heinrich Schliemann made a
search for the site of Troy and also that Troy is located four miles from the mouth
of the Dardanelles, that is: Site of Troy = the location four miles from the mouth
of Dardanelles. Now, according to the rule of substituti‘;’ity of identity it can
be deduced that Heinrick Schliemann made a search for the location four miles
from the mouth of Dardanelles. The first sentence is true, and the last is false,
which means that they are not equivalent, although the last sentence is obtained
from the first by substituting for the site of Troy the equivalent expression the
location which is four miles from the mouth of Dardanelles. As another example

consider the sentence Newion knew that § > 5 and the identity § = the atomic

number of ozygen. According to the substitution of equals for equals it can be
concluded that Newfon knew that the atomic number of ozygen > 5 which is not
true by any stretch of the imagination.

These are a few examples, among many, of the so-called paradox of the name
relation. The paradox of the name relation refers to counter intuitive conclusions
that may arise as a result of application of the rule of substitution of equals for
equals to sentences that are in the so-called indirect context. An indirect context
is introduced by words such as know, believe, searched, necessary, want, ete. For
example, even though if is necessary that V81 = 9 and that V81 = the number
of planets, it is not true that it is necessary that the number of planets = 9.

The thesis defended by this dissertation is that the identity relation and thel
rule of substitutivity of identity can be maintained in a formal language, with
full force, without admitting paradoxical conclusions. Such a formal language
can play an important role in studying various epistemological problems as well

as addressing certain issues in knowledge representation.

1.1 The Paradox of the Name Relation

A historical study of formal languages points out not only the source of the
problem illustrated in the preceding paragraphs, but also the key to its solution.
The remaining of this section then is devoted to such a review. Additionally
a detailed discussion of the reasons for the desire to eliminate the paradoxical

conclusions and an outline of the solution is presenied.

The predicate calculus and quantification theory was presented to the world
in complete form by Frege (1879). This work presented truth-functional proposi-
tional calculus and analysis of propositions with function and arguments instead
of subjects and predicates. Additionally, Frege introduced a system of logic in
which derivations are carried out exclusively according to the form of the ex-
pressions. The rules for carrying out these derivations (rules of inference, rules
of symbol manipulation) are clearly stated, as they must be for any formal lan-
guage. Among these rules of inference is one which states that if a and b are
the same, then a can be replaced anywhere by b and conversely. This rule of in-
ference is known as substitutivity of identity or substitution of equals fc;r equals.
Frege (1879) took the idea of sameness to be a relation. The word sameness is
used in the sense of identity and a = b is used in the sense of a is the same as b
or a and b coincide. In fact, sameness was taken to be a relation between names
ot signs of objects as opposed to objects. Frege was not completely satisfied with
this choice, the reasons for which he described in a paper published in 1892.

Frege (1892) thus advocated a different approach to the identity relation and
also argued against taking sameness as just a relation between objects or names
of objects. Frege (1892) showed that ifidentity is taken only as a relation between
the objects named by a and b then ¢ = b and a = a would not seem different if
a = bis true.

Skolem (1923) used the following example to illustrate how the propositions

expressed by a = b and a = a may differ. Consider the case of a man who has

two proper names a and b. Suppose that some information about a is given, for
example that a has five children. On another occasion b is introduced and it
is explained that bis a (i.e., b = a). The proposition expressed by b = a then
contains information about b, namely that b has five children, because of prior
knowledge about a. The proposition expressed by b is a (b = a) is therefore
entirely different from the proposition expressed by a is ¢ (¢ = a} and b is b
(b = b). The latter two are complelely trivial, but the former is not if something
is known in advance about a but not b, or about b but not a.

In order to explain the difference in the propositions expressed by a = b and
a = a, Frege (1892) developed the idea that every name (sign, combination of
words, sentence) has a denotation as well as what is called a sense (meaning,
connotation). This is then used to explain the difference between propositions
expressed by a = b and a = a, even if a = b is true. Accordingly, if a = b is true,
then the denotations of a and of b are indeed the same and also the truth-value
of @ = b is the same as that of @ = a. Nevertheless, the sense of a may differ
from the sense of b. The proposition expressed by a = b then may differ from the
proposition expressed by a = a in which case the two sentences do not express
the same proposition.

The possible distinction between the senses of a and b is rooted in the different
ways Lthe denoted objects are given. Frege (1892) uses the following example to
lustrate this distinction. Let a,b,c be straight lines connecting the corners of

a triangle with the midpoint of the opposite sides. The names intersection of a

and b and infersection of b and ¢ denote the same point. However, the manner
in which these points are indicated is different. Frege (1892) therefore, assigns
a denotation (designated object, nominatum) as well as a sense (connotation,
meaning), in which the manner of presentation is contained to every name (sign,
sentences). For example, the denotation of the names intersection of ¢ and b,
intersection of b and ¢ would be the same, but not their senses (the manner in
which the denoted point is given).

Frege (1892) identifies three distinct types of contexts: ordinary, direct and
indirect. The distinction is that in an ordinary context names (signs, sentences)
have their ordinary denotation and sense. For example; in the sentence Sir
Waller Scoll is the author of Waverley, the name the author of Waverley denoles
a certain man and has a particular sense, a manner of presentation. In a direct
context names denote a sequence of words. For example, in the sentence King
George wrote ‘Sir Walter Scotl is the author of Waverley’, the name the author of
Waverley denotes a certain sequence of words. This is known as the use-mention
distinction. Quotation marks (or italic letters) are commonly used to introduce a
direct context. In an indirect context, however, a name denotes the sense of that
same name in an ordinary context. For example in the sentence King George
wished to know whether Sir Waller Scott is the author of Waverley, the name
the auihor of Waverley denotes not its ordinary denotation, a certain man, but
its ordinary sense, the manner in which the name denotes. Certain words can

typically be used to generate an indirect context. For example, the words search,

think, seek, know, want, believe, etc. introduce an indirect context.

This distinction between sense and denotation together with various types of
contexts are then used by Frege (1892) to suitably limit the application of the
substitutivity of equals for equals. Russell (1905) uses the following example to
Ulustrate why it is desirable to limit the substitutivity of equals for equals in

certain instances. The two sentences:

King George wished to know whether

Sir Walter Scott is the author of Waverley (1.1)

and

Sir Walter Scott is the author of Waverley (1.2)

when formalized in first-order logic and by using axioms of equality, may give

rise to the conclusion that:

King George wished to know whether Sir Walter Scott is Sir Walter Scott

(13)
The latter conclusion, though not contradictory, is highly counter-intuitive. As
Russell (1905) put it: an interest in the law of identity can hardly be attributed
to the first gentleman of Europe. Church (1983) referred to such conclusions
as the paradoz of the name relation. Carnap (1956) used the word antinomy,
but the word paradoz is preferable since no apparent contradiction occurs in
the absence of any further assumptions. As pointed out by Frege (1892), the

paradox is about the name relation since the fundamental problem is to explain

the difference in propositions expressed by a = a and a = b, even whena = b is

true.

1.2 Reasons for Eliminating the Paradox

There are several reasons for eliminating the paradox of the name relation
from formal languages. First, the presence of the paradox prevents us from

adopting Leibniz’s definition of identity:
a = b stands for F(a) Df F(b) (1.4)

This definition is té be read as: a is equal to b if for all F, F(a) implies F(b).
The subscript F on the implication sign is to be understood as a universal quan-
tification of F over the scope of the implication sign. If the paradox can be
constructed in the language then there exist two expressions a and b such that
a = b and yet ~ [F(a) D F(b)], which is in contradiction with the above defi-
nition. Second, the presence of the paradox prevents us from adopting Russell’s

extensionality principle for predicates:

P(a)=.Qa) 2 P=Q (1.5)

This definition is to be read as: if P and @ are two predicates such that for all
a, P(a) = Q(a), then P is equal to Q. In short, two predicates are considered to
be equal if they have the same truth value for all possible arguments.

In the absence of this extensionality principle, Russell’s (1905) theory of con-

textual descriptions can be used to resolve the paradox. According to this theory

most names would be considered descriptions of the form: the z such that ---.
Descriptions do not mean anything but are merely incomplete symbols. For
example, the author of Waverley does not mean anything but is merely an in-
complete symbol. A symbol is called incomplete if it has no meaning of its own. It
can have meaning only when combined with other symbols. Whitehead and Rus-
sell (1910) reason as follows. The author of Waverley cannot mean Scott, for
then the proposition Scot! is the author of Waverley would mean Scott is Scotf,
and that is an entirely trivial proposition. On the other hand, the author of
Waverley cannot mean any other person, for then the proposition Scott is the
author of Waverley would be false, and this is well known not to be the case.
Consequently, the author of Waverley means nothing; it is an incomplete symbol.

This proof, of course, has a philosophical character and does not seem beyond
doubt. So long as the author of Waverley has only one denotation this argument
seems to be valid. The problem as pointed out by Frege (1892), however, is that
the author of Waverley seems to have a different denotation depending on the
context in which it appears. In an ordinary context it denotes a man, but in
an indirect context it denotes the sense of the name the author of Waverley.
Nevertheless, descriptions of this form may appear in any formula, and can be
systematically expanded to obtain a well-formed formula. The paradox is re-
solved since no well-formed part of the resuliing well-formed formulas can be
directly identified with the original descriptions, thus making substitution of one

description for another impossible. The exact method for expansion of descrip-

tions is explained by Whitehead and Russell in Principia Mathematica anrd also
by Church (1956). The use and expansion of descriptions is also explained in
detail and applied to an example in Appendix A.

In the presence of the above extensionality principle, however, Church (1983)
shows that substitution of two equal predicates in the well-formed formulas can
be made, thus allowing restoration of the paradox. The details of how the para-
dox can be restored in the presence of the above principle is also explained in
Appendix A below. Russell’s (1905) resolution of the paradox of the name rela-
tion fails then if extensionality is assumed.

There are also practical reasons for eliminating the paradox of the name rela-
tion from some formal languages used in the practice of computer programming.
These paradoxical conclusions can be generated at an enormous rate by a ma-
chine in the course of carrying out proofs of some theorems. Moreover, these
paradoxical conclusions are (or seem to be) of no real value in the process of
automatic theorem proving. No benefit is obtained by their presence in the lan-
guage and depending on the set of axioms can be the source inconsistencies, as
demonsirated in the previous seclion. They orly increase the number of possible
conclusions that can be derived from a set of given facts (set of clauses) making it
harder for the computer to find other valid and useful conclusions. Additionally,
it is important to understand the issues that are involved in implementation of a
language with proper facilities for handling indirect context. Implementation of

such a language will clearly illustrate not only the distinction between sense and

denotation but also the distinction between functional expressions and evaluation

of functional expressions.

1.3 Previous Attempts at Solution

Ajdukiewicz (1960) presents in abstract a solution to the paradox. This
solution is based on the idea that sentences containing words which introduce
an indirect context are ambiguous. The disambiguation process is the key to
the resolution of the paradox; Church (1983) formalized this solution to the
paradox. The term proposition surrogates is first introduced in the process of
this formalization. Proposition surrogates play the role of the sense of a name;
they stand in for the proposition expressed by a name (sign, sentences). In the
formalized language, a proposition surrogate can be used as an a.génts’ object
of belief, knowledge, etc. The paradox is apparently resolved because different
meanings of the same sentence give rise to different proposition surrogates.

Proposition surrogates make a clear distinction between the form (manner)
of application of a function to its argument and the resulting value. This dis-
tinction prevents transformation of a proposition surrogate corresponding to one
meaning of a sentence, to another proposition surrogate corresponding to a dif-
ferent meaning of the same sentence. Thus, the distinction between the form of
a function applied to its argument and the corresponding value provides the key
to the resolution of the paradox.

As pointed out in the concluding remarks of Church (1983), proposition sur-

10

rogates fail to resolve the paradox of the name relation when applied to sentences
that contain names which do not have a functional form or primitive constants.
This is due to the fact that Ajdukiewicz (1960) does not account for the distinc-
tion between sense and denotation for primitive constants. Two solutions are
proposed by Church (1983). One solution is to constrain the primitive constants
of the formalized language so that no two are concufrent. Two primitive con-
stants are said to be concurrent if they have the same denotation, but different
senses. There is, however, no algorithm which guarantees such a condition will
be true of a list of primitive constants, as there may not be enough information
to determine whether twé primitive constants are concurtent. For example, be-
fore Pythagoras discovery in the year 475BC, it was not known that the mozning
star and the evening star are actually the same star (Venus) which appears at
different times of the day in the sky. The second solution is to reintroduce the
sense and denotation distinction for the primitive constants of the formalized

language.

1.4 Proposed Soution

In this dissertation, a solution similar to the latter one is presented. In par-
ticular, extensional entities called pointers are introduced here to play the logical
role of senses of primitive constants. Thus, a pointer to a primitive constant
is used to play the role of the sense of that primitive constant. Accordingly,

Church’s (1983) algorithm for obtaining proposition surrogates corresponding to

11

sentences is modified. The modified proposition surrogates can then be system-
atically added to any formal language by means of definitions; thus requiring
no modification of the underlying logic. The modified proposition surrogates are
then added to Church’s (1940) simple type theory and the programming language
Prolog. The addition of proposition surrogates to Prolog enables the language
to have a proper representation for sentences that are in an indirect context
without admitting the paradox of the name relation. Proposition surrogates are
used as an agent’s item of belief, knowledge, etc. Prolog’s standard inferencing
mechanisms is then used in the process of reasoning with such sentences.

It should be noted that problems regarding selection of a set of suitable axioms
for knowledge, belief, search or other words that introduce an indirect context
are not addressed in this dissertation. For example questions such as: Does an
agent’s knowledge of a proposition imply belief as well? Can an agent know all
true propositions? Does an agent know the logical conclusions of his knowledge?
and other similar questions are nof the subject of this dissertation. Whatever
the ultimate answer to these questions are, however, it should be possible to
state them in a formal language. Accordingly, no assumptions or answers to
these questions should be dictated by the formal language, as these are mostly
matters of choice. Examples demonstrating the use of the modified languages

for representing sentences in an indirect context are presented.

12

CHAPTER 2

Alternative Interpretations of Equality

The following question should be answered before a formal language that al-
lows representation of sentences in an indirect context can be constructed. When
should two sentence, S and S1, be considered to express the same proposition
(have the same sense)? Two sentences are said to correspond to the same item
of knowledge if they express the same proposition (have the same sense). The
sense of a name (sentence) may be described as that which is grasped when one
understands the name (sentence) or equivalently as that which two sentences
in different languages must have in common to be a correct translation of each
other.

The above question can be answered in different ways. Each answer provides
one alternative under which a formal language can be set up. In this chapter three
different alternatives are presented. Various methods for resolving the paradox
are classified according to these alternatives. These alternatives, under which
{wo names or sentences might be considered to correspond to the same belief,
item of knowledge, desire to know, etc, were first identified by Church (1951)
and numbered 0, 1 and 2. Resolution of the paradox under Atl(0) is an open

problem which is addressed by this dissertation.

13

2.1 Alternative 2

The criterion that S and S1 have the same sense if and only if § = S1 is
logically valid is called Alt{2). Logical validity is of course subject to various
explications or interpretations. Under this alternative, the equality of two names
or sentences implies that their senses are also the same. Frege (1892) however
presents at length many examples and reasons as to why the equality beiween
names does not imply an equality of their senses as well. Nonetheless, this
criterton is one alternative that could be adopted. This alternative is in effect
one that has been adopted by Carnap (1956) as what is called the intension of a
designator. It has also been adopted by Chutch (1951), where a formalization of
the logic of sense and denotation is presented. In order to prove consistency of
the formalized language, Church {1973) (1974) used a version of possible-worlds
model.

The possible-worlds model has also been used more recently by a number
of people, including Halpern and Moses (1985), Fagin and Halpern (1985) and
Konolige (1986), to give proper semantics to various versions of modal logic.
It should be pointed out, however, that some of the considered languages are
propositional modal logics, with multiple agents, and thus do not directly allow
quantification. Some of the proposed languages also lack the a.bﬂity to deal with
nested indirect context (belief about belief) as well. Therefore, there is no well-

formed formula that can be said to represent sentences which involve one agent’s

14

knowledge, doubt, or belief of another.

The underlying problem with the possible-worlds model for defining seman-
tics, however, is that it commits the agents to be, what Hintikka (1975) called,
logically omniscient. That is, the agents must know not only all the valid propo-
sitions but also all the consequences of their knowledge. The intuitive idea be-
hind possible-worlds model is that besides the world in which we all live, there
are other worlds which are at least plausible. An agent is then said to know a
proposition expressed by a sentence if that sentence happens to be true in all
the different worlds considered possible by the agent. For example an agent, say
King George, may consider two worlds possible, In one, Sir Walter Scott has
written the Waverley novels but not in the other. However, in both of these
worlds it may be true that Sir Walter Scott is a poet. King George then would
know that Sir Walter Scott is a poet, but he does not know whether Sir Walter
Scott is the author of Waverley. According to this model, therefore, an agent
must know all the propositions expressed by sentences that are valid in all the
worlds considered possible by that agent.

The possible-worlds model requires agents to also know all the logical con-
sequences of their knowledge. For example, suppose there are a total of three
possible worlds and two agents, King George and Sir Walter Scott. Let us assume
that in two of the worlds, W1 and W2, both King George and Sir Walter Scott
consider a sentence S to be true. Sentence S can be anything, but in particular

let us say it is Sir Walter Scott is the author of Waverley. In the third world W3,

15

however, it is assumed that neither King George nor Sir Walter Scott considers
S to be true. Let us further assume that King George considers as possible only
worlds W1 and W3, while Sir Walter Scoit considers as possible only worlds W1
and W2.

According to the possible worlds model then, King George does not know
whether Sir Walter Scott is the author of Waverley since in one of the two worlds
considered possible by King George, namely W3, sentence S is not true. It does,
however, follow that King George knows whether Sir Walter Scott knows whether
Sir Walter Scott is the author of Waverley since in both worlds considered possible
by King George, namely W1 and W3, Sir Walter Scott krows whether S is true
or not (in W1 Sir Walter Scott considers S to be true and in W3 to be false).
Computer implementations of modal logics based on the possible-worlds model
have proven to be unwieldy expensive on a single processor machine in terms of
time and space requirements.

Another approach to implementation of a modal logic language whose seman-
tics is based on the possible worlds model is described by Farifias del Cerro (1986).
This approach uses resolution as the deduction method. A step called compi-
lation is used during which all logical consequences of modal Horn clauses are
computed and asserted to be true. These newly computed facts are then used in
the process of proving certain theorems.

For example, consider a statement to the effect that Pierre knows that Jean

knows that ¢. It is computed and asserted, during the compilation step, that

16

Jean knows q, that Pierre knows ¢, and that ¢ are all true (regardless of what ¢
expresses). This process of compilation is, of course, justified on the ground of
the language’s semantics which in turn is based on the possible-worlds model. A
formal language based on the possible-worlds model then, forces certain assump-

tions on the agents. The validity of these assumptions however, is far from being

clear. As Turing (1950) put it

The view that machines cannotl give rise {o surprises is due, I believe,
to a fallacy t'o which philosophers and mathematicians are particularly
subject. This is the assumption that as soon as a fact is presented to ¢
mind all consequences of that fact spring into the mind simultaneously
with it. It is @ very useful assumption under many circumsiances, but
one {oo easily forgets thai it is false. A natural consequence of doing
10 is that one then assumes that there is no virtue in the mere working

out of consequences from dala and general principles.

It is best for a formal language, then, not to dictate any assumptions. It is
better to leave such decisions to the user of the language. The formal languages
presented in this dissertation do not make such assumptions. It is possible to

write a set of axioms explicitly stating desired assumptions.

17

2.2 Alternative 1

A stronger criterion for identity between senses of two names or propositions
expressed by two sentences is called Alt(1). Under this alternative, if S is con-
vertible to §1 according to the rules of lambda conversion, then § and 51 are
said to have the same sense as well. The calculi of lambda-conversion is present
in Church (1941), see also chapter five of this dissertation. Though similar to
Alt(2), this criterion is stronger since the senses of two names is made different
whenever possible. This will become clear in the light of an example in the next
section. Under Alt(1), however, if an agent believes (what is expressed by) sen-
tence S then he must also believe (what is expressed by) another sentence S1
which can be obtained from S by the process of lambda conversion.

Consider for example the two sentences Iaa and (AFAXAY -FXY)Iaa. These
two sentences are lambda convertible to each other. Under Alt(1), if someone
believes (what is expressed by) the first sentence then he must also believe (what
is expressed by) the second sentence. It is possible though that the person is
not familiar enough with the process of lambda conversion and is in doubt as
to the equivalence of the two sentences. Of course, in certain cases the process
of lambda conversion may be very difficult and lengthy to carry out even by
someone familiar with the rules of lambda conversion. Fregé’s (1892) sense-
denotation solution to the paradox of the name relation has been axiomatized

and proven to be consistent under this alternative by Church (1986).

18

2.3 Alternative 0

The strongest criterion of identity between senses of two names or propositions
expressed by two sentences is called Alt(0). Under this alternative two sentences,
S and §1, are said to express the same sense if and only if § and S1 differ at
most by one or more alphabetic changes of a bound variable, or one or more
interchanges or partial interchanges of fully synonymous notations, including
interchanges or partial interchanges of synonymous primitive constants or both.
This alternative seems to be that intended by Frege (1892), since an equality
between two names does not imply that their senses are the same as well. The
paradox of the name relation is resolved under this alternative. At the heart of
Frege’s solution lies the idea that names which occur in an indirect context shift
their denotation to what would be their sense in an ordinary context. Likewise,
a name which occurs in a doubly indirect context will denote the sense of some
unspecified name of its sense. In short, an infinite array of senses is called for
since otherwise the paradox would be reconstructed at level N + 1, if there are
only N levels of senses of a name.

Consider the example about King George that was presented in the introduc-
tion. Let us interpret the is in 1.2, as an equality between the two denotations
of the names, Sir Walter Scott and the author of Waverley, a;nd not between
their senses. These two names in 1.1, however, occur in an indirect context; that

of King George’s desire to know. Thus, the two names in 1.1 denote the sense

19

of the same names in an ordinary context, as in 1.2. Replacement of the name
Sir Walter Scott by the name the author of Waverley in 1.1 is not allowed on
the ground that 1.2 does not express a relation between the senses of the iwo
names. Therefore, the paradoxical conclusion is avoided. Frege’s solution to the
paradox of the name relation has been formalized under Alt(2) by Church (1959)
and under Alt(1) by Church (1986). This solution, though very intuitive, is yet
to be formalized under Alt{0)}.

This dissertation examines those solutions which fall under Alt{0), or could
possibly be formalized under this alternative. McCarthy (1979) solution that
introduced the first-order theory of individual concepts and propositions as a
formal language for knowledge-representation is such a solution. This theory is
intended to avoid the paradox of the name relation. McCatthy (1979) uses two

sentences:

Pat knows Mike’s telephone number (2.1)
Mary has the same telephone number as Mike (2.2)

to show that a normal formalization in first-order logic will give rise to the para-

doxical conclusion:
Pat knows Mary’s telephone number {2.3)

and that such conclusions are not possible in his first-order theories of individual
concepts and proposition. McCarthy’s (1979) first-order theories, however, in-

troduced only one level of concept of a name. For this reason, an instance of the

20

paradox of the name relation that involves two levels of indirect context can he
constructed. One such instance of the paradox of the name relation is introduced
in appendix B, and it is shown that the paradox can still occur in the first-order
theories of individual concepts and propositions.

Ajdukiewicz’s (1960) solution to the paradox of the name relation is another
solution that has been formalized under Alt(1) and AlL(0) by Church (1983).
This solution is based on the idea that sentences in an indirect context are am-
biguous. Ajdukiewicz’s solution as well as Church’s formalization of this solution
are explained in detail in the next section. A shortcoming with regards to this
solution is then discussed. This shortcoming can be used to reconstruct the
paradox of the name relation. A modification to this solution is then presented,
justified and applied. It is also proven that the use of the modified broposition
surrogates does not allow the reconstruction of the paradox of the rame relation.
The addition of proposition surrogates to two formal languages is then presented
in detail. In particular, it is shown how Prolog with the use of proposition sur-
rogates can be used to t‘epresent and solve some classical problems in knowledge

representation.

21

CHAPTER 3

Proposition Surrogates

Ajdukiewicz’s (1960) solution to the paradox of the name relation revolves
around the ambiguity of sentences similar to 2.1. It is the process of disam-
biguating these sentences that leads to the solution. In his attempt to find an
extensional solution to the paradox of the name relation, Ajdukiewicz (1368) in-
troduced the novel idea of abstraction with respect to a constant. The notion of
abstraction with respect to a vanable is familiar in most formal languages, but
not abstraction with respect to a constant.

While Ajdukiewicz (1960) explains the solution to the paradox informally,
Church (1983) has formalized this solution. The idea of a proposition surrogate is
one that has risen out of this formalization. Ajdukiewicz (1967) had also outlined
an idea very similar to Church’s (1983) formulation of proposition surrogates. In
this section, Church’s (1983) formal notation along with Ajdukiewicz’s (1960)
informal explanation is applied to some examples of the paradox of the name

relation. It is then shown how the paradoxical conclusions are avoided.

22

3.1 Development of Proposition Surrogates

Consider McCarthy's example that was previounsly discussed. According to
Ajdukiewicz (1960), 2.1 is an ambiguous sentence and has two different meanings.
One leads to the paradox of the name relation, but not the other. It should be
no surprise then that most people understand the meaning of 2.1 that does not
lead to the paradox, yet fail to understand the meaning that does lead to the

paradox. The first meaning of 2.1 is:

Pat knows about a particular number,
about the equality relation,

about Mike,

about the function telephone number, .

that the telephone number of Mike is equal to the particular number.
The second meaning of 2.1 is

Pat knows about a particular number,
about the equality relation,

that the telephone number of Mike is equal to the particular number.

Ajdukiewicz {1960) informally explained the distinction between these two
different meanings of 2.1. Without the use of a formal notation it may be difficult
to grasp the distinction. In what follows both an informal and a formal notation
is used to shed light on this distinction. It is then shown how the second meaning

leads to the paradox, whereas the first meaning avoids it.

23

If sentence 2.1 is understood according to the second meaning then, Pat does
not explicitly know about a function (telephone number) or an individual {Mike),
but only about a particular number that is the result of application of a function
to an argument. According to the first meaning of sentence 2.1, however, Pat

- does know about an individual (Mike), a function (telephone number), and a
particular number which is the result of the application of the function to the
argument. As Ajdukiewicz (1960) explains, the first meaning of 2.1 is commonly
understood and does not lead to the paradox. It is the second meaning of 2.1 that
leads to the paradoxical conclusion. Both meanings of 2.1 are now formalized

according to the notation introduced by Church (1983). |

The first meaning of 2.1 is formalized under Alt(1) as:

know(pat, < ADAFAGAB - D(AX - F(X,G(B))),, equal, telephone, mike >)
(3.1)
and under Alt(0) as:
know(pat, < ADAFAGAB < D,AX < F,X,<G,B >>>,

¢, equal, telephone, mike >) (3.2)

where ¢ is the description operator not, however, contextually defined (as in the
case of Russell’s descriptions), and telephone and equal are function symbols, and
mike and pat are primitive constants in the language, corresponding to Mike and
Pat; D, F,G, B, and X are bound variables. The distinction between proposition

surrogates under Alt(0) and Alt(1) is explained below.

24

The first argument of know is a primitive constant and the second argument is
an ordered n-tuple. This ordered n-tuple is referred to as a proposifion surrogate
and is the object of belief by the first argument. The first member of a proposition
surrogate must be of the form AX A X;...AX, - M where M has as its only free
variables exactly one free occurrence of each of the vanables X, X3,..., X,. The
remaining members of the proposition surrogate must he constants C,Cs, ..., C,
that are of the same type as the variables X, X3, ..., X, but not necessarily all
different. The first member of proposition surrogate gives only the form. The
constants are then abstracted and listed separately. The constants ate primitive
symbols of the formalized language but may be names of individuals or functions.

The original formula can always be obtained from the proposition surro-
gate by applying the first member to the rest of the members. This de-
vice is used primarily to distinguish between application of a function to its
arguments and the resulting value. For example, 2 = V4 is true, whereas
2=<AFAX-<F,X >, /,4> is not true. Applying the first member of
<AFAX-<F, X >,./,4> to the other members will result in < ,/,4 >, and
another application yields v/4.

The second meaning of 2.1 is formalized under Alt(1) as:
know(pat, < ADAFAA - D(AX - F(X, A)), ¢, equal, telephone(mike) >) (3.3)
and under Alt(0) as:

know(pat, < ADAFAA <D, AX < F, X,A>>,

25

¢y equal, telephone(mike) >) (3.4)

The distinction between the two different meanings of 2.1, explained informaliy
by Ajdukiewicz (1960), is vividly displayed by the above formal notation. For
example, the proposition surrogates in 3.3 or 3.4 of the second meaning of 2.1,
do not have separate primitive constants corresponding to a function (telephone
number) and an individual (Mike) among their list of constants. The proposition
surrogates of the first meaning of 2.1, in 3.1 or 3.2, however, does have constants
corresponding to l;oth the individual {Mike) and the function (telephone number)
named explicitly within the list of constants.

While formalization of the first meaning of 2.1 avoids the paradox, formaliza-
tion of the second meaning leads to the paradox of the name relation. Sentence

2.2 is now formalized in the usual way as:
telephone(mike) = telephone(mary) (3.5)

It is possible to replace telephone(mike) by telephone(mary) in 3.4, on the basis

of 3.5 and the axioms of equality, thus arriving at

know(pat, < ADAFAM <D AX < F,X,A>>,

¢, equal, telephone(mary) >) (3.6)

However, no such replacement in 3.2 is possible. This is on the ground that
telephone(mike) is not directly identifiable in 3.2, Indeed, 3.2 is the intended

and the understood meaning of sentence 2.1.

26

3.2 Proposition Surrogates Under Alt(1) and Alt(0)

The distinction between formalization of Proposttion surrogates under Alt(0)
as opposed to Alt(1) can be seen {rom examination of the first member of the cor-
responding ordered n-tuples. In case of Alt(1), no distinction is made between
application of functions to arguments and the resulting values. This distinc-
tion, however, is made clear under Alt(0) by repeated use of ordered n-tuples.
Under Alt(1), therefore, it may happen that the same Proposition surrogate cor-
responds to two different sentences. For example, consider the three sentences,
Iaa, (AFAXAY - FXY)Iaa, and (AFAX - FXX)Ia. Al of these sentences are
equivalent to one another under the rules of lambda conversion. The correspond-

ing proposition surrogates under Alt(1) are respectively,
<AGAAXB-GAB,I,a,a >

<AGMAB - (AFAX)Y - FXY)GAB,I,a.a >
<AGAA-(AFAX - FXX)GA,I,a >

The lambda normal form cotresponding to these proposition surrogates are re-
spectively,

< AGAANB-GAB,I,a,a >
< AGAAMB-GAB,I,a,a >

<AGAA-GAA,I,a>

27

The first two sentences have the same proposition surrogates. Under Alt(1),
therefore, they express the same proposition. The corresponding proposition
surrogates under Al{(0), however, are all distinct, since ordered n-tuples are used
to distinguish the form of the function application from the resulting values. The

corresponding proposition surrogates under Alt{() are respectively,
< AGMAAB < G,A,B >,I,a,a>

< AGAAMB < (A\FAX)Y < F,X,Y >),G,4,B >,I,a,a >

<AGM < (AFAX < F,X, X >),G,A>,I,a>

3.3 Algorithm for Obtaining Proposition Surrogates

Church {1983) describes the procedure for obtaining proposition surrogates
of a sentence under Alt(0). Given any sentence the corresponding proposition
surrogate can be formed. This proposition surrogate can then be used as the
object of knowledge. The procedure for obtaining the proposition surrogate of a
sentence S, under Alt(0} is as follows:

Step 1: Let there be n occurrences of constants in S. Let us name them
Cy,Cy,...,C,in order from left to right. Note these constanis are not necessarily
distinct.

Step 2: Let X, X3, ..., X, be n different variables such that X; is of the same

type as C; for i = 1,2,...,n, and the replacement of C; by X; (at the one place

28

which is the occurrence of the constant that is referred to by C;} will not result
in the capture of the variable X,.

Step 3: Let M be the resuit of replacing each C; in § by the vanable X;. The
free variables in M are then X, X,,..., X, each with exactly one free occurrence
in M.

Step 4: Produce Mx from M by replacing every occurrence in M of the
notation (F A4), for application of a function F to an argument A, by the notation
< F, A > for the ordered pair of F and A.

Step 5: The proposition surrogate is then:
< AX) A X, X, M+, C,Ch,...,Ch > (3.7)

The procedure for obtaining the proposition surrogate of a sentence under Alt(1)

can be obtained by eliminating step 4 in the above procedure, and using M for

M *.

For example, the sentence:
Sir Walter Scott is the author of Waverley (3.8)
is formalized as: scoit = author(waverley) ot equivalently as:
equal(scott, author(waverley)) (3.9)

where equal and author are function symbols corresponding to = and author of.
The constants scott and waverley correspond to Sir Walter Scott and Waverley.

In sentence 1.1, King George desired to know whether the proposition expressed

29

by sentence 3.8 is true. Thus to formalize sentence 1.1, the proposition surrogate
of formula 3.9 must first be obtained. According to the above procedure the

proposition surrogate of 3.9, under Alt(1) is:
< AFAAMNGAB - F(A, G(B)),equal, scott, author, waverley > (3.10)
and under Alt(0) is:
< AFMAMGAB < F, A, < G, B >>,equal, scott,author, waverley > (3.11)
sentence 1.1, can then be formalized as:
know(george, < AFAAAGAB < F,A,<G,B >>,
equal, scott, author, waverley >) (3.12)

where know corresponds to wished to know whether, and george is a primitive
constant corresponding to King George. Sentence 1.2 of the introduction section,
of course, is the same as sentence 3.8 and its formalization is 3.9. The paradox-
ical conclusion is avoided on the ground that author(waverley) is not directly

identifiable in 3.11.

Note however, that in 3.11 the primitive constant scoft can be replaced by

author(waverley) thus arriving at:

know(george, < AFAMAANGIB < F,A,< G, B >>,

equal, author(waverley), author, waverley >) (3.13)
This sentence, however, does not correspond to the paradoxical conclusion:

King George wished to know whether

30

the author of Waverley is the author of Waverley (3.14)

on the ground that scott and author{waverley) are indistinguishable from each
other. In fact, as pointed out earlier (with the case of 2 and \/I), scolt =

author(waveriey) is true. The formula corresponding to the paradoxical conclu-

sion 3.14, under Alt(0) is:

know(george, < AFAGAAMHAB < F,< G,A>,< H,B >>,

equal, author, waverley, author, waverley >) (3.15)

Let us now consider, the case of doubly indirect context. Suppose that:

John knows King George wished to know whether

Sir Walter Scott is the author of Waverley (3.16)
and
John knows Sir Walter Scott is the author of Waverley (3.17)

In order to formalize 3.16 the proposition surrogate corresponding to 1.1, or the
corresponding formula 3.12, must first be obtained. The proposition surrogate

for formula 3.12 under Alt(0) is:

< AHMXAYAZAVIW < H, X,
< AFMANGMB < F A, <G, B >>Y, 2, VW >>,

know, george, equal, scott, author, waverley > (3.18)

31

The formula corresponding to 3.16, then, is:

know(john,
< AHAXAYAZAVIW < H, X, < AFAAAG)\B
< F,A,<G,B>>Y,Z, VW >>,

know, george, equal, scott, author, waverley >)

The formula corresponding to 3.17 under Alt(0) is:

know(john, < AFAAMGAB < F,A,<G,B >>,

equal, scott,author, waverley >)

3.4 The Problem of Proposition Surrogates

(3.19)

(3.20)

The difficulty with this solution to the paradox of the name zelation lies in

the way primitive constants of the formalized language are handled. An equality

relation between primitive constants of the formalized language can be used to

reintroduce the paradox. Consider, for example, the two sentences:

Pythagoras knows whether the morning star is the evening star

the morning star is the evening star

Sentence 3.21 is formalized under Alt(0) as:

know{pythagoras, < \FAAAB < F, A, B >, equal, mstar, estar >)

32

(3.21)

(3.22)

(3.23)

where pythagoras, mstar, and estar are primitive constants of the language
corresponding to Pythagoras, the morning star, and the evening star respectively.

Sentence 3.22, is formalized in the usual way as:

mastar = estar (3.24)

It is possible to substitute matar for estar in formula 3.23 on the basis of the

axiom of equality and formula 3.24, thus arriving at the conclusion:

know(pythagoras, < AFAAMB < F, A, B >, equal, mstar,mstar >) (3.25)

which corresponds to the paradoxical conclusion:

Pythagoras knows whether the morning star is the morning star (3.26)

Ajdukiewicz (1967) also pointed to the same problem but immediately dismissed
it by saying that if 3.21 is true and 3.26 is false, it is because they are not
understood as object-language sentences 3.23 and 3.25, but as metasentences.
Such an interpretation, however, poses certain problems which are described in

detail in the nexi chapter.

33

CHAPTER 4

Proposition Surrogates and Pointers

An alternative analysis of sentences containing primitive constants which
avoids reconstruction of the paradox is now proposed. This solution differs from
Ajdukiewicz (1967) in that it does not require metalinguistic devices (or use of
quotation marks) in formalizing sentences that contain simple names. It is simi-
lar to Church’s (1983) suggested solution in that it does require the distinction
_ between sense and denotation for primitive constants. Poinfers are introduced
to play the logical role of senses of primitive constants in formal languages.

In the last section it was shown that substitution of one primitive constant
of a proposition surrogate with another having the same denotation can give rise
to the paradox of the name relation. Church’s (1983) solution to this problem
is to replace each primitive constant within a proposition sﬁrrogate by a name
of its sense. The problematic substitution, then, is avoided since an equality
beiween denotations of two constants does not imply an equality of their senses.
The replacement of a primitive constant within a ptoposition_ surrogate by a
name of its sense is on the ground of Frege’s (1892) solution. According to
this solution, names which occur in an indirect context denote their ordinary

sense and not their ordinary denotation. This, of course, being an irregularity of

34

natural languages which is to be avoided by formal languages. According to the
solution of Frege (1892) and Church (1983), this irregularity of natural langunages
can be avoided in formal languages by introducing a new name for the sense of
a name and using this new name for every indirect use of the original name.

The objection often raised to this solution is that the notion of sense of a
name remains unclear as far as formal languages are concerned. Senses of names
are said to be intensional as opposed to extensional, though no precise definition
exists to distinguish between extension and intension. The problem of what is
the sense of a name, however, can be solved by allowing pointers to play the role
of senses of names in formal languages. Pointers can be understood as a special
kind of description not contextually defined in the sense of Russell (1905). They
describe an object by making a reference to some particular place where ihe
object is actually described. Descriptions of this type commonly occur in written
text, such as: the first sentence on the first page of this chapter. An occurrence
of a primitive constant, say c;, within a proposition surrogate is then replaced by
another constant, say @c;. The denotation of @c, is a pointer to the primitive
constant, ¢;. These two constants, ¢; and @cy, are of course different.

Another property of senses c;{ names, as explained by Frege (1892), is that
the sense of a name uniquely determines its denotation. This is completely
analogous to the process of pointer dereferencing in programming languages.
In programming languages a pointer can be dereferenced (traced, chased) in

order to determine its denotation. For example, let ¢; and ¢; be two primitive

35

constants and two pointers to these primitive constants be @c, and @c,. Equality
between primitive constants does not imply equality between the corresponding
pointers. l.e., ¢; = ¢; does not imply that @c; = @c,. Let * be used to denote
the dereferencing operation. Then ¢; = ¢; does imply that +(@c¢,) = #(@c;).
Additionally, that the sense of a name uniquely determines its denotation is
expressed by *(@c;) = ¢;. Note that @ is not an operator, @c s a name whose
denotation is a pointer to c.

The algorithm, for obtaining the proposition surrogate under Alt(0) as speci-
fied by Church (1983) and presented in the last section is now modified so that
every occurrence of a primitive constant, say c, in the proposition surrogate is
replaced by @c and every occurrence of a bound variable in the body of the
lambda term corresponding to the primitive constant ¢, is replaced by applica-
tion of the * operator to that variable. For example, 3.21 will now be formalized

under Alt(0) as:

know(pythagoras, < AFAAMB < »F,*A *B >, Qequal, @mastar, @estar >)
(4.1)
and although mstar = estar, it does not follow that @mstar = @estar. Thus,

the paradoxical conclusion:

know(pythagoras, < AFAAAB < «xF,xA,*B >, @equal, @mstar, @mstar >)
(4.2)

is avoided. Additionally, the proposition surrogate in 4.1 may be reduced to

36

< #(@equal), *(@mstar), *(@estar) > which in turn can be reduced to the for-

mula equal(*(@mstar), *(Qestar)}) and finally to equal(mstar, estar).

4.1 Pointers v.s. Metalinguistic Devices

Pointers are also different from metalinguistic devices (such as quotation or
other commonly used marks) to distinguish the use from mention of a symbol.
There is of course a difference between talking about {mentioning) a symbol and
using a symbol in any language. The usual way of distinguishing between the
two is to use quotation marks whenever a symbol is talked about (mentioned) as
opposed to used. The use of quotation marks to distinguish use from mention
also originated from Frege (1892). The distinction is that the pointer technique
withstands Langford’s (1935) translation test, see also Church (1950}, while the
metalinguistic devices do not. The test is to translate the sentence and its anal-
ysis into a different language, say German, and to observe whether or not they
convey the same meaning to one who understands German but has no knowledge
of English.

The following example, from Langford (1935), illustrates the distinction. In
the sentence ‘ ‘Brot’ means bread,” we shall be talking about (mentioning) the
German word and using the English synonym. This sentence can be understood
by one who does not understand the word 'Brot’ but not by one who does not
understand the English equivalent. However, ‘ ‘Brot’ means what is meant by

‘bread’ ’ can be understood by one who knows the meaning of neither word.

37

Accordingly during the process of translation a word that is being used must
be translated. A word that is being talked about {(mentioned) must not be
translated, since subject matter is to remain unchanged under translation.

Forming a name of the primitive constant in analyzing 3.21 results in:

Pythagoras knows,

about the equality relation,
about the ‘morning star’, and
about the ‘evening star’,

whether the ‘morning star’ is equal to the ‘evening star’.

When translating the above sentence into German, ‘morning star’ and ‘evening
star’ must be translated as ‘morning star’ and ‘evening star’ not as ‘Morgenstern’
and ‘Abendstern’ since they are mentioned and not used. Translation of 3.21 into

German is:

Pythagoras weiss, ob der Morgenstern der Abendstern ist. (4.3)

While translation of the above analysis of 3.21 into German is:

Pythagoras weiss,

ueber die Gleichungsrelation,
ueber ‘morning star’ und
ueber ‘evening star’

ob ‘morning star’ dem ‘evening star’ entspricht.

38

This analysis, however, is not understandable by one who understands German
but has no knowledge of English. Therefore, the German translation of 3.21, i.e.
4.3, and the translation of its metalinguistic analysis do not convey the same

information.

The same objection, however, does not hold for the analysis of 3.21 by way of
pointers. A special list of all the primitive constants of the formalized language
is first formed. Let us call this the dictionary. Associated with each primitive
constant of the language as it appears in the dictionary, is a list of all the other
primitive constants of the language that are known to be completely synonymous
with it and the translation of the primitive constant in other languages. Two
of the entries in the dictionary, of course, would correspond to morning star
and evening star, let us assume these are entries number 10 and 15 respectively.

Sentence 3.21 is then understood as follows:

Pythagoras knows,

about the equality relation,

about location number 10 in the dictionary, and
about location number 15 in the dictionary

whether the object denoted by the primitive constant
in location number 10 of the dictionary is equal to
the object denoted by the primitive constant

in location number 15 of the dictionary.

39

Translation of the above sentence into German, then, is

Pythagoras weiss

ueber die Gleichungsrelation,

ueber Positionsnummer 10 im Woerterbuch und
ueber Positionsnummer 15 im Woerterbuch

ob das Objekt, das von der einfachen Konstanten
in Position 10 des Woerterbuchs beschrieben wird
dem Objekt, das von der einfachen Konstanten

in Position 15 des Woerterbuchs beschrieben wird,

entspricht.

Both the German translation of 3.21, i.e. 4.3, and the translation of its analy-
sis according to pointers, however, are understandable by only one who speaks

German, therefore they convey the same information.

4.2 New Algorithm for Obtaining Proposition Surrogates

The new algorithm for obtaining a proposition surrogaie of sentence under
Alt(0) is as follows:

Step 1: Let there be n occurrences of constants Cy,Cj,...,C, in order left-
to-right in S. These constants are not necessarily distinct.

Step 2: Let X, X;,. , X, be n different variables such that X; is of the same

type as C; for i = 1,2,...,n , and the replacement of C; by X; (at the one place

40

which is the occurrence of the constant that is referred to by C;) will not result
in the capture of the variable X,.

Step 3: Let M be the result of replacing each C, in S by the variable X;. The
free variables in M are then X;, X3,..., X, each with exactly one free occurrence
in M.

Step 4: Produce M1 from M by teplacing every occurrence in M of the
notation (FA), for application of a function F to A, by the notation (x(F)=(A)}).
Replace constants C; and C;, corresponding to F and A, by @C; and @C; in the
list of primitive constants.

Step 5: Produce M2 from M1 by replacing every occurrence in M of the
notation (FA), for application of a function F to an argument A, by the notation
< F, A > for the ordered pair of F and A.

The proposition surrogate then, is:
<AX AX;.. A Xn-M2,Cy,C,,...,C, >

The procedure for obtaining the proposition surrogate of a sentence under Alt(1)
can be obtained by eliminating step 5 of the above procedure.

Recall that the paradox of the name relation refers to counter intuitive con-
clusions that may arise if concurrent names can be substituted for one another
in an indirect context. Two names are said to be concurrent if they have the
same denotation but different senses, e.g., morning star and evening star. If

proposition surrogates are used in formalizing sentences that are in indirect con-

41

text, then substitution of concurrent names within proposition surrogates is not
possible.

Theorem: The new algorithm to generate proposition surrogates under Alt(0)
eliminates reconstruction of the paradoz of the name relation.

Proof: The construction of the paradox of the name relation requires the use
of an identity between the dencotation of names (either simple or functional) and
substitution of one name for another when one of the names is in an indirect
context. The paradoxical conclusions can also arise if a sentences that is in an
indirect context can be reduced to another, according to the rules of lambda
conversion. Therefore, this theorem can be proved by a separate analysis of each
case where the rules of lambda conversion or the substitution of equals for equals
can take place.

Case 1: Consider two wffs, A and B, and their corresponding proposition
surrgates PA and PB. Let us also assume that A is lambda convertible to B. It
must be shown, however, that PA is not lambda convertible to PB. The general

form of a proposition surrogate, PA, is
<)\XIJ\.XQ...AXTL‘M,... >

This of course follows by induction from the above algorithm. Under Alt(0),
unlike Alt(1)}, M is an ordered n-tuple. Thus, the rules of lambda conversion can

not transform the proposition surrogate A into another proposition surrogate of

the form PB.

42

Case 2: A wff, A, contains the constant, C;. The constants are primitive
symbols of the formalized language but may be names of individuals or functions.
Let B be the proposition surrogate under Alt(0) of A, obtained according to the
algorithm. Let us assume, then, that C; = C;. It is shown that no substitution
of C, for Cy in B can take place. According to the algorithm, B is of the general
form:

<AX A X3 .. AXn-M,...,QC,,...>

where @C) is a pointer to C), respectively. The assumption Cy = C; is about the
denotations of the names C;, C; and not their pointers, @C) and @Cg. Thus,
the equality @C; = @C; is not implied by C, = ;. Additionally, the names C
and C; do not directly occur in B, therefore, no substitution of C; for Cy can
take place.

Case 3: A wif, A, contains a primitive constant, C;. Let B be the proposition
surrogate under Alt{0) of A, obtained according to the algorithm. Now, let us
assume that the equality C; = F(X) also holds. It is shown that no substitution
of F(X) for Cy in B can take place. According to the algorithm, B is of the
form:

< AX]_AXQ...A.XTI'M,...,@Cl,...>

where @C; is a name of a pointer to C;. The name C; does not directly occur
in B, therefore, the equality, C; = F(X) can not imply a substitution of F(X)

for C; in B.

43

Case 4: A wff, A, contains application of a function to an argument of the
form, F(X). Let B be the proposition surrogate under Alt{0) of A, obtained
according to the algorithm. Now, let us assume that €y, = F(X). It is shown that

no substitution of C) for F(X) in B can take place. According to the algorithm,

B is of the form:
< AX A X A X M, ,QF,0X,... >

The function application F(X)} does not directly occur in B. Therefore, the
equality, C; = F(X) can not imply a substitution of C, for F(X) in B,

The above case analysis shows that an equality betweeﬁ the denotation of
names {simple for functional) can not lead to a substitution of one name for an-
other within a proposition surrogate. Therefore, it is not possible to reconstruct
the paradox of the name relation.

An advantage of this method for resolving the paradox of the name relation
is that it can be added to any formal language without modifying the underlying
axioms. All that is required is to provide some kind of definition for the ordered
n-tuple. Proposition surrogates can then be formed according to the above al-
gorithm. The language’s rules of inference, of course, remain unchanged. In the
next two sections it is shown how proposition surrogates can be added to two

formal languages.

44

CHAPTER 5

Formal Language

The addition of proposition surrogates to a formal language is presented in
this section. The addition of proposition surrogates neither requires a change
to the underlying axioms nor the rules of inference of formal languages. The
proposition surrogate corresponding to a wff of a formal language can be obtained
according to the algorithm presented in the last section.

When writing proposition surrogates, use is made of ordered n-tuples. The
formal language, then, must be extended such that ordered n-tuples are well
defined. Alternatively some other data structure, similar to ordered n-tuples,
that is already present in the language can be used in place for ordered n-tuples.
The formal language presented in this section, {or example, has the notation for
ordered n-tuples defined by means of abbreviations. When adding proposition
surrogates to Prolog, however, the list data structure which is already present in
the language is used in place of ordered n-tuples.

A formal language, similar to that introduced in the simple theory of types
by Church (1940), is used to demonsirate how proposition surrogates can be
introduced and used. For simplicity the formal language presented here will not

include type symbols; all of the variables are of the same type and range over

45

the same domain of individuals. In such a language the proposition that for any
wff A in which v occurs free there is a set u consisting of all those elements v
for which A is true, is expressed by the wit Ju¥v[(v € u) = A]. The use of
equality here is extensional, i.e., if the wff to the left of the equality sign is true
then the wif to its right must be true and conversely. In particular let A be the
wif =(v € v), then JuVs{(v € u) = (v € v)| expresses that there is a set whose
members ate all those elements which are not members of themselves. Choosing
such a set u, it is concluded that (u € u) = =(u € u) which is a contradiction.
This is called Russell’s paradox, but according to the terminology adopted here
it is better to call it Russell’s antinomy since it gives rise to a contradiction
and not just a counterintuitive result. One method for resolving this problem
is the introduction of type symbols as in Whitehead and Russell (1910). The
exclusion of type symbols then is a radical departure since it is well known that
the resulting language is inconsistent.

Of course even a language with type symbols is not free from antinomies.
Such a formal language becomes inconsistent once certain sentences are formal-
ized. For example, formalization of sentences like Epimenides assertion that all
propositions asserted by Epimenides are false or Myhill’s favored proposition
that all propositions favored by Myhill are false or Church’s dreaded proposition
that all propositions dreaded by Church are false, lead to contradictory conclu-
sions. These are all various instances of the so called Myhill’s antinomies and

their removal requires introduction of some form of ramified type theory such

46

as Whitehead and Russell’s (1910), Tarski's (1933), or Church’s (1956); see also
Church’s (1977) comparison of Russell’s resolution of the semantical antinomies
with that of Tarski. In order to simplify the formalized language, both simple
and ramified type symbols are excluded from this presentation. The soundness
and completeness of the formal language with the type symbols included, how-
ever, is shown by Henkin (1950) and also presented in detail by Andrews (1986).

The syntax and semantics of the formalized language is as follows.

5.1 Primitive Symbols
1. An alphabet of primitive constants.
2. An infinite alphabet of variables.
3. The abstraction operator A.
4. The connective () for application of function to argument.
5. The primitive constant C denoting material implication.
6. The primitive constant - denoting negation.
7. The primitive constant II denoiing universal quantification.

8. The primitive constant ¢ denoting the description function.

The abstraction operator A and the parentheses are called improper symbols

of the language. The rest of the symbols are the proper symbols of the lan-

47

guage. Material implication, negation, universal quantification, and description
are taken as primitive constants. They may appear among the list of primitive
constants when forming proposition surrogates of wffs. The constants of the lan-
guage are primitive symbols of the formalized language and may be-names of

individuals or functions.

5.2 Formation Rules

1. A variable or a primitive constant standing alone is a wif.
2. I F and A are wifs then (FA) is a wif.

3. If M is a wif and x is a variable then (AxM) is a wif.

Bold letters are used as syntactical variables. Bold capitals are used for wffs

and bold lower case letters are used for variables.

5.3 Rules of Inference

1. Any part M of a formula can be replaced by the result of substituting y
for x throughout M, provided that x is not a free variable of M and y does

rot occur in M.

2. Any part ((AxM)N) of a formula can be replaced by the result of substi-
tuting N for x throughout M, provided that the bound variables of M are
disjoint both from x and from the free variables of N. Note that M can

always be rewritten such that x is not a bound variable of M.

48

3. Where A is the result of substituting N for x throughout M, any part

A of a formula can be replaced by ((AxM)N), provided that the bound

variables of M are distinct both {rom x and from the free variables of N.
4. From IIF infer FA, if A is without f{ree variables.

5. From CAB as major ptemise and A as minor premise infer B.

The following is a detailed explanation of how to do proper substitution of
M for all free occurrences of x in F, written [M/x|F, with any necessary name
changes. The set of free variables of a wit F, FV(F), and bound variables of a wif
F, BV(F), are defined inductively on the structure of F as follows. Let x be a
syntactical variable for the alphabet of variables and d be a syntactical variable

for the alphabet of primitive constants.
1. FV(x)is {x}
2. FV(d) is {}
3. FV((MN)) is FV(M) U FV(N)
4. FV((AxM)) is FV(M) — {x}
1. BV(x)is {}
2. BV(d)is {}

3. BV((MN)) is BV(M) U BV(N)

49

5.4

BV((A\xM)) is BV (M) uU {x}

. IM/x]x is M

.M/xlyisyify £x

[M/x]d is d

- [M/x](AB) is ([M/x]A [M/x]B)

[M/xi(AxN) is AxN. Since x is not a free variable no substitution can take

place.

(M/x}(AyN) is Ay[M/x]N if x ¢ FV(N) or y ¢ FV(M). That is, either

no substitution of x or no capture by y is possible.

[M/x](AyN) is Az[M/x|([z/y]N) if x € FV(N) and y € FV(M), where
z is a variable such that z ¢ FV(M) U FV(N). This is needed to avoid

capture of bound variables.

Abbreviations

. ADBfor CAB

. A =B for I\f[fA D fB]

. {x)A for II(AxA)

(3x)A for —(x)-A

90

5. < A,B > for A\f(fAB)

6. < A Al,--- An > for< A, < Al,<---An >>>

7. P(A,Al,--- An) for (PAA1l--- An)

8. AvBflor-ADB

L

. AAB for -(-AV-B)
10. T for(a)-aDa
11. F for (a)a

12. @ for the proposition surrogate of P under Alt(0) obtained according to

the modified algorithm presented at the end of the last section.

Abbreviations are introduced primarily due to shortness of human life and
patience. The above abbreviations may help to shorten wifs and to possibly ease
readability. In addition to the above abbreviations for writing wifs, the following
conventions will be used. Pairs of parentheses are omitted under the convention
of association to the left. A dot in a wif is an abbreviation for a pair of brackets
starting at the dot and ending at the maximum distance which is consistent with
the whole expression being well-formed.

The notation for ordered n-tuples is introduced by the two abbreviations
< A,B > and < A,Al,---,An >. These are of course similar to list data

structures commonly used in programming languages. For example, < A,B >

51

is a function, Af(fAB), whose value with argument (Az)y D = z) is the truth-
value T if D = A and is otherwise the truth-value F, and whose value with
argument (AzAdy - E = y) is the truth-value T if E = B and is otherwise the
truth-value F'. So every element of an ordered pair can be accessed, just as any
element of a list data structure is accessible, through two elementary functions

whose values are the head and tail of the list.

5.5 Axioms
L (f) - (2)(¥)fzy D (yN=)fey
2. (f)-1Lf D (g)(=)f(g=)
3. (f)g)-(2)fe Dgz D -Nf D1y
4. (f)- (@)y)fzy D (z)fz=
5. (p)-p 2 (2)p
6. (f)(z)-f D fz
7. (Pg)(r)(s}-pDg¢DrDrDpDsDp
8. (p)¢)- D ~¢DgDp
3. (P){9)'P2¢DqDpDp=g¢

10. (f)g) (=) fe =gz} D> -f=g

52

11. (f)(=z)- fz 2 f(if)

For a detailed statement of usage refer to Church (1340). Axioms 1 through
8, together with the five rules of inference, are sufficient for propositional calculus
and the laws of quantifiers. That the formal theorems of propositional calculus
are derivable from these axioms and the rules of inference was first shown by
Hilbert and Ackermann (1926). Axiom 7 gives Lhe laws of propositional calculus
that involve implications only. This axiom is taken from Lukasiewicz (1947) who
proved not only its sufficiency but also that it is the shortest such axiom, by
examining all shorter axioms. The axioms of extensionality are 9 and 10 and 11
is the axiom of choice. These axioms were assumed by Church (1940) since they
are necessary in obtaining recursive arithmetic.

The following are some theorems which are the consequences of the formal

axioms.

=

- (z)fz D fy

2. fy D (3z)f=

3. (2)p D fz] > -p D (a)f=

4. (@)fz>pl D> (3=)fz=Dp

6. z=yD-feD fy

53

T.z=yDfe=fy
B.z=yDy==x
doz=yDy=zDz=z2

10. f = Az{fz}

These and a number of other related theorems were proved by Church (1940)
in the process of developing the theory of recursive arithmetic. The questions
regarding soundness and completeness of this langnage (with the type symbols
included) can be answered as follows. First, a valid formula of the second or-
der logic refers to a wff that has the truth-value true fér every assignment of
values, from an arbitrary domain of elements, to the variables and assignment
of sets of ordered n-tuples to the functional variables. A language is then said
to be complete if every valid formula of the language can ultimately be derived
from the axioms, according to the inference rules of the language. Note that a
completeness proof need not necessarily be constructive, i.e., provide an exact
method for obtaining every valid formula of the language. A language is called
sound if the converse is true, i.e., if only valid formulas are derivable from the
axioms and the rules of inference.

According to this definition of completeness, first-order logic was proved com-
plete by Godel (1930). For second and higher order logics it was proved by
Godel (1931) that regardless of the choice of the underlying axioms, the language

will contain wffs that are valid but not derivable from the axioms according to

54

the rules of inference. Henkin (1950) showed, however, that a second order lan-
guage with simple type theory, for example that of Church (1940), can be proved
complete. In fact Henkin (1950) presents such a proof for an w-order language by
modifying the class of (standard) models which provide interpretations for the
language. It is proved in particular, that for any consistent closed wff, A, there
is a (general) model with respect to which A is satisfiable.

Proposition surrogates, of course, can be added to any formal langnage that
provides some form of a notation for ordered n-tuples without changing the
soundness or completeness of the language. For example, proposition surrogates
are added to the language Prolog. The present purpose, however, is to give exam-
ples of how sentences in an indirect context can be represented and manipulated
in this language. In the next section a number of classical examples are presented
and formalized. It is then shown how the rules of inference are used in proofs of

theorems that involve such sentences.

99

CHAPTER 6

Examples

Application of the above theory to three examples are shown in this section.
The first and second examples are taken from Russell (1905) and Church (1987) to
illustrate how the differences in meaning of sentences can be shown by employing
a formalized langugge. The third example is taken from McCarthy (1978) to
illustrate how the formal language can be used for representation and reasoning

about agents knowledge and their reasoning about each other’s knowledge.

6.1 Touchy Yacht Owner

Russell (1905) uses the following example to illusirate how elimination of
contextual descriptions with respect to different scopes can give rise to different
meanings of the same sentence. The same example is used here and the two
different meanings are formalized according to the formal language presented in

the previous section.

.o. I have heard of a touchy owner of a yacht to whom a guest, on
first seeing il, remarked, ‘I thought your yacht was larger than it
13”; and the owner replied, ‘No, my yachi is not larger than it is’.

What the guest meant was, ‘The size that I thought your yacht was 1s

56

greater than the size your yachi is’; the meaning attributed to him i3,

‘I thought the size of of your yacht was greater than the size of your

yacht’

Let yl be a primitive constant denoting the function that returns the length of
the yacht, if its argument is of the right type. Similarly, I is a primitive constants
denoting the guest, and thought is a primitive constant which denotes a binary
predicate that is true if its second argument is the proposition that is thought

by its first argument. The wff corresponding to what the guest meant is

(3z)yl(z) A thought(I, | {ey)yi(y) Ay > z)) (6.1)

and the wff corresponding to the meaning attributed to the guest by the owner

is

s

thought(I,’ (cz)yl(z) A (w)yl(y) Ay > e (6.2)

8.2 The Art Collector

The second example is taken from class notes of Church (1987) and is follows.

Suppose that C is a wealthy art collector and has heard of a certain
painting P, one of the few paintings by the eighleenth century masters,
that is still in private hands rather than in & museum. He would
like to approach the owner for permission {o view the painting and o

possibly persuade him to sell. C therefore asks D, an art dealer, ‘Who

a7

owns P? D replies that he does not know but will {ry to find out for

him. D Later refurns to C with the report
E says that, O owns the painting which you are seeking (6.3)

where E ts an art ezpert known lo both C and D.

There are two rather different cases in which D’s report 6.3 to C
might be considered {ruthful. In the first, D has directly approached
E, ezplaining C’s desire {o locate the painting and asking for help
receiving the reply, ‘O owns the paintling whick C is seeking.’ In the
second, D has attended a lecture by E in the course of whick, purely
by coincidence, E remarked that O owns P. The relevant difference
between the two cases is that in the second, E did not know of C’s
desire lo locale the painting and therefore could not have mentioned
tt.

The formalized language outlined in previous sections will be used for a more
careful analysis of difference in the meaning of §.3 in the two cases. The following
propositional functions are needed. The unary propositional function painting
such that painfing(z) expresses that z is a painting. The binary propositional
functions seek, owns, says are such that seek(z,y) expresses that x seeks y,
owns(z,y) tha.t x owns y, and says(z,y) that x said y. The first meaning of 6.3

is then understood as

says(E,| owns(O, (uz) - painting(z) A seeks(C,[z]))) (6.4)

58

The second meaning as

(3z) - painting(z) A seeks(C,[z)) A says(E,) (6.5)
8.3 The Wise Men

The third example is called the The Wise Man Puzzle and has been used to
test the representational ability of formalisms for knowledge representation. The
puzzle has been attiributed to an unpublished note by McCarthy {1978). The

source used here, however, is Konolige (1986).

A ceriain King wishes to delermine which of his thrée wise men is
the wisest. He arranges them in a circle so that they can see and
hear each other and fells them that he will put a white or black spot
on each of their foreheads, but that at least one spoil will be while.
In fact, all three spots are white. He then offers his favor to the one
who will first tell him the color of his spol. After a while, the wisest

announces that his spot is white. How does ke know?

The solution to this puzzle involves reasoning about what other wise men know
and do not know from observations and the king’s announcements. The puzzle
solved here is actually a simplified version of the above puzzle. The simplifying
assumptions are that there are only two wise men, and that after some time the
first wise man announces that he cannot tell the color of his spot, whereupon

the second wise man says his own spot is white. The following corresponds to

59

formulation of the puzzle.

e That A and B both have a white spot, is expressed by

W(A) (6.6)

W(B) (6.7)

e That each wise man knows that there is at least one white spot is expressed

by

(ely)z # y D know(z,| ~W(z) D W(y))) (6.8)

#» That each wise man knows that the other wise man knows that there is at

least one white spot, is expressed by

(2)(v)z # y D know(z, know(y,| -W(z) > W(y))) (6.9)

e That a wise man can see the other wise man’s spot, is expressed by

(zXy)z # vy D -W(z) D know(y,| W(z))) (6.10)

(2)()z # y D ~W(z) D know(y,[-W(2)) (6.11)

o That a wise man knows that another wise man can observe his spot, is

expressed by

(z)(y)z # y D know(z,|W(z) D know(y,|W(z)|)) (6.12)

(z)(y)z # y D know(z,| =W (z) D know(y,|~W(z)))) (6.13)

60

¢ That a wise man’s observation of another wise man’s spot is accurate is

expressed by

(e)v)z # y D -know(z,|W(y)|) D W(y) (6.14)
(2)(v)z # y O know(z, ~W(y)|) > -W(y) {6.15)

o That a wise man knows that another wise man’s observations are accurate,

is expressed by

(2)(y)e # y D know(z,|know(y,[W(z))) D W(z)) (6.16)

(z)(y)z # y D know(z,|know(y,| -W(z)}) D -W(z))) (6.17)

¢ That if 2 wise man does not know the color of his own spot then, it must

be that he knows that the color of the spot the other wise man is white, is

expressed by

(eX(y)z # y D -—know(z,| W(z)|) D know(z,| W(y)}) (6.18)

o That a wise man knows that another wise man knows the above fact is

expressed by

(z)(y)z # y D know(z,| ~know(y,| W(y)|) D know(y,| W(z)[)|) (6.19)

¢ That a wise man can apply the rule of modus ponens in some particular

situations, is expressed by

(2)¥)z#yD-

61

know(z,

—~know(y,| W(y) 1))

A

know(z,

ﬂknow(y,) D know(y, W(z))

2

)

know(z,

—
g

(6.20)

know(y,| W({z) |

(z)y)z#£yD-

know(z,| know(y,| W(z))

A

know(z,| know(y,|W(z

g

) D W(z)

L

2

know(z,|W(z)|) (6.21)

Note that these _Elo not carry the force of an inference rule {o the effect
that if x knows A O B, and A then, x knows B. The latter is clearly
more general and if added to the language as a rule of inference has the
consequence of making the agents omniscient. The above axioms, however,
are specific to the particular situation in which the wise‘ men have been

placed under by the King.

62

¢ That A does not know that he has a white spot, since he made an an-

nouncement to this effect, is expressed by

—know(A,|W(A))) (6.22)

e That B knows that A does not know that he has a white spot, since B

heard A’s announcement, is expressed by

know(B,| ~know(A,|W(A))) (6.23)

That B knows that he has a white spot is a theorem of the above system of

axioms and rules of inference. That is, know(B, W(B)),- is a theorem according

to the following proof.

e From 6.20 by universal instantiation and modus ponens it can be inferred

that

know(B,) -know(A,|W(4) |

——
4

know(B, ﬂknow(A.$ W(B)) D know(A, W(B))b

know(B, know(A,|W(B)])|) (6.24)

which expresses that if B knows that A does not know that the color of A's

spot is white and since B knows that this fact implies that A must know

63

that the color of B’s spot is white then, B would know that A knows that

B has a white spot.

s From 6.19 and by universal instantiation and modus ponens it can be in-

ferred that

know(B,}-wknow(A, W(A)]) > know(A[W(B))) (6.25)

which expresses that B knows that if A does not know the color of his own

spot then, he must know B has a white a spot.

¢ From 6.24, 6.25, 6.23, and by modus ponens it can be concluded that

know(B,|know(A,|W(B)|))) (6.26)

which expresses that B knows that 4 knows that B has a white spot.

o From 6.21 by universal instantiation and modus ponens it follows that

know(B,| know(A,| W(B)))

A

know(B,|know(A,|W(B))) D W(B)})

D

know(B, W{(B)|) (6.27)

which expresses that if B knows that A knows that B has a white spot and
since B knows that this fact would imply that he has a white spot then, B

would know that he has a white spot.

64

o From 6.16 by universal instantiation and modus ponens it follows that

know(B,\know(A, w(B)) o W(B)'i) (6.28)

which expresses that B knows that if A knows that B has a white spot

then, B does have a white spot.

o From 6.26, 6.27, 6.28 by modus ponens it can be concluded that

know(B, lW(B) |

Which expresses that B knows that he has a white spot.

Nt

(6.29)

In the next section, proposition surrogates are added to the formal language
Prolog. It is then shown how each of the above axioms of the wise man puzzle
can be translated into a Prolog clause, with the use of proposition surrogates.
The standard inferencing mechanisms of Prolog are then used to prove the above

theorem regarding B and his knowledge that he has a white spot.

65

CHAPTER 7

Implementation

This section presents how proposition surrogates can be used within current
logic programming languages for knowledge representation. In particular, Prolog
has been used, in spite of its many shortcomings in this area, as the basis for
the logic programming language because of its popularity and wide accessibil-
ity. Other languages for automatic theorem proving, such as that described by
Wos (1984), could have been used and perhaps should have been used since Pro-
log does not directly implement the axioms of equality. However, the importance
and addition of these axioms to an automatic theorem proving system based on
resolution has been addressed by Digricoli (1986). Implementation of proposition
surrogates are discussed in the light of the wise man puzzle presented earlier.

Complete familiarity with Prolog will be assumed, for an introduction to
Prolog as a programming language see Clocksin (1981} and Bratko (1986). The
particular dialect of Prolog used here is called SICStus Prolog, developed by
Carlsson and Widén (1988). In what follows terms starting with capital letters
are Prolog’s logical variables and terms starting with lower case letters are con-
stants. Proposition surrogates are added to the language by iwo predicates ps(A,

B) and wff(A, B). The predicate ps(A, B) is true if and only if B is the proposition

66

surrogate under Alt(0) corresponding to wff A according to the modified algo-
rithm for obtaining proposition surrogates as presented at the end of the section
titled Proposifion Surrogates and Pointers and is otherwise false. The predicate
wit(A, B} is true if B is the wif corresponding to the proposition surrogate A and
is otherwise false. Both ps(A, B) and wff(A, B) are defined in Appendix C.

A Prolog clause corresponding to each axiom of the formulation of the wise

man puzzle can now be written. For example, the Prolog clause corresponding
to 6.6 is

w(a).

and the clause corresponding to 6.8 is

know(X, P) :-
ps((w(Y) :- non(uw(X)}), P),
diff(X, Y).

which is a Horn clause of the form A :- B, expressing that A is true if B is true.
In this case, B is the conjunction of two predicates ps({w(Y) :- non(w(X))),
P) and diff(X, Y). The goal predicate ps((w(Y) :~ non{(w(X})), P) is true iff P
is the proposition surrogate under Alt(0) of w(Y) :- non(w(X)). The predicate
diff(A, B) is true if A and B are different variables or constants and is otherwise
false. Both predicates are defined in appendix C. Thus, the above Horn clause

is a shorthand for

know(X, lambda([*F, [«G, V1], [=H, [«1, V2111,
[*e:-?, [’ew?, V3], [’Onon’, [’ew’, V411]
)

67

Note, however, that as a result of the call to ps/2 some goals are frozen to ensure
proper evaluation of proposition surrogates in case one of the variables becomes

bound. The frozen goals in this case are of the form

ps{((w(Y) :- nmen(w(X))),
lambda([*F, (=G, V1], [»H, (=5, V2111,
[’e:->, ['ow’, V3], [’@non’, [’0w’, V4]]]
)

and

wEtE((w(Y) :- non{(w(X))),

lambda([*F, [+G, V1], [=H, (=3, v211],
[re:-:, ["ew’, V3], [’@non’, [’0w’, V4]]]
) .

If either X or Y becomes bound as a result of further computation, then the
ps goal will automatically get reevaluated which forces new binding on V1, V2,
V3 or V4. Conversely, if either V2 or V4 becomes bound as a result of further
computation, then the wff goal will automatically get reevaluated which forces
new bindings on X or Y. The ahove Prolog code, in turn, corresponds to the

following wif of the formalized language.

(z)Ny)= £y D
know(z, < AINFAAANAGAB < I,lt » F,+Agt, < *N,lt x» G, B >>>,

@ >, 8W,z,@-,8W,y >) (7.1)

The complete list of Prolog clauses corresponding to the formalization of the

wise man puzzle is as {ollows:

68

1) w(a).

2) w(b).

3) know(X, P) :-
ps(w(Y) :- non(w(X)), P),
diff(X, Y).

4) know{(X, P1) :-
ps(u(Y) :- non(w(X)), P),
ps{know(Y, P), P1),
diff(X, Y).

5) kxnow(Y, P} :-
ps(w(X), P),

w(X),
diff(X, Y).

6) know(Y, P) :-
ps{(non(w(X)), P},
non(w (X)),
diff(X, Y).

7) know(X, P1) :-
ps(w(X), P),
ps (know(Y, P) :- w(X), P1},
diff(X, Y).

8) xnow(X, P1) :-
ps{(non(w(X)), P),
ps(know(Y, P) :- non(w(X)), P1),
diff(X, Y).

9) w(Y) :-
ps(w(Y), P),
know(X, P),
diff (X, Y).

10) non{w(¥)} :-
ps{(non(u(Y)), P),
know(X, P),
dif£(x, Y).

11) know(X, P1) :-
ps(v(X), P),
ps(w(X) :- know(Y, P), P1),
dif£(X, Y).

12) know(X, P1) :-
ps(non(w(X)), P),
ps(non(w(X)} :- know(Y, P), P1),
diff(X, Y).

13) know{X, P) :-
ps(w(Y), P),

69

ps(w(X), P1),
non(know(X, P1)),
diff(x, Y).
14) kxnow(X, P2) :-
ps(w(X), P),
ps(w(Y), P1),
ps(know(Y, P) :- non(know(Y, P1)), P2),
diff(X, Y).
15) know(X, P) :-
ps(w(X), P1),
ps(know(Y, P1), P),
ps(u(Y), P2),
ps(know(Y, P1) :~ non(know(Y, P2)), P3),
know(X, P3),
ps (non(know (Y, P2)), P4),
xnow(X, P4),
diff (X, Y).
16) know(X, P) :-
ps(w(X), P),
ps(w(X) :- know(Y, P), P1),
xnow(X, P1),
ps{(know(Y, P), P2),
know(X, P2).
17) non(know(a, w(a))).
18) know(b, P) :-
ps(w(a), P1),
ps (non(know(a, P1)), P).

The above set of clauses will sometimes lead to an infinite recursion since
Prolog follows a depth first left to right clause evaluation order. This is because
clauses (5) and (9) are mutually recursive with no boundary condition. Notice
that if Prolog had a different proof search strategy, e.g. breath first, the above
mutually recursive definitions would not pose a problem. This pfoblem, however,
can easily be solved by writing a top level interpreter to either change the clause

evaluation order, perform depth-first search with depth bounds, or to detect

70

circularities. Another solution is to eliminate one of the two clauses. In general,
of course, it is better to write a top level interpreter since either of these clanse
may play an important role in proving a particular theorem.

The above set of Horn clauses were used to answer questions, in each case
first the question is expressed in both English and clause form. The answers, as
provided by the Prolog interpreter, are then presented.

% q1: Does B know that he has a white spot?
?7- ps(w(b), P), know(b, P).

yes

% q2: Does B know that A has a white spot?
7- ps(w(a), P), know(b, P).

yes

% q3: Who knows that he has a white spot?
7~ ps(w(X), P), know(X, P), write(X).

b
yes

% q4: Does A know that he has a white spot?
?- ps(u(a), P), know(a, P).

no

% q5: List everyone who knows that he has a white sopt.
7- ps(w(a), P), know(A, P), write(A), fail.

b
no

The goals q1 and q2 are self explanatory, however, q3 differs from gl in that X is

an unbound Prolog variable which gets bound to b as a result of the computation.

71

The goal q4 is a test to show that the set of axioms defined for this puzzle does
not imply that A knows that he has a white spot, as this is known not to be the

case. The goal q5 differs from q3 in that backtracking is forced to ensure that

all solutions are found.

72

CHAPTER 8

Conclusion

This dissertation has carefully examined one of the most basic and primi-
tive relations, the identity relation and the associated rules of substitutivity of
equals for equals, which is present in formal languages including those used for
programming a computer. It was shown that the commeon interpretation of the
identity relation, i.e. a relation between only denotation of names, leads to the
paradox of the name relation. Also that it is the source of inconsistencies when
classical set of axioms and rules of inference are assumed by the formal language.

The thesis defended by this dissertation is that the elimination of the paradox
of the name relation neither requires a modification of the classical set of axioms
nor the rule of substitutivity of identity. Various solutions, under Alt(0), of the
paradox of the name relation were examined and shown to be defective. One of
these solutions, namely proposition surrogates, required neither modification of
the axioms of the formal language nor placed any restrictions on the substitutivity
of 1dentity.

The proposition surrogate solution, however, failed to také account of the
primitive constants of the formal language, names that do not have a functional

form. It was shown that the proper use of pointers within the algorithm for

73

obtaining proposition surrogates can eliminate the problem. The algorithm for
obtaining proposition surrogates of a wff was accordingly modified. It was then
proved that the paradox of the name relation can no longer arise if sentences
in indirect context are formalized according to the new proposition surrogate
algorithm.

These new proposition surrogates were added to two formal languages. It
was also shown, by examples, how sentences that are in an indirect context can
be formalized and how their respective rules of inferences is used in the process
of reasoning with sentences that are in an indirect context.

It was shown that standard formal languages, e.g. first order logic, can be
extended with proposition surrogates to deal with facts that have traditionally
been expressed in modal logics. It has been argued that such facts can not ade-
quately be expressed in standard logics; the findings and results recorded here,
however, are to the contrary. In fact, the proposition surrogate approach has
certain advantages over modal logics and so far no disadvantages. Proposition
surrogates can be added, in a conservative manner, to standard automatic rea-
soning systems. This allows automatic reasoning systems to deal with facts and
statements that were considered outside their domain of application.

This method of resolving the paradox and extending the formal language is
of course different from the axiomatic approach. That is, ultimately it should be
possible to write a set of axioms that capture the primitive ideas behind the par-

ticular method of resolving the paradox. Such a set of axioms, for example, were

74

proposed for the Frege-Church approach to resolving the paradox and proved
sound, using a version of possible worlds model, under Alt(2) by Church {1951).
A similar set of axioms were proposed and proved sound, using a set-theoretic

model, under Alt(1) by Church (1986). The extension of these set of axioms to

Alt(0), however, seems to be a non-trivial task and is an open problem.

75

APPENDIX A

Contextual Descriptions

Application of Russell's contextual descriptions to resolve a paradox in the
absence of the extensionality principle and restoration of the paradox in the
presence of this principle, is presented here. Consider the example about Pat

that was presented in the introductior. According to to Russell’s (1905) solution,

2.1 should be formalized as:
know(Pat,(iz)Miketelephone(z)) (A.1)

The expression ‘Mike’s telephone number’ is taken to be a description and not
a name. This expression denotes the x, such that x is Mike’s telephone number.
The symbol ¢, according to Russell is an incomplete symbol of the language.
When reading formulas that contain the ¢ symbol, it is best to replace them with
a ‘the’. Formula A.1 expresses the proposition that Pat knows the x, such that

x is Mike’s telephone number. Sentence 2.2 should be formalized as:
(cz) Miketelephone(z) = (vy)Marytelephone(y) (A.2)

Formula A.2 expresses the proposition that: the x, such that x is Mike’s telephone
number is equal to the y, such that y is Mary’s telephone number. One might

be tempted to replace (1z)Miketelephone(z) for (ty) Marytelephone(y} in A.l

76

based on A.2 arriving at:
know(Pat, (cy)Marytelephone(y))

which is the paradoxical conclusion corresponding to 2.7.
however, is not valid on the grounds that A.1 and A.2.
formulas which correspond to the formalized language.

hand for the well-formed formulas of the language. This .

is referred to as an incomplete symbol of the language. =-:.

contains the ¢ symbol has a corresponding well-formed for-

language. The procedure for removing descriptions was s: = ...

Principia Mathematica, see also Church (1959). According - ri-:

well-formed formula corresponding to A.1, is:

know(Pat,(3z).[Miketelephone(z) =,z = -~ -

The subscript x under the = sign is used to denote unive----

notation used by Russell in Principia Mathematica. Not:

part of formula A.4, can be identified with the expression (:.:.\!

This is due to the fact that descriptions are defined contextu

formula corresponding to formnia A.2, is :

T

(3a) - [Miketelephone(z) =, z = a](3b) - [Marytelephon

The paradoxical conclusion is avoided on the grounds tha:

of formula A.4, can be identified with (:z)Miketelephone!

77

sible to replace it with (.y)Marytelephone(y) or its corresponding well-formed
formula.

The axiom of extensionality for predicate symbols is:

P(z)=. Q(z) D P=Q (A.6)

Addition of this axiom to the underlying logic will allow derivation of a for-
mula that corresponds to the paradoxical conclusion 2.3. This is on the grounds
that 2.2 superset Miketelephone(z) =. Marytelephone(z). Based on the above
axiom then Miketelephone = Marytelephone. The latter equality allows re-

placement of Miketelephone(z) for Marytelephone(z} in A.4, resulting in:
know(Pat,(Ja) - [Marytelephone(z) =, ¢ = ala) (A.7)

which is the well-formed formula corresponding to the paradoxical conclusion
2.3. This example shows that the theory of descriptions cannot be adopted as a
solution to the paradox of the name relation, if the axiom of extensionality for

predicate symbols is admitted in the underlying logic.

78

APPENDIX B

McCarthy’s Solution

In order to lay the groundwork for reintroducing the paradox of the name
relation in the first-order theories of individual concepts and propositions, some
definitions and one example from McCarthy (1979) are reproduced in this section.
A new example is then presented, whose analysis in the light of the definitions
given, leads however, to a paradoxical conclusion.

From the third paragraph on page 130 and conventions 1-9 of page 131 of
McCarthy (1979),- it is concluded that the formalized language for expressing

items of knowledge has the two following linguistic domains.

Real world objects constitute a linguistic domain whose members are (or at
least include) italic terms with all letters lower case. Members of this
linguistié domain denote individuals in the real world. For example ‘mike’
is a member of this (linguistic) domain and denotes some individual in the
real world, whom (or which) we may therefore call simply mike. Moreover,
the name ‘mike’has in addition to its quotation name also the name ‘Mike’.
Thus mike is the denotation‘of the name ‘Mike’, and the intention is to use

the name ‘Mike’in place of the more usual quotation name “mike”.

79

Concept objects constitutes a linguistic domain whose members are (or in-
clude) italic terms starting with a capital letter. Such terms are understood
as denoting concepts of individuals, but the question as to what these con-
cepts really are is left open as not being central to the theory. For example,

Mike is the concept associated with the name ‘Mike’.

Some philosophical issues concerning the nature of the members of these two
domains are left open. It is clear, however, from paragraph 3 of page 130 of
McCarthy (1979), that members of these two domains are not to be ordinary
names, as in Frege (1892), which have both a denotation and a sense. Members
of these two domains are capable only of denoting; not of connoting. Consider the
example on page 129 of McCarthy (1979), which was repeated in the introduction
section. McCarthy avoids the paradoxical conclusion by formalizing sentence 2.1,
as:

know(pat, Telephone(Mike)) (B.1)

where formula B.1 follows from formulas (1) and (10) of McCarthy (1979), with

function types:
e know: Realworldobjects x Concept — ¢
o Telephone: Concept — Concept
o Mike € Concept

o pat € Realworldobjects

80

The above notation is used for specifying the type of each function symbol
and each predicate symbol. For example, the first argument of know is from the
domain Realworldobjects. The second argument is from the Concept domain
and the result i1s the truth-value {. The argument of the function Telephone 1s

from the Concept domain, as is its result. Sentence 2.2 is formalized as:
true(Equal(Telephone(Mary), Telephone(Mike))) (B.2)

This is formula (26) of McCarthy (1979) with function types

¢ true: Concept — ¢

Equal: Concept x Concept — Concept

Telephone: Concept — Concept

Mike € Concept

L

Mary € Concept

It is claimed that from, B.1 and B.2, it does not follow that
know(pat, Telephone(Mary)) (B.3)

where B.3 follows from equations (27) and (10) of McCarthy (1979) and is the
" formalization of the paradoxical conclusion 2.3. Let us examine the basis of this
claim. Formula B.2 seems to assert that the two concepts of Mary’s telephone

number and Mike’s telephone number are equal to each other. If this were the

81

case, by the axioms of equality we would be able to arrive at the paradoxical
conclusion B.3, by replacing Telephone(Mary) by Telephone(Mike) in formula
B.1. However, sentence 2.2 is not an assertion about the concepts of the telephone
numbers of Mary and Mike, because it is not a sentence occurring in an indirect
context. Sentence 2.2 rather, is an assertion abont the two telephone numbers

of Mike and Mary. Thus it is better to formalize 2.2 as
equal(denot(Telephone(Mary)),denot(Telephone(Mike))) (B.4)
where function types are as follows:

o equal : Realworldobjects x Realworldobjects — ¢

denot : Concept — Realworldobjects

Telephone : Concept — Concept

Mike € Concept

Mary € Concept

The well-formed foermula B.3 does not follow from B.l1 and B.4, because
B.4 expresses an equality between the denotations of T'elephone(Mike) and
Telephone(Mary). On the other hand, B.1 is a relation beiween Pat and
Telephone(Mike). From what two formulas can formula B.3 be obtained as
a conclusion? Consider the sentence

Pat knows that Mike's telephone number is the same as

Mary’s telephone number (B.5)

82

which is formalized as

true(K(Pat, Equal(Telephone(Mary), Telephone(Mike)))) (B.6)

This is formula (28) of McCarthy (1979). According to McCarthy (1979) B.1
and B.6 plus suitable axioms about knowledge will allow B.3 as a conclusion.
Consider now the following example in which formalization in the theory

proceeds analogously to that of the above example. The paradoxical conclusion,

however, cannot be avoided. The two sentences are:

Pat knows that Pythagoras knows whether the morning star is the evening star

(B.7)

and

Pat knows that the morning star is the evening star (B.8)

the paradoxical conclusion which cannot be avoided is:

Pat knows that

Pythagoras knows whether the morning star is the morning star (B.9)

Sentence B.7 would have to be formalized in such a way that Pat, Pythagoras,
M star and Estar are concepts associated with Pat, Pythagoras, the morning

star and the evening star.

true(Know(Pat, Know(Pythagoras, Equal(M star, Estar)))) (B.10)

where types are as follows:

83

¢ Know : Concept x Concept — Concept
e Equal : Concept — Concept
e Pat, Pythagoras, Mstar, Estar € Concept

Sentence B.8 would have to be formalized as

know(pat, Equal(M star, Estar))} (B.11)

From B.10 and B.11 and the snitable axioms of knowledge as used in the example

on page 129 of McCarthy (1979), we can conclude that
true(K now(Pat, Know(Pythagoras, Equal(Mstar, M star)))) (B.12)

This is the well-formed formula corresponding to the paradoxical conclusion B.9.
This conclusion can be reached on the ground that B.10 expresses a relation
between M star and Estar and B.11, expresses that Pat knows that the two are
equal. Thus, by the axioms of equality and the suitable axioms of knowledge,
the two can be interchanged in any well-formed formula.

Sentence B.9 is not a conclusion from B.7 and B.8, according to Frege's (1892)
original solution. Unlike McCarthy’s first-order theortes of first-order proposi-
tions and concepts, Frege allows an infinite hierarchy of concepts of names. Fur-
thermore, every time a name occurs at level ¥ of an indirect context, it will
automatically shift its denotation to what was the sense of the same name at a

level N — 1 indirect context. Level zero of indirect context is of course the same

84

as the ordinary context for names. In B.7 the morning star and the evening start
occur in a doubly indirect context. Once in the context of Pythagoras knowing
and again in the context of Pat knowing. The substitution of the morning star
for the evening siar in sentence B.T is not allowed on the ground that the two
names denote two different objects. In B.8 the names the morning star and the
evening siar occur in a singly indirect context and thus denote the sense of the
same names in an ordinrary context. Whereas, in B.7 the two names occur in a
doubly indirect context and thus denote the sense of the same names in a singly
indirect context. Note that the sense of name in a singly indirect context differs

from the sense of that name in an ordinary context.

85

APPENDIX C

Prolog Code

% Proposition surrogates under Alt(0)

v

% The freeze mechanism is used to define proposition surrogates
% incrementaly. Wff containing prolog variables will thus have
% the proper form.

l/' .
% The goal ps(w(X), P) binds P to lambda([+F, i1, [ow, X1l)

% The goal ps(w(s(Y)), P) binds P to

% lambda([*F, [*G, A]], [ew, [es,Y1]]).

yA

% Note that the variables X, or Y do not directly occur in the
% proposition surrogate. A two way constraint, however,

% between X, Y and X1, Y1 will ensure proper evaluation.

:- op(250, fy, *). /* the dereferencing operator »/

% wff(A, B) is true if B is the wif corresponding to the
% proposition surrogate A of B under Alt(0).

wff(lambda(A, B), D) :- wff_1(A, B, C), wif_2(C, D).

Y e e e mm——— e
% wif_i(A, B, C) is true if C is the result of binding the

% bound variables of the lambda term A to the values in the

% list B.
ORISR PSS SR

wif_1(TAlAs], [BiBs]l, [ClCs]) :-

]
‘9

86

wif _11(A, B, C),
wft_1(As, Bs, Cs).
wif_1((J, 00, [1).

wff _11(A, B, C) :— var{A), ', wff_111(A, B, C).
wff_11(«B, B, *B) :- !,
wiff_11(A, B, C) :- wff_1(iA, B, C}.

wif_111(iA, B, C) :- var(B), !'.
wif_111(A, lambda(F, G), lambda(F, G)).

L}

Y et ek e
% wit_2(A, B) is true if B is the term corresponding to

% the list A such that the head of B is the first element

% of A and the arguments of B are the remaining elements of A.

Yt e e e m e — o ———

wif_2(A, B) :- wff_4(A, A1), !, construct(B, Al).
wif_2([=(P) | As], B) :-

pointer(P),

deref(P, i),

atomic(A), /* is it a predicate name? */

]

wif_3(As, Cs),

construct(B, [A | Cs]).
wff_2(#(P), A) :- pointer(P), deref(P, A4).

wif _3([A] As], fC¢ | €s)) :- ', wiff_2(A, C), wiff_3(As, Cs).
wif_3(0, 0).

b e
% wif_4(A, B) is true if A is the list such that all of its

% members are either primitives or proposition surrogates and B
% is a list similar to A except that names of the form *QA are
%, replaced by A.

b e e e mm s mmmm e ————

wif_4([AlAs], [A1|A1s]) :-
',
wif_41(A, A1),
wif_4(As, Als).

wif_a(01, [1).

87

wif_41(A, A) :- var(a), 1.
wff_41(lambda(X, Y), lambda(X, ¥Y)) :- !'.
wif_41(=(A), DA) :- pointer(A), !, deref(A, DA}.

% ps(W, P) is true if P is the proposition surrogate under
% alt(0) of W

ps(W, P) :-
ground(W),
¥
psi{¥, P).

ps(W, P) :-
psi(W, P),
allvars(¥W, X),
freezeall(X, ps(W, P}),
pvars(P, Y),
freezeall(Y, wif(P, W)).

psi1(Wff, lambda(Formi, Form2)}) :-
ps_1(Wff, Form),
/* look out for the constraints on the vars in Form2 =»/
ps_2(Form, Form3, Form4),
Formi = Form3,
Form2 = Form4.

% ps_2(A, B, €) is true if B is a similar structure to A execpt
%, that all primitive constants have been replaced by variables

% and C is a similar structure to A except that all primitives

% constants are replaced by pointers

Y e e e - mm— oo

1

ps_2([a | B]l, [F1 | F2], [G1 | G2])
'
ps_21(A, F1, G1),
ps_2(B, F2, G2).

ps_2({1, 01, ().

ps_21(*(A), V, A1) :- var(A), !. /* leave prolog vars alone */
ps_21(»(a), *(V), AP) :- atomic(A), !, pointer(A, AP).

88

ps_21(lambda(X, A), V, lambda(X, A)) :- !.
ps~21(l, F1, G1) :- ps_2(l, Fi, G1).

% ps_1(A, B) is true if B is a list corresponding to the

% predicate A such that the first element of B is the name of

% the predicate A and the arguments of the predicate A form the
% other members of the list B.

ps_1(A, *(A4)) :- primitive(a), !.
ps_1(A, A1) :- A =.. Bs, ps_11(Bs, Bis), ps_12(Bls, A1).

ps_12([a | B], [A1 | B1]) :- ¢, ps_121(A, A1), ps_12(B, B1).
ps_12(01, D).

ps_121(=(4), *(A)) :- !,

/* keep the form of prop. surr. */
ps_121(lambda{A, B), lambda(A, B)) :- 1.
ps_121(A, A1) :- ps_1(A, Al1).

RIS SRS S
%, ps_11(A, B) is true if B is a list identical to A except that
% every primitive constant in A has been replaced another name
% of the form *A.

Y ot m e mm e e m e — e m e

ps_11([AlAs], [AflA1s]) :~ !, ps_111(A, A1), ps_11{(As, Als).
ps_11([1, [D).

ps_111(A, =(A)) :- primitive(A), !.
ps_111(A, A).

e emmmm i mmmm o mmmmm e m e e e m
%

% UTILITIES

'/' R
ISR
construct{(A, B) :- A =.. B.

diff(X, ¥) :- X \== ¥,

89

oy

A
A
A

d

P

like freeze(X, G), except that it works even if X
is bound to a var

elay(X, G) :- ’SYSCALL’(’$geler’(X,G)).

rimitive(A) :- var(a), !.

primitive(A) :- atomic(A).

pA
%
%
%

/
P

P

d

A
%
A
A

g

pointer(A, B) is true if A is an atom or
int and B is Qatom or Qint

* 64 is ASCII code for Q@ =/
ointer(A, B) :- atomic(A), name(A, S), name(B, [64 | S1).

ointer(P) :- atomic(P), name(P, [64 | S1).

eref(P, A) :- pointer(P)}, name(P, [64 | S]), name(A, 5).

ground(X) is true if X is a wff with no
vars, except those in the prop. sur.

round(X) :- atomic(X), !.

ground(X) :- nonvar(X), X = lambda(F, G), !.

g

round(X) :- functor(X, F, N), groundi(X, 0, N).

90

groundi(X, N, N) :- !.
ground1(X, I0, W) :-
I is I0 + 1,
arg(X, X, Xi),
ground(Xi),
ground1(X, I, N).

\
% freezeall(L, P) Place a freeze on P for all the vars in L

freezeail([X!Xs], P) :- !, freeze(X, P), freezeall(Xs, P).
freezeall ({1, _).

K e mm e
¥ allvars(W, L) L is the list of all vars in W,
% except those occuring in prop. sur.

Y e mmm e mm e m—mm——emmem e m————————m— e
allvars(Ww, [X{Xs]) :- allvars(w, [XIXxs]-[1).

allVars(X, [X | 2}-2) :- var(X), !'.
allvars(W, X-Y) :- W =.. L, allvars_1(L, X-Y).

allvars_1([AlL], X-Y) :-
1
allvars_11(A, X-X1),
allvars_1(L, Xi-Y).

allvars_1([J, X-X).
allvars_11(aA, [A | X]-X) :- var(A), !.
allvars_11(A, X-X) :~ atomic(A), !.

allvars_1i1(lambda(F, G), X-X) :- !.
allvars_11(A, X-Y) :- allVars{A, X-Y).

pvars(lambda(A, B), [XIXs]) :- pvars_1(B, [xixs)-{1), !.
pvars(lambda(i, B), [1).

pvars_1([A}B], X-Y) :- !, pvars_2(A, X-Z), pvars_1(B, Z-1).

91

pvars_1([], X-X).

pvars_2(X, [X12]1-2) :- var(X), !.

pvars_2(X, Z-2Z) :- atomic(X), !.
pvars_2(lambda(F, G), X-Y) :- !, pvars_1(G, X-1).
pvars_2(4, X-Y) :- pvars_1(4, X-Y).

t1 :- ps((non(w(X)) :- w(Y)), B), wif(B, c).

t2 :-
ps(equal(scott, author(waverly)), A),
ps (know(george, A), B),
wff (B, know(george, C)),
wft(C, D).

t3 :- ps(equal(mstar, estar), A).

t4 :-
ps((non(u(X)) :- w(Y)), B),
ps (know(Y, B), C),
wff(C, know(Y, B)),
wff(B, Z).

t5 := ps{(w(Y) :- non(w(X))), B), wif(B, C).
t6 :- ps(5, P), wif(P, A).
t7 :- ps(w(X), P), ps(x(j, P}, P1).

t8 :- ps(w(X), P), wif(P, Q).

t9 :- ps(w(X), P), ps(x(j, P), P1), wtf(P1, Q1).
£10 - ps(w(X), P), wif(P, Q), ps(x(j, P), P1), wif(P1, QD).
tit :-

T = w(X),

ps(T, QJ),

X = s(Y),

92

Y =4,
ps(T, P),
Q =1,
R =P.

% The following corresponds to the formulation of
% the wise man puzzle as presented in the Examples section

w(a).

w(ib).

xnow(X, P} :-
ps((w(Y) :- non(w(X))), P),
diff(x, Y).

know(X, P1) :-
ps{(=(Y) :- non(w(X))), P),
ps(know(¥, P), P1),
diff(Xx, Y).

know(Y, P) :-
ps(w(X), P),
w(X),
daiff(X, Y).

know(Y, P) :-

ps{non(w(X)), P},
non(w(X)),
diff(X, Y).
know(X, P1) :-
ps(w(X), P),
ps ((know(Y, P) :- w(X)), P1),
dif£(X, Y).
know(X, P1) :-
ps(non(w(X)), P),
ps((xnouw(Y, P) :- nen(uw(X))), P1),
dit£(Xx, Y).
% Can not be added due to circularities
% w(Y) :-
% ps(w(Y), P},
Y, diff(x, Y).
% non(w(Y)) :-
% ps{non(u(Y)), P),
% Xknow(X, P),

93

%oodiff(X, Y).
know(X, P1) :-
ps(w(X), P),
ps{(w(X) :- know(Y, P)), P1),
diff(X, Y).
know(X, P1) :-
ps(non(w(X}), P),
ps((non(w(X)) :- know(Y, P)), P1),
diff(X, Y).
know(X, P) :-
ps(w(Y), P),
ps(w(X), P1),
non(know(X, P1)),
diff(X, Y).
know(X, P2) :-
ps(w(X), P),
ps (w(¥), P1),
ps((know(Y, P} :- non(kxnow(Y, P1))), P2),
diff(X, Y).
know(X, P) :-
ps(w(X), P1),
ps(know(Y, P1), P),
ps(w(Y), P2),
ps ((know(Y, P1) :- non(know(Y, P2))), P3),
know(X, P3),
ps(non(know(Y, P2)), P4),
know(X, P4),
diff(Xx, Y).
know(X, P) :-
ps(w(X), P),
ps((w(X) :- know(Y, P)), P1),
know(X, P1),
ps (know(Y, P), P2),
know(X, P2).
non(know(a, w(a))}).
know(b, P) :-
ps(w(a), P1),
ps(non(know(a, P1)), P).

% The following corresponds to some questions that can
% automatically be answered

94

%, Does B know that he has a white spot? Ans is yes
qt :- ps(w(b), P}, know(b, P).

%, Does B know that A has a wvhite spot? Ans is yes
q2 :- ps(w(a), P), Xxnow(b, P).

% Who knows that he has a white spot? Ans is b
q3 :- ps(w(X), P), know(X, P), write(X).

% Does A know that he has a white spot? Ans is no
g4 :- ps(w(a), P), know(a, P).

% List everyone who knows that he has a white spot. Ans is b
q5 :- ps(w(A), P), know(A, P), write(A), fail.

% Print out everything that is known to A.
q6 :- know(a, P), viff(P, W), write(¥), fail.

95

[Ajdu60]

{Ajdub7a]

[Ajdu67b]

[And163]
(Andr86]
(Brat86]
(Carl8s]
[Carn56)
(Cerr86]
[Chur40]
(Chur41]

[Chur46]

Bibliography

Kazimierz Ajdukiewicz, A method of eliminating intensional sen-
tences and sentential formulae, pp. 17-24, in Atti del XII Congresso
Internazional di Filosofia (1960).

Kazimierz Ajdukiewicz, Intensional Expressions, in Jerzy Giedymin,
editor, Kazimierz Ajdukiewicz The scientific world-perspective and
other essays 1931-1963, pp. 320-347, D. Reidel Publishing Company
(1967).

Kazimierz Ajdukiewicz, Propositions as the connotation of a sen-
tence, in Jerzy Giedymin, editor, Kazimierz Ajdukiewicz The scien-
tific world-perspective and other essays 1931-1963, pp. 348-361, D.
Reidel Publishing Company (1967).

Peter B. Andrews, A reduction of the axioms for the theory of propo-
sitional types, Fundametla Mathematicae, 52:345-350 (1963).

Peter B. Andrews, An Iniroduction to Mathematical Logic and Type
Theory: To Truth Through Proof, Academic Press (1986).

Ivan Bratko, PROLOG Programming for Artificial Intelligence,
Addison-Wesley (1986).

Mats Carlsson and Johan Widén, SICStus Prolog User’s Manual
(1988).

Rudolf Carrap, Meaning and Necessily, The University of Chicago
Press, second edition (1956).

Luis Farifias del Cerro, MOLOG: A System That Extends PROLOG
with Modal Logic, New Generation Compuiing, 4:35-50 (1986).

Alonzo Church, A Formulation of the simple theory of types, The
Journal of Symbolic Logic, 5:56-68 (1940).

Alonzo Church, The Calculi of Lambda-Conversion, Princeton Uni-
versity Press (1941).

Alonzo Church, A Formulation of the Logic of Sense and Denotation,
The Journal of Symbolic Logic, 11(1) (1946), Abstracts of Papers.

96

[Chur50]

[Chur51]

[Chur56]
[Chur73]
[Chur74]

[Chur76)

[Chur83|

[Chur86)

[Chur87]
[Cloc81]

[Colm82)

[Colm84]

[Digr86]

Alonzo Church, On Carnap’s Analysis of Statements of Assertion and
Belief, Analysis, 10(5) (1950}.

Alonzo Church, A Formulation of the Logic of Sense and Denotation,
in P. Henel, H. Kallen, and S. Langer, editors, Structure Method and
Meaning, Essays in Honor of Henry M. Sheffer, The Liberal Arts
Press {1951).

Alonzo Church, Introduction fo Mathematical Logic, Princeton Uni-
versity Press (1956).

Alonzo Church, Outline of a Revised Formulation of the Logic of
Sense and Denotation (Part I), Nous, VII(I):24-33 (1973).

Alonzo Church, Outline of a Revised Formulation of the Logic of
Sense and Denotation (Part II), Nous, VIII:135-156 (1974).

Alonzo Church, Comparison Of Russell’s Resolution Of The Semanti-
cal Antinomies With That Of Tarski, The Journal of Symbolic Logic,
41(4) (1976).

Alonzo Church, Intensionality and the Paradox of the Name Relation
(March 1983), The content of this paper was presented as an invited
lecture at a joint symposium of the A.P.S. and the Association for
Symbolic Logic in Berkeley, California.

Alonzo Church, A Revised Formulation of the Logic of Sense and
Denotation Under Alternative(1l) (1986), Handwritten lecture notes
to be published. University of California at Los Angeles.

Alonzo Church, An Illustration of Frege’s Theory of Meaning (1987),
Class notes, UCLA.

W. F. Clocksin and C. S. Mellish, Programming in Proleg, Springer-
Verlag (1981).

A. Colmerauer, Prolog and infinite trees, in K. Clark and S. A.
Tarnlund, editors, Logic Programming, pp. 231-251, Academic Press
(1982).

A. Colmerauer, Equations and inequations on firite and infinite trees,
in Internaiional Conference on Fifth Generation Computer Systems,
Tokyo, Japan {1984).

V. 1. Digricoli and M. C. Harrison, Equality-Based Binary Res-
olution, Journal of the Association for Computing Machinary,
33(2):253-289 (1986).

97

[Fagi85]

[Freg77]

[Freg85)
(Gill85]

[GodeT77a]

[Gode77b]

[Halp85a)

(Halp85b]

[Henk49]

(Henk50]

[Henk63]

R. Fagin and J. Y. Halpern, Belief, Awareness, and Limited Reason-

ing: Preliminary Report, in Proceedings of {JCAI-85, Los Angeles,
California (1985).

Gottlob Frege, Begriffsschrift, A formal language, modeled upon that
of arithmatic, for pure thought, in Jean van Heijenoort, editor, Prom
Frege to Godel, pp. 1-82, Harvard University Press (1977), originally
published in 1879,

Gotilob Frege, On Sense and Meaning, in A.P.Martinich, editor,
The Philosophy of Language, pp. 212-220, Oxford University Press
(1985), originally published in 1892.

Marc Gillet, Description of the P.S.C. Prolog 1.2 (1985).

Kurt Godel, The completeness of the axioms of the functional cal-
culus of logic, in Jean van Heijenoort, editor, From Frefe to Godel,
pPp- 582-591, Harvard University Press (1977), Die Vollstandigkeit
der Axiom des logischen Funktionenkalkula, Monatshefte fur Mathe-
matik und Physik, Vol, 37, pp.349-360, 1930.

Kurt Godel, On Formal Undecidable Propositions of Principia Mat-
ematica and Related Systems I, in Jean van Heijenoort, editor, From
Frefe to Godel, pp. 392-617, Harvard University Press (1977), Uber
formal unsenischeidbare Satze der Principia Mathematica und ver-
wandter Systeme I, Monatshefte fur Mathematik und Physik, Vol.
38, pp.173-198, 1931.

J. Y. Halpern and R. Fagin, A formal model of knowledge, action, and
communication in distributed systems: preliminary report, pp. 224-
236, in Proceedings of the {th ACM Symposium on the Principals of
Distributed Computing (1985).

J. Y. Halpern and Y. Moses, A Guide to the Modal Logic of Knowl-
edge and Belief: Preliminary Draft, in Proceedings of IJCAI-85, Los
Angeles, California (1985).

Leon Henkin, The Completeness Of The First-Order Functional Cal-
culus, The Journal of Symbolic Logic, 14(3):159-166 (1949).

Leon Henkin, Completeness In The Theory of Types, The Journal
of Symbolic Logic, 15(2):81-91 (1950).

Leon Henkin, A theory of propositional types, Fundameta Math-
ematicae, 52:323-344 (1963), See also the Errata to this paper in
Fundameta Mathematicae, Vol. 53, pp. 119, 1963.

98

[Hint75]
[Kono86|
[Krip63|

[Lang35]
{Lloy84|

[Luka70]

[McCaT79]

[Park88]

[Quin56}
[Robi65]

[Russ05]
[Skol23]

[Tars23]

[Tars56)

J. Hintikka, Impossible possible worlds vindicated, Journal of Philo-
sophical Logic, 4:475-484 (1975).

Kurt Konoligne, A Deduction Model of Belief, Morgan Kanfmann
Publishers (1986).

S. Kripke, Semantical analysis of modal logic, Zeitschrift fuer Math-
ematische Logtk und Grundlagen der Mathematik, 9:67-97 (1963).

C. H. Langford, Reviews, The Jornal of Symbolic Logic, 2:53 (1935).

J. W. Lloyd, Foundations of Logic Programming, Springer-Verlag
(1984).

Jan Lukasiewicz, The Shortest Axiom of the Implicational Propo-
sitional Calculus, in L. Borkowski, editor, Jan Lukasiewicz Selected
Works, pp. 295-305, North-Holland Publications (1970), originally
published in 1947.

John McCarthy, Fitst Order Theories of Individual Concepts and
Propositions, in B. Meltzer and D. Michie, editors, Machine Intelli-
gence 9, pp. 120-147, Ellis Horwood (1979).

Stott Parker and Muntz R. R., A Theory of Direcled Logic Programs
and Streams, Technical Report CSD-880031, Computer Science De-
partment University of California Los Angeles (April 1988).

W. V. Quine, Unification of universes in set theory, The Journal of
Symbolic Logic, 21:267-279 (1956).

J. A. Robinson, A machine-orinted logic based on the resolution
principle, Journal of ACM, 12(1):23-41 (1965).

Bertrand Russell, On Denoting, Mind, 14:479-493 (1905).

Thoralf Skolem, The foundation of elementary arithmetic established
by means of the recursive mode of thought, without the use of appar-
ent variables ranging over infinite domains, in Jean van Heijenroot,
editor, From Prege to Godel, pp. 302-333, Harvard university press
(1923).

A. Tarski, Sur le terme primitif de la logistique, Fundamenta Math-
emalicae, 4:196-200 (1923).

Alfred Tarski, The Concept of Truth in Formalized Languages, in
Logie, semantics, methamathematics, Papers from 1923 to 1338, by
Alfred Tarski, pp. 152-278, Hackett Publishing Company (1956).

99

[Tun’0]
[Whit13]

[Wos69]

[Wos80]

[Wos84]

Allen M. Turing, Computing machinery and intelligence, Mind,
59:433-460 (1950).

Alfred North Whitehead and Bertrand Russell, Principia Mathemat-
ica, Cambndge press (1910-1913).

Larry A. Wos and G. A. Robinson, Paramodulation and theorem
proving in 1st order theories with equality, in B. Meltzer and D.
Michie, editors, Machine Intelligence §, pp. 135-150, Edinburgh Uni-
versity Press, Edinburgh, Scotland (1969).

Larry A. Wos, R. A. Overbeek, and L. Henschen, Hyperparamodu-
lation: A refinement of paramodulation, pp. 208-219, in Proceedings
of the 5th Conference on Automated Deduction, Springer-Verlag, Les
Arcs, France (July 1980).

Larry Wos, Ross Overbeek, Ewing Lusk, and Jim Boyle, Auiomated
Reasoning: Introduction and Applications, Prentice-Hall Inc. (1984).

100

