DECISION TREE GENERATION FROM EXAMPLES AND
TENDENCY RULES

Scott B. Wilson May 1988
CSD-880043

UNIVERSITY OF CALIFORNIA

Los Angeles

Decision Tree Generation from

Examples and Tendency Rules

A thesis submitted in partial satisfaction of the
requirements for the degree Master of Science

in Computer Science

Scott B. Wilson

1985

The thesis of Scott B. Wilson is approved.

Daniel M. Berry

bovid, & Hositn,

David Martin

Dot

D. Stott Parker, Committee Chair

University of California, Los Angeles

1985

i

From wonder into wonder

Existence opens.

— Lao Tzu

1l

Table of Contents

. Introduction

1.1 Previous Work

1.2 The Approach of the Thesis

. Nomenclature

2.1 Objects and Examples

2.2 Decision Trees

2.3 An Example

. Generalization of Examples

3.1 Types of Decision Trees

3.2 Significance of Decision Tree Types
. Stepwise Generalization

4.1 Stepwise Generalization Algorithm
. A Simple Example

. Tendency Rules

6.1 Un-instantiated Tendency Rules
6.2 Tendency Rule Algorithm

. A Simple Example Revisited

_ Secondary Classification Trees

8.1 The Problem

8.2 The Solution

v

10

13

14

17

18

23

28

33

36

41

41

42

9. Ordering the Attributes by Priority
10. Case Study — Hottest Stocks

10.1 Examples

10.2 Tendency Rules

10.3 Results
11. Conclusion

List of References

44

45

46

47

a0

ABSTRACT OF THE THESIS

Decision Tree Generation from
Examples and Tendency Rules
by
Scott B. Wilson
Master of Science in Computer Science
University of California, Los Angeles, 1985

Professor D. Stott Parker, Chair

A decision tree is a model for the type of classification performed by many
of today’s expert systems. It is usually the task of a human expert to provide
the necessary knowledge for the expert system. Another approach, however, is
to extract the necessary knowledge from examples. This work tries to combine
these two approaches by providing 3 method for automatically generating de-
cision trees from examples while utilizing some human knowledge in the form
of tendency rules. It is hoped that the resulting decision trees will be better

classifiers than the decision trees built from examples alone.

The tendency rule

attribute(v) ~> class(z)

says that “the value v on attribute attribute ‘tends to imply’ the classification
value z for the classification concept class.” Tendency rules carry semantic

vi

information about the concept to be classified, and constrain the structure of
the resulting decision tree.

The algorithm presented in this paper was implemented in Prolog and used
to build a decision tree for classifying companies according to their stock-price-
gains. A set of sixteen tendency rules was constructed for this problem, and
decision trees were generated with and without the aid of these rules. From 5%
to 20% more correct classifications were made by the trees generated with the

aid of tendency rules.

vil

1. Introduction

The classification of objects is often performed by considering a finite, and
not necessarily complete, set of relevant data. Say for instance that we are
trying to cross the street. We would like to classify the current situation as
either “safe” or “dangerous.” Relevant information could include whether or
not the light in our direction is green, whether the approaching cars are moving
fast or slow, and whether or not we have our running shoes on. Depending on
the answers to these questions we will decide that it’s “safe” to cross now or
that it's “dangerous” and that we should wait.

A model for this type of classification-scheme is the decision tree. Each node
in the tree is associated with a question about the object to be classified. The
tree is traversed from the root node to a leaf node that contains the name of the
appropriate class. The traversal is achieved by following the branches indicated
by the answers to the questions in the nodes. A simple medical diagnosis decision
tree could have symptoms in the nodes, branches labeled “yes” or “no” indicating
that the patient did or did not exhibit a particular symptom, and the names of
the possible diseases in the leaves gf the tree.

An expert system can loosely be defined as a computer progrém that per-
forms classifications in a narrow field nearly as well or better than a human
expert in that field. Currently almost all expert systems are built from rules
extracted from human experts. The process of obtaining these rules from hu-
man experts is often difficult because few experts can verbalize their decision-

1

making process in the straightforward and logical manner required by current
knowledge-engineering languages. One way to circumvent this difficulty is to
automatically generate decision trees from example objects for which the classes

are known.

1.1 Previous Work

Surprisingly little work has been done on the automatic generation of de-
cision trees from examples. The most notable recent work along these lines is
that of (.Z)uinlanl11 using Hunt’s!3] CLS {Concept Learning System) as a starting
point. The commercially available expert-system-builder RuleMaster!3!, which
uses Quinlan’s algorithm, has recently been used to build a weather forecasting
program that reportedly performs as well as experts in the field.

Quinlan’s algorithm attempts to produce the “simplest” decision tree con-
sistent with the examples. (There will in general be many decision trees con-
sistent with the examples.) According to Quinlan, “Simplicity has a clear re-
lationship to generality, and it seems desirable to find rules that are applicable
to more instances than those used to build them [11.” His algorithm utilizes
2 heuristic, which relates the “size” of a rule to a collection of examples, to
produce a “simple” rule.

Quinlan’s approach works quite well when the size of the training set, the
set of objects whose classes are known @ priori, approaches that of the set o.f all
possible objects. If the training set is small, then the resulting decision tree Is

2

very dependent on the particular objects in the training set. A poor training set

can produce a very poor decision tree.

1.2 Approach of the Thesis

Perhaps better decision trees can be generated by not leaving the human
expert totally out of the system. If we are presented with a number of decision
trees that are consistent with the known examples, then we would like to choose
that tree which is the best classifier, i.e. that tree that will correctly classify
the greatest number of future objects. This work proposes the use of human
knowledge, in the form of tendency rules, as a means for choosing the best
classifier.

It is the author’s belief that a basic type of buman knowledge is a tendency.
We might say that “an apimal with large teeth tends to be dangerous.” Ten-
dencies are often based on some type of. causal knowledge, e.g. “the fact that
the animal has large teeth means that it can take a large bite.”

Consider now the following rule:
teeth(large) ~> safeness(dangerous).

This rule reflects the tendency knowledge above where ~> is interpreted as
«tends to imply.” It does not supply any information about the chances of a
particular animal being safe or dangerous, yet such tendency rules can be used

to help produce better decision trees.

This paper introduces an algorithm that uses a set of tendency rules, which

are supplied by an expert, and a set of examples to produce a decision tree. It

is hoped that the resulting decision tree will be a better classifier than a tree

generated without the tendency rules.

2. Nomenclature

This work is concerned with generating decision trees that assign classifi-
cation values to objects according to their descriptions. The usefulness of the
resulting decision tree is very dependent on the properties used to describe the
objects. For example, it i much more resonable to describe chess board config-
urations in terms of properties like “black king is immediately next to the rook”
than the conventional chess notation that describes the placement _of the king
and rook on the board [].

Here we assume that we are presented with examples having descriptions,
in the form of attribute lists. The task of defining object descriptions is that of
the human expert, and no attempt is made here to modify the descriptions.

The definitions in sections 2.1 and 2.2 define a vocabulary that is useful in

understanding the decision tree generation algorithms presented in this paper.

2.1 Objects and Examples
Definition
An object O is a tuple < id,, @, >. td, is the unique identifier (name) of O and

a, its attribute list (description).

Definition
An ezample I is a tuple < id;, &1,z >. idp is the unique identifier of I, d@y its
attribute list, and z its classification value.

5

Definition

The training set S is the set of examples that will be used to generate the

decision tree.

It is important that no two examples have equal attribute lists and different
classification values. In such a case the training set and set of attributes are
inconsistent, and either one of the two conflicting examples must be removed or

2 new set of attributes that resolves this conflict must be found.

2.2 Decision Trees

Decision trees contain two types of nodes: attribute nodes, which contain
an attribute name, and leaf nodes, which contain a classification value. The
usual parent-child relationship exists between the nodes. The root node is at
the top of the tree, and the leaf nodes are at the bottom of the tree. The branch
between a parent and a child is labeled with an attribute value appropriate to
the parent.

The definitions below will allow decision trees to be defined in terms of

formulas connected by the logical conjunction and disjunction operators.

Deflnition

An atiribute predicate is a unary predicate represented by the name of an at-

tribute.

Definition
An attribute value is a constant that may appear as the argument to an attribute

predicate.

Definition
The attribute formula a(v) consists of the attribute predicate a and the attribute

value v.

Deflnition

The atiribute list @ is a set of attribute formulas.

Definition

a(v) is true for object O if a(v) € &, where d, is the attribute list of O.

Definition
A path p is the logical conjunction of attribute formulas of the form a(v). Letting

a*(v') represent the ¢** formula in this path, then

p=al(v') Aa3(v?) A---Aa¥ (vY)

where ai is the parent of a*+! for 1 <# < N, and there is a branch from a* to

a*+1 labeled ¢*.

Definition

A leaf predicate is a unary predicate that is represented by the name leaf.

Definition
A classification value is a constant that may appear as an argument to the

predicate leaf.

Definition
The formula lea f(z) consists of the attribute predicate leaf and the classification

value z. leaf(z) is always true.

Definition

A completed path is a path

pe=al(W) Add() A Aa¥ (vN) Aleaf(z)

that is terminated with the formula leaf(z).

Definition

The completed paths

al(v!) Aa3(¥3) A---AaN (V) Aleaf(z)

8

and

b {w?) A b2 (w?) A AWM (wM)Aleaf(y)

are connected if a® = b and v'~! = w'"! fori > L. These connected paths have

the logical interpretation
al{v) A a2 (vV¥)A- - A PUREY (b VA
(a'(v') A Y A A e (V) Aleaf(z)

vat{w') A B w') A A oM (wM) A leaf(y)).

(It is this interpretation that suggests the rule format for decision trees shown

in section 2.3.) A path is connected with itself.

Definition

A decision tree T is a set of one or more connected paths.

Definition

The traversal of tree T with object O is the completed path

po = a'(v) Aa3(v3)A---Aa¥ (vV) Aleaf(z)

where p, € T. The path leads from the root node a! to the leaf node leaf,

and a'(v*) is true for O with 1 < i < N. (There is at most one such path for

9

any object.) The traversal of tree T with object O is interpreted as the logical

conjunction of formulas al(v) APV A LA a¥ (vV) that is true for O.

Definition

The formula leaf(z) ascribes the classification value z to object O in the traversal

of tree T with object O.

Definition
The traversal of tree T with object O fails if there is no completed path in T
that is true for O. (A traversal which fails can be interpreted to ascribe the

classification value unknown to object O.)

2.3 An Example

In 2 later section we will build a decision tree to determine the ability of
a given dog to inflict bodily damage upon us. Some things that we might wish
to consider are whether or not the dog is leashed, whether its teeth are large or
small, and whether or not it is foaming at the mouth. Let the following table

be our training set

Name leashed teeth foaming Class
spot Bo large no safe
fang no small yes dangerous

spike yes small yes safe

which when rewritten as examples becomes

10

{ < spot, {Ieashed(no),'teeth(large}, foaming(no)}, safe>,
<fang, {leashed(no), teeth(small}, foaming(yes)}, dangerous>,
<spike, {leashed(yes), teeth(small), foaming(yes)}, safe>}.

-

spot, fang, and spike are the unique identifiers of the examples. The at-
tribute predicates are leashed, teeth, and foaming. The attribute values asso-
ciated with the attribute predicate leashed are yes and no. The example with
id = spot has the attribute list @ = {leashed(no), teeth(large), foaming(no)},
and the classification value z = safe.

Below is a decision tree consistent with the training set above. This tree
says that “all dogs that are not foaming at the mouth are safe, while dogs that
are foaming at the mouth are safe if they are leashed and dangerous if they are

not leashed.”

SAFENESS

DANGEROUS

11

For the remainder of this paper decision trees will be displayed in a rule

format. The rule equivalent to the decision tree above is

safeness
foaming(yes)
leashed(no)}
leaf(dangerous)
leashed(yes)
leaf(safe)
foaming(no)

leaf(safe).

This decision tree is the set of connected paths

safeness = { foaming(no) A leaf(safe),
foaming{yes) A leashed(no) A leaf(dangerous),

foaming(yes) A leashed(yes) Aleaf(safe)}.

12

3. Generalisation of Examples

If we are presented with a collection of objects and their classification values,
then we assume that there is an underlying principal or rule that governs the
classification. The aim of this work is to reproduce this rule from a set of
examples. The particular type of rule considered in this work is the decision
tree.

It is possible to construct many decision trees consistent with a finite num-
ber of examples. The problem of generalization from examples is consequently
twofold. How do we construct the decision trees consistent with the known
examples, and which of these trees do we use for future classifications?

Assume, for the moment, that an algorithm exists that has as its input
the training set S and as its output the set of all decision trees consistent with
S Let us consider the criterion for choosing the the tree from the output of
this algorithm that we will use for future classifications. The most important
property that a decision tree can posses is the ability to correctly classify future
objects. Tendency rules, which will be introduced later, can be used to address
this aspect of the decision tree selection. A second desirable property is the
ability to classify objects with descriptions (attribute lists) that differ from those
of the objects in the training set S — this is the process of generalization. The
last property of interest is that the tree does not contain any nodes that are not
essential for classifying the objects in the training set. These last two properties
are somewhat overlapping, and will be discussed in greater detail in the next

13

two sections.

3.1 Types of Decision Trees
Let us consider the types of decision trees that would be generated by an
algorithm that has as its output the set of all decision trees consistent with the

training set S.

Definition
A minimal classifying tree is a tree in which each path contains the complete

attribute list of an example.

Definition
A mazimal classifying treeis a treein which every attribute node has an outgoing
branch, which is contained in a path to a leaf node, for every possible value of

that attribute.

Definition
A partially irredundant aitribute node is a node that has at least two subtrees
from which it is possible two select two leaf nodes, one from each subtree, that

contain different classification values.

Definition
A fully irredundant attribute node is a node that has at least two subtrees that if

14

switched, without changing the labels on the outgoing branches from the node,
would cause a misclassification of one or more of the examples in the training set
used to build the decision tree. A fully irredundant attribute node is a partially

irredundant attribute node.

Definition
A partially irredundant tree is a tree that contains only partially irredundant

attribute nodes.

Definition
A fully irredundant lree is a tree that contains only fully irredundant attribute

nodes.

3.2 Significance of Decision Tree Types

A minimal classifying tree can only classify objects which have an attribute
list equal to that of one of the examples used to build the tree (all other traversals
fail). A maximal classifying tree has the desirable property of being able to
classify every possible object.

A fully irredundant tree has the desirable property that no nodes other than
those needed to resolve the classification are present in the tree. Unfortunately.
whether or not a tree is fully irredundant can not be determined until after
the tree has been generated. It is, as we shall see, always possible to create a

15

partially irredundaﬁt tree. This tree has the property that every attribute node
is at least superficially involved in differentiating objects (unlike the minimal
classifying tree).

The best possible tree, within the context of this discussion, would be a fully
irredundant maximal classifying tree. The algorithm for decision tree genera-
tion in the next section will always produce a partially irredundant tree. After
the tree is generated redundant nodes can be eliminated, although every tree
generated in ihe course of this work has been a fully irredundant tree. Whether
or not a maximal classifying tree can be generated is dependent on the examples
in the training set. Again, however, every tree generated in the course of this

work has been a maximal classifying tree.

16

4. Stepwise Generalisation

Described here is method for generating decision trees from examples. The
Stepwise Generalization Algorithm proceeds in the following way: given a tree
consistent with the N examples read so far, if the classification of example N +1
is inconsistent with the current tree, then the tree is refined by including more
attribute tests that resolve the conflict.

The intuitive reasoning behind this type of tree generation is the following.
We assume that the decision tree that we have at any given time is only an
approximation to the actual classification rule. We expect to encounter new
examples in the future that conflict with our current tree. Consequently, our
tree will have to be refined in some way that covers the new example, as well as
all those examples that preceeded it.

The way in which the tree is refined can be understood by considering the

following scenario: Let example Iz =< id, 8z, z > have the traversal
al(v*) Aa?(V3) A--- Aa¥ (V) Aleafly, {idy})

of Toyrrent With z # y. Leaf nodes, for the purpose of generating the decision
tree, now contain a list of unique identifiers as well as a classification value. The
id_list of this leaf, {idy}, references the single example I,. (Examples Iy and I
have the same description in the current decision tree.) If the attribute list of
I, is @, then the classification conflict can be resolved by testing any attribute

17

in the set

{a:a(v) € &;,a(w) €3y, v ¥ w}.

If more than one example is present in the id_list of the leaf, then the conflict
resolution may require the testing of more than one of the attributes in the set

above.

4.1 Stepwise Generalization Algorithm

When, during the decision tree generation, a new example is read from § a
check is made to determine the classification value ascribed to this example by
the current tree. One of three situations may arise: the tree ascribes the cor-
rect classification value to the example, the tree ascribes the classification value
unknown to the example (the traversal of the tree fails), or the tree ascribes an
‘ncorrect classification value to the example. The first two situations are han-
dled by the Decision Tree Population algorithm, which is called from within the
Decision Tree Generation by Stepwise Generalization algorithm. This algorithm
simply populates a leaf node of the current tree with the unique identifier of the
new example. If the call to the Decision Tree Population algorithm fails, i.e.
the tree ascribes an incorrect classification value to the example, then the Step-
wise Generalization algorithm proceeds to refine the current tree in the manner
discussed above.

Let A be the null tree, a null set of completed paths. The traversal of A
on every object fails. The input to the Stepwise Generalization algorithm is the

18

decision tree A and the training set S of examples.

The following definitions will be used in the following algorithms.

Definition

The length of path p is the pumber of attribute formulas in the path.

Definition

The power set P of paths formed from a set S of attribute formulas by forming a
path from each pon-empty set in 25 Apathpis formed from a set of predicate
formulas A by taking the logical conjunction of every element in A, that is

p= AN, at{v*) where A= {a‘(u‘),a"'(u’),...,a”(u”)}.

Definition
A classification conflict occurs when a traversal of tree T with example I ascribes

an incorrect classification value to I. That is, given the traversal
al(v') A ad(vi) A Aa¥ (vN) Aleaf(y)
and example I =< id;, 81,z >, then y # =

Definition

A decision tree is consistent with the ezamples if it ascribes the correct classifi-
cation value to every example in the training set.

19

Algorithm: Decision Tree Population.
Input: a decision tree T;, and a set of examples 5.

QOutput. a decision tree T.ue consistent with S, or a statement that the algorithm

failed.

Method:

1) Read the next example I =< ids, 7,z > from and let Tutg := Tin. If there

are no more examples in § then let Tout := Tin.
2} Find the traversal py of Totg with I.

2.1) If the traversal fails, then find the path p in Toig such that p = Paup Aot (VF YA
AaN (V) Aleafly, id_list), and p,us is the longest subpath that is true for

I. (A zero-length path s true for every example.) Find the new v* such that

a*(v') € dr, and form the connected path pr = peup Aa'(v') Aleaf(z z, {id;}).

is Tyq with the addition of pr.

2.2) If the traversal does not fail, then it will have the form p; = a'(v} JAa3 (v?)A
- A aN (V) Aleafly,id-list).

2.2.1) f y = z, then Tin is Toid With id; added to sd.list. Go to 1).

2.2.2) If y # z, then there is a classification conflict. Return fail.

20

Algorithm: Decision Tree Generation by Stepwise Generalization.
Input: a decision tree T., and a training set S.
QOutput: a decision tree T, consistent with S.

Method.

1) Read the next example I =< idy, d;,z > from § and let Tog = Tin. 1f there
are no more examples in § then let Tout := Tin-

2) Call the Decision Tree Population algorithm with input tree Toig and set of
examples {I}.

2.1) If the algorithm does not return fail, then Ti, is the output of the algorithm.
Go to 1).

2.2) If the algorithm does return fail, then there is a classification conflict that
must be resolved. Find the traversal of T4 with I. pr = a'(v*) Aa2(vB) A oA
aN (v¥) A leaf(y,id-list), where y # 1.

2.2.1) Form the power set P of paths from the set,

{a?(v) €1 o (W) ¢ {a*(v!),a?(¥?),.. -, a¥ (vN)}}, of yet untested attributes.
2.2.1.1) Remove the shortest path p from P and append the leaf predicate
leaf(z, {id;}) forming completed path p. = pAleaf(z,{idr}). Call the Decision
Tree Population algorithm with the input tree {p.} and the set examples whose
unique identifiers are in id_lsst.

2.2.1.1.1)Alf the algorithm does not return fail, then let T,up be the output of
the algorithm. Tyn 1S T,q With the traversal py replaced by the set of connected
paths {p:p = a*(v') Aa3(v3) A+ AGY (V) APaub; Pous € Tous}. Go to 1).
2.2.1.1.2) If the algorithm does return fail, then return to 2.2.1.1).

21

Theorem 1

The decision tree generated by the Stepwise Generalization Algorithm with input

Tin=A anci training set S is a partially irredundant tree consistent with §.
Proof
The unique identifier of every example in S is contained in one of the leaf
nodes of S. The traversal of Toy with example I is the path from the
root node to the leaf node that contains the unique identifier of I and the
classification value of I. Consequently, Tous is consistent with §. We can
rephrase the definition of a partially irredundant attribute node to say that
it is a node from which there are at least two paths, containing different
children, that terminate in leaf nodes containing different classification val-
ues. Since only attributes used to resolve a classification conflict are found
in T,ye, there are at least two paths from every attribute node, containing
different children, which terminate in leaf nodes with different classification

values. Thus, Toue is a minimal covering tree consistent with §. o

22

5. A Simple Example
The Stepwise Generalization Algorithm can be used to generate a decision tree
that addresses the ability of a given dog to inflict bodily damage upon us. Recall

the training set from section 2.3:

{<spot, {leashed(no), teeth(large), foaming(no)}, safe>,
<fang, {leashed(no), teeth(small), foaming(yes)}, dangerous>,
< spike, {leashed(yes), teeth(small), Joaming(yes)}, safe>}.

The safeness decision tree is initially A. The first example is read and the
Population algorithm is called. The traversal of the tree fails, so A is populated

and replaced by the tree below

(T1} safeness
leaf(safe,{spot}).

If no more examples were encountered, all future dogs would be classified
as safe. The second example is read, and the tree ascribes the classification
value safe to fang. fang, however, is dangerous, and a classification conflict
has occurred. We form the power set P of paths from the untested attribute

predicates in fang’s attribute list.

P = {leashed(no), teeth{small), foaming(yes),
leashed(no) A teeth(small), leashed(no) A foaming(yes),
teeth(small) A foaming(yes),

leashed(no) A teeth(small) A foaming(yes)}.

23

At this point we can choose one of the three length 1 paths from P. Taking the

first, we form the completed path p. = leashed(no) A leaf(dangerous, {fang}).

We now call the Population algorithm with the input tree

sajeness

leashed(no)
leaf(dangerous,{fang})

and training set

{<spot, {leashed(no), teeth(large), foaming(no}}, safe>}.

The tree above is traversed with spot and a classification conflict occurs,

<o this call to the Population algorithm fails. We return to the Stepwise Gen-

eralization algorithm and select the next path from P. We call the Population

algorithm again as we did above, but with the input tree

safeness
teeth{small)
Ieaf(dangerous,{[ang}}

and training set
{<spot, {leashed(no), teeth(large), foaming(no)}, safe>}.

The traversal on the tree above with spot fails at the attribute teeth, and a
‘ Fd

b

new branch is added resulting in tié tfed apiked]

24

safeness
teeth(small)

leaf(dangerous,{fang})
teeth(large)

leaf(safe,{spot}).
The subtree above replaces the leaf of (T1) where the classification conflict

occurred, and the resulting tree is

(T2} safeness
teeth(small)

leaf(dangerous,{fang})
teeth(large}

leaf(safe,{spot}).
The last example is read, and the tree incorrectly ascribes the classification
value dangerous to spike. We form the power set P of paths from the untested

attribute predicates in spike’s attribute list.

P = {leashed(yes), foaming(yes),

leashed(yes) A foaming(yes)}.

Choosing the length 1 path leashed(yes} from P, we form the completed path
leashed(yes) Aleaf(safe,{spike}). We now call the Population algorithm with

the input tree

safeness

leashed(yes) _
leaf(safe,{ spike})

25

and training set
{<fang, {leashed(no), teeth(small), foaming(yes)}, safe>}.

The traversal on the tree above with fang fails at the attribute leashed, and

a new branch is added resulting in the tree

safeness
leashed(no)
leaf(dangerous,{fang})
leashed(yes)
leaf(safe,{ spike}].

This subtree now replaces the leaf of {T2) where the conflict occurred, and

the resulting tree with the example lists removed from the leaves is

(T3) safeness
teeth(small)

leashed(no)
leaf(dangerous)
leashed(yes)
leaf(safe)
teeth(large)
leaf(safe).

This tree has the following interpretation:

(11) “All dogs that have large teeth are safe, while dogs that have small teeth
are dangerous if they are not leashed and safe if they are leashed.”

26

Anocther tree would have been generated had the path foaming(yes) been re-

moved from P before tceth(small). Its interpretation is the following:

(I12) “All dogs that are not foaming at the mouth are safe, while dogs that are
foaming at the mouth are safe if they are leashed and dangerous if they are
not leashed.”

Interpretation (I1) seems to run counter to what we would normally consider

a dangerous dog, although the inconsistency is not apparent in the particular

examples in the training set. Interpretation (I2) more closely defines what we

would normally consider a good classification of a dangerous dog. In the next
section we will see that a set of tendency rules can be applied to the decision
tree generation algorithm that allows only the tree with interpretation (12) to

be generated.

27

6. Tendency Rules

The results of the previous example would have been acceptable if the space
of trees had somehow included the tree with interpretation ‘(12), but not the
tree corresponding to interpretation (I1). Let us consider adding some human
knowledge in the form of tendency rules to the system.

What information would we like to be able to write down for use in our
expert system for classifying dogs? We would like to say that “a leashed dog
tends to be safe (because it will have to chew through its leash before being able
to attack us).” Unfortunately, logic does not provide a way to state knowledge
about tendencies short of introducing a new predicate tends.

Consider the introduction of the following “tendency operator”

~> = “tends to imply”

where

a(v) ~> class(z)

can be interpreted as “all other things being equal, the value v on attribute a
‘tends to imply’ the classification value z for the classification concept class.”
This definition is purposely vague here in order to suggest how it relates to the
human knowledge that it expresses. A formal definition of the tendency rule is

given shortly.

28

Now we can use the tendency rule
leashed(yes) ~> safeness(safe)

to express the knowledge “a leashed dog tends to be safe.” Normally implied
by the statement “a leashed dog tends to be safe” is the statement that “an
unleashed dog tends to be dangerous”, which has the corresponding tendency
rule

leashed(no) ~> safeness(dangerous).

Say now that we are presented with two dogs that are identical except that one
is leashed and the other is not. The tendency rules allow us to say that “it is
likely that the unleashed dog is more dangerous than the leashed dog.” The
tendency rules do not, however, allow us to say that the leashed dog is safe and
the unleashed dog dangerous. It may very well be the case that both dogs are

perfectly safe.

Deflnition
A tendency rule satisfies the following properties:
Given the tendency rule

a(v) ~> class(z)

and attribute lists @ and @; which differ only in the value of attribute a such
that a(v) € & and a(v) € d3,

29

then

P(class(z) | @) > P(class(z) | dz)

where P(class(z) | d@,) is the probability, given &), that the classification value
of object Oy with attribute list @, is z.

Given the tendency rules
a(v) ~> class(z)

a(w) ~> class(z)
with a(v) € @, and a{w) € a3,
then nothing is implied about the relation between P(class(z) | d,) and

P(class(z) | d3).

Tendency rules will now play a key role in resolving classification conflicts.
The way that these will be utilized is best understood by conmsidering the fol-

lowing scenario. Let example I, =< idz, 35,2 > have the traversal

a' (W) AP (V) A A a¥ (vV) Aleafly, {idy})

of Tourrent With 2 # ¥. (Examples I and Iy have the same description in the
current decision tree.) When no tendency rules are known, if the attribute list of
I, is @y, then the classification conflict can be resolved by testing any attribute
in the set

{a: a(v) € 3;,a(w) €8y, v # w}.

30

When tendency rules are known, we choose an attribute which implies
P(class(z) | @) > P(class(z) | dy)

reflecting the knowledge
P(class(z) | &) =1

P(class(z) | @) =0
contained in the examples. Formally, given a set of tendency rules R the classi-

fication conflict can be resolved by testing any attribute in the set
{a:a{v) € 8z, a{w) € dy, ¥ # w,a{v) ~> class(z) € R}.

I more than one example is present in the id_list of the leaf, then the conflict
resolution may require the testing of more than one of the attributes in the set
above. Choosing to test only attributes in this reduced set does not affect the
resulting classification of Iz or Iy, but it will affect the classification of objects
that have attribute lists which differ slightly from those of Iz or y

Returning to the previous example, besides the tendency rules concerning
leashed dogs, there are tendency rules that can be written for foaming and feeth

as well:
teeth(large) ~> safeness(dangerous)

teeth{small) ~> safeness(safe),
foaming(yes) ~> safeness(dangerous),

foaming(no) ~> safeness(safe).

31

These rules say that “dogs with large teeth tend to be more dangerous than
dogs with small teeth,” and “dogs that are foaming at the mouth tend to be
more dangerous than dogs not foaming at the mouth.”

As we shall see in section 7, only the tree with interpretation {I2) can be
generated when the trees are forced to be consistent with the tendency rules

above.

6.1 Un-instantiated Tendency Rules

As there may be times that no tendencies are known for a particular at-
tribute, it is nice to notice that the effect of the Stepwise Generalization Algo-
rithm, which did not consider tendency rules, is reproduced with the Tendency

Rule Algorithm and un-instantiated tendency rules of the form

a(v) ~> class(X).

X is a variable that can be assigned any classification value. The above rule is

actually just a shorthand way of writing down the tendency rules

a{v) ~> class(z,)

a(v) ~> class(z3)

a(v) ~> class(zy)

32

where the set of possible classification values is {Z1,Z2,.--,Zn}. Thus, within
the context of the tendency rule definition in section 6, nothing can be implied
sbout the relation between P{class(z:) | d,) and P(class(z) | ds).-
Un-instantiated tendency rules are used in the Tendency Rule Algorithm
for attributes with no associated tendency rule. The Tendency Rule Algorithm

will use the following definition.

Definition

R* is the closure of the set of tendency rules R. Let R* = R, if

(Vz)(a(v) ~> class(z) ¢ R),

then add a{v) ~> class(X) to R* for every a(v) that appears in the attribute

lists of the examples.

6.2 Tendency Rule Algorithm

The basic structure of this algorithm is taken from the Stepwise Gener-
alization Algorithm, but classification conflicts are resolved in a way that is
consistent with tbe set of tendency rules R.

During the tree generation, it is possible to encounter an example that is
inconsistent with the current decision tree and the tendency rules. In such an
event, the inconsistent example is removed from the training set. (The “re-

moved” examples can be thought of as bad data points.)

33

Algorithm: Decision Tree Generation by Stepwise Generalization with Ten-

dency Rules.
Input: a decision tree Tin, 3 training set Sin, and a set of tendency rules R.
Oulput: a decisiou tree T,u: consistent with Soue and R.

Method:

0) Sout = Sin-

1) Read the next example I =< id;,d7,z > from Sin, and let Tog == Tin. If
there are no more examples in Sin then let Tout := Tin.

2} Call the Decision Tree Population algorithm with input tree Toq and set of
examples {I}.

2.1) If the algorithm does not return fail, then T}, is the output of the algorithm.
Go to 1).

2.2} If the algorithm does return fail, then there is a classification conflict that
must be resolved. Find the traversal of T with I. pr = at(v*IAa?(vi)A---A
a¥ (v¥) A leaf(y,id Jist), where y # T.

2.2.1) Form the power set P of paths from the set,

{a(v') € dral(v) ¢ {al(v‘),az(uz),...,aN(uN)},

a’ (V) ~> class(z) € R* }, of yet untested attributes consistent with R.

2.2.1.1) Remove the shortest path p from P and append the leaf predicate
leaf{z,{1d;}) forming completed path p. = pAleaf(z, {id;}). Call the Decision
Tree Population algorithm with the input tree {p.} and the set examples whose
unique identifiers are in idlist.

2.2.1.1.1) If the algorithm does not return fail then let T,y be the output of
the algorithm. Tin is Tota With the traversal p; replaced by the set of connected
paths {p:p = a*(v}) Aa®(v?) A--- A a¥ (v¥) A Paut, Poub € Taus }. Go to 1}
2.2.1.1.2) If the algorithm does return fail, then return to 2.2.1.1).

34

Theorem 2
The decision tree generated by the Tendency Rule Algorithm with input Tin = A
and training set Sin is a partially irredundant tree consistent with the reduced
training set of examples Sout.
Proof
Same as Theorem 1. The only difference between this algorithm and the
Stepwise Generalization algorithm is that the set of attribute formulas used
to form the power set P is reduced since the formulas must also satisfy the

tendency rules. o

35

7. A Simple Example Revisited

This discussion parallels the discussion in section 5 where we formulated a
concept about the ability of a given dog to inflict bodily damage upon us. We
shall now use the Tendency Rule Algorithm with the set of tendency rules

R = {leashed(yes) ~> safeness(safe),
leashed(no) ~> safeness(dangerous),
teeth(large) ~> safeness(dangerous),
teeth(small) ~> safeness{safe),
foaming(yes) ~> safeness(dangerous),

foaming(no) ~> safeness(safe)}.

These tendency rules say that “dogs that are not leashed tend to be more
dangerous than dogs that are leashed,” “dogs with large teeth tend to be more
dangerous than dogs with small teeth,” and “dogs which are foaming at the
mouth tend to be more dangerous than dogs not foaming at the mouth.”

The training set is the same:

{<spot, {leashed(no), teeth(large), foaming(noj}, safe>,
<fang, {leashed(no), teeth(small}, foaming(yes)}, dangerous>,
< spike, {leashed(yes), teeth(small), foaming(yes)}, safe>}.

The safeness decision tree is initially A. The first example is read and the
Population algorithm is called. The traversal of the tree fails, so A is populated
and replaced by the tree below:

36

(T1) safeness
leaf(safe,{spot}).

The second example is read, and the tree ascribes the classification value
safe to fang. fang, however, is dangerous, and a classification conflict has oc-
curred. We form the power set P of paths from the untested attribute predicates
in fang’s attribute list that are consistent with R. (R* = R in this simple exam-
ple.) fang is dangerous, so only the three tendency rules with the classification
values dangerous apply

leashed(no) ~> safeness(dangerous),
teeth{large) ~>saf eness(dangerous),

foaming(yes) ~> safeness(dangerous).
Of these three, fang’s attribute list satisfies the first and third. Consequently,
we have decided that the fact that fang has small teeth is not a good reason
for explaining why fang should be considered dangerous. It is this decision that
keeps the tree with the unacceptable interpretation (I1) from being generated.
The resulting power set of paths is

P = {leashed(no), foaming(yes),

leashed(no) A foaming(yes)}.
At this point we can choose one of the two length 1 paths from P. Taking the
first, we form the completed path p. = leashed(no) A leaf{dangerous, {fang}).
We now call the Population algorithm with the input tree

37

safeness

leashed(no)
leaf(dangerous,{fang})

and training set
{<spot, {leashed(no), teeth(large), foaming(no)}, safe>}.

The tree above is traversed with spot and a classification conflict occurs, so
this call to the Population algorithm fails. We return to the Stepwise General-
ization algorithm and select the next path from P. We call the algorithm again

as we did above, but with the input tree

safeness
foaming(yes)
leaf(dangerous,{fang})

and training set
{<spot, {leashed(no), teeth(large), Joaming(no)}, safe>}.

The traversal on the tree above with spot fails at the attribute foaming, and

a new branch is added resulting in the tree

safeness
foaming(yes)
leaf(dangerous,{fang})
foaming(no)
leaf(safe.{spot}).

38

The subtree above replaces the leaf of (T1) where the classification conflict

occurred, and the resulting tree is

(T2) safeness
foaming(yes)
leaf(dangerous,{fang})
foaming(no)
leaf(safe,{spot}).

The last example is read, and the tree incorrectly ascribes the classification
value dangerous to spike. We form the power set P of paths from the untested
attribute predicates in spike’s attribute list that are consistent with R. Only the
three tendency rules with the classification value safe are considered, and the
two untested attributes satisfy these rules. The resulting power set P of paths

is
P = {Icashed(ycs), teeth(small),

leashed(yes) A teeth(small)}.
Choosing the length 1 path leashed(yes) from P, we form the completed path
leashed(yes) Aleaf(safe, {spike}). We pow call the Population algorithm with
the input tree
safeness

leashed(yes)
leaf(safe,{spike})

and training set

{<fang, {leashed(no), teeth(small), Joaming(yes)}, safe>}.

39

\ The traversal on the tree above with fang fails at the attribute leashed, and

! 2 new branch is added resulting in the tree

safeness
leashed(no)
leaf(dangerous,{fang})
leashed(yes)
leaf(safe,{ spike}).

This subtree now replaces the leaf of {T2) where the conflict occurred, and

the resulting tree with the example lists removed from the leafs is

(T3) safeness
foaming(yes)
leashed(no)

leaf{dangerous)
leashed(yes)
leaf(safe)
foaming(no}

leaf(safe).

This tree has the acceptable interpretation:
(I2) “All dogs that are not foaming at the mouth are safe, while dogs that are

foaming at the mouth are safe if they are leashed and dangerous if they are

not leashed.”

40

8. Secondary Classification Trees

8.1 The Problem

Let us consider the classification of companies according to their stock-price-
gains. (This is described in detail in section 10). One of the tendency rules for

this problem is

company.size(small} ~> stock_price_gains(top)

which reflects the knowledge “small companies tend to produce large stock price
gains.” The attribute lists of the examples, however, do not contain any at-
tribute named company-size. The company-size is itself a classification concept
that is dependent on the revenues, number of employees and shareholders of
the company. The three attributes revenues, employees, and shareholders are
found in the attribute lists of the examples and could be considered in the
stock_price_gains tree. This scheme, however, has two drawbacks: there are
no tendency rules relating the revenues, employees or shareholders to the stock-
price-gains, and the knowledge relating the company-size to the stock-price-gains
would not be used.

We should allow for the simultaneous generation of the primary stock_price_
gains tree, which contains as one of its attributes company.size, and the sec-
ondary company_size tree, which contains the three attributes revenues, employ-

ees, and shareholders.

41

8.2 The Solution

Assume that we are given the tendency rule
class®(v*) ~> classP(z)

where class® is the name of the concept associated with the secondary tree T°,
and class? is the name of the concept associated with the primary tree T?. Let
example I; =< idz,8z,% > have the classification value z, and let example
I, =< idy,dy,y > represent any example, used to build the current T? tree,
with the classification value y. There are two times during the decision tree
generation that the attribute class® may be encountered: during a traversal of
the primary tree, or during the resolution of a classification conflict which occurs
in the primary tree. In either case we want to refine the tree, if possible, in such

a way that it implies
P(class?(z) | @z) > P(classP(z) | dy).

If the class® attribute is encountered in the traversal of the T? tree with ex-
ample I, then an attempt is made to refine the T tree so that it ascribes the
classification value v* to I;. The old T* tree is replaced by the refined T tree.
If the class® attribute is encountered during the resolution of a classification
conflict, then an attempt is made to refine the T tree so that it ascribes the

42

classification value v* to I; however, the old T* tree is replaced by the refined
T* tree only if the class® attribute is actually used in the classification conflict
resolution.

The refinement of the T* tree is made by calling the Tendency Rule Al-
gorithm with T as the primary tree, and the training set consisting of single
example I? =< idy, &z, v* >. I has the classification value v*, which was sub-
stituted for the classification value z of example I;. If the algorithm cannot
refine the tree in a way that is consistent with the ex:imples that were previ-
ously used to build the tree, then class® simply returns the classification value

that the current T* tree ascribes to example I;.

43

9. Ordering the Attributes by Priority

Because it may be known @ priors that particular attributes are very impor-
tant and should be tested first, we should allow the attributes to be ordered so
that all higher priority attributes appear closer to the root than any lower prior-
ity attributes. Given a priority ordering function, priority(a?), on the attributes,
this condition can be achieved by simply requiring all the paths generated in
the Tendency Rule Algorithm to satisfy the conditions:

given a path
p=al(')Aa? (W) A - AdT T A (W) A A (VV) Aleaf(z)
and
priority(a’) = M

then

priority(a’) =1
priority(a*—!) < priority(a®)
(Va?)(priority(a’) < M, o’ € {a',a3,...,a""1}).

The decision tree generated using priority 6rdered attributes may not be a
partially irredundant tree because the algorithm is forced to place attributes,
which may not be needed to resolve a conflict, into the paths that make up the
decision tree.

14

10. Case Study — Hottest Stocks

The ideas presented in this paper were formulated after reading the Hotlest
Stocks article in the March 1985 issue of California Business!®l. The article
contains a table of the 75 California companies which had the greatest per-
centage stock-price-increase. The table contains headings such as the number
of employees, the number of shareholders, the P-E ratios for 1984 and 1985,
and the trading turnover rate. Also included in the article is a description of

properties that tend to make a top stock. Here is a portion of the article’s text:

Analysis of the statistics for this year’s 75 ranked stocks indicates that
price gains can be attributed to the following circumstances:

e A higher P-E ratio that frequently reflects a strong per share earnings
gain in 1984 extending a several-year uptrend.

e A strong 1984 per share earnings gain that usually does not extend
a several-year uptrend and is accompanied by a P-E ratio either un-
changed or reduced to a more conservative rate....

Additionally, review shows that investment performance may benefit
from recognizing the following:

e Investing in stocks of smaller companies yields more frequent stock
price gains than investing in larger-company stocks.

o Investing in lower-priced stocks generates more frequent strong price

gains than investing in stocks trading at or above the popular $20 level.

A refined Tendency Rule Algorithm, which allowed for the generation of
secondary decision trees and priority ordered attributes, was implemented in
Prologl4l. In order to illustrate the workings of the program the first 25 examples

45 -

were classified as top and the last 25 were classified as bottom. It should be
noted that this is a rather unusual classification. We will be attempting to a
formulate a concept that distinguishes “very very good” companies from “very

good” companies.

10.1 Examples
A set of eight attributes are found in the attribute lists of the companies: employ-
ees, holders, revenues, holdings, stock_price, e.p-share, p-e-ratio, and turnover.
Each attribute had a set of either two or three possible attribute values. Be-
low is the rule for determining whether the attribute value of employees for a
particular company should be large or small.

employees

if (number.employees < 500) then

returan small

else
return large

This is a sample example

< starr_surgical, {employees(small), holders(small), holdings{small},
revenues(small), stock_price(low), e_p-share(down), p_e_ratio(none),

turnover(large)}, top > .

4€

10.2 Tendency Rules

An initial concern was that the tendencies described in the article were actually
found by examining the statistics of the particular 75 stocks presented. Using
tendency rules that described such tendencies would actually defeat the benefit
of having tendency rules. Tendency rules are introduced in order to supply some
knowledge about the concept that is not contained in the examples. Chuck Er-
ickson, an author of the article and senior financial analyst for SRI International,
alleviated this concern(®. Behind each of the tendencies was a, usually complex,
chain of reasoning that indicated why the particular tendency should be true.
The tendency “Investing in stocks with significant institutional ownership often
provides larger price gains than investing in stocks lacking institutional posi-
tions” is, at least superficially, contradicted by the statistics of the 75 stocks
listed. The reason for this tendency, however, is that significant institutional
ownership often reflects some knowledge possesed by the institutional investors

that is not possesed by the private investor.

47

The tendency rules for the primary, stock_price_gains tree are shown below:

R,pg = {holdings(large) ~> stock_price_gains(top),
holdings(small) ~> stock_price_gains{bottom),
stock.price(low) ~> stock_price_gains(top),
stock_price(high) ~> stock_price_gains(bottom),
e.p.share(up) ~> stock_price-gains{top),
e.p-share(down) ~> stock_price_gains(bottom),
turnover{high) ~> stock_price_gains(top),

turnover(low) ~> stock_price.gains{bottom)},

and

Roypg—size = {company-size(ama.ll) ~> stock_price_gains(top),

company.size(large) ~> atock_price_gaina(bottom)}.

The set of tendency rules R,pg relates the stock-price-gains to attributes

contained in the attribute lists of the companies. No tendency rule could be

written for the it p-e.ratio attribute, so the closure of the set of tendency rules

used in the algorithm will contain three un-instantiated tendency rules:

p-e_ratio(up) ~> stock_price_gains(X),
p-e-ratio(down) ~> stock_price-gains{X),

p_e_ratio(none) ~> stock_price_gains(X),

48

where a p-e-ratio of none means that the company recorded net losses in both
1984 and 1985 so that no P-E Ratio trend could be computed. The set of
tendency rules R,p;—size CODtains the rules that connect the primary stock_price_
gains tree to the secondary company.size tree.

The attributes were ordered with the following priority function:
priority(p-e_ratio) = 1, priority(e_p_share) = 2, priority{company_size) = 2,

priority(holdings) = 2, priority(turnover) = 2, and priority(stock_price) = 2.

Below is the set of tendency rules for the secondary decision tree, com-
pany-size:

Ryize = {employees(small) ~> company_size(small),
employees(large) ~> company_size(large),
holders(small) ~> company_size(small),
holders(large) ~> company_size(large),
revenues(small) ~> company_size(small),
revenues{large) ~> company_size(large)}.

These rules simply reflect the knowledge that “small things are made up of small
things” and “large things are made up of large things.” The priority function
for these attributes is

priority{employees) = 1, priority(holders) = 1,and priority{revenues) = 1.

49

Decision trees were generated with and without the tendency rules above
with the hope of showing that using the tendency rules produced a tree that

was a better classifier. The set of tendency rules used for the first tree was

R= Rspg U R-pg—n‘ze U Ryisze-

The set of tendency rules used for the second tree was

R= Rlpg- size:

It was necessary to include these rules that connected the primary and secondary
tree. If these rules were not included, then no secondary tree would be gener-
ated, and the ability to differentiate companies with the attributes employees,

revenues, and holders would be lost.

10.3 Results

For the two cases a training set of ten examples was used; five of the examples
were top companies and the other five were bottom companies. These decision
trees are shown in figures 1 and 2. These trees were then used to predict the
classification values of the remaining forty examples. The first tree, which used
the full set of tendency rules, correctly classified 28 out of the 40 or 70% of
the examples, while the second tree correctly classified 21 of the 40 or 53% of

50

the examples. This test was conducted on twenty ran'dom training sets each
containing ten examples. As one would expect, the trees generated without the
tendency rules were very dependent on the particular training set. The resulting
trees correctly classified between 40% and 70% of the remaining examples. The
trees generated with the tendency rules tended to be less dependent on the
training set and correctly classified between 55% and 70% of the remaining
examples. Only one training set produced a tree that was a better classifier
without the tendency rules than with them.

The results of this test were better than what was originally expected con-
sidering the similarity of the two types of companies.

The decision trees generated with training sets containing all fifty examples
are shown in figures 3 and 4. The company_size trees are the same as those

shown in figures 1 and 2 respectively.

51

Figure 1

stock_price_gains

p-e_ratio(up)
turnover(large)
leaf(top)
turnover(small)
leaf(bottom)
p-e-ratio(none)
leaf(top)
p-e-ratio(down)
company-size(small)
e_p-share(down)
leaf({bottom)
e-p-share(up)
leaf(top}
company-size(large)
leaf(bottom)

company._size

employees(iarge)
leaf{large)

employees(small}
leaf(small)

52

Figure 2

stock_price_gains
p-e-ratio{up)
company.size(small)
leaf(top)
company.size(large)
leaf(bottom)
p-e-ratio(none)
holdings(large)
leaf(bottom)
holdings(small}
leaf(top)
p-e-ratio{down)
company-size(small)
leaf{top)
company-size(large)
leaf{bottom)

company Siz¢
employees(small)
leaf(large)
employees(small)
holders{small)
leaf(large)
holders(large)
leaf(small)

53

Figure 3

stock_price_gains

p-e_ratio(up)
turnover(large)

leaf(top)
turnover(small)
leaf(bottom)
p-e_ratio(none)
leaf(top)
p-e-ratio{down)
company-size{small)
e_p-share{down)
stock_price(low)
leaf(top)
stock_price(high)
leaf{bottom)

e.p-share(up)
leaf(top)

company._size(large)
leaf(bottom)

94

Figure 4

slock_price_gains
p-e-ratio(up)
company._size{small)
leaf(top)
company.sizeflarge)
stock-price(high)
holdings(smali)
e_p-sharef{down)
leaf(bottom)
e-p-share(up)
leaf(top)

holdingsflarge)
turnover(large}
leaf(top)
turnover(smali)
leaffbottom)
stock_price(low)
turnover(large}
leaf(top)
turnover{small)
leaf{botlom)
p-e-ratio(none)
holdings(large)
leaf(bottom)
holdings{small)
leafftop)
p-e-ratiodoun)
company_size{small)
atock.price(low)
leaf(bottom)
stock_price(high)
e.p-sharefdoun)
leaf(bottom)
e-p-share(up)
holdings(large)
leaf(bottom)
holdinge(small)
leaf{top)
company.gsize(large)
stock.price(low)
turnover{smali}
¢_p_share{down)
leafftop)
e-p-sharefup)
turnover(large)

leafftop)
stock_price(high)
{eaf{bottom}

55

11. Conclusion

L1

. in learning in general the key is learning to inhibit responses

to irrelevant variables.”

This quote is from Guilford’s The Nature of Human Intelligencel®! which

summarized some of Harlow’s!”] work on concept-learning problems. (Guilford
points out that this is an oversimplification, yet it is undoubtedly an aspect of
learning.) In this discussion it has been the role of the tendency rules to “inhibit
responses to irrelevant variables” by reducing the set of attributes which can be
used to resolve a classification conflict. This is particularly important when the
size of the training set is small compared to the size of the set of objects that
the automatically generated decision tree is expected to classify.

Temptations to think of a tendency rule as some sort of “inexact reasoning”
rule with a hidden confidence factor should be resisted. A tendency rule does
not imply anything about the classification value of a particular object. The
tendency rules carry semantic information about the concept to be classified,
and should really be viewed as operating on the space of acceptable decision
trees.

It is the author’s belief that this work is a first step towards the use of a
multi-leveled view of knowledge for non-deductive inferencing. On the bottom
level of this knowledge scheme are facts, which are in some sense atomic units.
Each higher level is associated with a type of knowledge that is more abstract

56

than the previous level. In this work the lowest, factual level corresponds to
objects. The second level contains the decision tree which carries the abstract
notion of a concept and operates on the objects. On the third level is the
tendency rule which conveys semantic information and operates on the space
of decision trees. We have shown how to take knowledge from two of these
levels, the examples in the training set and human knowledge in the form of
tendency rules, to construct a new piece of knowledge, the decision tree. The
resulting decision tree is hopefully better for the introduction of this second type

of knowledge, the tendency rule.

57

List of References

(1] Hunt, Earl B., Marin, Janet, and Stone, Philip J., Experiments in Induction,
Academic Press, New York, N.Y. (1966).

{2] Quinlan, J. R, «Discovering Rules by Induction from Large Collections
of Examples,” in Ezpert Systems in the Micro-electronic Age, ed. Donald
Michie, Edinburgh University Press, Edinburgh (1979).

[3] Michie, Donald, Muggleton, Stephen, and Riese, Charles, “Rulemaster: A
Second-generation Knowledge-engineering Facility,” in The First Confer-
ence on Artificial Intelligence Applications, IEEE Computer Society (1984).

[4] Clocksin, W.F., and Mellish, C.S., Programming ¢n Prolog, Springer- Verlag,
Berlin Heidelberg (1981).

[5] Erickson, Charles E., and Harris, Michael T., “Hottest Stocks”, in Califor-
nia Business, March 1985.

[6] Guilford, J.P., The Nature of Human Intelligence, McGraw-Hill, N.Y.
(1967).

[7] Harlow, H.F., “The Evolution of Learning,” in Behavior and Evolution, eds.
A. Roe and G.G. Simpson, Yale, New Haven, Conn. (1958).

8] Erickson, Charles E., Personal Communication, June 1985.

58

