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ABSTRACT OF THE DISSERTATION

LOG(F): An optimal combination of logic programming,

rewriting, and lazy evaluation

by

Sanjai Narain
Doctor of Philosophy in Computer Science
University of California, Los Angeles, 1988

Professor D. Stott Parker, Chair

A new approach for combining logic programming, rewriting, and lazy evaluation is
described. It rests upon subsuming within logic programming, instead of upon

extending it with, rewriting, and lazy evaluation.

A non-terminating, non-deterministic rewrite rule system, F* and a reduction strategy
for it, select, are defined. F* is shown to be reduction-complete in that select
simplifies terms whenever possible. A class of F* programs called Deterministic F* is
defined and shown to satisfy confluence, directedness, and minimality. Confluence
ensures that every term can be simplified in at most one way. Directedness eliminates
searching in simplification of terms. Minimality ensures that select simplifies terms in
a minimum number of steps. Completeness and minimality enable select to exhibit,

respectively, weak and strong forms of laziness.

F* can be compiled into Horn clauses in such a way that when SLD-resolution

xii



interprets these, it directly simulates the behavior of select. Thus, SLD-resolution is
made to exhibit laziness. LOG(F) is defined to be a logic programming system
augmented with an F* compiler, and the equality axiom X=X. LOG(F) can be used
to do lazy functional programming in logic, implement useful cases of the rule of
substitution of equals for equals, and obtain a new proof of confluence for

combinatory logic.
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CHAPTER 1
INTRODUCTION

1.0 THE PROBLEM

Logic programming [Kowalski 1979], is the use of statements of logic as computer
programs. It has led to new insights into computing as well as logic. Rewriting is
synonymous with reduction, as described, for example, in [Knuth & Bendix 1970]. It
is simplification of an expression by successive application of some collection of
rewrite rules. Its usefulness is evident from its appearance in many branches of
mathematics. Lazy evaluation, e.g. [Vuillemin 1974}, is a method of computing
which ensures that a computation step is performed only when there is need to
perform it. Thus, not only does it enable certain computations to terminate more

quickly, it also enables computation with infinite data structures.

A system in which logic programming, rewriting, and lazy evaluation were combined
could put considerable programming power at our disposal. In particular, it would

simultaneously afford the expressive power of both functions, and relations.

Furthermore, such a system could be used to implement instances of the rule of
substitution of equals for equals in logical statements. This is a very important rule,
as witness its use in the simplest of mathematical derivations, e.g. solution of
trigonometric identities. Logical statements could be expressed using logic programs,

while equality theories could be expressed using rewrite rules.



We propose a new approach for building the above system which is rigorous, as well
as computationally efficient. It rests upon subsuming within logic programming,
instead of extending it with, rewriting and lazy evaluation. This means that SLD-
resolution, the proof procedure used for logic programming, is not changed. Instead,
Homn clauses, or pure Prolog clauses are written in such a way, that when SLD-
resolution interprets them, it directly simulates lazy rewriting. The resulting system is

called LOG(F). It can be said to make contributions to the following three areas:

1. Rewriting. Simple, syntactic conditions are defined under which non-
terminating, non-deterministic rewrite rules, with pattern matching, satisfy
quite useful computational properties. These are regarding demand-driven
reduction, confluence, elimination of search during reduction, and lengths of

reductions.

2. Combination of logic programming and rewriting. It is shown how
rewriting can be subsumed within logic programming. In particular, the above
computational properties of rewriting are realized within logic programming,
without changing it, and without sacrificing logical ngor. This has two

important consequences.

First, a satisfactory combination of logic programming, and rewriting is
achieved, wirthout developing a new computational model of which the two
are instances. Developing such a model is quite difficult, particularly if it is to
have satisfactory declarative, and satisfactory procedural semantics. Second,
full advantage is taken of the very efficient implementations of Prologs. Thus,

formidable problems that implementation of the new model would very likely



pose, are avoided.

3. Lazy evaluation. By 1 and 2, it is shown how lazy evaluation can be done
efficiently, within the normally eager framework of logic programming. Thus
a basis is established for understanding lazy evaluation purely in terms of well
understood ideas in first order logic. Also, a new, and powerful use is found

for an old, and widely used tool, namely, Prolog.

2.0 SUMMARY OF MAIN RESULTS

2.1 A rewrite rule system F*

A first-order rewrite rule system F*, with pattern matching, is defined. The function
symbols are partitioned in advance into constructors, and non-constructors.
Simplification in F* means reducing ground terms to simplified forms i.e. terms of the
form c(t1,..,tn) where ¢ is a constructor symbol, and each of tl,...tn is a ground term.
Simplified forms can be used to represent finite approximations to infinite structures,
and are analogous to head-normal forms in the lambda-calculus [Wadsworth 1976].
In contrast, a normal form is defined to be a term in which all function symbols are

constructors.

Now, an important point is that a method for computing simplified forms can be used
repeatedly to compute normal forms. Moreover, it would terminate more often than
would a method which directly computes normal forms. Hence it is sufficient to

develop, and study properties of, a method for computing simplified forms.



An F* program is a finite set of rules, each of the form LHS=>RHS, satisfying the
following restrictions: (1) LHS is of the form f(L1,..,.Lm), m>=0, f a non-constructor
function symbol, and each Li either a variable, or of the form ¢(T1,..,Tn), n>=0, c a
constructor symbol, and each Ti a variable, (2) a variable occurs at most once in LHS,
and (3) all variables of RHS occur in LHS. Note that non-terminating, non-
deterministic sets of rewrite rules are permissible. Also any rule with left hand side of
depth greater than two can easily be expressed in terms of rules with left hand sides of

depth at most two, as required by (1).

Where P is an F* program, and f(T1,..,Tn) a ground term, a reduction strategy for P,

selectp, is defined by the following pseudo-Horn clauses:

selectP(f(Tl,..,Tn),f(Tl,..,Tn)) if f(T1,..,Tn)=>pX.
sclcctp(f(Tl,..,Ti,..,Tn),X) if
there is a rule f(L1,..,Li,..,.Ln)=>RHS in P, and
there is no substitution ¢ such that Ti=Lic, and

selectP(Ti,X).

Here A=>B means there is a rule LHS=>RHS such that A matches LHS with
substitution o, and B is RHSo. Select is shown to be reduction-complete, in that if a
term can be simplified, it can be simplified by reducing it via select. Thus select

exhibits a weak form of laziness. An example of an F* program is:

perm([[)=>[].
perm([AlV])=>insert(U,perm(V)).
insert(U,X)=>[UIX].



insert(U,[ AIB])=>[Alinsert(U,B)].

Here [], | are constructors, while perm, insert are non-constructors. The term
perm([1,2,3]) is now reduced by select to [1lperm([2,3]}], [2linsert(1,perm([3]))], and
[3linsert(1,insert(2,perm([})))]. If further reduction is desired, select may be called
recursively upon the arguments of | to yield each of [1,2,3], [1,3,2], {2,3,1], [2,1,3],
[3,1,21, [3,2,1].

2.2 Deterministic F*

An F* program P is a DF* program if (1) left hand sides of no two rules in P unify,
and (2) where f(L.1,..,Li,..,.Lm)=>RHS is a rule in P, and Li is not a variable, then in
every other rule f(K1,. Ki,.Km)=>RHS1 in P, Ki is not a variable. These
restrictions are very reasonable, and as examples throughout this thesis show, it is

possible to adhere to these, yet write quite expressive programs.

DF* is shown to satisfy confluence, directedness, and minimality. Confluence ensures
that a term can be simplified in at most one way. Directedness ensures that to
simplify a term it is sufficient to compute any reduction computable by select.
Moreover, all reductions computable by select are of equal length. Thus, during
reduction, no searching is necessary. Provided, whenever a term is reduced, all
copies of it are simultaneously reduced, minimality ensures that select simplifies
terms in a minimum number of steps. Thus, select exhibits a strong form of laziness.

An example of a DF* program is:

append([],X)=>X.



append([UIV],W)=>[Ulappend(V,W)].
interleave([U1V],X)=>[Ulinterleave(X,V)].
a=>[1la].

b=>[2Ib].

However, the F* program above to insert an element non-deterministically into a list

is not in DF*.

2.3 Compiling F* into Horn clauses

F* programs can be compiled into Horn clauses in such a way that when SLD-
resolution interprets these, it directly simulates the behavior of (the interpreter based
upon) select. This means that there is, essentially, a one-to-one correspondence
between steps executed by (the interpreter based upon) select, and steps executed by
SLD-resolution. This is accomplished by translating each F* rule into a distinct Horn
clause, and simultaneously embodying in that clause, information about the logic of

the rule, as well as information about the control of select when interpreting that rule.

Thus, SLD-resolution is made to exhibit laziness. If the F* program is also in DF*,
clauses can be further transformed to eliminate all backtracking. Finally, clauses can
be compiled into machine code by Prolog compilers. The compilation algorithm

consists of two steps:

Step 1. For each n-ary, n>=0, constructor symbol ¢ in P, and where X1,..Xn are

distinct variables, generate the clause:



reduce(c(X1,..,.Xn),c(X1,..,Xn))

Step 2. Let f(L1,..,.Lm)=>RHS be a rule in P. Let Al,..,Am,Out be distinct Prolog
variables not occurring in th rule. If Li is a variable let Qi be Ai=Li. If Li is
c(X1,..,Xn) where ¢ is a constructor symbol, and each Xi a variable, let Qi be

reduce(Ai,c(X1,..,Xn)). Generate the clause:

reduce(f(Al,..,Am),Out):-Q1,..,Qm,reduce(RHS,Out).

In practice, if Li is a variable, Qi can be dropped, provided Ai is replaced by Li in
f(Al,..,Am). For example, the above F*, and DF* programs are compiled into:

reduce([],[1).
reduce(JUIV],[UIV]).

reduce(perm(X),Z):-reduce(X,[]D,reduce([],Z).
reduce(perm(X),Z):-reduce(X [FXIRX]),reduce(insert(FX,perm(RX)),Z).
reduce(insert(A,X),Z):-reduce(AlX],Z).

reduce(insert{A,X),7Z):-reduce(X,[ FXIRX]),reduce([FX!insert(A,RX)1,Z).
reduce(append(X,Y),Z):-reduce(X,[]),reduce(Y,Z).
reduce(append(X,Y),Z):-reduce(X,[UlIV]),reduce([Ulappend(V,Y)},Z).
reduce(interleave(X,Y),Z):-reduce(,[UIV]),reduce ([Ulinterleave(Y,V)],Z).
reduce(a,Z):-reduce([1la],Z).

reduce(b,Z):-reduce([21b],Z).

If we now type, in Prolog, reduce(perm([1,2,3]),Z), we obtain Z=[1lperm({2,3])],



Z=[2linsert(1,perm([3]))], and Z=[3linsert(1,insert(2,perm([]}))]. Note the following:
First, perm([1,2,3]) is only partially reduced, and directly by Prolog, not by some lazy
interpreter implemented in Prolog. Second, the terms to which Z is bound are exactly
those to which perm({1,2,3]) is reduced by select. This illustrates Prolog simulating

behavior of select. If we now define:

first(0,X,[]).

first{N,X,[FXIZ}):-not(N=0),reduce(X,[FXRX]),N1 is N-1,first(N1,RX,Z).
make_list(E,[]):-reduce(E,[]).
make_list(E,{FEI|Z)}):-reduce(E,[FEIRE]),make_list(RE,Z).
print_list(X):-reduce(X,[FXRX]),write(FX),write(’,”),print_list(RX).

and then type, make_list(perm([1,2,3]),Z), we obtain Z=[1,2,3], Z=[1,3,2], Z=[2,1,3],
7=[23,1], Z=[3,1,2], Z=[3,2,1]. As further examples, if we type the queries on the

left-hand side, we obtain the answers on the right-hand side:

reduce(append(a,b),Z) ---> Z={1llappend(a,b)]
reduce(interleave(a,b),Z) ---> Z=[1linterleave(b,a)]
first(5,interleave(a,b),Z) ---> 7=(1,2,1,2,1}

print_list(interleave(a,b)) ---> 1,2,1,2,1,2,.....

2.4 LOG(F)

LOG(F) is defined to be a logic programming system augmented with an F* compiler,
and the equality axiom X=X. The result of compilation is to add to a logic

programming system, a primitive for lazily simplifying F* terms. This primitive can



be called from other Horn clauses, so LOG(F) is proposed as a combination of logic

programming, rewriting and lazy evaluation.

For problems for which lazy evaluation does not reduce lengths of computation, e.g.
sorting, or all permutations, LOG(F) is empirically found to be about five times
slower than Prolog. For problems for which lazy evaluation does reduce lengths of
computation, e.g. N-queens, LOG(F) is faster than Prolog by unbounded, even

mfinite, amounts.

In the literature, [Vuillemin 1974, Berry & Levy 1979], optimality is used
synonymously with minimality. Due to minimality of DF*, LOG(F) can also be said
to be optimal. It can also be said to be so in a weaker sense, because of its desirable

computational properties, and their economical realization in Prolog.

2.5 Applications of LOG(F)

LOG(F) can be used to do lazy functional programming in logic. In particular, it can
be used to manipulate representations of infinite structures, such as in real analysis,

exact real arithmetic, graphics, or networks of communicating processes.

The SKI rules of combinatory logic can be expressed as a DF* program. From

confluence of DF¥, a new proof is obtained of the confluence of combinatory logic.

DF* seems to offer a reasonable compromise between sequential execution and
unbounded parallelism. Due to directedness of DF*, arguments of f in f(tl,..,tm) can

be simplified in parallel, however, they would be simplified lazily. Thus, DF* seems



to be a good candidate for implementation on parallel machines.

Finally, if a DF* program is interpreted as an equality theory, reduce clauses can be
thought of as implementing an equality theory in Prolog with the restriction that it be
used only for simplification of terms. Now, given a clause of the form
p(c(X1,..,.Xm)):-Body, where ¢ is a constructor symbol, we can add another clause

stating a rule of substitution of equals:

p(X):-reduce(X,c(X1,...Xm)),p(c(X1,...Xm)).

Now, even when a term E is not of the form ¢(X1,..,Xm), p can still be inferred for E,
provided E is reducible to a term of the form c¢(X1,..,Xm). For example, with the
Prolog rule for computing perimeters of regular polygons, peri(reg_poly(N,S),Z):-Z is

N*§, we can infer peri(reg_poly(3,10),30). We can now add the clause:

peri(X,Y ):-reduce(X,Z),peri(Z,Y).

Where reg_poly is a constructor, and equi, square, and hexagon are non-constructors,

an equality theory among polygons, expressed in F*, is:
equi(S)=>reg_poly(3,S).
square(S)=>reg_poly(4,S).

hexagon(S)=>reg_poly(6,S).

This is compiled into:

10



reduce(reg_poly(A,B),reg_poly(A,B)).
reduce(equi(S),Z):-reduce(reg_poly(3,5).Z).
reduce(square(S),Z):-reduce(reg_poly(4,5),Z).
reduce(hexagon(8),Z):-reduce(reg_poly(6,S),Z).

The Prolog query peri(equi(10),30), now succeeds. Thus Prolog automatically infers
the result of substituting equi(10) for reg_poly(3,10), in peri(reg_poly(3,10),30). Of

course, if we type peri(square(3),Z), we obtain Z=12.

3.0 RELATIONSHIP WITH PREVIOUS WORK

There seem to be two major approaches to combining logic programming, and
rewriting. The first consists of implementing logic programming in rewriting, e.g.
LOGLISP {Robinson & Sibert 1982], or QLOG [Komorowski 1982]. However, it
seems difficult for such an approach to lead to an efficient system since logic

programs must pass through two high-level layers of interpretation.

The second approach consists of developing a new computational model of which
both rewriting, and logic programming are instances. Examples of such models
include those based upon upon semantic- or T-unification, [Goguen & Meseguer
1986], [Subrahmanyam & You 1984], [Kornfeld 1983], sets, [Robinson 1987],
[Darlington et al. 1986], narrowing, [Reddy 1985], the Knuth-Bendix completion
procedure, [Dershowitz & Josephson 1984], oriented equational clauses, [Fribourg
1984], residuation, [Ait-Kaci & Nasr 1987], extension of SLD-resolution with
narrowing, [ Yamamoto 1987], or extension of SLD-resolution with atom-elimination

rule, [Barbuti et al. 1986].
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In order for a new computational model to be satisfactory, it must posssess not only
good declarative semantics, but also good procedural semantics. The former is
essential for reasoning about programs in the model. The latter means that the
behavior of the model is simple enough that it can be visualized, predicted, and
controlled. It is essential if the model is to be used for programming, ie. for

expressing algorithms. In this regard, we also quote Robinson [1984]:

...on¢ guiding principle must surely be that logic programming, however narrowly or broadly
construed, essentially involves the ingredient of practicality. The underlying deductive
processes should have enough directness and predictability to permit the planning of efficient
logical computations. Herein probably lies the important distinction, difficult to make precise

but nonetheless real, between logic programming proper and automatic deduction in general.

However, developing a satisfactory computational model, more general than logic
programming and rewriting, is a very ambitious undertaking, particularly if the model
is also to exhibit laziness. In particular, it appears that each of the above models, with
the possible exception of [Robinson 1987}, and [Darlington et al. 1986], either has

complex declarative semantics, or complex procedural semantics.

Of course, even if a satisfactory computational model is developed, its efficient
implementation on concrete machines can still pose a considerable software
engineering challenge, requiring several person-years of effort. In particular, it

appears that efficient implementation of the above proposals is still an ongoing effort.

Lazy evaluation itself does not seem to be easy to implement efficiently. Several

implementations of lazy evaluation for functional, and logic-based languages have
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been proposed e.g. [Friedman & Wise 1976, Henderson 1980, Turner 1979,
O’Donnell 1985, Clark & McCabe 1979, Hansson et al. 1982, Shapiro 1983, Barbuti
et al. 1986]. However, only a few of these systems, €.g. Tumer’s, or O’Donnell’s,

seem to be efficient enough for practical programming.

In view of such difficulties with developing, and implementing a new computational
model of which logic programming, rewriting, and lazy evaluation, are instances, we
ask whether it is possible to subsume the last two within the first. In other words, we
ask whether it is possible to keep SLD-resolution fixed, but use it in such a way that it
performs, in a computationally feasible manner, rewriting, and lazy evaluation? If
such an attempt were to succeed, we would not only obtain a declarative semantics of
rewriting, and lazy evaluation using purely logical ideas, we would also have a very

efficient implementation of these, in, say, Prolog.

Important precedents in this direction have already been established with the
subsumption, within logic programming, of grammars, and relational databases.
Definite clause grammar rules {Pereira & Warren 1980] can be expressed as Hom
clauses in such a way that their interpretation using Prolog, directly simulates top-
down parsing. Relational databases can be expressed directly as ground Horn clauses
[Gallaire & Minker 1978]. Prolog enables inference with them in ways (e.g. using

recursion) not possible with conventional data retrieval operators.

An important step towards subsuming rewriting within logic programming, has
recently been taken by van Emden & Yukawa [1987], whose motivations are very
similar to, but independent, of ours. They show how to derive logical consequences

of the standard equality axioms which result in a small SLD-search space. They also
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show how to compile an equality theory into equality free Horn clauses, which also
result in a small SLD-search space. However, their approach is restricted only to
terminating equality theories. These are insufficient for representing infinite

structures.

As pointed out in {Narain 1986], the compactness theorem of first order logic
[Robinson 1979] suggests that lazy evaluation is already present in first order logic. It
states that if an infinite set of clauses is unsatisfiable then it has a finite subset which is
also unsatisfiable. Moreover, a complete proof procedure, such as SLD-resolution for
Horn clauses would find this set in finite time. Thus, as with lazy evaluation, one

could get termination in finite time even with an infinite input.

This idea was investigated further, and led to a method in [Narain 1986], for defining
functions by Horn clauses in such a way that when SLD-resolution interprets these, it
behaves lazily. However, the discussion is limited mainly to lists, although a

generalization to other data structures is hinted.

The current system, LOG(F), is an attempt to generalize, and develop a purely
syntactic explanation of the above method. It appears to subsume within logic
programming, in a rigorous yet computationally efficient fashion, non-terminating,

non-deterministic rewriting, and lazy evaluation.

Minimality of DF* appears to be a generalization of similar results by Vuillemin
[1974], and Berry & Levy [1979]. Both derive it only for rewrite rules whose left
hand sides are of the form f(X1,..,Xm), where each Xi is a variable. Thus, they must

assume existence of a finite number of primitive functions such as if-then-else, which
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are not definable using such rules alone. In contrast, F* admits rewrite rules in which
the Xi can be patterns. Thus, in F*, as in logic programming, it is not necessary to

assume existence of any primitive functions.

Restrictions on rewrite rules in F*, and the reduction strategy select, scem to be
substantially simpler than their counterparts in the system of O’Donnell [1985].
Select also seems to be substantially simpler than its counterpart in the system of Huet
& Levy [1979]. Furthermore, since F* can be compiled into efficient Horn clauses,
and Prolog can be used, implementation of F* is straightforward. However,

implementation of the other two systems seems to be quite a major undertaking,

Confluence of DF* is anticipated by Huet [1980] who derives sufficient conditions for
confluence for rewrite rule systems more general than DF*. However, our proof,

being specialized for DF*, is very simple.

4.0 OUTLINE OF THESIS

Chapter II reviews relevant previous work in some depth. Chapter III defines F*, and
the reduction strategy select, and establishes its reduction-completeness. Chapter IV
defines DF*, and shows its confluence and directedness. Chapter V defines Labeled
DF*, a subset of DF*, for the purpose of formalizing the notion of a copy of a term,
and then establishes its minimality. Chapter VI describes an algorithm for compiling
F* into Horn clauses, and proves its correctness. Chapter VII describes examples of
programming in LOG(F). Chapter VIII compares performance of LOG(F) with that
of Prolog. Chapter IX contains a summary and conclusions. APPENDICES 1-3

contain a listing of an F* compiler written in Prolog, and instructions on how to use it.
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CHAPTER II
REVIEW OF PREVIOUS WORK

1.0 INTRODUCTION

This chapter discusses logic programming, rewriting, lazy evaluation, and their
benefits. It then reviews previous attempts at combining the first two, and
implementing the third. Most previous attempts at combining the first two, have
focussed on developing advanced computational models of which the two are
instances. Ensuring that such models have satisfactory declarative, and satisfactory
procedural semantics is quite difficult. Moreover, their efficient implementation poses

a formidable software engineering challenge.

The question arises, whether rewriting, and lazy evaluation can be subsumed within
logic programming. If so, not only would an understanding of the first two be
obtained in terms of purely logical ideas, a very efficient implementation of these

would be obtained using Prolog.

2.0 LOGIC PROGRAMMING

An important step in the history of logic was the invention of the Begriffsschrift by
Frege [1879). It was a system consisting of two parts: a language for expressing
logical ideas, and a set of rules for inferring, from statements in this language, other
statements in this language. One of the most important aspects of this system was the
extreme precision with which it was laid out. It would later prove crucial for enabling

a computer to perform inference.
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With the advent of the digital computer, logicians turned their attention to
mechanizing, or automating the process of inference. A breakthrough was achieved
with the discovery of the resolution principle, and the idea of unification [Robinson
1965]. Resolution was a considerable improvement over methods contemporary to it
e.g. of Davis & Putnam [1960]. One application of it was to programming, following
the idea that deduction could legitimately be called computation. This idea was later
called logic programming. Unfortunately, Green [1969] showed that even resolution

was too inefficient for practical programming.

In 1974, Kowalski [1979] proposed SLD-resolution, a refinement of resolution, for
proving theorems in the Hom clausal subset of first-order logic. Furthermore, he
refined the idea of logic programming, by proposing the procedural interpretation of
Homn clauses. Under it, Hom clauses were to be regarded as procedures in a
conventional programming language, and SLD-resolution as their interpreter. Thus,
clauses could be used not only to specify relations but also, simultaneously, to specify

algorithms for computing them.

For example, not only could one write clauses expressing the sorting relation, one
could do so in such a way that sequences were sorted in a number of steps
proportional to that required by quicksort (or mergesort, or bubblesort). Not only
could one write clauses expressing grammar rules, one could do so in such a way that

phrases were parsed in a top-down fashion.

The procedural interpretation is possible due to the simplicity of SLD-resolution. It is
simple enough that its behavior, as it is interpreting Horn clauses, can be visualized

and predicted. Hence one can write clauses in such a way that when SLD-resolution
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interprets them, it behaves, in most cases, in whatever fashion one would like it to
behave. In contrast, resolution does not enjoy this property of programmability. Its
behavior is substantially more difficult to visualize and predict, and hence to control.

As noted in Chapter I, Robinson [1984] expresses similar views.

An important advantage of expressing algorithms in Horn clauses is that they can be
analyzed as statements of logic. This has led to new insights into issues in algorithm
design such as comrectness, termination, composition, semantics, or concurrency.
Moreover, the programmer also has at his disposal powerful concepts from logic such

as logical variable, unification, inference step, sets, or non-determinism.

SLD-resolution is not necessarily more efficient than resolution. It is easy to conceive
of a set of Horn clauses which can be refuted in a smaller number of steps by a
bottom up proof procedure such as hyper-resolution, than by SLD-resolution. Worse,
Rabin cites a result by himself and Fischer that decision problems for even rather
simple logical systems, such as Presburger Arithmetic, are of super-exponential
complexity. Since such problems can be coded up in Horn clauses, even SLD-
resolution would be hopelessly inefficient for these. What then is the point of SLD-
resolution? As discussed above, its point is not that it is efficient, but that it is

programmable.

A logic program [Lloyd 1984] consists of a set of statements, called Horn clauses,

each of the form:

A<-B1,...Bn, n>=0
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where A and each Bi are predications, each of the form R(tl,..,tm), m>=0, R is a
relation symbol and each ti is a term. A term is either a variable, or a function
application of the form f(s1,..,sq), ¢>=0, where f is a ¢-ary function symbol, and each

siis a term.

The reading of a clause A<-B1,..,.Bn, n>=0 is that for all values of variables in the
clause, the value of A is true if the value of each of Bl,.,Bn is true. The clause

R(t1,..,tm)<-B1,..,Bn can be thought of as part of definition of relation denoted by R.

A substitution is a set {<yl,tl>,..,<ym,m>}, m>=0, where yl,.,ym are distinct
variables. For each i, ti is a term, and yi is said to be bound to ti in the substitution.
Where E is a term and € is a substitution, EQ represents the result of replacing each
variable in E by the term to which it is bound in 8. Where o={<x],tl>,..,.<xm,tm>},
and T={<yl,sl>,...<yksk>}, ot is defined to be the substitution

[«x],(x16)T>,..,<xm,(xm0)T>, <yl,(ylo)T>,..,<yk,(yko)T>].

A substitution G is said to be a unifier of terms E and F, if E6=F6. A substitution o is
said to be more general than a substitution T, iff there exists a substitution & such that
68=1. A unifier ¢ of E and F is said to be most general, if for every other unifier 6 of

E and F, there exists a substitution § such that 66=0.

A term is called ground if it does not contain any variables. A term E is a called a

ground instance of a term F, if there exists a substitution ¢ such that E=Fc, and E is

ground.

Let S be a logic program. A query on S is a conjunction of predications D1,..,.Dm,
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m>=0. Let the variables in this query be x1,..,xn, n>=0. The central problem in logic
programming is to determine whether there exists a substitution 8 associating terms
with x1,..,xn, such that every ground instance of (D1,..,.Dm)8 is a logical consequence
of S, and furthermore, to determine the most general such substitution. The values of

x1,..,xn can thus be "computed".

An attempt is made to solve this problem using the SLD-resolution proof procedure.
This has been shown to be sound and complete for Horn clauses [Hill 1974], [Apt &
van Emden 1982]. Given a query D1,..,Di-1,Di,Di+1,..,.Dm, m>=0, and a clause A<-
B1,..Bn, n>=0, where A and Di unify with most general unifier 8, the SLD-proof

procedure derives the new query:

(D1,..,Di-1,B1,..,.Bn,Di+1,..,.Dm)8

An SLD-derivation consists of a sequence of queries Q0,Q1,Q2,.., and a sequence of
substitutions 61,82,.., such that Qi+1 is derived from Qi, and 6i is the associated most
general unifier. If for some i, Qi is empty, the SLD-derivation is called successful, and

the composition of substitutions 01,02,..,6i is determined as one answer to QU.

To see an example of a logic program, consider first an algorithm for appending two
lists: to append lists x and y, if x is empty, output y, otherwise output the result of
attaching the head of x to the result of appending the tail of x to y. A logic program
such that when the SLD-resolution proof procedure interprets it, it simulates the

execution of this algorithm, is:

append([],X,X).
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append({UIV],W,[UIZ])<-append(V,W.Z).

Here [] represents the empty list while | represents the list constructor function.
[A1,A2,...,Am] is an abbreviation for [AlI[A2L.[[AmI[]..]. Now if we query whether
there exists a B such that append({1,2],[3],B) the SLD-resolution procedure answers

B=[1,2,3].

Note also that the above clauses are also true statements about the append relation,
and there are other interesting consequences of these statements. For example, if we
query whether there exist A and B such that append(A,B,[1,2]), we get the
following pairs of answers: A=[],B=[1,2], A=[1],B=[2], A=[1,2],B=[]. We obtain
these answers due to the completeness property of SLD-resolution. Such use of the
same logic program in more than one way is one of the most powerful features of
logic programming. Note that these extra answers cannot be obtained by the original

algorithm,.

The programming language Prolog [Warren et al. 1977] is an approximate
implementation of logic programming. For example, it can sometimes fail to find an
answer even though the SLD-resolution procedure would find it. Sometimes it can
even compute a wrong answer. However, for many practical purposes Prolog can be

regarded as an exact implementation of logic programming.

There is already an impressive number of applications of Prolog [Warren & van
Caneghem 1986}, in areas such as databases [Gallaire & Minker 1978], natural
language analysis [Pereira & Warren 1980], expert systems [Narain 1986], [Clark &
McCabe 1982], symbolic algebra [Bundy & Welham 1981], and circuit analysis
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[Barrow 1983].

3.0 REWRITING

The idea of reduction or simplification is an old and useful one. Objects are reduced,
rewritten, or simplified using some set of rules to other objects. A set of such rules is
called a rewrite rule system. Examples of rewrite rule systems include formal
grammars [Hopcroft & Ullman 1979], combinatory logic {Curry & Feys 1958], rules
for minimization of combinational logic expressions [Kohavi 1978], rules for
converting sentences of first order logic into clausal form [Kowalski 1979], the
lambda calculus [Church 1941], Lisp [McCarthy 1960], [Henderson 1980], SASL
[Turner 1979], HOPE [Burstall et al. 1980].

We now formally define rewrite rule systems and discuss some major issues which
arise in them. We restrict attention to first order rewrite rule systems. These are
sufficient for representing all computable functions. A first order rewrite rule system

is a collection of rewrite rules, each of the form:

A=>B

where each of A and B are terms. A term is either a variable, or of the form f(t1,..,tn),

n>=0, where f is an n-ary function symbol and each ti is a term.

A term E is said to reduce to a term F, (in symbols E->F), if there is a subterm G in E,
a rule A=>B, and a substitution 8 such that G=A0, and F is the result of replacing G

in E by B6. The step of reducing E to F is called a reduction step.
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A term E is said to narrow to a term F if there is a non-variable subterrn G in E, a rule
A=>B, and a most general unifier 6 of G and A, such that F is obtained by applying 0
to the result of replacing G in E by B. Thus, in reduction only variables of A can be

bound whereas in narrowing variables of both A and E can be bound.

Given a term EOQ, a reduction is a, possibly infinite, sequence EQ,E1,.. such that for all
i, whenever Ei and Ei+1 both exist, Ei->Ei+1. -*> is defined to be the reflexive-
transitive closure of ->. Given terms EOQ and En, if EO-*>En and there is no term F
such that En->F then En is called a normal form of EQ. If for all terms M,N,P, M-
*>N and M-*>P, implies there exists a term Q such that N-*>Q and P-*>Q, then the
rewrite rule system is called confluenr. An important consequence of confluence is
that every term has at most one normal form. Methods for checking whether rewrite
rule systems are confluent, and if not, how to make them so, are studied in [Knuth &
Bendix 1970] and [Huet 1980]. If no infinite reductions are possible, the set of
rewrite rules is called ferminating. A terminating, confluent system is called

canonical.

Given a term, there can in general be many reductions starting with it, some of which
end in normal forms while others are infinite. Precisely which one is generated is
determined by a reduction strategy. A reduction strategy is a mapping which takes a
term E as input, and returns a subterm G of E as output, such that there is some rule
A=>B and substitution ¢, such that G=Ao. We can now replace G in E by Ba, and
then repeat this step to obtain a single reduction starting at E. This reduction is said to

be computed by the reduction strategy.

The choice of a reduction strategy has an important bearing upon two issues,
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reduction-completeness, and efficiency. A strategy, or the associated rewrite rule
system, is reduction-complete if for each term, each of its normal forms can be
computed exclusively by use of this strategy. A reduction strategy R1 is more
efficient than another one R2, if normal forms can always be computed in a smaller
number of steps using R1 than using R2. For example, it is well known that for the
lambda calculus, the normal-order, or leftmost strategy is reduction-complete, while
the applicative-order strategy is not, even though it is usually more efficient.
However, the normal-order strategy is not always sufficient to guarantee reduction-

completeness, as the following example shows.

fOX)=>f(X).
f((H=>(1.

a=>[].

Even though f(a) has [] as normal form, the only normal-order reduction starting at it
is f(a),f(a),..... Ironically, there is an innermost, terminating reduction f(a),f([1),[].

Rewrite rule systems are useful in at least three ways and these are now discussed.

3.1 Rewriting and solution of identities

Equality, like partial ordering, is a useful relation. A set of statements each of the
form A=B, where A and B are terms is called an equality theory. Examples of
equality theories are identities in trigonometry, in the differential and integral
calculus, or in polynomial arithmetic. In contrast, equality axioms comprise a fixed

set containing the following statements:
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X=X.
X=Y<-Y=X.
X=Y<-X=Z.7=Y

and for each n-ary function symbol f, and integer i, the statement:

f(X1,..,.Xi,...Xn)=f(X1,..,Yi,.. Xn)<-Xi=Y1i.

and for each n-ary predicate symbol p, and integer i, the statement:

p(X1,..Xi,...Xn)<-Xi=Yi,p(X1,...Yi,...Xn).

The last two axioms are called substitutivity axioms and express the very important
rule that equals can be substituted for equals in expressions without changing their
values. Examples of use of this rule can be found in the simplest of mathematical

derivations, e.g. in showing that log(a*b)=log(a)+log(b).

Given an equality theory T, the equality axioms E, and terms A and B, an important
problem which arises is whether A=B is a logical consequence of T U E. This
problem is also called the word problem. Here A=B is interpreted as an identity so
that all its variables are universally quantified. For example, where T consists of
elementary trigonometric identities, the problem may be to determine whether

sin(2*x)=2*sin(x)*cos(x) is an identity.

In principle, this problem can be tackled simply by submitting T, E and A=B to some

complete proof procedure such as SLD-resolution. However, the resulting search
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space is prohibitive [Robinson & Wos 1969], [van Emden & Yukawa 1986]. For
example, for the simplest of problems, there would be an infinite branch in the search

space due to the symmetricity axiom.

Rewrite rule systems offer a more computationally feasible approach to solving this
problem. Let T* be the rewrite rule system obtained by converting = to => in each
rule L=R in T. Now, if in the context of T*, C-*>D, it is easily verified that C=D is a
logical consequence of T W E. Now, if every term has at most one normal form, a
sufficient condition for checking equality can be obtained. To check whether A and
B are equal, obtain the normal forms of A and B, and check whether these are

syntactically identical.

This approach is computationally feasible for three reasons. First, there is no infinite
branch corresponding to the symmetricity axiom. Second, if T* is terminating, then
any reduction strategy will compute the normal form of A and B. Third, one can
reduce A and B independently of each other. Equality can also be checked by
reducing both A and B to the same term not necessarily in normal form. However,
then, A cannot be reduced independently of B, since the term to which A must be

reduced depends upon the term to which B must be reduced, and vice versa.

Note that in general, this condition for equality is only sufficient, not necessary. It is
entirely possible that A=B be a logical consequence of T U E, but that A or B not
have normal forms. For example, where T is {int(N)=[Nlint(s(N))]},
int(0)=[0lint(s(0))] is a logical consequence of T U E, however, the normal form of

int{0) will never be obtained.
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However, if T* is also terminating, the condition for equality is also necessary [Knuth
& Bendix 1970]. This is a major reason for the importance of confluent, terminating,

or canonical theories,

3.2 Rewriting and functional programming

A rewrite rule system T can be thought of as a functional programming system,
provided every term in T has at most one normal form, => is interpreted as equality,
operators as (partial) functions, and ground terms as objects in the domain and range
of these functions. The reading of a rule A=>B is now that for all values of variables

in the rule, the value of A is the same as the value of B.

A rule f(t1,..,tn)=>B can be thought of as part of definition of function denoted by f. A
reduction step can be thought of as a step in which equals are substituted for equals.
The normal form of a term f(tl,..,tn), if it exists, is unique, and can be taken to
represent the value of function denoted by f for arguments denoted by tl,..tn. Thus,

reduction can be thought of as computation. For example, the rules:

append((}.X)=>X.
append([UIV],W)=>[Ulappend(V,W)].

can be thought of as defining the list concatenation function. The value of
append([1],[2]) is taken to be the value of its normal form {1,2]. Suitable versions of
the lambda calculus [Church 1941], combinatory logic [Tumer 1979], or Lisp

[Henderson 1980], are rewrite rule systems used for functional programming.
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3.3 Rewriting and computation with infinite structures

Computation with infinite structures, such as power series, streams, or real numbers,
can be interpreted more elegantly in the context of rewriting than in that of logic
programming. For example, suppose we wish to determine the first n elements of
sequences, where these sequences can be infinite, such as an infinite list of 1s. In

Prolog we could write:

first(0,X,[1).
first(s(X),[UIV],[UIZ]):-first(X,V,Z).
p([11Z1):-p(2).

Now, if we wanted to compute the first element of the list computed by p, we would

type:

p(X).first(s(0).X,Z).

We could arrange, as in Parlog [Clark & Gregory 1986] or Concurrent Prolog
[Shapiro 1983] that p and first coroutine, i.e. whenever a new element is generated by
p, control transfers to first. Then, even though p computes an infinite list, first would
still terminate with Z bound to [1]. However, since p would never terminate, no
theorem would ever be proved, so within the framework of SLD-resolution we would

not be entitled to infer anything.

In a rewrite rule system, however, we would express first and p as follows:
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first(0,X)=>[].
first(s(X),[UIV)=>[Ulfirst(X, V)].

p=>{1p).

Now, the normal form of first(s(0),p) is [1], well within the framework of reduction.

4.0 LAZY EVALUATION

Consider two situations. First, suppose we wish to determine whether two sequences
A and B are identical, i.e. whether for every i, A[i]=B[i], where X[i] represents the ith
element of sequence X. We can generate A completely, then generate B completely,
and then compare their elements from left to right. However, A and B may be very
long but may differ at, say, the third position. The effort of generating A and B

beyond the third position would then be wasted.

Second, suppose the sequences A and B above are infinite, but differ, as before, at the
third position. An attempt to generate A or B completely would never terminate, and

so we would never know that A and B differ.

To deal with such situations, the idea of lazy evaluation has been developed. Itis a
method of computing which ensures, roughly, that a computation step is performed
only when there is need to perform it. Thus, in both situations above, lazy evaluation
would generate the ith elements of A and B only when it was known that for all j, j<i,
Alj1=B[j]. In the first case the answer would be produced more efficiently. In the
second case the answer would be computed in finite time, without computation

getting trapped in an infinite loop.
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Thus, lazy evaluation has two advantages. First, it allows certain computations to
terminate more quickly. Second, it allows computation with infinite structures. These
arise in areas such as exact real arithmetic, real analysis, graphics, or networks of
communicating processes [Kahn & MacQueen 1977]. The precise interpretation of
lazy evaluation depends, of course, on the formalism in which we are programming.
This thesis provides such an interpretation in the context of the rewrite rule system F*

which it develops.

4.1 Lazy evaluation in functional languages

Many implementations of lazy evaluation have been proposed for purely functional
languages. Only four of the more well known ones are outlined. Friedman & Wise
{1976] modify Lisp by making cons non-strict in both its arguments. A function is
non-strict in its ith argument if it can return a value without evaluating its ith
argument. Thus, the expression (car (intfrom 1)), in the presence of the definition
(intfrom n)=(cons n (intfrom (plus 1 n))), would evaluate to 1 instead of leading to a

non-terminating recursion.

However, efficient implementation of non-strict cons is substantially more difficult
than that of strict cons. Moreover, often multiple copies of unevaluated expressions
are created. To avoid redundant computation, one has to ensure that whenever one
copy is evaluated, all copies of it are simultaneously evaluated. This further

complicates the implementation.

A similar idea is proposed in Henderson [1980]. He wraps delay, and force operators

around certain Lisp expressions, for example, before arguments to cons. These
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postpone or activate evaluation of expressions. This idea is also difficult to efficiently

implement for much the same reasons as non-strict cons is.

O’Donnell [1985] describes a non-terminating rewrite rule system, intended for doing
functional programming. The system is reduction-complete, so it exhibits a weak
form of laziness. It is claimed in a later paper by O’Donnell that an implementation

of this system is as efficient as Franz Lisp.

A quite interesting approach to lazy evaluation is based upon a theorem of Curry and
Feys [1958] which states that normal-order reduction of lambda terms yields their
normal forms whenever they exist. This approach has been realized by Turner in his
SASL language [Turner 1979]. He compiles SASL programs into expressions in his
combinatory logic, and reduces them using normal-order graph reduction. In graph
reduction it is easy to ensure that when an expression is reduced all copies of it are
simultaneously reduced. Thus, this approach appears both elegant as well as

practical.

Vuillemin [1974], Berry & Levy [1979] show that provided whenever a term is
reduced, all copies of it are simultaneously reduced, a call-by-name reduction strategy
is optimal. In other words, it computes normal forms of terms in a minimum number
of steps. Thus, this scheme exhibits a strong form of laziness. However, this result is
derived only for rewrite rules whose left hand sides are of the form f(X1,..,Xm), each
Xi a variable. Thus, the existence of a finite number of primitive functions, such as

if-then-else, must be assumed. These cannot be defined using such rules alone.
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4.2 Lazy evaluation in logic programming

One of the first proposals for achieving lazy evaluation in logic languages was made
in IC-Prolog [Clark 1980]. The behavior of the IC-Prolog interpreter could be
controlled by annotating variables in the logic program. For example, it could be
made to suspend proving a predication if its arguments were not sufficiently
instantiated. A similar idea is found in Concurrent Prolog [Shapiro 1983] and Parlog
[Clark & Gregory 1986]. As with non-strict cons, these extended Prologs are difficult
to efficiently implement on sequential machines. However, some efficient

implementations on parallel machines seem to be under way.

In keeping with the philosophy of logic programming--to write clauses in such a way
that SLD-resolution behaves as intended--an efficient technique for doing lazy
evaluation in Prolog was presented in [Narain 1986]. In contrast to previous
approaches for realizing lazy evaluation, this technique does not require any change
to the Prolog interpreter. Instead, pure logic programs are written in such a way that

their interpretation, using the Prolog interpreter directly yields lazy evaluation.

However, the analysis of this technique relies upon certain questionable semantical
ideas such as the equality of infinite lists. Also, the conditions that programs must
satisfy in order to behave lazily can be sometimes difficult to verify. This thesis is
partly motivated by a desire to obtain a purely syntactic understanding of this

technique.
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5.0 COMBINING LOGIC PROGRAMMING AND REWRITING

5.1 Logic programming in rewriting

Several attempts have been made to implement the SLD-resolution procedure in a
rewrite rule system such as Lisp, e.g. LOGLISP [Robinson & Sibert 1982] or QLOG
[Komorowski 1982]. In these, terms which occur as arguments to predications can be
Lisp expressions. Clauses can contain calls to Lisp predicates. The result of a

deduction is a Lisp data object subject to arbitrary manipulation by Lisp procedures.

It appears difficult for such an approach to lead to an efficient system. SLD-
resolution can compute with unbound variables in expressions, but Lisp cannot. So,
logic programs are different enough from Lisp programs that they cannot be
interpreted using the very efficient Lisp interpreters available today. Neither can they
be compiled using Lisp compilers. Thus, a separate interpreter in Lisp is developed,

but since it is itself interpreted by Lisp, deductions are not very efficient.

5.2 Equality in logic programming

A rewrite rule system can be interpreted as an equality theory by interpreting => as =.
Equality theories and axioms can be expressed as Horn clauses. To reason with them,
one can simply add them to a logic programming system such as Prolog, and so
obtain more than a combination of rewriting and logic programming. However, as
discussed in section 3.1, this approach leads to a computationally infeasible search

space.
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To alleviate this large search space, Robinson and Wos [1969] proposed
paramodulation, a rule of inference which simulates all the equality axioms, except
reflexivity. These axioms then need not be included with the equality theory, so a
reduced search space results. For example, from Q(a) and a=b one can infer in a
single step, via paramodulation, Q(b). With the full equality theory, the inference

would be longer.

Paramodulation is sound and complete for the clausal form of first order logic.
However, it only seems to hide details of applications of equality axioms, not
eliminate their use, so the search space is still quite large. For example, there is stll

an infinite branch due to symmetricity.

An important, recent approach to implementing equality in logic programming has
been suggested by van Emden and Yukawa [1986). They present alternative equality
axioms, which logically imply the original axioms, but which, for purpose of solving
identities, have much better computational properties. These axioms also form an
executable Prolog program. However, this approach is restricted to terminating
theories, which cannot be used to represent infinite structures, or all computable

functions,

Tamaki [1984] has also shown how to compile equality theories into Horn clauses
with a smaller search space. However, as he himself points out, these clauses can still
be seriously inefficient, particularly, when manipulating representations of infinite

structures.
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5.3 Extended unification

Like paramodulation, this is another approach for excluding equality axioms, yet
obtaining their logical consequences. Let T be an equality theory interpreted as a
rewrite rule system. Given terms tl and t2 one tries to algorithmically determine a
substitution 0 such that t10=t26, as an identity, is a logical consequence of T and the
equality axioms. Such a substitution is called a T-unifier of t1 and t2. Conventional

unification is T-unification with T={}.

T-unification is the dual of the word problem. Given a theory T and terms t1,t2, T-
unification is determining whether t1=t2, treated as an equation, is a logical
consequence of T and the equality axioms. In particular, all variables in ti=t2 are

existentially quantified.

A substitution o is said to be an instance of substitution 1 if there is a substitution &
such that for every variable x, x0=x1d as an identity, is a logical consequence of T
and the equality axioms [Fay 1979]. A set § of T-unifiers of t1 and t2 is said to be
complete, if for any T-unifier ¢ of t1 and t2, there exists a unifier T in S such that 6 is
an instance of T. A set of T-unifiers of tl and 2 is said to be independent if no two
members of S are instances of each other. A set of T-unifiers of t1 and 12 is said to be

maximally general if it is complete, and independent.

One can generalize resolution to use T-unifiers. For example, given the query P(t1)
and the clause P(t2)<-Q one first T-unifies t1 and (2 to obtain &, and then infers the
query Qo. Thus T-unification steps do not appear as part of the deduction, and so its

length is considerably shorter, than it would be had the equality axioms been
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included.

Many T-unification algorithms have been proposed. Those of Fay [1979] and Hullot
[1980] are based upon narrowing, and are shown to yield complete sets of T-unifiers
when the equality theories, interpreted as rewrite rules, are confluent and terminating.
Komnfeld [1983], and Subrahmanyam & You [1984] provide many interesting
examples, but no rigorous analysis of their algorithms. Goguen and Meseguer {1986]
use Fay’s or Hullot’s algorithm for solving equations in their Eqlog language. The
algorithm of Miller & Nadathur [1986] is for unifying terms in the typed lambda

calculus and is based upon one by Huet [1975].

In contrast to conventional unification, the maximally general set of unifiers of two
terms need not be a singleton. In fact it can be infinite. For example, with the theory
defining multiplication of natural numbers, the maximally general set of unifiers of
X*X=Z*W is infinite [Goguen & Meseguer 1986]. Moreover, T-unification can
require searching through an infinite space even with very simple theories. For
example, when T={0+x=x,s(x)+y=s(x+y)}, and u is a variable, T-unification of u+u
and s(s(0)) via narrowing generates an infinite branch. The usefulness of a
computational model whose innermost loop involves such search is highly

questionable.

5.4 Completion procedure as interpreter

Dershowitz & Josephson [1984] show how to interpret rewrite rules using a linear
version of the completion procedure [Knuth & Bendix 1970], to obtain the effect of

logic programming, For example, they define the append function as follows:
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append(X.U,V)=X.W -> append(U,V)=W
append(nil, V)=V -> true
append(V,ni)=V -> true

An example of a query is append(A,B)=1.2.nil->ans(t(A,B)), which is added to the
above set. The goal is to complete this set in the sense of [Knuth & Bendix 1970] tll
the rule ans(t(A,B)))->true is derived. A and B are then read off as answers. They also
show how to transform logic programs into rewrite rules. This approach is interesting
to the extent of showing that the completion procedure can be regarded as an
interpreter. However, the completion procedure does not specify any reduction
strategy, so computationally, this approach does not seem to have much advantage

over narrowing.

5.5 Logic programming with sets

Robinson [1987] and Darlington et al. [1986] propose unifying functional and logic
programming by means of sets. They observe that a logic program computes a
relation, which can be thought of as a set, namely the set of those tuples which are in
the relation. Hence if a rewrite rule system could have a facility for defining and
computing sets, one could obtain the power of logic programming. This idea is
embodied in the SUPER language of Robinson’s group. Darlington’s group has
extended the HOPE language with it. This approach appears to be quite promising,
and it remains to be seen how practical SUPER and extended HOPE will be.
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5.6 Narrowing

Reddy [1985], proposes interpreting rewrite rules using narrowing. In narrowing
input variables can be bound. This feature, which mainly distinguishes logic
programming from reduction can thus be achieved with rewrite rules. So, narrowing
can be used as basis for subsuming both rewriting and logic programming. For

example, with:

append([},Y)=Y.
append([A'X],Y)=[Alappend(X,Y)].

the expression append(A,[31)=[1,2,3], A a variable, cannot be reduced at all. But it
can be narrowed to append([1,2],[3])= [1,2,3], to yield the substitution A=[1,2].
However, this scheme seems to pose computational problems as serious as with

semantic unification, or paramodulation.

5.7 Residuation

Ait-Kaci & Nasr [1987] allow the possibility that arguments of predicate symbols be
evaluable. In this, their scheme resembles LOGLISP [Robinson & Sibert 1982]. It
differs from LOGLISP in that unification of terms is suspended till all their evaluable
subterms become ground. These subterms are then evaluated and unification resumed.
A residuation is simply a suspended unification. However, they do not discuss lazy

evaluation.
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5.8 Miscellaneous

Fribourg [1984] proposes oriented equational clauses, i.e. Horn clauses with a rewrite
rule as the head part, and a list of equations as the body part. He also proposes an
interpreter based upon the rule of clausal superposition, or substitution of equals for
equals, and the derivation of resolvents. He shows how this language can be used to
do both rewriting, and conventional logic programming. However, he does not

discuss a reduction strategy, or lazy evaluation.

Yamamoto [1987] extends SLD-resolution with narrowing for treating equational
theories. However, the completeness theorem is only proved for confluent,

Noetherian theories. Moreover, no reduction strategy is discussed.
Barbuti, et al. [1986] extend SLD-resolution with their atom elimination rule to

handle rewriting in a demand-driven fashion. However, they do not provide much

rigorous discussion of the computational properties of this rule.
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CHAPTER III
A REWRITE RULE SYSTEM F*

1.0 INTRODUCTION

A first order, non-deterministic, non-terminating rewrite rule system F*, and a lazy
reduction strategy for it, select, are defined. The emphasis in F* is on computing
simplified forms, instead of normal forms. Thus, certain termination problems faced

by previous approaches are avoided.

The main result proved is that F* is reduction-complete, in that select reduces ground
terms to their simplified, or normal forms, whenever possible. Reduction-
completeness yields a weak form of laziness. A term may denote an infinite object,
and so fail to have a finite normal form. However, if it has a finite simplified form, it
is obtained in finite time. By repeatedly simplifying subterms of this simplified form,

the structure of the infinite object can be revealed to any arbitrary depth.

2.0 DEFINITION OF F*

Variables. There is a countably infinite list of variables.

Function symbols. There is a countably infinite list of O-ary function symbols. In
particular, {], 0, true, false, are 0-ary function symbols. There is a countably infinite
list of 1-ary function symbols. In particular, s is a 1-ary function symbol. There is a
countably infinite list of 2-ary function symbols. In particular, | is a 2-ary function

symbol. And so on, for all other arities.
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Connectives. The connectives are =>, (, ), ', .

Constructor Symbols. There is an infinite subset of the function symbols called
Constructors. Each element of Constructors is called a constructor symbol. For each
n, n>=0, Constructors contains an infinite number of n-ary function symbols. In
particular, 0, true, false, [] and | are constructor symbols. It is intended that data be

represented by combinations of only constructor symbols.

Terms. A term is either a variable, or an expression of the form f(t1,..tn) where fis an
n-ary function symbol, n>=0, and each ti is a term. A term is called ground if it
contains no variables. It is the intention in F* to reduce only ground terms, and most
of the propositions below are about these. Non-ground terms such as left hand sides
of reduction rules do arise, but in very few propositions. Hence, unless explicitly

stated otherwise, by a term is meant a ground term.

Subterms. Let E be a term. Then E is said to be a subterm of itself. Also, if
E=f(t1,..,m), n>0, then X is said to be a subterm of E, if X is a subterm of some ti.
Let X be a subterm of E. Then X is said to occur in E. Also, if X#E, then X is said to
be a proper subterm of E, or be properly contained in E. Two subterms A and B of E

are said to overlap, if A is properly contained within B.

Substitutions. A substitution is a, possibly empty, set {<X1,t1>,...<Xn,tn>} where
the X1,..,Xn are distinct variables, and each ti is a term, possibly containing variables.
A variable X is defined in a substitution ¢ iff for some possibly non-ground term s,
<X,s> occurs in ¢, In this thesis, we will be concerned almost exclusively with

substitutions in which for each pair <X,s>, s is a ground term.
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Applying substitutions to terms. Let o={<X1,t1>,..,<Xn,tn>} be a substitution and
E be a term, possibly containing variables. The result of applying ¢ to E, Eg, is the

result of replacing, for each i, every occurrence of Xi in E by ti.

Matching. A ground term E is said to match a possibly non-ground term F, with

substitution a, if E=Fa.

Unification. Two terms, E and F, possibly containing variables, are said to unify with

substitution ¢ if E6=Fo. Note that matching is a special case of unification.

Reduction Rules. A reduction rule is of the form:

LHS=>RHS

where LHS and RHS are terms, possibly containing variables. LHS is called the head

of the rule. The following restrictions are placed on LHS and RHS:

(a) LHS is not a variable.

(b) LHS is not of the form c(t1,..,tn) where ¢ is a constructor symbol.

(c) If LHS=f(t1,12,...tn), then each ti is a variable, or a term of the form

¢(X1,..,Xm) where ¢ is an m-ary constructor symbol, and each Xi a variable.

(d) There is at most one occurrence of any variable in LHS.
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(e) All variables of RHS appear in LHS.

These restrictions are very reasonable, and as examples throughout the thesis show,
very expressive programs can be written adhering to these. Note that F* is more
expressive than first order Lisp, as the latter does not admit patterns in left hand sides

of function definitions.

Restriction (a) is to enable functional programs to be written in F*.

Restriction (b) ensures that a term of the form c(tl,..,tn), ¢ a constructor symbol,
cannot be reduced as a whole. This yields a simple halting condition for the basic
simplification process. If further simplification is required, the process may be called

recursively.

Restriction (c) limits heads of rules to be of depth at most two, and so greatly
simplifies analysis. However, no generality is lost, since rules with heads of arbitrary
depth can easily be expressed in terms of rules with heads of depth at most two. For

example, the rule:

fib(s(s(X)))=>plus(fib(X),fib(s(X)))

can be expressed as:

fib(s(A))=>g(A)
g(s(X))=>plus(fib(X),fib(s(X)).
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Restriction (d) is the linearity assumption. It ensures that to match a ground term
f(t1,..,tn) with the left hand side of a rule f(L1,..,.Ln), it is sufficient to match, for each

i, 1 with Li.

Restriction (e) ensures that a ground term is never reduced to a non-ground term,

Again, this is necessary if F* is to be used for functional programming.

F* programs. An F* program is a finite set of reduction rules. Where t is a binary

constructor symbol, some examples of F* programs are:

quicksort([])=>{].
quicksort([AIB])=>quicksort1(A,partition(A,B,[],[1)).
quicksort1(A,t(L,R))=>append(quicksort(L),[ Alquicksort(R)]).

partition(U,[},L,R)=>t(L,R).
partition(U,{AIB],L,R)=>

if(lesseq(A,U),partition(U,B,[AIL],R),partition(U,B,L,[AIR])).

append([],.X)=>X
append([UIV],W)=>[Ulappend(V,W)]

if(true, X, Y)=>X.
if(false,X,Y)=>Y.

lesseq(0,X)=>true.

lesseq(s(X),s(Y))=>lesseq(X,Y).



lesseq(s(X),0)=>false.

zero(X)=>0.

prim_rec_f(0,Y1,Y2,Y3)=>g(Y1,Y2,Y3).
prim_rec_f(s(X),Y1,Y2,Y3)=>h(prim_rec_f(X,Y1,Y2,Y3).X,Y1,Y2,Y3).
minim_p(X,K)=>if(equal(p(X),K),X,minim_p(s(X),K)).

equal(0,0)=>true.

equal(0,s(X))=>false.

equal(s(X),0)=>false.

equal(s(X),s(Y))=>equal(X,Y).

merge([AIBL[CID])=>if(lesseq(A,C),[Almerge(B,[CID]),[Cimerge([AIB],D)]).

int(N)=>[Nlint(s(N))].

greater(X,Y)=>not(lesseq(X,Y)).

not{true)=>false.

not(false)=>true.

We now consider the reduction of terms. Again, unless explicitly stated, by a term

we mean a ground term.

El. Let P be an F* program and E and E1 be terms. We say E=>PEI if there is

a rule LHS=>RHS in P, and a substitution ¢ such that E=LHSg, and E1=RHSc. We
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also say that E reduces to E1 by the rule LHS=>RHS, or that the rule applies to the

whole of E. The subscript on => is dropped, if clear from context.

F=E[G/H]. Where E,F,G,H, are terms, let F be the result of replacing an occurrence
of G in E by H. Then we say F=E[G/H].

E->PE 1,E-*>PE1. Let P be an F* program and E be a term. Let G be a subterm of E
such that G=>PH. Let E1 be the result of substituting H for G in E. Then we say that
E->PE1. Note that if E=>PE1 then E matches the left hand side of some rule in P. If
E->PE1 then some subterm of E, including possibly E, matches the left hand side of
some rule in P. We define -*>, to be the reflexive transitive closure of ->5. Again, the

subscript on -> or -*> is dropped, if clear from context.

Reductions. Let P be an F* program. A reduction in P is a, possibly infinite,

sequence E1,E2,... such that for each i, when Ei and Ei+1 both exist, Ei—>PEi+1.
Lengths of reductions. The length of a finite reduction EQ,E1,..,En is n.

Simplified forms. A term is said to be in simplified form or simplified if it is of the
form c(tl,..,tn) where ¢ is an n-ary constructor symbol, n>=0, and each ti is a term. F

is called a simplified form of E, if E-*>F and F is in simplified form.

Normal forms. A term is said to be in normal form if each function symbol in it is a

constructor symbol. F is called a normal form of E if E-*>F and F is in normal form.

Successful reductions. Let P be an F* program. A successful reduction in P is a finite
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reduction EQ,...En, n>=0, in P, such that En is simplified.

RP(G,H,A,B). Let P be an F* program. Where G,H,A,B are terms, RP(G,H,A,B) if
(a) G=>H, and (b) B is identical with A except that zero or more occurrences of G in
A are simultaneously replaced by H. Note that A and G can be identical. Again, if P

is clear from context we omit the subscript on R.

Reduction strategy. Let P be an F* program. A reduction strategy for P takes as
input a term E and selects a subterm G of E such that there exists a term H such that

G=>PH.

A special reduction strategy. Let P be an F* program. We now define a reduction
strategy, selectP for P. Informally, given a term E it will select that subterm of E
whose reduction is necessary in order that some => rule in P apply to the whole of E.,
Where £(T1,..,Tn) is a term, the relation selectp is defined by the following pseudo-

Horn clauses:

sclectp(f(Tl soes T, E(T1,.., Tn)) if f(T1,. ST)=>pX.
sclectp(f(Tl,..,Ti,..,Tn),X) if
there is a rule f(L1,..,Li,...Ln)=>RHS in P, and
there is no substitution & such that Ti=Lio, and

selectP(Ti,X).
The second rule is a schema, so that an instance of it is assumed written for each each

i, 1=<i=<n. Again, the subscript on select is dropped, if clear from context. Note the

following:
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(1) When selectp takes as input E and returns G, it also, implicitly, computes a
position, or occurrence of G in E. This occurrence can be obtained from the

proof of selectP(E,G).

() If selectP(E,G), there is a term H such that G=>PH.

(3) Select is non-deterministic, in that given term E, it is possible for it to
select more than one subterm Al,..,Ak, k>0, within E. Also, it is possible that

for some i,j, i#j, Al is a proper subterm of Aj.

(4) Since, by restriction (b) there is no rule in P of the form c(tl,..,tn)=>RHS,

where ¢ is a constructor symbol, if E is simplified, selectP is undefined for E.

For example, where P is the set of reduction rules which appear above, and 1,2,... are

abbreviations, respectively, for s(0),s(s(0)),.., we have the following:

select(merge(int(1),int(2)),int(1)).
select(merge(int(1),int(2)),int(2)).
select(merge([1,3),int(2)),int(2)).
select(merge([1,2],[3,4]),merge([1,2],[3,4])).

If E=[1imerge(int(1),int(2))] then select is undefined for E.
select(lesseq(0,zero(1)),lesseq(0,zero(1))).
select(lesseq(0,zero(1)),zero(1)).

Let E,G,H be terms. In the following, when we say that select(E,G), and G is to be

replaced by H in E, we mean that the occurrence of G derived from the proof of
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select(E,G), is to be replaced by H.

N-step. Let P be an F* program and E,G,H be terms. Let sclectP(E,G), and G=>PH.
Let E1 be the result of replacing G by H in E. Then we say that E reduces to E1 in an
N-step in P. The qualification "in P" is omitted when P is clear from context. The

prefix N in N-step is intended to connote normal order.

N-reduction. Let P be an F* program. An N-reduction in P is a reduction E1,E2,.... in
P such that for each i, when Ei and Ei+1 both exist, Ei reduces to Ei+1 in an N-step in
P. In particular, the sequence E where E is a term, is an N-reduction in P. The

qualification "in P" is omitted when P is clear from the context,

select-r. This reduction strategy repeatedly uses select to reduce terms. The suffix r

stands for recursive, or repeated. Where P is an F* program:

sclcct-rP(E,F) if selcctP(E,F).
select—rp(c(Tl s T1,.., Tm), F) if
¢ is a constructor symbol, and

select-rP(Ti,F).
Again, the second rule is a schema, so that an instance of it is assumed written for
each i, 1=<i=<n. Thus, select-r is like select except that if a term is in simplified

form, it recursively uses select on one of the arguments of the outermost constructor

symbol. So, its repeated use can yield normal-forms of terms.

For example, with the usual rules for append, the query select([1append({],[1)1,.X)
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fails, whereas the query select-r([llappend([]1.{1)].X) succeeds with X=append([].[]).

The subscript on select-r is dropped, if clear from context.

NR-step. Let P be an F* program and E,G,H be terms. Suppose selcct-rp(E,G) and
G=>PH. Let E1 be the result of replacing G by H in E. Then we say that E reduces to

Elin an NR-step in P. The qualification "in P" is omitted when clear from context.

NR-reduction. Let P be an F* program. An NR-reduction in P is a reduction
E1,E2,.... in P such that for each i, when Ei and Ei+1 both exist, Ei reduces to Ei+1 in
an NR-step in P. In particular, the sequence E where E is a term, is an NR-reduction

in P.

NR-reductions are needed to compute normal-forms of terms. For example, the term
append([1],[2]) has the only N-reduction append([11,[2]), [llappend([],[2]}].
However, it has the NR-reduction append([1],[2]), [llappend([].{2D], [1.2]. The

qualification "in P" is omitted when clear from context.

3.0 REDUCTION-COMPLETENESS OF F*

Lemma 1. Let P be an F* program. If A->B and B is simplified but A is not, then
A=>B.

Proof. Since A is not simplified, A=f(tl,..,tn) where f is not a constructor symbol and
each ti is a term. Since the reduction of A to B eliminates this symbol, it follows that

A must reduce as a whole to B. Thus A=>B, QED.
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Lemma 2, Let P be an F* program. Let X1,..,Xn be variables, G,H,tl,..,in,t1¥*,. tn*
be terms such that for each i, R(GH,t,ti*). Let o={<Xl,tl>,. ,<Xn,tn>} and
t={<X1,t1*>,..,.<Xn,tin*>} be substitutions. Let M be a term, possibly containing

variables, but only from {X1,..,Xn}. Then R(G,H Mo ,M1).

Proof. By induction on length of M. Since M is a term, possibly containing variables,
it is either a variable, a 0-ary function symbol or of the form f(N1,..,Nk) where f is an

n-ary function symbol and each Ni is a term, possibly containing variables.

If M is a variable Xi, then Mo=ti and Mt=ti* and so clearly R(GHMoM1). If Misa
0-ary function symbol then Mo=M and Mt=M and obviously R(G,HM,M). Let
M=f(N1,..,Nk). Assume the lemma holds for N1,..,Nk, i.e., for all i, R(G,H,Nig,Nit).
f(N1,..,Nk)o=f(N1o,..,Nko). Similarly, f(N1,.Nk)t=f(N17,..Nkt), and hence
R(G,H,Mc M1). QED.

Lemma 3. Let P be an F* program. If:

(1) G, H, E1=f(t1,..,tn) and F1=£(t1*,...tn*) are terms, and
(2) R(G,H,ti,ti*) for every iin 1,..,n, and
(3) B=f(L1,..,Ln) is the head of some rule in P, and

(4) E1=Bo for some substitution ¢, which defines only the variables in B.

Then there exists a substitution T such that:

(1) F1=Bt, and

(2) ¢ and 7 define exactly the same variables, and
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(3) If pair <X,s> occurs in ¢ and <X,s*> occurs in T then R(G,H,s,s*).

Proof. Since by restriction (d) a variable occurs at most once in B=f(L1,..,Ln), a term
f(d1,..,dn) matches B iff for each i, di matches Li with substitution ai. So, f(d1,..,dn)
matches B with the union of o1,..,on. Consider some Li in L1,..,.Ln. By restriction (c)

there are the following cases.

Case 1. Li is a variable. Then Li matches ti* with substitution ti={<Liti*>}. Also,

the pair <Li,ti> appears in ¢. By assumption, R(G,H,ti,ti*).

Case 2. Li=c(X1,..,.Xm), m>=0, ¢ a constructor symbol and each Xj a variable. Then
since ti matches Li, ti=c(sl,.,sm) where each si is a term. Thus the pairs

{<X1,s1>,..,<Xm,sm>} appear in ©.

If ti is identical with ti*, ti* also matches Li with substitution

ti={<X1,s1>,..,<Xm,sm>}. Of course, for every i, R(G,H,si,si).

If ti is not identical with ti* then since R(G,H,ti,ti*), ti contains at least one
occurrence of G and G=>H. Since ti=c(sl,..,sm), ¢ a constructor symbol, by
restricion (b) ti#G. Hence ti*=c(sl*,..,sm*) each si* a term and for every i

R(G,H,si,si*). Hence ti* matches Li with substitution ti={<X1,s1*>,..,.<Xm,sm*>].

The same argument can be repeated for every other Li. Let T be the union of the ti.

Then B and F1 match with t. Thus (1).

By definition of 1, T defines only those variables which occur in B. Thus ¢ and ©
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define exactly the same variables. Thus (2).

If some pair <X,d*> appears in T, then, by the above discussion <X,d> appears in ©

and R(G,H,d,d*). Thus (3). QED.

Lemma 4. Let P be an F* program, If:

(1) f(t1,..,4,..,tn) is a term, and
() f(L1,..,Li-1,¢(X1,..,.Xm),Li+1,..,Ln)=>RHS is a rule in P, and
(3) ti=d1,d2,d3,..,dr, r>0, is an N-reduction.

Then, f(tl,..,ti-1,d1,ti+1,..,tn), f(t1,..,6-1,d2,ti+1,...tn), .., f(t1,..,ti-1,dr,ti+1,..,tn) is also

an N-reduction.

Proof. Let Li=c(X1,..,Xm). Since f(L1,..,Li,..,.Ln)=>RHS is a rule, by restriction (b}, f
is not a constructor symbol. If r=1 then, by definition of N-reduction, the lemma is

obvious. So, assume r>1.

By definition of N-reduction, at most the last member of the sequence d1,d2.d3,...dr
can be in simplified form. Hence, since Li=c(X1,..,.Xm), none of the di, l=<i<r

matches Li.
We now show that for all j, l=<j<r, f(tl,.. ti-1,djti+1,..,tn) reduces to f(tl,. t-

1,dj+1,ti+1,..,tn) in an N-step. Since dj is not simplified, it does not match Li. Hence,

by definition of select, for every X, select(f(t1,...ti-1,dj,ti+1,..,tn),X) if select(dj,X).
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Since dj reduces to dj+1 in an N-step there are terms pj and qj such that selcctp(dj,pj),
pi=>qj and dj+1 is the result of replacing pj by qj in dj. Then f(t1,..,ti-1,dj,ti+1,..,tn)
reduces to f(tl,..ti-1,dj+1,ti+1,..,tn) in an N-step. Hence, f(t1,. ti-1,d1,ti+1,..,tn),
f(t1,..,ti-1,d2,ti+1,..,tn), .., f(t1,..,ti-1,dr,ti+1,..,tn) is an N-reduction. QED.

Theorem 1. Let P be an F* program. Let E1,F1,F2,G,H be terms such that

(1) R(G,H,E1,F1), and
(2) F1 reduces to F2 in an N-step

Then there is an N-reduction E1,..,E2 in P such that R(G,H,E2,F2).

Proof. It is helpful to draw the following diagram:

N-reduction

We have to show that R(G,H,E2,F2). We proceed by induction on length of E1.
Suppose E1 is a 0-ary function symbol. If E1=F1 then E1,F2 is an N-reduction and
R(G,H,F2,F2). If E1#F1 then since R(G,H,E1,F1), E1=G and E1=>F1. Thus, there
its an N-reduction E1,F1,F2 and R(G,H,F2,F2). In both cases, take E2=F2.

Otherwise, E1=f(t1,..,tn), n>0. Assume the theorem for every term whose length is

less than that of f(t1,..,in). If E1=F1 then E1,F2 is an N-reduction and R(G,H,F2,F2).
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Otherwise E1#F1. If E1=G then since R(G,H,E1,F1), E1=>F1. Thus, there is an N-
reduction E1,F1,F2, and R(G,H,F2,F2). Again, in both cases, take E2=F2.

We now arrive at the interesting cases, with E1#F1l, but G#El. Hence
F1=f(t1*,..,tn*) where for every i, R(G,H,ti,ti*). We now consider the following

cases:

Case 1. F1=>F2. Then there is a rule f(L1,..,.L.n)=>RHS in P, such that F1 matches

f(L.1,..,Ln) with substitition t, and F2=RHST.

Case 1-1. E1 matches f(L1,.,,Ln) with substitution 6. By Lemma 3, there

exists substitution [ such that F1=f(L1,.,,.Ln)B. Since F1=f(L1,..,Ln)t, t=.

El1=>RHSo, so let E2=RHSo. The N-reduction is E1,E2., Of course
F2=RHSt. By Lemma 3, ¢ and T define exactly the same variables, and if
<X,s> occurs in ¢ and <X,s*> appears in T then R(G,H,s,s*). Hence, by

Lemma 2, R(G,H,E2,F2).

Case 1-2. E1 does not match f(L1,..,.Ln). Then, since E1 is ground and each
variable occurs at most once in f(L1,..,Ln), there is some Li in L1,..,.Ln, and
some ti in t1,...tn, such that ti does not match Li. Hence Li is not a variable, so

Li=c(X1,..,Xm), ¢ a constuctor symbol and each Xi a variable.
Moreover, since R(G,H,ti,ti*), and ti does not match Li, by restriction (c), ti is
not simplified. Since F1 matches f(L1,...Ln), ti* matches Li, and so ti* is

simplified. Since R(G,H,ti,ti*), t=>ti*. Thus select(El,ti). Hence
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f(t1,..,ti,..,m) reduces to f(tl,...,ti*,..,tn) in an N-step.

Hence there exists an N-reduction E1=P1,P2,P3,... such that for each i,
Pi=f(s1,..,sn), and for each sk in sl,..,sn, sk=tk or sk=tk*. Moreover, Pi+1 is
derived from Pi by selecting some sk in s1,..,sn such that sk does not match Lk
in L1,..Ln, and replacing sk, in Pi, by tk*. We also have for each i,
R(G,H,Pi,F1). Since n is finite, this reduction cannot be infinite and must end
in Pm such that Pm matches f(L1,.,Ln) with substitution o. Then
Pm=>RHSc. Hence we have the N-reduction E1,P2,P3,.. Pm,RHSc. Take
E2=RHSc. By Lemma 3, F1 and f(L1,..,.Ln) match with some substitution,
and clearly this is t. Already, F2=RHSt. By Lemma 2, R(G,H,E2,F2).

Case 2. Not F1=>F2. We are given that F1 reduces to F2 by an N-step. We now
have to show that there is an N-reduction E1,..,E2 such that R(G,H,E2,F2).

Suppose select(F1,u). Then u occurs in some ti*. That is, there is some ti* in
t1*,.. tn*, such that select(ti*,u). Let u=>v and let ti** be the result of replacing u in
ti* by v. Hence ti* reduces to ti** in an N-step, and also F2=f(t1*,..,u**,..,in*). By
definition of select, there is a rule f(L.1,..,Li,..,.L.n)=>RHS in P such that ti* does not
match Li. Hence Li=c(X1,..,.Xm), m>=0, where ¢ is a constructor symbol and each

Xi is a variable.

Clearly, ti* is not simplified. So, by restriction (b) ti is also not simplified. ti* reduces
to ti** in an N-step. We already have R(G,H,ti,ti*). Since the length of ti is less than
that of f(t1,..,t4i,..,tn), by induction hypothesis there is an N-reduction ti=d1.d2,...dr,

r>=1, such that R(G,H,dr,ti**). By Lemma 4, the sequence f(tl,..,ti-1,1i,ti+1....,tn),
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f(tl,...ti-1,d2,t+1,..,tn),.., f(tl,..,ti-1,dr,ti+1..,tn) is an N-reduction. Take E2=f(t1,..,ti-
1,drti+1..,tn). We already have F2=f(t1*,..,ti**,..,tn*) and for each k, R(G,H,tk,tk*).
Hence R(G,H,E2,F2). QED.

Lemma 5. Let P be an F* program. Let R(G,H,EQ,F0) and FO,F1,..,Fn be an N-

reduction. Then there is an N-reduction EQ,..,E1,...En such that R(G,H,En,Fn).

Proof. By induction on length n of FO,F1,..,Fn. If n=0 then clear. Otherwise assume
lemma for the N-reduction Fl,..,Fn. Since FO reduces to Fl in an N-step and
R(G,H,E0,F0), by Theorem 1, there exists an N-reduction EO,.,El such that
R(G,H,E1,F1). By induction hypothesis, there exists an N-reduction El,...En, such
that R(G,H,En,Fn). Hence there exists the N-reduction EO,..[El,..En such that
R(G,H,En,Fn). QED.

Theorem 2. Reduction-completeness of F* for simplified forms. Let P be an F*
program and DO a term. Let DO,D1,..,.Dn, n>=0, be a successful reduction in P. Then

there is a successful N-reduction DO,EL,...Em in P, such that Em-*>Dn.

Proof. By induction on length n of DO,D1,..,.Dn. If n=0, DO is already simplified, so
DO is a successful N-reduction, and DG-*>D0.

Let n>0 and assume Theorem for D1,..,.Dn. Then there is a successful N-reduction

D1,F2,..,Fp such that Fp-*>Dn. The situation can be laid out as follows:
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Dn

D2

I

D1->F2-*>Fp

|

| R(G,H,Em,Fp), Fp-*>Dn
|

DO->E1-*>Em

Since DO->D1 there are terms G,H, such that G=>H and D1=D0[G/H]. Hence
R(G,H,D0,D1). Since D1,F2,..,Fp is a successful N-reduction, by Lemma 5, there is
an N-reduction DO,E1,..,Eq such that R(G,H,Eq,Fp). If Eq is simplified, take Em=Eq.
Now DO,E1,..Em is a successful N-reduction. Since R(G,H,Em,Fp), and Fp-*>Dn,

Em-*>Dn, as required.

If Eq is not simplified, then since R(G,H,Eq,Fp), and Fp is simplified, Eq=>Fp. Now
take Em=Fp, so DO,El,...Eq,Em is a successful N-reduction, and Em-*>Dn, as
required. QED.

Theorem 3. Let P be an F* program. Let E1,F1,F2,G,H be terms such that

(1) R(G,H,E1,F1), and
(2) F1 reduces to F2 in an NR-step

Then there is an NR-reduction El,..,E2 in P such that R(G,H,E2,F2).

Proof. By induction on length of E1. Let E1 be a 0-ary function symbol. If E1=F1
then clear. If E1#F1, then E1=G, and so, clear. Otherwise, let E1=f(t1,..,tn), n>0.
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Assume theorem for tl,..,tn.

Case 1. E1 is unsimplified. If F1 is simplified, then since R(G,H,E1,F1), E1=G, so the
theorem is clear. If F1 is unsimplified, then by definition of NR-reduction, F1 reduces
to F2 in an N-step. By Theorem 1, there exists an N-reduction EI,..,E2 such that

R(G,H,E2,F2). But this is also an NR-reduction.

Case 2. El is simplified. Then, since R(G,H,E1,F1), F1 is also simplified. Let
F1=f(sl,..,sn) where f is a constructor symbol. Hence for each i, l=<i=<n,
R(G,H,ti,si). Since F1 reduces to F2 in an NR-step, there is some si in sl,..,sn, such
that si reduces to some si* in an NR-step and F2=f(sl,..,si*,..,sn). By induction
hypothesis, there exists an NR-reduction ti=til,ti2,.. tik such that R(G,H,tik,si*). It
can easily be shown that the reduction f(t1,.. til,..,tn), f(t1,...i2,..,tn), .., £(t1,.,tik,...tn)

is also an NR-reduction. Clearly R(G,H f(t1,...tik,..,tn),F2). QED.

Lemma 6. Let P be an F* program. Let R(G,H,E0,F0) and FO0,..,Fn, n>=0, be an NR-
reduction. Then there is an NR-reduction EOQ,..,Ek such that R(G,H,Ek,Fn).

Proof. Similar to that of Lemma 5. QED.
Theorem 4. Reduction-completeness of F* for normal forms. Let P be an F*
program and D0 a term. Let DQ,D1,..,.Dn, n>=(0, be a reduction in P, where Dn is in

normal form. Then there is an NR-reduction DOQ,E1,..,.Em=Dn, m>=0, in P,

Proof. By induction on length n of DO,D1,..,.Dn. If n=0, DO is already in normal form,

so DQ is the required NR-reduction.
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Let n>0 and assume theorem for D1,.,Dn. Then there is an NR-reduction

D1,F2,..,Fp=Dn. The situation can be laid out as follows:

Dn {in normal form)

|
D2

I
D1->F2-*>Fp=Dn
i

DO->El1-*>Em

Since DO->D1 there are terms G,H, such that G=>H and D1=DO[{G/H]. Hence
R(G,H,D0O,D1). Since D1,F2,...Fp is an NR-reduction, by Lemma 6, there is an NR-
reduction DO,E1,..,Eq such that R(G,H,Eq,Fp). It can easily be shown, by induction
on length of terms, that there is an NR-reduction Eq,...Fp. In each step in it, an
occurrence of G is replaced by H. The required NR-reduction is then

DO0.E1,..,Eq,...Fp=Dn=Em. QED.
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CHAPTER 1V
DETERMINISTIC F*

1.0 INTRODUCTION

A class of F* programs called Deterministic F* (DF*) is now defined and shown to
possess several useful computational properties. In particular, every DF* program
satisfies confluence and directedness. Confluence is shown to hold for any F*

program which satisfies just restriction (f) below. -

Confluence, means that if for terms M,N,P, M-*>N, and M-*>P, then there exists
term Q such that N-*>Q, and P-*>Q. It has the immediate consequence that every
term has at most one normal form. Hence DF* can be used as a functional
programming system. Also, if a DF* program is interpreted as an equality theory,
equality of two terms can be determined by checking whether their normal forms are

syntactically identical.

Directedness, for simplified forms, means that if a term has a simplified form then
any N-reduction starting at that term, if extended far enough, computes it. Moreover,
all successful N-reductions are of equal length. Directedness, for normal forms,
means that if a term has a normal form, then any NR-reduction starting at that term, if
extended far enough, computes it. Moreover, all NR-reductions ending in normal
forms are of equal length. Due to directedness, no searching among alternative N- or

NR-reductions is necessary.
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2.0 DEFINITION OF DF*

A DF* program is an F* program P satisfying two restrictions:

(f) Let LHS1 and LHS2 be variants of heads of two rules in P, such that LHS1

and LHS?2 have no variables in common. Then LHS1 and LHS2 do not unify.

(g) Let f(L1,..,Li,..,.Lm)=>RHS be a rule in P, where Li is not a variable. Then

in every other rule f(K1,...Ki,..,.Km)=>RHS1 in P, Ki is not a variable.

Again, as can be seen from examples in this thesis, and especially in Chapter VII &
VIII, DF* is also quite expressive. Note that restrictions (a)-(e) are upon rules while
(f) and (g) are upon the entire program. In the following, the first three rules do not
constitute a DF* program because they violate (f) and the next four do not because

they violate (g):

insert(A,[D=>[Al].
insert(A,[UIVD=>[A,UIV].
insert(A,[UIV])=>[Ulinsert(A,V)].

fX,[D=>01
f([),(UIVD=>{].
a=>a.

b=>1].

Restriction (f), supported by (a)-(e), ensures confluence. Restriction (g), supported by
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(a)-(f), ensures directedness. In particular, given a term f(tl,...t,..,tn), it is possible to
determine, at compile time, whether ti needs to be simplified. It needs to be, only if
the ith argument in the head of any F* rule defining f is a non-variable. Moreover, as
shown below, the arguments of f which do need to be simplified can be simplified in

any order.

The importance of select may be emphasized from the observation that even with
restrictions (a)-(g), every outermost reduction strategy is not reduction complete. For

example, given the DF* program:

g((1.X)=>[].
g({UIV],W)=>h(U,V,W).

and the term E=g(b,a), a rightmost-outermost reduction strategy would compute the
infinite reduction g(b,a),g(b,a),.... However, there exists a successful leftmost-
outermost reduction g(b,a),g([1,a),[]. Select, of course, would compute this second

reduction.

Thus, select is more than an outermost reduction strategy. For DF*, it may perhaps
be called outermost-call-by-need. Note that it is still non-deterministic. However due

to directedness, the non-determinism is benign.

SP(A,B). Let P be an F* program, and A,B be terms. Let Gl1,..,Gm, m>=0, be
mutually non-overlapping subterms in A, and H1,..,.Hm be terms such that for each
i=<m, Gi=>Hi, and B is the result of simultaneously replacing G1,..,Gm, in A, by

respectively, H1,..,.Hm. Then we say SP(A,B). Note that G1,..,Gm need not include
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all, or even one, of the mutually non-overlapping subterms of A which reduce as a

whole. The subscript on S is dropped if clear from context.

R@i. Let R be an N-reduction EQ.El,...Em, m>=0, where for no i, Ei=>Ei+1. Then
there is some function symbol f, such that each Ei is of the form f(pl,..,pk). Let

EQ=f(t1,..,tk), and for any p, let Rp be E0,EL,...Ep.

For any 1=<i=<k, RO@i is defined to be the singleton sequence 4. For any j=m, let
Ej=f(al,..,an-1,an,an+1,..,ak}, and Ej+1=f(al,..,an-1,bn,an+1,..,ak) such that an
reduces to bn in an N-step. If n=i, then Rj+1@i=Rj@i:bn, otherwise, Rj+1@i=Rj@:1.

Here : is concatenation of a term at the end of a sequence of terms.

For example, with the rules a=>a, b=>bl, bl=>b2, and the N-reduction
R=f(a,b),f(a,b1), f(a,b1),f(a,b2), R@1=a,a, and R@2=b,b1,b2. Thus, roughly, R@i is
the sequence, without duplicates, of ith arguments of the outermost function symbol

of the members of the N-reduction R.

R@u. R@u is a generalization of R@1i to positions in terms. Let R be an NR-
reduction EO,El,..Em, m>=0, where EO is simplified. Let AO,Al,.,Ap be
unsimplified terms in E0 such that no Ai is properly contained in any other
unsimplified term. Let the positions of AQ,Al,..,Ap, in EQ be ul,..,up respectively.
Then, for each j#m, Ej+1 can be thought of as being derived from Ej by replacing a

term A at one of the ui, by another term B. Moreover, A reduces to B in an NR-step.

For any ui in ul,..,up, RO@ui is defined to be the singleton sequence Ai. For any Is

j#m, let Ej+1 be derived from Ej by replacing a term P at position u in Ej by Q, where



uisinul,.,up. If u=ui, Rj+1@ui=Rj@ui:Q, otherwise, Rj+1@ui=Rj@ui.

3.0 CONFLUENCE AND DIRECTEDNESS OF DF*

Confluence and directedness are shown by deriving the following results, for any DF*

program P:

(a) Let F1,E1,F2 be terms such that S(F1,E1), and F1->F2. Then there exists a
term E2 such that E1-*>E2, and S(F2,E2).

(b) If there are two N-reductions starting at the same term and ending in terms
in simplified form, then these terms are identical, and the N-reductions are of

equal length.

(c) Let EO,E1,...En be a successful N-reduction. Let E0=F0,F1,...Fp, be an
unsuccessful N-reduction, i.e. Fp is not simplified. Then p<n, and there exists

Fp+1 such that Fp reduces to Fp+1 in an N-step.

Now, (a) is iterated to obtain confluence. (c¢) requires (b). From (c) we infer that if a
term EO has a successful N-reduction then no N-reduction starting at EQ is infinite, or
terminates in failure. Hence, every N-reduction must terminate in a term in simplified
form. Hence directedness for simplified forms. Similarly, directedness for normal

forms.
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Lemma 1. Select never chooses overlapping terms. Let P be a DF* program. Let
E and F be terms such that select(E,F). Then, for all G, select(E,G) implies that G is

not properly contained in F.

Proof. By induction on length of E. As before, the definition of select, for any term

f(T1,..,Tn) is:

sclectP(f(Tl,..,Tn),f(Tl,..,Tn)) if f(T1,..,Tn)=>pX.
selectp(f(T1,.. ,Ti,..,Tn),X) if
there is a rule f(L.1,..,Li,...Ln)=>RHS in P, and
there is no substitution ¢ such that Ti=Lig, and

sclcctP(Ti,X).

If E is a 0-ary function symbol, the lemma holds. Otherwise let E=f(il,...ti,..,tm) and
let the lemma hold for each of t1,..,tm. Suppose select(E,F) but F#E. Then for some t
in t1,..,tm, select(ti,F). Suppose select(E,G). If G=E then G is clearly not contained in
F. Otherwise, for some tj in t1,..,tm, select(tj,G). If j=i, by induction hypothesis, G is

not properly contained in F. If j#i, of course, G is not properly contained in F.

Suppose select(E,F) and F=E. Then there exists a rule f{(M1,..,Mi,..,.Mm)=>RHS such
that E matches its head. Now suppose that there also exists G such that select(E,G),
and G is properly contained in F. Hence, for some ti in tl,..,tm, select(ti,G). Hence
there is a rule f(L1,..,Li,..,Lm)=>RHS1 such that ti does not match Li. Hence Li is
not a variable. By restriction (g) Mi is also not a variable. Hence ti is in simplified

form. But then select(ti,G) fails. Contradiction. QED.
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Lemma 2. Let P be a DF* program. Let G be a term. Then there is at most one term

H such that G=>H.

Proof. Suppose G=>Hl, G=>H2 and HIl#H2. Then there are two rules
LHS1=>RHS1 and LHS2=>RHS2, such that G matches LHS1 with substitution o1,
and LHS2 with substitution 62. Assume without loss of generality that LHS1 and
LHS?2 do not have any variables in common. Then LHS1 and LHS2 have a unifier

o162, violating restriction (f). Contradiction. QED.

Lemma 3. Let ¢ and t be two substitutions each defining only the variables
X1,..Xm, m>=0, such that for any i=<m, where <Xi,si> appears in 0, and <Xi,ti>
in 1, S(si,ti). Let M be a term, possibly containing variables, but only from X1,..,.Xm.

Then S(Mo, M1).

Proof. By induction on length of M. If M is a variable, clear. If M is a 0-ary function
symbol, then clear. Otherwise, M=f(pl,..,pk), k>0. Assume Lemma for pt,..pk.
Mo=f(p10,..,pko), and Mt=f(p1x,..,pkt). Clearly, S(Mo,M1). QED.

Lemma 4. Let P be a DF* program. Let A=f(t1,..,tm), m>0, and B=f(t1*,..,tm*), such
that for each i=<m, S(ti,ti*). Let A=>C. Then there exists D, such that B=>D and

S(C,D).

Proof. Let A reduce to C by the rule LHS=>RHS. Then, there exists a substitution ¢
such that A=LHSc and C=RHSo. It is easily verified that there exists substitution T
such that B=LHST, ¢ and t define the same variables, and for each i, where <Xi,pi>

appears in ¢ and <Xi,qi> in 7, S(pi,qi). Hence B=>RHS1=D. By Lemma 3, S(C,D).
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QED.

Lemma 5. Let P be a DF* program. Let F1,E1,F2 be terms such that S(F1,E1), and
F1->F2. Then there exists term E2 such that E1-*>E2, and S(F2,E2).

Proof. By induction on length of F1. The situation can be visualized in the following

diagram:

El F2 S(F1,El), F1->F2

Case 1. F1 is a 0-ary function symbol. Since F1->F2, F1=>F2. If F1=El, take
E2=F2. Then EI1=>E2, and S(F2,E2), as required. Otherwise, F1=>El. By

restriction (f), E1=F2. Take E2=F2. Again, E1-*>E2, and S(F2,E2), as required.

Case 2. F1=f(t1,..,tm), m>0. Assume Lemma for t1,..,tm.

Case 2-1. F1 reduces to E1 as a whole. If F1 reduces to F2 as a whole,
by restriction (f), F2=E1. Take E2=E1. Then El1-*>E2, and also S(F2,E2),
as required. Otherwise, there is some j=<m, such that tj->tj* and
F2=f(t1,..,tj*,..,tm). Hence S(F1,F2). By Lemma 4, there exists E2 such that
F2=>E2 and S(E1,E2). But then E1-*>E2. Since F2=>E2, S(F2,E2), as
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required.

Case 2-2. F1 does not reduce as a whole to E1. Then E1=f(s1,..,sm), and for

each i=<m, S(ti,si).

If Fl=>F2, then, by Lemma 4, there exists E2 such that E1=>E2, and
S(F2,E2), as required. Otherwise, there is some j=<m, such that tj->tj*, and
F2=f(tl,..,tj-1,tj*,tj+1,..,tm). By induction hypothesis, there exists p, such that
sj-*>p and S(j*,p). Take E2=f(sl,..,sj-1,p,sj+1,..,sm). Clearly, E1-*>E2, and
also, S(F2,E2), as required. QED.

Lemma 6. Let P be a DF* program, and M,N,P be terms such that S(M,N) and M-
*>P. Then there exists term Q such that N-*>Q and S(P.Q).

Proof. By iterating Lemma 5. QED.

Lemma 7. Let P be a DF* program, and M,N,P be terms such that M->N, and M-

*>P. Then there exists term Q such that N-*>Q, and P-*>Q.

Proof. Since M->N, S(M,N). By Lemma 6, there exists term Q such that N-*>Q and
S(P,Q). Hence P-*>Q, as required. QED.

Theorem 1. Confluence of DF*. Let P be a DF* program, and M,N,P be terms such

that M-*>N, and M-*>P. Then there exists term Q such that N-*>Q, and P-*>Q.
Proof. By iterating Lemma 7. QED.
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Corollary. Uniqueness of normal forms. Let P be a DF* program. Then every term

has at most one normal form.

Lemma 8. Let R be an N-reduction f(pl,..,pk)=E0,E1,..,Em such that for no i,
Ei=>Ei+1. Then the length m of E0,EL,...Em is equal to the sum of the lengths of

R@1, R@2...R@k.

Proof. By induction on m. If m=0, then clear. Assume lemma for EQ,..,.Em-1. There
exists exactly one n, such that Em-1=f(tl,...in-1,tn,tn+1,..,tk), Em=f(tl,.. tn-
1,un,tn+1,..,tk), and tn reduces to un in an N-step. So, for every i, i#n, (EO,...Em-
D@i=(EQ,...Em-1,Em)@i. Only for n, (EO,...Em-1, Em)@n=(E0,..,.Em-1)@n:un. By

induction hypothesis, the lemma is clear. QED.

Lemma 9. Let P be a DF* program. Let EQ,El,..,.En be a successful N-reduction.

Then for every successful N-reduction EO,F1,..,Fp, p=n and Fp=En.

Proof: By induction on n. If n=0 then EO is simplified and the lemma holds trivially.

Let n>1. Assume hypothesis for all successful N-reductions of length less than n.

Since EO,EL,...En is a successful N-reduction, there exists Ek, 0=<k<n, such that for
no i, O=<i<k, Ei=>Ei+1, but Ek=>Ek+1, and Ek+1,..En is a successful N-reduction.
Let EOQ=f(tl,..,tm), m>=(0. Since n>0, f is not a constructor symbol. Then
Ek=f(sl,..,sm) for terms sl,.sm. Similarly, for the successful N-reduction
FO,F1,..,Fp, there exists Fj with properties similar to those of Ek. The situation can be

laid out in the following diagram:
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EQ=f (tl,..,tm)----*>Ek=£f(sl, .., sm)=>Ek+1--*>En

FO=f(tl,..,tm)--—--*>F3j=£(ql, .., qn) =>Fj+1--*>Fp

Consider any tiin tl,...,tm.

Case 1. ti is simplified. Then, by definition of select, ti=si. Similarly, ti=qi. Hence

qi=si.

Case 2. ti is unsimplified. If si is simplified, then there exists a successful N-

reduction (EQ...,.Ek)@1, of length less than n.

By restriction (g), the ith argument in the head of any rule in P, defining {, is a non-
variable. Hence, qi is also simplified. Hence there exists a successful N-reduction
(FO,...Fj)@i. By induction hypothesis, its length is equal to that of (EO,...EK)@1, and

qi=si.

If si is unsimplified, then, by restriction (g), and definition of select, ti=si=qi.

Hence Ek=Fj. By Lemma 8, the length of EO,.,Ek is the sum of lengths of
(EO,...EK)@i such that ti is unsimplified but si is simplified. Again, by Lemma 8, and
Case 2, this is also the length of FO,..,Fj. Hence, k=j. By restriction (f), Ek+1=Fj+1.
Now, Ek+1,...En, is a successful N-reduction of length less than n. By induction
hypothesis, its length is equal to that of the successful N-reduction Fj+1,...Fp, and

En=Fp. Hence, also, the length of EO,...En is equal to that of F0,...Fp. QED.
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Lemma 10. Let P be a DF* program. Let EOQ,El,...En and EO=F0,F1,...Fm be two

NR-reductions such that En and Fm are in normal form. Then En=Fm and n=m.

Proof: Note that En=Fm follows directly from the confluence of DF*. We focus on
showing that n=m, and proceed by induction on length of EO,E1,..En. If n=0 then
clear. Otherwise, let n>0 and assume the lemma for NR-reductions of length less

than n.

Case 1. EO is unsimplified. Then, there exists Ek, O<k=<n such that EO,...Ek is a
successful N-reduction. Also, there exists Fj, O<j=<m such that EO,..Fj 15 a
successful N-reduction. By Lemma 9, Fj=Ek and j=k. Now Ek,...En, and Fj,...Fm
are also NR-reductions. The length of Ek,..En is less than n, so by induction

hypothesis, n=m.

Case 2. EQ is simplified. Then EQ=c(t1,..,tq) for terms t1,..,tq and constructor symbol
c. If EQ is in normal form then the theorem holds. Otherwise, let A0,Al,.,Ap be
unsimplified terms in EO such that no Ai is properly contained in any unsimplified

term. Consider any Ai in A0,Al,..,Ap.

Let the position at which Ai occurs in EQ be ui. Then, since En is in normal form,
(EO0....En)@ui is an NR-reduction ending in a normal form. Similarly obtain

(FO,...Fm}@ui.
By reasoning as in Case 1, the length of (EO,.En)@ui is equal to that of
(FO,...FmY@ui. It can be shown, analogously to Lemma 8, that the length of EO... En

is equal to the sum of the lengths of each (EO,..En)@ui. Similarly, for length of
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FQ,...Fm. Hence m=n. QED.

Lemma 11. Let P be a DF* program and EO a term. Let EO,E1,...En be a successful
N-reduction. Let EO=FO0,F1,...Fp, be an unsuccessful N-reduction, i.e. Fp is not
simplified. Then p<n, and there exists Fp+1 such that Fp reduces to Fp+1 in an N-

step.

Proof: By induction on the length of EO,...En. If n=0 then EQ is in simplified form
and the only N-reduction starting at EQ is EO itself, so the lemma is clear. Let n>0.
Then EQ is not simplified. Assume lemma for all successful N-reductions of length
less than n. Since EQ,E1,...En is a successful N-reduction, there exists Ek, O=<k<n
such that for no i, O=<i<k, Ei=>Ei+l, but Ek=>Ek+l, and Ek+l,.,En is a
successful N-reduction. Let EO=f(t1,..,tm), m>=0. Let Ek=f(sl,..,sm). We have two

cases:

Case 1. There exists Fj, O=<j<p such that for no i, O=<i<j, Fi=>Fi+l, but
Fj=>Fj+1, and Fj+1,..Fp is an N-reduction. Let Fj=f(ql....,qm). The situation

can be visualized in the following diagram:
EO=f(tl,..,tm)--*>Ek=f(sl,..,sm)=>EK+1--*>En

FO=£f(tl,..,tm)~-*>Fj=f(gl,..,qm)=>Fj+1--*>Fp

By reasoning as in Lemma 9 above, Ek=Fj, and k=j. By restriction (f), Ek+1=Fj+1.
By induction hypothesis, p<n. Furthermore, there exists Fp+1 such that Fp reduces to

Fp+1 in an N-step.
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Case 2. There does not exist Fj in FO,..,Fp such that Fj=>Fj+1. Let Fp=f(ql,...qm).

The situation can be visualized as:

E0=f(tl,..,tm)-—*>Ek=£f(sl,..,sm})=>Ek+1-—-*>En

FO=f(tl,..,tm)-—*>Fp=f(gl,..,gm) (unsimplified)

It is easily seen that either Fp=>Fp+1, or there exists i in 1,..,m such that qi is not
simplified, but si is. By induction hypothesis, there exists ri such that gi reduces to ri
in an N-step. Hence Fp reduces to f(ql,..,ri,...qm) in an N-step. Also, by Lemma 8,

and induction hypothesis, p<n. QED.

Theorem 2. Directedness for simplified forms. Let P be a DF* program. Let
EO be a term and let EO,...En be a successful reduction. Then any N-reduction

starting at EQ, if extended far enough, would terminate in a term in simplified form.

Proof. By reduction-completeness for simplified forms, (Theorem 2, Chapter III), and

iterating Lemma 11. QED.

Lemma 12. Let P be a DF* program and EQ a term. Let EO,El,..En be an NR-
reduction such that En is in normal form. Let EO=F0,F1,..,Fp, be an NR-reduction
such that Fp is not in normal form. Then, p<n, and there exists Fp+1 such that Fp

reduces to Fp+1 in an NR-step.

Proof: By induction on length of EQ,E1,..En. If n=0, then clear. Otherwise, assume

Lemma for all NR-reductions of length less than n, and ending in normal forms.
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Case 1. EQ is unsimplified. By a reasoning very similar to that in proof of Lemma 11.

Case 2. EO is simplified. If EO is in normal form, the lemma trivially holds.

Otherwise, as in Case 2 of Lemma 10. QED.
Theorem 3. Directedness for normal forms. Let P be a DF* program. Let EO be a
term and let EO,...En be a reduction where En is in normal form. Then any NR-

reduction starting at E0, if extended far enough, would terminate in a normal form.

Proof By reduction-completeness for normal forms, (Theorem 4, Chapter III), and

iterating Lemma 12. QED.
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CHAPTER V
LABELED DETERMINISTIC F*

1.0 INTRODUCTION

Intuitively, it can be seen that in an N-reduction a term is reduced only when it is
necessary for simplifying the first term in the reduction. In this sense, an N-reduction

conserves computation. For example, with the rules:

f(X)=>[X].

a=>[].

there exists the N-reduction f(a),[a]. There is no N-reduction starting at f(a) in which
a is reduced. However, it can also happen that in an N-reduction, several copies of
the same term are reduced. This can happen when use is made of a rule in which a
variable occurs more than once on the right hand side. In this sense, an N-reduction

wastes computation. For example, with the rules:

f(X)=>g(X.X).
g((J.(D=>(].

a=>{].

there exists the N-reduction f(a),g(a,a),g([1,a),g([],[1).[]. The two occurrences of a in
the second term are copies of each other, yet they are reduced separately. This is the
same problem which arises with a call-by-name procedure call mechanism in

programming languages.
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If we can arrange that when a term is reduced, all copies of it are also reduced, then
N-reductions could become considerably shorter. In fact, it is shown that they become
minimal. An N-step in which all copies of a term are replaced is called an NA-step.
Thus it is distinguished from an N-step in which only a single copy of a term is
replaced. A sequence of NA-steps is called an NA-derivation. The prefix NA stands
for "normal-all". Minimality yields a strong form of laziness, since terms are

simplified with minimum computational effort.

The notion of a copy of a term, however, has two legitimate interpretations. The first

is simply that any two occurrences of a subterm in a term are copies of each other.

The second is obtained from examining representations of terms as directed acyclic
graphs. A O-ary function symbol f is represented as a graph consisting of just a single
node with f stored in it. A term f(t1,..,tn) is represented as a graph whose root is a
node with n+1 fields. The first field stores f and for each 1=<i=<n, the ith field stores a
pointer to the graph representation of ti. A term can have many graph representations.
For example, the two occurrences of a in f(a,a) can be represented by a single graph,
or by distinct graphs. Now, two occurrences of a subterm in term E are said to be
copies of each other only if, in the graph representation of E, they have the same

graph representation.

We adopt the second interpretation since it enables us to develop a simple proof of
minimality and also to implement replacement of all copies of a subterm with a small
overhead. Graph representations of terms are, in turn, represented using labeled terms.
The address of each node in a graph is represented by a label. Let there be a graph G

with root node N. Let N contain m+1 fields, where the first field contains the symbol
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f and the rest of the m fields contain pointers to, respectively, graphs G1,..,Gm. Let
the address of N be represented by label c. Then the representation of G is the labeled

term f(c,t1,..,tm) where for each i, the representation of Gi is the labeled term ti.

A subset of DF* called, Labeled Deterministic F* (LDF*), is defined. Notions of
labels [Vuillemin 1974], labeled terms, ordinary terms, and ordinary programs are
introduced. Reductions in LDF* are intended to mimic graph reduction. In
particular, it is ensured that when a new node is allocated in graph reduction, a label

not previously used in the LDF* reduction is generated.

LDF* is shown to be minimal in the following sense: where P* is an LDF* program,
and E a proper term, let there be a shortest successful reduction of E. Then there is a

successful NA-derivation of E of lesser or equal length.

It is also shown that with each ordinary DF* program P, one can associate an LDF*
program P*, such that if there is a successful reduction in P, there is a successful
reduction in P* of exactly equal length. Hence, to simplify terms in P in a minimum

number of steps, it is sufficient to transform P to P* and use NA-derivations.

Some main ideas in our proof are (a) in each reduction step, a label is eliminated, so
(b) the size of the elimination-set (E-set) of a reduction, i.e. the set of labels
eliminated in the reduction, is a lower-bound on its length, (¢) the size of the E-set of

an NA-derivation of a proper term, is exactly equal to its length.
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2.0 DEFINITION OF LDF*

Labels. Let o, B, &, a1, B, £1,.. be an enumerably infinite subset of the set of 0-ary

function symbols in F*. Each member of this list is called a primitive label.

Let * be a binary function symbol in F*. A label is defined as follows. A primitive
label is a label. If x and y are labels then x*y is also a label. A label a is said to be a
proper initial segment of label B if either f=a*3, or B=£*3 and « is a proper initial

segment of &.

Labeled terms. Where f is an n+1-ary function symbol, n>=0, f#*, o a label and
t1,...tn labeled terms, f(otl,...tn) is a labeled term. o is called the outermost label of

f(o,tl,..,tn).
For example, where f is a 4-ary function symbol and a,b are 1-ary function symbols,
£(3,a{c),b(B),a(&)) is a labeled term, and d is the outermost label of this term. Note

that a label standing alone is not a labeled term. Neither is a labeled term of the form

A*B. Also, note that a labeled term never contains any variables.

A labeled term is said to be in normal form if it contains only constructor symbols and

labels.

Maximal labels. A label is maximal in a labeled term if it is not a proper initial

segment of any other label in that term.

Proper terms. A labeled term E is called proper if (a) all its labels are maximal, and
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(b) for every two subterms A and B of E, if A and B have the same outermost label
then A=B. For example, f{ot,b(£),c(8)) is a proper term. However, g(a,a(0*d)) is not
a proper term since it violates (a), and f(a,b(ct)) is not a proper term since it violates

(b).

Ordinary terms, ordinary rules, and ordinary programs. A term in F*, possibly
containing variables, a rule in F*, or an F* program, is said to be ordinary if it does

not contain any labels, nor any occurrence of the symbol *.

A mapping I. Let F be the set of all function symbols in F¥*, except *, and the
primitive labels. Let there be an injection Z between F and F which maps each n-ary
function symbol in F to an n+1-ary function symbol in F. Moreover, L always maps a
constructor symbol to a constructor symbol, and a non-constructor symbol to a non-

constructor symbol.

Labeled versions of ordinary terms, possibly containing variables. Let E be an
ordinary term, possibly containing variables. If E is a variable then its labeled version
is E itself. Otherwise, let E=f(tl,..,tn), n>=0. Its labeled version is f_(o,tl_,..,tn_)
where o is a label, Z(f)=f_, and for each i, ti_ is a labeled version of ti. For example,

where £ maps f to f_ and a to a_, a labeled version of f(a,a) is f_(o,a_(B),a_(8)).

Labeled versions of ordinary rules. Let LHS=>RHS be an ordinary F* rule. A
labeled version of this rule, LHS*=>RHS#*, is defined as follows:

Let LHS=f(L1,.,.Lm). Then LHS*=f_(L,L1_,.Lm_) satisfying the following

conditions: (a) f_=X(f), (b) L is a variable, (c) If Li is a variable, Li_=Li, otherwise
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Li=c(X1,...Xm), and Li_=c_(Ki,X1,..,Xm), Ki a variable, Z(c)=c_, and (d) a variable

occurs at most once in LHS*,

Let RHS1 be a labeled version of RHS in which all labels are distinct, and for no two
of these is one a proper initial segment of the other. Let these labels be B1,...Bk.
Then, where LHS*=f(L,L1_,...Lm_), RHS* is obtained by replacing, in RHS1, each

Bi by L*Bi.

Labeled Deterministic F* Programs. Let P be an ordinary DF* program, and let P*
consist of labeled versions of rules in P. Then P* is called a labeled deterministic F*

(LDF*) program. For example, where P consists of:

append(nil,X)=>X
append(cons(U,V),W)=>cons(U,append(V,W))

and T maps append, nil, and cons to append_, nil_ and cons_ respectively, P* consists

of:

append_(L,nil_(L1),X)=>X.
append_(L,cons_(K1,U,V),W)=>cons_(L*f1,U,append_(L*B2,V,W))

where B1, and B2 are distinct labels, and neither is a proper initial segment of each
other. Note that each LDF* program is a DF* program as well as an F* program.
Also, each labeled term is an F* term. Hence, results of all previous chapters also

hold for LDF* programs and labeled terms.
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NA-steps and NA-derivations. Let P be an LDF* program and E,G.,H be labeled
terms. Suppose selectP(E,G) and G=>PH‘ Let El be the result of replacing all
occurrences of G by H in E. Then we say that E reduces to El in an NA-step in P.
The prefix NA in N-step stands for "normal-all'. A sequence of labeled terms
E0,E1,.. is an NA-derivation if for each i, when Ei, and Ei+1 both exist, Ei reduces to
Ei+l in an NA-step. For example, given the rule a(L)=>b(L*a), the term

f(B,a(8),a(d)) reduces in an NA-step to f(B,b(d*a), b(6*x)).

Leftmost steps and reductions. Let P be an F* program, not necessarily ordinary.
Let E be a term, and G and G1 two of its subterms. G is said to be to the left of G1 in
E, if either (a) they both occur at the same position in E, or (b) in the depth-first or
preorder traversal of the tree representation of E, the function symbol which is the

root of G occurs before the function symbol which is the root of G1.

Let select(E,G), G=>H. Then E reduces to F in a leftmost N-step, if for every G1,
select(E,G1) implies G is to the left of G1 in E, and F=E[G/H].

Let select(E,G), G=>H. Then E reduces to F in a leftmost NA-step, if for every G1,
select(E,G1) implies G is to the left of G1 in E, and F is the result of replacing all

occurrences of G in E by H.

Definitions of leftmost N-reductions and leftmost NA-derivations are the obvious

ongs.

Elimination sets or E-sets. Let A0,Al,.,An be a reduction where each Aj is a

labeled term. For any i, let Ai+1=Ai[G/H] where G=f(a,t1,...tm). Then we say that
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the function-label pair (FL-pair) <f,o> has been eliminated in the reduction Ai,Al+1.
The elimination set or E-set of a reduction is defined as the set of all FL-pairs
eliminated in the reduction. Since elimination of an FL-pair requires one reduction
step, the size of this set (number of elements in it) is a lower bound on the length of

the reduction (the number of steps in it).

Since an NA-step can be thought of as a sequence of reductions steps, an NA-
derivation can be thought of as a reduction. Hence, the E-set of an NA-derivation is

the E-set of the corresponding reduction.

3.0 MINIMALITY OF LDF*

Let P be an LDF* program and E a labeled term. We already know from
completeness of DF* that if E has a successful reduction, it has a successful N-
reduction. By directedness of DF*, it has a successful leftmost N-reduction. We now

show the following:

(a) If E has a successful reduction RO, E has a successful N-reduction R1

whose E-set is a subset of the E-set of RO.

(b) If R1 and R2 are two successful N-reductions of E, their E-sets are

identical.

(c) If E has a successful leftmost N-reduction R2, it has a successful leftmost

NA-derivation R3. Furthermore, the E-set of R3 is a subset of the E-set of R2.
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(d) If E is a proper term, the size of the E-set of any NA-derivation starting at

E is equal to the number of NA-steps in that derivation.

(e) Let P be an ordinary DF* program, and P* its labeled version. Let EO be
an ordinary term, and EO* a labeled version of EO. Let EO,E1,E2,... be a
reduction in P. Then there exists a reduction EQ* E1* E2* .. in P¥*, such that

for each i, Ei* is a labeled version of Ei.

Let E be a proper term. Let RO be a shortest successful reduction of E. Then its
length is greater than or equal to the size of its E-set. By (a), there exists R1, an N-
reduction of E whose E-set is a subset of that of RO. By directedness of DF*, there
exists R2, a successful leftmost N-reduction of E. By (b), the E-set of R1 is identical
to that of R2. By (c), there exists R3, a successful leftmost NA-derivation of E whose
E-set is a subset of that of R2. By (d), the length of this NA-derivation is at most the
length of RO. Hence, leftmost NA-derivations are minimal for simplifying proper

terms.

Now, let P be an ordinary DF* program and P* its labeled version. Let there be a
successful reduction R of a term E in P. By (e) there exists a successful reduction R*
of a labeled version E* of E. This version can always be chosen to be proper. By
minimality of LDF*, there is a successful NA-derivation starting at E* of length less
than or equal to that of R* or R. Hence, to simplify terms in a minimum number of
steps, it is sufficient to transform P to P* and use leftmost NA-derivations. This

reasoning is now carried out formally and in detail.
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3.1 Existence of successful leftmost NA-derivations

Lemma 1. Let P be an LDF* program. Let EO,FO be labeled terms such that EO->FO.
If EQ reduces to E1l in a leftmost N-step then there exists F1 such that E1-*>F1, and
(a) either F1=F0, or (b) FO reduces to F1 in a leftmost N-step, and the FL-pair

eliminated in FO,F1 is the same as that eliminated in EQ,E1.

Proof. By induction on length of EQ. We can draw the following diagram:

leftmost | FO=F1 or
N-step | FO reduces to Fl in a leftmost N-step

Case 1. EQ=f(o) for some l-ary function symbol f and label a. Since EO->FO,

E0Q=>F0. So, select(EQ,EQ) and due to restriction (f), E1=F0. Take F1=F0. Clearly,
El-*>F1.

Case 2. EO=f(a.t1,..,tm), for some m+I-ary function symbol f, m>0, label &, and

labeled terms t1,..,tm.

Case 2-1, EO=>F0. Similar to Case 1. E1=F1=F0 and E1-*>F1.

Case 2-2. Not EO=>F0. Then FO=f(c,t1*,..,tm*), and there exists j such that

tj->tj* and for each i, i#j implies ti=ti*.
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Suppose E0=>E1. Then the FL-pair eliminated in EQ,E1 is <f,a>. It is easily
verified by induction on length of EO, that FO=>F1 and E1-*>F1. Also, FO
reduces to F1 in a leftmost N-step. Finally, the FL-pair eliminated in FO,F1 is

also <f,c>.

Suppose not E0=>El. Then, there is some k, such that E1=f(tl,..tk-
1,sk,tk+1,...tm), and tk reduces to sk in a leftmost N-step. By induction
hypothesis, there exists sk* such that sk-*>sk*, and either tk*=sk*, or tk*
reduces to sk* in a leftmost N-step, and the FL-pair eliminated in tk,sk is the

same as that eliminated in tk*,sk*.

If tk*=sk*, let F1=F0. Clearly, E1-*>F]l. Otherwise, let Fl1=f(a,tl*,.. tk-
1% sk* tk+1*,..,tm*). Since tk* reduces to sk* in an N-step, tk* is not
simplified. Hence, using restriction (g), it is easily verified that FO reduces to
F1 in a leftmost N-step. In particular, in this step, tk* reduces to sk* in a
leftmost N-step. Hence, E1-*>F1, and the FL-pair eliminated in EQ,E1 is the

same as that eliminated in FO,F1. QED.

Lemma 2. Let P be an LDF* program. Let EQ,F0O be labeled terms such that EO-
*>F0. If EO reduces to El in a leftmost N-step then there exists F1 such that E1-
*>F1, and (a) either F1=F0, or (b) FO reduces to F1 in a leftmost N-step, and the FL-

pair eliminated in FO,F1 is the same as that eliminated in EQ,E1.

Proof. By induction on length of the reduction EO,..,FO. We can draw the following

diagram:
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leftmost | FO0=F1 or
N-step | FO reduces to Fl in a leftmost N-step

If the length is O then clear. Otherwise let E0,...,FO be E0,G1,...Gk=F0, k>0. Assume
lemma for G1,..,Gk. Let EO reduce to E1 in a leftmost N-step. Then, by Lemma 1,
there exists H1 such that E1-*>H]1, and either G1=H1, or G1 reduces to HI in a
leftmost N-step, and the FL-pair eliminated in G1,H1 is the same as that eliminated in

EO0,E1. This situation can be laid out in the following diagram:

EQ———-—- >Gl -> G2..->F0

| I
leftmost | Gl=H1l or,
N-step | G1 reduces to H1l in a leftmost N-step.

If G1=H1 then take F1=F0. Since E1-*>H1=G1, and G1-*>F0, E1-*>F0=F1.

If G1 reduces to H1, then by induction hypothesis, there exists F1 such that H1-*>F1,
and either FO=F1, or FO reduces to F1 in a leftmost N-step, and the FL-pair eliminated
in FO,F1 is the same as that eliminated in G1,H1. Since E1-*>H]1, E1-*>F1. Also, if
FO reduces to F1, the FL-pair eliminated in FO,F1 is the same as that eliminated in

EO,El. QED.
Lemma 3. Let P be an LDF* program. Let EQ,FO be labeled terms such that EQ-*>F0

and let there be a successful leftmost N-reduction EQ,El,..En. Then there is a

successful leftmost NA-derivation FO,F1,F2,...,Fk whose E-set is a subset of that of
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EO,El,...En.

Proof. It is helpful to draw the following diagram.

EQ------— *>FQ

I |

leftmost | FO=F1 or,

N-step | FO reduces to Fl in a leftmost N-step.
| !

El----—- *>F1

| |

leftmost | F1=F2 or,

N-step | F1 reduces to F2Z in a leftmost N-step.
En-—-—---- *>Fn

By induction on length n of EO,..En. If n=0, then clear. Otherwise, let n>0 and
assume lemma for E1,.,En. Since EO reduces to E1 in a leftmost N-step and EO-
*>F0, by Lemma 2, there exists Al such that E1-*>Al, and either FO=A1, or F0
reduces to A1 in a leftmost N-step, and the FL-pair eliminated in EQ,E1 is the same as

that eliminated in FO,A1.

Case 1. FO=Al. Let F1=F0. Then E1-*>F1. By induction hypothesis, there exists a
successful leftmost NA-derivation F1,..,Fk whose E-set is a subset of that of E1,...En.

Hence the E-set of FO,F1,..,Fk is a subset of that of EQ,E1,...En.

Case 2. FO reduces to Al. Let there exist G,H such that A1=FO[G/H]. Let F1 be
obtained from A1 by replacing the remaining occurrences of G in Al by H. Then FO
reduces to F1 in a leftmost NA-step. Moreover, the FL-pair eliminated in the NA-

step FO,F1 is the same as that eliminated in EQ,E1.
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Since E1-*>Al, E1-*>F1. By induction hypothesis, there exists a successful leftmost
NA-derivation F1,.. Fk whose E-set is a subset of that of E1,...En. Hence there exists
a successful leftmost NA-derivation FO,F1,..,Fk whose E-set is a subset of that of

EO0,El,..En. QED.

Theorem 1. Let P be an LDF* program. Let EO be a labeled term and EOQEL,..En a
successful leftmost N-reduction. Then there is a successful leftmost NA-derivation

EO0,F1,F2,..,Fk whose E-set is a subset of that of EG,E1,..,En.
Proof. Since EO-*>EQ, apply Lemma 3. QED.
3.2 E-sets of N-reductions
Lemma 4. Let P be an LDF* program and E1,F1,G,H be labeled terms such that:
(a) R(G,H,E1,F1), and
(b) F1 reduces to F2 in an N-step, and
(c) The outermost function symbol and label of G are, respectively, g and «,
and

(d) <r,B> is the FL-pair eliminated in the reduction F1,F2.

Then there exists an N-reduction E1,.,E2 such that its E-set is included in

(<g,0>,<r,f>} and R(G,H,E2,F2).

Proof. The proof proceeds exactly as that of Theorem 1, Chapter IIL. Thus, we

already know that there exists an N-reduction El,..,E2 such that R(G,H,E2,F2). We
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now show that the E-set of El,...E2 is included in {<g,cc>,<r,B>}. This is easy to see
in the extreme cases, i.e. when E1=h(8) for some 1-ary function symbol h, and label
3, E1=G or E1=>F1. Otherwise, let E1=f(E,t1,..,tm), m>0. Then F1=f(€,t1*,..,tm*),

and for each i, R(G,H, ti,1i*). We have the following cases:

Case 1. F1=>F2. Then <f,£> is eliminated, r=f and B=&. In particular, there is some

rule f(L,L1,..,Lm)=>RHS in P such that F1 matches f(L,L1,...Lm).

Case 1-1. E1 matches f(L.,L1,...Lm). Then <f £> is eliminated again, which is

in {<g,0c>,<r,>} as required.

Case 1-2. E1 does not match f(L,L1,..,.Lm). Then there is some Li in L1,...Lm
such that ti* matches Li but ti does not. Hence Li is not a variable, so ti* is
simplified, but ti is not. Since R(G,H,ti,ti*), i=G. As in Case 1-2, Theorem 1,
Chapter III, <g,0> is eliminated several times and then <f.&>=<rf> is

eliminated. So, the E-set of E1,..,E2 is {<g,0>,<r,>}, as required.

Case 2. There is no F2 such that F1=>F2. Then there is some ti* in t1*,..,tm* such
that ti* reduces to ti** in an N-step and the E-set of ti*,ti** is {<r,p>}. By induction
hypothesis, there is an N-reduction ti,..,dr such that R(G,H,dr,ti**). Further, the E-set
of this reduction is contained in {<g,0>,<r,p>}. From the argument in Case 2 of
Theorem 1, Chapter 111, the E-set of El,.,E2 is contained in {<g,0>,<r,p>), as
required. QED.

Lemma 5. Let P be an LDF* program. Let E1,F1,G,H, be labeled terms such that
R(G,H,E1,F1). Let the outermost function symbol and label of G be g and
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respectively. Let F1F2,..Fm be a successful N-reduction. Then there exists a
successful N-reduction E1,...En whose E-set is contained in the union of {<g,0>} and

the E-set of F1,F2,... Fm.

Proof. By induction on length of F1,..,Fm. If m=1 then Fm=F1 is simplified and its
E-set is empty. If El is simplified, then clear. If not, then since R(G,H,E1,F1),
El=>F1. Thus, there exists the successful N-reduction E1,F1. Hence the E-set of

E1,F1 is {<g,0>}, as required.

Let m>1. Assume lemma for F2,...Fm. Since R(G,H,E1,F1), by Lemma 4, there exists
an N-reduction E1,.. E2 such that R(G,H,E2,F2) and whose E-set is contained in the

union of {<g,0>} and the E-set of F1,F2.

By induction hypothesis, there exists an N-reduction E2,..En whose E-set is
contained in the union of {<g,0>) and the E-set of F2,. Fm. Hence, the E-set of

El,..En is contained in the union of {<g,cc>}, and the E-set of F1,F2,...Fm. QED.
Lemma 6. Let E1,F1,G2,...Gm be a successful reduction. Then there is a successful
N-reduction El,..[En such that the E-set of El,.[En is contained in that of
E1,F1,G2,..,.Gm.

Proof. By induction on length of E1,F1,G2,.,.Gm, and Lemma 5. QED.

Lemma 7. Let P be an LDF* program. Let EQ be a labeled term and EO,E1,...En and
EQ,F1,..,Fp two successful N-reductions. Then, the E-set of one is identical to that of

the other.
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Proof. Exactly analogous to the proof of Lemma 9, Chapter IV, that any two
successful N-reductions of a term are of equal length, and end in the same simplified

form. QED.

3.3 Reductions of proper terms

Lemma 8. Let P be an LDF* program. Let E be a proper term and let E reduce to F

in an NA-step. Then all labels of F are maximal.

Proof. Let select(E,G). Then G=>H and F is obtained by replacing all occurrences of
G in E by H. Let the rule by which G=>H be LHS=>RHS, and let G=g(otl,..,tm),
m>=0, and each ti a labeled term. Take any two labels 8 and € in F. There are four

Cascs.

Case 1. B and & are both in E. Since E is proper, these labels are not proper initial

segments of each other.

Case 2. Only P is in E. Then, by the nature of LDF* rules, §=a*3 for some label 3 in
RHS. Since E is proper, P and o are not proper initial segments of each other. If f=a

then B and 0*§ are also not proper initial segments of each other.

Suppose P=c.. Since P occurs in E, E has a subterm f(B,s!,..,sn), n>=0. Since E is
proper, f(B,s1,..,sn)=G. But since all occurrences of G are replaced by H, B cannot
occur in F, as assumed. Hence this subsubcase cannot arise.

Case 3. Only & is in E. Same as case 2.
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Case 4. None of B and £ is in E. Then, by definition of LDF* rules, B=a*3 and
—qr*e, for some labels 8 and € in RHS. Since d and € are not proper initial segments

of each other, neither are B and &. QED.

Lemma 9. Let P be an LDF* program. Let E be a proper term and let E reduce to F
in an NA-step. Let A and B be two subterms of F such that the outermost label of A

and of B is . Then, A=B.

Proof. Let select(E,G). Then G=>H and F is obtained by replacing all occurrences of
G in E by H. Let the rule by which G=>H be LHS=>RHS, and let the outermost label

of G be . There are four cases.

Case 1. A, but not B, is a subterm of H. Let the label of A, and of B be B. Since B is
not a subterm of H, there occurs Bl in E, with label B, such that B is the result of

replacing all occurrences of G in B1 by H.
Since A is a subterm of H, B occurs in H. However, B=o*8 since a, and B both occur
in E, and E is proper. Hence, B occurs in G. But then, since E is proper, B cannot

properly contain G. Hence B1=B, so B occurs in E.

Now B is also the label of A, B=0*8, and A occurs in H. Hence A occurs in G, and

so in E. Since E is proper, A=B, as required.

Case 2. B, but not A, is a subterm of H. Then, as in the previous case, B occurs in E.

Hence A=B.
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Case 3. Both A and B are subterms of H. Then A and B are also contained in G.
Suppose A is not, but B is. Then, B=a*3. Since B occurs in G, [ also occurs in E.
Contradiction with E is proper. Similarly, for A in G, but not B. Suppose none of A
and B are in G. Without loss of generality assume A and B occur at distinct positions.
Then, there must be distinct labels € and ¢ in RHS such that B=c*e and B=0*¢. But
this implies e=¢ which, by the nature of labeled rules, is impossible. Hence both A

and B are contained in G, and hence in E. Since E is proper, A=B.

Case 4. None of A and B is a subterm of H. Hence, there exist terms Al and Bl in E
such that A is obtained by replacing all occurrences of G in Al by H and B is
obtained from B1 similarly. Since A#H, B#H, the outermost label of Al and B1 is

also B. Since E is proper A1=B1. Hence A=B. QED.

Lemma 10. Let P be an LDF* program. Let a proper term E reduce to F in an NA-

step. Then F is a proper term.

Proof. By Lemmas 8 and 9, F is a proper term. QED.

Lemma 11. Let P be an LDF* program. Let EO be a proper term. Let EQ,E1,..Ek be

an NA-derivation. Then, in this reduction, an FL-pair is eliminated at most once.

Proof. By induction on length k of EQ,EL,..Ek. If k=0, then clear. Otherwise,
assume the theorem for E1,...Ek. Let select(E0,G), G=>H and let E1 be obtained by
replacing all occurrences of G in EQ by H. Let the outermost function symbol of G be
f and its outermost label be o. Hence, <f,oc> is the pair eliminated in the reduction

EO,El.
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If we can show that there is no term f(o,tl,...tm) in El,..,Ek, then, by induction,
hypothesis, we can conclude that no FL-pair is eliminated more than once in
ED,E1,..Ek. To show this, it is sufficient to show that the label o never occurs in
El,...Ek. Since EQ is proper, and <f,o> is eliminated, o does not occur in El. Let &
be a label in E2,..Ek. Then, either £=B for some label B in E1 in which case §#o.
Otherwise, £=p*¢ for some label f in E1 and label £. We show that it is not possible

that f*e=0.

Case 1. B occurs in EQ. Since EO is proper, B is not a proper initial segment of .

Hence, it is not possible that f*g=c.

Case 2. B does not occur in E0. Then, by the nature of LDF* rules, B=0*3, for some

label 8. Hence, B*€ is longer than a, and so B*e=a. QED.

Theorem 2. Minimality of LDF*, Let P be an LDF* program. Let EO be a proper
term. Let EQEL,. Ek be a successful reduction. Then there exists a successful

leftmost NA-derivation EQ,F1,.. Fm such that m=<k,

Proof. Since EO,E1,..,Ek is a successful reduction, by reduction-completeness for F*,
Theorem 2, Chapter III, there exists a successful N-reduction E0,G1,..,.Gn. Let the
E-set of EQ,E1,...,Ek be S1 and that of EQ,G1,..,Gn be §2. Then, by Lemma 6, S2 is a
subset of S1. By directionality of DF*, there exists a successful leftmost N-reduction

EO,H1,..,Hn. By Lemma 7, its E-set is also S2.

By Theorem 1 above, there exists a successful leftmost NA-derivation EQ,F1,..Fm

whose E-set, S3, is a subset of S2. Hence S3 is a subset of S1. By Lemma 11, the
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size of 83 is m. The size of Sl is a lower bound on the number of steps in

EQ,El,...Ek. Hence m=<k. QED.
4.0 EXTENSION OF MINIMALITY RESULT TO NORMAL FORMS

We have shown that leftmost NA-derivations reduce proper terms to simplified forms
in a minimum number of steps. It appears to be straightforward to extend this result to

normal forms.

E reduces to F in an NAR-step if select-r(E,p), p=>q and F is the result of replacing
each occurrence of p in E by q. Definitions of NAR-derivations and leftmost NAR-
derivations are the obvious ones. The proof that leftmost NAR-reductions reduce
proper terms to normal forms in a minimum number of steps appears to be very

similar to the above proof.

5.0 DERIVED MINIMALITY OF DF*

Lemma 12. Let P be a DF* program and EQ a term, where both P and E0 are
ordinary. Let P* and EO* be, respectively, their labeled versions. Let EO-P>E1.
Then there exists E1* such that EO*-P*>E1* and E1* is a labeled version of E1.

Proof. There exist G,H such that E1=EQ[G/H]. Proceed by induction on length of

E0. If EQ is a 0-ary function symbol g, then clear.

Otherwise, EQ=f(t1,..,tm), m>0. Then EQ*=f*(ct1*,..tm*) where Z(f)=f* and for

each i, O=<i=<m, ti* is a labeled version of ti. Assume lemma for each of t1,..,tm.
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Suppose G occurs in some ti in tl,..,tm, di=ti[G/H] and E1=f£(t1,..,ti-1,di,ti+1,..,tm).
Then, by induction hypothesis, there exists di* such that ti*->di* and di* is a labeled
version of di. Let El*=f*(a,tl*,. ti-1* di* ti+1*, . tm*). Clearly, E1* is a labeled

version of E1.

Suppose G=E0. Then there is a rule f(L1,..Lm)=>RHS such that EOQ matches
f(L1,..,.Lm) with some substitution ® and H=RHS®. Let a labeled version of this rule
be P*(L,L1*,.Lm*)=>RHS*. It is easily verified that EO* matches the head of this
rule with substitution ®* such that <L,cc> is in ®* and for each pair <X,t> in @, the
pair <X,t*> is in @* where t* is a labeled version of t. It is also easily verified that

RHS*®d* is a labeled version of RHS®D. QED.

Theorem 3. Derived minimality for DF*. Let P be a DF* program and EO a term,
where both P and EO are ordinary. Let P* and EO* be, respectively, their labeled
versions such that EQ* is proper. Let EQE1,..Ek be a successful reduction in P.

Then there exists a successful NA-derivation EQ* F1*,..,Fp* in P* such that p=<k.

Proof. We can ensure that EO* is a labeled version of EQ which is proper, simply by
choosing distinct maximal labels for function symbols of EQ. By Lemma 12, there
exists a successful reduction EQ*,E1*,. Ek* such that for each i, Ei* is a labeled
version of Ei. Since P* is an LDF* program, and EQ* is proper, by Theorem 2, there

exists a successful NA-derivation EQ* F1*,..,Fp* such that p=<k. QED.
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CHAPTER VI
COMPILATION OF F* INTO HORN CLAUSES

1.0 INTRODUCTION

A very simple algorithm is described, which compiles F* programs into Homn clauses
in such a way that when SLD-resolution interprets them, it directly simulates the
behavior of select. This is accomplished by compiling each F* rule into a distinct
Horn clause, and combining in that clause, information about the logic of the rule, and
information about the control of select when interpreting that rule. Thus, a

specialized interpreter is produced for each rule.

If the F* program satisfies restriction (g) in Chapter IV, Section 2.0, the clauses
resulting from its translation can be transformed to eliminate all redundant
backtracking. If the program also satisfies restriction (f), i.¢. is in DF*, SLD-search
trees automatically contain exactly one branch. All the time however, only pure

clauses are produced.

The nature of logical variables is utilized to implement the assumption necessary for
minimality. This is that when a term is reduced, all copies of it are simultaneously
reduced. A logical variable has the property that when one occurrence of it in a term
is bound to some term, all occurrences of it are simultaneously bound to the same
term. Unfortunately, use must now be made of a metalogical feature (var), and an
extra logical feature (cut). This is the only impure aspect in the entire LOG(F)
system. Consequently, SLD-resolution, augmented with these features, computes

NA-reductions.
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LOG(F) is defined to be a logic programming system augmented with an F* compiler,
and the equality axiom X=X. A ready-made implementation of LOG(F) is obtained
by implementing the F* compiler in Prolog and using Prolog in place of SLD-
resolution. Due to its depth-first search strategy, Prolog may sometimes not be able to
simplify terms, even though select would. However, if P is in DF*, Prolog always

simplifies terms whenever select does.

In all of the following, except in Section 6.0, Prolog clauses and Prolog are

synonymous with Horn clauses and SLD-resolution. Only in Section 6.0 do they

refer to the programming language. An implementation of the compiler in Prolog is

listed in APPENDICES 1-2.

2.0 COMPILATION ALGORITHM

Let P be an F* program. The compilation of P into Prolog proceeds in two stages.

Stage 1. For each n-ary, n>=0, constructor symbol ¢ in P, and where X1,...Xn are

distinct variables, generate the clause:

reduce(c(X1,..,Xn),c(X1,..,Xn))

Stage 2. Let f(L1,.,.Lm)=>RHS be a rule in P where f is an m-ary, m>=0, non-

constructor function symbol and each of RHS and L1,..Lm is a term, possibly

containing variables. For each such rule perform the following steps:

(a) Let Al,..,Am be distinct Prolog variables none of which occur in the rule.
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If Li is a variable let Qi be Ai=Li. If Liis c(X1,..,Xn) where c is a constructor

symbol, and each Xi a variable, let Qi be reduce(Ai,c(X1,..,Xn}).

{b) Let Out be a Prolog variable not occurring in the rule, and different from

Al,.,Am. Generate the predication reduce(RHS,Out).

(¢) Generate the clause:

reduce(f(Al,..,Am),Out):-Q1,..,Qm,reduce(RHS,Out).

For example the F* rules:

append([1,X)=>X
append([UIV],W)=>[Ulappend(V,W)]
intfrom(N)=>[Nlintfrom(s(N))].
if(true, X, Y)=>X.

if(false, X, Y)=>Y.

are compiled into:

reduce([1.[]).

reduce([UIV],[UIV]).

reduce(true,true).

reduce(false,false).

reduce(append(A1,A2),0ut):-reduce(Al,[]),A2=X reduce(X,0ut).
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reduce(append(A1,A2),0ut):-

reduce(A1,[UIV]),A2=W reduce([Ulappend(V,W)],0Out).
reduce(intfrom(N),Out):-reduce([Nlintfrom(s(N))],Out).
reduce(if(T,X,Y),0ut):-reduce(T,true),reduce(X,Out).
reduce(if(T,X,Y),0ut):-reduce(T false),reduce(Y,Out).

It can be seen that where reduce(f(Al,..,Am),Out):-Q1,..,Qm,reduce(RHS,Out) is the
translation of f(L1,..Lm)=>RHS, Q1,..,Qm represent the attempt to match some term
f(t1,...tm) with f(L1,.,Lm). If these succeed, the match succeeds with some
substitution o. Now, reduce(RHS,Out) represents simultaneously, application of o to
RHS, and recursive simplification of RHSc. The correctness of compilation

algorithm is formally proved in Section 7.0

In practice, in stage 2(a) if Li is a variable, then Ai in f(Al,..,Am) is replaced by Li,
and Ai=Li is not generated. This eliminates a procedure call, and so yields
substantially faster code. However, proofs of propositions below are easier to derive

without this optimization.

3.0 COMPUTING AND PRINTING NORMAL FORMS

If there is a method to compute simplified forms of terms, it can be applied repeatedly
to compute normal forms of terms. This is guranteed by reduction-completeness for
normal forms, Theorem 4, Chapter [II. In particular, for each m-ary constructor

symbol we can add the following rule:

nf(E,c(X1,..,Xm)):-reduce(E,c(T1,..,Tm)),nf(T1,X1),..,nf(Tm,Xm).
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Now, to compute the normal form of a term E, we can execute nf(E,X), where X isa
variable. The correctness of this rule for computing normal forms can easily be

proved from the arguments of Section 7.0.

Clearly, computing normal forms is only sensible when they are finite. If they are not,
we can at least print finite portions of them as they are generated. For example, we

can print members of an infinite list as follows:

print_list(X):-reduce(X,[UIV1]),write(U),write(" *),print_list(V).

4.0 OPTIMIZING RULES SATISFYING RESTRICTION (g)

Let P be an F* program and PC its compiled version. Let f(t11,..,t1i,...tlm)=>RHS1,
.., f(tnl,..tni,..,tnm)=>RHSn be the n rules defining f in P, and CI,.,.Cn be,
respectively, their compiled versions. Let the rules satisfy restriction (g), Chapter IV,
Section 2.0. Then, if t1i is a variable, the ith literal in bodies of C1,...Cn will be,
respectively, Ai=tli,..,Ai=tni, for some variable Ai. Otherwise, the ith literals in

C1,..,Cn would be, respectively, reduce(Ai,t1i),..,reduce(Ai,tni).

If t1i is not a variable, the query reduce(f(al,..,ai,..,am),Z) may, due to backtracking,
cause evaluation of each of reduce(ai,t1i),..,reduce(ai,tni). We can ensure that reduce
is called just once for ai by taking advantage of the fact that all reduce clauses have

the same form. That is, we can collapse them all into the single clause:

reduce(f(Al,..,Am),Z):-R1,..,Rm,f(X1,...Xm)=>RHS reduce(RHS,Z).
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where X1,...Xm are distinct variables not occurring in any of the clauses, and if tliis
a variable, Ri is Ai=Xi, otherwise Ri is reduce(Ai,Xi). Now reduce would be called
just once for ai. Of course, the => rules now need to be included with the reduce

clauses. Thus Prolog execution can be considerably speeded up.

Furthermore, if P is a DF* program then f(X1,..,.Xm)=>RHS will succeed at most
once. Hence, for any ground terms tl,..,tm, and variable Z, the search tree rooted at
reduce(f(t1,..,tm),Z) will contain exactly one branch. Thus, the reduce clauses would

form a deterministic logic program. For example, consider the DF* program:

append([],.X)=>X.
append([UIV],W)=>[Ulappend(V,W)].

Its compiled version, excluding rules for constructor symbols, is:

reduce(append(A1,A2),Z):-reduce(Al,[]),A2=X reduce(X,Z).

reduce(append(Al1,A2),Z):-

reduce(A1,[UIV]),A2=W reduce([Ulappend(V,W)},Out).

These two rules can be collapsed into a single one:

reduce(append(A1,A2},7):-
reduce(A1,X1),A2=X2,append(X1,X2)=>RHS reduce(RHS,Z).

Now, given the query reduce(append([1],[2]),Z), an attempt would be made to

simplify [1] just once, and not twice, as with the original pair of reduce clauses. Also,
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since the append rules are in DF¥*, the SLD-search tree rooted at

reduce(append({1],[2]).Z) contains exactly one branch.

5.0 COMPUTING FUNCTIONS EAGERLY IN F*

If a function is defined in F*, it is computed lazily. Often it is very desirable that some
functions, such as arithmetic functions, be computed eagerly. We show one way to

accomplish this.

A lazy function symbol is one which is defined in F*. An eager function symbol is
one which is defined in Prolog. Only right hand sides of F* rules can contain calls to
eager functions. Let E be a subterm, possibly containing variables, of the right hand
side of an F* rule. Let the outermost function symbol of E be eager. Then E must not
contain any lazy function symbol. For example, where length is eager, and append is

lazy, the term length(append({],{11)) must not appear in any F* rule.

Now, let LHS=>RHS be an F* rule, f an eager function, and f(t1,..,tn) a subterm,
possibly containing variables, of RHS. Let f be defined by an n+] ary predicate
symbol p(Al,..,An,A), such that Al,.,An are input positions and A the output
position. Let RHS1 be the result of replacing f(t1,..,tn) in RHS by X, where X is a
variable not occurring in LHS=>RHS. Generate the condition p(t1,..,tn,X), and add it
to the conditions generated in Stage 2 (a) of Section 2.0. Of course, if tl,..tn
themselves involve calls to eager functions, they must be treated similarly. For

example, let multiple be an eager function defined in Prolog as follows:

multiple(A,B,true):-0 is A mod B.
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multiple(A,B,false):-not(0 is A mod B).

Now the rule:

filter(A,[UIV])=>if(multiple(U,A) filter(A,V),[Ulfilter(A, V)]).

is compiled into:

reduce(filter(A,X),Z):-

reduce(X,[UIVD),

multiple(U,A,T),

reduce(if(T,filter(A,V),[Ulfilter(A,V)]),Z).

However, some care still needs to be exercised. For example, where zerop and / are

eager functions, defined in Prolog by, respectively, zerop and div, the rule:

f(X)=>if(zerop(X).[X].[1/X]).

will be compiled into:

reduce(f(X),Z):-zerop(X,T),div(1,X,A),reduce(if (T,[X],[A]),Z).

Now, if X is 0, the call to div will cause an unintended division by 0. At present, the

F* compiler, listed in APPENDICES 1-2, does not guard against such a possibility, so

one has to rewrite the above rule as:
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f(X)=>if(zerop(X),[X],h(X)).
h(X)=>[1/X].

6.0 COMPILING LDF* PROGRAMS

We now show how to represent labeled terms in Prolog, and compile LDF* programs
into Prolog in such a way that NA-steps can be performed efficiently. The main idea
is that labels can be represented by logical variables. These have the property that if
one occurrence of a variable in term E is bound to term F, all occurrences of the

variable in E are simultaneously bound to F.

Let E be a proper term and let E reduce to F in an NA-step. Then there is a subterm G
of E such that G=>H, and F is obtained by replacing all occurrences of G in E by H.
Note that each of G,H,F is proper. Let E contain the labels al,..,an. Let V1,..,Vn be
distinct variables and E* the result of replacing for each i, all occurrences of ai in E
by Vi. Then E* is a Prolog representation of E. Similarly, let G*,H*,F* be Prolog
representations of G,H,F respectively such that H* and E* do not have any variables
in common. Then G*=f(V,tl,..,tm) where V is a variable. If we now bind V to H*, all

occurrences of V in E* are bound to H*. Let the result be F1*.

Now, before attempting to match a term with a non-variable term, we take the
precaution of checking whether its label is already bound to some term. If so, we
attempt to match this term with the non-variable term. Otherwise, we proceed as
usual. Thus, after V has been bound to H*, if another occurrence of G* is to be

matched with some term, we attempt to match H* with it.

106



At a later stage it is possible that the label of H* itself be bound to a term. Thus,
before matching a term, it may be necessary to "dereference” its label a number of
times. It is not unreasonable to assume that the cost of dereferencing is small
compared to that of reduction. In the next section we show how the length of the
dereferencing chain can be made exactly one. Thus, we can work with F1* instead of
F*, so replacement of all occurrences of a term is implemented efficiently. Moreover,

F* can be obtained from F1* by dereferencing.

The algorithm for compiling LDF* programs can now be given. It proceeds in three

stages.

Stage 1. For each n+l-ary constructor symbol ¢ in P, and where L.X1,..Xn are

distinct variables, generate the clause:

reduce(c(L,X1,..,.Xn),c(L,X1,..,.Xn))

Stage 2. Let f(L,L1,..,Lm)=>RHS be a rule in P where f is an m+1-ary, m>=0, non-

constructor function symbol and each of LI1,..Lm, and RHS is a term, possibly

containing variables. For each such rule perform the following steps:
(a) Let A,Al,.,Am be distinct Prolog variables none of which occur in the
rule. If Li is a variable let Qi be Ai=Li. If Li is ¢(Ki,X1,..,.Xn) where cis a
constructor symbol and each of KiXl,..Xn a variable, let Qi be
reduce(Ai,c(Ki X1,..,Xn)).

(b) Let P1,P2,...Pk be all terms in RHS of the form L*B where P is a label.
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Let V1,.. Vk be distinct variables, distinct from any variables in the rule, and
from A,Al,..,Am. Let RHS1 be obtained from RHS by replacing each Pi by
Viin RHS.

(¢) Let Out be a Prolog variable not occurring in the rule, distinct from

A,Al,..Am and from V1,..,Vk. Generate the predication reduce(RHS1,0ut).
(d) Generate the clause:
reduce(f(A,Al,..,Am),0Out):-Q1,..,Qm,A=RHS 1 ,reduce(RHS 1,0ut).
Stage 3. Before any reduce rules for f, add the clause:
reduce(f(A,A1,..,Am),Z):-not var(A),reduce(A,Z),!.

The literal A=RHS1 ensures that all occurrences of A in the term of which
f(A,Al,..,Am) is a subterm, are replaced by RHS1. The dereferencing is performed

by the above clause.

Since Prolog evaluates literals from left to right, it automatically computes leftmost
N-reductions. Since variables are indivisible, all labels in Prolog representations of
labeled terms are maximal. Also, upon each procedure entry, Prolog instantiates
V1,..,Vk to variables not occurring previously in the deduction. These facts help to
ensure that proper terms are reduced to proper terms and that a label is eliminated at

most once. Hence Prolog also simplifies terms in a minimum number of NA-steps.
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It will be recognized that our scheme for implementing NA-derivations is exactly the
graph-reduction scheme with indirection nodes described in [Turner 1979] and
[O’Donnell 1982]. In practice, DF* programs can be compiled directly into reduce
clauses with labels, without first transforming them into LDF* programs. The
appropriate algorithm can easily be worked out. For example, where nil is a zero-ary

constructor symbol, let P be the following DF* program:

merge(nil,nil)=>nil.
double(X)=>merge(X,X).
h=>d.

This is compiled into:

(1) reduce(merge(V,A1,A2),Z):-not var(V) ,reduce(V,Z),!.
(2) reduce(double(V,A1),Z):-not var(V),reduce(V,Z),!.
(3) reduce(h(V),Z):-not var(V),reduce(V,Z),!.

(4) reduce(nil(N),nil(N)).
(5) reduce(merge(V,A1,A2),Z):-
reduce(A1,nil(N1)),
reduce(A2,nil(N2)),
V=nil(N3),
reduce(nil(N3),Z).
(6) reduce(double(V,A1),Z):-
V=merge(N,Al,Al),reduce(merge(N,A1,A1),Z).
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(7) reduce(h(V),Z):-V=d(D),reduce(d(D),Z).
Now, consider the evaluation of the query reduce(double(A,h(B)),Z). This yields the
query reduce(merge(N,h(B),h(B)),Z). Suppose the first call, reduce(h(B),nil(N1)), in
(5) succeeds, but only after a long and complicated deduction. Then B is bound to
d(D), and the result of dereferencing D is nil(N1). Now, due to (3), the second call,
reduce(h(B),nil{N2)), in (5) will perform a sequence of dereferencing steps starting at
B, and infer that h(B) is reducible to nil(N1). The cut (1) will prevent (7) from being
tried all over again.
6.1 Keeping length of dereferencing chain constant.
Consider the clause added in Stage 2 above:

reduce(f(V,Al,..,Am),Z):-Q1*,...Qm* V=RHS 1 ,reduce(RHS1,Z).
Instead of it, if we add:

reduce(f(Z,Al,..,Am),Z):-Q1*,..,Qm* reduce(RHS1,Z).
then, whenever Z is bound, it is always to a simplified form. Thus, dereferencing can
terminate in just one step, instead of in several steps, as before. For example, the

program:

merge(nil,nil)=>nil.

double(X)=>merge(X,X).
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h=

is compiled into:

(1) reduce(merge(V,A1,A2),Z):-not var(V),reduce(V,Z),!.
(2) reduce(double(V,A1),Z):-not var(V),reduce(V,Z),!.
(3) reduce(h(V),Z):-not var(V),reduce(V,Z),!.

(4) reduce(nil(N),nil(N)).
(5) reduce(merge(Z,A1,A2),Z):-
reduce(A 1,nil(N1)),reduce(A2,nil(N2)),reduce(nil(N3),Z).
(6) reduce(double(Z,A1),Z):-reduce(merge(N,A1,A1),Z).
(7) reduce(h(Z),Z):-reduce(d(D),Z).

Consider again the query reduce(double(Ah(B)),Z), which yields
reduce(merge(N,h(B),h(B)),Z). After the call reduce(h(B),nil(N1)) in (5) succeeds, B
is bound directly to nil(N1), not to d(D). Now, reduce(h(B),nil(N2)) terminates in

just three inference steps, of which just one is a dereferencing step.
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7.0 CORRECTNESS OF F* COMPILATION ALGORITHM

Lemma 1. Let P be an F* program. If:

(1) EO=f(t1,..,ti,..,tm), and

(2) Ek=f(s1,..,si,..,sm), and

(3) si is simplified, and

(4) EQ,..,Ek, k>=0, is an N-reduction such that for no i, Ei=>Ei+1.

Then there is a successful N-reduction ti,..,si of length less than or equal to the length

k of EQ,El,...Ek.

Proof: By Lemma 8, Chapter IV. QED.

Lemma 2. Let P be an F* program, and PC its compiled version. Let A be a ground
term and B a term, possibly containing variables, such that reduce(A,B) succeeds, in

the sense of SLD-tesolution, with answer substitution 6. Then Bo is ground.

Proof; By induction on length n of successful SLD-derivation
reduce(A,B),G1,..,Gn=[1. If n=1 then A=c(tl,..,tm), ¢ a constructor symbol each ti a
term, m>=0. The query reduce(A,B) will succeed by unifying with the head of the
clause reduce(c(X1,..,.Xm),c(X1,..,Xm)). The answer substitution ¢ will be such that

Bo=A. Clearly BG is ground.

Assume lemma for successful SLD-derivations of length less than n. Let the

successsful derivation starting at reduce(A,B) be of length n, n>1. Then A=f(tl,..,tm),
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m>=0, where f is a function symbol, but not a constructor symbol, and each tiis a

ground term. Then there is a clause:

reduce(f(X1,..,Xm),Z):-Qu{reduce(RHS,Z)}.

such that it is the compilation of a rule f(L.1,..,.Lm)=>RHS. Now, reduce(f(tl,..,tm),B)
unifies with the head of this clause with some m.g.u. T and its immediate descendant
(Qu{reduce(RHS,Z)}))t has a successful SLD-derivation of length n-1. Clearly,
1={<X1,t1>,..,<Xm,tm>,<Z,B>} and so Zt=B. Also, since RHS does not contain any

of the Xi, RHST=RHS.

Let Q1,..,Qm, m>=0, be the members of Q. If Qi is Xi=Li then Qit=(ti=Li) and
succeeds with answer substitution oi={<Liti>}. If Qi is reduce(XiLi) then
Qit=reduce(ti,Li) and has a successful SLD-derivation of length less than or equal to
n-1. Hence, by induction hypothesis, Qit succeeds with answer substitution Gi such

that LiGi is ground.

By restriction (e) all variables of RHS occur in L1,..,.Lm. Hence, since each Lioi is
ground, RHStol,..,om is ground. Already Zt=B. Since B does not contain any
variables in Ll,..Lm, Bol,..,.om=B. Hence
reduce(RHS,Z)t01,..,.om=reduce(RHSc1,..,0m,B). By induction hypothesis, this
succeeds with answer substitution ¢ such that Bo is ground. So, reduce(A,B)

succeeds with answer substitution ¢ such that Bg is ground. QED.

Lemma 3. Let P be an F* program and PC its compiled version. Let A and B be

ground terms such that reduce(A,B) succeeds. Let D be a term, possibly containing
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variables, such that for some substitution o, Dot=B. Then reduce(A,D) succeeds with

answer substitution .

Proof: By induction on length n of successful SLD-derivation starting at
reduce(A,B). If n=1 then A=B=c(tl,..,tm), ¢ a constructor symbol each fi a term,
m>=0. The query reduce(A,D) will succeed with answer substitution which is the

m.g.u. of B and D. Since B is ground this m.g.u. is o.

Let the successful derivation starting at reduce(A,B) be of length n, n>1. Assume
lemma for successful derivations of length less than n. Then A=f(t1,..,tm) where { isa
function symbol, but not a constructor symbol, and each ti is a term. Then there isa

clause:

reduce(f(X1,..,Xm),Z):-Qu{reduce(RHS,Z))

which is the translation of some rule in P. Also, reduce(f(t1,..,tm),B) unifies with the
head of this clause with some m.g.u. t={<X1,tl>,. . ,<Xn,tn><ZB>} and its
immediate descendant is (Qu{reduce(RHS,Z)})1. Since RHS does not contain any of

the Xi, this is QtU {reduce(RHS,B)}. It has a successful derivation of length n-1.

If Q is empty, by restriction (e) RHSt is ground. Otherwise let Q1,..,Qm be the
members of Q. Consider some Qi. If Qi is Xi=Li, then Qit=(ti=Li) which succeeds
with answer substitution oi={<Li,ti>}. Otherwise Qi=reduce(Xi,Li), so
Qit=reduce(ti,Li). By Lemma 2, reduce(ti,Li) succeeds with answer substitution Gi
such that Ligi is ground. Since all the variables of RHS are in L1,..,.Lm, RHSol,..,om

is again ground.
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Since reduce(RHSo1,..,0m,B) succeeds, by induction hypothesis,
reduce(RHSo1,..,om,D) succeeds with answer substitution o. Now consider the
query reduce(A,D). Again, by reasoning as above, reduce(RHS61..0m,D) appears in
an SLD-derivation of reduce(A,D). Hence reduce(A,D) also succeeds with answer

substitution ¢.. QED.

Lemma 4. Let P be an F* program. Let PC be the compiled version of P. Let EQ,...En

be a successful N-reduction. Then reduce(EQ,En) succeeds in the presence of PC.

Plan of Proof: By induction on length of successful N-reduction EQO,...En. We show
that there is some Ej, j>0, in EO,..,En such that an SLD-derivation of reduce(E0,En)
contains the goal reduce(Ej,En). Since Ej,...En is also a successful N-reduction, by

induction hypothesis, reduce(Ej,En) succeeds. Hence reduce(EQ,En) succeeds.

Proof: By induction on length n of successful reduction EO,...En. If n=0 then EQ is
already simplified. In particular, EO=c(tl,..,tm) where c¢ is an m-ary constructor
symbol, m>=0, and tl,..tm are terms. There is a clause in PC
reduce(c(X1,..,Xm),c(X1,..,.Xm)) where each Xi is a variable. Clearly reduce(E0,E0)

succeeds.

Let n>0 and EO=f(t1,..,tm), f not a constructor symbol, each ti a term and m>=0.

Assume theorem holds for all successful reductions of length less than n.

Since EO is not simplified, the N-reduction is of the form EQ,...Ek-1,Ek,. .En, O<k=<n,
such that Ek-1=>Ek, but for no i, 0=<i<k-1, Ei=>Ei+1. Hence, Ek-1=f(s1,..,sm} for

some terms s1,..,sm. Since Ek-1=>Ek, there is some rule f(L1,..,Lm)=>RHS such that
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Ek-1 matches f(L1,..,Lm) with some substitution ¢ and Ek=RHSo. Since L1,..,.Lm do
not share any variables, ¢ is the union of o1,..,0m such that for each Liin L1,..,.Lm, si

matches Li with substitution Gi.

For each i, if Li is not a variable, then since si matches Li, si is in simplified form. For
such i, there is, by Lemma 1, a successful N-reduction ti,..,si of length less than or

equal to k-1.

The rule f(L1,..,.Lm)=>RHS is compiled into the Horn clause

reduce(f(X1,..,Xm),Z):- Qu{reduce(RHS,Z)}

in accordance with the compilation rules stated above. This clause is contained in PC.

Consider the query reduce(EQ,En), i.e. reduce(f(tl,..,tm),En). It unifies with
reduce(f(X1,...Xm),En) with m.gu. T=(<X111>,.,<Xmtm><ZEn>} and its
immediate descendant is (Qu{reduce(RHS,Z)})t. Since RHS does not contain any of

the Xi, this is Quu{reduce(RHS,.En)}.

Let Q1...Qm be the members of Q. Consider some Qi. If Qi is Xi=Li, then
Qit=(ti=Li) which succeeds with answer substitution {<Li,ti>}. Of course, ti matches

Li, so {<Li,ti>}=0i.
Otherwise, Qi=reduce(Xi,Li), so Qit=reduce(ti,Li). Since there is a successful N-
reduction ti,...si of length less than or equal to k-1, by induction hypothesis,

reduce(ti,si) succeeds. Since Lici=si, by Lemma 3, reduce(ti,Li) also succeeds with
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answer substitution oi.

By repeating the same argument for each Qi, we see that an SLD-derivation starting
at reduce(EO,En) contains reduce(RHSo1,..,om,En) as a member. Since o is the
union of 61,..,.om and no variable is defined in more than one Gi in ol,...om,
RHSo1,..,.om=RHSc. But RHSo=Ek. Hence the SLD-derivaton starting at
reduce(EQ,En) contains reduce(Ek,En). Since the length of the successful reduction
Ek,...En is less than n, by induction hypothesis, reduce(Ek,En) succeeds. Thus, the
query reduce(EOQ,En) succeeds. QED.

Lemma 5. Let P be an F* program. Let PC be the compiled version of P. Let EQ and
En be terms such that reduce(E0,En) succeeds in the presence of PC. Then there is a

successful N-reduction EO,..,En.

Plan of Proof: By induction on length of successful SLD-derivation
reduce(E0,En),..,[0. We show that there is some goal reduce(Ej,En), j>0, in this
derivation such that there is an N-reduction EO,..,Ej. Since reduce(Ej,En) succeeds, by
induction hypothesis, there is a successful N-reduction Ej,..,En. So there is a

successful N-reduction EO,..,Ej,...En.

Proof: By induction on length n of successful SLD-derivation starting at
reduce(EQ,En). If n=1 then there is a clause reduce(c(X1,..,.Xm),c(X1,..,.Xm)) in PC
such that reduce(E0Q,En) unifies with the head of this clause. Clearly, then, EO=En, En
is simplified and the required N-reduction is simply EQ.

Let n>0. Assume lemma for all successful derivations of length less than n. Assume
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E0=f(t1,..,tm) for some non-constructor function symbol f and terms t1,..,tm. Since

reduce(EOQ,En) succeeds there is a clause in PC:

reduce(f(X1,..,.Xm),Z):-Qu{reduce(RHS,Z)}

such that it is the compilation of a rule f(L1,.,Lm)=>RHS in P. Moreover,
reduce(f(tl,..,tm),En) unifies with the head of the above clause with m.g.u.
t={<X1,t1>,.,<Xmtm><ZEn>} and Qt U {reduce(RHS,Z)}t has a successful
derivation of length n-1. Also, RHSt=RHS and Z1=En.

If Q is empty, m=0. So, by restriction (¢) RHS is ground. By induction hypothesis
there is a successful N-reduction RHS,..En. E0 matches f(L1,..Lm) and so

EO=>RHS. Hence EQ,RHS,...En is a successful N-reduction.

Suppose Q is non-empty. Let Q1,.,Qm be the members of Q. Consider Qi. If
Qi=(Xi=Li) then ti unifies with Li with substitution oi={<Liti>}. Construct the

singleton sequence f(t1,..,ti,..,tm). This sequence is an N-reduction.

If Qi=reduce(Xi,Li) then Li=c(U1,..,Uk) for some constructor symbol ¢ and variables
Ul,..,Uk. Also Qit=reduce(ti,Li). Clearly, reduce(ti,Li) succeeds. Let the answer
substitution be oi. By Lemma 2, Lici is ground. Then reduce(ti,Lioi) also succeeds.
The successful derivation of reduce(ti,Lici) is the same as that of reduce(ti,Li) with Li
replaced by Lici. So, the length of this derivation is also less than n. By induction
hypothesis, there is a successful N-reduction ti,..,.Lici. By Lemma 4 of Chapter 1II,

the sequence f(t1,..,4,..,tm),...f(t1,..,.Lioi,..,tm) is an N-reduction.
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Hence we obtain the N-reductions f(tl,..,tm),...f(L1c1,..,tm) and
f(L1o1,t2,..,tm),...f(L161,L252,..,5m) and

f(L1o1,L262,..,tm),...f(L161,L262,..Lmom). The concatenation of these reductions
is itself an N-reduction. Since L1,...Lm do not share variables, f(Licol,..,.Lmom)
matches f(L1,..,.Lm) with a substitution which is the union of ¢l,..,om. Let ¢ be this
union. Hence f(L1o1,...Lmom)=>RHSG. Since all the variables of RHS are in

L1,..,.Lm and for each oi, Lici is ground, RHSG is ground.

The predication reduce(RHSG,En) succeeds and the length of the associated
successful derivation is less than n. By induction hypothesis, there is a successful N-
reduction RHSo,...En. Hence there is a  successful  N-reduction

f(t1,..,tn),...f(L1o1,...Lmom),RHS5,...En. QED.
Theorem 1. The correctness of the compilation of F*, Let P be an F* program and
PC be its compilation. Let EO and En be ground terms. Then there is a successful N-

reduction beginning with EQ and ending with En iff PCl-reduce(EQ,En).

Proof: Lemmas 4 and 3 state, respectively, the if and only if parts of the theorem. By

their proofs, we obtain the proof of the theorem. QED.
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CHAPTER VII
PROGRAMMING IN LOG(F)

1.0 INTRODUCTION

This chapter describes six examples of programming in LOG(F). The first illustrates
non-determinism of LOG(F), and usefulness of lazy evaluation even when
manipulating finite data structures. The second shows how useful cases of the rule of
substitution of equals for equals can be implemented. The third obtains a new proof
of confluence of combinatory logic. The fourth shows how a pair of communicating
processes can be simulated. The fifth illustrates the power of NA-derivations, and
manipulation of infinite numerical structures. The sixth illustrates manipulation of
infinite graphical structures. In each case, clauses listed are those obtained after

performing optimizations discussed in previous chapters.

2.0 NON-DETERMINISM IN F*

As discussed in Chapter 1, permutations of lists can be computed by the following F*

program:
perm([])=>(].
perm([UIV])=>insert(U,perm(V)).
insert(U,X)=>[UIX].
insert(U,[AIB])=>[Alinsert(U,B)].

This is compiled, and optimized into:
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reduce({},[D.
reduce([AIB],JAIB]).

reduce(insert(A,B),[AIB]).
reduce(insert(A,B),[Clinsert(A,D)]):-reduce(B,[CID]).
reduce(perm(A),B):-reduce(A,C),perm(C)=>D,reduce(D,B).

perm({])=>(].
perm([ AIB])=>insert(A,perm(B)).

Note that some => rules survive in the compiled version. This is due to the method,
discussed in Section 5.0, Chapter VI, of compiling F* programs satisfying restriction
(g). If we now type reduce(perm([1,2,3]),Z), we obtain Z=[llperm([2,3])],

Z=[2linsert(1,perm({3]))], Z=[3linsert(1,insert(2,perm([1)))]. However, if we define:

make_list(X,[]):-reduce(X,[]).
make_list(X,[UIV]):-reduce(X,[UIB]),make_list(B,V).

and then type make_list(perm([1,2,3]),Z), we obtain Z=[1,2,31,..,Z=[3,2,1].

The above program can be used to implement a very efficient solution to the N-
queens problem which is to place N queens on an NxN chess board so that no two
queens attack each other. It is easily seen that each queen must be in a distinct row
and column, so that candidates for solutions can be represented by permutations of the
list {1,2,..,N]. The position of the ith queen in a permutation p is [i,q] where q is is the

ith element of q. The problem now reduces to generating all permutations of [1,2,..,N]
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and testing whether they are safe, or represent a solution.

Lazy evaluation guarantees that permutations are tested as soon as they are generated.
If it is determined that [Al,.,Am], m=<N is unsafe then no permutation with
[Al,..,Am] as initial segment is generated. This yields a drastic pruning of the search
space. For example, for a 15x15 chess board, a solution is found in about 32 cpu
seconds in Quintus Prolog on a SUN-3/60. The number of permutations of [1,2,..,15]

is over 1.3 trillion. The program is:

if(true, X, Y)=>X.

if(false, X, Y)=>Y.

queens(X)=>safe(perm(X)).

safe([D=>{].

safe([UIV])=>[Ulsafe(nodiagonal(U,V,1))].

nodiagonal(U,[],N)=>[].

nodiagonal(U,[AIB] JN)=>if(noattack(U,A,N),[ Alnodiagonal(U,B,N+1)],none).
noattack(U,A,N)=>neg(equal(abs(U-A),N)).

This is compiled into:

reduce({],[]).

reduce([UIV],[UIV]).

reduce(true,true).

reduce(false,false).

reduce(queens(A),B):-queens(A)=>C reduce(C,B).
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reduce(safe(A),B):-reduce(A,C),safe(C)=>D,reduce(D ,B).
reduce(if(A,B,C),D):-reduce(A E),if(E,B,C)=>F,reduce(F,D).
reduce(noattack(A,B,C),D):-noattack(A,B,C)=>E,reduce(E,D).
reduce(nodiagonal(A,B.C),D) :-reduce(B,E),nodiagonal(A,E,C)=>F,reduce(F,D).

queens(A)=>safe(perm(A)).

safe([)=>{].

safe([AIB])=>[Alsafe(nodiagonal(A,B,1))].

if(true,A,B)=>A.

if(false,A,B)=>B.

nodiagonal(A,[],B)=>[].

nodiagonal(A,[BIC],D)=>
if(noattack(A,B,D),[BInodiagonal(A,C,E)].none):-E is D+1.

noattack(A,B,C)=>D:-E is A-B,abs(E,F),equal(F,C,G),neg(G,D).

The eager functions are defined in Prolog:

abs(X,X):-X>=0.
abs{X,Y):-X<0,Y is -X.
neg(true,false).
neg(false,true).

equal(A,A true).
equal(A,B,false):-not A=B.
less_than(U,A,true):-U<A.

less_than(U, A, false):-U>=A.
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If we now type make_list(queens([1,2,3,4]),Z), we obtain Z=[2,4,1,3] and
Z=[3,1,4,2].

3.0 IMPLEMENTING SUBSTITUTION OF EQUALS FOR EQUALS

If a DF* program is interpreted as an equality theory, reduce clauses can be thought
of as implementing an equality theory in Prolog with the restriction that it be used
only for simplification of terms. Now, given a clause of the form p(c(X1,..,Xm)):-
Body, where c is a constructor symbol, we can add another clause stating a rule of
substitution of equals:

p(X):-reduce(X,c(X1,...Xm)),p(c(X1 ,ee X)),

Now, even when a term E is not of the form c(X1,..,Xm), p can still be inferred for E,

provided E is reducible to a term of the form ¢(X1,...Xm). For example, from:

married(X):-spouse(X,Y).

spouse(scott,a).

one can infer married(scott). One can now add the clause:

married(X):-reduce(X,Y),married(Y).

An equality theory is:

author(waverley)=>author(ivanhoe).
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author(ivanhoe)=>scott.

The reduce clauses for the last two => rules are:

reduce(scott,scott).
reduce(ivanhoe,ivanhoe).

reduce(waverley,waverley).

reduce(author(X),Z):-reduce(X,waverley),reduce(author(ivanhoe),Z).

reduce(author(X),Z):-reduce(X,ivanhoe),reduce(scott,Z).

Here scott, waverley, and ivanhoe are constructor symbols. Now one can infer, in
Prolog, married(author(waverley)), i.e. the result of substituting author(waverley) for

scott in married(scott).

4.0 COMBINATORY LOGIC

A new proof is obtained of the theorem that the SKI calculus is confluent. Following
the ideas of Ait-Kaci & Nasr [1986], SKI reduction rules can be expressed as a DF*

program:

apply(k,X)=>k1(X).

apply(k1(X),Y)=>X.

apply(s,F)=>s1(F).

apply(s1(F),G)=>s2(F,QG).
apply(s2(F,G),X)=>apply(apply(F.X),apply(G,X)).
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Here k,s,k1,s1,s2 are constructor symbols, and apply a non-constructor symbol. From
confluence of DF*, it follows that the SKI calculus is also confluent. These rules are

translated into the following reduce clauses:

reduce(s,s).

reduce(k k).

reduce(k1(X) ,k1(X)).
reduce(s1(X),s1(X)).
reduce(s2(X,Y),s2(X,Y)).

reduce(apply(A,B),Z):-reduce(A k),reduce(k1(B),Z).
reduce(apply(A,B),Z):-reduce(A k1(D)),reduce(D,Z).
reduce(apply(A,B).Z):-reduce(A,s),reduce(s1(B),Z).
reduce(apply(A,B),Z):-reduce(A,s1(C)),reduce(s2(C,B),Z).
reduce(apply(A,B),Z):-
reduce(A,s2(D,E)),reduce(apply(apply(D,B),apply(E.B)),Z).

These clauses can be used to contemplate higher-order programming in LOG(F).

5.0 TWO WAY COMMUNICATION

This example models communcation between two users, each of who types a stream

of tokens on his screen. Each token is of the form [A} or [send,M] in which case M

appears on both screens. The communication is modeled by:

extract_messages([[A]IX])=>extract_messages(X).
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extract_messages([[send,M]IX])=>[Mlextract_messages(X)].

screenl=>fair_merge(keyl,extract_messages(key2)).

screen2=>fair_merge(key2,extract_messages(key1)).

Here send, [} and | are constructor symbols. We assume there exists a function
fair_merge which takes as input two streams and interleaves their tokens into an
output stream. If two tokens appear in some order in an input, then they appear in the
same order in the output. Finally, fair_merge consumes each input at the rate at which

it is produced.

Note that the second extract_messages rule has a left hand side of depth greater than
two, 50, strictly speaking, it is not an F* rule. However, it can be expressed in F* as

follows:

extract_messages([AIX])=>g(A,X).
g({UIV],X)=>h(U,V.X).
h(send,V,X)=>[Vlextract_messages(X)].

Here g and h are auxiliary function symbols. For convenience, the F* compiler in
APPENDICES 1-2 allows => rules with left hand sides of arbitrary depth (but not
containing any non-censtructor function symbols). It compiles these into reduce

clauses equivalent to those produced when reexpressed as above.

Assuming that keyl and key2 are streams of tokens typed by, respectively, the first

and second user, the term screenl will reduce to the stream of tokens appearing on the

127



first user’s screen. Similarly for screen2. The reduce clauses are:

reduce([].[]).
reduce([UIV],[UIV]).

reduce(send,send).

reduce(extract_messages(A),B):-
reduce(A,[CID]),reduce(C,[E]),reduce(extract_messages(D),B).

reduce(extract_messages(A),[Blextract_messages(C)]):-
reduce(A,[DIC]), reduce(D,[EIF]), reduce(E,send), reduce(F,[B]).

reduce(screenl,A):-reduce(fair_merge(key1,extract_messages(key2)),A).

reduce(screen2,A):-reduce(fair_merge(key2,extract_messages(key1)),A).

6.0 HAMMING’S PROBLEM

The problem, described in [Dijkstra 1976], is to generate, in increasing order, all
those numbers which are divisible by no primes other than 2,3 or 5. Dijkstra states
that an equivalent problem is to generate the sequence of numbers, in ascending

order, defined by the following axioms:
(a) 1 is in the sequence
(b) If x is in the sequence, then so are 2*x, 3*x and 5*x.

(c) The sequence contains no values except those on account of (a) and (b).

These axioms can be expressed by the following DF* program:
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hamming=>hamming_aux([1lhamming]).
hamming aux(X)=>

mcrge(times_list(Z,X),mcrge(times_list(3,X),timcs_list(S,X))).

merge([UIV],JAIB])=>1f(U<A,[Ulmerge(V,[AIB])] ;merge_aux(U,V,A,B)).
mcrge_aux(U,V,A,B)=>if(equal(U,A),[Ulmerge(V,B)],[Almcrge([U IV],B)]).

times_list(N,[])=>[].

times_list(N,[UIV])=>{U*Nltimes_list(N,V)].

Function times_list multiplies each element of its input list by a fixed number.
Function merge takes two lists in ascending order and merges their elements in
increasing order. Functions hamming and hamming aux are implementations of

axioms (a),(b),(c).

This program illustrates the power of NA-derivations. The definition of hamming_aux
contains three occurrences of X on the right hand side. If care is taken that whenever
the term at one occurrence of X is reduced, terms at the other two occurrences of X
are also reduced, the list hamming is produced with little overhead. If not, then the
overhead increases exponentially. This can be felt by comparing the speed with
which elements of hamming are printed on the screen in the two cases. The labeled

version of this program is compiled into the following reduce clauses:
reduce(hamming(A),B):-not var(A),B=A,!.
reduce(hamming_aux(A,B),C):-not var(A),C=A,!.

reduce(merge(A,B,C),D):-not var(A),D=A,!.
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reduce(merge_aux(A,B,C,D,E),F):-not var(A),F=A,!.
reduce(times_list(A,B,C),D):-not var(A),D=A,!.
reduce(if(A,B,C,D),E):-not var(A),E=A,!l

reduce([].[D-
reduce(JAIB],[AIB]).
reduce(true,true).

reduce(false,false).

reduce(hamming(A),A):-hamming(B)=>C,reduce(C,A).
reduce(thamming_aux(A,B),A):-hamming_aux(C,B)=>D reduce(D,A).
reduce(merge(A,B,C),A):-
reduce(B,D),reduce(C,E),merge(F,D,E)=>G,reduce(G,A).
reduce(merge_aux(A,B,C,D,E),A):-merge_aux(F,B,C,D,E)=>G,reduce(G,A).
reduce(times_list(A,B,C),A):-reduce(C,D),times_list(E,B,D)=>F reduce(F,A).
reduce(if(A,B,C,D),A):-reduce(B,E),if(F,E,C,D)=>G reduce(G,A).

hamming(A)=>{1lhamming_aux(B,hamming(C))].
hamming_aux(A,B)=>
merge(C,times_list(D,2,B),
merge(E,times_list(F,3,B),times_list(G,5,B))).
merge(A,[BIC],[DIE])=>
if(F,G,[Blmerge(H,C,[DIE])],merge_aux(I,B,C,D,E)):-less_than(B,D,G).
merge_aux(A,B,C,D,E)=>
if(F,G,[Blmerge(H,C,E)],[Dimerge(L,[BIC],E)]):-equal(B,D,G).
times_list(A,B,[])=>[].
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times_list(A,B,[CID])=>[Eltimes_list(F,B,D)]:-E is C*B.
if(A,true,B,C)=>B.
if (A false,B,C)=>C.

Definitions of the eager functions less_than and equal are as in Section 2.0. If we now

type print_list(hamming(_)), we obtain 1,2,3,4,5,6,8,9,10,12,...

7.0 INFINITE GRAPHICAL STRUCTURES.

Henderson [1982] has shown how to use functional programming for defining and
manipulating graphical structures. In particular, he shows how to construct Square
Limit, an Escher woodcut. We use Henderson’s building blocks to tile the x-y plane
in an interesting way. A picture is represented by a list of vectors, each of the form
v(A,B)--v(X,Y), where A,B,X,Y are real numbers. Transformations on pictures, such
as composition, translation, scaling, or rotation (about the origin) are defined as

follows:

union([},X)=>X.
union{[FXIRX],Y)=>[FXunion(Y ,RX)].

rotate([],_)=>{].

rotate([v(X,Y)--v(A,B)IL], Theta)=>
[v(X*cos(Theta)-Y*sin(Theta),X*sin(Theta)+Y *cos(Theta))--
v{A*cos(Theta)-B*sin(Theta), A *sin(Theta)+B*cos(Theta))lrotate(L,Theta)].

translate([],_,_)=>[].
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translate([v(X,Y)--v(A,B)IL],Dx,Dy)=>
[v(X+Dx, Y +Dy)--v(A+Dx,B+Dy)ltranslate(L.,.Dx,Dy)].
scale([],.)=>[].
scale(Iv(X,Y)--v(A,B)IL]LKx,Ky)=>
[v(X*Kx,Y*Ky)--v(A*Kx,B*Ky)lscale(L,Kx,K y)].

The basic pictures are p,q,r,s, drawn in a 36x36 grid, and shown in order in the top
row in Figure 1. (The vectors can be found, not unfortunatety, in Henderson'’s paper,
but in [Robinson & Green 1987]). These are combined by quartet into t, shown in the
second row. The third and fourth rows show, respectively, blockl(t) and block2(t),
the two basic 144x72 rectangles. row(Block,0) repeats Block, infinitely often, at
intervals of 144 units, in the x and -x directions. alt_rows(Row,0) repeats a row
infinitely often, at intervals of 144 units, in the y and -y directions.
mosaic(Block1,Block?) computes roWs of Blockl and Block2, alternates these, and

then composes these 1o tile the x-y plane, Figure 2. The program is:

rot_pos(X)=>translate(rotate(translate(X,-72,-72),-1.57),72,0).
rot_neg(X)=>translate(rotate(translate(X,-72,-72),1.57),0,72).

block 1{X)=>union(X,translate(rot_neg(X),72,0)).
block2(X)=>
union(rot_pos(X),

translate(rotate(translate(rot_pos(X),-72,0),-1.57),72,0)).
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row(Block,N)=>union(translate(Block,144*N.0),
union(transtate(Block,-144*N,0),row(Block,N+1))).

alt_rows(Row,N)=>union(iranslate(Row,0,144*N),

union(translate(Row,0,-144*N),alt_rows(Row,N+1))).

mosaic(Block1,Block2)=>union(alt_rows(row(Block1,0),0),
translate(alt_rows(row(Block2,0),0),0,72)).
beside(A,B)=>union(A translate(B,36,0)).
above(A,B)=>union(A,translate(B,0,36)).
quartet(P1,P2,P3,P4)=>above(beside(P3,P4),beside(P1 ,P2)).

t=>quartet(p,q,r,s).

p=>[v(0,7)--v(6,9),v(6,9)--v(0,18),v(0,18)--v(0,7),v(13,0)--v(9.,9),
v(9,12)--v(9,23),v(9,23)--v(16,14),v(16,14)--v(9,12),v(24,0)--v(22,9),
v(22,9)--v(18,18),v(18,18)--v(9,30),v(9,30)--v(0,36),v(0,36)--v(13,34),
v(13,34)--v(18,36),v{18,36)--v(26,27),v(26,27)--v(36,27),
v(18,27)--v(36,23),v(18,18)--v(27,21),v(27,21)--v(36,18),
v(32,36)--v(36,34),v(27,36)--v(29,34),v(29,34)--v(36,32),
v(22,36)--v(26,32),v(26,32)--v(36,29),v(20,14)--v(27,16),
v(27,16)--v(36,14),v(22,9)--v(29,11),v(29,11)--v(36,9),
v(24,0)--v(31,5),v(31,5)--v(36,5)].

q=>[v(0,27)--v(7,29},v(7,29)--v(11,31),v(11,31)--v(16,34),
v(16,34)--v(18,36),v(0,23)--v(16,25),v(0,27)--v(0,36),v(0,0)--v(0,18),
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v(0,18)--v(9,16),v(9,16)--v(13,16),v(13,16)--v(27,22),
v(27,22)--v(36,36),v(4,36)--v(7,29),v(9,36)--v(11,31),
v(14,36)--v(16,34),v(18,34)--v(25,34),v(25,34)--v(20,30),
v(20,30)--v(18,34),v(20,27)--v(27,27),v(27,27)--v(22,23),
v(22,23)--v(20,27),v(36,36)--v(34,22),v(34,22)--v(36,18),
v(36,18)--v(29,9),v(29,9)--v(27,0),v(29,0)--v(36,14),v(32,0)--v(36,9),
v(34,0)--v(36,4),v(32,25)--v{23,0),v(5,0)--v(9,11),v(9,11)--v(9,16),
v(9,0)--v(13,11),v(13,11)--v(13,16),v(14,0)--v(18,13),
v(18,13)--v(18,18),v(18,0)--v(22,14),v(22,14)--v(22,20)].

r=>[v(24,36)--v(27,28),v(27,28)--v(36,18),v(0,36)--v(4,27),
v(4,27)--v(10,22),v(10,22)--v(17,18),v(17,18)--v(31,14),
v(31,14)--v(36,9),v(13,36)--v(25,23),v(25,23)--v(36,14),
v(27,28)--v(36,36),v(29,30)--v(36,23),v(31,32)--v(36,28),
v(33,34)--v(36,32),v(2,2)--v(8,0),v(4,4)--v(18,0),v(7,7)--v(18,4),
v(18,4)--v(27,0),v(10,11)--v(27,7),v(27,7)--v(36,0),v(0,0)--v(17,18),
v(0,8)--v(10,22),v(0,18)--v(4,27),v(0,27)--v(2,32)].

s=>[v(18,36)--v(16,30),v(16,30)--v(16,23),v(16,23)--v(16,18),
v(16,18)--v(18,14),v(18,14)--v(23,9),v(23,9)--v(36,0),
v(23,36)--v(25,23),v(27,36)--v(30,30),v(30,30)--v(32,25),
v(32,25)--v(34,21),v(34,21)--v(36,18),v(29,16)--v(34,18),
v(34,18)--v(34,11),v(34,11)--v(29,16),v(22,14)--v(27,16),
v(27,16)--v(27,9),v(27,9)--v(22,14),v(30,30)--v(36,32),
v(32,25)--v(36,27),v(34,21)--v(36,22),v(0,0)--v(9,5),v(9,5)--v(17,3),
v(17,5)--v(36,0),v{0,9)--v(4,2),v(0,14)--v(16,9),v(0,18)--v(18,14),

134



v(0,23)--v(16,18),v(0,28)--v(16,23),v(0,32)--v(16,30),
v(0,36)--v(18,36),v(27,36)--v(36,36)].

Note that mosaic computes an infinite row, an infinite number of times. However,
reduction-completeness of DF* precludes infinite runaway. Vectors are displayed as

they are generated. The above program is compiled into:

reduce(rotate(A,B),[1) :- reduce(A,[]).
reduce(rotate(A,B),[v(C,D)--v(E,F)irotate(G,B)]) :-
reduce(A,[HIG)), reduce(H,I--J), reduce(I,v(K,L)),
reduce(J,v(M,N)), cos(B,0), P is K*O, sin(B,Q),
R is L*Q, Cis P-R, sin(B,S), T is K*§,
cos(B,U), Vis L*U, D is T+V, cos(B,W),
X is M*W, sin(B,Y), Z is N*Y, E is X-Z,
sin(B,A 1), B1 is M*A1, cos(B,C1), D1 is N*Cl1, Fis B1+D1.
reduce(translate(A,B,C),[]) :-
reduce(A,[]).
reduce(translate(A,B,C),[v(D,E)--v(F,G)ltranslate(H,B,C)]) :-
reduce(A,[1IH]), reduce(I,J--K), reduce(J,v(L,M)),
reduce(K,v(N,0)), D is L+B, E is M+C,
Fis N+B, G is O+C.
reduce(scale(A,B,C),[]) :- reduce(A,[]).
reduce(scale(A,B,C),[v(D,E)--v(F,G)Iscale(H,B,C)}) :-
reduce(A,[1IH]), reduce(L,J--K), reduce(J,v(L,M)),
reduce(K,v(N,0)), D is L*B, E is M*C, F is N*B, G is O*C.,
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reduce(true,true).
reduce(false false).
reduce([],{]).
reduce([AIB],[AIB]).
reduce{A--B,A--B).
reduce(v(A,B),v(A,B)).

reduce(p,A) :- p=>B, reduce(B,A).

reduce(q,A) :- g=>B, reduce(B,A).

reduce(r,A) :- r=>B, reduce(B,A).

reduce(s,A) :- s=>B, reduce(B,A).

reduce(t,A) :- t=>B, reduce(B,A).

reduce(block1(A),B) :- block1(A)=>C, reduce(C,B).
reduce(block2(A),B) :- block2(A)=>C, reduce(C,B).
reduce(cycle(A),B) :- cycle(A)=>C, reduce(C,B).
reduce(rot(A),B) :- rot{(A)=>C, reduce(C,B).
reduce(rot_neg(A),B) :- rot_neg(A)=>C, reduce(C,B).
reduce(rot_pos(A),B) :- rot_pos{A)=>C, reduce(C,B).
reduce(abovel(A,B),C) :- abovel(A,B)=>D, reduce(D,C).
reduce(alt_rows(A,B),C) :- alt_rows(A,B)=>D, reduce(D,C).
reduce(beside1(A,B),C) :- beside1(A,B)=>D, reduce(D,C).
reduce(mosaic(A,B),C) :- mosaic(A,B)=>D, reduce(D,C).
reduce(row(A,B),C) :- row(A,B)=>D, reduce(D,C).
reduce(union(A,B),C) :- reduce(A,D), union(D,B)=>E, reduce(E,C).
reduce(quartet(A,B,C,D),E) :- quartet(A,B,C,D)=>F, reduce(F,E).
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union([],A)=>A.
union([ AIB],C)=>[Alunion(C,B)].
rot_pos(A)=>translate(rotate(translate(A,-72,-72),-1 57),72,0).
rot_neg(A)=>translate(rotate(translate(A,-72,-72),1 5N,0,72).
block1(A)=>union(A,translate(rot_neg(A),72,0)).
block2(A)=>union(rot_pos(A),
translate(rotate(translate(rot_pos(A),-72,0),-1.57),72,0)).
row(A,B)=>union(translate(A,C,0),
union(translate(A,D,0),row(A,E))) :-
Cis 144%B, D is-144*B, E is B+1.
alt_rows(A,B)=>
union(translate(A,0,C),union(translate(A,0,D),alt_rows(A,E))):-
Cis 144*%B, D is-144*B, E is B+1.
rnosaic(A,B)=>union(alt,rows(row(A,O),O),
translate(alt_rows(row(B,0),0),0,72)).
beside(A,B)=>union(A,translate(B,36,0)).
above(A,B)=>union(A,translate(B,0,36)).
quartet(A,B,C,D)=>above(beside(C,D),beside(A,B)).
rot(A)=>rotate(A,1.57).
cycle(A)=>union(A ,union(rot(A),union(rot(rot(A)),rot(rot(rot{A)))))).
t=>quartet(p,q.r,s).
p=>[..].
q=>[..].
r=>[..].

s=>{..].
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Figure 1. Some Graphical Pimitives
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Figure 2. Square Unlimit
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CHAPTER VIII
COMPARING LOG(F) PERFORMANCE WITH THAT OF PROLOG

1.0 INTRODUCTION

This chapter compares performance of LOG(F) with that of Prolog. Programs of
similar length, and intellectual complexity are written in both F* and in Prolog. The
former are compiled into Prolog, and optimized, before being tested. Sections 2.0-7.0
list the F* and Prolog programs. Section 8.0 contains the performance figures, and
provides some empirical verification of the assertion that LOG(F) can be used to do

efficient, lazy rewriting.

For problems in which data structures are always completely evaluated, lazy
evaluation cannot reduce lengths of computation. Such problems include list reversal,
or sorting. For these, LOG(F) is, on an average, five times slower than Prolog.
However, the slowdown for a given problem appears to stay the same, regardless of

the size of the input.

For problems in which data structures need only be partially evaluated, e.g. the N-
queens problem, or tiling an infinite plane, lazy evaluation can reduce lengths of
computation. For these, LOG(F) can be faster than Prolog by factors which are

unbounded, i.e. grow with input size, and by factors which are infinite.
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2.0 LINEAR LIST REVERSAL

The F* version is:

reverse([],A)=>A.

reverse([UIV],W)=>reverse(V [ UIW]).

This is compiled into:

reduce([],[1).

reduce([UIV],[UIV].

reduce(reverse(A,B),Z):-reduce(A,X) reverse(X,B)=>RHS, reduce(RHS,Z).

reverse([[,A)=>A.

reverse([UIV],W)=>reverse(V,[UW]).

The Prolog version is:

reverse([1,A,A).
reverse([UIV],A,Z2):-reverse(V,[UIA],Z).

3.0 QUICKSORT

The F* version is:

quicksort([})=>1].
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quicksort([ AIB])=>quicksort1(A,partition(A,B,[1,])).
quicksort1(A,t(L,R))=>append(quicksort(L),{ Alquicksort(R)]).
append([],X)=>X.
append([UIV],W)=>[Ulappend(V,W)].
if(true X, Y)=>X.
if(false, X, Y)=>Y.
partition(U,[],L,R)=>t(L,R).
partition(U,[AIB],L,R)=>
if(A=<U,partition(U,B,[ AIL],R),partition(U,B,L,[AIR])).

This is compiled into:

reduce([1.{]).
reduce([UIV],[UIV]).
reduce(true,true).
reduce(false false).
reduce(t(X,Y),1(X,Y)).

reduce(quicksort(A),B):-reduce(A,C),quicksort(C)=>D,reduce(D,B).
reduce(quicksort1(A,B),C):-reduce(B,D),quicksort1(A,D)=>E reduce(E,C).
reduce(append(A,B),C):-reduce(A,D),append(D,B)=>E reduce(E,C).
reduce(if(A,B,C),D):-reduce(A E)if(E,B,C)=>F,reduce(F,D).
reduce(partition(A,B,C,D),E):-
reduce(B,F),partition(A,F,C,D)=>G,reduce(G,E).

quicksort({1)=>{].
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quicksort( AIB])=>quicksorti (A,separate(A,B,{1,[])).

quicksort1 (A,t(L,R))=>append(quicksort(L),[ Alquicksort(R)]).

append([],X)=>X.

append([UIV],W)=>[Ulappend(V,W)].

if(true X, Y)=>X.

if(false, X,Y)=>Y.

partition(U,[],L,R)=>t(L.,R).

partition(U,[AIB],L,R)=>if(T partition(U,B,[AIL],R),partition(U,B,L.{AIR}))
:-less_than_equal(A,U,T).

less_than_equal(U,A,true):-U=<A.

less_than_equal(U,A false):-U>A.

The Prolog version is:

quicksort([],[1).
quicksort{UIV],W):-partition(V,U,L,R),

quicksort(L,L1),

quicksort(R,R1),

append(L1,[UIR1],W).
append([}.X.X).
append([UIV],W,[UIZ]):-append(V,W,Z).
partition((],_,[1.[]).
partition{[UIV],A,[UIL],R):-U=<Apartition(V,A,L,R).
partition([UIV],A,L,[UIR]):-U>A, partition(V,A,L,R).
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4.0 PERMUTATIONS

The F* version and its compilation are as given in Chapter VII, Section 2.0. The

Prolog version is:

perm([],[]).
perm([UIV],Z):-perm(V,W),insert(U,W,Z).
insert(U,X,[UIX]).
insert(U,[AIB),[AlZ)):-insert(U,B,Z).

5.0 SIEVE OF ERATOSTHENES

The F* version is:

primes=>sieve(intfrom(2)).
sieve([UIV])=>{Ulsieve(filter(U,V))].
intfrom(X)=>[Xlintfrom(X+1)].

filter(A,[[)=>[1.
filter(A,[UIV])=>if(multiple(U,A),filter(A, V),[Ulfilter(A, V)]).

This is compiled into:
reduce([].[]).
reduce([UIV],[UIVD.
reduce(true,true).

reduce(false,false).
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reduce(primes,A):-primes=>B,reduce(B,A).
reduce(sieve(A),B):-reduce(A,C),sieve(C)=>D reduce(D,B).
reduce(intfrom(A),B):-intfrom(A)=>C,reduce(C,B).
reduce(filter(A,B),C):-reduce(B,D),filter(A,D)=>E reduce(E,C).

primes=>sieve(intfrom(2)).

sieve([UIV])=>{Ulsieve(filter(U,V))].
intfrom(X)=>[Xlintfrom(X1)]:-X1 is X+1.

filter(A,[1)=>[].
filter(A,[UIV])=>if(T filter(A, V),[ Ulfilter(A,V)]):-multiple(U,A,T).

multiple(U,A,true):- 0 is U mod A.
muitiple(U,A false):- not(0 is U mod A).

The Prolog version is:

sieve([],[1).

sieve([UIX],[UIZ)):-filter(U,X,V),sieve(V,Z).

filter(A,[1.ID.

filter(A,[UtV],[UIZ]):- not divisible(U,A) filter(A,V,Z).
filter(A,[UIV],Z):-divisible(U,A) filter(A,V,Z).

divisible(U,A):-0 is U mod A.

intbetween(M,M,[M]).

intbetween(M,N,[MIZ]):- not M==N,M1 is M+1,intbetween(M1,N,Z).
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6.0 N-QUEENS

The F* version and its compiled version are as in Chapter VII, Section 2.0. The

Prolog version is:

queens(X,Y):-perm(X,Y),safe(Y).

safe([]).

safe([UIV]):-nodiagonal(U,V,1),safe(V).

nodiagonal(U,[1.N).

nodiagonal(U,[AIB],N):-noattack(U,A,N),N1 is N+1,nodiagonal(U,B,N1).
noattack(U,A,N):- Z is U-A,abs(Z,Z1),not Z1==N.

7.0 INFINITE GRAPHICAL STRUCTURES

Again, the F* version and its compilation can be found in Chapter VII, Section 7.0.

The Prolog definition of an infinite row of Block is:

row(Block,N,Z):-LeftN is -144*N,
RightN is 144*N,
N1is N+1,
translate(Block,LeftN,LeftBlock),
translate(Block,RightN,RightBlock),
row(Block,N1,Z1),
union(LeftBlock,RightBlock,A),
union(A,Z1,Z).
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Note that row contains a call to itself, so is non-terminating.

8.0 TABLE OF RUNNING TIMES

Time in milliseconds

Prolog | LOG(F) | Prolog/LOG(F)
Reverse: 3200 elements 83 883 0.09
Reverse: 6400 elements 150 1755 0.08
Quicksort: 60 elements 83 539 0.15
Quicksort: 120 elements 250 1261 0.19
Sieve: First 50 primes 422 1261 0.33
Sieve: First 100 primes 1816 4511 0.40
All permutations of [1,2,.3.4.5] 427 516 0.82
All permutations of [1,2,3.4.5.6] 3000 3172 0.94
8-Queens: All solutions 627833 17511 3.58
9-Queens: All solutions 635144 | 86539 7.33
15-Queens: First solution >30 minutes 30300 >60
Infinite plane: First vector oo ~0 oo

Table 1. Comparing LOG(F) performance with that of Prolog

Note that in the 15-Queens problem, Prolog did not yield any solution even after 30
minutes of elapsed time. Also, note that for problems in which lazy evaluation does
not reduce lengths of computation, e.g. reverse, quicksort, sieve, or all permutations,
LOG(E) is slower than Prolog. However, the slowdown varies little with problem
size. For problems in which lazy evaluation does reduce lengths of computation, such
as N-queens, or tiling the infinite plane, LOG(F) is faster than Prolog. However, the

speedup varies considerably with problem size, and can even be infinite.
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CHAPTER IX
SUMMARY AND CONCLUSIONS

A new approach for combining logic programming, rewriting, and lazy evaluation 1s
described. It rests upon subsuming within logic programming, instead of upon

extending it with, rewriting, and lazy evaluation.

F* is a non-terminating, non-deterministic rewrite rule system. The reduction strategy
for it, select, is reduction-complete. DF* is a subset of F*, and is also non-
terminating. DF* satisfies confluence, directedness, and minimality. Reduction-
completeness, and minimality enable select to exhibit, respectively, weak and strong

forms of laziness.

F* can be compiled into Horn clauses in such a way that when SLD-resolution
interprets them, it directly simulates the behavior of select. In particular, it is made to
exhibit laziness. LOG(F) is defined to be a logic programming system augmented
with an F* compiler, and the equality axiom X=X. Since clauses obtained by
compiling F* programs can be called from other logic programs, LOG(F) is proposed

as a combination of logic programming, rewriting, and lazy evaluation.

LOG(F) offers, perhaps for the first time, an efficient implementation of lazy
evaluation within a widely used language, namely, Prolog. For problems in which
lazy evaluation cannot reduce lengths of computation, LOG(F) is somewhat slower
than Prolog. For problems in which lazy evaluation does reduce lengths of
computation, LOG(F) can be faster than Prolbg by factors which are unbounded, i.e.

grow with input size, and factors which are infinite.
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LOG(F) can also be used to implement useful cases of the rule of substitution of
equals for equals. Confluence of DF* yields a new proof of the confluence of
combinatory logic. Finally, DF* seems to be a good candidate for implementation on
parallel machines. It seems to offer a reasonable compromise between sequential
execution and unbounded parallelism. Due to directedness of DF*, arguments of f in

f(t1,..,tm) can be simplified in parallel, however, they would be simplified lazily.
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APPENDIX 1
F* COMPILER IN PROLOG

/*

A compiler which accepts => rules and produces reduce clauses.

*/
-op(650,xfx,=>).
translate_fdf:-compute_consistent_arg_heads,translate_f,ranslate_df.

translate_all:-compute_consistent_arg_heads,
translate_f,
write(’translated non-consistent-argument rules’),nl,
translate_df,
write(’translated consistent-argument rules’),nl,
translate_ldf,
write(’attached output variables’),nl,nl,write(’done’).
/*

Generating consistent argument clauses.

/*

Determining whether a list of lists of arguments is consistent. If the

list contains just A, then we still have to check whether members of A are
F* arguments. This can be done, rather indirectly, by
consistent_pair(A,A) which checks for this.

All this is necessary because we are allowing => rules with lhs of
arbitrary depth since there is an easy way to compile them into reduce
clauses.

*/

consistent_list([]).
consistent_list([A]):-consistent_pair(A,A).
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consistent_list([ A,BIC]):-consistent_list(C),
consistent_pair(A,B).

consistent_pair([],[]).

consistent_pair([XIY],[UIV]):-var(X),var(U),consistent_pair(Y,V).

consistent_pair{[X!Y],[UIV]):- nonvar(X),nonvar(U),
nonvar_fstar_arg(X),
nonvar_fstar_arg(U),
consistent_pair(Y,V).

/*

Input should not be a variable.

*/

nonvar_fstar_arg(X):-atomic(X),!.
nonvar_fstar_arg(X):-X=..[FlArgs],variable_list(Args).

variable_list([]).
variable_list([UIV]):-var(U),variable_list(V).

/*
Input is a sorted list of all heads of => rules. Output is a list of

lists of heads. Each member list contains all heads for a fixed function.
*/

extract_same_heads({].[]).
extract_same_heads([UIV],[ZIL]):-extract_same_heads1(U,V,Z Rem_Heads),
extract_same_heads(Rem_Heads,L).

extract_same_headsi(A,[1,[A],[D.

extract_same_heads1(A,[UIV],[UIZ],L):-same_principal_functor(A,U),
extract_same_heads1(A,V,Z,L).

extract_same_heads1(A,[UIV],[A],[UIV]):- \+same_principal_functor(A,U).

same_principal_functor(A,B):-functor(A,F,N),functor(B,F,N).
/*

This is the toplevel procedure. It creates consistent_arg clauses.

*/
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compute_consistent_arg heads:-
setof (LHS ,B"RHS "clause((LHS=>RHS),B),S),
extract_same_heads(S,L), /* L is a list of list of lhsides */
consistent_heads(L,M), /* M is a list of f(X1,..,.Xm) where
heads of rules for f are consistent */
assert_consistent_clauses(M).

assert_consistent_clauses([]).

assert_consistent_clauses{[UIV]):-
U=..[FlArgs],
length(Args,N),
variables(N, Vlist),
Ul=..[FIVlist],
assertz(consistent_args(U1)),
assert_consistent_clauses(V).

consistent_heads([].[D.
consistent_heads([UIV],[AIZ]):-extract_arguments(U,U1),
consistent_list(U1),
U=[AL],
consistent_heads(V,Z).
consistent_heads([UIV],Z):-extract_arguments(U,U1),
\+consistent_list(U1),
consistent_heads(V,Z).

extract_arguments({],[]).
extract_arguments([UIV],[ArgsIV1]):-U=..[FlArgs],
extract_arguments(V,V1).

/rk

Produces reduce rules for => rules satisfying (g).

*/

translate_df:-
create_det_reduce_rules,
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create_det_arrow_rtules.

create_det_reduce_rules:-
consistent_args(Head),
template(Head,Head 1),
det_reduce_rule(Head1,Rule),
assertz(Rule),
fail.

create_det_reduce_rules.

template(Head,Head):-clause((Head=>RHS),true),!.

create_det_arrow_rules:-
clause((LHS=>RHS),true),
consistent_args(LHS),
det_arrow_rule((LHS=>RHS),Rule),
retract(((LHS=>RHS):-true)),
assertz(Rule),
fail.

create_det_arrow_rules.

det_reduce_rule(Head,(reduce(A,Z):-Body)):-
Head=..[FlArgs],
length(Args,N),
variables(N,As),
A=..[FlAs],

variables(N,Xs),

reduce_conds(Args,As,Xs,ArgConds),
B=..[FIXs],
insert_at_end(((B=>RHS),reduce(RHS,Z)),ArgConds,Body1),
flatten(Body1,Body2),
eliminate_trues(Body2,Body).

reduce_conds([],{],[].true).
reduce_conds([ArglArgs],[AlAs],[AlXs],Z):-

var(Arg),!,

reduce_conds(Args,As,Xs,Z).
reduce_conds({ArglArgs],[AlAs],[XIXs],(reduce(A,X),7Z)):-

reduce_conds(Args,As,Xs,Z).
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det_arrow_rule((LHS=>RHS),((LHS=>RHS1):-Body)):-
find_evaluable_calls(RHS,RHS1,B),
flatten(B,B1),
eliminate_trues(B1,Body).

/*

Produces reduce rules for => rules not satisfying (g).

*/

translate_f:-
clause(LHS=>RHS, true),
\+ consistent_args(LHS),
find_evaluable_calls(RHS,RHS 1,Conds),
translate_rule(LHS,RHS1,Conds,(H:-B)),
flatten(B,B1),
eliminate_trues(B1,B2),
assert{(H:-B2)),
fail.
translate_f:-simplified(X),assert(reduce(X,X)),fail.
translate_f.

flatten((A,B),Z):-!,flatten(A,A 1), flatten(B,B1),append_conds(A1,B1,Z).
flatten(A,A).

append_conds((A,B),Z,(A,Z1)):-!,append_conds(B,Z,Z1).
append_conds(A,Z,(A,Z)).

eliminate_trues(A,B):-eliminate_trues1(A,Z),
eliminate_last_true(Z,B),

eliminate_trues1((true,X),X1):-!,eliminate_trues1(X,X1).
eliminate_trues1((X,Y),(X,Y1)):-!,eliminate_trues1(Y,Y1).
eliminate_trues1(X,X).

eliminate_last_true((A,true),A):-!.

eliminate_last_true((A,B),(A,Z)):-! eliminate_last_true(B,Z).
eliminate_last_true(A,A).
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find_evaluable_calls(E,E,true):-var(E),!.
find_evaluable_calls(E,P,Conds):-
E=..[FlArgs],
find_evaluable_calls_each(Args,Args1,Condsl),
G=..[FlArgsl],
makep(G,Conds1,P,Conds).

makep(G,Conds,P,(Conds,C)):-replace(G,P,C),!.
makep(G,Conds,G,Conds).

find_evaluable_calls_each([],[],true).

find_evaluable calls_each([U{V],[U1IV1],(Conds1,Conds)):-
find_evaluable_calls(U,U1,Condsl),
find_evaluable_calls_each(V,V1,Conds).

evaluable(E):-not(var(E)),replace(E,_,_).

write_functions(F):-
tell(F),
write_clauses_for_head(reduce(M,N)),
write_clauses_for_head((A=>B)),
told.

write_clauses_for_head(A):-
clause(A,Body),
if_then_else(Body=true,
(write(A),write(’.”),nl, fail),
(write(A),write(’:”),write(’-’),nl,
write_body(Body),
write(’.”),nl,fail)).
write_clauses_for_head(A).

write_body(A):-var(A),!,write(’ M), write(A).

write_body((A,B)):-1,write(’ ),
write(A),write(’,”),nl,
write_body(B).

write_body(A):-write(’ M), write(A).
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/*

Conds correspond to evaluable terms. ArgConds correspond to
arguments of LHS.

*/

translate_rule(LHS,RHS,Conds,(reduce(H,Out):-Body)):-
LHS=..[FlArgs],
length(Args,N),
variables(N, Vlist),
translate_args_each(Args,Vlist,ArgConds),
H=..[F!Vlist],
rhs_and_conds(RHS,(ArgConds,Conds),Out,Body).

/*

If RHS is simplified, no condition is generated, otherwise reduce(RHS,Out)
is generated.

*/

rhs_and_conds(RHS,Conds,RHS,Conds):- \+var(RHS),simplifiecd(RHS),!.
rhs_and_conds(RHS,Conds,Out,NewConds):-
insert_at_end(reduce(RHS,0ut),Conds,NewConds).

translate_args_each({],[],true).

translate_args_each([AIL],[XIVars],(Al,L1)):-
translate_arg(A,X,Al),
translate_args_each(L,Vars,L1).

translate_arg(A X, true):-var(A),A=X,!.
translate_arg(A,X,(reduce(X,A1),Conds)):-
A=..[FlArgs], /* F is a constructor symbol */
length(Args,N),
variables(N,Vlist),
Al=_[FIVlist],
translate_args_each(Args,Vlist,Conds).

vanables(Q,[].
variables(N,[ AIL]):-N>0,N1 is N-1,variables(N1,L).

insert_at_end(A,(X,Y),(X,Z)):-1,insert_at_end(A,Y,Z).
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insert_at_end(A,Y,(Y,A)).

/*

Compiler for LDF*. Accepts as input reduce clauses produced by
translate_f, and translate_ldf.

*/

/*
This attaches output vars to function symbols, except constructor symbols.
*/

attach_output_var(X,X):-(number(X);var(X);(atomic(X),simplified(X))),!.
attach_output_var(X,Y):-atomic(X),Y=..[X,A],l.
attach_output_var(X,Z):-X=..{FlArgs],
l,attach_output_var_each(Args,Argsl),
if_then_else(simplified(X),
Z=..[FlArgsl],
Z=.[F,OutlArgs1]).

if _then_else(C,A,B):-C,!,A.
if_then_else(C,A,B):-B.

attach_output_var_each({],[]).
attach_output_var_each({UIV],[U1IV1]):-attach_output_var(U,Ul),
attach_output_var_each(V,V1).

preprocess_cond(true,true).
preprocess_cond(A,A):-replace(Z,_,A),!.
preprocess_cond(A=X,A=X):-1,
preprocess_cond(A=>B,A1=>B):-A=..[FlArgs],Al=..[F,Out!Args],!.
/*B above is always a variable */
preprocess_cond(reduce(A,X),reduce(A1,X1)):-
attach_output_var(A,Al),
attach_output_var(X,X1).

preprocess_body((A,B),(A1,B1)):-preprocess_cond(A,A1),!,
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preprocess_body(B,B1).
preprocess_body(X,Y):-preprocess_cond(X,Y).

preprocess_rule((Head:-Body),NewRule):-
preprocess_cond(Head,reduce(LHS ,RHS)),
preprocess_body(Body,Body1),
connect_lhs_rhs(LHS,RHS,LHS1),
construct_rule(LHS 1,RHS,Body1,NewRule).

preprocess_arrow_rule(((LHS=>RHS):-C),((LHS1=>RHS1):-C}):-
attach_output_var(LHS,LHS1),
attach_output_var(RHS,RHS1).

/*
The first rule is for rules of the form reduce(E,E), E is simplified.
*/

connect_lhs_rhs(LHS,RHS,LHS):-simplified(LHS). -
connect_lhs_rhs(LHS,RHS,LHS1):-
LHS=..[F,AlArgs],
A=RHS,
LHS1=LHS.!.

construct_rule(LHS ,RHS, true,reduce(LHS ,RHS)):-!.
construct_rule(LHS ,RHS,Body,(reduce(LHS,RHS):-Body)).

preprocess_arrow_rule_set([]).

preprocess_arrow_rule_set([RulelX]):-
preprocess_arrow_rule(Rule,R),
assertz(R),
preprocess_arrow_rule_set(X).

preprocess_trule_set([]).

preprocess_rule_set([RulelX]):-preprocess_rule(Rule,R),
assertz(R),
preprocess_rule_set(X).
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translate_ldf:-bagof((reduce(A,B):-C),clause(reduce(A,B),C),S),
retract_all((reduce(X,Y):-Z)),
preprocess_rule_set(S),
bagof(((LHS=>RHS):-D),clause((LHS=>RHS),D),Set),
retract_all{((LHS1=>RHS1):-D1)),
preprocess_arrow_rule_set(Set),
generate_first_rules.

retract_all{C):-retract(C),fail.
retract_all(C).

/*
Generating the first rule.
*/

non_constructor([F,N]):-clause(reduce(A,B),C),
\+simplified(A),
A=.[FlArgs],
length(Args,N).

generate_first_rules:-setof(H,non_constructor(H),S),
generate_rules_each(S).

*

The first rules are generated after the output variables have been
inserted in reduce clauses. So, arities of function symbols is 1 more
than usual.

Using setof instead of bagof ensures that there are no duplicates in list
of function symbols.

*/

generate_rules_each([]).
generate_rules_each([[F,N]IV]):-
length{[AlArgs],N),
Head=..[F,AlArgs],
asserta((reduce(Head,Out):-nonvar(A),Out=A,!)),
generate_rules_each(V).
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/*
Unattaching output variables for readability.
*/

remove_var(X,X):-(number(X);var(X);(atomic(X),simplified(X))),!.

remove_var(X,Z):-simplified(X),!, X=..[FlArgs],
remove_var_each(Args,Argsl),
Z=..[FlArgsl].

remove_var(X,Z):-X=..[F,AlArgs],
remove_var_each(Args,Argsl),
Z=..[FlArgs1].

remove_var_each([],[].
remove_var_each({UIV],{U1IV1]):-remove_var(U,U1),
remove_var_each(V,V1).

Utilities.

*/
make_list(X,Y):-reduce(X,Z),make_list_1{Z,Y).

make_list_1([].[]).
make _list_1{JUIV],[UIZ]):-make_list(V,Z).

print_list(X):-reduce(X,[]),write(’ "), write(nil).

print_list(X):-reduce(X,[FXIRX]),nl,write(FX),print_list(RX).

make_list_Idf(X,Z):-attach_output_var(X,Y),
make_list(Y,A),
remove_var(A,Z).

print_list_1df(X):-attach_output_var(X,Y),print_list_1df1(Y).
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print_list_ldf1(X):-reduce(X,[]),write(’ *),write(nil),
print_list_ldf1(X):-reduce(X,[FXIRX]),
remove_var(FX,FX1),nl,write(FX1),print_list_Idf1(RX).

reduce_ldf(X,Y):-attach_output_var(X,X1),reduce(X1,Y1),remove_var(Y1,Y).
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APPENDIX 2
F* UTILITIES

/*

File fstarutils, Makes useful initializations.

*f
-op(650,xfx,=>).

simplified(true).
simplified(false).
simplified([]).
simplified([UiV]).

replace((A+B),Z,(Z is A+B)).
replace((A-B),Z,(Z is A-B)).
replace((A*B),Z,(Z is A¥*B)).
replace((A/B),Z,(Z is A/B)).
replace((A<B),Z,less_than(A,B,Z)).
replace((A>B),Z,greater_than(A,B,Z)).
replace((A>=B),Z,greater_than_equal(A,B,Z)).
replace((A=<B),Z,less_than_equal(A,B,Z)).
replace(equal(A,B),Z.equal(A,B,Z)).
replace(neg(X),T,neg(X,T)).
replace(cos(X),Z,cos(X,Z)).
replace(sin(X),Z,sin(X,Z)).

neg(true,false).
neg(false,true).

greater_than(U, A true):-U>A,!L
greater_than(U, A false).

less_than(U, A, true):-U<A,!
less_than(U, A, false).

equal(A,A,true):-!.
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equal(A,B,false).

greater_than_equal(A,B,true):-A>=B,!.
greater_than_equal(A,B,false).

less_than_equal(A,B,true):-A=<B,!.
less_than_equal(A,B,false).
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APPENDIX 3
USING THE F* COMPILER

1.0 INSTRUCTIONS

Assume partitioning of function symbols into constructor symbols, and non-
constructor symbols. Then, write an F* program, i.e. a collection of rewrite rules

each of the form LHS=>RHS, satisfying the following three restrictions:

(a) LHS is of the form f(tl,..,tn), n>=0, f a non-constructor function symbol,
and each ti is either a variable, or of the form c(X1,..,.Xm), m>=0, ¢ a

constructor symbol, and each Xi a variable.

(b) There is at most one occurrence of any variable in [LHS.

{c) All variables of RHS appear in LHS.

If the F* program satisfies two additional restrictions, much more efficient code can

be generated:

(d) Let LHS1 and LHS2 be variants of heads of two rules in P having no

variables in common. Then LHS1 and LHS2 do not unify.

{e) Let f(L1,..,Li,..,Lm)=>RHS be a rule in P, where Li is not a variable.
Then, in every other rule f(Kl1,. Ki,..Km)=>RHS1 in P, Ki is not a

variable.
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Let <foo> be the file in which an F* program is to be defined. Ensure that the first
line in <foo> is the operator declaration :-op(650,xfx,=>), and, for Quintus Prolog, =>

has been declared dynamic.

For each n-ary constructor symbol ¢ in <foo>, include in <foo> a clause
simplified(c(X1,..,Xn)) where X1,..,Xn are distinct variables. For convenience, the

clauses for ¢=[],},true,false have already been included in APPENDIX-2.

A lazy function symbol is one which is defined by F* rules. An eager function
symbol is one which is defined in Prolog. Only right hand sides of F* rules can
contain calls to eager functions. Let E be a term, possibly containing variables, in the
right hand side of an F* rule. Let the outermost function symbol of E be eager. Then
E must not contain any lazy function symbol. For example, where length is eager,
and append is lazy, the term length(append([],[1])) must not appear in any F* rule.

For each n-ary eager symbol {, do the following:
(a) Include in <foo>, the rule:
replace(f(X1,..,Xn),X,p(X1,..,.Xn,X)}).
where X1,..,Xn,X are distinct variables and f is computed by p in Prolog.
(b) Define p‘in Prolog. The first n arguments of p are assumed to be the n
arguments of f. For convenience, +,-,*/neg, equal, >, <, >=, =< are all
assumed to be eager and the appropriate replace clauses have been defined in

APPENDIX-2.
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NOTE. For Quintus Prolog, contents of APPENDIX-2 must be appended to

<foo>. Itis NOT sufficient to just load it.
Load this file, and <foo> into Prolog and type

translate_fdf.
To simplify some ground term e, type reduce(e,Z). If e denotes a list, and all its
elements are to be obtained, type make_list(e,Z). If e denotes an infinite list, and each

of its elements are only to be printed from left to right, type print_list(e).

If there are many => rules with more than one occurrence of a variable on their right

hand sides, further optimization may be achieved by typing:
translate_1df.

Now, in place of reduce, make list and print_list, use respectively, reduce_ldf,

make_list_Idf and print_list_ldf. The former will no longer work.

For Quintus Prolog only, if compilation is desired, after translate_fdf, or wranslate_Idf,

select some filename <bar> and type:
write_functions(<bar>),compile(<bar>).

You may wish to start a fresh session of Quintus Prolog, before compiling, since in

the current session, reduce clauses are dynamic.
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