Computer Science Department Technical Report
University of California
Los Angeles, CA 90024-1596

LEARNING CAUSAL RELATIONSHIPS: AN INTEGRATION OF
EMPIRICAL AND EXPLANATION-BASED LEARNING METHODS

Michael John Pazzani May 1988
CSD-880038

Learning Causal Relationships:
An Integration of Empirical and
Explanation-Based Learning Methods
Michael John Pazzani
May 1988

Technical Report UCLA-AI-88-10

UNIVERSITY OF CALIFORNIA

Los Angeles

Learning causal relationships:

An integration of empirical and explanation-based learning methods

A dissertation submitted in partial satisfaction of the
requirements for the degree Doctor of Philosophy

in Computer Science

by

Michael John Pazzani

1988

© Copyright by
Michael John Pazzani

1988

ABSTRACT OF THE DISSERTATION

Learning causal relationships:
An integration of empirical and explanation-based leaming methods

by

Michael John Pazzani
Doctor of Philosophy in Computer Science
University of California, Los Angeles. 1988
Professor Michael G. Dyer, Chair

A theory of learning to predict and explain the outcomes of events Is proposed. The theory
integrates three sources of information:

e Inter-example relationships: Regularities among a number of examples that reveal
the conditions under which a cause produces an effect.

« Intra-example relationships: Temporal and spatlal relationships between a cause and
an effect which constrain the search for a causal hypothesis.

» Prior causal and social knowledge: Prior knowledge which predicts and explains
regularities in events.

I focus on the strengths and weaknesses of each source of information and their associated
learning methods. [describe how the learmning methods can be integrated in a complementary
fashion. The proposed theory of learning is realized by a computer program that [constructed
called OCCAM. OCCAM acquires causal and social knowledge by empirical techniques by exploitin
inter-example and intra-example relationships. An explanation-based learning component ol
occaMm takes advantage of prior knowledge to constrain the learning process. OCCAM Is utuque
among explanation-based learning systems in that it has the ability to acquire. with empuncad
techniques, the background knowledge needed for explanation-based learning. For example.
occaMm learns about kidnapping by applying social knowledge acquired by empirical learning. The
result of applying occaM to a collection of economic sanction incidents is also discussed.

Table of Contents

1. Introduction
1.1. Predicting the Outcome of Events
1.1.1. Prediction
1.1.2. Explanation
1.1.3. Planning
1.1.4. Inference
1.1.5. Knowledge of causality factlitates future learning
1.2. Learning to Predict the Outcome of Events
1.2.1. occam
1.2.2. Predicting the future
1.3. Methodology
1.4. A Preview of occaMm’s Performance
1.4.1. Learmng about coercion
1.4.2. Learning background knowledge to understand kidnapping
1.4.3. Kidnapping

1.4.3.1. Some complications in learmning kidnapping
1.4.3.2. Further specializations of kidnapping

1.4.4. Robustness of occaM
1.4.5. Economic sanctions
1.4.6. Learning from economic sanction incidents
1.4.7. Question answering
1.5. Organization of this Dissertation
2. Previous Work
2.1. Representing Meaning
2.1.1. Relationships between events, states and goals
2.2. Schemata
2.2.1. Scripts

2.2.2. MOPs

2.2.2.1. IPP
2.2.2.2. CYRUS

2.3. Learning
2.3.1. Bruner, Goodnow and Austin
2.3.2. Version spaces: Mitchell

i

© O D@ O B e W W RN e

— —
- O

—
o —

5 - e = =
NE Dm0 00 s 0w

Y2]
—

23

2.3.3. Empirical learning techniques

2.3.4. Explanation-based learning
2.3.4.1. ACES
2.3.4.2. GENESIS
2.3.4.3. Analysis of explanation-based learning
2.4. Attribution Theory

2.5. Causality and Philosophy
2.5.1. Hume
2.5.2. Kant
2.5.3. John Stuart Mill
2.5 4. Goodman

2.5.5. Philesophical influences on this dissertation
2.6, Summary

3. What occaM is up against
3.1. Relevance of Features
3.1.1. Prediction vs. explanation
3.2. Combining Multiple Sources of Information
3.2.1. The use of correlation
3.2.2. The use of prior knowledge
3.2.3. Intra-example relationships
3.2.4. Integrating multiple sources of information
3.3. The Level of Generality of Schemata

3.4. Developmental Differences: Learning in Adults and Children
3.5. Summary

4. A Theory of Learning to Predict and Explain: An Overview of occam

4.1. What Is a Schema?
4.1.1. The coercion schema
4.1.2. Assumptions implicit in occAaMm's input

4.2. When to Learn

4.3. Finding the Most Specific Schema

4.4. Integrating Multiple Sources of "~formation

4.5, Summary

5. Learning Causal Relationships: Empirical Investigations

5.1. The Role of Prior Causal Theories in Generalization
5.1.1. Nlusory correlation
5.1.2. The effect of differences in prior knowledge
5.1.3. The effect of differences in tasks
5.1.4. Selecting a cause consistent with prior knowledge
5.1.5. Feature correlations in conceptual representation
5.1.6. Forming and utilizing theories
5.1.7. Correlation in animals

5.2. The Role of General Theorles of Causality in Generalization

iv

5.2.1. Perceiving causality
5.2.2. The effect of different tasks
5.2.3. Selecting a cause consistent with a general theory of causality
5.2.4, Kniowledge of a causal mechanism
5.3. Spontaneous Causal Search

5.4. Perseverance of Beliefs in the Face of New Evidence
5.5 Summary

6. Similarity-Based Learning in occam
6.1. Aggregation
6.1.1. Classifying a new event
6.1.2. Finding similar events
6.1.2.1. Finding similar events: An example
6.2. Constructing a General Description of a Cluster of Events
6.2.1. Finding common features

6.2.2. Finding common features: An example
6.2.3. Creating a new schema
6.2.4. Intentional links
6.2.5. Creating a macro-schema: An example
6.3. Refining Schemata
6.3.1. Refining a schema: An exampie
6.4, Summary
7. Theory-Driven Learning In occaM
7.1. A Theory of Causality
7.1.1. Constraints on causal relationships
7.1.2. Representing a theory of causality
7.1.3. The process of theory-driven learning
7.1.3.1. Evaluation of schemata created by theory-driven learning
7.1.4. Theory-driven learning: An example
7.2. Dispositions
7.2.1. Dispositions: An example
7.2.2. Refining a dispositional attribute
7.3. Experimental Results: Theory-Driven and Sirnilarity-Based Learning
7.4. Learning Social Theories
7.5. Summary
8. Explanation-Based Learning in occaM
8.1. Constructing an Explanation
8.1.1. Creating a sketchy explanation: An example
8.1.2. Storing and retrieving rules from memory
8.1.3. Refining an explanation: An example
8.2. Explanation-Based Generalization
8.2.1. Explanation-based generalization: An example

v

8.3. Explanation-Based Learning and Indexing
8.4. Operationality

8.5. Explanation-Based Learning and Multiple Outcomes
8.6. Summary

9. Experiments in Integrated Learning

10.

9.1. Learning About Coercion
9.2. Economic Sanctions
9.2.1. A detailed example
9.2.2. Summary of economic sanction schemata
9.3. Comparing EBL and SBL
9.4. Question Answering
9.4.1. Parsing
9.4.2. Finding an applicable schema
9.4.3. Instantiation
9.4.4. Generating a response
9.5. Kidnapping: An Example of Integrated Learning
9.5.1. Acquiring background knowledge for kidnapping
9.5.2. Explanation-based learning with an incorrect theory
9.5.3. Revising an incorrect domain theory
9.6. Detecting and Correcting an Incorrect Generalization
9.7. Specializations of Kidnapping
9.8. Sumnrnary
Future Directions and Conclusions
10.1. Integrated Learning Systems
10.2. Comparisons to Related Work
10.2.1. Empirical learmning
10.2.2. Connectionism
10.2.3. Explanation-based learning
10.2.4. Chunking
10.2.5. Case-based reasoning
10.2.6. Discovery systems
10.3. Future Research on Integrated Learming
10.3.1, Learning generalization rules
10.3.2. Learning inference rules when failing to explain
10.4. Limitations of occam
10.4.1. Nondeterministic concepts
10.4.2. Stmplicity and accuracy
10.4.3. Learning about unobserved states
10.4.4. Partitioning the input
10.4.5. Learning concepts without operational descriptions
10.4.6. Consolidating multiple descriptions of the same event

vi

10.5. Summary

Jl

10.6. Conclusions

,_4
|
~1

10.6.1. Integrating empirical and explanation-based learning 1

77

10.6.2. Causal theories 178

10.6.3. Memory organization 178

10.7. Final Comments 179
References 180
Appendix A. Code Listing 193
A.l. Systemn Definition _ 194

A 1. 1. File: occam-lite-system.lisp 194

A2, Utilities 194
A2 1. File: objects.lisp 194

A.2.2, File: lisp-utils.lisp 196

A.2.3. File: cd-utils.lisp 197

A.2.4. File: schemata.lisp 202

A.2.5. File: init-schemata.lisp 206

A.2.6. File: cd-match.lisp 207

A.3. Similarity-Based Learning 208
A.3.1. File: shl.lisp 208

A.3.2. File: macro-schema.lisp 211

A 3.3. File: play-doh.lisp * 218

A.4. Theory-Driven Learning 225
A.4.1. File: tdl lisp 225

A.4.2. File: genrules.lisp 230

A.4.3. File: glass. lisp 231

A.5. Explanation-Based Learning 232
A.5.1. File: infer.lsp N . 232

A.5.2. File: ebl.lisp 234

A.5.3. File: rules.lisp 239

A.5.4. File: coerce.lisp 240

A.5.5. File: sanctions.lisp 240
Appendix B. Program Traces . 242
B.1. Similarity-Based Learning Trace 242
B.1.1. Revising a schema 249

B.2. Theory-Driven Leamning Trace 251
B.3. Explanation-Based Learning Trace 254
Appendix C. Prolog Occam 239
C.1. Code Listing of PROLOG_OCCAM 260
C.2. Data for PROLOG_OCCAM 263
C.3. A Trace of PROLOG_OCCAM 265

vii

Appendix D. occaM’s Generalization Rules
D.1. Physical Causality
D.2. Social Causality
Appendix E. Listing of Economic Sanction Incidents
E.1. Actual Incidents
E.2. Hypothetical Incidents
E.3. CD Representation

vili

Figure 1-1:
Figure 2-1:

Figure 2-2:
Figure 2-3:
Figure 2-4:
Figure 2-5:
Figure 2-6:
Figure 2-7:
Figure 3-1:
Figure 3-2:

Figure 3-3:

Figure 3-4:
Figure 3-5:

Figure 3-6:

Figure 4-1:
Figure 4-2:
Figure 4-3:

Figure 4-4:
Figure 4-3:
Figure 4-6:

Figure 4-7:

Figure 6-1:

List of Figures

Block diagram of occaM. The modules receiving thorough treatment in
this dissertation are in bold.

CD representation of Chris giving Play-Doh to Lynn which achieves Lynn's
goal of possessing some Play-Doh.

Organization of schemata in memory.

The wholist strategy for concept acquisition.

The part-scanning strategy for concept acquisition.

A simple circuit consisting of two light bulbs in parallel protected by a fuse.
Initial diagnosis heuristics.

Revised heuristic which proposes a blown fuse- changes underlined.
Simplified CD representation of Economic-Sanction-1.

A schema which indicates that if a country tries to threaten a country with

a strong economy by refusing to sell a commodity, then the threatened
country will buy the product elsewhere.

An explanation of why a country with a strong economy will be able to
purchase a product from another supplier if the existing supply is cut off.

Simplified CD representation of Economic-Sanction-2.

An illustration of finding the common features of two events. When the
representation of Economic-Sanction-2 from Figure 3-4 is placed on top of
the representation of Economic-Sanction-1 from Figure 3-1, the common
features become bolder and the differences are overwritten.

A possible schema formed by extracting all common features from
Economic-Sanction-1 and Economic-Sanction-2.

The generalized event for the coexce schema.
The sequence of events for coerce.

CD representation of "A child dips a small yellow balloon in water. blows
air into the balloon and the balloon is inflated.”.

Organization of schemata in OCCAM's memory.
A kidnapping example.

£ind (SCHEMA, EXAMPLE] : The procedure that OCCAM uses to find the most
specific schema in memory.

Top-level control of occaM. After finding that the most specific schema
does not explain the outcome of an event, explanation-based learning is
attempted, followed by theory-driven learning and, finally, by similanty-
based learning.

Part of the initial hierarchy of schemata in OCCAM.

ix

19

22

23

24
26
27
27
34
34

37
38

Figure 6-2:
Figure 6-3:
Figure 6-4:
Figure 6-3:
Figure 6-6:
Figure 8-7:

Figure 6-8:;
Figure 6-9:

Figure 6-10:
Figure 6-11:

Figure 6-12:

Figure 6-13:
Figure 6-14:
Figure 6-13:

Figure 6-16:

Figure 6-17;
Figure 6-18:

Figure 6-19:
Figure 6-20:

Figure 8-21:

Figure 6-22:
Figure 6-23:

pizza-1: Karen has a goal of possessing a slice of pizza. Her plan is to ask
Mike for a slice of pizza. Her goal succeeds.

OCcaM’'s memory before pizza-1 is added. Three events are indexed under
the goal schema.

zoo-~1: Karen wants to go to the zoo. She asks Mike to take her to the zoo.
Her goal succeeds.

refrigerator-1: Karen wants to open the refrigerator. She pulls on the
door, but it doesn't open.

play-doh-1: Lynn wants some Play Doh. She asks Mike to give her some,
and her goal succeeds.

A "skeleton” of pizza-1 that retains one level of detail more than the goal
schema.

A "skeleton” of pizza-1 that retains two levels of details.

hAggregate [Event, Schema]: The procedure that finds a set of stmilar
events to generalize,

RatrieveEvents(Schema, Feature]: The procedure that retrieves
events similar to Event indexed under Schema by Feature.

Compatible([Cdl, Cd2]: The procedure that determines if two CD
structures are compatible.

LargestSubset [Feature, Skelaton, Events}: The procedure that
finds the largest subset of Events which have at least two features in

common which are compatible with the corresponding features of
Skeleton.

MakeaGeneralCd[El, E2): The procedure that finds all' features in
comuron between two events.

A generalized event formed by finding all the features In common hetween
zoo-1, play-doh-1 and pizza-1.

A picture of occaM’'s memory after the goal schema is specialized by
extracting the common features of zoo-1, play-doh-1 and pizza-1.

A schema which represents an actor's goal of possessing an cbject which
is accompiished by asking someone to give the object to the actor. This
schema is indexed under the specialization of the goal schema in Figure
5-15.

The relationship between play-doh-1 {l.e., Lynn wants some Play-Doh)
and other actions, plans, and goals is represented by intentional links.

Top-level overview of creating a schema with similarity-based learmning in
OCCAM

The result of finding the common features of concepts connected by
intentional links to the main concepts of zoo-1, refrigerator-1 and
pizza-1.

The generalized event of a macro-schema. delta-agency represents a
plan, for achieving a goal by asking someone to perform an action that
achieves the goal.

This pattern can be matched against an instance of delta-agency
binding the variables (which are preceded by a question mark).

The sequence of events for delta-agency.

The pattern for recognizing a particular configuration of goals and plans
as an instance of delta-agency.

b 4

73

75

77

79

81

82

83

33

Figure 6-24:

Figure 6-28:

Figure 6-26:
Figure 6-27:
Figure 6-28:

Figure 6-29:

Figure 6-30:

Figure 7-1:

Figure 7-2:
Figure 7-3:

Figure 7-4:

Figure 7-5:

Figure 7-8:

Figure 7-7:

Figure 7-8:

The pattern for creating an instance of delta-agency once a

configuration of goals and plans has been recognized as an instance of
dalta-agency.

The location of the delta-agency schema in memory. The simple
schema indexed under goal contains a representational transfer pattern
which recognizes delta-agency.

A summary of the algorithm for creating a macro-schema.
The revised generalized event after apple-1 has been added to memory.

The revised delta-agency schema. The only change is to the-helper
feature.

The revised delta-agency schema after apple;l has been added to
memory. the-helper feature is changed again to remove the prediction
that the-helper have brown hair and green eyes.

The delta-agency schema is reflned to update the-actor role when

occaM encounters an example that shows that this plan aiso works for
adults.

An exceptionless generalization rule (variables are preceded by "?"). if an
action on an object always precedes a state change for the object, then the
action results in the state change. Comments which label the components
of the generalization rule are preceded by ".".

Protocol of Lynn (age 4} trying to blow up balloons.

A dispositional generalization rule: if similar actions performed on an
object have different results, and they are performed by different actors.
the differing features of the actor are responsible for the different result.

A historical generalization rule: f an initial action (?act-1) on an object is
always present when a subsequent action (?act-2) precedes a state change
(?state-2) for the object., then ?act-1 results in a state (?state-1) which
enables ?act-2 to result in the state change (?state-2).

A generalization created by empirical methods describing the situation
when a balloon is inflated only after the child snaps her fingers.

A generalization containing a causal mechanism is created when a
situation matches a known causal pattern. This generalization describes
the situation when the child can inflate the balloon only after it has been
dipped in water.

Input to occaM describing the situation when the child can only inflate a
balloon after it has been dipped in water.

CD representation for "the child dips a small yellow balloon in water. blows
air into the balloon and the balloon is inflated.”.

Figure 7-9: A generalization which indicates that blowing air into a balloon results in

Figure 7-10:

Figure 7-11:

Figure 7-12:

the balloon being inflated.

A rule format of the generalization that indicates that blowing air into 4
balloon results in the balloon being inflated. Variables are preceded by
rl?".

A generalization which indicates that blowing air into a small balloon
results in the balloon being inflated.

Dispositional attributes: the role and the action determine the class of
situations in which the dispositional attribute is applicable. The feature
indicates what sort of objects possess that disposition.

xi

85

85
88
88

89

89

94

95
95

96

96

1O

1O

Figure 7-13:

Figure 7-14:

Figure 7-15:

Figure 7-16:

Figure 7-17;
Figure 7-18:
Figure 7-19:
Figure 7-20:
Figure 7-21;

Figure 7-22:

Figure 7-23;

Figure 7-24:

Flgure 7-25:

Figure 7-28:

Figure 8-1:

Figure 8-2:
Figure 8-3:

Figure 8-4:

Figure 8-3:

Figure 8-6:

Simplified Conceptuai Dependency representation of

"Mike opening the
refrigerator.”.

A schema which indicates that when a person who is disp-1 enough to

open a refrigerator pulls on the refrigerator door, the refrigerator door will
open.

A dispositional attribute: persons with green eyes are disp-1 enough to
open a refrigerator.

A schema which indicates that when a person who s strong encugh to

open a refrigerator pulls on the refrigerator door, the refrigerator door will
open.

The strength dispositional attribute: adults are strong enough to open a
refrigerator.

A schema which Indicates that when a person who is strong encugh to
inflate a balloon blows air into a balloon, the balloon will be inflated.

The strength dispositional attribute: adults are strong enough to blow
up a balloon.

The modified strength dispositional attribute: Karen is strong enough to
blow up a balloon.

The average number of examples required for similarity-based learning
and theory-driven learning to find the correct hypothesis.

An exceptionless generalization rule which applies in a social situation: if
a goal to perform an action s blocked by a state then the state Is an
enabling condition for the action.

A rule acquired by occam when an exception to dalta-agency is
encountered: in order to give an object to someone, you must possess the
object.

The generalized event of a specialization of delta-agency. This schema
describes those attempts to use delta-agency which failed because
the-helper did not possess the the~obj.

Caring: a dispositional attribute. The feature which indicates that a
person has this disposition is the presence of an IPT (l.e. an interpersonal
theme such as a relative).

A specialization of delta-agency which indicates that dealta-agency will
fail if the helper does not care if the actor's goal succeeds.

Conceptual Dependency representation of Economic-Sanction-1. Country
representations (surrounded by asterisks) are omitted to save space.
Figure 8-2 illustrates the representation of South Africa.

QCCAM'S representation for South Africa.

Part of the goal representation of Economic-Sanction-1. This
representation was created by decomposing the high-level ccerce
representation into more primitive elements.

A historical generalization rule that matches the situation in Economic-
Sanction-1.

An economic rule: refusing to sell a product which country-x exports to
country-y results in an increased demand for the product by country-y.
This rule encodes part of occam's knowledge about the relationship
between supply and demand.

The sketchy explanation which postulates how Australla refusing to seil

xit

105

105

106

1C6

106

107

107

_ 108

109

109

110

110

111

112

117
118

118

119

120

uranium to France led to France purchasing the uranium {rom South
Africa at an inflated price.

Figure 8-7: An economic rule that encodes knowledge of supply and demand: an
increased demand for a product by country-x can enable another country
to sell country-x the product at a price greater than the market price.
Country-x is required to have a strong economic heaith so that they can
afford the inflated price.

Figure 8-8: A rule which indicates that selling an object to ?x results in ?x possessing
the object.

Flgure 8-9: The explanation which occaM constructs for Economic-Sanction-1. This
explanation indicates how Australia refusing to sell uranium to France led
to France purchasing the uranium from South Africa at an inflated price.

Figure 8-10: The generalized explanation. Only those features of the explanation
which were required by the inference rules are included in the generalized
event. Additionally, a unique Identifier is added to each structure which
matches a variable. When two structures have the same unique-id. it
indicates that the structures are constrained to be identical by the
matching process.

Figure 8-11: Generalization of Economic-Sanction-1 produced by OCCAM.

Figure 8-12: The sequence of events created for an economic sanction scherna.

Figure 8-13: The kidnapping schema formed from generalizing Kidnapping-4.

Figure 8-14: A specialization of the kidnapping schema formed from generalizing
Kidnapping-5. This specialization indicates how the target's goal of
preserving the health of the child was achieved. The specialization is
indexed In memory under the kidnapping schema.

Figure 9-1: The initial coarca schema.

Figure 9-2: The sequence of events for the coercion schema.

Figure 9-3: The final refined version of the generalized event for the coarce schema.
Figure 9-4: The countries and objects which participate in Econornic-Sanction-4.
Figure 9-3: The events which occur in Economic-Sanction-4.

Figure 9-6: The generalization which occam acquires in Economic-Sanction-4.

Figure 9-7: The generalized goal and plan of the tardet in an economic sanction
schema.

Figure 9-8: The sequence of events of an economic sanction schema. This sequence of
events elaborates on the relationships specified in the coercion schema.
For example, the subgoal which ?THE-TARGET-RESPONSE achieves is
specified.

Figure 9-9: Percent of correct predictions made by OCCAM with EBL and SBL as a
function of the number of training examples.

Figure 9-10: Percent of unclassified examples and incorrect predictions made by
occam with EBL and SBL as a function of the number of training
examples. EBL does not make any incorrect predictions on this set of
data.

Figure 9-11: The lexical entry for the word "Canada”. It contains the function add-cd
which adds the definition to working memory.

Figure 9-12: The lexical entry for the word "export”. It adds an atrans in exchange for
money to memory, and then activates a request (via add-requaest) to find
a polity which is the actor and the source of the atrans. When it finds

xiii

121

121

122

124

124
125
129
130

134
135
136
138
139
140
140

141

144

144

146

147

Figure 9-13:

Figure 9-14:
Figure 9-15:

Figure 9-16:
Figure 9-17:
Figure 9-18:

Figure 9-19:

Figure 9-20:

Figure 9-21:

Figure 9-22:;

Figure 9-23:

Figure 9-24:

Figure 10-1:
Figure 10-2;
Figure 10-3:
Figure 10-4:

Figure 10-5:
Figure 10-8:
Figure 10-7:
Figure 10-8:

the actor, it issues another request to find a commedity which is the
object of the atrans and a polity which is the destination.

The resuit of parsing the question. "What would happen if the US refused
to sell computers to South Korea unless South Korea stopped exporting
automobiles to Canada?'. Many features of the countries are not shown
to conserve space.

The new representation for the question created during memory traversal.

The schema which provides a general explanation to answer the question,
"What would happen i the US refused to sell computers to South Korea
uniless South Korea stopped exporting automebiles to Canada?”. This
schema is a more complex version of the schema presented in Figure
8-11. It indicates that If a country that exports a commodity tries to
coerce a country which imports the commeodity by refusing to sell them
the commodity, then a response might be to buy the commodity at a
higher price from another country.

Part of the explanation which indicates why the US goal will fail.
The generator definition of the word “sell".

A dispositional attribute: tall persons have a potential called disp-17.
This attribute is postulated to be responsible for the different reactions in
aid-1 and aid-2.

A ruie which indicates that persons with disp-17 (i.e.. tail people) have a
goal of preserving the heaith of others.

The kidnapping schema formed from generalizing Kidnapping-4 with an
incorrect domain theory. Note that OCCAM's incorrect theory indicates
that the target should be tall, because tall pcrsons have a goal of
preserving the health of others.

Part of the kidnapping schema formed from generalizing Kidnapping-5
with a correct domain theory, Note that now the target is required ‘o
have an interpersonal relationship with the hostage (i.e., the
threat-obij).

A specialized version of kidnapping which represents an inherent flaw:
the hostage sees the kddnapper when he is abducted and can testify
against the kidnapper.

Part of the generalized explanation stored with a specialization of
kidnapping. Since the hostage sees tue kidnapper during the abduction.
the hostage can testify against the kidnapper.

A specialized version of kidnapping which avolds a potential problem with
kidnapping by selecting an infant as the hostage.

Preferring similarity-based to explanation-based learning.
Similarity-based learning of explanation structures.
OCCAM: preferring explanation-based to similarity-based learning.

The flow of information in O0CCAM. Schemata are formed by similarity
based or explanation-based learning and serve as background knowledge
for explanation-based learning.

A multi-layer network that contains hidden units.

Distribution of concepts learned when there are redundant relevant cues.
A causal rélationship: a balloon is inflated when air is blown into it.

A causal relationship: a glass object shatters when it is struck.

xiv

147

148
149

130
150
152

152

153

157

157

163
65
L34

1T

Figure 10-9: A generalization rule formed by detecting the common features of the

Figure 10-10:

Figure 10-11:

Figure 10-12:

Figure 10-13:

generalizations in Figures 10-7 and 10-8.

The flow of information tn an extended version of occaMm. Background
knowledge for explanation-based learning is acquired through
similarity-based or theory-driven learmning. Generalization rules are
learned by similarity-based learning.

The situation when there 1s some domain knowledge. but not enough to
complete an explanation. There is no inference rule which connects the
two events in bold: Australia refusing to sell uranium to France and
France obtaining the uranium.

An abstract explanation proposed by a generalization rule {s illustrated
in the first column. The middle column illustrates the incomplete
causal chain. The explanation cannot be completed because an
inference rule Is missing which indicates that an increased demand for
a product by one country can enable another country to sell the product
at a price greater than the market price. The last column illustrates two
inference rules that produced the incomplete causal chain.

The dependencies among the schemata learned by occam.

172

173

176

ACKNOWLEDGEMENTS

First, [would like to thank Professor Michael Dyer. my thesis advisor for making my four
vears in the Artificial Intelligence Laboratory at UCLA intellectually rewarding. His thorough
reading and critique of this dissertation and his insightful comments on memory and learning
were greatly appreciated. In addition. Professor Dyer is largely responsible for creating an
environment at UCLA conducive to creative research.

I also want to thank the other members of my committee. Professor Margot Flowers
introduced me to the fleld of machine learning. It was in her class, that | began research on
integrated learning methods. Professor Jacques Vidal broadened my perspective on approaches to
artificial intelligence.

One of the reasons that I enjoyed my work at UCLA is the excellent psychology department. !
am indebted to the psychology members of my committee. Professor Mort Friedman deserves
credit for providing the facilities for the psychology experiments that I ran and for many interesting
discussions on psychology. [am thankful to Professor Keith Holyoak for comments on my
research from the perspective of a psychologist who creates computational models. Professor
Bernard Weiner first introduced my to a psychological perspective on causal analysis.

I am also grateful to the other members in the UCLA Al Lab. I will always appreciate their
commerntary on my research. In particular, I'd like to thank Serglo Alvarado, Stephanie August,
Charlie Dolan, Ric Feifer. Mike Gasser, Seth Goldman, Jack Hodges. Dr. Erik Mueller, Valeriy
Nenov, Alex Quilici, Walter Read. John Reeves, Ron Sumida. Scott Turner. and Dr. Url Zemik
Seth deserves special credit for maintalning the machines in the Al Lab and together with John
and Scott providing many interesting discussions on Al and professional wrestling.

My view of Artificial Intelligence was influenced by many others. Dr. Richard Cullingford first
interested me In Artificial Intelligence at the University of Connecticut. Carl Engelman and Dr.
Nort Fowler encouraged and supported my work on natural language processing at the Mitre
Corporation. Dr. Michael Lebowlitz provided some advice on learning and memory organizatlon.
Dr. Stephen Crocker started Al research at the Aerospace Corporation which provided the
equipment for much of my research. Carl Kesselman, Art Simoneau, and Rod McGuire made my
time at Aerospace interesting. Much of my research was supported by a UCLA-RAND artificial
intelligence fellowship.

I also want to thank my parents and my aunt Annette for supporting and encouraging my
education.

[also want to thank my children, Lynn and Karen, for a constant source of inspiration and
amazement. Finally, I am eternally grateful to my wife, Christine, for never objecting when I
decided to continue my education, for putting up with me during my productive, but antisocial
periods, for proofreading this dissertation, and for making life interesting while [was pursuing my
research.

May 8,1958 Born, New York Clty, NY
1980 B.3., Computer Science, University of Connecticut, Storrs. CT.
1981 M.S.. Computer Science, University of Connecticut, Storrs, CT.

PUBLICATIONS AND PRESENTATIONS

Cullingford, R. and Pazzani, M. Word-Meaning Selection in Multiprocess Language Understanding
Programs. IEEE Transactions on Pattern Analysis and Machine Intelligence. Vol. 6 No.4: July
1984.

Pazzani, M. Interactive Script Instantiation. In Proceedings of National Conference on Artificial
Intelligence. Washington DC: August 1983.

Pazzani. M. Conceptual Analysis of Garden-Path Sentences. In Proceedings of the 10th
International Conference on Computational Linguistics. Stanford, CA: July 1984.

Pazzani, M. Explanafion and Generalization-based Memory. In Proceedings of the Cognitive Society
Conference. Irvine, CA: August 1985.

Pazzani. M. and Brindle, A Automated Diagnosis of Attitude Control Anomalies. In Proceedings of
the Annual AAS Guidance and Control Conference. American Astronautical Society, Keystone, Co:
February 1986. ' .

Pazzani, M. Refining the Knowledge Base of a Dtagnostic Expert System: An Application of Failure-
Driven Learning. In Proceedings of the National Conference on Artificlal Intelligence. Philadelphia,
PA: August 1986.

Pazzani, M., Dyer, M. & Flowers, M. The Role of Prior Causal Theories In Generalization. In
Proceedings of the National Conference on Artificial Intelligence. Philadelphia, PA: August 1986,

Pazzani, M. Explanation-Based Learning for Knowledge-Based Systems. International Journa! of
Man-Machine Studies. Vol 26: July 1987.

Pazzani, M. Failure-driven Learning of Fault Diagnosis Heuristics. IEEE Transactions on Systems.
Man and Cybemetics: Special Issue on Causal and Strategic Aspects of Diagnostic Reasoning. Vol
17. No 3: May 1987.

Pazzani, M. Inducing Causal and Social Theories: A Prerequisite for Explanation-Based Learning. n
Proceedings of the Machine Leaming Workshop. Irvine, CA: June 1987,

Pazzani, M., Dyer, M., & FLowers, M. Using Prior Learning to Factlitate The Learning of New Causal
Theories. In Proceedings of the International Joint Conference On Artificial Intelligence. Milan.
[taly: August 1987.

Pazzani, M. & Dyer, M. A Comparison of Concept Identification in Human Learning and Network
Learning with the Generalized Delta Rule. In Proceedings of the International Joint Conference On
Artificial Intelligence. Milan, Italy: August 1987.

Pazzani, M. Selecting the Best Explanation for Explanation-Based Learning. In Proceedings of the
AAAI Symposium on Explanation-Based Learning. Stanford, CA: March 1988.

Chapter 1
Introduction

There exists a hierarchy of cognitive awareness
which begins with the more stimulus-bound recognition
of “facts,” and gradually goes deeper into the
underlying causes of these facts. (Heider, 1958, p.. 81)

1.1. Predicting the Outcome of Events

Understanding the cause of an event enables the understander to explain, to predict, and
perhaps to control the event. Therefore, learning causal relationships is a crucial task in
understanding and mastering the environment. An addittonal benefit of leaming causal

relationships 1s that future learning can be constrained by ignoring those possibilities that are
inconsistent with exdsting causal knowledge.

[present a theory of learning to predict and explain the outcome of events. This theory Is
implemented in a computer program called OCCAM. 0OCCAM is able to learn to predict and explain
possible outcomes in several different domains. These domains include simple physical causes
{e.g.. breaking glass and inflating balloons), children's social interactions (e.g.. coercion and
agency), and complex planning situations (e.g.. kidnapping and economic sanction incidents).

Many tasks require an understander to reason about causality. In the following sections, [
consider the tasks of prediction, explanation. planning, and inference. For each task, [give
examples of physical causality and social causality. In physical causality. a result occurs as a
cansequence of transmission of some sort of force. In contrast, transmission of forces does not
play a major role in determining human behavior. Instead, human behavior is constdered to be a
consequence of intentions to achieve some goal.

1.1.1, Prediction

Prediction is the task of determining the consequences of a future or a hypothetical event.
For example, [asked a political analyst at the Rand Corporation to indicate the likely outcome of
several hypothetical economic sanction incidents. Examples of some responses are given below:

Question: What would happen if the US refused to sell computers to South Korea
unless South Korea stopped exporting automobiles to Canada?

Answer: S. Korea will probably buy computer equipment from some other country.

Question: What would happen If the US offered to sell coal to West Germany if West
Gerrmriany agreed not to buy coal from South Africa?

Answer: W. Germany would agree since it wouldn't cost them a thing-- unless this
move meant retaliation by S. Africa on W. Germany on some essential
exports that W. Germany was highly dependent on.

guestion: What would happen if the US threatened to cut off food aid to Ethiopia
unless Ethiopia modernized its agricultural production?

Answer: Ethiopta would not agree. It would just ask for more help from the Eastern
Bloc.

These economic sanction incldents are all examples of social causality. Countries, like
people, have certain goals (e.g., survival and economic growth) and their actions are planned to

pursue these goals. The ability to make predictions is dependent on an understanding of these
goals.

In addition to social causality, I have locked at examples of utilizing knowledge of physical
causality (n prediction. For example, occaM leamns to predict that a small child will be able to
successfully inflate a balloon only after the balloon has been stretched.

1.1.2. Explanation

A prediction answers questions about what will happen under certain circumstances.
Explanation, on the other hand. requires answering questions about why a cause results in an
effect. The ability to explain is essential if a computer {s to be trusted to make a prediction. If a
computer (or a human) cannot articulate a convineing line of reasoning to justify a prediction, who
would be willing to belleve the prediction?

Typically, an explanation consists of a set of intermediate states that connect a cause and an
effect. In physical causality, these intermedlate states are states of the world. In soctal causality.
the intermediate states are often mental states.

In addition to asking the political analyst at the Rand Corporation to make a prediction about
hypothetical sanction incidents, I also requested an explanation to justify the prediction. An
example explanation is given below:

Question: What would happen if the US refused to sell computers to South Korea
unless South Korea stopped exporting automobiles to Canada?

Answer: S. Korea will probably buy computer equipment from some other country.
Question: Why?

Answer: If the US restricts S. Korea's supply of computers, they would be willing to
pay a higher price for the computers and some other country would move
in.

This explanation references several intermediate states: South Korea's goal of obtaining
computers, South Korea's willingness to pay a higher price to obtain the computers, and some
other country’s goal of making a profit by selling computers to South Korea.

When OCCAM learns to predict that a small child will be able to successfully inflate a balloon
after the balloon has been stretched, it also constructs a series of intermediate states: pullingon a
balloon results in a state (L.e.. the balloon is stretched out) that enables the child to make the
balloon bigger by blowing air into the balloon.

1.1.3. Planning

One aspect of planning is to predict, prevent or prepare for anticipated events. If an outcome
is not desirable, it may be possible to come up with a plan to change the outcome. For example.
the United States stockpiles oil and strategic materials, to mitigate the effects of an interruption in
the supply of these materials, Similarly, South Africa has been stockpiling commodities that it
imports to avoid economic hardship in the event that stricter economic sanctions are implemented
and enforced.

Planning also requires the planner to reason about physical causality. Parents often live

2

small children plastic cups to drink out of. Knowledge of physical causality {glass cups break
when they are dropped: plastic cups are unbreakable; small children are likely to drop things)
helps to prevent the undesirable consequences of giving a small child a glass cup. occaMm is able to
acquire knowledge of causality to support planning.

1.1.4. Inference

An important task in natural language understanding is inferring information that is not
explicitly stated in a text. For example, consider the following story:

Kidnapping-1

John Doe who was abducted on his way to school Monday moming was released today
after his father left $50.000 in a trash can in a men's room at the bus station.

This short story leaves many things unstated. For example, it does not state why the father
put money in a trash can nor why John Doe was abducted or released. However, a typical adult
reading this story has no difficulty answering these questions. General knowledge about
kidnapping, including the motives of a kidnapper and the goals of a parent, must be used to infer
the missing information.

Similarly, in the following story, knowledge of physical causality is necessary to infer a causal
connection between the events:

Snowstorm-1

After two days of snow and rain, the roof of the old building collapsed tnfuring two
occupants sleeping in an upstairs bedroom.

In this story, the causal connection between the snow and the roof collapse is not explicitly
stated. A temporal connection is given from which a typical adult reading this story can infer a
causal connection. Similarly, there is no explicit mention of how the two occupants were injured.
but a typical person reading this story can infer that part of the roof that collapsed must have
fallen on the occupants.

1.1.5. Knowledge of causality facilitates future learning

Learming is one important task that can be aided by knowledge of causality. The learning of
new causal knowledge can be facilitated by focusing on relationships which are consistent with
existing knowledge. To illustrate, consider how one rnight learn that on cold winter days, roads
that have been salted are less slippery than roads that have not been salted.

One way to acquire this knowledge is purely empirical. The slipperiness of roads on cold days
would be noted under different conditions and eventually a regularity could be detected.

An alternattve means of acquiring this knowledge is analytical. The fact that salted roads are
less slippery is a direct consequence of two facts:

» Ice is slippery.

» Salt melts ice.

A learner who knows these two facts has a great advantage when it comes to learning that
salted roads are less slippery. It is possible to deduce the effect of spreading salt on an icy road.
Here, learning that salted roads are less slippery consists of simply storing the results of this
deduction.

As occaM learns, It acquires knowledge that facilitates future learning. For example, in
physical causality occam acquires the following knowledge:

* OCCAM s presented with examples of people attempting to open a refrigerator. Some
people pull on the door and it opens; others pull on the door and it doesn't open.
After many examples, it Is able to determine that the age of the person pulling on the
door (as opposed to the halr color or eye color) is a good predictor for determining
whether the door will open. In addition to learning a specific fact {adults are strong

encugh to open a refrigerator), it also leams some general knowledge (adults are
strong).

* Once occaM has learned that adults are strong, it is presented with examples of
people attempting to inflate balloons. Some people blow Into the balloon and it is
inflated; others blow into the balloon and it does not inflate. However, because it has
already learmed about strength (in the context of opening refrigerators). it requires
fewer examples to determine that a balloon will be inflated when an adult blows Into
the balloon, but not when an infant blows into it, Because It has already leamed
about strength, it does not have to consider other hypotheses (e.g., persons with green
eyes can inflate balloons but people will blue eyes cannot) even though these
hypotheses are consistent with the initial data.

In the area of soclal causality, occaM learns a number of facts that facilitate later learning:

e OCCAM 1is shown a number of examples of some persons assisting a child who gets

hurt playing in a playground. From these examples. it induces that parents have a
goal of preserving the health of their children.

» OCCAM is shown examples of people attempting to coerce another person. One is an
example of a playground argument: "If you don't let me pitch, I'm going to take my ball

and go home.". ocCAM acquires general knowledge of coercion {from examples such as
this.

* Next, ocCAM is presented with an example of kidnapping. From this example, it
specializes the coercion knowledge into kidnapping knowledge. In doing so, It
combines some previously unrelated facts about coercion and parents' goals of
preserving the health of their children to learn about why parents want to pay the
ransom in kidnapping. The kidnapping knowledge that it acquires indicates that a
good hostage in kidnapping is the child of a rich person.

* OCCAM is presented with examples of economic sanction incidents. General knowledge
of coercion helps occam learn when economic sanctions will achieve their desired
goal. OCCAM is able to answer questions about hypothetical sanction incidents.

1.2. Learning to Predict the Outcome of Events

In the preceding section, I discussed several kinds of reasoning that a person or a computer
can perform If they have knowledge of causality. How is that knowledge learned? This is the
central question I try to answer in this dissertation. Of course, to learn and use knowledge about
causality, there are a number of other questions that must be answered. How is this knowledge
represented? How is this knowledge stored in memory? How is this knowledge retrieved from
memory? For answers to these questions, [borrow from other researchers in artificial intelligence
and cognitive science. In order to present the details of the theory of learning that I am proposing,
I must first present background material on the representation, storage and retrieval of causal
knowledge. Chapter 2 describes the relevant background material. In this section. I sketch the
general framework in which the theory of learning is embedded.

1.2.1. OCCAM

OCCAM is a computer program (implemented in LISP) that learns to predict and explain the
outcome of events. OCCAM learns incrementally. Example events are presented to OCCAM one at a
time and occaM adds the events to memory. When OCCAM adds an event to memory. any of a
number of things may happen:

Storage: The event is stored in memory so that it may be retrieved later.

4

Generalization: The event may be generalized by removing some trrelevant details from
the event. For example, by removing some of the detatls of a particular
example of a person with blond hair who iInflated a red balloon, a
generalization can be created that describes the fact that when a person
blows Into a balloon, the balloon gets bigger.

Specialization: The event may initiate the specialization of existing general knowledge.
For example. if the memory already contains general knowledge of coercion,
adding an example economic sanction incident may start the process in
which general coercion knowledge 1s specialized to economic sanction
kmowledge. Specialization adds additional information to exdsting
knowledge. Economic sanctions can be viewed as a specialization of
coercion where the threat is to refuse to sell a product to a country.

Revision: A new event added to memory may be inconsistent with existing general
knowledge in memory. If this occurs, the existing general knowledge may
be revised to accommodate the new event, the existing general knowledge
may be abandoned altogether, or the new event may be remembered as an
exception to general knowledge.

Questions
In
English

Descriptions of
Evants in English

Questions Memory Update
in CD Storing Events
' Generalization
Specialization
Revision
Memory .
Retrieval
Answers
inCD

Answers
ln
English

Generator

Figure 1-1: Block diagram of occaM. The modules receiving thorough treatment in
this dissertation are in bold.

Figure 1-1 contains a block dlagram of occaM. In a complete working system. the example
events that serve as input to oCCAM would be in English. For example, newspaper stories of
economic sanction incidents might serve as input. The first step in adding an event to memory s
converting the example text from English to a representation of the meaning of the example. The
information stored in human memory after reading a story is not the English language text of the
story. Rather the meaning or the "gist” of a story is retained (Bartlett, 1932, Schank & Abelson,
1977). The process of converting text to a meaning representation of the text is called conceptual
analysis. In this dissertation, I will informally refer to it as parsing. occaM does not contain a
parser to process Its input examples. Instead, Conceptual Dependency (CD) (Schank & Abelson.
1977) is used to input the meaning of examples tn occam!,

In order to demonstrate convincingly that occaM has indeed learned something, it performs a
question answering task. OCCAM answers questions about the consequences of hypothetical

actions. This task involves both prediction and explanation. Figure 1-1 illustrates the following
subprocesses of question answering:

» Parsing questions into Conceptual Dependency: occaM converts questions about
hypothetical economic sanction incidents from English into Conceptual Dependency.
The restricted nature of the topic of the questions simplifies this task considerably.

No claims are made about the generality or cognitive validity of the parsing process in
OCCAM.

+ Memory Retrieval: The memory constructed by 0ccAM is searched to find the answers
to queries.

s Generation: The answers retrieved from memory are represented in Conceptual
Dependency. Generation is the process of converting the Conceptual Dependency
representation of an answer to natural language. No claims of generality or fluency of
the generation process are made.

Those modules in Figure 1-1 which are in large bold letters recetved the most thorough
treatment in the theory of learning implemented in 0CcAM. In particular, the major focus of the
research has been the acquisition of general knowledge from examples. Other areas, such as

memory retrieval, parsing and question answering were developed to demonstrate that the general
knowledge that occaM leams can be put to use.

There is another way that occaM demonstrates its learning: OCCAM uses the knowledge it has
acquired to facilitate future learning. In situations where occAM has already learmed some relevant
background knowledge, it is easier for it to acquire new knowledge. The existing knowledge serves
to constrain the search for a new hypothesis. Therefore, when occam has prior knowledge, it
requires fewer examples to learn.

1.2.2. Predicting the future

In this dissertation, the central question I address is how can a person or computer lean to
predict the consequences of a particular actlon? After developing a sufficient background in
Chapter 2, I discuss this question and related questions from a computational point of view in
Chapter 3. However, it is still possible to explore this question in general terms. How can a
person tell what aspects of a particular event will be repeated in future events? Pretend you've
never heard about kidnapping before. Now consider the following kidnapping story:

Kidnapping-2

John was abducted. His father, a wealthy, fatr skinned man received a note that
stated John would be killed unless he paid a $100,000 ransom.

What features from this particular story should one expect to see in future storles? Is it

IThe natural language descriptions of the events that occam leams from are beyond the capabilities of most natura
language processing systems. The central (ssue discussed In this dissertation is learning. No effort was made to advance
the state of the art tn natural language understanding.

6

important that the hostage be named John? Is it important that a parent of the hostage is
wealthy? [s it important that a parent of the hostage has fair skin?

One way to determine what features of previous experlences will be present in future
examples is to correlate over a number of previous experiences. For example, consider ancther
kidnapping story.

Kidnapping-3

Mary was abducted. Her mother, a wealthy, fair skinned woman, recetved a note that
stated Mary would be killed unless she paid a $100,000 ransom.

From Kidnapping-2 and Kidnapping-3 It is clear that the hostage does not have to be named
John. However, there are still a number of similarities between the two events. In both events. a
parent of the hostage 1s wealthy and has fair skin. Would a person given these two examples want
to predict in future kidnappings that a parent of the hostage is wealthy and has fatr skin?

Given any particular event, there will be certain aspects of the event which are similar to
other events. Some of the stmilarities will be coincidences. Others will be relevant since they are
consequences of some underlying physical or social cause. The distinction between relevant and
coincidental similaritles {8 tmportant in learning the sort of knmowledge required to make
inferences. For example, if the only examples of kidnapping encountered are Kidnapping-2 and
Kidnapping-3 and an intelligent person hears about another kidnapping he might want to infer
that the parent of the hostage is wealthy. On the other hand, he would not want to Infer that the
parent has fair skin. To avold making erroneous inferences, a person must be able to tell which
similarities are coincidental and which are relevant.

Of course, with more examples. the chances of a coincidental similarity are smaller (Valiant,
1984). However, a person may not have enough data before he has to make a prediction. For
example, there have been a number of economic sanction incidents in this century where the
target country did not meet the demand but instead was able to find a supplier who would be
willing to sell the product for a higher price. In all of these economic sanction incidents, there
have been at least two similarities: the country which made the demand had a native language of
English and the target country had a strong economy. Should sanctions agatnst poor countries be

expected to succeed? Should sanctions by countries which don't speak English be expected to
succeed?

One way to avold the problem of coincidentally similar features 18 to have an a priort set of
features which are relevant. For example, it might be that wealth is always important and having
falr skin never 1s. However, in general, the relevance of features is situation-dependent. Consider
the following examples:

Cancer-1
John, a wealthy, fatr skinned man. was advised by his doctor to wear a 15 SPF
sunscreen at the beach.

Cancer-2

Mary, a wedalthy, fair skinned woman, was aduvised by her doctor to wear a 15 SPF
sunscreen at the beach

In these examples, fair skinned would be considered relevant since fair skinned persons are
more prone {0 skin cancer. The fact that Mary and John are both wealthy is incidental. These
examples demonstrate that "relevance” is not a property of features themselves.

Leamning and Memory Principle 1
To avoid making erroneous inference. a leamer
must be able to determine which features are
relevant and to ignore cotncidental similarities.

In later chapters, [will argue that the sclution to the problem of determining the relevance of
features Involves using existing knowledge which explains why a feature was present in a
particular set of examples. There s, of course, a good reason to believe that a kidnapper would
select the child of a rich person as a hostage. On the other hand, there is no good reason to select
the chtld of a fair skinned person as a hostage. The general rule is that the relevant features play
a part In an explanation of why the event cccurred.

Learning and Memony Principle 2

The relevant features are those which are necessary
to explain why a particular outcome occurred.

13 Methodology

What am I trying to accomplish in this thesis? To develop a theory of human learning? To
make computers learn? Both of these questions are worth studying in detail separately. However,
in this dissertation I address both questions together. In particular, I address the following
questions about human learning from a computational point of view:

» Under what conditions do people infer a causal relationship?

« How does learning in small children differ from learning in adults?

« What sorts of information do people make use of when learning causal relationships?
¢ How can knowledge learned in one situation be applied to other situations?

There are several good reasons for developing a computer simulation of a cognitive process.
First, a computer forces one to be precise. There is no such thing as a vague instruction for a
computer, Q@uite often, when attempting to implement a computer model of a cognitive process,
one finds that the process is more ambiguous than one had originally believed. It is often said that
to truly understand something, you must teach it to someone. This is even more true when one
attempts to Instruct a computer, since it can't use common sense to interpret the instructions. In
fact, often the task is to automate common sense. Second, in the process of implementing a
computer model, one is often faced with several alternative ways of implementing a subtask.
Sometimes a more thorough search of the psychology literature can suggest the correct alternative.
If there is no answer in the literature, an experiment can be run to decide between the alternatives.
Hence, the development of a computer model serves as a source of questions. Sometimes, following
good scientific practice, the simplest alternative or the most parstmonous alternative can be
selected and a hypothesis about human performance is generated. Finally, a computer model
serves as a sufficiency proof. If there are any unforeseen consequences or inconsistencies in one's
theory. these are rapidly detected in a computer simulation. The speed of a modem computer
enables a researcher to test a theory on a greater number of examnples as well as more complex
examples than hand-sirnulation of a theory. If the program behaves as expected, the program
demonstrates that the theory upon which the program is based is sufficient to explain the
cognitive process.

When attempting to build an intelligent machine, there are a number of good reasons for
caring about human intelligence. First, for many tasks that require intelligence, people are the
only existing "machines” with acceptable performance. Copying human methods may be the
easiest or even the only way to make a computer perform these tasks. In addition, understanding
how people approach certain problems, what information they use, what bilases they have, often
gives insight into efficient ways for computers to solve problems. For example, in Section 5.1. [
criticize some prior theories of learning on two grounds. First, they do not explain human
performance on some learning tasks. Second, they place unreasonable demands on the amount of
time and space that a computer would need to solve some problems that people solve easily.

Research on 0CCAM was originally begun to solve a particular problem in artificial intelligence.

As progress is made on areas such as prediction, explanation, inference and planning, it is
becoming apparent that these tasks require large amounts of knowledge. One way to get this
knowledge in the computer is to have the computer learn this knowledge. However, existing
theories of learning had a number of shortcomings. In particular, they did not recognize that the
process of acquiring new knowledge can be facilitated by existing knowledge. The design of occam
was influenced by experiments in cognitive, social and developmental psychology that reveal what
sort of information people make use of when learning to predict the outcome of events. During the
development of occaM, [ran two experiments in collaboration with professor Mort Friedman of the
Psychology Department at UCLA that also addressed this issue. In addition, wherever possible,

the theory of learning proposed in this dissertation is consistent with existing theories in cognitive
psychology and artificial intelligence.

1.4. A Preview of occaM’'s Performance

In this dissertation. [demonstrate how a leamer can start with very little knowledge and
become proficient in a particular area of expertise. As children, we start out with little knowledge
of the world and, through experience, we acquire many facts about the physical and soclal aspects
of our world. At first, the only possible learning mechanisms are empirical techniques which
detect regularities between a number of examples, Later, the more knowledge-intensive learmning
techniques are necessary. As we acquire more and more facts about the world, we must organize
this knowledge so that it is easy to recognize the situations tn which each fact can be usefully
applied. It (s tmportant to organize memory so that common interactions among existing
knowledge can be found efficiently. Memory organization is fmportant because there are many
inferences that are warranted in a given situation, but few inferences will be useful in explaining
the situation. Knowledge-intensive leaming techniques create memory structures that summarize
the interactions among exdsting knowledge and indicate the class of situations in which these
interactions occur. An expert In a fleld such as economic sanctions is not proficient just because
he knows a large number of disjoint facts about politics and economics. Rather, the expert has
solved a number of problems using this knowledge and in the process has organizcd this
knowledge so that it is easy to recognize the solutions of related cases.

OCCAM progresses from a systemn with very little world kmowledge to a system with detailed
knowledge about kidnapping and economic sanctions. At flrst, learning is slow (i.e., it requires
many examples) because occam must resort to data-intenstve methods to acquire its initia]
knowledge. When occaMm has acquired the relevant background knowledge for a domain, learning
is easier (i.e.. it requires fewer examples) as It organizes its memory by summarzing the
interactions among this knowledge.

1.4.1. Learning about coercion

Economic sanctions and kidnapping are both specializations of coercion. OCCAM acquires a
coerclon schema that provides a general {ramework for understanding the goals and plans of the
agents involved in coercion. This schema is acquired by empirical means, by noticing similarities
between several plans for achieving a goal. The examples that 0CCAM "observes" to learn about
coercion include the following:

Playground-1

Mat and Sam are playing football Mat tells Sam that {f he doesn’t allow Sam to kick
the ball, Sam will take his ball and go home. Mat decides that he does not want to play
with Samn, and that he will go buy a frisbee. Mat goes to the store, but finds that he
does not have enough money to buy a frisbee.

Broccoli-1

Chris wants Karen to eat her broccolt. Chris tells Karen that if Karen eats her broccolt,
then Chris will let Karen have some soda to drink. Otherwise, Chris will give Karen
water. Karen decides to eat her broccoll and Chris gives Karen some soda.

Playground-2

Brian tells Ben that unless Ben gets off the swing and gives Brian a turn, Brian will hit
Ben with a stick. Ben doesn'’t get off so Brian hits him.

To learn about coercion, 0CCAM must perform two tasks. First, it must create a cluster by
grouping together similar incidents. In the coercion example, the cluster groups together those
plans to achieve a goal which consist of an actor threatening another person. It i3 not important
to occaMm that these examples occur one after another in its input. For example, even if Play-

Doh-1 and Refrigerator-1 are interspersed among the above examples, occaM will still create.the
same cluster.

Play-Doh-1
Lynn wants some Play Doh. She asks her father, Mtke, to give her some, and he does.

Refrigerator-1
Karen wants to open the refrigerator. She puils on the door, but it doesn't opern.

Since these two events differ substantially from Playground- 1, Broccoll-1, and Playground-2,
occaM will not include them In the same cluster. Once occaM has decided to form a cluster, it
creates a general description of the class of situations of the events in the cluster. The general
description serves as a new schema that organizes future similar incidents. In the coercion
example, this general description describes those plans to achieve a goal that consist of an actor
telling a person that the actor will cause a goal failure for the person, unless the person achieves a
goal for the actor. Chapter 6 describes the learning mechanism that creates schemata such as the
coercion scherna. Section 9.1 describes the acquisition of the coercion schema in more detail.

1.4.2. Learning background knowledge to understand kidnapping

By the same method that it creates a coercion schema, oCcCaM also acquires a delta-agency
schema (i.e., a plan to achieve a goal by asking another person for assistance (Schank & Abelson,
1977)). Once delta-agency is learned, occaM must also understand the conditions under which
the plan is likely to succeed. OCCAM has general strategies for leaming and intelligently indexing in

memory exceptions to general plans. For example. what should be done when Apple-1 is
encountered?

Apple-1

Karen wants an apple. She asks her mother Chris for one and Chris tells her that she
doesn’t have any apples.

In this case, 0ccaM is able to come up with a hypothesis for why delta-agency fails. occam
constructs a possible explanation: in order for Chris to give an apple to Karen, she must possess
an apple. 0ccaM learmns a general principle from this situation (see Section 7.4): in order to give
someone an object. one must flrst possess the object. This general rule plays a role in
understanding a kidnapping incident. In particular, it is important to demand a ransom from a
wealthy person because a wealthy person will have the money the kidnapper wants.

occaM also learns a rule that it finds useful in explaining why a person would want to pay the
ransom in kidnapping. From examples, such as the following, it learns a rule that indicates that
members of the same family have a goal of protecting one another:

Playground-3

Lynn is playing on the swing and she falls off and scuffs her knee. Her mother, Chris,
gets a band-aid and puts it on her knee. Her neighbor, Tiffany, gets on the swing and
rides it

10

Playground-4

Lynn is playing on the monkey bars and she falls off and scuffs her elbow. Tiffany’s
mother, Lorell, who is eating an ice cream near the monkey bars does not help.

Playground-3

Karen falls off her bike and bruises her lip. Her sister, Lynn, gets an ice cube to put on
Karen's iip.

1.4.3. Kidnapping

Once occaM has acquired a general framework for coercion, and learned some rules that
indicate how someone is able to pay a ransom and why someone would want to, it 15 Ln a position
to use analytic techniques to learn about kidnapping. It 1s presented with the following example:

Kidnapping-4

John, a 10-year-old child, was abducted on his way to church on Sunday moming by a
heroin addict. His father, Richard, a wealthy, fatr sktnned man, recetved a phone call
that evening. The kidnapper threatened that John would be killed unless Richard paid
a $100.000 ransom. Monday at noon, Richard left the money in a locker at the train

station. Four hours later. his son was released in a wooded area two miles from the
train statioru

When it encounters Kidnapping-4, occaM infers that the kidnapper’s goal is to obtain money.
This inference makes use of its knowledge of coercion (i.e., the goal is achieved by the demand).
OCCAM next tries to explain why the kidnapper's plan was successful. It determines that Richard
was able to afford the ransom because he was wealthy (by making use of the rule learned from
Apple-1). It determines that Richard wanted to pay the ransom because Richard had a goal of
preserving John's health (by making use of the rule learned from Playground-3, Playground-4 and
Playground-5). Because occaMm can explain how the plan succeeded, it can construct a general
description of the class of plans that will succeed for the same reason. This general description is
a kidnapping schema. The kidnapping schema indicates that a good hostage is the relative of a
wealthy person. Since the description of the hostage in occaM is derived analytically rather than
empirically, occAM only requires one example to learn the kidnapping schema. Chapter 8
discusses this type of learning in more detadl.

1.4.3.1. Some complications in learning kidnapping

In the above scenario, when occaM learns about kidnapping, all the examples are presented
in just the right order. ocCAM learns some simple rules, and is provided with enough examples so
that it learns the correct version of each rule. Then occaM is presented with a complex kidnapping
event that can be understood In terms of its simple rules. If occaMm does not have enough
examples, its empirical component cannot decide among two (or more) equally likely hypotheses.
It makes a random choice by favoring one hypothesis over another. Problems can arise when
OCCAM "guesses” incorrectly. For example, after encountering just Playground-3 (repeated below)
OCCaM learns an erroneous rule:

Playground-3

Lynn is playing on the swing and she falls off and scuffs her knee. Her mother, Chris,
gets a band-aid and puts it on her knee. Her neighbor, Tiffany. gets on the swing and
rides (Lt

The incorrect rule indicates that tall persons have a goal of protecting others. This rule is
formed because there are several differences between Tiffany and Chris and occam randomly
selects the height as the significant difference. If occaM is now presented with a kidnapping
example, It learns that in kidnapping, the ransom note should go to a tall, rich person. When
occaMm is presented with an example of a kidnapping that doesn't conform to this incorrect pattern.
it must revise its kidnapping schema. For example. the following story would generate an
expectation violation because the ransom is demanded of a short person:

11

Kidnapping-3

While filming a television show for the new season. Webster was interrupted with an
tmportant phone call. His mother was being held hostage and the kidnapper demanded
$50,000. Webster had his chauffeur deliver the money immediately.

This expectation violation causes revision of O0CCAM's existing kidnapping schema. occaMm
uses intelligent revision strategles that make it robust. The mechanism that 0CCAM uses to revise
schemata is described in Section 9.6.

1.4.3.2. Further specializations of kidnapping

OCCAM is able to further specialize its kidnapping schema. For example, cccaMm forms a
specialization of kidnapping when it is presented with the following episode (Alix, 1978):

Kidnapping-6

In May 1933, Mary McElroy, twenty-five-year-old daughter of the cily manager of
Kansas Clty, Missouri was abducted. The abductors demanded $60.000 for her safe
return. They accepted a $30,000 ransom and released the hostage unharmed from a
farm in Kansas where she had been held for twenty-nine hours. The kidnappers were
arrested by the FBL. The testimony of the victtm was largely responsible for thetr
conviction. The kidnappers received a sentence of ilfe in fal.

In this episode, the kidnappers’ goal of preserving their freedom was thwarted when they
received the punishment of life in jail. To create a specialized kidnapping schema, ocCAM must
identify the circumstances that led to this goal fatlure. o0CCAM analytically determines that
abducting the hostage results in the hostage seeing the kidnapper and enables the hostage to
testify against the kidnapper. occaMm generalizes this explanation and uncovers an inherent flaw in
kidnapping: the hostage sees the kidnapper when he is abducted and can testify against the
kidnapper. A new schema is created and indexed in memory under the kidnapping schema. This
new schema represents a specialized subclass of kidnappings and is created and indexed in
memory under the more general kidnapping schema. As more kidnapping examples are
encountered, occaM forms a memory of kidnapping incidents indexed at varying levels of generality
and specialization.

Another kidnapping episode results in a different specialization of kidnapping that avoids the
problem of the previous incident (Moorehead, 1980}

Kidnapping-7

On June 2, 1920, Blakely Coughlin, the thirteen-month-old son of a wealthy
Pennsylvania family vanished from his bedroom. A ladder was found abandoned near
the window to the nursery. Several nights later, a letter arrived that instructed Mr.
Coughlin to pay a $12,000 ransorm.

When this kidnapping episode is added to memory, OCCAM constructs an explanation which
indicates that the kidnapper selected this particular hostage as a plan to avold the failure of the
kidnapper's goal to preserve his freedom. ©ocCCAM determines that this plan does not share the
same flaw because infants cannot identify the kidnapper and testify in court. A specialized
kidnapping schema is indexed under the kidnapping schema by the age of the hostage since this
feature was needed to construct an explanation of why this particular class of hostage was chosen.

1.4.4. Robustness of occam

OCCAM mtegrateé a varlety of mechanisms to construct general schema from spectilc
instances, to revise incorrect schemata, to create explanations, and to specialize overly general
schemnata. As a result, OCCAM is a robust learning system that can use whatever knowledge It has
acquired to factlitate future learning.

occaM learns most quickly and most accurately when the relevant domain kngwledgc 1s
complete and correct. OCCAM can also learn quickly and accurately when there is little or no

12

domain knowiedge, if there are {ew frrelevant features (n the training examples?. However. occaM
can function as conditions diverge {rom either of these ideals.

With little domain knowledge and many irrelevant features, occaM's leaming is slower. since
it must eliminate irrelevant features initially through trial and error. occaM can take advantage of
the knowledge acquired via the siow leaming process, so that leaming will speed up over time as
0CCAM learns to form correct causal explanations for the domain. occaM also contains general
mechanisms to detect when its domain knowledge is producing erroneous explanations, and to
revise its {nitial hypotheses to more accurately account for further experiences.

1.4.5. Economic sanctions

In the kidnapping domain, occaM demonstrates how it takes advantage of knowledge
acquired by empirical means to perform explanation-based learning. In the economic sanctions
domain, occaM makes use of hand-coded knowledge of politica and economics in addition to the
the general coercion knowledge that it learns. However, since occaM has received no training
examples of purely economic events (e.g., the price of beefl decreasing, when the supply of beef Is
high), occaM has not leamed any purely economic rules. To demonstrate how 0CCAM can most
effectively specialize coercion to learn about economic sanctions, I bypassed occaM's empirical
learning component and gave some strictly economic rules to occaM. These rules are stored in
occaM's memory in the same manner as the rules that occaM learns (see Section 8.1.2), This is

not very artificial, since most people acquire economic knowledge through formal teaching of
economic principles.)

Knrwvledge of economics and politics is not sufficient to serve as an expert in the fleld of
economic sanctions. Rather, the knowledge must be organized through experience so that the
useful implications can be easily recognized. OCCAM constructs several specializations of coercion
to recognize common patterns of economic sanction incidents. Once occaM has been presented
with a number of cases, it can answer questions about hypothetical sanction incidents.

1.4.8. Learning from economic sanction Incidents

OCCAM uses its knowledge of supply and demand to understand why the following sanction
incident did not achieve the desired goal:

Economic-Sanction-1

In 1983, Australia refused to sell uranium to France, unless France ceased nuclear

testing in the South Pacific. France paid a higher price to buy uranium from South
Africa and continued nuclear testing.

From this example, OCCAM acquires a schema that indicates that if a country that exports a
commodity tries to coerce a wealthy country that imports the commodity by refusing to sell them

the commodity, then a response might be to buy the commodity at a higher price from another
country.

OCCAM uses its knéwledge of political goals to discover that there could a political (as opposed

to an economnic) motive when a country assists the target of a sanction Incident. Economic-
Sanction-3 is one such example:

Economic-Sanction-3

In 1961, the Soviet Union refused to sell grain to Albania if Albania did not rescind
economic ties with China. Albania continued the ties with China, and China sold
Albania wheat imported from Canada.

From this incident, 0cCAM creates a specialized form of coerclon which indicates that a
sanction incident can fail when the source country has an adversary that can gain political
influence by assisting the target.

2Section 7.3 discusses the relationship between the number of features and the number of examples required by occam.
13

When occaM has sufficlent domain knowledge, it creates new schemata from tust one
example. When a new case fits the pattern of a known schemata., it is simply indexed under that

schema. After acquiring new schemata from the two previous sanction incidents, occaMm is
presented with Economic-Sanction-2:

Economlic-Sanction-2

In 1980, the US refused to sell grain to the Souviet Union unless the Souvlet Union
withdrew troops from Afghanistan. The Soulet Union patd a higher price to buy grain
Jrom Argentina and did not withdraw from Afghanistan.

Econornic-Sanction-2 {s indexed under the schema learned when occam explained Economic-
Sanction-1 in spite of the fact that it has more surface features in common with Economic-
Sanction-3. The reason for this is that Economic-Sanction-2 shares the relevant features which
were needed to explain the outcome of Economic-Sanction-1.

OccaM also learns that in some situations, sanctions can be effecttve. For example, the
schema learned from Economic-Sanction-3 does not apply to Economic-Sanction-7: ‘

Economic-Sanction-7

In 1983. South Africa threatened to block the tmport of goods into Lesotho {(a small
country completely surrounded by South Africa) if Lesotho did not expel members of the
African National Congress. Twenty-two members of the African National Congress left
within two weeks of the implementation of the blockade.

The reason that the schema acquired from the Soviet threat to Albania does not fit this
pattern is South Africa does not have an adversary who would gain politicaily by helping Lesotho.
From this example, oCcaM acquires another economic sanction schema that indicates when a
country is of low strategic importance, poor economic health, and the actor does not have a
wealthy adversary, then a threat to cut off imports will produce the desired effect.

Section 9.2 contains more detalls about the economic sanction incidents that occam
processes and the schemata it learns. Section 9.3 compares the performance of OCCAM as a

knowledge-based system for predicting the effect of economic sanction Incidents when it leamns
ernpirically to when it learns analytically.

1.4.7. Question answering

OoccaM demonstrates its knowledge of economic sanctions by answering questions about
hypothetical economic sanction incidents. It accepts questions in a very limited form of English.
finds the meaning representation of the question, traverses memory to find a schema which
applies to the situation, and generates an English response. Section 9.4 contains more details on
question answering.

occaM answers five simple hypothetical questions. The answers that occaM produces to
these simple questions is similar to those produced by an expert in the field.

Question: What would happen the US refused to sell computers to South Korea
unless South Korea stopped exporting automobiles to Canada?

OCCAM: The goal of the United States that South Xorea not sell
automobiles to Canada will fail and South Korea will agrese to
purchase computers from a country which exports computars,

Question: What would happen if the US refused to release $100 million of Iranian
assets unless Iranian agreed to retmburse the US $25 milllon for
nationalized oll companies?

OCCAM: Thae goal of tha United States will succeed.

14

Question: What would happen if the US threatened to cut off food ald to Ethiopia
unless Ethiopla modernized its agricultural production?

OCCAM: The goal of the United States will fail and Ethiopia will seek
aid from an adversary of the United Statas.

Question: What would happen if the US refused to sell guidance systems 1o Israel if
Israel did not withdraw from Lebanon?

OCCAM: The goal of the United States will fail and Israel would build
guidance systems.

Question: What would happen if the US threatened to cut off aid to Greece if Greece
did not permit the US to expand military bases in Greece?

OCCAM: The goal of the United States will fail and Greace will seek
aid from an adversary of the United States.

1.5. Organization of this Dissertation

In the remainder of this dissertation, I explore in depth the possible strategies for learning
causal relationships. Chapter 2 reviews resulits in artificial intelligence, cognitive psychology. and
philosophy which serve as a foundation for the proposed theory of learming. In Chapter 3, 1
describe the major problems that must be addressed in a theory of learning causal relationships. [
argue that no single approach, either empirical or analytical, {8 adequate and propose that an
integrated approach is required. Chapter 4 presents a broad overview of the theory advocated in
this dissertation and describes the architecture of occaM. The psychological evidence which led to

the particular manner of integrating empirical and analytical learning methods is presented in
Chapter 5.

The remainder of the dissertation discusses the approach to learning as implemented in
occaM from a computational point of view. Chapter 6 describes the process of leamning by
detecting features common to a number of examples (similarity-based learning or empiricai
learning} and discusses its role in an integrated leaming system. The primary role of similarity-
based learning is to "bootstrap” a learning system by detecting regularities and postulating laws in
unfamiliar domains. Chapter 7 argues that people possess a general theory of causality and
demonstrates the advantage of theory-driven learning over similarity-based learning for a machine
learning system. In Chapter 8, I describe explanation-based learning {an analytical leamning
method} that utilizes exdsting knowledge to guide the learning process.

In Chapter 9, I present a number of examples of causal and social relationships learned by
occaM. In this chapter, the primary benefit of a learning system that integrates empirical and
analytical learning methods is apparent: occaM is unique among explanation-based learmning
systems in that it has the ability to acquire by empirical means the knowledge needed for
explanation-based learning. Chapter 9 also demonstrates how the knowledge-base for a system
that predicts the outcome of economic sanction incidents is learned by occaM. Finally, Chapter 10
compares OCCAM with a number of different approaches to learming and describes posstble
directions for future learning research. Each chapter concludes with a summary that describes
the major points for the reader who is already familiar with the subject matter or uninterested tn
the detalls.

The dissertation contains five appendices. Appendix A contains the lisp code of a micro-
version of ocCAM. Appendix B is an annotated trace of occaM. In Appendix C, the Prolog code of a
micro-micro-version occaM Is described. Appendix D lists the causal rules used by the theory
driven learning component of 0cCAM. The economic sanction incidents that serve as tralning and
test data for occam are listed in Appendix E.

15

Chapter 2
Previous Work

“Leaming” (s making useful changes i the
workings of our minds. (Minsky, 1986. p. 120)

In this chapter, I discuss some background work in artificial intelligence and cognitive
psychology. The purpose of this chapter is not to compare 0CCAM to previous programsa. but to
review prior research which serves as a foundation for the theory of leamning proposed in this
dissertation. This prior work includes:

* Representing the meaning of an event.

» Representing general knowledge about causality.
« Storing events and generallizations in memory.

+ Retrieving information from memory.

¢ Learning from examples.

+ Learning from observation.

« Theortes of attributing causality from psychology.
s Causality and philosophy.

2.1. Representing Meaning

There are many different things which must be represented. These include physical events,
states of the external world, mental states, and intentions. Conceptual Dependency (CD) (Schank
& Abelson, 1977) is a system for representing the meaning of these. The idea behind Conceptual
Dependency is that meaning is represented in a canonical, language-free manner. Two sentences
that have identical meaning, such as "John was kicked by Mary.” and "Mary hit John with her
foot.” will have an identicali CD representation. It is important for learning that the similarities
between several events can be detected easily., For this reason, CD representations are used in
occaM. In CD, "John was kicked by Mary.” 1s more similar to "Mary hit John with her foot.” than
to "John was kissed by Mary.” Grammatically, the reverse is true,

CD is based on a representation of events that includes the following features:

+ an ACTOR

* an ACTION

e an OBJECT on which the action {s performed
+ a SOURCE

« a DESTINATION

35ection 10.2 does compare occaM with a number of learning programs.
18

Conceptual Dependency alsc provides a small set of primitive actions which are needed to
understand the examples in this dissertation tncluding the followtng#:

* ATRANS- the transfer of possession, ownership or control: buy, give, sell. ete.
* PTRANS- the transfer of physical location: walk, run, fly, etc.

¢ MTRANS- the transfer of information: see, tell, hear, remember, etc.

* PROPEL- the application of a force: push, throw, kick, etc.

* INGEST- taking an object Into the body: eat, smoke, drink, etc.

* EXPEL- pushing an object out of the body: spit. cry, ete.

An example should help to llustrate the CD system of meaning representation. The sentence
“John gave Mary a book." is represented as [ollows:

ACT typa ATRANS
actor JOHN
ocbjact BOOX
from JOHN
to MARY

In contrast, the sentence "Mary took a book from John." is:

ACT type ATRANS
actor MARY
object BOOK
from JOHN
to MARY

In both of these examples, the type of action 1s an ATRANS, the source is John. the
destination {s Mary and the object is a book. The only difference is that "give” implies the actor is
the same as the source, and "take" implies that the actor is the same as the destination.

Note that in the above examples, it is also necessary to represent some features of the objects
involved. In the above example, "MARY" is a short hand notation for:

HUMAN nama MARY
gender FEMALE
hair-color BLOND

age ADULT
It 1s also necessary to represent states of the world. The following example illustrates how

OCCAM represents "Mary has a book.™:

STATE type POSS-BY
actor MARY
object BOOK
valua YES

Finally, goals (a kind of mental state) must also be represented. For example, occam
represents “John wants Mary to have a book." as follows:

4CD s not dependent on a particular set of primitive actions. It is rather the methodology behind selecting prmities
that is stressed: The meanings of two sentences with the same meaning (i.e., that denote the same event) should have he
same representation. The set of CD primitives given here has proven useful in occam as weil as a number of other

programs.
17

GOAL actor JOHN
goal STATE type POSS-BY
' actor MARY
objact BOOK
value YES

2.1.1. Relationships between events, states and goals

In the preceding section, the representation of individual events and states is presented. It is
also important to be able to represent the relationship between a number of events and states.
The following causal links are used to create clusters of events;

* RESULT- a physical event can result in a state.
* ENABLE- a state can enable a physical event to occur.

In addition to causal links, a set of intentional links have been proposed (Dyer. 1983) which
specily the relationships between events, goals {i.e., wants or desires), and plans (means for
accomplishing goals). The {ollowing is a subset of the intentional links which have proved useful
in occam:

* ACHIEVES- an event can result in the satisfaction of a goal.
« THWARTS- an event can cause the fatlure of a goal.

* MOTIVATES- an event can cause the creation of a goal,

» REALIZED- a plan can be realized by an event.

» INTENDS- a plan can be a means for accomplishing a goal.

Figure 2-1, shows the relationship between severai events, goals and states. The event
illustrated (s Chris (the mother of Lynn} giving some Play-Doh to Lynn. This achieves Lynn's goal
of possessing the Play-Doh and results in Lynn possessing the Play-Doh. (Presumedly Lynn
possessing Play-Doh enables Lynn to play with the Play-Doh which achieves some higher level goal
such as entertainment.)

Conceptual Dependency and intentional links serve an important role in occaM. They permit
occaM to work with a language-free representation of the meaning of an event. To the learning
module of occaM It does not matter how an event is stated in English. Alternative phrasings of
Economic-Sanction-1 would have the same CD representation and would all be treated identically
by occAM:

Economic-Sanction-1

In 1983, Australia refused to sell uranium to France, unless France ceased nuclear
testing in the South Pacific. France paid a higher price to buy uranium from South
Africa.

Economic-Sanction-la

In 1983, Australia threatened to stop exporting uranfum to France {f France continued
testing atomic weapons in the South Pacific. South Africa sold France the urantum at a
premium.

Other descriptions of the situation would have similar representations. For example, the
representation of Economic-Sanction-1b would differ slightly from that of Economic-Sanction-1
because the agent of the Australian government who delivered the threat is specified.

Economic-Sanction-1b

In 1983, the Australian ambassador tnformed the French govemment that his country
would not ship uranium to France unti France abandoned its program of exploding
nuclear weapons in the South Pacific. France searched for another supplier of uranium
and signed a lucrative contact with South Africa.

18

STRTE type POSE-dY
object P-0BJ type TOY
stype PLAY-DCH
unique-id play~-doh.l
actor HUMAN name LYNN
eyves BLUE
hair BLOND
age KID
unique=id lynn

value YES

ACT type ATRANS
actor HUMAN mame CHRIS
eyes GREEN
hair BROWN
age GROWN-UP
relation IPT type FAMILY-REL
stype MOTHER
of HUMAN unique-id lynn
unique-id chris
aobject P-0BJ type TOY
stype PLAY-DOH
unique-id play-doh.l
to HUMAN rame LYNN
eyves BLUE
hair BLOND
age KID
unique-id Tynn

GOAL actor HUMAN name LYNN
eyves BLUE
hair BLOND
age KID
unique-id lynn
goal STATE typa POSS-BY
object P-0B8J type TQY
stype PLAY-DOH
unique-id play-doh.l
actor HUMAN name LYNN
eyves BLUE
hair BLOND
age KID
unique=id lynn

value YES

Figure 2-1: CD representation of Chris giving Play-Doh to Lynn which achieves Lynn's
goal of possessing some Play-Doh.

2.2. Schemata

It has long been claimed in artificial intelligence {e.g., {Schank & Abelson. 1977, Cullingford,
1976, Dyer. 1983, Bobrow et al., 1977, DeJong, 1977, Pazzani. 1983)) and cognitive psychology
(e.g., (Bower et al., 1979, Graesser et al., 1979, Bartlett, 1932, Reiser, 1983, Nelson & Gruendel,
1981, Nelson, 1981)) that when understanding a story, answering questions, or planning a course
of action a memory structure commonly called a schema 1s accessed which aids in making
predictions and inferences. Schemata represent previous experiences abstractly, removing
irrelevant details. The type of schemata [consider in this dissertation are more properly called
explanatory schemata because they provide explanations and predictions for outcome of events.
Other types of schemata have also been proposed. For example, frames (Minsky, 1975, Roberts.
1977. Brachman & Schmolze, 1985) can represent default information about objects (such as the
color of elephants or the typical organization of a room).

To be useful, an explanatory schemata must represent causal information that can assist the

19

understander to make predictions and Inferences. For example, consider the following kidnapping
story which appeared in the Los Angeles Times on March 11, 1987:

Kidnapped Girl Found Safe; Suspect Seized in Stakeout

A 14 month old Pacific Palisades girl was found wandering unharmed in an Encino park Tuesday morning, 19
hours after an armed man in a Halloween mask abducted her in broad daylight near her home and apparently kept her
tied overnight to a tree in the Santa Monica Mountains. .

Shorily after Jacqueline Elizabeth Newmark was found by passers by in the Sepulveda Dam Recreation Center at
10:20 a.m., more than a dozen shotgun wielding Los Angeles police officers seized 21 -year-old Mark Faulkner at a
ransom pickup spot just off Mulholland Drive, about a mile west of the San Diego Freeway....

The terror began about 3:20 p.m. Monday when the Newmarks' live-in maid was pushing the child in a strolier
about a block from their home. A neighboring family's maid was with them, also pushing a baby in a stroller.

Suddenly, the Newmarks' said, a man wearing a Halloween mask pulled up in a car that had no license plates.
He got out and flashed a gun.

The other maid managed to flee with her stroller, Carole Newmark said, but the gunman apparently "swooped
down ... on our lady suddenly.”

The masked man “threatened to kill her or the baby" if she did not turn the child over to him, Carole Newmark
said. "There was a lot of yelling and screaming, and that drew the attention of some of the neighbors, who saw the
struggile.” ...

The kidnapper threw a ransom note on the ground and roared away in his car with the child. The maid called
police and then telephoned Carole Newmark. a commercial loan officer for a financial office in Vernon,

There are many things that are not explicit in this story. To flll tn the missing details, a
reader must access general knowledge of crimes and kidnappings. For example, the story does not
explicitly say why the kidnapper wore a Halloween mask but an intelligent adult can easfly come
up with a reason for this action. Similarly, the story does not explicitly indicate that the parents of
the child are wealthy. However, general knowledge of kidnapping should contain this information
(which is confirmed by the fact that the parents have a live-in maid). .

2.2.1. Scripts

In memory, explanatory schemata can be represented as abstract events connected by causal
and intentional types of links. Various types of explanatory schemata have been proposed which
differ according to the types of information they encode, the level of generality of the schemata and
the processes which access or update the schemata. For example, a script {Cullingford. 1976,
Schank & Abelson, 1977) is a schema that encodes stereotypical information about commonly
occurTing activities. A script consists of a number of scenes, (i.e., a set of events), and a set of
script roles. persons or objects involved in the scenes. Additionally, temporal and causal
relationships between scenes are defined by links. For example, the scenes of the restaurant
SCript are entering, seating, ordering, serving, eating, tipping, paying and leaving.
The roles are customer, waiter, cook and money. The links encode such information as the
serving precedes and enables the eating.

2,2.2. MOPs

Scripts were originally conceived as a memory structure which makes predictions and
inferences during the understanding of language (Schank & Abelson, 1977). It was also suggested
that scripts serve as a representation of a story in long term memory. Some experimental evidence
(Bower et al., 1979) {lluminated some inadequacies of scripts as memory structures which initiated
the revision of script theory (Schank, 1982). In particular, as originally conceived, different scripts
did not share information. The experiments found memory "intrusions” which could not be
explained by the script model of memory. For example, subjects who read about events in a
doctor's office and a dentist's office confused events that happened in the doctor's waiting room
with those that happened in the dentist’s waiting room. In addition. for both logical and practical
reasons, it would be better if information could be shared by being represented at levels more
abstract than scripts.

The theory of scripts was revised to include sharing of information. For example, the doctors
oflice script shares inferences and predictions from a number of Memory Organization Packets

20

(MOPs) (Schank. 1982) which represent abstract knowledge about health protection. professional
office visits and contracts. The introduction of MOPs lead to a serles of questions. How fs memory
organized so that the applicable knowledge can be found efficlently? How does memory change
with new experiences? How Is information retrieved from memory? How does memory affect the
process of understanding new experiences? How are these schemata (MOPs and scripts) learned?

All of these gquestions have been addressed to some degree by IPP (Lebowitz, 1980) and
CYRUS (Kolodner, 1984). two programs developed to explore MOPs. Schank proposed that

schemata are learmed in a purely empirical manner, by finding areas of agreement between
experiences.

2.2.2.1. IPP

IPP (Lebowitz, 1980) is a program that reads, remembers, and makes generalizations from
newspaper stories about international terrorism. Its major contribution {s on the role of a mermory
in understanding text. IPP starts with a set of MOPs (Schank, 1982) which describe general
situations such as extortion. After adding examples of events to its memory, it creates more
specialized MOPs (spec-MOPs). Spec-MOPs are created by noticing the common features of several
examples. For example, after reading a number of newspaper stories, IPP created a generalization
describing the fact that shootings in Italy often result in leg wounds. IPP would use this
generalization to ald the understanding of future stories. For example, it could predict that there
might be a leg wound when reading about a shooting in Italy. This prediction could enable the
parser to select the proper sense of the word "calf” (1.e., "part of the leg” rather than "young cow").

Not all features of a generalization in IPP are treated equally. Some features are predictive;
their presence allows IPP to infer the other features if they are not present. The predictive features
are those that are unique (or nearly unique} to that generalization. The features that appear in
many generalizations are non-predictive. IPP keeps track of the number of times a feature is
included in generalizations. The idea is that the predictive features are likely to be causes of the
non-predictive features. In the above example, the fact that the location of the shooting is Italy
allows one to make the prediction that the shooting is in the legs. However, the fact that the
shooting is in the legs does not allow one to make the prediction that the location of the shooting is
Italy. The difference is that In all (or most} cases of shootings In Italy, the wound was in a leg.
Therefore, the feature country = Italy is predictive of the feature wound-location = leg.
However, IPP has seen a number of terrorist incidents in which shootings were in the leg and many
of these were not in [taly. Therefcre, the feature wound-location = lag is non-predictive.

2.2.2.2. CYRUS

CYRUS (Kolodner, 1984} implements a theory of long term memory. It records many
experiences of former Secretary of State Cyrus Vance (e.g.. diplomatic trips, negotiations etc.]. It
organizes events in memory and searches memory to recall events. An important aspect of the
theory of memory implemented in CYRUS is that recall is reconstructive. Rather than storing all
information about each event in memory, CYRUS only stores the information that differs {rom the
norm of that type of event. For example, when an experience such as a diplomatic trip to Israel is
added to memory, such things as the landing of a plane are not recorded. However, CYRUS could
still retrieve this information if requested by reconstructing it from the diplomatic trip MOP. In
effect, if CYRUS were asked "Has Cyrus Vance ever landed in Israel?" it would search its memory
to see if Cyrus Vance has ever had a diplomatic trip whose destination was Israel. If Vance did
have a trip to Israel, CYRUS would reconstruct the fact that he must have landed (n Israel.

Figure 2-2 {llustrates the type of memory organization proposed by CYRUS (and used in
occaM}. Because it's much easier for me to create Figures with occaMm than CYRUS. this Is
actually a picture from occaM’s domain. Figure 2-2 illustrates the organization of schemata (i e .
MOPs or generalizations) in memory that encode general knowledge about coercion. The coercion
schemata contains roles for an actor who tells a target that he will perform a threat on an
objact unless a damand is met. The top node in the figure represents coercion knowledge. There
are two specializations of coercion in memory: economic sanctions (on the left, below the coerve
generalization) and kidnapping (on the right). Econormic sanctions is a special kind of coerclon
where the actor is a country, the target is another country. the cbject is a commodity and the
threat is for the actor to refuse to sell the target the object. The economic sanction schema is
indexed off the coercion schema by the features which elaborate on coercion (i.e. actor =
country, target = country, objact = commodity and threat = "refuse to sall |

21

actor, demand ete.

fctor, threat etc.

COERCE object MUMRN
CEEEEE__bj AT target HUMAH UE?ltT RICH

ob ject relation FAMILY-REL of = T
target COUHTRY actor HUMAMN - 08JEC
actor COUNTRY demand POSSESS ob ject MONEY
threat SELL mode MO actor =ACTOR

object =0BJECT threat KILL object =0BJECT

actor =ACTGR actor =RCTOR

object, demand etc.

4

CGERCE demanc ...
object COMMODITY type GRALN
actor COUNTRY name US - object, demand etc
target COUMTRY name USSR oh ject

3
COERCE target HUMAN relation FAMILY-REL type FATHER

derand POSSESS object MONEY amount 5000@
COERCE ob jact HUMAN age INFANT] ot ject HUMAN name JOHN=00E '
Larget carget
_ Y
[COERCE target HUMAN name JOHN-SMITH] COERCE target HUMAN nane JANE-DOE

Figure 2-2: Organization of schemata in memory.

Similarly, the kidnapping schema is also indexed off the coercion schema and contains such
Information as the threat is to kill the object (i.c., a person who is in the family of the target)
and the demand is for the actor to possess a large amount of money. There s a specialization of
the kidnapping schema in memory which represents special knowledge about kidnapping infants.
When the hostage is an infant, the hostage cannot identify or testify against the kidnapper. This
schema is indexed off the kidnapping schema by the feature ocbject = (human age = infant).

Memory needs to contain individual events as well as generalized events. For example, the
memory in Figure 2-2 also contains three kidnapping episodes. One kidnapping episode is
indexed under the kidnapping schema. Two others, whose objects are infants, are indexed under
the special kidnapping schema for kidnapping infants. There is also a specific economic sanction
incident. the US grain embargo against the Soviet Union, indexed under the coerclon schema.

There are several advantages to this sort of memory organization:

* Knowledge can be represented at various levels of generality. Figure 2-2 illustrates a
memory which contains {nformation about coercion, two specializations of coercion
{(economic sanctions and kidnapping), and a specialization of kidnapping (kidnapping
infants to avoid a problem caused by the hostage (dentifying the kidnapper}.

* Retrieval of individual events (and specializations)} is reconstructive. For example, the
kidnapping episodes do not need to contain the knowledge that the demand is to pay
a ransom. Instead, this information is encoded In the kidnapping schema and can be
accessed when necessary.

o Individual events which are similar to each other are indexed under the same schema.
This facilitates building new schemata by extracting common features from a number
of events since the entire memory need not be searched to find simitar events.

« Predictions and expectations are made by traversing memory to find the most speciflc
schema which accounts for a new event. In effect, the hierarchy of schemata serves
as a diserimination net for finding explanations.

The major contribution of CYRUS is a process model of retrieval. CYRUS also addressed the

22

issue of building new MOPs. When several events differ from a norm in the same manner. CYRUS

creates a new MOP to organize those similar experiences by extracting common features from the
events.

2.3. Leaming

Both CYRUS and IPP perform two learning tasks. First, these programs aggregate individual
events into clusters (Fisher & Langley, 1985) by locating events that share similar features. In
addition, these programs generalize clusters of events by extracting similar features from these

events. Both IPP and CYRUS form the most specific conjunctive generalization that i3 consistent
with the data.

Methods of forming a generalization from a number of examples have been proposed in both

psychology and artificial intelligence. In this section, I review two approaches to learning from
examples.

2.3.1. Bruner, Goodnow and Austin

A serles of experiments in concept leaming were described by Bruner, Goodnow and Austin
(Bruner et al.. 1956). The stimull were a number of rectangular cards differing in various features
such as number of objects on the card, shape of objects on the card, and color of the objects on
the card. Each subject was presented examples one at a time and was asked to indicate whether
the example is a positive instance (l.e., an example of the concept to be learned) or a negative
example (i.e., not an example of the concept to be learned}. Then the subject was told the correct
answer. This continued until the subject demonstrated that he has learned the concept by making
no mistakes on a number of examples.

Bruner, Goodnow and Austin discovered that most of the subjects used one of two concept

acquisition strategles. Approximately 65 percent of the subjects used the wholist strategy (see
Figure 2-3). .

1. Take the set of all features of the first poaltive
instance as the initial hypothesis,

2. As more examples are prasentad, ravise the hypothesis
according to the following table:

Poaitive instance Negative instance
Correct Maintain the same Maintain the same
Classification hypothasis hypothesis
Incorreact Maka the naw This ~annot occur

Classification hypothesis the sst
of features which
the old hypothasis
and the new examplea
have in common

Figure 2-3: The wholist strategy for concept icqullitlon.

The wholist strategy has several interesting properties. First, it {s guaranteed to converge on
the correct answer® by making the hypothesis more general when a positive instance is incorrectly
judged to be a negative instance. Second. it i3 impossible to incorrectly classify an example as
negative since this would imply a too general hypothesis®. Third, it s not necessary to remember

Sprovided that the correct answer can be expressed as a conjuncton of features.

SBerwick calls this property "the subset prineiple” (Berwick, 1986).
23

previous examples when revising the hypothesis. The current hypothesis "summarizes” the
previous examples. Finally, the ultimate description of the concept found when using this strategy
is the most speciflc description that is consistent with the data. The approach to learning (n [PP
and CYRUS is essentially the wholist strategy.

The second strategy that Bruner, Goodnow and Austin found was used by about 35 percent
of the subjects. This strategy, called the part-scanning strategy, is lllustrated in Figure 2-4.

1. Take a aubset of the features of the first positive
instance as the initial hypothasis.

2. As more examplas are presented, revise the hypothesis
according to the following table:

Positive instance Negative instance
Corract Maintain the sama Maintain the same
Classification hypothasis hypothesis
Incorract Ravise hypothasis Ravise hypotheais
Classification to maka it consistent to make it consistent
with past examples. with past examples.

Figure 2-4: The part-scanning strategy for concept acquisition.

Subjects who use the part scanning strategy are in effect gambling. By not including all
features common to all examples, it is possible to quickly guess the correct definition of the
concept. The price paid for this gamble {s a complex revision if the hypothests is incorrect’. The
subject must remember all positive instances. all negative instances, and all previous hypotheses
to select a new, different hypothesis which correctly classifies all previous hypothesis. Since there
are significant demands on memory it is often the case that a subject, utilizing part scanning will
choose a hypothesis which is not consistent with all previous examples.

2.3.2. Version spaces: Mitchell

In much of the artiflcial intelligence work on learning, there has been a common theme. The
definition of a concept is the most specific hypothesis that 1s consistent with the training
examples. However, the most specific hypothesis is only one of a potentially large set of possible
hypotheses which are consistent with the data. Other hypothesis can be more general if they have
less conditions. For example, the hypothesis that a car is anything that is propelled by gasoline (s
more general than the hypothesis that a car {s anything which travels on a road and is propelled
by gasoline. Hierarchical relationships can also be used to increase generality. The hypothesis
that a car {s anything which is propelled by gasoline {s more general than the hypothesis that a car
is anything which i3 propelled by unleaded gasoline since unleaded gasoline is a kind of gasoline

The version space approach (Mitchell, 1982) is a technique for efficiently representing the set
of all hypotheses consistent with the data by keeping track of the most general hypotheses and the
most specific hypotheses. These sets are revised as new examples are seen. For a positive
instance, the set of most general hypotheses is revised to remove those features that are not
consistent with the positive instance, and each member of the set of most specific hypotheses s
generalized as little as possible to be consistent with the new positive instance. For a negative
instance, the set of rost specific hypotheses is revised to remove those features that are consistent
with the negative instance and each member of the set of most general hypotheses is specialized as
little as possible to not be consistent with the new negative instance. This process contnues
eliminating candidate hypotheses until the most specific and most general hypotheses converge on

71t should be noted that If there Is some a priori reason for including or ignoring certain features, the gamble »f the
part-scanning sirategy pays off, since fewer examples are needed to arrive at the correct conclusion.

24

a single hypothesis®.

There are several interesting properties of Mitchell's version space approach. First, it is able
to detect when the definttion of a concept is completely determined. When the most specific and
most general hypothesis converge on a hypothesis, no additional examples of a coherently defined
concept can change the hypothesis. Second, U the learning system is able to select its own
training instances, it can select an example which can eliminate the most number of hypotheses
by creating an example that is "half way between" the most specific and most general hypotheses.
Finally, the concept which is being leamned can be used to accurately classify some examples as
positive or negative instances before the final hypothesis is confirmed., An instance can be
positively classified as a negative example i It matches none of the most general hypothesis.
Similarly, an instance can be positively classified as a positive instance if it matches every member
of the set of most specific hypotheses.

2.3.3. Empirical learning techniques

The approaches to learning proposed by Mitchell. Lebowlitz, Koleder, and Bruner et al. all
share a common theme. They utilize one source of information when creating a general
description of a number of examples. This source of information is the data itself, Hence, these
learning techniques are called empirical learning techniques. Often, these techniques operate by

finding similarities among a number of examples and these techniques are also called similarity-
based leaming (SBL}.

The task of learning an explanatory schema from experiences could be approached solely with
empirical techniques. In particular. these approaches to learning concepts {rom examples all
include techniques for finding the similarities between a number of examples and revising
hypotheses which make wrong classifications or predictions. Empirical learning techniques are
important for detecting regularities tn data. However, one important abllity is lacking: the ability
to flnd an explanation for redularities in the data. Empirical learning techniques cannot
distinguish between coincidental and relevant similarities, .

Leamning and Memory Principle 3

The principle limitation of empirical learmning techniques
is the (nability to tgnore colncidental simtlarities.

2.3.4. Explanation-based learning

Explanation-based learning (EBL) is a learning method which analytically deterrnines which
features of an example are relevant. Explanation-based learning systems (DeJong & Mocney,
1986, Mitchell et al., 1986a) share a common approach to generalization. First, an example
problem is solved producing an explanation (occastonally called a justification, or a proof) which
indicates what information (e.g., features of the example and inference rules) was needed to arrive
at a solution, Next, the example i3 generalized by retaining only those features of the example
which were necessary to produce the explanation. Various systems differ according to the problem
solved, and who does the problem solving. For example, in LEAP (Mitchell et al., 1986b} a user
designs a VLSI circuit to achieve some specified functionality. LEAP produces a justification that
indicates how the circuit implements the specified function. In occaM, the reason that an
economnic sanction incident failed or succeeded to achieve the desired effect determines which
features of the incident should be generalized. In the next section, I discuss ACES (Pazzani.
1986a, Pazzani, 1986b), a system that learns to diagnose faults in the DSCS-III satellite.

2.3.4.1. ACES

Two different approaches have been used for fault diagnosis. In one approach {Davis, 1982,
Genesereth, 1981, Scarl, 1985), the observed behavior of a device is compared to its predicted
behavior which is specified by a quantitative or qualitative model of the device {de Kleer and
Brown, 1984, Kuipers, 1984, Forbus., 1984). For a large system, such as a satellite, with a
number of rapidly changing data values, comparing observed to predicted functionality can be
ineffictent. The alternative approach (Shortlilfe, 1976, Nelson, 1982, Wagner, 1983} encodes

3Assuming that the concept can be represented in the feature language and there was no nolse in the data.
25

empirical associations between unusual behavior and faulty components as heuristic rules. This
approach requires extensive debugging of the knowledge base to identify the precise conditions
which indicate the presence of a particular fault. In the Attitude Control Expert System (ACES).
these two approaches are integrated. Heuristics examine the atypical features and hypothesize
potentlal faults. Device models confirm or deny hypothesized faults. Thus. heuristics focus
dlagnosis by determining which device in a large system might be at fault. Device models
determine if that device is indeed responsible for the atypical features.

When a fault 1s proposed, and later denied by device models, the heuristic which suggested
the fault is revised so that the hypothesis will not be proposed in future similar cases. ACES
learns how to avoid a hypothesis failure after just one example. It does this by finding the most
general reason for the hypothests failure. Device models provide an explanation for the hypothesis
faflure. The device models indicate which features would have been needed to be present (or
absent) to conflrm the hypothesis. Explanation-based learning improves the performance of ACES
by creating fault diagnosts heuristics from information tmplicit in the device models.

The basic idea behind the leamning of fault dlagnosis heuristics is that stmulating a fault with
device models will result in a number of predictions. If these predictions are not present in a
particular system, the fault which was simulated can be ruled out. When a hypothesized fault is
not confirmed, (n addition to ruling out the fault in the current case. the heuristic which suggested
the fault can be revised to not propose the fault in future similar cases.

TAILLIGHT

PARKING LIGHT

FUSE

+

Figure 2-8: A simple circuit consisting of two light bulbs in parallel protected by a
fuse.

A simple example of ACES illustrates the details of explanation-based learning. Consider the
circuit in Figure 2-5. The circuit consists of two light bulbs (a parking light and a taillight) n
parallel protected by a fuse.

26

ACES utilizes three types of data;

1. Dlargnosll Heuristics: Shallow associations between atypical data values and faults.
Two simple dlagnosis heuristics that define a blown fuse and a bumt out light bulb
are tllustrated in Figure 2-6.

2. Device Models: A description of the connectivity of a circuit and the functionality of
the components. For this example, the device model describes the circuit in Figure
2-5 to ACES. It indicates the connectivity of a fuse and describes the input and
output behavior of a fuse and the light bulbs.

3. Measurements: Observed data from the device. For this example, let us assume
that the battery is working, the taillight 1s working and the parking light is not
working.

IF a davice is not working
AND the davice is protacted by a fuse
THEN the fuse of the device’s circuit is blown.

IF a light is not working
THEN tha light is burnt out.

Figure 2-6: Initial diagnosis heuristics.

When diagnosis starts, the first rule in Figure 2-6 will suggest that the fault is a blown fuse
since a device protected by the fuse (Le., the parking light) is not working. The next step is to
confirm or deny the fault using device models. A qualitative stmulation of the circuit with the fuse
blown yields a prediction that the taillight will also not be working. This prediction is denied since
the tatllight is in fact working. Therefore, the hypothesis that the fuse is blown can be ruled out.
In addition, the rule which proposed the hypothesis can be revised so that the hypothesis fatlure
does not occur in future similar cases?. To illustrate how this learning occurs and what exactly is
meant by "similar cases”, 1t 1s necessary to describe the confirmation process in more detail.

When the qualitative simulation generates a prediction, It also returns a justification for how
the prediction was arrived at. This justification consists of the conditions which were needed to
establish the prediction. In the current example, the justification consists of the fact that the
tallight is a light, and the taillight s connected to the fuse. The justification indicates that no
specific knowledge about the taillight or the fuse was needed to make the prediction. The same
prediction would be made for any light that was connected to any blown fuse.

When a prediction fails, the learning process is initiated. The fault diagnosis heuristic which
proposed the fault is modified to include a test for the viclated prediction in all future cases which
would generate the same prediction for the same reason (l.e, have the same justification}). To
continue our example, the flrst rule in Figure 2-6 will be modified so that in future cases, to
propose a blown fuse, if there is a light connected to the fuse, the light must not be working. The
revised version of the rule is shown in Figure 2-7.

IF a device is not working

AND the davice is protected by a fusae

AND all lights protected by tha fuse are not working
THEN tha fusa of the device’s circuit is blown.

Figure 2-7: Revised heuristic which proposes a blown fuse- changes underlined.

9after the first rule {n Figure 2-6 is revised, the second rule suggests that the bulb of the parking light ls burmed >ut
This fault is confirmed by the device models.

27

2.3.4.2. GENESIS

GENESIS (Mooney & DeJong. 1985) is a program which utilizes explanation-based learning to
acquire schemata. For example, GENESIS learns about arson from the following story:

Arson-1

Stan owned a warehouse. He insured it against fire for $100.000. Stan bumned the
warehouse. He called Prudential and told them it was bumt Prudential paid him
$100.000.

GENESIS learns from observing others achieve goals. It uses its exsting knowledge to
understand how a goal was achleved. Then, it creates a general plan to achieve that goal by
retaining only those features.of the example which were necessary to understand how the goal was
achieved. For example. in Arson-1 GENESIS determines that it was Stan's goal to acquire money.
It constructs an explanation which indicates how Stan achieved this goal (i.e, Prudential paid Stan
money because the warehouse was burned. The warehouse was burned because Stan burned it).
Next. it generalizes the explanation by removing all details from the example which were not
needed to create the explanation. The final plan indicates that a means of acquiring money is to
insure a flammable object, and burn #t. GENESIS already had enough knowledge to understand
and generalize Arson-1. It creates an arson schema by finding Interactions between previously
unrelated chunks of knowledge (i.e.. if an insured object is destroyed, the beneficiary is paid
money and if an object is burned, then the object is destroyed). Explanation-based learning Is a
useful learning strategy for learning by observation because it is easier to verify that a plan

achieves a goal in a particular example than to find a plan to achieve the goal without an example
(DeJong. 19886).

2.3.4.3. Analysis of explanation-based learning

Explanation-based learning is a powerful approach to learning. It demonstrates that there
are beneflts in viewing learning as a knowledge-intensive process. In particular, fewer examples
are required to acquire a useful schemata. In fact, most EBL systems require just one example. It
provides an answer to the problem of determining which features are relevant. The relevant
features are exactly those which are needed to arrive at an explanation of why a particular
outcome occurred,

EBL takes advantage of novel interactions between existing knowledge structures. Previous
work in natural language understanding has centered on finding explanations that constst of
Interactions between existing knowledge structures (Dyer, 1983, Wilensky, 1978). For example,
BORIS (Dyer, 1983) finds an interaction between a "divorce” schema and the "ask a friend for a
favor” schema when it understands a story in which a distressed husband asks a lawyer who was
his college roommate to represent him in a divorce case. EBL adds a generalization step to the
process of finding explanations by instantlating existing knowledge structures. EBL finds a
. general description of the class of situations for which the explanation will apply. This general
description becomes a new knowledge structure which can simplify the understanding of that
class of situations in the future,

Of course, EBL cannot serve as a general model of human leaming. It requires a great deal of
existing background knowledge to produce an explanation. It cannot answer the question of how
this existing background knowledge is acquired.

_Leaming and Memony Principle 4
The principie limitation of explanation-based
learning is that it requires a large amount of
background knowledge. Explanation-based leamning
cannot account for how this knowledge is acquired.

2.4. Attribution Theory-

There has been a large amount of research on the perception of causality in social
psychology. Kelley has advocated that people apply the following principle (Kelley, 1983) to infer
causality when information about multiple observations 1s available:

28

The covarlation principle: An effect is attributed to that condition which is present
when the effect is present and absent when the effect is absent.

Kelley has identified three types of covariation information.

* Consensus: How well (or poorly)} did others do in the same task,
» Distinctiveness: Does the actor do equally well (or poorly) on other similar tasks.
» Consistency: How well (or poorly) does the actor do on the same task at other times.

Certain patterns of distinctiveness, consensus and consistency inforrnation lead to attributing
the cause of an outcome to the actor or to entities in the environment. For example, in one study
{(McArthur, 1972) subjects were presented with the following sorts of information:

» Outcome: "John laughed at the comedian.”

* Consensus: "Almost everyone who hears the comedian laughs at him."

» Distinetiveness: "John does not laugh at almost any cther comedian.”

¢ Consistency: "In the past, John has almost always laughed at this comedian”,

In the above example, there is high consensus, high distinctiveness, and high consistence.
Kelley predicted that subjects would attribute the outcome (i.e., John's laughter) to an entity in the
environment (i.e., the comedtan). This prediction was confirmed by McArthur's experiment.
Similarly, if there were low consensus (hardly anyone laughs at the comedian), low distinctiveness
(John laughs at almost every comedlan), and high consistency, the cause is attributed to the actor
[e.g.. John's sense of humor).

Kelley's attribution theory is essentially an empirical theory of learning. Attribution theory
claims that people are “intuitive scientists" who can accurately correlate consensus,
distinctiveness and consistency from a number of examples and arrive at a conclusion without
regard to their prior knowledge or biases.

2.5. Causality and Philosophy

The nature of causality has been the subject of study long before there were computers or
even psychologists. Philosophers have raised an important question: “when is one justified in
inferring a causal relationship from past observations and predicting a future occurrence?”. A
perfect regularity in past occurrences is not a sufficient reason to justify the inference that the
regularity will hold for future occurrences. For example, assume that a turkey has been fed by a
farmer every morning for a year. Would the turkey be justified in inferring that the farmer will feed
him every morning for the next year? Although the turkey may make that inference, the fact that
one momming, before Thanksgiving, the farmer may come with an axe instead of food demonstrates
that the inference is not justified. In this dissertation, I look at a somewhat simpler question:
"when do people infer a predictive relationship?" The difference between the two questions is that
people (and turkeys) may infer a predictive relationship when they are not logically justified in
doing so. The latter question is stmpler because it can be answered empirically by analyzing the
behavior of people under various conditions.

2.5.1. Hume

Hume {Hume, 1739) i{s perhaps the most influential of the empirical philosophers. He argued
that the idea of causality arises from impressions of relationships between objects. These
relationships are spatial contiguity (i.e., contact) between a cause and effect, temporal priority (i.e..
an effect should immediately follow a cause), and a necessary connection in which the cause
necessarily produces an effect. Hume asserts that the only source of knowledge can be sensory
impressions. Spatial contigulty and temporal priority can be derived from sensory impressions.
However, Hume argues that there is no means of reducing the necessary connection to sensory
impressions. Therefore, there is no justification to project patterns of observed change onto
unobserved parts of the world.

The implications of Hume's emplrical philosophy are devastating for causal analysls: there is
29

no justification for any causal relationships, including scientific laws. For example. a person
might notice that balloons when filled with a sufficlent amount of hellum float, and infer that all
such balloons will float. However. since it is not possible to observe a necessary connection
between filling a balloon with hellum and the balloon floating, this conclusion would be
unjustified. It does little good that the fact that hellum balloons float can be derived from other
knowledge: objects lighter than air float and helium ts lighter than air. With this knowledge. a
person could deduce that helium balloons float and even calculate the amount of helium required
to make a given balloon float. Hume argues, however, that laws such as objects lighter than air
float are merely unjustified emplrical associations. Even if one continued to further reduce the law
that objects lighter than air float to some more basic principles, eventually these more basic
principles must depend on some unjustifiable empirical association.

Hume concludes that although there is no justification for inferring a causal connection
between two events. the human mind 1s compelled to expect Y after X occurs {f Y has become
assoctated with X. It is from the regular repetition of X followed by Y, that the mind concludes that
X causes Y. Hume's notions of spatial contiguity and temporal priority have been shown
empirically to be important constraints that people employ when learning causal relationships.
For example, experiments have shown that even young children make use of spatial contiguity
{Bullock, 1979). However, further investigations have shown that there are additional constraints
on causal relationships (Michotte, 1963) and that spatial contiguity and temporal priority

constraint can be viclated (Shultz, 1982). Chapter 5 reviews a number of related psychology
experiments.

2.53.2. Kant

Kant (Kant, 1781) rejected Hume's empiricist argument that all regularities, including
scientific laws, are simply associations. Kant is perhaps the best known of the generative
philosophers who maintain that causes necessarily generate effects by transmission of causal
forces. In instances where the nature of this transmission is known, there is no need to rely on
covariation, spatial contiguity or temporal priority to infer a causal relationship.

Kant does not propose that people possess a priori knowledge of particular causal laws such
as Newton's law of gravitation. Instead, he argues that there is a priort knowledge of a general
causal principle: that every change necessarily occurs as a consequence of some causal regularity.

Kant's theory of causality has fared better than Hume's in empirical Investigations of human
behavior (Shultz, 1982). However, it has been attacked from various points on logical grounds.
His argument that there is a priorf knowledge of the general principles of causality has not been
universally accepted. Furthermore. he does not discuss the nature of this principle nor how it
might be applied to discover particular causal laws.

2.5.3. John Stuart Mill

Mill's method of induction starts with a general assumption about the nature of causal
relations (Mackie, 1967). This assumption and a number of observations allow particular causal
laws to be deduced. Mill assumes that every change Is a necessary consequence of a finite number
of conditions:

All (CI.ICIJCIJVC2.1CZ.ZCZ.3V"‘Cl.ncm.n) arffa”owed by R.

where (C) ,C;,C13vCy1C29C23v..C1,Cp,) IS @ necessary and suffictent condition for R. Each
conjunction C,C,,C, 5 is a minimal sufficlent condition for R. A factor such as C, , is neither a
necessary or sufficient condition for R. C,, is called an Insufficient but Non-redundant part of an
Unnecessary but Sufficient condition (or tnus condition) for R. For example, there are a number of
sufficient conditions for a person’s death. One sufficient condition might be the person swallowing
poison and not taking an antidote. Typically, when we speak of causes of an event, we speak of
inus conditions: the cook putting poison in the kings stew caused the king to die. Mill proposed a
number of methods for discovering inus conditions.

Mill's method of difference is a form of eliminative induction. The method works by
eliminating potential causes until only one remains. The method of difference selects a cause by
comparing a situation tn which the effect was observed with a situation in which the effect was not
observed. The simplest form of the method of difference identifies a cause (L.e., an {nus condition)

30

as the unique condition which differed when the effect occurred {rom a similar case in which the
effect did not occur'®. Mill's method of agreement selects as the cause the one common feature of
a number of cases In which the effect occurs. The method of agreement and the method of
difference can be combined: the method of agreement can eliminate some potential causes which
do not correlate with the outcome and the method of difference can select among the remaining
potential causes.

The most serious objection to Mill's methods is that they assume that a set of potentially
relevant features has been detected. This is particularly important in the method of agreement.
The method of agreement can lead to erroneous conclusions if the actual cause Is not included in
the set of potential causes. For example. f one does not include the fact that both rum and
whiskey corntain alcohol and if it is observed that drinking rum and coke leads to thtoxication and
drinking 7 and 7 (whiskey and Seven-up) leads to intoxication one could deduce that drinking
soda causes intoxcation. In the method of difference, the set of potential relevant features is nat
as significant if an experimenter can create a difference between a control and an experimental
group. If an irrelevant condition is changed then there should be no difference between the two
groups.

The significance of Mill's work is that he demonstrated that given an assumptlon about the
nature of a causal relationship and a number of experiences, one can identify a cause by a
deductively valid argument. A similar sort of argument has been used to justify the Mitchell's
version space algorithm (Mitchell, 1982): {f it Is assumed that the concept can be represented as a
conjunction of relevant features and the version space algorithm finds a unique concept
description, then it deductively follows that the concept description is correct (Diettrich, 1986).

2.5.4. Goodman

Nelson Goodman addresses an entirely different problem of induction than Hume or Kant.
For him, the problem is not to justify how the outcome of future events can logically be inferred
from past events, Instead. he addresses the probiem of distinguishing those properties which one
can inductively project from past observations to future observation from thoSe properties which
one cannot project (Goodman, 1983).

Goodman demonstrates that there is no syntactic basis for distinguishing projectible
predicates from nonprojectible ones. To prove this, he introduces the predicate grue. An object is
grue If it is observed before a certain date and green or observed after that date and blue
Goodman then addresses the question of why one can prefer the hypothesis that All emeralds are
green to the hypothesis that All emeralds are grue.

Goodman's solution to this problem makes use of the experience of previous inducuons.
Predicates become entrenched when they play a part in actual inductive hypotheses. Presumably.
predicates such as green are more entrenched than predicates such as grue because green has
played a part in more successful hypotheses than grue. One hypothesis 18 favored over another if
the predicates in that hypotheses are better entrenched.

2.5.5. Philosophical influences on this dissertation

In this dissertation, I acknowledge Hume's problem: that there is no logical justification for
inferring a causal relationship from past observations and predicting a future occurrence
However, people do indeed infer and make use of predictive relationships and computers should
also have this ability. I adopt and extend a number of principles from both philosophy and
psychology that indicate some conditions under which people infer causal relationships. For
example, Chapter 7 discusses the theory-driven leaming component of occaM that can be viewed
as an extension of Mill's methods which give one license to ignore some similarities belween
examnples. Section 7.2 proposes making use of experience to favor one hypotheses over another in
a manner similar to Goodman's notton of entrenchment,

10While in practice it may be difficult to observe a unique difference, in an experimental situation it is possible 1o« e
one. This ia the rationale behind using a control group in an experiment.

31

2.6.. Summary

In this chapter, I reviewed previous work which serves as the foundation for the theory of
learning proposed in this dissertation. I described Conceptual Dependency (CD}, a language-free
meaning representation system. In occaM, CD serves two purposes. First, the examples of events
presented to OCCAM are represented in CD. Second, occaM uses CD to represent general
knowledge of events and their consequences. I also described explanatory schemata which are
memory structures that encode the knowledge required to make inferences, predictions and
explanations. Two learning sirategles were introduced. Empirical learning techniques (ind
regularities among a number of examples. A major problem with empirical techniques is that they
contain no mechanism for recognizing when similarities between a number of examples are merely
coincidences. Explanation-based learning, an analytical learning technique, makes use of prior
knowledge to explain or even predict regularities, When the underlying cause for a regularity is
known, the conditions under which the regularity holds can be derived. In spite of its power,
explanation-based leamning is only applicable in restricted, well-understood situations. Therefore,

explanation-based leaming cannot account for learning in new, unfamiliar domains such as those
commonly encountered by a small child.

32

Chapter 3
What OCCAM is up against

It is true that every person now in this room is safe from freezing. It is also true
that every person now in this room is English-speaking. Now, consider a certain
Eskimo who at this very moment is nearly frozen to death somewhere in the Arctic. If
he were now in this room he would be safe from freezing, but he would not be
English-speaking. What makes the difference? We may say that the generalization
about safety from freezing expresses a causal relationship, or follows from a law.
while the generalization about the knowledge of English is only a contingency or

accidently true but to define this distinction is a delicate matter. (Goodman, 1983. pp.
37-38}

There are several problems that must be addressed in schema acquisition. In this chapter, I
discuss a number of these issues including:

* Relevance of features

» Integrating multiple sources of information
* The level of generality of schemata

¢ Learning in children and adults

3.1. Relevance of Features

Determining which features of an example (or set of examples) should be incorporated in a
schema is the central issue In schema acquisition. In Chapter 1, this problem was called deciding
which features are relevant. For example, consider the following economic sanction incident:

Economic-Sanction-1

In 1983, Australia refused to sell urantum to France, unless France ceased nuclear
testing in the South Pacific. France pald a higher price to buy uranium from South
Africa.

A Conceptual Dependency representation of this incident is fllustrated in Figure 3-11!. What
lesson should be learned from Economic-Sancticn-1? That economic sanctions never achieve their
desired goal? This conclusion would be overly general. That economic sanctions never work
against countries that export wine? This conclusion would be wrong. That economic sanctions
won't work when Australia refuses to sell any country a commodity which is sold by South Africa.
This is close to being true, but is probably too specific to apply to many future cases. The problem
here 1s to identify which features of Australia, South Africa, France, and uranium as well as the
features of demand (to stop nuclear testing in the South Pacific) and the threat (to not sell
uranium) were necessary to explain why Australia did not achieve its goal. A reasonable
generalization to make from Economic-Sanction-1 is that if a country tries to threaten a country

UThis representation is simplified considerably to canserve space.
33

COERCE actor COUNTRY nama RAUSTRALIA

imports COMMODITY type QIL
exports SET COMMODITY type WOOL
=0BJECT
?ouernnent BEMOCRACY
ocation SOUTHERN-HEMISFHERE
language ENGLISH
object COMMODITY type URANIUM
target COUNTRY name FRANCE
imports SET =08JECT
COMMODITY typa QIL
exports SET COMMODITY type WINE
COMMODITY twpe WEAPONS
overnment DEMOCRACY
ocatien NORTHERN-HEMISPHERE
language FRENCH
economic-health STRONG
helper COUNTRY name SQUTH-AFRICA
imports COMMODITY type CARS
exports SET =0BJECT
COMMODITY type DIAMOND
location SOUTHERM-HEMISPHERE
demand ACT type EXPLQDE
actor =TARGET
ob jact WERPONS typs NUCLERR
location SOUTHERN-HEMISPHERE
mode NEG
threat ACT type SELL
actor =ACTOR
object =0BJECT
to =TARGET
mode NEG
response ACT type SELL
actor =HELPER
ob ject =Q0BJECT
price MONEY dollars 3000000
value >MARKET
to =TARGET

outcome FRAILURE

Figure 3-1: Simplified CD representation of Economic-Sanction-1.

with a strong economy by refusing to sell a commodity, then the threatened country will buy the
product elsewhere. Figure 3-2 (llustrates this generalization,

COERCE actor COUNTRY exports =0B.JECT
object COMMODITY
target COUNTRY imports =0BJECT
aconomic—health STRONG
helper COUNTRY exports =0BJECT
threat ACT type SELL
actor =RACTOR
objact =0BJECT
to =TARGET
mode NEG
response ACT type SELL
actor =HELPER
object =0BJECT
price MONEY value >MARKET
to =TARGET
outcome FRILURE

Figure 3-2: A schema which indicates that {f a country tries to threaten a country
with a strong economy by refusing to sell & commodity, then the
threatened country will buy the product elsewhere.

34

3.1.1. Prediction vs. expilanation

There is a problem with the generalization as {llustrated (n Figure 3-2. It s useful for making
a prediction about what might happen when an economic sanction incident meets this pattern.
However, as llustrated (n Figure 3-2. it does not contain the knowledge necessary to explain a
predicted outcome. What is needed is a causal explanatton which indicates the intermediate
states which connect the event of one country (the actor) refusing to sell a product to another
country (the target) with the event that a third country (the helper) sells the target the product.
This explanatton in the example would reference the theory of supply and demand to indicate that
the target will be willing to pay a higher price for the product and another country who is
interested in making a profit would sell the product to the target. The exglanation that should he
associated with the generalization in Figure 3-2 s tllustrated in Figure 3-312,

THE ACTOR REFUSES 10 SELL THE TARGET A CoMMODITY]

MOTIURTES

¥
THE TRRGET MEEJS THE COMMDDLTY

INTENDED-BY
r
[THE _TRRGET I35 WILLING 70 PRV A WIGHER PRICE FOR THE COMMQDITY]

RERLIZED-BY
y .
[THE HELPER SELLS THE COMMOOLITY TO THE TARGET FOR R HIGH PRICE]

ENABLED-BY

[THE HELPER WANTS TO MRKE A LARGE PROFITI[THE

TRRGET HAS A STRONG ECONOMY

Figure 3-3: An explanation of why a country with a strong economy will be able to
purchase a product from another supplier if the existing supply is cut off.

What is to be gained by associating an explanation with a generalized event in a schema?
The major benefit is that when such a schema exists. explanation of new episodes is a simple task.
The generalized event Indicates what features of a new example are necessary for the stored
explanation to apply to that new example. When a new example containsg the features of the
generalized event. the explanation associated with the schema Is applicable. As the memory
evolves and more schemata are created, finding explanations for commonly encountered events is
greatly simplified.

Learning and Memory Principle 5

Understanding familiar situations consists of
recognizing when a stored explanation applies.

There are two differences between an expert in a fleld, such as economic sanctions, and an
average adult. First, an expert has more knowledge of the underlying economic and political
theories. Second, and perhaps more important, the expert has a large set of schemata which
recognize general situations. The information in these schemata is easily accessed for making
predictions or constructing explanations. A novice political science student may have the same
political and economic knowledge. However, without the set of schemata built up over time by
analyzing examples, a novice may miss an important implication of the existing knowledge.
Although a novice may have a much harder time constructing an explanation for a new example.
he may learn from his efforts. The next time a similar situation is encountered, the explanation
process will be less complex, since the explanation needs to be found rather than constructed

275 conserve space in this introductory chapter, Figure 3-3 tllustrates the explanation in English. Of course e
meaning of the explanation should be associated with the schema rather than an English form of the meaning. in ..
the explanatfon is in Conceptual Dependency. The reader who wants to jump ahead to see the details will find (i~
Figure 8-9 on page 122.

35

Learning and Memory Principle 6
Understanding novel situations
requires constructing an explanation.

3.2. Combining Multiple Sources of Information

There are several sources of information that can be used in schema acquisition. These
sources of Information include:

* Inter-example relationships: Regularities among a number of examples that reveal the
conditions under which a cause produces an effect.

* Prior causal and social theortes: Prior knowledge that predicts and explains
regularities in events.

* Intra-example relationships: Temporal and spatial relationships between a potential
cause and a potential effect that suggest a causal relationship,

An important issue in this dissertation {s the integration of these three sources of information
in a single theory of learning. Each source of information is applicable in certain situations. and
has its own advantages and disadvantages. The approach I have taken to integrate these sources
of information is to attempt to identify the situations in which people rely on each kind of

information and to identify the situations in which each kind of information can be exploited for
maximum benefit.

3.2.1. The use of correlation

Is it possible that people make use of only similarities and differences between events when
acquiring new schemata? In this view, the features which are included in a schema are those
features which are common to a number of examples. Of course, correlation alone cannot
distinguish between those similarities which are coincidental and those which are relevant. For

example, there are a number of similarities between Economic-Sanction-1 and Economic-
Sanction-2.

Economic-Sanction-2

In 1980, the US refused to sell grain to the USSR unless the USSR withdrew troops from
Afghanistan. The USSR paid a higher price to buy grain from Argentina.

Figure 3-4 contains a simplified Conceptual Dependency representation of Economic-
Sanction-2. When the representation of Economic-Sanction-2 is placed on top of the
representation of Economic-Sanction-1, then the areas of agreement between the two events are
made obvious (see Figure 3-5).

Figure 3-6 illustrates more clearly all of the common features between the Economic-
Sanction-1 and Economic-Sanction-2. The problem here is that there are too many similarities
and there is no way to tell which of the common features are relevant and which are just
coincidences. The ideal generalization would lock like the one tn Figure 3-2 and would only
contain relevant information: the important features of the target country are that the target must
import the commodity (so that the threat is meaningful) and that the economy of the target s
strong (so that they can afford to buy the product elsewhere at a higher price). Taken literally, the
schema In Figure 3-6 would indicate that when an English-speaking democracy which imports oil
threatens a country in the Northern Hemisphere which has a strong economic health and exports
weapons, then the sanction will fail because a country in the Southern Hemisphere will sell the
product at a premium. Obviously, this generalization 13 not correct, nor is it one that a rational
adult would make from this data.

~ Although correlational information alone does not provide a complete answer to the problem
of generalizing schemata from examples, correlation can serve a number of useful purposes:

e In an area where the learmner has little or no existing knowledge, knowledge-intensive
techniques such as EBL are not applicable. Basic facts can be acquired by

36

= =

imports COMMODITY type QIL
exports SET COMMODITY type WERPONS
=UBJECT
government DEMOCRACY
location NORTHERN-HEMISPHERE
language ENGLISH
object COMMODITY type GRAIN
targat COUNTRY name USSR
imports SET =0BJECT
COMMODITY typa STEEL
exports SET COMMODITY type GRS
COMMQDITY type WEAPGONS
government SOCIALIST-REPUBLIC
locatien NORTHERN-HEMISPHERE
languagae RUSSIAN
ecoromic—health STRONG
helpar COUNTRY name RRGENTIMNA
imports COMMODITY type STEEL
exports SET =0BJECT
canMmopITY type MEAT
loccation SOUTHERMN-HEMISPHERE
demand ACT type INVADE
actor =TARGET
obrject CCUNTRY name RAFGANISTAN
lacation NORTHERN-HEMISPHERE
) mode NEG
threat RACT type SELL
actor =ACTOR
object =0BJECT
to =TARGET
rmode NEG
response ACT type SELL
actor =HELPER
cbject =0BJECT
price MONEY dollars 170000006
value >MARKET
to =TARGET

outcome FRILURE

Figure 3-4: Simplified CD representation of Economic-Sanction-2.

correlational means. For exampie, few small children (or even adults) understand why
glass objects break easily and plastic objects do not. This knowledge 1s acquired by

experienice alone instead of some underlying theory which indicates the strength of
materials as a function of their composition.

* A schema formed by correlation can encode conventions or customs. Few people
know or need to know the reason that rice is thrown at weddings or shoes are taken
off at Japanese restaurants.

* A schema formed by correlation can propese a causal relationship for further study.
Such a schema can describe those situations where a coincidence is noted but there
is no explanation. These coincidences might initiate and focus the search for new
causal knowledge. For example, in medicine a correlational relationship (e.g.. AIDS
and homosexuality) may direct the investigation for a pathological explanation.

There {s a major difference between a schema which encodes knowledge whose only support
is a number of examples and a schema whose support also includes an underlying theory. There
is no justification to belleve that a similarily between past examples will be present in future
examples. Therefore, schemata formed by correlation represent tentative generalizations which are
always subject to further revision. For example, a person familiar with the fictious Canyon Killer
will have formed a correlational schema predicting that his future victims will be blond
cheerleaders just lke his previous victims.

37

COERCE actor COUNTRY name AMEREBAEIA
imports COMMODLTY type DIL
exports SET COHMMODITY type WEBEONS
=0BJECT
overnnent. DEMOCRACY
ocation BORTHERN-HEMISPHERE
language ENGLISH
object COMHODITY type GRAHIUM
target COUNTRY name ES88SRCE
imports SET =0BJECT
COMMODITY type STEEL
exports SET COMMODITY type GESE
COMHODITY type HERPONS
governnent SECDBEBSY-REPUBLIC
location NORTHERN-HEMISPHERE
language FREBLCAN
economnic-health STRONG
helper COUNTRY name BROEMFBRRICA
imports COMMODITY type BREEL
exports SET =0BJECT
COMMODITY type DEATOND
location SOUTHERN-HEMISPHERE
demand ACT type EMPEDEE
actor =TARGET
object CEBRURE bppe MOGCASERTAN
location SORTHERN-HEMISPHERE
- node NEG
threat ACT type SELL
actor =ACTOR
object =0BJECT
to =TARGET
mode NEG
response ACT type SELL
actor =HELPER
object =0BJECT
price HONEY dollars SP0000890
value >MRRKET
tao =TRARGET

outcone FAILURE

Figure 3-83: An illustration of flnding the common features of two events. When the
representation of Economic-Sanction-2 from Figure 3-4 is placed on top of
the representation of Economic-Sanction-1 from Figure 3-1, the common
features become bolder and the differences are overwritten.

COERCE actor COUNTRY imports COMMODITY type OIL
exports =0BJECT
overnnent DEMOCRACY
anguage ENGLISH
cbject COMMODITY i
target COUNTRY imports =06JECT
exports COMMDDITY tupe WERPONS
location NORTHERN-HEMISPHERE
econonic-health STRONG
helper COUNTRY exports =0BJECT
location SOUTHERN-HEMISPHERE
demand ACT actor =TARGET
mode NEG
threat ACT type SELL
actor =ACTOR
ocbject =0BJECT
to =TARGET
mode NEG
response ACT type SELL
actor =HELPER
object =0BJECT
price MONEY value >MARKET
to =TARGET
outcome FAILURE

Figure 3-6: A possible schema formed by extracting all common features from
Economic-Sanction-1 and Economic-Sanction-2.

38

Canyon-Killer-1

The Canyon Killer who has murdered three blond cheerleaders in the past two months
has struck again. This time. however, his victim was a 76-year-old retired mechanic.

In Canyon-Killer-1, the prediction that the Canyon Killer's victim would be a blend
cheerleader 1s not accurate. The Justification for believing that the Canyon killer's victim will be
blond cheerleaders {s simply that all previous victims were hlond cheerleaders. When a victim who
is not a blond cheerleader is encountered. the schemata must be corrected to account for this new
example (Lebowitz, 1982). In contrast. the kidnapping schema should contain a justification for
why the ransom would be paid: to protect a loved one. When a story such as Absurd-Kidnapping- 1
violates this expectation it does not typically reduce the confidence in the kidnapping schema.

Absurd-Kidnapping-1

John Doe who was abducted on his way to school Monday moming was released today
after the mailman on his block paid a $350.000 ransom.

Absurd-Kidnapping-1 is not totally understandable. Why did the matlman pay the ransom?
Where did he get the money? The kddnapping schema cannot provide answers to these questions.
However, because there was a justification for including the fact that a hostage has a rich parent
in the kidnapping schema, the kidnapping schema is not abandoned when a story does not
conform to the expectation. In fact, some people who read the story try to make the story conform
to kidnapping schema by proposing that the mailman might secretly be John Doe's father. Others
try to make sense out the story by postulating that the mailman is independently wealthy and just
delivers mail for fun, or that the matlman is rich because he steals checks from the people on his
route. Other people indicate that the story doesn't make sense at all since they can find no
explanation for the mailman's actions.

A primary difference then between a schema with a relationship supportéd by an underlying
reason and a schema with a correlational relationship 1s what happens when new data doesn't
agree with the schema. The correlational schema is questioned when the data does not agree with

schema. In contrast, when new data contradicts a schema supported by an underlying theory. the
data itself 1s questioned.

Only when the data withstands such questioning, or when the amount of data is
overwhelming is a schema supported by an underlying theory abandoned. This is an indication
that the underlying theory is incorrect and needs revision to account for new empirical findings.

3.2.2. The use of prior knowledge

In addition to the data itself, a person or a computer can make use of existing knowledge to
constrain the set of generalizations. Figures 3-6 and 3-2 indicate there can be a number of
generalizations consistent with a set of examples. The set of generalizations consistent with a set
of examples can be pruned by requiring that a generalization also be consistent with prior
knowledge. Explanation-based learning Is an approach to learning which makes use of underlying
theories in the generallzation process.

The reason explanation-based learning is a useful learning strategy is that it is easler for a
person {or a computer) to understand how a plan achieves a goal in a particular example than to
come up with the plan himself. For example, on February 18, 1987 there was a unique robbery in
Atlanta, Georgia. Most readers are probably famillar with robberies at automated teller machines.
However, this robbery was somewhat different. Instead of holding up a customer and getting away
with at most $200 (the maximum withdrawal at most automated teller machines), the thief had a
plan to obtain more money. He tampered with the automated teller machine and notified the bank
that it was out of order. The bank sent a repairman (who was a Vietnam veteran and a father of
two children). When the repairman came, he held up the repairman who had access to the money
inside the machine and made off with over $20.000. Understanding why this plan worked is trivial
for an average adult. It involves constructing an inference chain that relates several facts:

« A repairman will come if a machine owned by a large corporation is broken.

39

¢ A repairman has access to the inside of a machine.
« There is a large amount of money inside an automated teller machine.
¢ A person will usually do what you want {f you threaten to kill him.

Each of these facts can be represented as a separate schema. These facts are combined to
arrtve at a novel type of robbery. It was not a trivial task for the robber to come up with this plan.
However, once someone has thought of the plan. it Is much easier to copy the plan. In fact, the
FBI is worried that this type of robbery will be repeated in other parts of the country. Explanation-
based learning techniques could be used to create an
attract-repairman-to-automated-teller-robbery schema from just this one example. The
fact that the repairman was a Vietnam veteran and a father of two are not needed to explain how
the robbery worked and would not be included tn the schema. In contrast, similarity-based
methods would require a number of examples to rule these features out. If similarity-based

methods were the only learning methods people had, then some copycat robbers would be finding
ways to attract veterans or parents to automated tellers late at night.

Explanation-based learning creates schemata which can enable a very efficient inference
process. Instead of repeating a long inference chain every time a commonly encountered situation
is seen, the inference chain is saved as a schema. In addition, the schema contains a pattern to
recognize the situation when a previous chain of reasoning applies. For some problems, it s
important that a schema be created to avoid extremely complex inferences. One situation in which
this occurs is when the motivation for a particular course of action is to avoid a potential goal
failure. It is difficult, {f not impossible, to determine why the action was decided upon without
knowing about the potential failure. For example, OCCAM notices a similarity between a number of
kidnappings whose victims are all infants with blond hair. However, it is not capable of finding an
explanation for this similarity until it finds a kidnapping case in which there is a goal failure when
the victim was not an (nfant. After the ransom was paid, the victim was able to give evidence
which led to the arrest and conviction of the kidnapper (which is, of course. a goal fatlure for the
kidnapper]). With this new information, an explanation for the kidnapping of infants is found to be
avoiding this goal fallure since infants cannot give police evidence nor testify. Since the
explanation does not refer to the infants hair color, this similarity is treated as a coincidence. Once

a kidnapping-infants schema is created, it is simple to recognize new examples as instances of
this schema.

3.2.3. Intra-example relationships

In addition to specific causal knowledge, it appears that people also have a general theory of
causality which can assist the learning of new causal relations. Some relationships just "appear”
to be causal in that the mechanism that translates the "causal force" from a cause to an effect is
easlly apparent. For example, during the Christmas of 1986 a new doll came on the market.
When you dip this doll in water, its hair changes color. This flits a common pattern for a causal
relationship. Something is done to the doll, and then the doll changes. On the other hand, some
relationships do not look like causal relationships. For example, during the pre-game show of the
Superbowl every year, the announcers bring up a pattern that has been noticed over time: every
time an NFC football team wins, the stock market has a good year and when an AFC football team
wins, the stock market has a bad year. This does not fit a common pattern for a causal
relationship. If the New York Gilants do something to the Denver Broncos, one might expect the
Broncos to change, but not the stock market.

The importance of general theories of causality {s apparent when there are several potential
causes for an effect or several potential effects for a cause. For example, consider the following
event sequence:

e First, two events occur at approximately the same time: a yellow taxi i{s seen driving
on the street outside the kitchen window and a brown bird flies into the window pane.

s At the next instant, the window pane shatters.
¢ Shortly after that, a ladybug flies through the broken window pane.
General knowledge of causality can rule out the hypothesis that the window broke because

40

the ladybug will {ly through it since a cause must precede an ellect. Although this may seem like a
trivial plece of knowledge. existing machine leaming systems ({Salzberg, 1985. Lebowitz.
1986a) which predict the outcome of events don't make use of temporal information. Similarly. the
taxi can be ruled out as a cause of the window breaking because the taxi is not acting on the
window (in the same manner that the bird is). By ruling out the taxd and the ladybug as causes for
the window breaking, the search space for the problem of determining what causes windows to
break can be reduced. Of course, correlation is needed to determine that the color of the object
which strikes the window is not important, but the weight and velocity of the object are. However.
resources such as memory can be utilized more effectively if they are not also required to correlate
the color and velocities of cars passing by.

General kniowledge of causality can also help indicate which features of a particular example
are relevant. Consider the situation of a television set tuming on after a parent tums the knob. [s
it important that the knob be tumed with the right hand by someone wearing a white shirt? This
situation [its a general causal pattern when an action is performed on an object {in this case the
television) and the object changes. General knowledge of causality indicates that it is not
important who performs the action or how the action Is performed. Therefore, the features of the
actor who turns the knob on the television are not relevant. occam contains a learning mechanism
that exploits intra-example relationships. [call this mechanism theory-driven learning (TDL)
because learning is driven by a general theory of causality.

3.2.4. Integrating multiple sources of information

An important issue 1is discovering how these three different sources of information
{correlational information, specific causal knowledge, and general theories of causality) can be
integrated. Each source of information can perform a useful role in some situations. Knowledge of
people’s preferences or biases for using certain types of information can yield insights in the

complexity of using each type of information. Chapter 5 reviews some relevant psychology
experiments.

3.3. The Level of Generality of Schemata

When reading a story or participating in an activity there are two important questions an
understander needs to answer. Why did things turn out the way they did? Why did the peaple do
the thing they did? A memory of previous experiences can provide the answers to these questions
in the form of predictions and inferences. Schemata describing previous experiences need to be
represented at abstract levels, with unessential details removed.

There is a dilemma concerning the level of generality that should be represented in memory
A very abstract representation will apply to many future events. However, a more spectlic
representation will provide more detailed predictions and inferences to facilitate the understanding
process.

Consider the complexity of the inferences a person would need to make to understand
Kidnapping-1 (repeated below) if there were an abstract schema describing coerclon instead of a
kidnapping schema in memory. Neither Kidnapping-1 nor the coerclon schema state that the
kidnapper's goal Is to possess money. Instead, the understander must infer this from other
knowledge. For example, a person reading this story could infer that the kidnapper might threaten
to harm John Doe unless his father helps the kidnapper achieve his goal. From this. and the fact
that John s not harmed after his father puts the money in the trash can, a reader might infer that
the kidnapper's goal is achieved by retrieving the money from the trash can. Of course. when
there is only a coercion schema the search for an explanation must explore alternative
explanations such as the kidnapper wanted John Doe's father to throw out money.

Kidnapping-1

John Doe who was abducted on his way to school Monday moming was released today
after his father left $50.000 in a trash can (n a men’s room at the bus station.

In contrast, understanding Kidnapping-1 {s much easier if a kidnapping schema has been
learned. The task of explaining why the father puts money in a trash can is much easier an

41

understander can utilize an expectation from the kidnapping schema (that the father might pay a
ransom to .achleve his goal of preserving the health of his child) to interpret this otherwise unusual
action. Similarly. identifying the kidnapper's goal is trivial since the goal of obtatning money is
part of the kidnapping schema. The advantage that a kidnapping schema has over the coerclon
schema for understanding this story is that explanation is already assoclated with the kidnapping
schema. In contrast, even iU Kidnapping-1 i{s recognized as an instance of coercion, the
explanation for the kidnapper's actions must be constructed from different information.

Although understanding kidnapping storles is much easier with a kidnapping schema, it is
stll possibie to understand stories about kidnapping with a coerclon schema. The coercion
schemna provides very general predictionis while the kidnapping schema provides more speclalized
predictions. For example, the coercion schema indicates that the threat could be any action; the
kidnapping schema indicates that the threat will be to harm a relattve of the person threatened.
Kidnapping is called a spectalization of coercion.!3

A schema can be specialized by further specifying any of its features. For example, economiic
sanctions Is a speclalization of coercion where the threat is for one country to refuse to sell a
product to another country. There is not always an English word for some specializations of
coercicn. For exampie, another specialization of coercion would represent those coercions which
have fafled because the target who is threatened does not mind If the actor performs the threat.
This schema might be learned from childhood disputes such as "I won't be your friend. f you don't
let me have the swing". If the child is smart enough to realize that no one needs this type of friend.
a specialization of coercion can be formed. This schema would account for the following answer to
a hypothetical situation presented to the political analyst at the Rand Corporation:

Question: What would happen if the US refused to sell rice to Japan if Japan did not
reduce tariffs on imported fruits and vegetables.

Answer: Japan wouldn't do a thing since it does not want our rice.

It probably didn't take years of studying politics and economics for the political analyst to
arrive at this conclusion. Instead, a little bit of common sense should be applied in this situation.
This sort of common sense can be represented as a specialization of coercion that indicates that if
an actor tries to threaten a target, and if execution of the threat will not lead to a goal failure for
the target, then the goal of the actor to get the target to agree to the demand will fail.

One advantage that a general schema has over a more specific schema is that a general
schema is applicable in a wider variety of situations. Consider, the following situations:

General-Hospital-1

Leo, the tall dark masseur at the Avalon Heath Spa, secretly filmed Amanda, a wealthy
middle aged woman, while he seduced her. Then, he told Amanda that unless she paid
him $10.000, he would show her husband the pictures of her being unfaithful

Economic-Sanction-1

In 1983, Australia refused to sell uranium to France, unless France ceased nuclear
testing in the South Pacific. France paid a higher price to buy uranium from South

Africa

Playground-1

John told the other kids at the playground that if they didn’t let him pitch, he was going
to take his ball and go home.

All of these examples can be understood as instances of coercion. The specialized kidnapping
schema would be of little use for inferring the goals and plans of the participants of these

13The distinction between a specialization and a generalization is somewhat fuzzy. For example. the kidnapping s«J mema
{s a specialization of the coercion schema. The kidnapping schema 1s alsoa generalization of several kidnapptng inciients

42

examples. In fact, the kidnapping schema may provide the wrong inferences in many cases, For
example, in kidnapping the anonymity of the kidnapper is important while in blackmail (e.g..
General-Hospitai-1) it {s not essential that the identity of the blackmailer be unknown to the
victim. The more general coercion schema contains no information about the anonymity of the
perpetrator. The coercion schema still provides a general framework for understanding General-
Hospital-1. Of course, this story would be easier to understand if a specialization of the coercion
schema for blackmail had been formed. Similarly, Economic-Sanction- 1 and Playground-1 would

be easier to understand if there were schemata for economle sanction incldents and playground
arguments.

Very general schema such as coercion provide the opportunity for learning across domains. [f
the coercion schema were learmned by a child from arguments with their parents and other children
(e.g.. Playground-1). ft could provide a framework for understanding other types of coercion such
as blackmail. kidnapping and economic sanctions. Through experience with these different types
of coercion, specializations of the coercion for each of these areas will develop. These
speciallzations of coercion simplify future understanding by providing more spectfic inferences and
expectations. In Chapter 6. I describe the similarity-based learning component of occaM that can
create very general schema such as coercion. In Section 9.1, [present an extended example in
which occam acquires a coercion schema. Chapter 8 discusses the explanation-based learning
component of oCCAM. In Section 9.2, [show how occaM combines knowledge of coercion with
knowledge of political and economic goals to create several economic sanction schemata. Section

9.6 shows how occaM uses EBL to create the kidnapping schema and Sectlon 9.7 gives examples
of occaM further specializing the kidnapping schema. :

Learming and Memory Principle 7
Acquiring very general schema supports learning across
domains while acquiring specialized schema simplifies the
recognition of an explanation for common situations.

Since understanding is much easier using a specialized schema instead of a general one, a
memory would need to contain a large number of specializations. Therefore, an tmportant issue is
the organization of memory such that the appropriate specialization can efficiently be found. The
type of memory proposed by Schank and implemented tIn CYRUS and IPP provide a good
framework for organizing memory so that the most specific schemata for a situation can be found
efficiently. However, this theory of memory cannot provide a full account for schema acquisition
since it only makes use of correlational information when creating new schemata.

3.4. Developmental Differences: Learning in Adults and Children

There are a number of differences between the cognitive capabilities of adults and children.
In addition to deficits in memory and attention, children have less specific knowledge of the world

and are less capable of explaining the causes of physical events and the mottvations of people’'s
actions.

One reason to investigate learning in children is that children are examples of learning
"machines” without a great deal of kmowledge about the world. The errors that children make can
illurmninate some principles which are also evident in adult learning. It is interesting to niote that
some of children's misconceptions about the world are similar to early erroneous theories in
physics. For example, Piaget has reported (Piaget, 1930) that 9-year-old children believe that a
thrown ball continues to move due to the reflux of air behind the ball. This belief is similar to the
theory of Aristotle. My daughter, at the age of four predicted that a heavier object (my shoe) would
fall faster than a lghter object (her shoe).

To get an idea of the difference between learning in adults and learning in children, let us
look at an example of a schema acquired by a 3-year-old child. This anecdote was told to me by a
colleague who was babysitting her 3-year-old niece. When she Inflated a balloon for her niece, the
child demanded that a string be tied to the balloon. After the child insisted for quite a while. she
finally found a string and tied it to the balloon. Her niece then asked "How come it doesn't go
up?”,

The schemata which the child has learned concerns the actions of balloons: balloons with
strings float, and those without strings do not float. Presumedly, this child has seen several

13

instances of balloons. All or most of the balloons that floated had strings tied to them. Al or most
without strings did not float. The child appears to be an "intuitive scientist” (Ross. 1981) making
observations about the world and developing and testing theories to explain why certain results
occur. The explanation that the child had proposed is not completely without merit. The string
meets several criterta for being a potential cause. The occurrence of the string covaries with the
result of floating {i.e., either both are present or neither are present. an inter-example relationship)
and the string is in close proximity to the balloon (an intra-example relationship). It appears that
the child that lacks specific knowledge of what makes things float (Le., an object floats In air if it is
lighter than alr), but utilized general knowledge of causal relationships to form this schema.

In the theory of learning proposed in this dissertation, the only difference between learning in
children and adults which Is modeled is that children have little or no specific knowledge of the
domain. As I will describe in Chapter 5, it appears that children as young as three are guided by a
general theory of causality when learning causal relatlonships.

3.5. Summary

In this chapter, I presented the problems which I address in this dissertation. The central
problem Is the acquisition of explanatory schemata that predict the consequences of actions.
There are three mechanisms for schema acquisition proposed in this dissertation.

1. Similarity-based learning creates new schemata by extracting features common to a
numnber of examples. By making a prediction with such a schema, one is assuming
that regularity detected in observed examples will hold in unobserved examples,
This learning technique can propose absurd causal relationships (e.g.. when Billy
Martin is named to coach the New York Yankees, the stock market declines).

2. Theory-driven learning imposes additional constraints on cause and effect
relationships by requiring that a proposed relationship conform to one of a number
of common patterns of causal relationships.

3. Explanation-based learning produces schemata that encode novel interactions
between existing schemata.

The central fssue addressed in this dissertation is the integration of these three learming

techniques (nto a system that can exploit the most advantageous strategy to learn in familiar and
unfamiliar domains.

14

Chapter 4

A Theory of Learning to Predict and Explain:

OCCAM is a program that maintains a memory of events in several domains. As new events
are added to memory, explanatory schemata are created that explain the outcome of the events
and can predict the outcome of new events. In this chapter, I describe the theory of learning upon
which occaM is based. Chapter 3 ralsed several important questions which must be addressed by
a theory of learning to predict and explain the outcome of events.
these questions. Later chapters elaborate on specific points.

An Overview of OCCAM

I'm on Restaurant Row on City Island. Now this restaurant used to be Bamnacle
Bob's Restaurant. [t's out of business now. Right next door to Barnacle Bob's is a
restaurant that's flourishing, thriving: The Shrimp Box. Across the street, another
successful restaurant. The Fish Bax and up the road we have The Lobster Box. Why
then has Barmnacle Bob's gone out of business? Well, the local people here on the
island tell us it's because he didn’t have the word "bax’ anywhere on his sign. If only
he'd named it Barnacle Bob's Barmacle Box. (David Letterman, September 4, 1986)

4.1, What is a Schema?

In Chapter 2. I described Conceptual Dependency which serves as the representation
language for the input to the learning process. Before I describe the learning process itself, in this
section | describe the output of the learning process in more detail. The output of the learning

process is a hierarchy of schemata.

A schema is comprised of several components. These components include:

A generalized event-- A schema includes a template for recognizing instances of the

schema. This template is a Conceptual Dependency pattern which Is an
abstract description of a class of events.

A sequence of events-- Typically, a schema can be decomposed into a small set of

Indices--

actions or scenes. For example, a schema that represents economic
sanctions can be broken down into a number of simpler components that
represent a threat, a demand and an outcome. An abstract description of
these actions and their interaction is an integral part of the schema. The
relationship between these events are specified by causal. temporal and
intentional links. The generalized event of a schema indicates what the
effect of a certain action is. The sequence of events indicates how the action
brings about the effect.

A schema may organize more speciallzed schemata and specific instances.
These are indexed by features which elaborate on the generalized event of
the schema. An index consists of a feature name (e.g.. actor) and a feature
value (e.g., human).

43

In this chapter, I briefly answer

Support-- A schema also includes information about the source and the confidence in
the schema. This information can include the justification for the schema
(if the schema was created by generalizing an explanation) or the number of
successful and unsuccessful times a schema has made a prediction (if the
schema was created by empirical methods).

4.1.1. The coercion schema

In this section, [use the coercion schema as an example to provide more details on the
components of a schema. The generalized event of the coercion schemna is shown in Figure 4-1. A
generalized event consists of a Conceptual Dependency description of a class of events. The
description consists of a head {e.g.. coazce) and a number of roles (e.g.. goal, outcome. tha-ask.
the-demand., the-threat, the-actor, the-target, etc) In Figure 4-1 (and all figures in this
dissertation) roles names are printed in lowercase letters and heads are printed in capital letters.
The generalized event of a schema contains restrictions on the entities which can fill the roles.
Consider the role, the-ask, which is the act that the actor performs to get the target to achleve a
goal for the actor in coerce. tha-ask must be an act of type mtrans. The actor of mtrans must
be the actor of the coercal?. The to of the mtrans is the target and the object of the mtzans is a

CD representation of "If the target does the demand. the actor will do the alternative. Otherwise,
the actor will do the threat".

COERCE goal GOAL outcome =OUTCOME
pian =PLAN
goal sGOAL-STATE
actor =THE-ACTOR
goni-state STATE acgtor sTHE-BENE
outcome GUAL-QUTCOME goal GOAL goal sGOAL-STATE
actor =THE-ACTOR
actor =THE-ACTOR
plan PLAN plan sTHE-ASK
actor =THE~ACTOR
the-ask ACT type MTRANS
actor =THE-ACTOR
object COND if aTHE-DEMAND
then saTHE-ALTERNATIVE
else sTHE-THREAT
to aTHE-TARGET
the~prep ACT actor aTHE-ACTOR
the-demand ACT actor aTHE-TARGET
object *DEMAND-08J
the-thraat ACT actor aTHE-ACTOR
object sTHREAT-08J
to =THE-TARGET
the-aiternative ACT actor =THE-ACTOR
object aTHE-ALT-0BJ
to aTHE-TARGET
the-sub-goal GOAL-CONFLICT actor =THE-TARGET
goall GOAL-QUTCOME-LINK goal-b GOAL actor aTHE-TARGET
goal-a GOAL mctor sTHE-TARGET
goal2 GOAL-OUTCOME-LINK goal-b GOAL actor =THE-TARGET

gonl-a GOAL actor =THE-TARGET
tha-sub-plan PLAN plan =THE-TARGET-RESPONSE
actor sTHE=TARGET
the-target-response ACT object sRESPONSE-08J
actor sTHE-TARGET
the-actor-response ACT actor =THE-ACTOR
the-target-outcome GOAL-OUTCOME actor =THE-TARGET

Figure 4-1: The generalized event for the coarce schema.

The generalized event of a schema indicates what the components of the schema are. The
sequence of events indicates the relationships between these components. The sequence of events
of coercae is illustrated in Figure 4-2.

The sequence of events can be instantiated by matching a particular instance of coercion
against a pattern for the coercion. This pattern simply binds one variable for each role of the
schemal!S, For example, the variable ?THE~-ASK 1s bound to the CD structure that fills tha-ask
role,

"*The fact that the actor of mtzans must be the actor of the coerce is indicated by the notation =THE-ACTOR in all
figures.

15Figure 6-21 on page 83 illustrates one such pattern.
46

7GOAL je—U L £ 2 0 3 GRTAN
B 4

} REALIZES
TTHE~ASK i ~tHAg 7THE-PREP
MOTIVRTES
QuUTCORE y
PTHE-SUB-GOAL J«R4ILENE-0F ATHE-TARGET-OUTCOME]
INTENDED-BY 4
Y
| ATHE-SUB-PLAN | AFTER
i REALIZED-BY
)
TOUTCOME [FREE0RE G THE-T ARGE I~-RESPONSE FﬂﬂlﬁﬂﬁihTHE~Ac70H-HESPONSEl

s

Figure 4-2: The sequence of events for coarce.

The sequence of events specifles relationships between the entities described by the
generalized event. For example, ?THE-ASK is an act that realizes the plan that achieves the actor's
goal (?GOAL). ?THE-ASK motivates a subgoal for the actor.

The coercion schema plays an important part in this dissertatton. The coercion schema is
acquired via similarity-based leaming in occaM by noticing regularities between a number of
events!® with the same type of plan for achleving a goal. The plan is for an actor to ask a person
(the target} to perform an action. The actor tells the target that if he does not performn the action, a
threat (i.e.. an act that causes a goal fatlure for the target) will be carried out. Using explanation-
based learning, ocCAM specializes the coercion schema to form a kidnapping schema (which has a
more specialized threat of harming a family member of the target) and economic sanction
schemata (which have threats such as the actor refusing to sell the target a commodity). Section
9.1 discusses the acquisition of the coercion schema and provides more detatls on the roles and
sequence of events of this scherna. Section 9.2 describes the specializations of coercion created by
OCCAM to deal with economic sanction incidents.

4.1.2, Assumptions implicit in occam's input

The input to the learning component of OCCAM is represented in Conceptual Dependency.
Since examples in the real world are not in Conceptual Dependency, it is important that the
assumptions about the capabilities of the interface to the real world be defined.

In some domains, such as economic sanctions and kidnapping, a natural language interface
could read simple newspaper stories. The minimum capability required is to map English
sentences into primitive Conceptual Dependency acts, states and goals. There are many important
issues for natural language processing, such as word .ense selection and pronominal reference
that occaM simply ignores. These issues have been addressed in several programs (e.g., FRUMP
(DeJong, 1977), IPP (Lebowitz, 1980) and BORIS (Dyer, 1983)) which can perform tasks similar to
that required by occaM. For example, occaM assumes that a natural language interface could
parse a sentence such as "Australia refused to sell uranium to France, unless France ceased
nuclear testing in the South Paclfic.” The output of the parsing process would be the CD
representation for this sentence:

183 pproximately 10
47

ACT type MTRANS
actor AUSTRALIA
to FRANCE
cbject COND if ACT type EXPLODE
actor FRANCE
cbject WEAPCONS type NUCLEAR
location SQUTH-PACIFIC
mode NEG
then ACT type SELL
actor AUSTRALIA
to FRANCE
objact COMMODITY type URANIUM
@lse ACT type SELL
actor AUSTRALIA
to FRANCE
object COMMODITY type URANIUM
mode NEG

In addition, I am assuming that the lexicon of the parser would contain access to some long-
term memory which has detailed information on various countries. In occam, this information was
dertved from the World Almanac (Hoffman, 1986). Numerical information was hand converted into
discrete symbolic categories: For example, the life expectancy for South Africa is 57 years. In
OCCAM'S representation, this Is *FIFTIES*. The representation for South Africa is:

COUNTRY namae SOUTH-AFRICA
language ENGLISH AFRIKAANS
location SOUTHERN-HEMISPHERE
business-relationship US JAPAN FRANCE AUSTRALIA UK
economic-health strong
governmant PARLIAMENTARY
lifa-expeactancy *FIFTIES*

imports COMMODITY type OIL ...
exports COMMODITY type URANIUM ...

When occaM acquires the coercton schema, it also creates patterns to convert events
represented In terms of CD primitive acts and goals into the high-level coerce representation. This
capability is discussed (n Section 6.2.5 together with the rationale for changing representations.
The performance component of 0cCAM does indeed contain a parser which parses questions about
the outcomes of hypothetical sanction incidents. The output of this parser is a CD goal and action
representation of the question. During memory search to find a schema to answer the question,
the representation of the question is converted to the high-level representation. For example, the
high-level representation of "Australla refused to sell uranium to France, unless France ceased
nuclear testing in the South Pacific.” is:

48

COERCE the-actor AUSTRALIA
the-targat FRANCE
the-deamand ACT type EXPLODE
actor =THE-TARGET
object WEAPONS type NUCLEAR
location SQUTH-~PACIFIC
mode NEG
tha-threat ACT type SELL
actor =THE-ACTOR
to =THE-TARGET
object COMMODITY type URANIUM
mode NEG
the-alternative ACT type SELL
actor =THE-ACTOR
to =THE-TARGET
object COMMODITY type URANIUM

The coerce representation contains a number of role names that are meaningful in English.
For example, it refers to terms such as coearce, the-damand etc. When OCCAM creates a schema
such as the coerce schema, it asks for a user to type names for these cbjects. In unattended
mode, OCCAM generates its own names such as schama.007 and role.017 for these objects. The
meaningful names serve to make OCCAM'S output and intermediate states easter for a person to
understand. However, coerce or schema. 007 mean the same thing to OCCAM:' a particular plan
for achieving a goal in which entity-1 tells entity-2 that entity-1 will cause a goal fatlure for entity-2
unless entity-2 performs some act which achieves a goal for entity-1. Similarly. the-demand and
role.017 both refer to the act that entity-1 wants entity-2 to perform to achleve the goal for
entity-1. Structurally, the-demand can be found as the filler of the if role of the filler of the
object role of an mtrans.

A natural interface to occaM is not appropriate for domains in which dccaMm leams about
physical causality. Certainly, young children do not {(and can not) read newspaper accounts of
events such as "A child dips a small yellow balloon in water, blows air into the balloon and the
balloon is inflated.” Instead, children simply observe the event. However, the ability to take a
visual Image of an event and convert it to a symbolic representation is beyond the capabilities of
current vision systems. (See (Hanson & Riseman, 1978) for an overview of this field of research.)

The hypothetical machine vision interface to occAM must have a number of capabilities. It is
not unreasonable to assume that people also have these capabilities. First, the vision system must
be able to identify objects in a scene and assoclate attributes with the objects (e.g., small, yellow
balloon or "chiid with blond hair and blue eyes”). The biggest assumption is that the vision system
is able to parse temporal sequences of visual sensations into segments called events. For example,
consider the following temporal sequence:

tl: A small yellow balloon is on thea table. A glass of
' water is on the table. A child with blond hair is
next to tha table.
t2: The child’s hand is on the balloon.
£3: The balloon is in the child’s hand.
t4: The child’s hand and balloon are above the glass of water.
t£5: The child is holding the balloon in water.
£6: Tha child’s hand and ballcocon are above the glass of water.
t7: The balloon is in front ¢of the child’s mouth.
t8: The tip of the balloon is in tha child’'s mouth.
t9: Tha child is inhaling.
tl0: The child is exhaling.
tll: The ballocn is larger. The child is inhaling.
t12: The child is exhaling.
The balloon is as large as the child’s head.
£13: The balloon is larger than the child’s haad.

A person observing this temporal sequence would segment it into a number of events
(Nelsser. 1976). Memories and descriptions of this time sequence would be in terms of these

49

events. From t2-t8 the balloon is being dipped in water and from t8-t13 the child is blowing air
into the balloon. After t13, the balloon is inflated. The CD representation for these events is
shown in Figure 4-3. It assumes that the person observing the event can identify the actor, object,
and destination of the actions and notice which objects have changed state.

ACT type PTRANS ACT type PROPEL
actor HUMAN eyes BLUE actor HUMAN eyvas BLUE
hair BLOND hair BLOND
. age CHILD BETER,. age CHILD
object BRLLOON size SMALL to BALLOON size SMALL

color YELLOW color YELLOW
to WATER ebject RIR
K
F T
A

STATE type INFLATED
object BRLLOON size SMALL
color YELLOW
value YES

Figure 4-3: CD representation of "A child dips a small yellow balloon in water, blows
air into the balloon and the balloon is {nflated.".

Once an event has been represented in CD, it Is up to OCCAM to determine which actlons and
features of the actions are responsible for the state changes. 0CCAM cannot operate if the input
representation does not contain the proper relevant features. However, OCCAM can operate if
irrelevant features are also included in the input representation. It is the role of learning to
characterize which of the features in the input are relevant. A topic for future research is to direct
an interface to the world to look for additional features when the Input does not appear to have the
necessary relevant features.

4.2. When to Learn

When should a new schema be created? In occaM, the driving force behind learning is the
desire te gain an understanding of the environment. occam attempts to create a new schema
when its existing schemata do not adequately explain a new experience. When a new event is

presented to OCCAM, it first searches its memory for the most specific schema which applies to the
event. One of three things can happen:

* The most specific schema contains an expectation about what the outcome of the new
event should be and this expectation matches the actual outcome. In this case, there
Is nothing to learn since there already is a schema which accounts for the event. The
idea here is that when a novel situation is encountered, a lot of work must be done to
understand the situation. Sometimes this work may be comparing and contrasting
the new situation to previous similar situations to find a pattern or regularity.
Sometimes, this work may be constructing an explanation by chaining together
several existing pieces of knowledge. In either case, the results of this effort can be
saved as a schema. In a famillar situation, understanding stmply consists of
recognizing a new event as an instance of an existing schema. For example, the first
time (or first few times) a person encounters a new situation, such as renting a car or
flying on an airplane, he has to reason why certain things are done and what order
things are done in. After a few experiences, much of this reasoning is automatic (i.e..
it is saved in a schema).

+ The most specific schema does not make a prediction about the outcome of the event.
In this case, a new schema may be created to account for the new event and to predict
the outcome of future similar events. The creation of new schemata is the focus of this
dissertation. Section 4.4 contains an overview of schema creation in occaMm.

* The most specific schema contains an expectation about what the cutcome of the new
event should be. However, the actual cutcome of the event violates this expectation.
In this case, one of four things may happen.

L

l. An explanation can be constructed to indicate why this new event violates the
expectation. In this case. a new schema (s constructed which serves to
explain future exceptions. For example, ocCAM encounters a number of
examples of a child asking a parent for something and constructs a schema
that indicates that a parent will give his or her child what the child asks for.
Later, it encounters an exception when a parent doesn't give the child a kiwi
fruitt. However, when there is an explanation for the parent not giving the
child the kiwi fruit (the parent doesn't have a kiwi fruit), a new schema is
created that indicates that a parent will give a child what the child asks for
unless the parent doesn't have it. Presumedly, other examples would create
more exceptions. such as a parent won't give the child something that would
hurt the child, or a parent won't give the child a snack too close to supper etc.

2. If there are few exceptions to the schema {relative to the number of times the
schema has made an accurate prediction) and no explanation can be found for
this exception. the new event is stmply remembered as an exception to the
schema. The idea here {s that it doesn't pay to abandon a well-established
conclusion on the basis of a small number of exceptions. Minsky calls this
strategy the exception principle (Minsky. 1986).

3. If there are many exceptions to the schema and no explanation can be found
for the exceptions and there is a regularity to the exceptions. then a new
schema Is created to account for the exceptions. For example, a child might
create a scherna that indicates that glass things break when they are dropped.
Later, a few examples of a glass object which has fallen onto the living room
rug are encountered. Rather than abandoning the schema that glass objects
break. an exception schema is created that indicates that glass objects that
fall on rugs don't break. This is similar to finding an explanation for the
exception with three important differences. First. since this is purely data-
driven it is possible that the perceived regularity of the exceptions is just a
coincidence. Second, there may be multiple ways of characterizing the set of
exceptions. For example, all of the examples where a glass object falls on the
living room rug can be characterized as glass objects falling on something soft

- or glass objects falling in a living room. Such an ambtguity may eventually be
resolved with further examples such as a glass object falling on a rug in a
bedroom. Finally, there is no explanation stored with the exception. such as a
soft surface cushions the fall of the glass objects,

4. Finally, if there are many unexplained exceptions and there is no regularity to
the exceptions, the most specific schema is abandoned since it is not making
accurate predictions. In this case, after the schema is abandoned, future
memory searches will return a more general schema which does not make the
erToneous prediction.

4.3. Finding the Most Specific Schema

Finding the most specific schema in memory which accounts for an example is a crucial
initial step in determining whether it Is necessary to create a new schema. There are a number of
other tasks which also rely on finding the most spectfic schema. These include:

¢ Prediction- the most specific schema provides the most detailed prediction.

e Explanation- the sequence of events of the most specific schema contains an
explanation that indicates the justification for making a prediction.

* Recalling similar examples- empirical learning techniques require similar events to
be compared and contrasted. The most specific schema indexes events which have
features in common. Finding previous examples is also an important part of legal
reasoning (Goldman et-al., 1985) and is a convincing style of argument (Flowers et al..
1982).

» Inference- In understanding natural language, the problem is often the reverse of

51

prediction: a result is given and the cause is left implicit. The most specific schema
whlc_h matches the situation can contain the information needed to infer the cause.

actor,

demand etc.

Actor, threat stc.

COERCE ob ject HUMAN
target HUMAN wealth RICH
relation FAMILY-REL of =08JECT

(COERCE object COMMODITY

target COUNTRY actar HUMAN

actor COUNTRY demand POSSESS abject MANEY

threat SELL mode NO actor =ACTOR
cbject =0BJECT threat KILL object =0BJECT
actor =ACTOR sctar 3ACTOR

object, demand etc.

y

COERCE demand ...
ob ject COMMODITY tyﬁe GRRIN
actar COUNTRY name US
tarqget CCUNTRY name USSR blect

object, demand atc

¥
COERCE target HUMAN relation FAMILY-REL tygc FRATHER
14

demand POSSESS object MONEY amoun =1=1 -]
COERCE object HUMAN age INFANT object HUMAN name JOMN-DOE

target target
A ..
COERCE target HUMAN name JOMN=SMITH] (COERCE target HUMAN name JANE-DOE]

Figure 4-4: Organization of schemata in occam’s memory.

Since the most specific schema in memory provides the most detailed expectations and
inferences, it is important that memory be organized and searched in a manner that allows the
most specific schema to be found accurately and efficiently. For example, Figure 4-4 illustrates
some schemata indexed under the coercion schema in occam’s memory. When an example of
kidnapping is presented to 0cCAM, the schemata in memory explain why certain actions occur.
Let's assume that occam encounters an example where an infant is kidnapped. Figure 4-5
illustrates the representation of one such example where David Jones, an infant with blond hair ts
kidnapped. If only the coercion schema were in memory, the explanation for abducting the infant
would be "the actor wants the target to do something”. If the kidnapping schema were also in
memory ({llustrated beneath and to the right of coexce in Figure 4-4}, then the explanation would
be "the actor wants the target to give him money because the target doesn't want the actor to
kill the object." If there were a specialized schema for kidnapping infants in memory (lustrated
beneath and to the left of the kidnapping schema in Figure 4-4), then the explanation for
kidnapping the infant would be "the actor wants the target to give him money because the
target doesn't want the actor to kill the object and the actor wants to avoid being convicted so
he's kidnapping an infant since infants can't testify".

The algorithm that OCCAM uses to search memory is {llustrated in Figure 4-6. Mernory search
starts at the most general node in memory. There is one root node in memory. Indexed under this
node are very general nodes for each type of schema (l.e., plan, goal, coercae, etc.). When {Inding
the most specific schema for the kidnapping example in Figure 4-5, search would start at the
coarca schema. Since there are no features of coarce which are contradicted by the example, the
confidence in coerce is Increased and the search recurses on the specializations of coarce. There
are two specializations of coerce. but only one of them is indexed by a feature which {s shared by
the new example. The kidnapping schema is a specialization of coerce which has the same
threat as the new kidnapping example. Therefore, the search for the most specific schema
recurses again on the kidnapping schema. There is a specialization of kidnapping in memory
indexed by the object role which is compatible with the new example. This is the kidnapping
infants schema. Since it has no specializations, it i8 returned as the most specific schema which
accounts for the example.

52

decreased.

COERCE target HUMAN wealith RICH
name MOLLY-JONES
eyes EROWN
hair BROWN
relation FRMILY-REL of =0BJECT

type GRANDMOTHER
object HUMAN gmsnder MALE YP =
name DAVID-JONES
age INFANT
hair BLOND
threat KILL object =0BJECT
actor =ACTOR

Figure 4-3: A kidnapping example.

Does this
SCHEMA have
any features
which are

contradicted
by the new
EXAMPLE?

s there an
explanation
for the
difference?

Increase confidence Decrea;e confidence
in SCHEMA. in contradicted
featuras,
__Y ¥
Let S = For each Dalete if bel
SPECialization of thr:sﬁo1d. elow

the SCHEMAR (with a
retrieyable feature
in common with the
new axampl Y

e)
find[SPEC, EXRAMPLE]. [Return g?l

Raturn this SCHEMA|

Figure 4-6: £ind[SCHEMA, EXAMPLE]: The procedure that occaM uses to find the most

specific schema in memory.

As memory is searched for schemata, the support for schemata which make successful

predictions i1s increased and the support for schemata which make unsuccessful predictions is
Chapter 6 elaborates on this topic further and Includes several examples.
important point to note is that this is an efficient process which Is part of the normal update and

traversal of memory (Lebowitz, 1982).

33

4.4. Integrating Multiple Sources of Information

How should several sources of knowledge be integrated into a single learning system? if
general theories of causality are ignored for the moment and attention is restricted to correlational
information and prior causal knowledge. then there are four possibilities:

+ Correlational information is used exclusively.
* Correlational information 1s preferred to prior causal knowledge.

* Prior causal knowledge is preferred to correlational information.

* Prior causal knowledge is used exclustvely.

In Chapter 5. I review several psychology experiments that assess how correlational
information is combined with prior causal knowledge. However, it is also possible to arrive at the
same conclusion by considering the implications of each possibility.

If correlational information were used exclustvely, then learning would never improve over
time. Adults, in a new situation, would adapt as slowly as small children. The problem here is
that no matter how much is already known, learning fs not constrained by existing knowledge.
There is no way to determine which similarities are relevant and which are cotncidental. Another
problem with relying solely on correlational information is the amount of memory and time
required. For example, IPP keeps track of the predictability of individual features rather than
combinations of features. Therefore, it can miss some causal relationships. This occurs when no
one feature is predictive of another but a combination of features is. For example, in kidnapping
when the ransom is demanded from a rich person who has a positive interpersonal relationship
with the hostage, one could predict that the ransom would be pald. Of course, If the ransom were
demanded from a poor relative or rich stranger, the prediction should not be made. The reason
that IPP keeps track of the predictabllity of individual features rather than combinations is that
even for a computer, there are a large number of combinations of features. If only conjuncttve
combinations (i.e., rich and relative) are considered, then if there are n featurés. there are 2*. If a
representation of a kidnapping story has 32 features (which seems like a very small number when
you consider that the attributes of three people are part of the representation of a Kddnapping
story), then there are more than four billion combinations {4.294,967,296 to be exact). There is not
enough memory in most computers to keep track of all these possibilities.

Relying on prior knowledge alone cannot fully account for learning as it does not explain
where this prior knowledge comes from. In addition, it does not account for errors in learning
such as the child who believes that balloons with strings on them float. It is unlikely that this
child had an underlying causal theory which influenced her. Rather, it is more likely that the
child attributed causality by noticing a regularity in the examples she had seen.

At first, explanation-based learning may seem confusing. After all, isn't it just learning what
s already lknown? For example, the schemata whizh OCCAM constructs encodes the same
information that was in the several schemata which were combined to produce an explanation. An
analogy may be made between explanation-based leamning and patenting inventions. Most
inventions do not rely on the discovery of new principles. Rather, most inventions which are
patented rely on known principles to solve a problemn in a new way. For example, there is a new
patented re-closeable sandwich bag. One side of the seal for the bag 18 blue, and the other side is
yellow. When the bag is completely sealed. the seal is green, but if there is a small gap it appears
blue (or yellow). There is nothing particularly novel about the fact that blue and yellow make
green, nor the fact that the two sides of a plastic bag are in contact when the bag is sealed.
Nonetheless, the company was able to patent the invention because the combination of these facts
achieves a goal in a novel manner. So, is explanation-based learning really learning? The answer
is that explanation-based learning serves an important role. Explanation-based leaming produces
generalizations which simplify understanding and prediction by storing the novel interactions
between a number of schematal”. In this respect, the goals (but not the mechanism) of EBL are
similar to those of knowledge compilation (Anderson, 1983) and chunlkdng (Laird et al., 1984).

" " dge-level
"Diettrich calls this type of leamning "symboi-level learning” (Diettrich, 1986} and distinguished it from "knowledg
learning” in which the leamner acquires addition knowledge so that more facts can be deduced (Newell, 1981).

54

There has been one learning system constructed that prefers correlational informaticn to
existing knowledge. An extension to IPP called UNIMEM (Lebowitz, 1986a, Lebowitz. 1986b.
Lebowitz, 1986¢) uses this strategy. UNIMEM operates by applying explanation-based learning
techniques to generalizations formed by emptrical methods rather than explaining and leamning
from individual examples. UNIMEM first builds a generalization and identifies the predictive and
non-predictive features. Then. it treats the predictive features as potential causes and the non-
predictive features as potentlal results. Backward-chaining production rules representing domain
knowledge are utilized to produce an explanation of how the predictive features cause the non-
predictive. If no explanation is found for a non-predictive feature it is considered a coincidence
and dropped [rom the generalization. There are two possible reasons that a predictive feature
might not be needed to explain non-predictive features: either it is irrelevant to the generalization
{and should be dropped from the generalization) or the feature may in fact appear to be cause (i.e.,
predictive) due to a small number of examples but in fact be a result. To test the later case,
UNIMEM tries to explain this potential result in terms of the verifled predictive features.

The rationale behind using correlational techniques to discover potential causal relationships,
which are then confirmed or denied by domain knowledge, is to control the explanation process. It
could be expensive or impractical to use brute force techniques to produce an explanation. Since
the predictive features are likely to be causes, UNIMEM's explanation process is more focused.
However, UNIMEM is still imited to keeping track of the predictability of individual features rather
than combinations of features since it must first form a generalization in the same manner that
IPP did. The primary difference between IPP and UNIMEM then is that once UNIMEM builds a
generalization, it checks with its existing theories to see if the generalization is consistent with the
existing theories. The problem with this approach s that existing knowledge doesn't guide or
control data analysis. but merely censors the results of a data-driven approach to learning. it
inherits many of the computational problems of empirical learning techniques, but does solve the
problem of determining which similarities are relevant and which are coincidental.

The remaining alternative is the position I argue for in this dissertation and the strategy that 1
have implemented in 0cCAM. The strategy is to attempt to use existing knowledge to perform EBL
from novel examples. If this fails, empirical learning techniques are employed to try to create a
schema by searching for a regularity among several examples. A schema once formed by
correlational means (or even by EBL) can then serve as an existing theory for future learning.
Therefore, occaM prefers EBL utilizing existing knowledge to empirical learning utilizing
correlational information. In Chapter 5, I review some psychology experiments that demonstrate
that people exhibit this same preference. However, even If one Is not Interested in modeling
human learning, there are good reasons to utilize this strategy:

* The demands on resources such as time and memory are minimized. Expensive
empirical techniques are only tried if EBL fails. One might argue that producing an
explanation also places demands on memory. However, seeking an explanation for
why an event occurred 18 an integral part of understanding one's environment!8. The

only extra processing that I am proposing is to generalize and remember the
expianation.

+ Explanation-based learning can easlly discover conjunctive combinations of features.
For example, explaining why a rich parent pays a ransom combines two separate
facts: a wealthy person is able to pay a ransom. and a parent is willing to pay a
ransom. Therefore, a good target for kidnapping is someone who is both a parent and
a wealthy person. The conjunction is created when these two facts are combined. All
other pessible combinations of {eatures need not be enumerated and considered as
they would have to be in UNIMEM for it to learn a conjunctive relationship.

In addition to similarity-based and explanation-based learning, occaM also utilizes theory-
driven learming. How should theory-driven learning be integrated with specific world knowledie

13 fact, the affect that people report is a function of the perceived cause of an outcome (Weiner et al., 1978) W r
1986). For example, people typically feel guilty if they fail at a task because of an internal controllable cause v ot
trying hard enough), and feel embarrassed when they fail due to an internal, uncontrollable cause {e.g., not he o i
enough).

53

and correlational information in a single learning system? In 0CCAM, [follow the general swrategy
that has proved useful in many Al systems of preferrin :

g the most specific knowledge (e g..
{(McDermott & Forgy, 1978)). The utility of this strategy is best illustrated when a situation fits a

general causal pattern which would suggest a causal mechanism which is not consistent with
specific knowledge of mechanisms. For example, if someone died of cancer several seconds after
the nuclear accident at Three Mile Island, specific knowledge of the time scale of death by cancer
should rule out the accident as the cause of the cancer. However, theory-driven learning is
preferred to pure empirical learning. The idea here is to allow what ever knowledge a person has
(either spectific or general) to constrain leaming. It is in this manner, that future learning can be
facilitated by previous learning. Learning improves over time in 0CCAM not because occaMm learmns
to learn. but rather 0CCAM acquires knowledge that constrains future learning.

Find the set of most
specific schemata

Create an
explanatory schema
by inducing a causal
connection

s the ayent
explained by
axisting
schemata

Add the new event to
memgry

Can several

Are there schemata be

Create an

any bined to explanatory schena
intra-axample con by generalizing the
cuas? account for exp?anation

the syent?

IAdd the new event to
nenory

before?

Create a schema by
axtracting common
features

Figure 4-7: Top-level control of occaM. After finding that the most specific schema
does not explain the outcome of an event, explanation-based learning is

attempted, followed by theory-driven learning and, finally, by similarity-
based learning,

Learmning and Memory Principle 8
" Knowledge-intensive learning strategies
are favored over data-intensive methods.

58

§

Figure 1-7 indicates the top-level control structure of occaM. It describes the memorv updace
process in occaM. Learning (i.e.. creating a new schema through generalization or specialization!
occurs when no existing schema can account for the outcome of an event.

First, EBL is attempted. [f several existing schemata can be chained together to construct an
explanation for an unaccounted for outcome, then a new schema is created by retaining those
features of the example which were needed to produce the explanation. For example, given the
knowledge that ice creams melts faster when it's hotter, melted ice cream is sticky, having sticky
hands is undesirable, it's cooler in the shade, and trees produce shade, a schema could be created
that indicates to avoid sticky hands when eating ice cream, it should be consumed under a tree!9.

Learming and Memory Principle 9

Schemata created by explanation-based learning allow
explanations for new situations to be effictently recognized.

If existing schemata cannot be chained together to forrn an explanation., theory-drven
learning {s attempted. Theory-driven learning operates by determining if a new event matches a
known pattern for a causal mechanism. These patterns exploit intra-example relationships {i.e..
relationships between potential causes and potential effect) to postulate a causal explanation for a
temnporal relationship. OCCAM contains approxdmately 20 causal patterns (see Appendix D). The
simplest pattern for a causal relationship indicates that if an action on a particular object
immediately precedes a state change for that object. then the action resuits in the state change.
Notice that this pattern requires that the object that the action is performed on be the same as the
object that changes. This is an example of an Intra-example relationship since there is a
constraint between the cause and the effect.

Finally, if explanation-based and theory-driven learning are not successful, then empirical
techniques are attempted. Empirical techniques are only applicable if there are a sufficient
number of previous examples. If only one example of an event has been encountered, then occam
cannot find a regularity and simply remembers the event. When future examples are encountered.
this event will be recalled and a regularity can be detected. The empirical techniques are-like a
safety net. Other techniques are more powerful and efficient, but if they fail, empirical techniques
can detect regularities which may be present.

Leamning and Memory Principle 10

Schemata learmed by empirical methods
allow new explanations to be constructed.

The theory implemented in occaM provides a general framework for learning how to make
predictions in the physical and social environment. When there is little specific knowledge of the
world, learning is driven mostly by the regularities in the data. It takes many examples for a small
child (and occaM) to learn about coercion from examples of disputes with playmates and
interactions with parents and siblings. Later, learning in familiar domains i{s mainly knowledge-
driven, specializing and combining existing schemata. The knowledge used for EBL is the same
knowledge it acquires through empirical learning techniques2?. Once a child (or occam) has
acquired a general framework for coercion from playground arguments and other childhocd
experiences, learning about kidnapping and economic sanctions is simplified and someday the
child may just grow up to work for the FBI or the Rand corporation.

Learning and Memory Principle 11

Data-intensive learning strategies provide the necessary
background knowledge for later. knowledge-intensive learning.

15This example was prompted by a discussion with my daughter Karen when she was three years old.

2 people, much knowledge {8 acquired by teaching (formal or otherwise). In the machine learning literature. this ‘*15
been called learning by being told (Winston, 1977). For example, the mechanism of transmission of common dlseaisesi art_
taught. rather than rediscovered by many individuals. In addition to knowledge acquired through SBL and TDL some =
occam's knowledge (e.g.. the laws of supply and demand) are programmed in by hand.

57

An implication of the theory propesed in this dissertation is that people and occam have no
real justification for their base-level beliefs. Simple causal laws may be supported only by the fact
that they have worked well in the past. For example. one may not know why glass objects are
fragile but only that glass objects are fragile. By "know why", | mean able to be inferred from other
established facts and laws, perhaps knowledge of the molecular structure of glass and axioms that
predict strength of matertals from their molecular structure?!

Although the base-level beliefs do not provide a sound foundation, acquisition of new
knowledge can nonetheless build on this foundation. For example, if a person accepts as fact that
glass objects are fragile, then this knowledge can be used to later learn that if one eats food from a
glass container that has been dropped on the floor, a sliver of glass may cause a cut. The
alternative to using "unjustified” knowledge such as glass objects are fragile to assist learning in
this situation is to wait for more observations of eating food from fractured containers to arrive at
the same conclusion. It seems fortunate that people do indeed form such base-level beliefs
without logical justification. Recall that I am not attempting to answer a philosophical question of
when one can be justified in predicting the future from past observations. Instead. [am proposing
an answer to a psychological question of what information and processes people use when
predicting the outcome of future events.

4.5. Summary

This chapter presented an overview of the theory of learning implemented in occaM. occam
prefers to create new schema with explanation-based learning since this strategy does not require
a large number of examples. If explanation-based learning is not appropriate because there is not
enough knowledge to explain a surprising outcome, OCCAM attempts theory-driven learning, by
focusing on those features of an event and its outcome which conform to common patterns of
causal relationships. If all else fails, occam attempts similarity-based learning to attempt to find
some regularity in a number of examples. In any situation, 0CCAM attempts to apply the most
knowledge-intenstve learning method which is applicable. In well-understood domains, learning is
rapld because new schemata merely encode novel implications of existing knowledge. In
unfamiliar domains, similarity-based and theory-driven learning, more data-intensive learning
strategles, propose simple causal relationships that can serve as background knowledge for later
explanation-based learning.

5 for the base-level
21Even if one did know why glass objects are fraglle, the problem that there i3 no real justfication
beliefs exists. In this instance. the base-level beliefs are simply the axioms that predict strength of ma.tcﬂatlx flro:_'n w&l;zg;
composition. It s easy to see that this problem can regress infinitely. At some level, the on.lyjustlﬁcadon;:r :w }:: i be
a number of observations, yet past observations of what has happened impose no logical restriction on what o)
the future.

58

Chapter 5

Learnin% Causal Relationships:
Empirical Investigations

There is no assumption as critical to contemporary attribution theory (or to any
theory that assumes the layperson's general adequacy as an intuitive scientist) as the
assumption that people can detect covariation among events, estimate its magnitude
from some safisfactory metric, and draw appropriate inferences based on such
estimates. There is mounting evidence that people are extremely poor at performing
such covariation assessment tasks. In particular, it appears that a priori theories or
expectations may be more tmportant to the perception of covariation than are the
actually observed data configurations. That is, {f the layperson has a plausible theory
that predicts covariation between two events, then a substantial degree of covariation
will be percetved. even if it (s present only to a very slight degree or even if it is totally
absent. Conversely, even powerful empirical relationships are apt not to be detected
or to be radically underestimated if the layperson is not led to expect such a
covariation. (Nisbett & Ross, 1978 p. 10)

The design of occamM was influenced by psychology studies that assess how people learn
causal relationships. The theory of learning causal relationiships proposed In this dissertation
integrates a number of findings from psychology. There are a number of specific claims made in
this dissertation about the process of learning causal relationships. These claims include:

* When learning a causal relationship people exhibit a preference for using existing
knowledge instead of correlating features over a number of exampies. There are a
nurmber of different ways to establish this claim. First, one could demonstrate that it
takes more examples to learn when there is no prior knowledge of a domain than
when there is prior knowledge. Second, one could show that in an ambiguous
situation, where there are several possible causes, people choose a cause that is
consistent with their prior knowledge. Finally, one could show that people will
perceive a causal relationship that is consistent with their prior beliefs even if such a
relationship is not present in the data.

Learning a causal relationship in the absence of prior causal knowledge is guided by a
general theory of causality. This can be established by showing that people require
fewer trials to learm a causal relationship that conforms to a standard pattern for
causal relationships. In addition. one could demonstrate that when the data does not
conform to a causal pattern, people will not induce a causal relationship. Many
investigations in developmental psychology have been conducted to uncover the
principles that guide the learning of causal relationships by smalil children.

« People naturally and typically try to find an explanation for a single event. Therefore.
explanation-based learning is not an expensive process since much of the effort is
essential for other tasks.

« Finally, some investigations on the revision of beliefs after presentation of new
evidence support the claim in occaM that a schema which has an explanation as its
justification is more resilient in the face of contradictory evidence.

59

5.1. The Role of Prior Causal Theories in Generalization

In this section, a number of experiments assessing the role of prior knowledge in learning are
reviewed. Early models of concept formation (e.g.. (Bruner et al., 1956)) did not consider the role of
prior knowledge. More recent models have improved on Bruner's work on concept formation. For
example, the early concept learning work has been criticized (Rosch, 1978) because it assumed
that features are distributed randomly in world. However, she argues that in the world, features
are correlated. For example. the features "has wings". "flies” and “lays eggs"” often co-occur. Rosch
proposed a prototype representation of conicepts. A prototype is a central tendency of a concept.
representing what examples of the concept are generally like. One representation of a prototype s
a set of typical features weighted by importance (Smith & Medin, 1981). Since features are not
uniformly distributed, natural clusters of features occur. It has been suggested {Rocsh et al,,
1976) that basic level categories are formed where the maximum number of features overlap

between examples of that category. In addition, the basic level categories minimize the feature
overlap between other categories2?.

One critictsm of the work on prototypes and basic categories is that it does not address the
issue of why certain features co-occur, and how people can make use of knowledge that certain
features co-occur because they are causally related (Murphy & Medin, 1985, Schank et al., 1986).
The experiments reviewed In this section demonstrate that any theory of concept leaming which
does not take into account the prior knowledge of the leamning is flawed.

8.1.1. Nlusory correlation

A series of tests were performed {Chapman & Chapman, 1967) to determine why practicing
clinical psychologists believe that certain tests with no empirical validity are reliable predictors of
personality traits. In one study. clinical psychologists were asked about their experience with the
Draw-a-Person Test (DAF). In this test. a patient draws a picture of a person that is analyzed by
the psychologist. The DAP test has repeatedly been proved to have no diagnostic value (i.e., there
is no valld correlation between features in the picture drawn and an underlying illness). Their
results illustrate the phenomenon of lllusory correlation, when the correlation between two
classes of events 13 reported by observers to differ from the actual correlation:

* Of the psychologists who responded to a survey, 80% reported that in their practice,
men worried about their manliness draw a person with broad shoulders and 82%
stated that persons worried about their intelligence draw an enlarged head.

*In the second experiment in this study, the Chapmans asked subjects (college
undergraduates) to look at 45 DAP tests paired with the personality trait of the person
who (supposedly) drew them. The subjects weére asked to judge what sort of picture a
person with certain personality traits did draw. Although the Chapmans paired the
pictures with traits so that there would be no correlation., 76% of the subjects
rediscovered the invalid diagnostic sign that men -vorried about their manliness were
likely to draw a person with broad shoulders and 55% stated that persons worried
about their intelligence drew an enlarged head.

e In another experiment in this study, the Chapmans asked anocther set of subjects
about the strength of associations between personality traits and body parts. For
example, subjects reported a strong association between shoulders and manliness,
but a weak association between ears and manliness. For four of the six personality
traits studied, the body part that was the strongest associate was the one most
commonly reported as having diagnostic value by clinical psychologists and subjects.

¢ In the final expefiment of this study, subjects were presented DAP Tests which were
negatively correlated with their strong associates (e.g.. small shoulders paired with
patients worried about their manliness). Subjects still found a correlation between
personality traits and their strong associates but to a lesser degree {e.d., 50% rather
than 76% reported that broad shoulders was a sign of worrying about manliness).

22Rosch has proposed three levels of categories: superordinate (e.g., furniture), basic (e.g., chair) and subordinate fe.2.
rocking chair).

60

There are several interesting aspects to the results of this study. First, the invalid diagnostic
signs discovered by the undergraduate subjects were similar to those used by practicing clinical
psychelogists. Second. the subjects perceived correlation when it did not exist between the
tendency to draw a picture emphasizing certain parts of the body and traits strongly associated
with these body parts. It appears that due to the semantic association between body parts and
traits, the subjects expected certain correlations and their perception was biased by this

expectation. Finally, even when negatively correlated. the semantic expectations were strong
enough to perceive a positive correlation.

A similar finding was found for particular Rorschach cards which have no validity (Chapman
& Chapman, 1969). These experiments clearly demonstrate that covariation may be perceived
when it is not actually present if there is a reason to suspect covariation. Conversely, actual
covariation may go undetected if it is unexpected. Due to the phenomenon of illusory correlation.
Kelley has qualified the covariation principle to apply to perceived rather than actual covariation.

Some people have proposed that Ulusory correlation is responsible for beliefs in astrology
(Dean. 1986) and racial stereotypes (Allport, 1954). That is, people do not conclude that certain
ethnic groups are lazy because they have observed many people of various races working and one
group stands out as the laziest. Rather, it is hearsay or rumors of laziness, perhaps motivated by
fear of economic competition, which form a belief that biases the analysis of the data. Once a
belief is present. a few examples can be found to support the belief. Any counterexamples can be
viewed as “exceptions which prove the rule”. Prior theories determine what is considered the
exception and what is considered the rule. For example, some might say "All X's are lazy. but
there are a few who work hard” while others might say "All X’s work hard, but there are a few who
are lazy”, given the same set of data but different prior beliefs. Even when the data clearly indicate
a correlation. prior knowledge can influence the perceived cause of the correlation. For example.
some person's causal theories could explain the high crime rate in certain areas due to the racial
make-up of the area. Other's causal theorles will place the blame on the high unemployment in
the area.

Should a computer program exhibit the same biases that people do? After all. prejudices ar
beliefs in astrology?® are not the most destrable characteristics. Yet, these are some of i..
implications of preferring prior knowledge and expectations to covariation information. The
alternative however, is a learming systemn that requires so much time and space that it is not
practical.

Learning and Memory Principle 12
Biases and prejudices are a side effect of a
learning strategy that favors the acquisition of
concepts that are consistent with existing knowledge.

There are benefits. of course, of allowing prior theories to bias learnirig. The experimen:s in
Sections 5.1.2 through 5.1.5 demonstrate how prior theo:les facilitate learning.

The danger in looking for correlations everywhere is that some correlations may just tum out
to be coincidences. For example, in 1965 with the aid of a computer, Gerald Hawkins (Hawiins.
1965) correlated the alignments between 165 holes and stones at Stonehenge and signuficant
astronomical locations, Hawkins concluded that Stonehenge was a primitive astronecnc.u
observatory capable of determining the summer solstice and predicting lunar eclipses. While there
is little doubt that the alignment which marks the location of the sunrise on the year's longest dav
is deliberate, most of the other proposed alignments are coincidences (Murphy, 1987). Indeed. the
system proposed by Hawkins predicts only a small fraction of the eclipses observable lrom
Stonehenge and predicts a number of eclipses which are not visible from Stonehenge (or anywhere
else on earth} (Hoyle, 1872).

There are a large number of amusing coincidences which have been found between seennng
unrelated events such as the outcome of major sporting events. stock prices. presidential electinns,
and hem lengths:

23[n defense of utilizing existing knowledge to bias learning. [should point out that the results of learoinge .
accurate as the prior knowledge. One must start out with the belief that the alignments of the sun, moon, and p.: -
influence human behavior to accept a few anecdotes which purport to prove astrology theories.

61

* When a team from the old AFL football league wins the Superbowl, the stock market
has a bad year, but when a team from NFC wins the stock market has a good year?4,

* When a baseball team from the American League wins the World Sertes, a Republican
is elected president. When a team from the Natlonal League wins, a Democrat is
elected. This rule did not hold true in 1980 when Ronald Reagan was elected, but
since a president who is elected in a year which is a multiple of 20 always dies in
office, it's possible that the Democrats didn't want to win.

s When Billy Martin is appointed coach of the New York Yankees, the stock market has
a decline. This has happened five times.

e When hemlines go up (i.e., women wear short dresses) the stock market goes up.
When hemlines go down, the stock market goes down.

If these were anything but coincidences, one would expect political action committees to
supply funds to baseball teams so that they could attract superstars, and one would see the crash
of the stock market in October 1987 blamed on uncertainty of the outcome of the Superbowl due

to unknown football players replacing the striking players or the refusal of some women to wear
short skirts.

5.1.2. The effect of differences in prior knowledge

In one study (Ausubel & Schiff, 1954), kindergarten students and sixth grade students were
asked to predict which side of a tecter-totter wouid fall when the correct side was indicated by a
relevant feature (length) or an irrelevant feature (color). They found that the kindergarten children
learned to predict on the basis of reievant or irrelevant features at appraoxtmately the same rate
(3.7 trials for relevant. 3.4 trials for irrelevant). However, the older children required significantly
fewer trials (.83 trials) to predict on the basis of a relevant feature than an trrelevant one (3.1).

Presumedly, the older children had a prior causal theory which facilitated their learning: a
teeter-totter falls on the heavier side and the longer side is likely to be the heavier side. The
younger children had to rely solely on correlation. Their performance on learning in the relevant
and irrelevant conditions were comparable to the older children in the irrelevant condition. In this
experiment, the difference in the number of trials could be attributed to the difference in the prior
knowledge of kindergarten and sixth grade students.

5.1.3. The effect of differences in tasks

I have collaborated with Professor Mort Friedman of the Psychology Department at UCLA on
two experiments. In the first, described in this section, we looked at how specific causal
knowledge facilitates learning. The second experiment, described in Section 5.2.2, investigates
how general causal knowledge facilitates learning.

In this experiment, we investigated how existing causal knowledge affects the number of trials
required to make accurate predictions. In the Ausubel and Schiff experiment they had two
subjects from two different populations attempt the same task: those with the prior knowledge
that the longer side of a teeter-totter is likely to be the heavier side and those without this
knowledge. In this experiment, we had one subject population (introductory psychology students)
and two different tasks. Each task used the same examples, a set of cards containing a
photograph of a child performing an action on a balloon (either stretching or measuring the
balloon). On different cards the balloons varied in shape {long or round) and color (blue or yellow}.
One task was to make a prediction about whether or not the child would be able to in.{latg a
balloon. Prior causal knowledge can assist in this task. The second task was to determine
whether or not the card belonged to an arbitrary category. This second task is a classic concept

When a NFC team
24When | first heard this, it was simpler. When an AFC team wins, the stock market has a bad year. _
wins the stock market has a good year. However, since then, an AFC team won the Superbowl, but the stock market had a
good year. However, the team was an expansion team who was not in the old AFL, so the rule was revised a little.

62

identification task?> (Bower & Trabasso. 1988) with the exception that the data are more naturai
stimuli?®. Of course, prior causal knowledge cannoct help the second task.

The subjects in this experiment were 120 undergraduates fulfilling a requirement for an
introductory psychology course. Subjects were divided into two conditions:

* Inflate: those who had to predict whether the child would be able to inflate the
balloon.

« Alpha: those who had to predict whether the card belonged to an artificial category
called alpha.

Subfects were presented with a card, asked to make a prediction. and then informed of the
correct answer. Trials continued until the subject was able to predict correctly on every card. We
recorded the number of the last trial on which the subject made an error. In the “lrflate”
condition. we predicted that subjects would be able to use their existing causal knowtedge about
balloons (i.e.. stretching a balloon makes it easier to inflate the balloon). We predicted that existing
causal knowledge would facilitate learning to make the correct prediction when the data were
consistent with existing knowledge and hinder learning when the data were not consistent with
existing knowledge. In the "Alpha” condition, knowledge of what makes a balloon easier to inflate
should neither facilitate or hinder classifying the cards.

Subjects in each conditton were subdivided into groups who had to predict based upon the
action performed on the balloon. (In the “Inflate” condition, some subjects saw examples that
indicated the child could only inflate a balloon if she stretched it; others saw examples that
indicated the child could only inflate a balloon if she measured it. In the "Alpha” condition. some
subjects saw examples that indicated that alpha is a child stretching a balloon: others saw
examples that indicated that alpha is a child measuring a ballocn.)

There are two major findings of this experiment. The results are significant at the .05 level
(F(3,44)= 6.03): :

¢ Subjects required fewer trials to leam to predict that a balleen which had been
stretched could be inflated (2.1 trials) than to predict that a bailoon which had been
measured could be inflated (6.1 trials). This finding indicates that knowledge of an
existing causal relationship facilitates learning. Note that there are a small number of
hypotheses consistent with the existing causal knowledge {i.e., the child can inflate all
balloons, the child can inflate no balloons, and the child can inflate stretched
balloons.) Subjects required a small number of examples to determine which
hypothesis is correct. On the other hand, if the correct answer is inconsistent with
prior causal knowledge, many more hypotheses are possible {e.g., the child can inflate
only blue balloons, the child can only inflate measured balloons, etc.). In this
situation, more examples are required before finding the correct hypothesis.

» Subjects required approximately the same number of trials to determine that a
balloon being stretched is an alpha (3.9 trials) or to determine that a balloon being
measured was an alpha (3.0 trials). Subjects in the "Alpha” condition are presented
with the same data as the "Inflate” condition. Since existing knowledge cannot help in
the "Alpha" condition, there is no significant difference between the group that learned
that stretching is an alpha and the group that learned that measuring is an alpha.
The alpha group serves as a control group. Differences in the "Inflate” condition
cannot be explained by factors such as greater perceptual salience of stretching as
opposed to measuring. Otherwise, these same differences would appear in the
"Alpha" condition.

231n concept identification tasks, subjects are presented with a number of cards containing a picture. fI'l'lc.pictures
might vary on each card according to shape (square or triangle), size (large or small). color (red or blue). A subject is §howT1
a card, asked to classify it (i.e., guess whether or not the card belongs to an artificial category with a name such as zupha_ '
and then informed of the correct answer. Then, the subject is shown the next card and the process repeats untl the
subject demonstrates that he has successfully learned the category by correctly identifying a number of cards in a row.

261nstead of determining that an "alpha” is a trangle. subjects had to learn that an "alpha” is a child measuras o
balloon.

63

[n this experiment. we have demonstrated that the process of learning to predict outcomes is
not simply comparing and contrasting examples. If this were true, then the resuits in the "Inflate”
condition would not differ from the "Alpha" condition. Instead, existing causal knowledge
facilitates learning in the "Inflate” condition when the data is consistent with the prior knowledge
so that fewer examples are needed to arrive at the correct hypothesis.

5.1.4. Selecting a cause consistent with prior knowledge

Another way to demonstrate that existing causal knowledge influences the learning of new
causal relationships is to present subjects with ambiguous stimull. For example. there might be
two potential causes which consistently covary with an effect. If one potential cause is consistent

with prior knowledge, then subjects may prefer that cause. Such an experiment was run {Bullock.
1979).

In Bullock's experiment, a small metal ball rolled down an inclined plane toward a jack-1n-
the-box. At the same time, a sertes of lights turn on and off following the motion of the bail??.
When the ball and the light appear to reach the jack-in-the-box, the jack jumps up. Adults, when
presented with this situation, typically indicate that the ball caused the jack to pop up. This cause
is preferred to the light because a light reaching an object does not result in a force being applied
to the object. Children as young as three also indicated that the cause of the jack jumping up was
the ball rather than the light. If only covariation information was used by subjects in this
experiment, then the light would be just as likely as the ball to be selected as the cause. Instead.
existing knowledge constrained the selection of the cause.

Another experiment (the "unconnected" condition) was run that was similar to the above
experiment. The only difference was that the ball and light both stopped about 6 inches away from
the jack-in-the-box. In the first experiment, close to 80% of the children indicated that ball was
the cause of the jack popping up. In the unconnected condition, the children were just as likely to
choose the light as the ball as the cause. In the unconnected condition, there is no possible
mechanism for the ball to cause the jack to pop up. This finding is consistent with the view that
specific knowledge is applied when appropriate to select the cause in an ambiguous situation.

5.1.5. Feature correlations in conceptual representation

A series of experiments were run (Murphy & Wisniewski, 1986} to assess how prior theories
effect the accuracy and confidence in learning new concepts. In one experiment, subject were
presented with descriptions of fictitious foods, furniture, flowers or vehicles. Some of these
concepts were coherent in that pairs of features could be related by prior knowledge {e.g.. a
"plapel” has a hard surface and is designed for writing on). Others were incoherent since they
contained pairs of features which violated normal expectations, (e.g.. has a cushioned surface and
(s designed for writing on). Subjects were presented with 12 examples each of two concepts of the
same type {l.e.. two fictious types of furniture). Each example was constructed by selecting 3
features from a set of 4 features which are consistently zssociated with one concept and 2 features
from a set of 3 which could be associated with either concept. For the coherent concepts, the set
of consistent features included the two features which were related by prior knowledge whilie for
the incoherent concepts, the set of consistent features included two pairs of features whose co-
occurrence violated prior knowledge.

After seeing 12 examples of two concepts. the subjects were asked to indicate the conceptual
category of 16 new examples. For the coherent concepts, subjects made the correct classification
90% of the time while for the incoherent concepts the correct classification was made 80% of the
time. In addition, subjects were more confldent in the correctness of their classification for
ccherent concepts. In a similar experiment, (Barrett & Murphy, 1986) with first and fourth grade
students (instead of college undergraduates), children correctly identified 90% of the examples of
coherent concepts, but only 53% of the examples of incoherent concepts. If subjects did not pay
attention to their prior causal knowledge, the results would be identical for coherent and
incoherent concepts.

¥7In fact, the ball causec -he lights to go on and off by completing an electrical ctreuit.
84

This experiment demonstrates that when subjects must override their existing woric
xnowledge. learning is a difficult correlational task. On the other hand. learning is facditated
when existing knowledge anticipates certain correlations in the data.

5.1.6. Forming and utilizing theories

The order in which examples are presented can affect what is learned by a serles of examples.
When subjects approach a new problem without any a priori expectations, they form an initial
theory from an initial set of data and this initial theory affects the interpretation of later data. This
phenomenon is similar to illusory correlation except that the subject acquires the knowledge in the
experiment rather than bringing the knowledge to the experiment.

In one experiment {Jones et al.. 1968). subjects observed a person solve 30 multiple-choice
analogy problems. In all cases, 15 of the problems were solved correctly. One group of subjects
saw the person solve more problems correctly in the first half and another group saw the person
solve more problems correctly in the second half. The group that saw the person perform better on
the initial examples rated the person as more intelligent and recalled that he had soived more
problems correctly. The explanation for the difference is that one group formed the hypothesis
that the person was intelligent on the initial set of data, while the other group formed the opposite
opinion. Once this hypothesis is formed. when contradictory evidence is presented it can be
discounted by attributing later performance to some other cause such as chance or problem
difficulty.

This is an important finding with respect to occaM because it describes how 0CcaM operates.
When occaM has little or no domain knowledge, it empirically creates explanatory schemata that
represent new causal knowledge. Later, these schemata influence the interpretation of new
examnples by selecting the relevant features of examples,

5.1.7. Correlation in animals

In classical conditioning, it Is claimed that animals make use of correlations between any
conditioned stimulus and an unconditioned stimulus. However, Garcia and his co-workers (Garcia
et al., 1968} have shown that there are limits to what rats will accept as an unconditioned
stimulus. In this experiment, Garcia paired two different conditioned stimuli (size of food pellet
and flavor of food pellet) with two different unconditioned stimull {immediate pain via electric
shock, delayed illness by exposure to x-ray). The rats were able to make an association between
flavor and delayed illness. but not between size and delayed illness. Additionally, the rats learned
the association between size and immediate pain, but not between flavor and immediate pain.

This study demonstrates that even in animals, learning associations between two events
depends not only on covariation between the events but also on exiting theories. While it mayv not
be a causal theory in the strongest sense, it does appear that rats have an innate mechanism to
relate illness to the flavor of food:

Since flavor is closely related to chemical composition, natural selection would favor
associative mechanisms relating flavor to the aftereffects of ingestion. (Garcia et al..
1968 page 795)

5.2. The Role of General Theories of Causality in Generalization

In this section, I present evidence that people possess a theory of causality which facilitates
learning causal relationships when certain spatial and temporal relationships exist between a
potential cause and a potential effect. These temporal and spatial relationships serve as cues it
suggest causal relationships. Much work in discovering these cues has been done n
developmental psychology. The rationale here is that young children do not have much specikic
knowledge of the world. but they appear to come equipped with a general theory of causantv
(Carey. 1984), Even adults have strong impressions of causality when these cues are present

65

5.2.1. Perceiving causality

One of the earliest inquiries into causality was conducted by Michotte (Michotte, 1963). He
conducted a series of experiments to determine when people perceive causality. In one
experiment, subjects observed images of discs moving on a screen. When the image of one disc
bumped a stationary disc and the stationary disc tmmediately began to move, subjects would state
that the bumping caused the stationary disc to move. Michotte called this the Launching Effect.

However, if the stationary disc starts moving one fifth of a second after it {s bumped, subjects
no longer indicate that the bumping caused the motion. Here we have an example of a perfect
correlation in which people do not perceive causality. From this experiment. It is clear that
correlation alone is not enough to induce causality. A stmilar finding was reported in (Bullock,

1979): children as young as five will not report causality if there is a spatial separation between
the potential cause of motion and the potential result.

5.2.2. The effect of different tasks .

The second experiment I ran in collaboration with Professor Friedman is similar in design to
the first (see section 5.1.3}. The first experiment addressed the issue of how existing causal
knowledge facilitates learning. In the second experiment, we investigated a general relationship
between the cause and the effect which facllitates learning.

The subjects in this experiment were 80 undergraduates fulfilling a requirement for an
introductory psychology course. Each subject was shown a number of videotapes of a child picking
up a balloon and then doing something {dipping the balloon in a glass of water, putting a necklace
on or snapping her fingers). In addition, on different tapes the balloons varied In size (small or
large} and color (orange or yellow). Subjects were divided into “Inflate” and "Alpha” conditions.
Subjects were shown a tape, asked to predict whether the child could inflate the balloon (or"
whether the tape was an alpha), and then informed of the correct answer. Trials continued until
the subject was able to predict correctly on 6 tapes in a row. We recorded the number of the last
trial on which the subfect made an error. Subjects in each condition were subdivided into groups

who had to predict based upon the action performed (either snapping her fingers or dipping the
balloon in water).

We predicted that subjects in the "Inflate” condition would find it easier to learn that the child
could only inflate a balloon which had been dipped in water than to learn that the child could only
inflate a balloon after she snapped her fingers. The difference here is not any specific prior causal
knowledge. Instead, knowledge about causal relationships in general is applicable. The sequence
dipping a balloon in water followed by blowing air into the balloon. followed by the balloon changing
fits a pattern for a causal relationship: an action on an object (dipping the balloon in water)
results in a state change for the object which enables a subsequent action (blowing into the
balloon) to produce a state change. In contrast, snapping fingers before blowing into the balloon
does not fit this general pattern. An important constraint i{s violated. For an action to cause an
object to change state, the action has to operate on the object.

Of course, in the "Alpha" condition, general knowledge of causality should not faciltate or
hinder learning. Therefore, we anticipated that it would take the same number of trails to (denuiv
the alpha tapes whether the child was snapping her findgers or dipping a bailoon in water.

The results of this experiment confirmed our predictions. The results are significant at the
.05 level (F(3,76) = 8.88):

» Subjects required less trials to learn to predict that a balloon which had been dipped
in water could be inflated (3.5 trials) than to predict that a balloors could be inflated
after the child snapped her fingers (7.6 trials). This finding indicates that general
knowledge of existing causal relationships facilitates learning.

+ Subjects required approximately the same number of trials to determine that a
balloon being dipped in water is an alpha (5.7 trials) and to determine that the child
snapping her fingers is an aipha (5.9 trials).

In this experiment, we have demonstrated that general theorles of causality t;jan Facilitar
learning to predict the outcome of an event. In particular, when there is a relationship between .

68

cause and an eflegt that suggests a causal mechanism (e.g.. a set of intermediate states}, then
[ewer examples are required to identify a causal relationship. The results of this experiment
indicate that the process of learning to predict the outcome of an event is not simply empiricallv
associating two events which have occurred in succession.

5.2.3. Selecting a cause consistent with a general theory of causality

One way to demonstrate that general knowledge of causality can assist the leaming of new
causal relationships is to present subjects with a situation in which there are two possible causes
if only covariation information were considered. For example, in one experiment (Shuitz.
1982] children between the ages of 2 and 13 were shown an ambiguous stimuli. Two tuning forks
were simultaneously placed in front of an open box. Orne of the tuning forks was banged against a
piece of rubber causing it to vibrate before being placed In [ront of the box. When a vibrating
tuning fork is placed in front of the box, it resonates the air column in the box. The result of this
experirnent were that children as young as 2 tended to select the vibrating tuning fork as the cause
of the sound produced by the box over the tuning fork that was not vibrating. Shultz proposed
that children selected the vibrating tuning fork because it was transmitting energy. In later
experiments, children even preferred the vibrating tuning fork over a nonvibrating tuning fork
which was in direct contact with the box. This demonstrates that the transmission of energy has
precedence over spatial proximity as a cue for a causal relationship (Shultz et al., 1986).

5.2.4. Knowledge of a causal mechanism

An understanding of the mechanism is also important in identifying whether a new situation
which is slightly different will produce the same effect. For example, in one experiment {Bullock et
al.. 1982). children were shown an apparatus that consisted of a box containing a row of blocks.
When a long orange rod was inserted in one end. the blocks fell down and pushed a rabbit out of
the box. Next. they were shown different situations. such as a different color rod. or a short rod
which could not reach the blocks and asked to predict the outcome. Children as young as three
were able to distinguish a meodification which interfered with the mechanism from one which did
not. This experiment suggests that even small children are not insensitive to a causal mechanism.

5.3. Spontaneous Causal Search

A crucial difference between occaMm and UNIMEM is that occaM attempts empirical learmning
techniques only when explanation-based techniques fail and UNIMEM applies explanation-based
learning techniques to generalizations formed by empirical means. Lebowlitz claims that
explanation-based techniques are too complex to apply to single-examples because the search for a
causal explanation is too expensive. However, the results of several studies indicate that causal
attribution is a spontaneous activity (Weiner, 1986). There are a number of different ways to
explore this issue. One procedure involves coding written material such as newspaper articles or
business reports for causal attributions (e.g., (Lau, 1984)). Another approach involves analysis of
verbal materials (either think-aloud protocols, or "bugged” conversations (Nisbett & Ross, 1978]).
A final approach has been to demonstrate that specific cognitive processes require search for
causal explanations. For example, after succeeding or failing at a particular task, the expectancy
of future success is a function of the perceived cause of success or failure. If the perceived cause
of a failure is stable, then the expectancy of future success decreases (Weiner, 1971). The results
of these studies clearly indicate that causal search is elicited by a number of conditions. such as
an unexpected event or the failure of a goal. In addition, Weiner has hypothesized that an
outcome important to the learner is more likely to result in a search for an explanation (Weiner.
1986). Similarly, Lebowitz has suggested that interest is an important factor in leaming (Lebowtz,
1984).

5.4. Perseverance of Beliefs in the Face of New Evidence

What should happen when new evidence is encountered which contradicts existing
knowledge? The answer to.this question depends upon the reason for believing the existing
knowledge. In occaM, if there is a justification for a schema (i.e., the sch_ema was formed. _by
explanation-based learning), then contradictory evidence is given little weight. However. U .
schema merely summarizes a trend which has occurred in 2 number of examples, a lew
counterexamples can be enough evidence to abandon the schema.

67

The perseverance of explained generalizations is supported by a study (Anderson et al..
1980) in which subjects, who were requested to explain a relationship, showed a greater degree of
perseverance after additional information than those who were not requested.

The ability to spontaneously generate explanations accounts for the findings of another study
{Nisbett & Ross, 1978). Subjects were asked to distinguish real suicide notes from fake suicide
notes. Subjects were given false feedback to indicate that they were exceptionally good or
exceptionally poor at this task. Later, the subjects were told that the feedback was false and they
had been randomly chosen to receive the feedback. Nonetheless, subjects who were given "poor’
feedback thought they would do more poorly at distinguishing real suicide notes from fake suicide
notes than subjects who were given "good” feedback. The reason for this phenomenon is that
subjects who did well were able to explain their excellent performance to themselves (e.g.. T am
good at figuring out people’s true feelings"), Similarly, the subjects who did poorly were able to find
an explanaton for their poor performance (e.g., "I have never know anyone who has committed
suicide.”). These explanations remain true even though the reason for creating the explanation
has gone away. Therefore, these explanations can influence the rating on how well a subject
would do in a similar task in the future. Findings such as these influenced the approach to
revising current schema when faced with new evidence that was implemented in occam.

5.5. Summary

In this section, I reviewed the evidence from psychological experiments on learning causal or
predictive relationships. These findings influenced the manner in which SBL. TDL and EBL are
integrated in occaM. The three most important results are:

1. If people have a reason to expect a correlation, they perceive one even if there is
none. Conversely, people overlook unexpected correlations. This indicates that
people prefer analytical learning strategies to empirical strategies.

2. If there is a known cause and effect relationship, learning is facilitated in that fewer
examples are required. This result explains why people prefer analytical learning
strategies to empirical strategies: analytical strategies, when applicable, arrive at the
correct conclusion sooner.

3. If there is a cue for a causal relationship, learning is facilitated. This demonstrates
that people possess a general theory of causality. When examples are consistent
with this theory of causality, learning is more focused since those hypotheses which
are not consistent with the theory of causality need not be considered.

Chapter 6
Similarity-Based Learning in OCCAM

This ts how scripts get put together in the first
place: first one experience then another on top of it
strengthening those areas of agreement and beginning
to solidify a script. (Schank, 1982, p. 39)

In this chapter, I illustrate the similarity-based learning process in oCccaM. Recall that this
process is only attempted if there is no specific knowledge that would account for the outcome of
an example and the example does not fit a known pattern for a causal relationship. In this case.
the only type of learning that is applicable is similarity-based learning.

The first step in similarity-based learning Is to detect a regularity between the outcome of a
new event and the outcome of previcusly encountered similar events. Therefore. it is quite
important to find clusters of events that share similar features. Unlike many inductive learning
programs (e.g., (Winston, 1970), (Vere, 1975), and (Hayes-Roth & McDermott, 1977)), oCCAM is not
"told” what concepts to learn and examples are not identifled as positive or negative instances.
Rather, occaM incrementally learms new concepts from examples as a natural consequence of
constructing a memory that explains and predicts the outcome of new events. A teacher does not
classify instances of concepts as positive or negative examples for occaM. Instead. the
environment performs the classifications since occam is designed to group together previous
events with similar outcomes. Section 6.1 describes this process in more detail.

Once a set of events has been identified as a useful cluster, the second step is to construct a
general description of the class of events. ©OCCAM takes a conservative approach to constructing
this general description. The most specific description that i{s consistent with the examples is
selected in a manner similar to Bruner's wholist strategy (Bruner et al., 1956). This strategy
acknowledges that the initial concept description is bound to be wrong., By choosing the most
specific consistent description. the revision process is simplified considerably. The only type of
revision necessary is to delete parts of the concept description which de not describe later
examples. The details of the incremental generalization process are describe in Section 6.2.

Finally, when adding a new event to memory, the impact of this new data must be accessed
If the new event confirms a prediction of an existing schema, the support for that schema :s
increased. On the other hand, if the event contradicts a prediction of an existing schema. the
support for that schema is decreased. The idea here is that the confirmation process should he
able to tolerate some noise in the data. Sometimes, when a glass cup is dropped, it doesn't break
Section 6.3 describes this process in more detail.

6.1. Aggregation

There are two niajor steps in finding a cluster of similar events to generalize when 4 ew
event is added to memory. The first step is to classify a new event by finding the most spec:lic
schemata that accounts for a new event. The second step is to find events which have features in
common with the new event.

89

6.1.1. Classifying a new event

The memory organization in 0CCaM classifies a new event according to the existing hierarchv
of schemata. OCCAM starts with an inttial hierarchy of schemata which represent the Conceptual
Dependency actions, goals and states {see Figure 6-1). As new events are added to memory, the

hierarchy is extended by creating spectalizations of the existing schema. The more specialized
schemata are treated identically to the initial schemata.

-

TYPE

\ 4
[ACT_type ATRANS| [BCT type MTRANS] [ACT type PROPEL] [STATE type POS5-87

Figure 6-1: Part of the initial hierarchy of schemata in occam.

Classifying a new event consists of finding the set of the most specific schemata in memory.
The algorithm for traversing memory to find the most specific schemata is illustrated in Figure 4-6
on page 53. I[n general, there can be more than one schemata returned by memory traversal. For
example, a new event, such as "Karen asking her mother to give her an apple’, might have two
most specific schemata: "The goals of Karen" and "Asking another person to achieve one's goal"
(Schank calls the latter schema delta-agency (Schank & Abelson, 1977).) If more than one
schema is returned when adding a new event to mermory, the event is indexed under each schema.
In addition. each schema may be further specialized by the learning mechanism described in this
dissertation. In practice, however, occaM typically finds only one most specific schema. This is a
result of organizing memory with a single intent: to predict the outcome of events.

6.1.2. Finding similar events

Once a most specific schema has been found, the events which have previously been indexed
under that schema are examined to attempt to find a regularity between the new example and
some prior examples. The set of events which occaM considers to be similar is a function of a
number of things. First. all events that are indexed under a particular schema share some
features in the first place. This is why they were indexed under the same schema. Only those
features which elaborate on the generalized event for the most specific schema are considered (ie..
those features which are not included in the generalized event). Second,. only those events which
are retrievable can be included in the set of similar everns. An event is retrievable if it has at least
one feature which is compatible with the corresponding feature of the new event and there are not
many?® events which are indexed by this feature. The idea here is that features that are unique or
nearly unique are good retrieval cues (Kolodner, 1984). Finally, the set of similar events is aiso
dependent on the number of features which a potential cluster of events has in common.

An example will help to make this process a little more concrete. Assume that the new event
describes the situation where Karen asks her father, Mike for a slice of pizza and her father gives
to her. The Conceptual Dependency representation of this situation is illustrated in Figure 6-2.
For the remainder of this example, [will refer to this event as pizza-1. This example is simpiified
somewhat because it does not consider the intentional links that relate this goal to other plans and
actions. In Section 6.2.4, the processing of intentional links is discussed. However, at this point.
it is worth noting that the presence of Intentional links does not affect the aggregation process.
Rather than repeating all of the features of Karen. Mike. and the pizza in the representation ol
pizza-1 in this figure, a short hand notation is used. The first time each concept is encountered a

28This is a parameter in occam. The exact value is not crucial. but it should be a small integer. Currently, the valic
this parameter is four.

70

unique-id s diven as one of the {eatures. The remaining times that the same convebtl i o~
the only feature listed is the unique-id. The uniqua-id is a means of NoUng when two cone s -
are identical. For exampie. if a glass cup is dropped on the floor. one might predict that partic s
glass cup (rather than any glass cup) will break. In this figure. pizza.001 is used as the unique
id for the pizza. and karen is used as the unique-id for the actor.

'323L actor HUMAN name KAREN
i age KID
i hair BLOND
ayas BLUE
unigque-id karen
s0al S3TRATE type POS55-BY
actor HUMAN unique-id karen
value YES
abject P-0BJ type FOOD
stype PIZZA
unique-id pizza.gd@dl
nlam ACT tyvpe MTRANS
actor HUMAN unique-id karen
to HUMAN name MIKE
relation IPT type FAMILY-REL 1
stype FATHER I
of HUMAN unique-id karen
age GROWN-UP
hair SROWN
eyas GREEN
unique-id mike
object ACT type ATRANS
actor HUMRMN unigque-id mika
objece P-0BJ umique-id pizza.@dl
to HUMAN unigue-id karen
cutcome GORL-OUTCOME type SUCCESS
actor HUMAN unique-id karen
goal STRTE type POS5-BY
actor HUMAN unigue-id karen
value YES
object P-CBJ unigue-id pizza, 931

Figure 6-2: pizza-1: Karen has a goal of possessing a slice of pizza. Her plan is to ask
Mike for a slice of pizza. Her goal succeeds.

In this example, assume the memory is as llustrated in Figure 6-3. In this case. the most
specific schema for pizza-1 is goal. Also, the following events are already in memory and thev
are indexed under goal.

RCTOR, PLAN, ETC.

PLAY=D0H-1

RCTOR, PLAN, ETC. ¢¥QCTOR, PLAN, ETC.

REFRIGERATOR-1

Figure 6-3: occAM's memory before pizza-1is added. Three events are indexed under
the goal schema.

1. zoo-1: Karen wants to go to the zoo. She asks Mike to take her to the zoo. Her goal
succeeds. The CD representation of this event is in Figure 6-4.

2. refrigerator-1: Karen wants to open the refrigerator. She pulls on the door. but 1t
doesn't open. The CD representation of this event is in Figure 6-5.

3. play-doh-1: Lynn wants some Play Doh. She asks Mike to give her some. and her
goal succeeds. The CD representation of this event is in Figure 6-6.
71

JoAL actor HLMAN nawme KRREN
age K
hair ELOND
ayas ELUE
unique-id kars=n
goal STATE type LCCATICHN
actor RUMAN unigue=-id karsn
value YES
object P=-0BJ type LIACATION
stype 200
unique-id zoo.l
; plan ACT type MTRANS
| actor MUMBAN urnigque-id karen
to HUMAN name MIKE
relation IPT type FRAMILY-REL
stype FRTHER
of HUMAN unigque-id karsr

age GROWN-UP
~air BROWN :
- a5 GREEN
unique=id mike ;
abjact RCT type PTRANS |
actor HUMRAN unique-id mike
chject HUMAMN unique-id karan
to P-JBJ type LOQCATION
stype Z00
unique-id zoo.l
outcome GOAL-OUTCOME type SUCCESS
actor HUMAN unique-id karan
goal STRATE type LOCRTION
actor HUMAN unigque-id karan
value YES
object P-0BJ umique-id zoo.l

Figure 6-4: zoo-1: Karen wants to go to the zoo. She asks Mike to take her to the
zoo. Her goal succeeds.

GOAL actor HUMAN name KSREN
age KID
! hair 8L0ND
| eyas BLUE
uniqua-id karen
goal STATE object P-0BJ type REFRIGERATOR
color WHITE
untque=-id ref . @01
cype OPEN
value YES
plan RET type PROPEL
actor HUMAN unigque-id karen
object CCOMPONENT type’ DOOR
of P-08J unique-id r=f . gdl
outcome GORL-CUTCOME type FRILURE
actar HUMAN unigque-td karen
goal STATE object P-0BJ unigue=-id ref. @@l
type QPEN
value YES

Figure 8-8: refrigerator-1: Karen wants to open the refrigerator. She pulls on the
door, but it doesn't open.

The events in memory under geal are indexed by those features which elaborate on gea.
Since goal has no features, there is an index for each feature of each event. For example. zac-:
is tndexed by the actor (Karen}, the goal {be at the zoo), the plan {ask Mike to take Karen @ .~
zoo}, and the outcome (Karen's goal of being at the zoo succeeds).

What should the criterla be for finding a similar event? In UNIMEM. for an event b * -
considered similar, it must have a number of features which are exactly equal to the new .
Exact equality makes sense tn UNIMEM because the features in UNIMEM are atomnic. [n conir.~
in occaM. the values of features can be composite objects which have their own features it~
equality were used in occam, then zoo-1 and refrigerator~-1 would be included in a Clustrflr S
pizza-1 since the actors of these events are identical. However, since these share ot
feature. such a cluster would not be useful. The generalization built to describe this clusier -
find all common features of the goals of Karen. Since the goals of Karen are varied there

72

LU 3LTSS ALMAN mame M
| age KID
{ hair BLAND
eyms BLUE
i unique=id lunn
‘ goal STATZ type POSS-3Y
actsr HUMAN unigqua=-id lvnn |
| value YES I
object P-0BJ type TOY i
stype PLAY=-JCH i
unique=+d play-daeh.l
| clan RCT type MTRANS :
2ctor HUFMARMN unique=-id lynn :
ta HUMAN rmame MIKE ‘
relation IPT type FRAMILY-REL
stype FATHER
of HUMBMN unigue=-i1d Tynn !
age GROWN-UP :
hair BROWM
eyes GREEN !
unique-id mike \
ob ect RACT type ATRANS |
actor HUMRAN unigue-id mike !
object F-0BJ unigque=id play-doh.l
to HUMAN unigque-=1d 1ynn
outcome GORL-QUTCEME type SUCCESS
actor HUMAN umique-id lynn
gcal STATE type FPOSS-BY
actor HUMBRN unigue-id lynn
value YES
object P-08J uniqua-id slay-doh.1

Figure 6-6: play-doh-1:Lynn wants some Play Doh. She asks Mike to give her some,
and her goal succeeds.

features in common between these three events. Intuitively, it seems that zoo-1, play-doh-1
should be included in a cluster with pizza-1 since they are all about asking someone to achieve a
goal. The problem is that they differ according to the details of what the goal Is and how 1t can he
achieved. The sclution to this problem is to ignore these details.)

In occaM. "ignering the details” consists of looking for compatibility of two events only to a
certain level of detail. This is implementing by first constructing a skeleton of the new event by
retaining moreZ9 levels of detail than the generalized event of the most specific schema. A skeleton
of pizza-1 with respect to the goal schema that includes one additional level of detail s
ilustrated in Figure 6-7. The skeleton with two levels of detail is shown in Figure 6-8. This 1s the
skeleton used in this example since this parameter was set to 2. The amount of detail in the
skeleton varies according to the contents of memory. The skeleton does not simply retain two
levels of detail from the new event. Instead, it retains two levels of detait more than the schema.

GORL actor HUMAN
goal STARTE
plan ACT
outcome GORL-CUTCOME

Figure 8-7: A "skeleton" of pizza-1 that retains one level of detail more than the gcal
schema.

The aggregation process is illustrated in Figure 6-9. Once the skeleton of the new event '
respect to the most specific schema has been created. the features of the skeleton are used .~
retrieval cues. Each feature of the skeleton is compared to the indices to attempt to ret™ -
similar events that share a number of features??, Each feature of the skeleton produces a clu~ws

9This is a parameter in occam. The value used (n this example is two.

39The number of features that are compatible with the skeleton is a parameter of the occaM. Since [he‘ii"
occav are bushy (l.e.. that have few features, but each feature is complex), the value of the parameter should te -
The value used in this example (s two.

73

:IRL actor HUMAMN mame KRREN
age KID
hair BLONMND
eyes BLUE
unique-id karen
goal S5TATE type POSS-BY
actor HUMAN
value YES
object P-08J
plan ACT type MTRANS
actor HUMAN
ta HUMARN
object RCT
outcame GORL-QUTCOME type SUGCCESS
actor HUMAN
goal STATE

Figure 6-8: A "skeleton” of pizza-1 that retains two levels of details.

of events. The largest cluster (provided it is larger than three3! events) is generalized to create .
new schema by the process to be described in Section 6.2.

Aggregate[Event, Schaema]
Skalaeton < CreateaSkeleton[Event, Schama]
Cluster « ()
for each Feature of Cdfeatures(Skelaton]
Evants « RatraiveEvents([Schama, Feature]
Events < LargestSubset[Feature, Skeleton, Events]
if length[Clustar] < langth[Events]
than Cluster « Events
add Event to Cluster
if length[Clustar] 2 MinClusterSize
then return Cluster
else return ()

Figure 6-9: Aggregata[Event, Schema]: The procedure that finds a set of similar
events to generalize.

The procedure RetrieveEvents returns all of the events that are indexed under a schema bv
a compatible feature. Figure 6-10 (lustrates this in more detail. The definition of Compatible is
ilustrated in Figure 6-11. Two concept descriptions are compattble if they are equal, or if for each
feature which they have in common, the corresponding feature values are compatible. Finally. the
procedure LargastSubset (Figure 6-12) finds largest subset of the retrieved events that have at
least one other feature compatible with the new event. 1hese procedures make use of the foilowing
primitive procedures:

CdHead [Cd]: returns the head of the CD structure. Edq.
CdHead[(human name {(john) gender (male))] is human.

CdFeatures [CD]; returns the set of features associated with a CD structure. Each feature is a pair
of attributes and values.

FeatureNama [Feature]: returns the name of a feature (e.g., actoz).
FeatureValue [Featurae|: returns a CD structure that s the attribute value.

Filler[Cd, FeatureNama|: returns the value of the feature with FeatureName of cd (or false
there is no feature or value).

MakeCD (Head, Features]: creates a new CD structure with the specified head and features.

11This is another parameter of occaM. Its value should be smaller than the retrievability threshold so that ocoa o« -
forget events before they are generalized.

74

MakeFeature[Name, Value]' creates a new feature with the specified feature name and (=0 o
value.
RetrieveEvents[Schema, Feature]
Events « ()
Valua « FeatureValue[Feature]
for each Index of Schema
if IndexName[Index] = FeatureNama[Featurea]
and IndexCount [Index] < RetrievabilityThreshold
and Compatible(IndexValue[Index], Valuae]

then add IndexEvent[Index] tc Events.
return Eventa

Figure 6-10: RetrieveEvents([Schema, Feature]: The procedure that retrieves events
similar to Event indexed under Schema by Featura.

Compatible [Cdl, Cd2]
if CdRead{Cdl] = CdHead[Cd2]
then return false
Valuae <« true
for each Featurs in CdFeaturssa(Cdl] while Value
Nama « FeatureName([Feature] :
Fillarl ¢« FeaturaValue[Featurs]
Filler2 « Filler(Cd2, Nama]
if Filler2
then if not{Compatible(Fillerl, Filler2]]
vValue «— false
return Value

Figure 6-11: Compatible(Cdl, Cd2}: The procedure that determines if two CD
structures are compatible.

LargestSubset [Feature, Skelatcon, Events]
Cluster « ()
for aach NewFeatura of Skelaton
TempCluster « ()
if NewFeature # Feature
then Cd « FeatureValuas[NewFeatura]
Nama ¢« FeatureNams [Nawfeature]
for each NewEvent in Evants
F «— Filler([NewEvent, Nama]
if T and Compatible(Cd F)
then add NewEvent to TempCluster
if langth[Cluster] < length[TempClustar]
then Cluster « TampClustaer
ratuzn Cluster

Figure 6-12: LargestSubsaet[Feature, Skeleton, Events]: The procedure that finds
the largest subset of Events which have at least two features in common
which are compatible with the corresponding features of skaleton.

6.1.2.1. Finding similar events: An example

In order to create a schema using similarity-based methods, occaM must find a number ol
previous events which share a number of features with a new event. The previous secticn
describes the process that finds a suitable cluster of events for generalizing in 0OCCAM. To illustrate
how this process finds a useful cluster. I will continue the example introduced in he previcus
section. Recall that memory contains three events (zoco-1, refrigerator-1, and play-doh-Z'
indexed under the goal schema when the new event, pizza-1.1s added to memory.

When pizza-1 is added to memory. goal is found to be the most specific schema. Tz

75

sreleton of pizza-1l which is illustrated in Figure 6-8 on page 74 is constructed. Zach or -

features of the skeleton is used by Aggregate as a retrieval cue. RaetriaveEvents finds @'
following sets of events for each feature:

l. acter: {zoo-1 refrigerator-1}
2. goal: {play-doh-~1}

3. plan: {zoo-1 play-doh-1}

4. outcoma: {zo00-1 play-doh-1)

For each of these potential clusters. LargestSubsat finds the largest cluster of events which
hiave at least one other feature in common which is compatible with the skeleton. In the case that
two clusters are of the same size. one is selected arbitrarily. These clusters are:

l. actor: {zoc-1} (other compatible feature is plan}

2. goal: {play-doh-1} {other compatible feature is plan)

3. plan: {zoo~-1 play-doh~1} lother compatible feature is cutcoma)
4. outcoma: {zoo-1 play~doh~1} {other compatible feature is plan)

Finallv. Aggregatae selects the largest of these potential clusters as a cluster to be generalized
and adds the new event to that cluster. If two clusters are of the same size. one is selected
arbitrarily, I[n this example, the final cluster consists of zoo~1, play-doh-1 and pizza-1. These
three events represent those goals that succeeded and whose plan was to ask someone to perform
an act (that achieves the goal). Once retrieved. these events are generalized to create a new
schemata. In the next section, [describe occam's generalization algorithm.

6.2. Constructing a General Description of a Cluster of Events

The strategy for SBL in occaM is to find all features that a cluster of events have in comman
This is similar to the wholist strategy proposed by Bruner {Bruner et al.. 1956). The prinu.
difference ts that Bruner's strategy is entirely incremental. It assumes the general descripuon .
be learmed is initially the first positive example, and removes features from the general descripticn
which are not present in new positive examples. In contrast, the strategy implemented in occ =+
waits until a small number of exarnples are encountered and the general description s all features
which these examples have in common. The reason for the difference is that occaM dees not have
a teacher to categorize examples for it. Rather, it waits untll several events share a number
features, determines that these events should formm a cluster and creates a new schema !'n
generalizing the events. The idea here is that a few initial events are formed into a new scheia
that will be further refined as more events are added to memory. Section 6.3 describes '
refinement of schemata when additional episodes are encountered.

6.2.1. Finding common features

The approach that occam takes to find all common features of a number of ever:~ -
straightforward. First, all features in common between two arbitrarily selected events is s
create a general description. Next. the general description is updated by successively Lind. ..
features in common between it and the rermaining event. The order in which the even:~
processed does not affect the final result.

The procedure that 0ccaM uses to find all features in common by two events (or gener.i..-!
events) is illustrated in Figure 6-13. This procedure ensures that the iiead of two CD struc: -~
are identical. If the heads are identical, the procedure then recurstvely collects generalwati:~ -
all features that the two CD structures have in common.

6.2.2. Finding common features: An example

In this section. I continue the example of Section 6.1.2.1. The aggregation process h.ls. :
a cluster of events (zoo-1, play-doh-1 and pizza-1) to be generalized. Figure 6-14_& LuLlel':.:
result of finding all common features of these events. Note that to conserve space in the . =

76

MaxeGeneralld([El, EZ2]

if CdHead([El] = CdHead[E2]
then return false

Features < ()

for each Feature in CdFeatures[El]
Nama « FeatureValue[Featura]
Valuel « FeatureValue[Feature]
valua2 « Filler{E2, Name]

if Value2
then V — MakeGeneralCd[Valuel, Valuel]
LE Vv

then Feature?2 ¢« MakeFeature[Nama, V]
add Feature? to Features
return MakeCd[CdHead[El], Featuras]

Figure 6-13: MakeGeneralCd([El, E£2]: The procedure that finds all features in
common between two events.

the first time a subconcept appears a unique-id is given as one of the features and this notation
is used for the subconcept when it is repeated. This generalization indicates that when a child
with blue eyes and blond hair wants something and asks her father Mike who has brown hair and
green eves, the child’'s goal will succeed. Obviously, this generalization is not accurate, but it is a
reasonable starting point. In Section 6.3.1. [describe how this generalization is refined by
encountering more examples. Much of the generalization is too specific, such as the hair and eye
color of the people involved, as well as the outcome.

GOARL actor HUMAN age KID
hair BLOND
eyves BLUE
unigque-id p.1
goal STRATE actor HUMAN unigue-id p.l1
value YES
object P-0BJ unique-id obj.l
ptan ACT type MTRANS
actor HUMAN unigue=id p.l
to HUMAN name MIKE
relation IPT type FRMILY-REL
stype FATHER
of HUMAN unigue-id p.1l
age GROWN-UP
hair BROWN
eyves GREEN
unique-1id p.2
- object ACT actor HUMAN unique-id p.2
outcome GORL-OUTCOME type SUCCESS
actor HUMAMN unique-id p.l
goal STATE actor HUMAN unique-id p.1
valua YES
abject P-0BJ unique-id cbj.l

Figure 6-14: A generalized event formed by finding all the features in common
between zco-~-1, play-deh-1 and pizza-1.

6.2.3. Creating & new schema

Once a generalized event representation has been created, by the similarity-based me .1~
described in the previous section, or by theory-driven learning described in Chapter 7 -
explanation-based learning described in Chapter 8, a new schema is created. A new schema 2
contain the generalized event which serves as a template for recognizing new events as instance- .
the schema. The following steps are followed to index the new schema In memory so that it can '~
found by future memory searches.

1. Indices from each event in the cluster of similar events are removed from the most
specific schema.

5 The new schema Is indexed in memory under the most specific schema by those
features which elaborate on the most spe7c_i’fic schema.

1

S.The new event and each simiar event are indexed by those teatures which elaborate
on the new schema.

TYPE

TYPE
P] y)
PCT =.z2 2TRALS ACT rtupe MTRANE]ACT tope PRIOPEL] SO0RL] STATZ n.-e 2705:-2

N,
RESPIGERFIOR-.

‘GDFL actor =UMAN age K[

‘ Rair BLOND

; eves BLUE

| Lnique-id p.1l

j i

T ETC. PLAN, - PLAN, ETC.

'
200-1 FLAY-DOK=-1 PLZZR-1

Figure 6-13: A picture of occam’'s memory after the goal schema is specialized by
extracting the common features of zoo-1, play-doh-1 and pizza-1.

The impact of creating the new specialized goal schema on the organization of memorv is
shown in Figure 6-15. The event refrigerator-1 and the specialized goal schema are indexed
under goal. The events zoo-1. play-doh-1 and pizza-l are indexed under the new schema
This organization allows the new schema to be located as the most specific schema when
appropriate during future memory searches. In addition, the events indexed under the new
schema can be found to specialize this schema even further. For example, if a new episode such
as Karen receiving an apple from Mike after she asks for it, {s added to memory a new
specialization will be created. This specialization will find the common features of play-doh-1.
pizza-1 and the new event. These events elaborate on the goal feature, which is "to possess an
object”. and the plan feature which is "to ask for the object to be given" (see Figure 6-16}.

6.2.4. Intentional links -

In the discussion in the previous sections of aggregation and generalization. it was assumed
that each input to occAM was a single Conceptual Dependency structure which was not related to
anv other structure. However, the actual input to occaM is a Conceptual Dependency structure
which is related by intentional lUnks to other Conceptual Dependency structures. In the examples
in the previous sections, the input was a single goal. The relationship between play-doh-1 and
other actions, plans, and goals is also represented. Figure 6-17 shows the network of related
goals. To conserve space, the action, plans, and goals are given in English rather than CD2.

The presence of intentional links does not alter the aggregation process nor the creation cf the
generalized event. However, there are several complications that arise:

« One of the concepts from the network must be selected as the main concept. The
memory search for the most specific schema utilizes just this main concept.
Similarly. the search for similar episodes indexed under the most specific schema just
utilizes the main concept. In occaM, since the input is in CD rather than English. the
main concept is identified for occam. However, there have been a number of natural
language processing systems that locate the main concept of short stories (e.d..

rigure 2-1 on page 19 shows part of the CD representation of this example.

78

ACTAOR, ETC.

GORAL actor - _MAN age KID REFRIGERRTCR-1
hair BLOND
eyas BLUE

uniqua=id p.1l

PLAN, GOAL

GOAL goal STATE type POSS-AY
plan RCT cbject ACT type ATRARNS
actor HUMAN unique-id p.2
to HUMAN unique-id p.l

. ETC. RCTOR, . ACTOR, ETC.

¥ _
PIZZR-1
PLAY-00H-1 HPPLE—ll

Figure 6-16: A schema which represents an actor’s goal of possessing an object which
is accomplished by asking someone to give the object to the actor. This
schema is indexed under the specialization of the goal schema in Flgure
6-185.

Lynn gets some Play-Dgh|
Y

CUTCOME

Mike gives L,nn PTgy—DQh}Q&D_H_I_EJLLha_L{Lynn uants some Play-Dch)
4

3

INTENDED-BY

RCHIEVED-BY Lynn plans to ask Mike {her fathe-

REALIZED-BY

¥
|Mike wants to gtue Lynn Play-Doh <RI LUBTES 7 nn asks Mike for some Play-5:-

Figure 6-17: The relationship between play-doh-1 (l.e., Lynn wants some Play-Doh)
and other actions, plans, and goals is represented by intentional links.

(DeJong, 1977), (Lehnert, 1982), (Wilensky, 1982})). The main concept in these
systems is identified so that a reasonable summary of the story can be generated.

« In addition to extracting the common features of the main concepts, the common
features of the. concepts related to the main concept by identical intentional links are
also found. It is in this manner, that not only is a goal generalized, but the means ol
accomplishing that goal are also generalized and linked to the generalized event ot the
main concept.

e When the network of generalized events connected together by intentional lin;-:s s
large, 2 macro-schema is created. [n OCCaM. there are two types of schemata: simple
schemata and macro-schemata.

A simple schema contains a generalized event which may be connected by means .l

79

intentonal lnks to a small number of other generalized events. [n additicon. a sutniple
schema also contains indices to other events and other schemata. as well as suppon
information which indicates how the schema was created and how accurate the
predictions of the schema have been. The schemata described in previous sections ol
this chapter and illustrated in Figures 6-15 and 6-16 are all simple schemata.

A macro-schemna is a high-level knowledge structure which can be thought of as a
shorthand notation for a useful network of concepts. The idea here is that instead ot
reasoning at the level of goals (e g.. obtaining an object). and actions (e.d.. asking for
art object). it is pessible to reason at a higher level. treating the interactions between
Yoals and actions as a single unit (e.g. dalta-agency). A macro-schema contains 4
sequence of events as well as the components of a simple schema. When constructing
1 macro-schema the sequence of events is constructed from the network of
generalized events connected by intentional links (by a process described in Section
$.2.5). The generalized event for a macro-schema summarizes the cbjects which play
a role in the sequence of events. A script is an example of a macro-schema. For
examplewbhe restaurant script might have the following generalized event:

RESTAURANT customar HUMAN
maal FOOD
paymant MONEY
waiter HUMAN

and a sequence of events which encode such information as the customer ordering
the meal from the waiter and the customer eating the meal.

Figure 6-18 summarizes the algorithm that occaMm follows to create a new schema with
similarity-based learning methods. [f there is a large enough cluster of similar events, a
generalized event is created by extracting the common features of the similar events. The
extraction of common features is then performed recursively on the related concepts by following
the corresponding intentional links. If there are a number of related concepts 3 connected hv
intentional links. then a macro-schema is created.

The macro-schema serves as much more than a notational shorthand. There are several
reasons for creating chunks of higher level knowledge:

= Storage economy-- Typically, there will be a sequence of events in a schema involving
a number of different actors and objects. However, oftent the actors or objects ol
several different actions will be the same. By creating a macro-schema. the attributes
of these entities need to be represented only once as attrtbutes of the roles of the
schemata.

« Ease of memory indexing-- New examples are indexed under the high level knowledge
structure in memory rather than recording them with the primitive components. Th:s
simplifies recall and recognition of known schemata.

Learming and Memony Principle 13
Macro-schemata summarnize a complex
configuration of goals. plans and events.

6.2.5. Creating a macro-schema: An example

The creation of a macro-schema is a relattvely straightforward process. I will illustrac
process by continuing the example of Sections 6.1.2.1 and 6.2.2. In this example. the « =
zoo-1. pizza-1, and refrigerator-1 have been identifled as a useful set to generalue

following steps are followed to create a macro-schema:

+¥his is a parameter in occaMm. [ts value in the current version of occam ts four.

80

Are there more

than N
p retrievable
4 instances with
\\‘ a feacyre in
N common with

S the new svent?

Creates a genesralized
auent by mxtracting
common features of
the similar events.

Index the maw =uent
by the features
which cdiffar fraom
the schema.

For eagh intentional
Tink, if all similar
instances have the

zame link as the nay
avent, then extract
cammon features

recursively,

Y
Create a neu scherma
Wwith the generalized
eyent,

Are there more
than X
intantional
links?

[Craates a macro-Schema

Figure 6-18: Top-level overview of éf&nting a schema with similarity-based learning in
OCCAM

1. A new simple schema is constructed. The generalized event of this schema is formed
from the features common to the main concept of all the instances.

2. The Intentional links of the main concept of each example are traversed. LU each
example has the same intentional link, a generalized cvent is constructed from the
related concept. For example, the goal of pizza-1 is achieved by Mike giving Karen
pizza. the goal of zeo-1 is achieved by Mike taking Karen to the zoo, and the goal of
play-doh-1 is achieved by Mike giving Lynn some Play-Doh. The common features
of all of these actions is Mike doing something. The process of finding the common
features continues recursively until all intentional lnks in common have been
traversed. A network of generalized events (s created. The results of this process are
shown for the current example are shown in Figure 6-19.

3. A generalized event {s created for the macro-schema. This Is constructed by finding
objects that play a role in the description of more than one event in the network ol
generalized events. These objects may be thought of as the roles of the schema. A
unique name is glven to each of the roles. In this example, there are three objects
which are repeated. The actor of the main goal concept is called the-actor. The

81

ZCRL-TUTIIME -upe ZLCZIS3
sctaor HUYSM acam 13

hyye S_JHE
2yes S_UE

j0al 3TRATZ actor ~_MAN age <12
hat- 30ID
_ aves BL_Z
value YES
object “-08,
dourcome
AT Tnzr HoMAN - MIK i
ST A Tane MIRE G
l 20e SROWN-UPle-B LB T EUED =3 1 gcal |
! -3~ BROWN pran .- J
1 2yms GREZM otcome L,

IN"2M2El-BY
¥
PLSN accor HUMR™ s32 «IL

2CHIEVED-8Y alan ...,

¥
ACT wyvpa MTRPMS
actor HUMARM age xID
hatie~ SLOMD
SCRL 2czor HUMAN name MIKE ‘ eyes ALUE !
relaticn ... te HUMAN rname MIKE .
age GROWN-UP! MOTIVRIES rejacion IPT cype FRAMILY-REL
hair SROWN o stype FATHER
ayas GREEN af HLMAN
3oal ... age GROWM-UP ‘
hair BROWN i
syes GREEM !
obiect ...

Figure 6-19: The result of finding the common features of concepts connected by
intentional links to the main concepts of zoo-1, refrigerator-1 and pizza-1.

actor of the action that achieves the goal is called the-helper and the object of the
goal state is called the-ob3>*. A unique name is also selected for each of the events
in the network of generalized events. These events may be thought of as the scenes
of the schema. For example, in the current example. the main concept is called
the~goal. the action that achieves the goal is called the-sub-act. A unique name
is generated for the generalized event of the macro-schema. In the current example.
the macro-schema is called delta-agency. The names of roles and the scenes
become the feature names of the generalized event. The values of these features is
constructed by replacing any occurrence of a role or a scene by a role token that
represents that role. For example. instead of the actor of the-sub-act being a
human named Mike with brown hair, the actor of the-sub-act is the-helper. [t is
in this manner that the creation of a macro-schema results in economical storage.
since the attributes of the roles need not be repeated. Furthermore, it facilitates
finding stmilarities among the scenes to specialize the macro-schema. Rather than
noticing say a person with brown hair doing a particular action under certain
circumstances for a person with blond hair, occaM can notice when the-helper
does something for the-actor. Figure 6-20 (lustrates the generalized event for the
macro-schema for the current example. The notation =THE-ACTOR indicates a role
token for the-actor.

4. The next two steps are performed to create the sequence of events. The general idea
is some reasoning can be done by treating the macro-schema as a black box
Typically, the macro-schema can predict what may occur. QOther reasoning ta_sks
require the black box to be opened up. The macro-schema can be decomposed into

oceaM operates in two modes. In unattended mode. occAM generates names for these roles f{e.g. RILZ .~
interactive mode, it asks the user to provide a meaningful name for the roles.

82

[o

M2l snas=sLtsama GUFL-JLTOGME

"E acto~ =THE-RCTGR
value YES3 :

cb;ecs =THE-BJ
the-sub-goal GCAL actor =THE~-HELPER
goa! ALT actor =THE-HELFER |
“he-plan PLAN actor =THE-ACTOR i
plan =THE-MTRANS !
the-sub-act ACT actor =THE-HELPER]
| he-goal 33JRL actor =THE-3CTCR |
! 30al STATE ag=er =THE-ACTIR
I value YES
ob fect =THE-(QBJ
clan =THE-MTRANS
cutcome GORL-QUTCOME type SUCCESS |
actar =THE-ACTCR

goal STRTE actor zT45-577 2P
vaue ri3
Jbject =T-E-I5J

the-mtrans 3CT -ype MTRANS
actor =THE-3CTOR
to =THE-HELPER :
object ACYT acter =THE-HELPER i
the-helper =HUMPN name MIKE :
retation IPT type FAMILY-REL
stype FRATHER
af =THE-ACTIQOR
age GROWN-UP
ha1~ BROWN
eyas GREEN
the-actor HUMAN age KID
hair BLOND
eyves BLUE

the=obj P-08J

Figure 6-20: The generalized event of a macro-schema. delta-agency represents a plan

for achieving a goal by asking someone to perform an action that achieves the
goal, .

the sequence of events. The sequence of events indicates why a prediction can be
made. The first step is to create a pattern that can be matched against an instance
of the macro-schema to bind vartables to the roles and scenes. This is accomplished
Dy simpiy creating a variable for each feature of the generalized event. Figure 6-21

illustrates the pattern for delta-agency. In this figure. variables are preceded bv a
question mark. -

DELTA-AGENCY the-goal ?U-17163
the-mtrans 7THE~-MTRANS
the-helper ?THE-HELPER
the-actor ?THE-ACTOR
the-obj ?THE-QBJ
the-syb-act "THE-SUB-RCT
the-plan ?THE-PLAN
the-sub-goal ?THE-SUB-GOARL
the-autcome ?THE-OUTCOME

Figure 6-21: This pattern can be matched against an instance of delta-agency binding the
variables (which are preceded by a question mark).

5. The sequence of events is created by replacing each event in the network of
generalized events created in step 2 with the corresponding variable created in step
4. An instance of a macro-schema can be decomposed into more primitive elements
by matching the instance against a pattern which binds a number of variables. The
sequence of events is then instantiated by replacing each variable by its bound
value. The sequence of events for dalta~agency is illustrated in Figure 6-22.

6. The final step is necessary to recognize new examples as instances of a macro-
schema. What is needed is a means of transforming one representation into
another. For example, delta-agency is a particular configuration that represents
the interaction between a goal and a means of accomplishing that goal {i.e.. bv
asking). When a new example has the same configuration of goals. plans. .i::

83

[?THE-DUTCAOME |
h

QUTCOME

f 1 -
CTHe-SUB=ACT V1718 |
INTEMDED-3Y

RCHIEVED-BY 3

y

REALIZED-8Y

\d
[PTHE-5UB-GOAL J<IOQIIVATES BTHE-MTRANS |

Figure 6-22: The sequence of events for dalta-agency.

actions, it is recognized as an example of delta~agency and the representation is
changed. This representation change is accomplished by matching the instance
against a pattern in the old representation and instantiating a pattern in the new
representation. The gdeneralized event of the simple schema created in step 1 serves
as a template for the old representation and the generalized event of the macro-
schema serves as temnplate for the new representation. Two patterns are created by
replacing the corresponding components in the two representations by variables.
Figure 6-23 illustrates the old pattern for delta-agency and Figure 6-24 displavs,
the pattern for the new pattern. When a variable is followed by a CD structure in
these figures {e.g., ?THE-MTRANS) it indicates that the binding of the variable is
permitted only if the component matches the CD structure (which may bind other
variables). These two patterns are called representational transfers and are

associated with the simple schema. The macro-schema is indexed from the root of
memory (see Figure 6-25).

?U=-17163 GUAL actor ?THE-ACTOR
geal STATE actar ?THE-RCTOR
valye YES
object 7THE-0QBJ
plan ?PTHE-MTRANS ACT type MTRANS
actar ?THE-ACTOR
te 7THE-HELPER »
object RCT actor ?THE-HELPFER
outcone GOAL-QUTCOME type SUCCESS
actor ?THE-RCTOR
goal STRTE actor ?THE-ACTCR

value YEB
object ?THE-08J

Figure 6-23: The pattern for recognizing a particular conflguration of goals and plans
as an instance of delta-agency.

This algorithm is summarized in Figure 6-26. It creates a macro-schema as well as a means
of recognizing new events as instances of the macro-schema. When searching memory for the
most specific schema that accounts for a new episode, if a simple schema is encountered which
has representational transfers, then the representation of the new epispdc is trgnsformed woa
higher-level representation. This is accomplished by matching the new episode against the pati~m
in the old representation. The pattern in the new representation is then instantiated and the © .2
token are inserted in the resulting new representation (as in step 3). Further memory searc:. >
well as indexing and specialization is done in the high-level representation.

84

L

TtatiLiocwe JISL-l "ITSE n,.oe I_CCESS
actior ?THE-RCICR
3¢a8l 3TRTEZ actor ?"HE-ACTOR
valye YES
. cb ect ?THE-JBJ
t=m-sub-gca 5ZPL actar TTHE-NELPER
35al ACT actor PTHE--ELPER
“he-nlan F_RN actar “THE-ACTOR
pran FTNEZ-MTRANS

rrm=sug=act ACT actae ?"HE-wELPER
ne-goal ?U-17163 30RL actar ?THE~ACTOR

j0al STATE actor ?TRE-ACTECR

value YES
oajact ?THE-CBY
olan ?THE-ATRRNS
sutzsme SCAL-QUTCIME »pe SUCZESS
actar TT-E-AC7QR
30al STATE agzor ?"=Z-RCTIR
“aiue ’E:‘; .
SEess ~£-Z8.

cheemtrans ?TWE-MTRANS ’ =8
tre=-e'per 7TRE-HELPER
sctar PTRE-ACTCR
“he-zof TT-E=28y

Figure 6-24: The pattern for creating an instance of dalta-agency once a
configuration of goals and plans has been recognized =s an instance of
delta-agency.

RCTOR ETC.

L4
GOAL actor HUMAN age XID

hair S8LOND
eyas BLUE
unique-id p.l

REPRESENTATIONAL TRANSFER
FROM GOAL TO DELTA-RAGENCY

Figure 8-23: The location of the dalta-agency schema in memory. The simple
schema indexed under goal contains a representational transfer pattern
which recognizes delta-agency.

CreateMacroSchema [NewEvent, Evants, Schema]

VI]

Create simple schema
Generalize network of events connacted by ilinks

3. Find objects which play multiple roles in the network

a nama for the macro-schama

a role name for each event in network

a role name for each repeated object
role~fillars and insert role tokans

a pattearn by making a variable for each new role
sequence of events by substituting variables

in the network of generalized eavents
representational transfer

Creata
Creata
Create
Creaeata
Creaate
5. Create

>

6. Create

Figure 6-26: A summary of the algorithm for creating a macro-schema.

6.3. Refining Schemata

There is a serious problem with making generalizations by comparing Fhe similarities a:;fdj
differences of a number of examples. The problem is even more severe if, as in occam. ;he set g
examples is small. The problem is that some of the generalizations are bound to be incorrect

83

Apparent regulanties may, in fact. turn out to be mere coincidences. OcCCAM contains .
mechanism to deal with this problem. The approach implemented in occaM is simdar 1o
technique developed by Lebowitz (Lebowitz, 1982). There are a number of differences. however.
which I shall point out in the course of this discussion.

It is important to stress that generalizations are not required to be 100% accurate. !nstead.
the generalizations in occaM describe what is usually true. For example. when a glass is dropped
from about the height of a kitchen table onto a tile floor. it typically breaks. Although there are

exceptions to this rule. it is true often enough that most parents do not give small children glass
drinking cups.

Although generalizations are not required to be 100% accurate, it is desirable that they make
correct predictions often enough to be useful. Therefore, it is important to evaluate a
generalization when more data is available.

This evaluation process consists of a number of steps:

* Noticing when a generalization makes a correct prediction.
» Noticing when a generalization is contradicted by new data.
» Correcting an erroneous generalization.

As described in Figure 4-6 on page 53. the evaluation of a generalization is done as a natural
part ot the memory search for the most specific schema that accounts for a new example. occau
maintains two counters for each feature of a generalized event of a schema. One counter keeps
track of the number of times a particular feature is present when the schema is a candidate for the
most specific schema®®. The other counter keeps track of the number of times a feature is
contradicted when the schema is a candidate for the most specific schema. From these two
counters, it is easy to compute a ratio that indicates how accurate the generalized event is at
predicting the value of each feature when it Is applicable39,

The rationale behind keeping track of the accuracy of each feature rather than an entre
generalization is that a generalization which is making an erronecus prediction need not he
discarded entirely. Instead. the generalization can be modified s¢ that an erroneous prediction s
not made in the future. For example, the dalta-agency schema predicts that when a coal s
achieved by asking a helper to perforrn an action, the helper will be a parent with brown haur
named Mike. Obviously, this prediction is not accurate. Instead of abandoning the prediction
entirely, it might be reasonable to predict that the helper has a positive interpersonal relations:p
with the actor.

When a new example contradicts a particular feature of a generalized event, and the accuracy
of the generalized event in predicting that feature is lower than a certain ratio3?, then :he
generalized event is modified. In UNIMEM, the gencralized event is modified by deleting :he
feature entirely. This makes sense in UNIMEM because the feature values are atomic. In contrust.
in occaM the feature values can be composite objects which have their own features. I[nstead .
deleting an erroneously predicted feature, the feature is generalized by retaining those [eaturex
which the predicted feature and the corresponding feature in the new example have in comnu.n
This revision process makes use of MakaGeneralCd (see Figure 6-13 on 77). For exampie ‘v
predicted feature value may be "a parent with brown hair’ and the new example may have e
feature value "a sister with blond hair”. In this case, the feature would be revised to ‘a refatnve
This revision step Is similar to the manner that the concept is revised in Bruner's wholist strated

355 schema is a candidate if its ancestor is a candidate, and the new example has a feature which is preg:c
schema (i.e., the [eature is a unique or nearly unique index).

ISUNIMEM maintains just one confidence which is tneremented or decremented. The strategy implemernic:
allows one to require a more accurate prediction when there ts a large amount of data.

37This is a parameter in occam. The current value of the parameter i3 0.8.

88

6.3.1. Reflning a schema: An example

[n this section. I continue the example of Sections 6.1.2.1. 6.2.2 and 6.2.5. In this example.
z00-1, refrigerator-1 and pizza-1 have been identifled as similar events. a simple schema has
been created which contains a representational transfer to the delta-agency schema. The
delta-agency schema is extremely speciflc since it predicts that when a goal is achieved by
asking a helper to perform an action, the helper will be a parent with brown hair named Mike. s
new episodes are added to memory, this prediction will be refined. [will show how the simple
schema and delta-agency are revised when the following events are encountered:

* apple-1: Karen wants an apple. She asks her mother Chris for one and Chris gives
her one.

* light-1: Karen wants the light turned on in the bathrocm. She asks her sister Lynin
who turns on the light.

* pizza-2: Mike wants a slice of Pizza. He asks his wife Chris to give him a slice and
she does.

» 0il-1: Chris wants some peanut oll. She asks her husband Mike who gets her some
peanut otl from the store.

Adding some of these events to memory also creates some specialized versions of
delta-agency. In this exampie, I will only concentrate on how delta-agency is refined. When
apple-1 is added to memory, the goal schema ts encountered first. There are indices from the
goal schema to a specialized goal schema from the actor, outcome, plan. and geal features (see
Figure 6-15 on page 78). Since the spectalized schema is the only schema indexed by the actor
feature. and the actor of the apple-1 (Karen) i3 compatible with the actor of the schema (a child
with blue eyes and blond hair), the specialized schema is predicted to apply to this situation.
However, the new event contradicts the plan of schema, since the to feature of the plan is
predicted to be a father named Mike with brown halr and green eyes. Instead. it Is a mother
named Chris with brown hair and green eyes. The plan feature must be revised. The commen
features between the plan of the new instance, and the plan of the schema are found and replace
the plan feature of the schema. Figure 6-27 illustrates the updated generalized event. A
comparison to the old generalized event 6-14 reveals that the only difference is that the o feature
of the plan has been revised: the name !s no longer required to be Mike, and the subtype of the
interpersonal theme (ipt) is no longer required to be father3® In addition, since the revised
schema contains a representational transfer to a macro-schema, these changes must be

propagated to the macro-schema (dalta-agency). The revised dslta-agency schema is shown in
Figure 6-28

When light-1 is added to memory. the simple schermna and the macro-schema need to be
revised again. [n this instance, the-helpez is a small child with blond hair and blue eyes. The
restriction that the-helper have brown hair and green eyes is removed. The changes to
dalta-agency are shown in Figure 6-29. From this example occaM learns that a child can also te
tha~helpaer in this plan.

When pizza-2 is added to memory there is a new contradiction since the-actor is expected
10 be a child with blond hair and blue eyes. In this example, the-actor is an adult. However. the
schema s not revised because this prediction has been accurate in ftve out of six cases. [nstead.
the confidence in this feature is lowered by incrementing the exception counter and rememberng
pizza-2 as an exception. Finally, when oil-l is added to memory. occAM learns that
delta-agency does not work just for children with blond hair and blue eyes. After the confidence
in the-actor had been lowered by pizza-2. there is now enough evidence to revise the schemu
The schema is revised once more to include this fact. Figure 6-30 shows the refined schema.

After these examples, the delta-agency schema is closer to being accurate. It contawns ne
restriction that the-helper must be related to the-actor. This reflects the fact that a small ¢ ¢
typically interacts with family members. Of course, there are many instances when a membe?

38This change actually occurs for all instances of HUMAN with a uniqua-id equal to p.2 in the network of genvs
events.

87

ZiTe EItce mLMEH oaze I3
Ratr BLOND
eyas BLUE
unique-id p.1
gocal STATE actor HUMAN unique=-id p.1
value YES
object P-0BJ unique-id obj.l
! stan ACT type MTRANS
: actor HUMAN unique-id p.l
ts HUMAN relation IPT type FRAMILY-REL
of HUMRN umique-id p.1
: age GROWN-UP
| hair ERQWN
! eyas GREEN
; unique-id p.2
[ebject ACT acter HUMBN unigue-id g.2
outcome GOAL-QUTCOME type SUCCESS
actor HUMAN unigue-id p.1
goal STATE actor HUMAN unique-id g.1
value YES
object P-0BJ unigue-id obj.1

Figure 8-27: The revised generalized event after apple-1 has been added to memory.

the-actor HUMAN eyes BLUE
hair BLOND

age KID
the-helper HUMAN aves GREEN
hair BROWN
age GROLWN-UP
relation IPT of =THE-ACTOR
typs FRMILY-REL
the-mtrans ACT objact ACT actor =THE-HELPER
to =THE-HELPER
actor =THE-RACTOR
type MTRANS
the-gcal GORL outcome GORL-QUTCCME goal STATE object =THE~QBJ
value YES
actor =THE~RCTOR
actor =THE-ACTOR

type SUCCESS
plan =THE-MTRANS
goal STRATE objesct =THE-08J
value YES
actor =THE-RCTOR
actor =THE-ACTOR
the-sub-act RACT actor =THE-HELPER
the-plan PLAN plan =THE-MTRANS
actor =THE-RCTOR
the-sub-goal GOAL goal ACT acteor =THE-HELPER
actor =THE-HELPER
the~-outcome GOAL-QUTCOME goal STATE object =THE-0OBJ
value YES
actor =THE-RCTOR
actor =THE-RCTOR
type SUCCESS

DE_TR-AGENCY tha-cb,; P-0BJ ‘\

Figure 6-28: The revised delta-agency schema. The only change is to the-helper
feature.

one's family does not help to achieve a goal. In Section 7.4, I will show how occaM deais with
these. A major difference between cccam and UNIMEM Is that occam first tries to find an
explanation for why a prediction does not hold before attempting the approach outlined in this
chapter. There are many reasons that a parent might not give a child something: the parent
might not have the desired object. or the parent might think the desired object will harm ;he .Chlld.
If these explanations are avatlable then these contradictions should not be treated as noise in the
data. Rather, there is much that can be learned from these counterexamples.

88

SELIA=RGENCY mpa-co) P=12
: the-astcor HUMPN eyes BLUE
hatr BLOND

age KID
the-reiper =UMAN relatiom IPT aof =THE-PCTOR
_ typa FRMILY-REL
tha-mtrans ACT ob:ect ACT actor =THE-HELPER
to =THE=-HELPER
actar =THE-ACTOR
type MTRANS
the=gcal Z0RL cutcame GORAL-QUTCOME gzal STATE obrect =THE-JZJ
ualue YES
agtor =THZI-3CTOR
acter =THE-ACTOR

type SUCCESS
plam =THE-MTRANS
goal STARTE object =THE-QBJ
value YZ5 |
actar =THE=-SCTOR
actor =THE-RCTOR
rha-sub-act ACT actar =THE-HELPER
the-plan 2LSN plan =THE-MTRRNS
actor =THE-ACTOR
the-s.ub-gcal GOAL geoal ACT actor =THE-HELPER
actor =THE=-HELFER
‘ the-cutcorme GOAL-QUTCOME goal STRTE cobject =THE-QBJ
value YES
actor =THE~-RACTOR
actor =THE-RCTOR
type SUCCESS

Figure 6-29: The revised delta-agency schema after apple-1 has been added to
memory. the-helper feature is changed again to remove the prediction
that the-halper have brown hair and green eyes.

‘JELTA-AGENCY tha-nn; P-CBu

the-actor HUMAN

the~helper HUMAN relation IPT of =THE-RCTOR
type FAMILY-REL

thea-mtrans ACT object ACT actor =THE-HELPER

| te =THE-HELPER

|

actor =THE-RCTOR
type MTRANS
the-goal GORL gutcome GOAL-CUTCOME goal STATE ob{ect =THE-0BJ
value YES
\ actor =THE-ACTQOR
! actor =THE-RCTOR
| type SUCCESS
| plan =THE-MTRANS
i goal STATE ob{ect =THE-0BJ
! value YES -
actor =THE-ACTCR
i actor =THE-ACTOR
! the-sub=-act ACT actor =THE-HELPER
| the-plan PLAN plan =THE-MTRANS
: actor =THE-ACTOR
' the-sub-goal GORL goal ACT actor =THE-HELPER
actor =THE-HELPER ‘
! the-outcome GORL-QUTCOME goal STRTE ob{ect =THE-OBJ
i value YES
i actor =THE=-RCTOR
actor =THE=-ACTOR
tvpe SUCCESS

Figure 6-30: The dalta-agency schema is refined to update the-actor role when
OCCAM encounters an example that shows that this plan also works for
adults.

6.4. Summary

In this chapter, I presented the occam's similarity-based learning algorithm. There are three
essential components to SBL:

1. Aggregation-- Finding a group of similar events.

2. Generalization-- Describing a regularity among a number of events. In occaMm's SBL

89

algorithm. the generalization step is conservative in that it considers any simidanty
ta be potentially relevant. :

. Evaluation-- Schemata formed by similarity-based leamning may contain

relatonships that are purely coincidental. After a schema has been proposed, it is
used to predict the outcome of future events. If it performs poorly at this task. the
schema is revised. This revision process eliminates coincidental relationships that
were present in the initial examples but did not hold for later examples.

Chapter 7
Theory-Driven Learning in OCCAM

The world . . . depends for its existence on ‘the
basic limiting principles; that no effect can precede 115
cause, that effects must be physically related (o causces.
that cause and effect if separated in space must alse *.«
separated in time. {Gardner, 1966, p. 162)

In this chapter, I describe the theory-driven learning (TDL) process in occaM. A theory that
relates potential causes and their effects can focus the-attention of a learner so that a smali
number of examples are necessary to learn a causal relationship. Theory-driven leaming lies
somewhere between explanation-based and similarity-based learming. Like EBL, the goal of
theory-driven learning ts to improve upon SBL which requires a large number of examples to arrive
at a correct hypothesis. However, like SBL, TDL does not share the principle shortcoming of EBL.
since TDL leaming mechanism can acquire new causal knowledge that is not a logical
consequence of exdsting knowledge.

In occaM, when an unexpected event occurs, EBL is attemnpted first. If existing knowler=
cannot explain the unexpected event. then EBL is not appropriate, and. TDL is tried. Theory-driven
learning determines if the event fits a known pattern for a causal relationship. If all else faus. 380
attempts to find a regularity between the new event and similar previous events.

In Section 5.2. I reviewed evidence from psychology experiments which demonstrate 'hat
veople do indeed make use of a general theory of causality when learning new causal
relationships. In this chapter, I describe how such a theory can be represented for a computer.
and demonstrate that TDL has the same benefits for a computer as it has for a person: attenin
is focused on a hypothesis that is consistent with the theory of causality. Hypotheses that ar= .1
consistent with the theory of causality need not be considered although these hypotheses m.v He
consistent with the examples encountered so far. Therefore, TDL requires fewer examples 1m0
SBL to acquire causal relationships.

B T

7.1. A Theory of Causality
In Chapter 6, I discussed the similarity-based learning process in 0OCCAM. In this chaner

discuss how one can improve on SBL even when one does not have enough existing know. 1.
produce the explanation required by EBL. Similarity-based learning exploits inter «x.i; .
relationships: TDL exploits intra-example relationships. Discovering a causal relationshipy + ' n

SBL consists of making an inductive leap®°:
When an action is always immediately followed by a state change,
then the action c¢ausas the state change.

In contrast. theory-driven learning imposes additional constraints on causal relaticr~r o -
One such constraint requires that the action operates on the object which changes state:

3% fact. this view also has a few implicit assumptions about causality: that causes must precede er- -
changes of state require a cause.

91

@When an action on an object is always immediately followed
by a state change of the object,
then the action causes the state change.

Theory-driven learning operates by taking advantage of the constraints (ie.. the intra
exampie relationships) between potential causes and potential effects to focus the search for a
hwpothesis. There are several advantages of having a theory of causality when learning to predict
and explain. A theory of causality can:

I Assist in determining the difference between a correlation and a causal relationship.
Some correlatiens such as the relationship between the outcome of the presidential
election and the World Serles®® just don't have the appearance of a causal
relationship even though they are supported by a number of examples. On the other
hand. some relationships have the appearance of a causal relationship because theyv
conform to a common pattern of causal relatlonships. For example. if an apricot is
frozen and then defrosted, it will turn brown. mushy and unappetizing. A theorv of
causality can distinguish between these two classes of relationships. It only tock
one example of an unappetizing apricot for me to conclude that this will happen in
the future if | freeze an apricot. However, although the outcome of the World Series
and presidential electlons have been correlated in the past. ! have no reasocn to
believe that they will be correlated in the future. The difference is that freezing an
apricot, followed by the apricot turning brown and mushy is consistent with a causal
thecry while the relationship between the World Series and the presidential elections
is not.

2. Determine the true cause in an ambiguous situation. For example, consider the
following event sequence. First, two events occur at approximately the same time: a
yellow taxi is seen driving on the street outside the kitchen window and a brown bird
flies into the window pane. Next, the window pane shatters. By ruling out the tax
as a potential cause for the window breaking. the search space for the probiem of
determining what causes windows to break can be reduced. Of course, correlation is- -
still needed to determine that the color of the object that strikes the window is not
important, but the weight and velocity of the object are. However, resources such as
memory can be utilized more effecttvely if they are not also required to correlate the
color and velocities of cars passing by.

3. Select the relevant attributes. A theory of causality can focus attention on the
relevant attributes. For example, if Chris breaks out in a rash after eating a peach
in the kitchen. should she avoid eating peaches in the future or should she avoid
eating in the kitchen? Specific knowledge te.g., peaches can cause allergic reactions)
could certainly rule out the location as a possible cause. However, a general theory
of causality can favor the hypothesis that the peach is responsible for the rash. over
the hypothesis that the kitchen is responsible since the location of an action does
not typically affect a causal relationships.

4. Constrain the set of potential hypothesis so that fewer examples are necessary to
arrive at the correct conclusion. For example. subjects required fewer examples to
learn that a balloon could be inflated only after it has been dipped in water than to
learn that a balloon could be inflated only after a child has snapped her fingers. A
theory of causality suggests that some hypotheses are more likely than others.

An analogy can be drawn between occaM's use of Intra-example relationships and
STAHL's (Langley et. al.. 1986} heuristics which constrain the search for the
components of a compound. For example, STAHL contains a heuristic that states
that If a substance occurs in both sides of a chemical reaction, it does not enter into
the reaction. It is conceivable that STAHL could still determine the components ol
compounds if it did not use this heuristic. However, the search space would be‘

larger and more examples would be required to rule out alternatives. Similarly.
OCCAM. intra-example relationships reduce the search for potential causes.

% & . if an American League wins the World Series, a Republican is elected president and if a team from e
League wins, a Democrat is elected.

92

Learning and Memory Principle 14

It is easler t0 leamn a causal relationship when]
experiences conform to a common pattern of causal relationships,

It is necessary to make a distinction between a theory of causality and a theory of causation.
Bv a theory of causality. I mean a set of general principles that lead one to believe that a particular
action {or class of actions) has a necessary consequence. Section 7.1.1 enumerates a number ot
these general principles. By a theory of causation, [mean specific inference rules that indicate the
effects of particular actions. A theory of causation might also be called a domain theory (Mitchell
et al.. 1986a). or sunply. causal knowledge. The objective of TDL is to construct a theory of
causation given a theory of causality and a number of observations.

7.1.1. Constraints on causal relationships

There have been a number of studles investigating what relationships between an effect and a
potential cause are required to attribute causality. These relationships include:

» Temporal order: Children as young as four require a potential cause to precede an
effect (Shultz & Mendelson, 1975). Without such temporal information one might
conclude that eating food with artificial sweeteners causes one to be overweight {since
people who eat diet foods tend to be overweight).

» Temporal contiguity: An effect must immediately follow a cause (Michotte, 1963).
When all other factors are equal, people select a cause which is closest in time to an
effect.

« Spatial contiguity: An effect must be in contact with (or near) a cause {Bullock. 1979).
When all other factors are equal, people select a cause which is closest in space to an
effect.

» Regularity: Since a cause must necessarily result in an effect, the cause and the effect
must co-occur {Shultz & Mendelson, 1975). Note that causality does not demand a
perfect correlation. However, it does imply that exceptions need to be explained by
searching for other contributing causes or qualifying conditions.

* Mechanism: An important constraint on causal relationships is the existence of a
mechanism that transmits a causal "force” to the effect. Mechanism appears to be the
dorminant constraint on causal relationships. When presented with potential causes
which violate the other Intra-example relationships, subjects prefer selecting a cause
which obeys the mechanism constraint (Shultz, 1982). An understanding of the
mechanism ts also important in identifying whether a new situatton which is slightly
different will produce the same effect {Bullock et al., 1982).

In most simple examples of causal relationships, the above constraints agree and any one will
suffice to identify a causal relationship (Anderson, 1987). The experimental finding that
mechanism is preferred when contradictory information is present can be explained by the tact
that knowledge of mechanism {s speciflc causal knowledge which {s preferred to more general
knowledge of causality. In fact. spatial and temporal contiguity can be viewed as heunsucs (it
reveal a simple mechanism in the absence of specific causal knowledge®!.

7.1.2. Representing a theory of causality

In occaMm, a theory of causality is represented as a set of generalization rules that postuliiz
explanations for stmilarities and differences between events*2, The simplest generalization ruiz
an action on an object always precedes a state change for the object. then the action resuits 1 '
state change) is displayed in Figure 7-1.

+InNgte that spatial and temporal contiguity are not useful for discovering hidden mechanisms, such as o
control of television. occam must rely solely on correlation to discover such hidden mechanisms.

26ccau contains approximately 20 generalization rules. Appendix D lists all the generalization rules,

23

\def-gen-rule
?state-1l = (state typa ?stype ;poteantial effect
value ?value
cbiect ?objact)

after .temporal relation

Pact-1l = (act type ?atype ;potential cause
ocbjeact 2object)

({?act-1 result ?stata-1l)) ;causal machanism

)

Figure 7-1: An exceptionless generalization rule (variables are preceded by "?"): If an
action on an object always precedes & state change for the object, then the
action resuits in the state change. Comments which label the components of
the generalization rule are preceded by ";".

Although the rule in Figure 7-1 appears to be very simple, it encodes many assumptions
about causal relationships which drastically reduce the search space. First, it encodes the intra-
example constraint that the action must operate on the object whose state has changed. This
would rule out a taxi driving past a window as a potential cause for the window breaking.
Secondly. it indlcates that the only important features of the action are the type of action (e.d.. an
application of force) and the object. The actor who performs the action, the time the action s
performed and any instrument with which the action is performed are not considered relevant.
For example. a ball was kicked intc a window pane and the window shattered, occam would not
consider the actor (or the actor's hair color) to be features of the potential cause. Finally. the
generalization rule in Figure 7-1 also encodes a temporal constraint. Therefore, if a ladybug flies
through the broken window after a ball has hit it, occaMm would not produce the explanation that
the window broke because [sic] the ladybug will fly through it.

Leaming and Memory Principle 15
A theory of causality is represented
as a set of generalization rules which encode
common patterns for causal relationships.

The generalization rule in Figure 7-1 is called an exceptionless generalization rule because it
applies when there are only positive examples. Other generalization rules focus on reasons that
sirmilar actions have different results. There can be two reasons that stmilar actions have different
resulis:

1. A component of the action differs. For example, the action may be performed on a
different object or have a different actor.

2. A prior action has changed the state of an object which enables the subsequent
action to result in a state change.

For each of these reasons, OCCAM contains a class of generalization rules to explain the
different results. For the first reason. the generalization rules are called dispositional
generalization rtules because they attribute a different result to differing dispositions i« .
properties) of actors or objects. The generalization rules which account for the second reason that
similar actions have different results are called historical generalization rules because tnev
attribute a different result to different histories of the objects involved.

Figure 7-2 displays a protocol of a four-year-old child trytng to figure out when she can inlate
balloons and when she cannot. Each type of generalization rule is lustrated by this protocol.

Events 1 through 4 in Figure 7-2 can be accounted for by an application of an exgeptior.:ess
generalization rule. It appears from these events that Lynn believes that she can initate ni
balloon by blowing air into the ballcon. In events 5 through 10, Lynn saw a counltcrexample (o neT
initial hypothesis and had to come up with a hypothesis that accounts for a different resu.t "o
second time she tried to inflate a balloon. The two balloons differed in color and her h_xp‘m::wg\
can be accounted for by a dispositional generalization rule that attributes the different resuit t. ..~
different color balloon. This hypothesis is contradicted by the next events (10 through 1ol -
she determines that the color of the balloon is not important. Instead. she attributes the duler

94

Mike s blowing up a red balloon.

Lynn: "Let me blow it up.”

Mike lets the air out of the balloon and hands it to Lynn.
Lynn blows up the red balloon.

Ll

Lynin picks up a green bhalloon and tries to inflate it,
Lynn cannot inflate the green balloon.

Lyvnn puts down the gresn balloon and looks around.
Lymin: "How come they only gave us one red one?
Mike: Why do vou want a red one?’

0. Lynn: "I can blow up the red ones.”

- ©® NG

11. Mike picks up a green balloon and tnflates it.

12. Mike lets the air out of the green balloon: hands it to Lynn.
13. Mike: "Try this one.”

14. Lynn blows up the green balloon.
15. Lynn gives Mike an uninflated blue balloor.
16. Lynin: "Here, let's do this one.”

Figure 7-2: Protocol of Lynn (age 4) trying to blow up balloons.

in result to a different action which preceded her successfully Inflating a balloon. This hypothesis
can be accounted for by a historical generalization rule.

{def-gen-rule
?stata-1l = (state type ?stype ;potantial effect
value ?value
cbject ?cbject)

after ;temporal relation

?act-1l = (act type ?atype ;potaential cause
obijact ?obiject)

((?act-1 result ?state-1)) ;causal mechanism

(:difference ?act-1l actor) ;diffarance note

)

Figure 7-3; A dispositional generalization rule: if similar actions performed on an object
have different results, and they are performed by different actors, the differing
features of the actor are responsible for the different result.

Dispositional and historical generalization rules focus on reasons that similar actions have
different resuits. For example, 0cCaM contains a dispositional generalization rule that blames the
actor for different results of actlons whose actors differ !see Figure 7-3). This rule would focus the
search for an explanation on the different features of the actor. For example, there are many
actions which aduits can successfully perform but children cannot (e.g.. a heavy object rmusht
move if an adult pushes it, but not a child}. Of course, without prior knowledge. 0CCaM must
correlate features of the actor with outcomes over a number of examples to discover that ade
rather than hair color is relevant. Generalization rules in 0ccaM are ordered by simplicity**. The
dispositional rule (n Figure 7-3 would only apply if the exceptionless rule in Figure 7-1 was not
able to make accurate predictions without considering differences in the actor.

The final type of generalization rule attributes different results of similar actions to deTerqem
histortes of the objects involved. For example, one historical rule {displayed in Figure 7
attributes the difference in a result to the existence of a state of an object which enables the resu
This rule would reveal relationships such as removing the top from a bottle resuits in a state which
enables the contents to come out if the bottle is overturned or that stretching a balloon results in 4
state which enables blowing air into the balloon to inflate the balloon. Recall that simblier
generalization rules are tried before more complex ones. This rule would only apply if the effect .s
not adequately explained by simpler rules such as the ones in Figure 7-1 or Figure 7-3.

3This is why | named the system occam. The simplest generalization rule produces the simplest hypothesis.

95

(def-gen-rule

?state-2 = (state type ?stype ;potential effact
value ?value
object ?object)

before ‘tamporal ralation

?act-2 = (act type ‘atype-2 ;potential cause
object ?object)

{{?act-2 result ?state-2) ;causal mechanism

(?act-1 result
?state-1 = (state object ?object))}
(?state-1 enables ?act-2))
{(:link ?act-2 before ;condition
7act-1 = (act type 7atype-1l
object 2cbject))
}

Figure 7-4: A historical generalization rule: {f an initial actlon (?act-1) on an object is
always present when a subsequent action (?act-2) precedes a state change
{?state-2) for the object, then ?act-1 results in a state {?state-1) which enables
7act-2 to result in the state change (?state-2).

The experiment discussed in Section 5.2.2 {(when subjects found it easier to learn that a child
could inflate a balloon after she had dipped it in water than to learn that the child could inflate a
balloon after she snapped her fingers) demonstrates the necessity of the rule in Figure 7-4. In
particular, the object of 7act-1 is the same as the object of ?act-2 when the balloon is dipped
in water before blowing air into it. Therefore, the generalization rule in Figure 7-4 would apply and
suggest that dipping the balloon in water results in some (unspecified} state which enables blowing
into the balloon to make the balloon larger. In contrast, when the child could only inflate the
bailoon after she snaps her fingers the generalization rule in Figure 7-4 does not apply because the
object of the two actions (snapping fingers and blowing air into the balloon) differ. In fact, occam
coritains no generalization rules which match this situation and is forced to rely on empurical
methods alone by comparing and contrasting features of positive and negative examples. As a
consequence. it takes more examples for occaMm to learn that snapping fingers is predictive of the
balloon than to learn that dipping the balloon in water is predictive.

[ACT type MOVE
i actor HUMAN eyes BLUE
I hair BLOND ACT type PROPEL
age CHILD actor HUMAN eyes BLUE
obiect FINGER of HUMAMN eyes BLUE | AFTER hair BLAOND
hair BLONMD age CHILD
age CHILD object AIR
to PALM of HUMAN ayes SLLUE to BRLLOCON
| hair BLCND
[age CHILD

STRTE type INFLATED
object BALLOON
valus YES

Figure 7-3: A generalization created by empirical methods describing the situation
when a balloon is inflated only after the child snaps her fingers.

The rule in Figure 7-4 also {llustrates an important capability of occaM. Iq addition L
predicting the outcome of an action, OCCAM also constructs a causal mechanism which aCCOAL:n’ts
for how the action brings about the outcome. Therefore. it should be able to predict the outco e
of similar events by determining if they interfere with the postulated mechanism more accuriy
than approaches which rely entirely on similarities and differences between prior examples. : LT
7-5 illustrates the generalization that occaM constructs to describe the situation when a ballo: o s

inflated after a child snaps her fingers. It is constructed entirely by empirical methods i
96

cutitains temporal links but no cawusal links. In contrast. Figure 7-6 ilustrates the generaiva., .
thal occam constructs to describe the situation when the child can inflate the balloon cnlv at-er -
has been dipped in water.

STATE type INFLATED sy ACT type PROPEL
objact BALLJON|eR LI object AIR
valtue YES to BRLLOON

'y
3
N
A
)
L
E
S
RCT type PTRANS

object BALLOONB.ES UL T WSTATE cbject SALLOGH]

to WATER

Figure 7-6: A generalization containing a causal mechanism is created when a
situation matches a known causal pattern. This generalization describes
the situation when the child can inflate the balloon only after it has been
dipped in water.

7.1.3.-The process of theory-driven leamning

In occaM. a current best hypothesis (Mitchell, 1982) {s formed by generalization rules which
detect simularities and differences among the attributes of an observed event and recalled previous
events. OCCAM selects a current best hypothesis rather than maintain a set of consistent
hypotheses {e.g., (Vere, 1975, Mitchell, 1982)} for a number of reasons:

» The set of consistent hypotheses can be very large. For example, consider the
following situation: Karen {a young girl with blond hair and blue eyes wearing a green
sweater) pulls on the refrigerator door but it doesn't open. Mike {an adult male with
brown hair and green eyes wearing a blue sweat shirt} pulls on the refrigerator door
and it opens. There are six attributes with different values for Karen and Mike which
can generate consistent hypotheses. {e.g., when a person with green eyes pulls on the
refrigerator door, it opens.! In addition, these attributes may be combined
conjunctively or disjunctively to form a large set of consistent hypotheses.
Psychological evidence (e.g., (Bower & Trabasso, 1968, Levine, 1967)) indicates that
only one or a small number of hypotheses are considered at one time. Thus
generating a causal hypothesis is treated as searching the space of possible
hypotheses,

Before a sufficient number of examples have been encountered to rule out alternative
consistent hypotheses, it may be necessary to predict the outcome of a new event.
The current best hypothesis can serve as the source of this prediction.

When a new example falsifies the current best hypothesis, a new hypothesis is selected r
the set of consistent hypotheses. [n Winston's ARCH program (Winston. 1975}, DALTON {Langlev -
al.. 1986) and in RULEMOD {Buchanan & Mitchell, 1978) domain-specific heuristics select the nv
hypothesis. However, since theory-driven learning in 0CCAM assumes no initial domain knowle..»
the approach advocated here differs from the ARCH program, DALTON and RULEMOD in the folluwir
wavs:

o [nitially. the current best hypothesis is selected randomly from the set of consistent
hvpotheses** subject to the constraint that simpler hypotheses are selected first: cone
attribute discriminations are selected before conjunctive combinations and disjuncuve
combinations (cf. (Schlimmer & Granger, 1986)).

“*occav does not currently make use of cue salience information (Trabasso. 1963).

97

« Disuncuons that have proven useful in the past influence the order in which causal
hypotheses are generated. For example. after a number of examples, assume that the
current hypothests indicates that when adults pull on the refrigerator door, it opens.
Later. when presented with examples of an adult with brown hair successfully
inflating balloons, and a small child with blond hair unsuccessful at the same task.
the age attribute would be preferred to the hair-color attribute. The hypothesis that
when an adult blows into a balloon. it will inflate is considered before the hypothesis
that when persons with brown hair blow into a balloon. it will inflate. As occam
learns about specific causal relationships, domain-specific heuristics (e.g.. adults are
strong) are also learmed that guide the search for the current best hypothesis on new
problems. Section 7.2 discusses this {ssue more thoroughly.

In RULEMCD, all previous examples are remembered so that the set of consistent hypotheses is
always consistent with previous examples. In the ARCH program, no previous examples are saved
so that the set of hypotheses may contain hypotheses which are not consistent with previcus
examples. 0cCCaM takes a compromise between these two extreme positions. In occaM. the exact
number of previous events recalled from memory is dependent on the retrievability of each event as
determined by the unique features of the events (see Section 6.1.2 on page 70 or [Kolodner, 1984,
Lebowitz, 1980, Pazzani, 1985).) Typically, at least one positive example and at least one negative
exampie are recalled when selecting a new hypothesis. In addition, the current example and the

current incorrect hypothesis constrain the set of consistent hypotheses (Bower & Trabasso. 1968,
Levine. 1966).

When a new event is added to memory. if there is no schema which accounts for the outcome
of the event and the outcome cannot be explained by combining existing knowledge, TDL is
attempted. The process of TDL consists of the {ollowing steps:

l. Finding the most specific schemata and retrieving similar events (i.e., events which
share at least one retrievable feature.} These events may also include the generalized
events of more specialized schema associated with a most specific schema.

2. Creating two sets of events, those with the same outcome as the new event {this set
also includes the new event) and those with different outcomes.

3. If there are no events with a different outcome, the exceptionless generalization rules
are tried. If there are events with different outcomes, dispositionai generalization
rules are tried and (f no dispositional generalization rules apply. then historical
generalization rules apply.

4. To apply a generalization rule, first a generalized event is created by finding all
features common to the set of events with the same outcome (see Section 6.2.1 on
page 76). In the case that the set of events with the same outcome only contains the
new event then the generalized event is the new event. Next, the generalized event is
matched against the potential cause and potential effect of the generalization rule.
Applying generalization rules to generalized events ensures that the causal
relationship obeys the regularity constraint. Various generalization rules explicitly
encode the temporal, spatial. and mechanistic constraints. The remaimng
processing is dependent on the type of generalization rule: >

s Exceptionless: A new schema is created. The generalized event of the new schema is
constructed by replacing the variables in the causal mechanism by the corresponding
components with all features removed in the generalized event*S, For example. i a
pattern is (performing an action on a component of an object):

ACT typa ?atypre
object COMFONENT type ?ctype
of ?okhject

“5This removing of features is a means of implementing generalization to the most specific class of the object.

98

and the generalized event constructed from the set of events with the same outcome s
{a blond female pulling on the door of a large white refrigerator):

ACT type PROPEL
actor PERSON hair BLOND
gender FEMALE
object COMPONENT type DOCR
of REFRIGERATOR coclor WHITE
size LARGE

then the generalized event of the new schema is {pulling on the door of a refrigerator):

ACT type PROPEL
object COMPONENT type DOOR
of REFRIGERATOR

s Dispositional: The difference note of the generalization rule (see Figure 7-3) indicates
that a feature of the potential cause might be responsible for the different result. For
example, the difference note of the generalization rule in Flgure 7-3 indicates that a
feature of the actor of the cause may be responsible. Any of the features of the actor
which occur in the generalized event is a potentlal candidate. Those candidate
features which are also present in an event with a different outcome are eliminated
from consideration. (If there are no candidate features, then the generalization rule
does not apply.) One feature is selected from the remaining candidates and
hypothesized to be responsible for the different outcome (i.e.. the causal relationship
only holds when that feature is present). Section 7.2 describes this selection process
in more detail. The generalized event for a new schema is created in a manner
identical to the exceptionless generalization rules except that the generalized event
also contains the feature hypothesized to be responsible for the different outcome.

e Historical: The condition of the generalization rule indicates that the causal
relationship is conditionally dependent on some previous action (see Figure 7-4}. The
condition contains a temporal or intentional link that indicates how to find this
action. This search is made for each event with the same outcome the retrieved
actions are generalized by extracting common features and the resulting generalized
action is matched against the pattern in the condition. If the match (or the
generalization) is unsuccessful, the generalization rule does not apply. Otherwise, a
new schema is created and the generalized event for the schema is created in a
manner tdentical to the exceptionless generalization rule. Typically, the causal
mechanism of a historical generalization rule is more complex than that of an
exceptionless generalization rule.

The generalized event for a schema is perfectly suited for recognizing if a new example is an
instance of that schema. However, it s not ideal for constructing an explanation by chainng
several schemata together since the generalized event does not contain any vartables. To address
this issue, a "rule” format of the generalized event is also constructed. Any variable which appears
more than once tn the causal mechanism of a generalization rule is not instantfated in the rule
forrnat of the generalized event. This ensures that an object which appears in the cause is
identical to the object that appears in the effect. rather than just compatible. For example, when a
glass cup is dropped, one would expect that cup to break rather than a different glass cup. (n
Section 7.1.4, [illustrate the rule format of a generalized event.

7.1.3.1. Evaluation of schemata created by theory-driven learning

Typically, with TDL a schema is initially created from a small number of experiences. Such a
schema is subject to revision when more examples are observed. The evaluation of these‘ scherpa
is accomplished in a manner similar to that of schemata formed with SBL (see Section 6.3].
Generalizations are not required to be 100% accurate. A schema constructed by TDL contains a
counter that is incremented during memory search when a successful prediction is made. and
another counter that is incremented when an incorrect prediction is made. When the rauo !

99

these counters s lower than a certain value*®, then the schema is eliminated. The correction =ep
differs from the correction of schema created by similarity-based learning. In SBL. as 'xmplememed
in occaM, there is a conservative incremental strategy for refining a hypothesis. [n contrast. in
TDL. occam is gambling that its hypethesis is indeed correct. If the hypothesis turns out to be
correct, then less effort (in terms of hyvpotheses considered and examples processed) was required
to arnve at the correct hypotheses. However. a price must be paid if the hypothesis is incorrect.
suce a new hypothesis cannot be easily constructed {rom the incorrect hypothesis. I[nstead.
CCAM must try other features of the example or other generalization rules to come up with a new
hvpotheses. The experimental evidence from psychology indicates that this gamble is worth taking
{see Section 5.2.2). since learning is facilitated when a relationship is consistent with a theory of
causality and is hindered when it is not. [n addition. Section 7.3 compares the performmance of

.CaM using TDL and occaM using SBL. The results indicate that fewer examples are requ.red to
tfind a correct hypothesis with TDL.

7.1.4. Theory-driven learning: An example

In this section, I illustrate the process of theory-driven leaming with an example. The input
to occaM is the Conceptual Dependency representation of the situations described in Figure 7-7
The data correspond to the expertment in which the child could only inflate a balloon after it has

been dipped in water (see Section 5.2.2). The representation of the first example is illustrated in
Figure 7-8.

1. The child dips a small yellow balloon in water, blows air into the
balloon and the balloon is inflated.

2. The child snapas har fingers, blows air into a large yellow balloon and
the balloon is not inflated.

3. The child puts on a necklace, blows air into a large orange ballooen
and the balloon is not inflated.

4. The child dips a large yelloew ballcocon in water, blows air into the
balloon and the balloon is inflated. ’

Figure 7-7: Input to occaM describing the situation when the child can only Inflate a
balloon after it has been dipped in water.

ACT type PTRANS RCT type PROPEL
actor HUMAN eyes BLUE actor HUMARN eyes BLUE
hair BLOND hair BLOND
age CHILD BETER, age CHILD
object BRLLOON size SMALL to BALLOGCN size SMALL

color YELLOW color YELLOW
to WATER object RAIR
|54

[STRTE type INFLRTED
object BALLOON =ize SMALL

color YELLGCW
value YES

Figure 7-8: CD representation for "the child dips a small yellow balloon in water,
blows air into the balloon and the balioon is inflated.”.

When presented with the first example (the child (nflating a small yellow balloon after dipp:inid

6This is a parameter in occaM. The current value of the paramcter is 0.8,

100

i water). the situation matches a generalization rule similar to the one in Figure 7. AR

constructs a generalization which tndicates that blowing alr into a balloon results in the ba
being in{lated. This changes the temporal link "after” to a causal Unk "result” (see Figure 7-9),

RCT type PROPEL
object RIR

Loon

to BRLLOCN

T

STATE type INFLATED
value YES
object SALLOCN

Figure 7-9: A generalization which indicates that blowing air into a balloon results in
the balloon being inflated.

[n addition to the generalized event, the schema created also contains a rule format of the
generalized event that can be used for constructing plans or explanations. The rule forma:
cortains a variable where the balloon is located in the generalized event since the balloon which
is inflated must be the same bailoon which has air blown Into it. Figure 7-10 contains the rule
format. For the remainder of this example, [will ignore the rule format of a schema. However. the
reader should keep in mind that this is being constructed when a new schema is created. The rule
format of a generalized event will be quite important in Chapter 8 which discusses explanation-
based learning (which uses the rule format of schemata created by similarity-based and theory-
driven learning].

ACT type PROPEL
object RIR
to 7Vl

cbject ?VU1

Figure 7-10: A rule format of the generalization that indicates that blowing air into a
balloon results in the balloon being inflated. Variables are preceded by
ur?n.

The next exarnple is the child not inflating a large yellow balloon after snapping her funirm
occaMm first discards its current hypothests, since it predicts that all balloons will be inflated «@er
air is blown into them. A generalization rule suggests a difference in the size attribute ot 'ne
balloons is responsible for the difference in the result: small balloons can be inflated and .arue
balloons cannot (see Figure 7-11). (A number of subjects in the experiment reported alterms i~
that they entertained this hypothesis.)

A third example s consistent with the current hypothesis (the child not inflating a aroe
orange balloon after putting a necklace on). so OCCAM retains its current hypothests.

i7The generalization rule differs siightly because in Conceptual Dependency, the dg;tmaUOn of an acgon car : - -
as a consequence of the acdon. In the representaton of "blowing air into a balleon”, the type of action 15 4 «
object is "air” and the destination is “balloon”.

101

ACT £upe PROPEL
object RIR
to BALLOON size SMALL

8
S

r

STATE type INFLRTED
valum YES
object BALLOCN siza SMALL

Figure 7-11: A generalization which indicates that blowing air into a small balloon
results in the balloon being inflated.

The next example {the child inflating a large yellow balloon after dipping it in water) does not
agree with the prediction of the current hypothesis. It is discarded. A generalization ruile simular
to the one in Figure 7-4 suggests that the action before blowing air into the balloon (dipping the
balloon in water) results in a state which enables blowing air into the balloon to tnflate the ballcon.
The generalization which describes this situation is lustrated in Figure 7-6 on 97.

7.2, Dispositions

Recall that a dispositional generalization rule Indicates that a certain class of actors or
objects is required for a causal relationship to hold. However, a generalization rule does not
indicate what particular class of actors or objects Is required. ©CCAM must come up with a current
best hypothesis from the set of hypotheses which are consistent with the observed data. For
example. when Karen cannot open the refrigerator but Mike can, a generalization rule indicates
that some feature of the actor is responsible. But is it the hair color, eye color, age or shoe size?
In the absence of any knowledge. occam must stmply guess. In this section. I describe how occav
can do better than guessing, by learning what sort of hypotheses have been successful in the past.

How c¢an prior leamning facilitate the selection of the current best hypothesis from a set of
consistent hypotheses? One simple approach might be to keep track of the features that have
entered into previous successful hypotheses. For example, consider a child eating pieces of a
pineapple. The pleces can be different shapes (square or triangular) or different colors (yellow or
white). Eventually. the hypothesis that the yellow pileces of plneapple taste better may be
considered and supported by a number of examples. Should color be preferred in future
hypotheses? Unfortunately, preferring color indiscriminately would hinder rather than facilitate
learning in many situations. Consider the earlier example of the refrigerator opening after Mike
pulls on the door. but not opening after Karen pulls on the door. If color were preferred. the best
hypothesis might be that when a person with a blue shirt pulls on the door, the refrigerator will
open. The problem with this simple approach is that the context In which a preference is made :s
ignored,

The approach that I take in occam differs from the above simple approach in two ways:

1. Features that have entered into previous successful hypotheses are preferred in
more restricted situations. These situations are determined by the type of the cause
in the generalization rule and the type of the generalization rule. For example, aiter
inducing that the refrigerator door will open after an adult pulls on it, the preference
for age applies only to the actor of this type of the action (propel, an application of a
force) and to the same type of generalization rules {lL.e., those which attribute a
difference in a resuit to a difference in the actor).

2. The features that have entered into previous successful hypotheses are used to
create dispositions. These dispositions represent capacities or potentials. For
example, after occam induces that the refrigerator door will open wt}ler; an adult
pulls on it, a dispositional attribute (which might be called "strengt.h] is created.
where strength is the tendency for an application of force by a particular actor to
result in a state change.

Leaming dispositions that select a hypothesis from the set of consistent hypotheses ¢..:.

102

Lroken into two subproblems. First. one must deterrmune the class of situations 6 which iz
disposition.. applies. This is not learned by occaMm. Instead occaM assumes that the ciass '
situations is defined by the rype of action and by the feature which the generalization ruie
indicates is responsible for the different outcome*® Second. one must learn what features indicate
that an actor or object possesses a disposition. OCCAM learns this when it postulates that diferent

tratures are respeonsible for different outcomes. Dispositional attributes are created and used o
the following manner:

1. A dispositional generalization rule has found two sets of similar actions with different
outcomes. This dispositional generalizatton rule indicates that a difference m one of
the roles of the action {e.g. the actor) may be responsible.

2. occaM looks for differences between the two specified roles of the two sets of actions.
For example. an action may have one outcome when the actor is an adult with brown
hair and a different outcome when the actor is an infant with blond hair. Each
difference (e.g.. age or hair color) is a candidate hypothests which is consistent with
the data. If there are no differences, then the dispositional generalization rule does
not apply to this situation and other more complex generalization rules are tried.

3. occaM sees if there exist any dispositions that apply in this situation. For example,
if the type of action is a propel, then occaM might have already learmed a "strength”
disposition which (ndicates that the actor's age can be responsible for the different
outcome. If this disposition is consistent with the data, then a hypothesis is selected
which indicates that "strength” and, therefore, "age" determined the outcome of the
action. In addition. when a disposition suggests a hypothesis. the confidence in that
disposition s increased. On the other hand, f the disposition should apply to the
situation. but is not consistent with the data, the confidence in the disposition is
decreased. If the confidence fails below a threshold, the disposition is deleted.

4. If there are no dispositions which apply. occaMm creates one. This is accomplished by
selecting one feature at random from the set of differing features. The user is asked
to give this new disposition a name (or OCCAM generates an intermal name such as
disp.43) for this disposition. The differing feature becomes the feature which
indicates the class of objects which have this disposition. The disposition is
assoclated with the generalization rule indexed by the type of action. The disposition
can be used to select future hypotheses as in the previous step. However, if it is not
successful at this task (i.e., it propose hypotheses which are not consistent with the
data). then it will be abandoned and a different feature which 1s consistent with the
data will be selected.

Dispositional attributes serve a number of purposes:

« Dispositions serve as intermediate conclusions (Fu & Buchanan, 1985}. Like Fu and
Buchanan's intermediate concepts, dispositional attributes often correspond to named
concepts in our domain (see Figure 7-12). If further information is found out about a
dispositional attribute, it applies to all future and past examples. For example. in
OCCAM, age Is initially associated with strength. If other features are found which are
indicators of strength [(e.g.. size of arms), they enter into future predictions.

« Distributional attributes can be viewed as parent predicates (Goodman, 1983). [tis in
this manner that distributional attributes facilitate leaming new causal theones.
When learning that a refrigerator will open after an adult pulls on the door. two
hypotheses are created:

83 topic for future research is learning this class from examples. In practice, associating the disposition wain i
action has worked well. However, there are some examples for which this simple strategy cannot account for. For ex.”
‘e “color” of food is an indicator of the "taste” of the food: yellow plneapple is swecter than \f_rhitc.“ However. :f coo
to associate a “sweet” disposition with ingest. the CD primitive of verbs such as "eat’ or "iastc, it would af‘ssi) .
other forms of ingest such as "smell” or “inject”. The solution to this problem ts to learn that "sweet only appucs
ingests whose instrument is the mouth.

103

Role | Action Feature Disposition
actor | propel |age strength
object ! Ingest | composition | poisonous
actor |move |age dexterity
actor | mbuild | species intelligence
actor | mbuild | age intelligence
object | propel | material fragility

Figure 7-12: Dispositional attributes: the role and the action determine the class of
situations in which the dispositional attribute is applicable. The feature
indicates what sort of objects possess that disposition.

1. Adults are strong enough to open a refrigerator door.
2. Adults are strong.

It is this second more general hypothesis that facilitates learmning in new domains. For
example, this hypothesis can be specialized to indicate that adults are strong enough
to inflate balloons. Note that occaM does not start with dispositional attributes such
as "strength”. Instead. dispositional attributes are learned to account for differences
in capabiiities {for actors) or tendencies (for objects). These dispositional attributes
serve as domain-specific knowiedge that guide the search for causal hypotheses.

+ More support is given to hypotheses which are formed by making use of existing
dispositional attributes. It {s In this manner that prior learning also assists selecting
among multiple hypotheses. For example, once occaMm learns about strength, it
encounters an example when an adult with brown hair can inflate a yellow balloon. *
and a child with blond hair cannot inflate a blue balloon. Clearly, the fact that adults
are strong can rule out the hair color as a reasonable hypothesis for the different
result, However, there is also a generalization rule which indicates that a feature of
the object could be responsible (e.g.. the color of a balloon) Two competing
hypotheses are compared. Since there is no dispositional attribute for the color of the
object of an application of force, the hypothesis that age (and strength) are responsible
is postulated before the hypothesis that balloon color is responsible.

. Learning and Memory Principle 16
Dispositional attributes are learned lo represent
the capacities or potentials of actors or objects.
Dispositional attributes serve as domain specific
knowledge which favors one hypothests over another.

There are several i{ssues which arise when using dispositional attributes to facilitate the
search for causal hypotheses:

e When are dispositional attributes created? Dispositional attributes are created to
account for a difference in the result of two (or more) actions49,

« How is the creation of a new dispositional attribute for each new example avoided?
The reuse of existing disposttional attributes is preferred to the creation of new ones.

itionai attributes

#9F{gure 7-11 on page 102 was created by not using the module in OCCAM that creates disposluqq """"

gcncra%ization in Fig‘l’.lrc 7.11 indicates that If a bailoon is small it can be inflated. With disposlngs ac;.\q.(B
generalization would indtcate that ifa balloon is "disp-17" then it can be inflated, and small balloons are "disp-1i

104

7.2.1. Dispositions: An example

in this secton. | demonstrate how learning dispositional attributes factlitates learmning new
causal theories. The example that I consider is the refrigerator opening after Mike pulls on the
door. but not opening after Karen pulls on the door. [n this case there are two events in memory
A simplified representation of Mike opening the refrigerator is illustrated in Figure 7-13.)

ACT typa FROPEL
actor HUMAN rname MIKE
age GROWN-UP
hair BROWN
eyes GREEN
object COMPONENT type DOQR
of REFRIGERATOR color WHITE

STATE object REFRIGERATOR color WHITE
type QPEN
value YES

Figure 7-15: Simplified Conceptual Dependency representation of "Mike opening the
refrigerator.”.

The generalization rule in Figure 7-3 suggests that a difference in the actor accounts for the
different results when Mike or Karen pulls on the door. Since there are not yet any applicable
dispositional attributes. occaMm randomly selects one attribute of the actor which is different in
Karen and Mike: eye color. occaMm creates a new dispositional attribute3 (disp-1) which
represents the tendency for an application of a force by a person with green eyes to resuit'in a
state change. The current best hypothesis is that persons with green eyes are disp-1 enough to
open a refrigerator. Figure 7-14 illustrates the schema which is built to indicate that when a
person who is disp-1 enough to open a refrigerator pulls on the refrigerator door. the refrigerator
door will open. Figure 7-15, contains the dispositional attribute created which indicates that
persons with green eyes are disp-1 enough to open a refrigerator.

ACT typa PROPEL
actor HUMAN disp~1 ENOUGH for STRTE type OPEN

object REFRIGERATOR

value YES
cbject COMPONENT type DOOR

of REFRIGERATOR

T
STATE type OPEN
object REFRIGERARTOR
ua{ue YES

Figure 7-14: A schema which indicates that when a person who Is disp-1 enough to
open a refrigerator pulls on the refrigerator door, the refrigerator door will
open.

Next, 0CCaM Is presented with a counterexample of a small child with green eyes and blonc

30This tendency doesn't have a name in English, so '] have to refer to it by occam's name: disp-1.

105

ENCUGH for STRTE type GPEN ‘“j
. object IEFRTSERATOR
valua YES

4_PAN s, GREEN—A— 30 1

Figure 7-13: A dispositional attribute: persons with green eyes are disp-1 enough to
open a refrigerator.

hair who cannot open the refrigerator. This contradicts a prediction made by the current
hypothesis. Since very little confidence had been built up for the current hypothesis, it is
abandoned. and a new current best hypothesis must be generated. There are at least two possible
hypotheses: persons with brown hair can open refrigerators, or adults can open refrigerators.
occaM randomly selects adults to form a new dispositional attribute3! (serong). The current best
hypothesis is that adults are strong enough to open a refrigerator [see Figure 7-17 and Figure
7-17). Further exampies give a great deal of support to this hypothesis and to the dispositional
attribute called strength32,

RCT type PROPEL
actor HUMAN stromg ENOUGH for STRATE type OPEN
object REFRIGERATOR
valuys YES
object COMPONENT type DBOOR
of REFRIGERATOR -

STATE type OPEN
object REFRIGERATOR
value YES

Figure 7-18: A schema which indicates that when a person who is strong enough to
open a refrigerator pulls on the refrigerator door, the refrigerator door will
open. .

ENQUGH for STATE type OPEN
[HUMEN age GROWN-UP ob{ect REFRISERATOR
value YES

Figure 7-17: The strength dispositional attribute: adults are strong enough to open a
refrigerator.

Once occaM has learned a dispositional attribute, future learning is facilitated. ocCaM is next
presented with an example of Mike successfully inflating a round yellow balloon. while Karen
cannot inflate a long blue balloon. This time, two generalization rules apply, one which would
attribute the difference in the result to a difference in the object (round yellow balloon vs. long blue
balloon) and one which would attribute the difference to the actor {Mike vs. Karen). For the actor
difference. the strength dispositional attribute applies, and the age attribute is selected over other
attributes such as hair color. For the object difference, there is no dispositional attribute and color
is favored randomly over size. There are now two competing hypotheses: adults can inflate
balloons or yellow balloons can be inflated. These hypotheses are compared. and since the

51To occam it wouldn't matter If this attribute were called disp-2.

52Note that an event such as an adult not being able to lift a car would not decrease support for the exstence . e
strength dispositional atribute. Only a countersxample such as a child lifing a car which an aduit could not + .
remove support from this hypothesis since this counterexample would use the same generalizadon rule.

106

sirengli (and. therefore. the age) of the actor has more support than the color of the cbiect. 77 o .y
favored. The current best hypothesis is that adults are strong enough to inflate balicons see
Figure 7-19 and Figure 7-19). Further examples add suppor? to this hypothesis.

RCT wypa PROPEL
actor HUMAN strong ENOUGH for STATE type INFLATED
object BRLLCON

value YES
to BALLOON '

object ARIR

I

STATE type OPEN
cb{ect REFRIGERRTOR
value YES

Figure 7-18: A schema which indicates that when a person who is strong enough to
inflate a balloon biows air into a balloon, the balloon will be inflated.

' ENOUGH for STATE type INFLATED
[HUMRN age GROWN-UP object BALLOON
value YES

Figure 7-19: The strength dispositional attribute: aduits are strong enough to blow
up & balloon.

The advantage of using dispositions is that once a disposition has been learmed in cne
situatton, such as opening refrigerator doors, leaming is easter and fewer examples are required in
different situations such as blowing up balloons.

Learming and Memory Principle 17
Dispositions are novel features
which enable future discrirminations.

7.2.2. Reflning a dispositional attribute

In many ways, the evaluation of a dispositional attribute is similar to the evaluation of
schemata which are created by similarity-based learning (see Section 6.3) and theory-driven
learning. In particular, counters are kept to indicat: when the disposition leads to accurate
prediction. and when the disposition leads to an incorrect prediction. When a disposition has been
useful a number of times, a few exceptions merely decrease support for the disposition rather than
cause the disposition to be abandoned. In addition, If there is a regularity to the exceptions, then
the disposition is refined to accommodate the exceptions. For example, assume that a lew
examples of a fraill grandmother who is unable to open a jar of jelly are observed. The strenuth
disposition would be revised to indicate that frail persons are not strong. Stmilarly, after seeiny 1
number of examples of a child not blowing up balloorns, not opening refrigerators. and not operund
jars, several examples of a child (Karen) successfully inflating a balloon are seen. Rather than
abandoning the relationship between adults and strength, occam medifies the strength disposit.. 2
to add the fact that Karen is strong enough to blow up balloons. Figure 7-20 illustrates o
oCCaM represents that Karen is strong enough to blow up balloons. Note that there is an impu:
disjunction since the fact that adults are strong enough to blow up balloons is still in memaory ~~
in Figure 7-19).

S3Recall that the re-use of a dispositional attribute increases the support for a hypothesis.

107

ENJUGH for STRATE t.ga LHFLATZD |
{FUMAN untque-1d KAREN—S-L-L0.0 3u a5 act BALLIOMNI
value YES !

Figure 7-20: The modified strength dispositional attribute: Karen is strong enough
to blow up a balloon.

7.3. Experimental Results: Theory-Driven and Similarity-Based Leamning

How much of an improvement is theory-driven learning over similarity-based learning? One
way to compare the performance of two different approaches to learning is to compare the number
of examples each approach requires to find the correct hypothesis. To quantify the improvement
in performance of TDL over SBL. I tested occam under various conditions.

In TDL. the number of examples depends upon the number of features used to describe the
objects in the event. For exarnple. the generalization in Figure 7-3 states that if similar actions
performed on an object have different results, and they are performed by different actors. the
differing features of the actor are responsible for the different result. The number of features used
to describe the actor and the object tnfluence the number of examples required to learn the
concept. However. the number of roles which describe the event does not affect the learning. For
example, TDL is not affected if the performance of the stock market, the location of the stars, and
the outcome of sporting events is included in the description of an event together with the actor
and the object. This is the advantage of TDL since learning is focused on those attributes that are
likely to be involved in a causal relationship.

In SBL, performmance is dependent on the number of features used to describe each role and
the number of roles which describe the event. SBL is adversely affected when additional irrelevant
information. such as the performance of the stock market, is included In the .nput representation.

All learning programs are also affected by the distribution from which the input exampies are
drawnt, and the distribution of feature values in the environment. [n the experiment that I ran,
half of the examples were positive exampies and half of the examples were negative examples. The
concept to be leamed is that adults are strong enough to open the refrigerator. The concept '3
learned when there are no dispositional attributes (e.g., strength) which could assist the theorv.
driven learner. All of the features that were used to describe the input example were binarv
features and the value of each feature was selected randomiy with equal probabilities. [ran tnals
in which there were 0, 4 and 10 roles (in addition to actor and the object} used to describe each
event. For each of these three conditions, I ran the SBL module and the the TDL module of occam
on problems in which each role was described by 3, 5, 10. 20 and 40 features. The results ol the
experiment are illustrated in Figure 7-21. The values shown for each point is the number o
examples {averaged over 25 runs) required to learn th: concept as a function of the number i
features used to describe each role.

As expected, the performance of TDL was not dependent on the number of roles used o
describe the input events. The graph only lists TDL with 10 additional roles because the resull
does not differ from TDL with 4 or O additional roles. The graph clearly shows the advantage that
TDL has over SBL. For example, with 10 additional roles and 10 features for each role. theorv
driven learning required an average of 4.7 examples to find the correct hypothesis. SBL required
13.2 examples. If the consequence of acting upon an incorrect hypothests are important. or il the
number of examples is small, TDL is a significant improvement over SBL.

7.4. Learning Social Theories

In addition to generalization rules which guide the search for laws of physical causality
occaM also contains generalization rules for social causation. These generalization rules postulate
intentional relationships (Dyer, 1983) between goals, plans and events. There Is less empinc.il
support for these generalization rules, However. they fit the same pattern and serve the S}.l:“.it'
purpose as generalization rules for physical causality. A generalization rulf: is a template @ -~
causal or social relationship. For example, one social generalization rule is: if a goal to perlor

108

" L. .3 amn-a om0 ey
‘& 1 .
/"_‘_‘ - 4 entma celey
te
[-
Humbaer -
af e s

exampins s
‘EL- 4 eet-e ~0'ee
raguirad . -y
. e N B}
, //__/_’/

L] % ca 1y P 21]‘U k] +d
NHumoer of fasturss per rols

Figure 7-21: The average number of examples required for similarity-based learning
and theory-driven learning to find the correct hypothesis.

action is blocked by a state then the opposite state is an enabling condition for the action. This
generalization rule is displayed in Figure 7-22.

{daf-gen-rule
?state-l = (state type ?ptype
value (no)
actor ?actor
object 7objact)

blocks
(goal actor ?acter
goal ?act-1 = (act type 7atype
actor ?actor
ocbject ?obiect))

((?act-1 enabled-by (state type ?ptype
value (yes)
actor ?actor
object Zobject)))

Figure 7-22: An exceptionless generalization rule which applies in a social situation: ifa
goal to perform an action is blocked by a state then the state is an enabling
condition for the action.

0CCAM uses this generalization rule to explain why an example of delta-agency fails. Recall
that in Section 6.3.1 OCCAM acquired a generalization which indicates that when a person asks a
relative to do something, then the relative will. What happens. for exampile, when a persons asks a
relative for an object which the relative doesn't have? For example, what should occam do when 1t
encounters apple-2°?.

» appla-2: Karen wants an apple. She asks her mother Chris for one and Chris tells
her that she doesn't have an apple. The CD representation of this indicates that the
goal is blocked by Chris not having the apple.

Instead of simply decreasing support for delta-agency. OCCAM i{s able to come up with a
hvpothesis for why delta-agency fails. The generalization rule suggests a possible explanation:
in order to give an object to someone. you must possess the object. Note that this explanauon :3
dependent on the mother informing the child what state is blocking her goal. If the mother just
didn't give the child an apple. then 0CCAM would not be able to come up with an explanation and

109

would decrease support for delta-agency. The inductive leap that occav makes 1S lhat the
opposite of state®* which is blocking the goal s an enabling condition of performing the action
which achieves the goal. The warrant that occaM has for making this inductive leap is the
generalization rule in Figure 7-22. Figure 7-23 illustrates the rule that occam learns in this
situation. A specialized version of delta-agency is constructed to account for those situations

when asking a relative for an object results tn a failure because the relative does not have the
object. This schema is displayed in Figure 7-24,

STATE type POSS-BY
value YES
actcr ?ACTOR
abject 70BJECT

ACT type ATRANS
actor 7RCTOR
object ?70BJECT

Figure 7-23: A rule acquired by occAM when an exception to delta-agency is

encountered: in order to give an object to someone, you must possess
the object.

DELTR-AGENCY the-cutceme GORL-CUTCOME tyvpe FAILURE
actor =THE-ACTOR
goal STATE type POSS-BY
actor =THE-ACTOR
value NO
cb ject =THE-CHBJ
the-prablam STRATE type POSS-BY
actor =THE-HELPER :
value NO
object =THE-QBJ
the-sub-goal GORL acter =THE-HELPER
goal RACT type RTRANS
actor =THE-HELPER
object =THE-0QB8J
to aTHE-RACTOR
the-plan PLAN actor =2THE-ACTOR
plan =THE-MTRANS
tha-goal GORL actor =THE-ACTOR
goal STATE type POSS-BY
actor =THE-ACTOR
value YES
object =THME-QBJ
plan PLAN actor =THE-ACTOR
plan =THE=MTRANS
outcome GOAL-OUTCOME type FRILURE
actor =THE-RACTGR
goal STATE type POSS5-BY
actor =THE-RCTJR
value NO
ob ject =THE-QBJ

the-ntrans ACT type HTRANS
actor =THE-ACTOR
to =THE=-MELPER
object ACT actor =THE-HMELPER
the-helper HUMAN relacion IPT type FAMILY-REL

of =THE-RCTOR
the-actor HUMAN
the-obj P-0BJ

Figure 7-24: The ¢ei:enuzed event of a specialization of delta-agency. This schema
describes those attempts to use delta-agency which falled because
the-helper did not possess the tha-obj.

54j e, the state that is blocking the goal in this example is " Chris does not have an apple.”. The opposite of this - .
“Chris has an apple.” {s required for Chris to give Karen the apple.

110

The generalization rule discussed in the previous example is an exceptionless deneralwzauon
Dispositional and historical generaiization rules also apply In social situations. For example. thers
is a generalization rule which states: if an event (?e} motivates a goal (?g} for someone (?plj. and
someone else (?p2} observes the event (?e} and performs an action (?a) which achieves the goal (?g)
Jfor ?pl. then the event (?e} motivates the goal (?g) for ?p2.

This generalization rule is applicable in a number of situations. For example. we recently
purchased a new kitten as a companion for our older cat. When the kitten misbehaved by climbing
anto the table when we were eating, we closed it {n another room. When the older cat saw us-do
this. he pushed the door open to let the kitten out. This generalization rule would enabie one to
hvpothesize from the older cat's actions that the older cat wanted to let the kitten out. In ancther
situation. OCCAM uses this generalization rule when it is given a number of examples of parents
helping their children and strangers not assisting a child. 0ccam hypothesizes that parents have a
goal of preserving the health of their children.

Once occaM has constructed the rule that parents have a goal of preserving the health of
their children. it can use it as background knowledge for EBL. This particular rule was useful in
explaining why a parent pays the ransom in a kidnapping episode. A kidnapping schema is created
by retaining only those features of the kidnapping episode which were necessary to produce the
explanation. This kidnapping schema contains the knowledge that the ransom typlcally goes to a
relative of the hostage because they may be willing to pay money to preserve the heaith of the
hostage. Section 9.6 discusses this example more thoroughly.

There is also a dispositional generalization rule that Is useful in another specialization of
delta-agency. This generalization rule attributes a difference in the outcome to difference in the
agent who performs an action which achieves a goal. This rule applies when 0CCAM encounters a
situation In which delta-agency is attempted when the the-helpaer is not a relative:

e barbie-1: Lynn asks Tiffany to give her a barbie doll. Tiffany doesn't share the doll
with Lynn. '

Previously, occaM had noticed a similarity between all examples of delta-agency. When the
delta-agency plan is successful, the helper is related to the actor. Now, when it encounters an
example when an unrelated person does not assist, a disposition which might be called “caring s
created to account for the different resuit. The definition of caring in Figure 7-25 states that
relatives are caring enough to see that the goal succeeds and unreiated persons are not>>.

[FUMAN relation IPT type FAMILY-REL]

ENOUGH for GOAL-OUTCOME actor HUMAN
goal STATE actor HUMAN
ob{ect P-0B84
vaiue YES
type SUCCESS

Figure 7-35: Caring: a dispositional attribute. The feature which indicates that &
person has this disposition is the presence of an IPT {(l.e. an
interpersonal theme such as a relative).

A specialized version of delta-agency is created to account for those ip.stanccs of
delta-agency which fail because the helper does not care if the actor's goal fails. This schema is
illustrated in Figure 7-26.

35presumedly. future examples would refine this to accommodate friends, teachers etc.

111

LE- T A-RGeNLY the-outcome GOAL-OUTCINE cype FRILURE !
. actor ITHE-RCTOR !
goal STRTE nb{ect =THE-QBY
valua YES
actar =THE-ACTOR

the-helper HUMAN caring ENQUGH for GORL-QUTCOME type FRILURE

aceor HUMAN

goal STATE object P-0BJ
value ¥
actor HUMRAN

the-actor WUMRAN

Figure 7-26: A specialization of delta-agency which indicates that dalta-agency will
fail if the helper does not care if the actor's goal succeeds.

7.5. Summary

This chapter presented the theory-driven leaming component of occaM. Theary-driven
learning determines if an event fits a known pattern for a causal relationship. When an events
conforms to such a pattern. learning (s facilitated because the theory of causality provides an
additional constraint on causal relationships. OCCAM represents a theory of causality by a set of
generalization rules that suggest causal explanations. In addition to being consistent with the
examples presented, a hypothesis proposed by the TDL component of occaM must be consistent
with a theory of causality. For this reason, TDL requires fewer examples than SBL to discover a
causal relationship. However, the causal relationships proposed by TDL may prove incorrect when
later examples are encountered. Schemata acquired via TDL are evaluated in a manner similar to
those acquired via SBL.

This chapter also tntroduced dispositions. Dispositions represent potentials or capacities of
people or objects. In the course of leaming causal relationships, 0CCAM also leams dispositions to
account for different outcomes of similar actions. For example, adults can perform many tasks,
such as opening a refrigerator, which children cannot. When occam learns this fact about adults,
it creates a disposition that might be called "strength” and postulates that adults possess this
property. Once OCCAM has acquired a notion of "strength”, it is easier for it to leam other
relationships, such as adults are strong enough to inflate balloons but children are not.

112

Chapter 8
Explanation-Based Learning in occamMm

Upon finding himself confronted with a phenomenon unlike what
he would have expected under the circumstances, he looks over its
features and notices some remarkable character or relation among
thern, which he at once recognizes as being characteristic of some
conception with which his mind is already stored. so that a theory (s
suggested which would explatn (that ts, render necessary) that which
{s surprising in the phenomena. (Petrce, 1932, p.497 [2.776])

The information encoded in schemata can be accessed to make predictions about future
events. Therefore, a schema should only contain features that an understander has a justification
for belleving will appear in future events. One justification is that the features have always
appeared in previous events. In Chapter 6. 1 discussed the process of stmilarity-based learning
that utilizes this justification when building generalizations by retaining all features that are
common to several examples. [n Chapter 7.] (llustrated a means of improving on SBL. When a
learner has a general theory of what conflgurations of events might be causally related,
correlations that are not consistent with the theory of causality can justifiably be treated as
coincidences and ignored. In this chapter, | discuss explanation-based learning which relies on
another justiflcation for belleving that features which have appeared in previous events wil also
appear in future events. The justification (s to demonstrate deductively that a set of features are
sufficient to produce the predicted outcome. This learning method creates a schema by retaining
only those features which were necessary to explain why an event occurred. The explanation
indicates that when a particular class of events occurs, a particular effect will result. This causal

knowledge is assoctated with the schema and serves as the justification for predicting the
consequences of future events.

It is instructive to compare SBL, TDL and EBL on the same problem. Consider the following
problem:

« On Monday, Chris is wearing a red shirt. She turns the radio on. takes a jar of
peanut butter out of the cabinet and makes a sandwich for Lynn. Lynn likes the
sandwich.

« On Tuesday. Mike is wearing a red shirt. He turns the radio on, takes a jar of peanut
butter out of the cabinet and makes a sandwich for Lynn. Lynn likes the sandwich.

« On Wednesday, Mike is wearing a blue shirt. He turns the television on. takes a jar of
peanut butter cut of the cabinet, drops the jar on the floor, and makes Lynn a
sandwich. Lynn gets a cut on the roof of her mouth,

If this problem were approached with SBL, all features which are present when Lynn CutF her
mouth and not present when Lynn doesn't cut her mouth on Monday and Tuesday wouid te
considered as potential causes of Lynn cutting her mouth. These features include:

1. The jar of peanut butter was dropped.
2. The person who prepares the sandwich is wearing a blue shirt.
3. The television is on,

113

If the similarity-based leamer constructs the most specific conjunctive generalization
consistent with the data, it will hypothesize that when a person eats a peanut-butter sandwich
prepared by someone with a blue shirt after the jar was dropped while the television is on. then the
roof of the mouth will be cut. Examples of eating sandwiches prepared by persons with blue shirts

and sandwiches eaten while the television is on without unpleasant consequences are required to
arrive at a reasonable hypothesis.

If this problem were approached with theory-driven leaming, the examples would be
compared against templates for causal relationships. Two such templates apply in this situaticn.
One would blame the cut on the different features of the agent who prepared the sandwich. The

other would blame the cut on the action which preceded the preparation. Two hypothests would
be consistent with the examples and the theory of causality:

1. The jar of peanut butter was dropped.
2. The person who prepares the sandwich is wearing a blue shirt.

Without any prior knowledge, occaM would favor the second hypothesis tnitially because
dispositional generalization rules are favored over historical ones. An example of eating a
sandwich prepared by persons with blue shirts without unpleasant consequences would be needed
before the correct hypothesis is considered. The beneflt of constraining learning with a theory of
causality is that fewer examples are required because fewer hypothesis are considered. In the
current example, the hypothesis that the television 13 responsible for cutting the roof of Lynn's
mouth Is never considered since it does not fit a pattern for a causal relationship.

If the current problem were approached with explanation-based learning, then the first step is
to explain why Lynn cut her mouth. Explanation-based learning requires that the learner have
enough knowledge to construct a causal chatn that indicates why the outcome occurred. In this
example, the causal chain would contain the following tnformation:

¢ Dropping the jar of peanut-butter caused the jar to shatter.

* When the jar shattered, glass splinters got on the peanut butter.

¢ When the peanut butter was eaten, glass splinters got in Lynn's mouth.
* A glass splinter cut Lynn's mouth,

To construct a generalization with EBL, the example (Lynn cutting her mouth) is generalized
by removing all unessential features. A features is retained if it was relled upon to build the

explanation. A generalized explanation is constructed by chaining together a number of general
facts that can be represented as separate schema:

e Dropping a glass object can cause the object to shatter.

e When a glass object shatters, glass splinters can get on nearby objects.
+ The contents of a container 1s near the container.

» When a person eats, the food goes in the person's mouth.

e Glass splinters are sharp.

e If a sharp object touches a person, it can cut the person's skin.

Explanation-based learning creates a new schema by recording the interactions between a
number of previously unrelated facts. Taken together, these facts specify the features of the
problem which were required for the explanation to be constructed. The generalized event that is
constructed by explanation-based learning In this example indicates that when a person eats a
food which was in a glass container that has been dropped. the person's mouth can get cut {rom
glass splinters in the food.

The principle advantage that EBL has over SBL and TDL is that fewer examples are requirs 2
to arrive at the correct generalization. The idea behind explanation-based learning is quite simple.
It is easier to learn that A results in C when P, and P, are true, if you already know that A resu.is
in B when P, is true, and B results in C when Py 13 true. Instead of correlating over a number of

114

examples of A and € under various conditions to arrive at this conclusion, only one example :s
needed. Note however, that EBL does not add to the knowledge of the learner (Diettrich. 1986]
The new schema makes it easier to sclve a particular class of problems in the future. Instead of an
inference process to chain together a number of facts, explanation in the future will be a memory
search to recognize that a new problem is an instance of the newly learned schema. Because of
the advantage that EBL has over other forms of learning, it {s attempted first tn occaM. However.

because EBL is limited to those situations that occam can explain, SBL and TDL serve important
roles.

8.1. Constructing an Explanation

In most EBL systems {e.g.. (Mooney & Bennett, 1985), (Kedar-Cabelli, 1987)), the search for
an explanation can be an expensive process. In these systems, a backward chalning rule system
performs depth-first search to arrive at an explanation. In response, to the combinatorics of
searching for an explanation, Lebowitz has decided to search for an explanation less {requently in

his UNIMEM systemn. Explanation-based learning in UNIMEM is attempted on generalizations
formed with simnilarity-based leamning techniques.

In occaM, the problem of producing an explanation is addressed directly. Abstract
explanations are flrst constructed which are then verified with rules associated with schemata.
DeJong (DeJong, 1986} has shown that it i{s computationally less expensive to verify an
explanation than to create an explanation. In addition, the work on ABSTRIPS (Sacerdoti.
1974) has demonstrated empirically that problem solving in an abstract search space, followed by

refinement (n the actual search space is significantly less expensive than simple problem solving in
the actual search space.

In occaM, generalization rules serve two purposes. First, as described in Chapter 7,
generalization rules suggest explanations that are consistent with a theory of causality. The
explanations are tentative hypothests that can be revised or confirmed when additional examples
are encountered. The second purpose that a generalization rule serves is to suggest an
explanation for EBL. This explanation is either verifled and expanded by specific knowledge or
rejected. If the explanation is rejected, then other generalization rules are tried. If no
generalization rule produces an explanation that is verifled, then EBL 1is not appropriate because
there is not enough knowledge to produce an explanation and TDL is attempted. If the explanation
is verifled by domain knowledge, then explanation-based generalization is performed.

Leaming and Memory Principle 18
The cues for causal relationships encoded by generalization rules
can suggest explanations to be refined by spectfic world knowledge.

In some respects, occaM's use of generalization rules to come up with an explanation s
similar to SWALE's explanation patterns (Schank. 1986, Leake & Owens, 1986). However, there
are many more explanation patterns {n SWALE than tliere are generalization rules in occaMm. In
addition. the explanation patterns in SWALE can be quite specific, referring to particular goals,
actions and attributes. For example, SWALE contains the following explanation pattern:

Being a star performazr can rasult in atraess.
Taking drugs can rslieve stress.
Taking too much drugs can result in death.

In contrast, OCCAM's generalization rules are much more general and refer to relationships
between goals and actions. The following generalization rule would suggest an explanation for a
situation similar to the one handled by SWALE's explanation pattern:

An action that achieves a goal can result in a side effect.
A plan can achieve the goal motivated by the side effect.
Executing the plan can result in the failure of anothar goal.

Another difference between SWALE's use of explanation patterns and OCCAM'S use of
generalization rules is the interpretation process. The explanations produced by SWALE are (00
specific and must be tweaked (l.e. modified) to apply in future situations. In contrast. the
explanations produced by occaMm’s generalization rules are 100 general and must be refined wit:
additional knowledge. One way to reconclle these two approaches in the future might be to create

113

a hierarchy of explanadon pattermns. occaM's generalization rules would serve as general nodes in
the hierarchy and the maore specific explanation pattems would be indexed in memory under the
generalization rules. Another difference between occam's and SWALE's explanation strategies is
that the process of adapting a generalization to a new situation directly supports EBL. However, it

is not clear how the process of adapting a specific explanation to a new situation can indicate what
features of the new situation are relevant.

8.1.1. Creating a sketchy explanation: An example

In this section, I present a simple example of occaMm finding a sketchy explanation with a
generalization rule. The following example is used to illustrate the explanation process:

Economic-Sanction-1

In 1983, Australia refused to sell uranium to France. unless France ceased nuclear

testing in the South Pacific. France paid a higher price to buy uranium from South
Africa.

A simplified CD representation of this example is illustrated in Figure 8-158, Representations
of the countries (surrounded by asterisks in Figure 8-1) are provided to occaMm. Figure 8-2

llustrates the representation of South Africa. Information on the imports and exports and other
data is derived from the World Almanac (Hoffman, 1986).

COERCE object COMMODITY type URANIUM
actor "AUSTRALIA®
target *FRANCE*
demand ACT type EXPLODE
actor -TARGET
objJact WEAPONS typa NUCLEAR
location SOUTHERN-HEMISPHERE
moda NEG
threat ACT type SELL
actor <ACTOR
object sQBJECT
to =TARGET
mode NEG
response ACT type SELL
actor *SQUTH=-AFRICA®*
obllect «~0OBJECT
price MONEY dollars 300000000
value YMARKET
amount WEIGHT numbaer 1500

unit TONS
to «TARGET
rasult STATE type POSSESS
actor «TARGET
value YES
object =0OBJECT

Figure 8-1: Conceptual Dependency representation of Economic-Sanction-1. Country
representations (surrounded by asterisks) are omitted to save space. Flgure
8-2 illustrates the representation of South Africa.

In the current example, Economic-Sanction-1 {s added to occam's memory, and the most
specific schema is found to be the coazce schema. However, the coerce schema does not e:;plam
the outcome of the economic sanction incident. In this simple example, the outcome is considered

561 Chapter 9, | consider learning from economic sanction incidents in more detail utilizing a more complex coercicn
schema which occaM acquired via SBL.

116

[COUNTRY name SOUTH-AFRICA T
language ENGLISH

) AFRIKAANS
location SOUTHERN-HEMISPHERE
business-relationship *US*

*JAPAN®
=ACTOR
:TAI:!GET '

U
aconomic=health STRONG
government PARLIAMENTARY
religions CHRISTIAM
life-expectancy *FIFTIES®
literacy *SEVENTIES®
continent AFRICA
exports =0OBJECT

COMMODITY type GOLD
COMMODITY type CHROMIUM
COMMODITY type DIAMOND
imports COMMODITY type AUTOMOBILES
COMMODITY type OIL

Figure 8-2: occaum's representation for South Africa.

to be France possessing uranium>?. occaM attempts to explain this outcome by searching for a
generalization rule that would match this situation. To find a generalization rule, occaM must
change the representation of Economic-Sanction-1 from the macro-schema representation coarce
to a representation in terms of goals, plans. actions and states. The process that decomposes
coerce Into more primitive elements i1s described in Section 6.2.5. The results of this
decomposition are shown (n Figure 8-3. For the purposes of this example, it 18 important to note
that the primitive representation contains the following information:

» France purchased the uranium from South Africa at an inflated price.
» France purchasing the uranium resulted in France possessing the uranium.

e France purchased the uranium from South Africa after Australia refused to sell the
uranjum.

Figure 8-4 {llustrates a generalization rule that fits the current situation. This generalization
rule encodes the following explanatory pattern: if ?action-1 precedes ?action~-2 which results in
7state-2, assume Z?action-l results in ?state-i which enables ?action-2 to produce
7stata-2. Note that this is the exact same generalization rule as the one in Figure 7-4 on page
96. In TDL, this rule suggests that a balloon can be inflated only after it has been stretched (see
the protocol in Figure 7-2 on page 95). In the balloon example, ?action-1 is Mike deflating the
balloon, 7action-2 is Lynn blowing into the balloon and ?state-2 is that the balloon is inflated.
occaMm does not contain enough knowledge to identify that ?state-2 as the balloon being
stretched. Therefore, unlike the current economic sanction example, EBL cannot be applied in the
balloon example.

In the current sconomic sanction example, OCCAM creates a sketchy explanation as indicated
by the causal explanation of the generalization rule in Figure 8-4. In this case, ?action-1 is
identified as Australia refusing to sell uranium, ?action-2 s identifled as France buying the
uranjum from South Africa. and ?state-2 is France possessing the uranium. The causal
explanation of the generalization rule postulates that ?action-1 (refusing to sell the product)
resulted in some as yet unidentifled ?state-1 which enabled ?action-2 (purchasing the procuct
for more money from a different country) to result in ?state-2 (possessing the product).

57{ny the more detailed representation tllustrated in Chapter 9, the outcome is a goal fatlure for Australia when France
continues the nuclear testing in the South Paciflc.

117

ACT type SELL
actor COUNTRY name AUSTRALIA
language ENGLISH
economic-health STRONG
axports COMMODITY type WOOL
COMMODITY type URANIUM

object COMMORITY type URANIUM
to COUNTRY namae FRANCE
language FRENCH
imports COMMODITY type OIL
COMMODITY type URANIUM
exports COMMODITY type WINE
COMMODITY type CHEESE

moda MEG

BEFQRE
L 4

ACT type SELL
actor COUNTRY name SOUTH=AFRICA
tan?uag. ENGLISH
business=ralationship *AUSTRALIA®*
FRANCE
CUSO
exports COMMODITY type URAMIUM
COMMODITY type CHROMIUM
COMMODITY type DIAMOND

objact COMMODITY type URANIUM
to *FRANCE*®
amount WEIGHT number 1500
unit TONS
price MONEY dollars 300000000
value JMARKET

RESULT

4
STATE tEpo POSSESS
objact COMMODITY type URANIUM
valua YES
actor *FRANCE®

Figure 8-3: Part of the goal representation of Economic-Sanction-1. This

representation was created by decomposing the high-level ccarce
representation into more primitive elements.

{(ldef-gen-rule

?state-2 = (state type ?3type ;potantial effect
valua ?valuas
objact 7object)

bafore ;tamporal ralation

7act-2 = (act type ?atype-2 ;portential cause
object ?obiject)

{(?act-2 reasult ?state-2) ;causal explanation

(?act-1 result
7state-1l = (state object ?cbject))
{?state~l enables ?act-2))
(:1ink ?act-2 before ;condition
?act-1 = (act type ?atype-l
object ?cbjact))
)

Figure 8-4; A historical generalization rule that matches the situation in Economic-
Sanction-1.

The next step is to verify that this sketchy explanation is correct. and to flll in the missing
details. In particular, the sketchy explanation leaves ?state-1 unidentifled. A more compiete
explanation would identify this state and indicate the conditions under which this explanatn
applies. The explanation is verified by consulting rules associated with the schema.

118

8.1.2. Storing and retrieving rules from memory

Most explanation-based learning systems (e.g.. (Lebowitz, 1986a. Mooney & Bennett, 1985
Kedar-Cabelli, 1987)) do not directly deal with the issue of indexing rules in memory. Rather, the
rules in these systems are simply stored in a uniform database. For example, PROLOG indexes
rules according to predicate name and the number of parameters. In a system such as occaM that
has a large number of rules dealing with states, it s important to have an eflicient retrieval
strategy. If a PROLOG type database were used. it would take a long time to find an appropriate
rule since many rules would be {ndexed by state. The solution adopted in oCCAM to storing and
retrieving (nference rules is to index the rules under the most specific schema for the antecedent of
the rule. There are, in fact, two different sources of rules in occaM. The first source of rules was
explained in Section 7.1.4. When TDL creates a new generalized event for a schema, the rule
format of the generallzed event s created and stored with the schema. The second source of rules
in occAaM is a programmer. Some of the knowledge occaM needs to create an explanation has been
learned by occaM. the rematnder is coded by hand. Figure 8-5 Ulustrates a rule that |
implemented so that occaM can explain the effects of refusing to sell a product.

Learning and Memony Principle 19

Inference rules are indexed in memory under the most
specific scherma that accounts for the antecedent

(def-rule
refuse-to-sall->damand-increase ; name
(act type (sell) ;antecedant

actor {country exports ?y)
to ?x = (country imports ?y)
object ?y = (commedity)

mode (negq))

rasult :link

(state type (demand-incresase) ; consequant
actor 7x

ocbiact ?y})

Figure 8-3: An economic rule: refusing to sell a product which country-x exports to
country-y results in an increased demand for the product by country-y.

This rule encodes part of occam’'s knowledge about the relationship
between supply and demand.

When a rule such as the one in Figure 8-5 is defined, it is indexed in memory by the most
specific schema for the antecedent of the rule. For example, {f there was a schema corresponding
to ‘'refusing to sell' (e, (act type (sell) mods (neg))). then the rule

rafusae-to-sall->demand-increase would be indexed under that schema. Otherwise, it might
be stored under a "sell" schema.

When OCCAM needs to make an inference, it retrieves inference rules from memory. For
example, if OCCAM needs to find the result of the event "Australia refusing to sell uranium to
France”, it will search memory for the most specific schema of this event. If this schema has an
inference rule which allows a result to be inferred, then that inference rule is used. If there Is no
inference rule or the inference does not fit in with the rest of the explanation, then schemata which
are more general than the most spectfic schema are searched for inference rules. For example, the
act schema might have an inference rule which indicates that refusing to do something for
another person (or country) might result in the person getting angry. The idea here is that the
most specific schema provides a detailed resuit for that situation, but circumstances may require a
more general result. Once again, OCCAM uses the strategy of preferring the most spectic
information. but relying on more general inforrnation when necessary.

Learning and Memory Principle 20
More specific Inference rules are retrieved
and applied before more general tnference rules.

The search for an explanation in OCCAM may require OCCAM (o explore a number of
alternatives. For example, there are two results of selling an object: the seller possesses maoney.

119

and the purchaser possesses the object. When occaM needs to determine if the result of South
Africa selling uranium to France results in a goal faiture for Australia. it first checks to see if South
Africa possessing money results In a goal fallure. Since this does not, 0CCAM backtracks and tries

the next alternative. The next alternative {s France possessing uranium which does indeed result
in a goal failure for Australia.

8.1.3. Refining an explanation: An example

In this section, [continue the example of Section 8.1.1 and {llustrate how OCCAM refines a
sketchy explanation with domain knowledge. The sketchy explanation is {ilustrated in Figure 8-6.
[t indicates that Australia refusing to seil France uranium resuits in some unidentified state which
enables South Africa to sell France the uranium for an inflated price.

ACT typa SELL
actor COUNTRY name AUSTRALIA
language ENGLISH
aconomic~-haalth STAONG
exports COMMODITY typa WOOL
COMMODITY type URANIUM

object COMMODITY ?}f. URANIUM
to COUNTRY name FHANCE
language FRENCH
Imports COMMODITY typa OIL
COMMODITY types URANIUM
exports COMMODITY type WINE
COMMODITY typa CHEESE

mode NEG
RESULT
[STATE object COMMODITY type URANIUM]
ENRBLES

¥

ACT type SELL
actor COUNTRY name SOUTH=AFRICA
ianguage ENGLISH
buginess-raeiationship "AUSTRALIA®
FRANCE®
'US’
axports 88MMODITY type URANIUM

MMODITY type CHROMIUM
COMMODITY typs DIAMOND

object COMMODITY type URANIUM
to *FRANCE*

amount WEIGHT number 1500

unlt TONS
price MONEY doltars 300000000
valus YMARKET

l RESULT
A type POSSESS

° {oct COMMODITY type URANIUM
valua YES
actor *FRANCE*

Figure 8-8; The sketchy explanation which postulates how Australia refusing to sell
uranium to France led to France purchasing the uranium from South
Africa at an inflated price.

The first step In reflning the lanation is to specify the unidentified state. The rule
rafuscfto-aoll-gdmand-iacnas:xﬂrl’ustrated in Figure 8-5 indicates that Australia refusing to
sell the urantum results in France having an increased need for the uranium. The next step 1s to
verffy that the result of refusitng to sel a product suggested Dby
refuse-to-sall->damand-increase does indeed enable South Africa to sell the.uramum to
France at an inflated price. The rule named demand-increase->price-increase illustrated n
Figure 8-7 enables ocCAM to make this inference.

120

(def-rula
demand-increase->price-increase
{state type (demand-increase)
actor ?zx = (country economic-health (strong))
object ?y = (commodity))
enables
(act type (sell)
actor (country axports 7y

business-relationship ?x)
to ?x

object ?y
price (money value (>market))))

Figure 8-7: An economic rule that encodes knowledge of supply and demand: an
increased demand for a product by country-x can enable another country
to sell country-x the product at a price greater than the market price.

Country-x is required to have a strong economic health so that they can
afford the inflated price.

The final step in verifying the explanation proposed by the generalization rule is to determine
that South Africa selling the uranium to France does indeed result in France possessing the
uranium. The rule sell->possess displayed in Figure 8-8 allows this inference to be made. The
flnal explanation which chains together the three inference rules ts illustrated in Figure 8-9.

(def-rule
sell->possess
{(act type (sell)
to ?x
obiject ?y)
result
(state typea {(possass)
obiect 7y
valus (yes)
actor 7x))

Figure 8-8: A rule which indicates that selling an object to ?x results in ?x possessing
the object.

8.2. Explanation-Based Generalization

When occaM has constructed an explanation for an unexpected outcome, it also keeps track
of the inference rules which were accessed to produce the explanation. This information is needed
to generalize the explanation. The idea is to {ind the class of outcomes for which the exact same
explanation structure will apply. Each inference rule which helped produce the explanation has a
number of constraints which specify the conditions under which the inference rule is applicable.
For example, the inference rule demand-increasa->price-increase illustrated in Figure 8-7
indicates that an increased demand for a product by country-x enables another country to sell the
product at an inflated price. This inference rule only applies if country-x has a strong economy (so
they can afford the price) and the other country exports the commodity and has a business
relationship with country-x.

There have been a number of different algorithms presented for generalizing an explanation
structure. For example, Kedar-Cabelli (Kedar-Cabelli, 1987) and Hirsh (Hirsh. 1987) present
algortthms based on resolution theory proving (Robinson, 1965) and logic programming {(Kowalskl .
1979). Mooney (Mooney & Bennett, 1985) presents an algorithm (EGGS) based on unification
which tmproves upon the unification-based algorithm used by STRIPS (Fikes et al., 1972). Finally,
Mitchell et. al. {Mitchell et al., 1986a) present an algorithm based upon goal regression (Waldinger.
1977). However, none of these algorithms are appropriate for including in occaM. The reascn for
this ts the language that OCCAM uses to represent generalized events for schemata is quite
constrained. The only mechanism for representing an abstraction in OCCAM 1Is to drop [eatures
from a concrete event. In contrast. the above generalization algorithms all introeduce vartables 0o
the generalization. The simple, feature-based language that oCCAM uses supports the hyTe of

121

ACT type SELL
actor COUNMTRY name AUSTRALIA
language ENGLISH
econo;nicagaﬂé%lsrLRONG
exports type WOOL
COMMODITY tggo URANIUM
obJact COMMODITY type URANIUM
to COUNTAY name FRANCE
language FRENCH
imports COMMODITY typas OIL

COMMODITY typa URANIUM
axports COMMODITY type WINE

COMMODITY type CHEESE

mode NEG

RESULT

STATE typa DEMAND-=INCREASE
actor *FRANCE*
object COMMODITY type URANIUM
LEHHBLES

ACT type SELL
actor COUNTRY name SOUTH=AFRICA
Ian?ungo ENGLISH
buginass~-relationshlip *AUSTRALIA®
, *FRANCE®*
.Us.
aexports COMMODITY type URANIUM
COMMODITY type CHROMIUM
COMMODITY type DIAMOND
objact COMMODITY type URANIUM
to *FRANCE®
amount WEIGHT number 1500

unit TONS
price MONEY dellars 300000000
value >MARKET

RESULT

typa POSEESS

object COMMODITY type URANIUM
value YES

actor *FRANCE®

Figure 8-9: The explanation which occax constructs for Economic-Sanction-1. This
explanation indicates how Australia refusing to sell uranium to France led
to France purchasing the uranium from South Africa at an inflated price.

generalization-based memory that stores hierarchies of schemata. In particular, traversing
memory in occaM (as well as IPP, UNIMEM, CYRUS, and COBWEB {Fisher, 1987)) to find
schemata or events involves following indices which are simple features. If pattern matching and
unification were required, searching memory would be a more time consuming process3®. The role
tokens of a macro-schema (see Section 6.2.5) serve much the same purpose that a variable does.
In particular, both mechanisms allow objects which appear in more than one event to be
constrained to be the same object so that structural concepts can be represented (Bruner et al.
1956, Winston, 1975). However, role tokens are more restricted than variables because role
tokens can only refer to the top level roles of a schema.

The approach to explanation-based generalization that occam follows closely the intuitive tdea
of what explanation-based learning should accomplish. A deneralized explanation should conta:n
only those features which are required to produce the explanation. The algorithm in occaM simply
marks a feature name and feature value in the input concept when it has been matched against a
feature of an inference rule. In addition, when a CD structure Is matched against a variable n an
inference rule, the CD structure is given a unique identifier. All CD structures which match

581 have expertmented with a version of occaM which uses the EGCS algorithm to produce schemata with var. cs.
However, this version does not integrate the leamed schemata into memory.

122

agalnst the same variable are given the same identifier3®. The marking process !s performed after
the explariation is complete, rather than marking during the explanation. OQtherwise. f
backtracking were required to find the explanation, the features of the inferences rules on fatled
paths would also be marked. Once the marking has determined which features are relevant. the
explanation is generalized by removing all features which were not marked. The approach to
determining the relevant information (s similar to an approach used by SOAR (Laird et al.. 1986.
Rosenbloom & Laird, 1985). However, the SOAR approach retains all instances of a constant
which has been generalized. [n contrast, by marking the feature name in addition to feature value,
OCCAM retains feature values only when the feature name is retatneds?.

Learning and Memory Principle 21
By retaining only those features which are necessary to

produce an explanation, a general description of the class
of sttuations tn which the explanation applies ts constructed.

8.2.1. Explanation-based generalization: An exampls

In this section, [continue the example of Section 8.1.3 and demonstrate how occaM
generalizes an explanation and creates a schema with explanation-based learmning. In this
example. occaM has explained how Australia refusing to sell uranium to France led to France
purchasing the uranium from South Africa at an tnflated price. By generalizing this explanation,
ocCAM produces an abstract characterization of the class of situations in which this same
explanation will apply. occaMm flrst marks the explanation, inserts unique identifiers to indicate
that two structures are constrained to be identical since they matched the same variable and then
removes all features which were not needed to produce the explanation. The generalized
explanation is shown in Figure 8-10.

In an example, such as this one, when there was a high-level representation that was
converted into a more primitive representation, oOCCAM must form a generalized event in the high-
level representation. This is a simple matter, since the process of marking features for an
explanation marks structures which are components of the high level representation.- For
example, France is the target of the coezce structure. Wheri the coerce structure is
decomposed. France becomes the actorz of a demand-increase, the to of the a sell. Features of
France are marked In the explanation because it plays a role in the damand-increase and the
sell. However, since the structure for France is part of the coerce structure, features in the
coerce structure are also marked. To generalize the coarce structure, all that is necessary s to
remove those features which have not been marked in the explanation. The generalized coerce
structure is shown in Figure 8-11

$9The purpose of these identifiers is to note that the same object is required to play a role in different parts of the
explanation. This information is used to create a role token {f a macro-schema is formed aftar generalizing the explanation.
Note that when role tokens are created when a schema 1s formed by $BL. occau s making an inductive leap. Thatis. ina
number of examples, it has seen one object fill two roles in a complex event. Therefore, occam assumes that in future
instances of this type of event. these roles will not be filled by two objects. In contrast, with EBL. the explanation indicates
when the same object must il two roles in a complex event. This information is derived analytically from the vanabies in
the inference rules which are chained together to produce the explanaton.

89For example, consider the generalization of the following concept:

COUNTRY name FRANCS '

aconomic-health STROWG

defensive-capabilities STRONG
\f the feature sconomic-heaalth STROMG were marked, then
COUNTRY sconcmic-health STRONG
would be retained by occAM. In contrast, in Soar the assertion
COUNTRY (FRANCE, STROHG, STRONG)

might be generalized to:

COUNTRY (<variable>, STRONG, STRONG)
123

ACT type SELL
actor COUNTRY exports COMMODITY unique-id commodity.001
uniquae=~id country.001
object COMMODITY unique-id commodity.001

to COUNTRY imports COMMODITY unique-id commodity.001
unique=id country.002
mode NEG

RESULT

¥
STATE type DEMAND-INCREASE
actor COUNTRY unique-id country.002
object COMMQDITY unique-id commodity.001

ENRBLES

| 4

ACT type SELL

actor COUNTRY business-relationship COUNTRY unique-id country,002
exports COMMODITY unique-id commodity.001
unique-id country.003

object COMMODITY unique-id commodity.001

to COUNTRY economic-health STRONG

unique-id country.002
prica MONEY vaiue MARKET

RESULT
) 4

STATE type POSSESS

object COMMODITY unigue-id commodity.001
value YES

actor COUNTRY unique-id country.002

Figure 8-10: The generalized explanation. Only those features of the explanation
which were required by the inference rules are included in the
generalized event. Additionally, a unique identifier is added to each
structure which matches a variable. When two structures have the same -
unique-id, it indicates that the structures are constrained to be identical
by the matching process.

CUENCE actor POLLYY erports =OBJELT
ob ject COMMODIT
target POLITY economic-haalth STRONG
importe eQRJECT
threat RCT tyoe SELL
sctor aRCTOR
otyject =0BJECT
to =TARGET
AT Sepe SELL
response ype
actor POLITY business-relationship sTARGET
anporcs =08JECT
objact s0QJECT
orice MONEY valus >MARKET
STATE type POSEESS
r e type
i oor aTRRGET

valua YES
o ject =0BJECT

Figure 8-11: Generalization of Economic-Sanction-1 produced by occAM.

The generalization in Figure 8-11 indicates that if a country that exports a commuodity tries to
coerce a wealthy country which imports the commodity by refusing to sell them the commodity,
then a response might be to buy the commodity at a higher price from another country. Although
this seems like a simple conclusion, there are many examples where economic sanctions have
fatled for this reason (Hufbauer & Schott, 1985, Brown, 1985) (e.g., in 1980, the US refused to sell
grain to the USSR who purchased it instead from Argentina, and in 1981, the US refused to sell
pipeline equipment to the USSR who purchased it instead f{rom France}.

A similar conclusion about the effectiveness of sanctions was arrived at by lan s:mm.‘nhe
former Prime Minister of Rhodesia which was the target of a decade of economic sanctons
following its independence from Great Britain [cited in (Renwick. 1981)):

124

We find that we are compelled to export at discount and tmport at a premium.

It 1s interesting to note which features of South Africa were generalized. In Figure 8-11, the
only features of the actor of the responsae are that it exports the objeet and it has a business
relationship with the target. Notice that the fact that South Africa has a business relationship
with the actor was also included in the description of South Africa {see Figure 8-2). However, this
feature was not necessary to produce the explanation, so it is not included in the generalization.

The features of South Africa which were included are those that matched agatnst the features of
the inference rules when the explanation was produced.

Since the coerce schema Is a macro-schema, its specializations will also need to be a macro-
schemata. Explanation-based learning produces the generalized event for the schema. A macro-
schema also needs a sequence of events and a pattern to match against new episodes so that the
sequence of events can be instantiated. The pattern of a specialized macro-schema is identical to
that of the parent schema since they both share the same roles {see Section 6.2.5). The sequence
of events could simply be inherited from the parent schema. If this were done, that new
specialization would encode enough information to make a specialized prediction. but not enough
inforrnation to explain the prediction. For example, the coerce schema indicates that after the
threat 1s made, the target will make a response that has a result. An explanation of the outcome
of an economic sanction incident based on this sequence of events would not be very (luminating.
The approach that occaM takes to creating a specialized sequence of events is straightforward.
The generalized explanation s saved as the sequence of events of the schema. However, first any
objects or events in the explanation that refer to roles of the macro-schema are replaced by the
corresponding variables. In addition, whatever ternporal or intentional links are present in the
parent schema are also inserted in the sequence of events. Figure 8-12 illustrates the sequence of
events for this simple economic sanction schema.

T type DEMAN_D-INCHEASE‘
actor TTARGET
object TM0BJECT

ENARBLES

- TRESPONSE

RESULT

Figure 8-12: The sequence of events created for an economic sanction schema.

What does EBL accomplish for occam? In this particular example, OCCAM started with simple
knowledge about coercion, and some simple economic knowledge of supply and demand. It finds a
useful interaction between coercion and the economic knowledge and saves this as schema.
Answering questions about future economic sanction incidents that fit this pattern will be simple
since there i3 an appropriate schema (n memory. All that needs to be done is a memory traversal
to find the appropriate schema, recognize the new instance as an example of the schema, and
instantiate the explanation. In essence, 0CCAM is a general problem solving system with domain
knowledge of coercion and supply and demand, and after a number of experiences, it evolves into
an efficient specialized expert on economic sanctions.

Learming and Mem Prin 22

Expertise is the result of organizing related
explanations tn memory to permit effictent retrieval

with some different examples, occaM could become expert in a different domain. For
example. occam’s knowledge of supply and demand might be useful to create a financial expert.
For example, if an emerging technology needs a particular commodity, then the demand for that
commodity may increase In the future. occam’'s knowledge of supply and demand would predict
that the price of the commodity would increase. Therefore, given an example of an investment in

123

yttrium which {s a component of many superconductors, 0CCaM could create a schema which

indicates that an investment ln companies that produce materials required by an emerging
technology is likely to profitable.

8.3. Explanation-Based Learning and Indexing

How should a new schema or a new event be indexed in memory? There are two sorts of
information that could serve as indices. The first is the surface features of the events. An event
can be indexed by all features which are easily observed, or commonly assoclated with the
components of an event. For example, Economic-Sanction-1 could be indexed under a coarcion
by the native language of the actor, or the type of object involved. The problem with indexing by
surface features such as these is that lnappropriate examples will be retrieved to make predictions
and explanations in the future. The fact that two counties involved in economic sanction incidents
both speak English will most probably not help an understander predict the outcome of a future

incident. Therefore, retrieval on the language feature will result in a number of spurious
remindings which offer no assistance in solving any problems.

Learning and Memory Principle 23

If events are indexed by all surface features,
then many irrelevant events will appear similar.

An alternative to indexing on surface features is to index by the deep features such as goals,
plans, and plan interactions which are produced when explaining the outcome of an event
(Schank, 1982, Hammond, 1984). Since events which share the same explanation structure will
share the same cutcome, only relevant information would be retrieved from memory if indices were
deep features. However, the extreme view that only deep features are important indices has
several problemns. First, it Is not supported by a number of empirical studies (e.g., (Holyoak, 1985,
Getner, 1983, Skorstad et al.. 1987]) which appear to demonastrate that effect of surface features Ls
very significant in retrieval of relevant information fromm memory. Second. indexing entirely on
deep goal-based features does not fully address the issue of how these features are identifled in
events. One cannot observe that an enabling condition for an action 18 not satisfled in that same
manner that one can tell that a car is large or black. Traversing memory to find an appropriate
schema to explain an cutcome cannot rely on the explanation of the outcorme.

Learning and Memory Principle 24
If events are indexed solely by "deep” features, such as
interactions between events and goals, then a memory-based
search process will not be able to recognize these interactions.

It appears that there is a dilernma. I information in memory is indexed by surface features,
then much useless information will be retrieved from memory. On the other hand, if information
is indexed by deep features of the explanation structure, then an explanation must be derived by
some mechanism other than recognition of a known schema. The solution to this problem is to
index information in memory by only those surface features which allow the explanation to be
inferred. That is, when a schema is constructed with EBL. the generalized event contains only
those features which were relevant. It is exactly these features that make good indexes since they
are easily observed and useful in identifying that a saved explanation applies in a future case.

Learning and Memory Principle 25
If events are indexed by only those surface features that are
needed to establish an explanation, then a memory-based search
process can recognize when the explanation will apply to new events.

occaM does also index by deep goal-based features. These features are not useful in making
predictions or explanations. However, they are useful for retrieving exemplars of a class which
have a particular explanation. These exemplars might be useful in supporting an argument.

126

Leaming and Memory Principle 26
Concrete features are useful for retrieving the most
relevant explanations. Abstract features are useful for
retrieving specific exemplars to justify an explanation.

8.4, Operationality

Explanation-based learning can be viewed as a mechanism for operationalizing concept
definitions {Mostow. 1987, Keller, 1987a, Keller, 1987b}. The idea here is that a learner already
has a means of constructing an explanation. but dces not have an efficient mechanism to
recognize when the explanation applies. For example. when learning about economic sanctions,
occaM already has enough domain knowledge to explain the outcome of an event. The first time it
explains an outcome, {t must search for an explanation by brute force techniques of trytng vartous
combinations of inference rules. This search for an explanation can be viewed as an inefficlent
mechanism for recognizing instances of concepts such as "Those economic sanction incidents
which will fail to achieve the desired goal because the target will buy the commedity elsewhere”.
What EBL does for 0CCAM to operationalize concepts such as this by creating an efficient means of
recognizing the concept. Operationalizing a concept in 0CCAM consists of finding a description of
the concept in terms of easily observable features and indexing this description in memory as a
schema. In occaM, the "observable" features are those features that are used to represent the
input examples. For example, the generalization of Economic-Sanction-1 in OCCAM operationalizes
the implicit concept "Those economic sanction incidents which will fall to achieve the desired goal
because the target will buy the commodity eisewhere”. The operational definition of this concept 1s
shown in Figure 8-11. This generallization only references features which were present in the
input example to indicate that {f a country that exports a commodity tries to coerce a wealthy
country which trnports the commodity by refusing to sell them the commodity, then a response

might be to bid the price of the commodity higher until another country which exports the product
{s willing to sell the product.

occaM has two different mechanisms for creating an explanation of a new event. The first,
preferred mechanism is an efficient search of memory for a schema which accounts for the event.
The hierarchy of schemata are similar to a discrimination net that indexes stored explanations for
events. The second mechanism for finding an explanation is more general, but more expensive. [t
consists of piecing an explanation together by chaining rules together. Operationalization in
occaM consists of creating a schema for memory-based explanation by generalizing the
explanation found in rule-based explanation. The generalization process finds those surface
features of the new event that are useful indices for retrieving a stored explanation.

In occaM, the operationality criteria are rather strict, requiring that the feature be present in
input examples rather than dertvable from the features of the input. For example, a generalization
that OCCAM learns contains the threat that a country refuses to sell a product. This threat is
directly represented {n OCCAM's input. A more general feature might indicate the threat to be any
action which results in an increased demand for a commodity. However, this feature i3 not easty
observable and {s not ncluded in the representation of an tnput concept. If a feature such as this
were included in a generalization, then an inference process would be needed to traverse memory
(see Section 8.3.) There is a trade-off in selecting the operationality criteria. A more spectfic
description of a feature is easy to recognize, but it may also be less generally applicable. For
example, if occaM did indeed represent the threat in an economic sanction schema as any action
which results n an increased demand for a commodity, then the schema would apply to more
examples, such as increasing demand by destruction of the target's supply. or a naval blockade. or
even a natural disaster such as a drought. This feature is harder to recognize, but applies to more
cases. Because of its operationality criteria OCCAM reguires a separate schema to handle each
method of ncreasing demand. The beneflt that occam derives from its strategy is that it does naot
require inference to recognize when a saved explanation applies. In addition. there is a potential
problem with representing the features more abstractly. The particular instantiation of increasing
demand In occaM's schema (refusing to sell a product} does not interact with the target's plan to
obtain the commodity through other means. Another instantiation of increasing demand such as
restricting supply with a blockade might interact with other parts of the explanation such as thc
abllity of another country to supply the commodity. By having a more strict operationalily
criterion. OCCAM avoids a potential problem that can arise if there 1s an unforeseen interaction.

127

8.5. Explanation-Based Leaming and Multiple Qutcomes

In the examples of EBL presented so far, it was assumed that an example such as a
kidnapping incident or an economic sanction incident has a single outcome. In fact. in most
complex situations, there are multiple goals and multiple outcomes, For example, in kidnapping
the actor of the coercion (i.e., the kidnapper) wants to obtain money and the target {L.e., the parenti
wants the hostage to be released unharmed. These goals can be resclved independently. For
example, {f the kidnapper recetves the ransom, his goal is achleved, and he may release the
hostage in which case the target’'s goal is also achieved or he may hanm the hostage. in which case
the target's goal fails. In essence. in any particular example, It 13 just a coincidence that the
ransom is pald and the hostage 1s released. Since this is the case, these two explanations should
rnot appear together in a general kidnapping schema. To address this {ssue, OCCAM creates a
separate schema for the resolution of each independent goal. Later examples will create more
speclalized schemata to deal with resolution of related goals. There are two reasons for leaming
about independent goals separately. First, since there is no logical relationship between the
outcome of the goals, It would be erronecus to construct a schema which indicates that the
outcornes of the independent goals are related. Second, it is unreasonable to expect a leamner to be
able to learn multiple "lessons” from a single example (VanLehn, 1983),

For example, occaM is presented with the following kidnapping story:

Kidnapping-4

John, a 10-year-old child, was abducted on his way to church on Sunday moming by a
heroin addict. Hts father, Richard, a wealthy, fatr skinned man. recetved a phone call
that evening. The kidnapper threatened that John would be ktlled unless Richard paid
a $100.000 ransom. Monday at noorn, Richard left the money n a locker at the train

station. Four hours later, his son was released in a wooded area two miles from the
tram statiorn.

This situation is represented as an instance of coercion to occaM. The representation
includes the fact that the goal of the coercion was for the kidnapper to obtain money. This goal is
achieved. The first problem for occaM is to explain how the kidnapper's goal was achieved. The
goal was achieved when the father paid the ransom. The father possessing the money {i.e., being
rich) is a state which enables the payment. Once occaM determines how the father was able to
pay the money, the next question to answer is why the father paid the money. occam's domain
knowledge indicates that the threat and the demand created a goal conflict for the father. The
threat to kill the child motivates a goal to preserve the health of the child (because the father has
an interpersonal relationship with the child). The demand mottvates a goal for the father to retain
his wealth. The action of paying the ransom is a realization of a plan to prefer the achievement of
the more important goal: preserving the child's life. Once 0CCAM explains the father's action. it can

now generalize the plan it observed for obtaining money. The generalized event is shown in Figure
8-13.

The kidnapping schema in Figure 8-13 explains how the kidnapper achieved the goal of
obtaining money and constrains the roles to have certain values. The the-actor {l.e. the
kidnapper) does not have to be a heroin addict as in the example, but can be any human. The
threat-ob3 can also be any human and the-target must be a wealthy human related to the
threat-obj. The damand-obj is a large amount of money. In addition, the following events are
specified: the goal is for the-actor to possess the damand-cbj. the-outccms is that the goal
succeeds. The plan tha-actor follows is to tell the-target that he will perform the-threat U
tha-tazrget does not meet the-damand. the-demand is for the-target to give the-actor the
damand-obj and tha-threat is for the-actor to kill the threat-cb).

When occaM first created this schema, I thought that there was a bug in the program
because it did not include the preparation (i.e., abducting the hostage) in the schema. After some
thought, ! realized that in the explanation that occaM has constructed, it is not necessary 0
abduct the hostage. It would work just as well to threaten to kill the child without abducting the
child. With more sophisticated domain knowledge. a better explanation can be constructed. For
example. abducting the child makes the threat more bellevable. In particular, an }mpon.s.::.z
precondition for killing the child is satisfied since the kidnapper knows where the chid is .
addition, abducting the child prevents the target from pursuing a number of counterplans such as

128

COERCGCE goal GOAL goal =GOAL-STATE
! actor - THE=-ACTOR
outcome GOAL-QUTCOME type SUCCESS

goal GOAL goal =GOAL-STATE
_ actor =THE-ACTOR
actor sTHE-ACTOR
goal-stata STATE ttpo PQSS~BY
objact sDEMAND~-OBJ
value YES
actor «=THE-ACTOR
the-target-response ACT type ATRANS
actor -THE-TARGET
object sDEMANMD-08J
to «THE-ACTOR
from =THE«-TARGET
plan PLAN actor =THE-ACTOR
plan sTHE=-ASK
the-ask ACT type MTRANS
actor sTHE-ACTOR
to =-THE-TARGET
objact COND if «THE-DEMAND
else ~THE-THREAT
tha-damand ACT type ATRANS
actor sTHE=TARGET
object ~DEMAND-0BJ
to =THE=ACTOR
) from =THE«TARGET
damand=-obj P-0BJ type MONEY
amount DOLLARS relative-numbar LARGE
the=threat ACT type KILL
actor =THE-ACTOR
objact «THREAT=-08J
threat-ob] HUMAN
the=target HUMAN relation IPT tg‘p. FAMILY=-REL
of «-THREAT=0BJ
incoma-class RICH
the-actor HUMAN

Figure 8-13: The kidnapping schema formed from generalizing Kidnapping-4.

hiring a bodyguard or sending the child out of the country. Still, [am mystified why there are not
more examples of this sort of blackmatl without abductionS!,

Once occaM has acquired a schema that indicates how the kidnapper's goal Is achleved. it
can now focus on explaining how the target's goal was achieved. When oCCAM encounters the
following episode., it initiates an explanation process to determine how the target achieves his goal:

Kidnapping-8

Mary. a 18-year-old college student was dragged into a car while waiting for a bus. Her
grandmother, Linda, a wealthy, fair skinned woman, recelved a note two days later
which tndicated that Mary would be killed unless she paid a $50,000 ransom. The
grandmother tnstructed her butler to leave the money tn a trash can & the men’s room
at a local park. Mary was released unharmed the next day.

The explanation for how the target's goal is achieved is quite simple. When the hostage s
released, the goal is achieved. occam's domain knowledge indicates that the kidnapper was
following the plan of keeping a bargain since the ransom has been paid. A specialized schema ol
kidnapping ts formed and indexed in memory under the schema in Figure 8-13. The specialized
schema is illustrated in Figure 8-14.

61The explanation is that there are in fact more examples. Blackmall of this sortisa less serious crime than kidnapping
{s not reported as widely, and makes less interesting detective shows for television. There have only been 236 cases of
ransom kidnapping in the U.S. between 1874 and 1974 {Alix. 1978). There were 284 blackmail cases regonedr bct:!rn
1920 and 1940 (Hepworth, 1975). Since I started working on OCCAM | have encountered two persons who "had nedn‘ s o‘nj-
neighbors™ who were victims of this sort of blackmail, but 1 have never encountered anyone who had even second han
knowledge of a kidnapping for ransom in the US.

129

COERCE goal GCAL gedl aGOAL-STATE
actor =THE-ACTOR
outcome GOAL-QUTCOME type SUCCESS
goal GOAL goal »GOAL-STATE
) actor «THE-ACTOR
actor aTHE-ACTOR
goal-state STATE type POSS-BY
object :DEMAND-OQOBJ
value YES
ator sTHE-ACTOR
the-target-responze ACT 1ype ATRANS
actor saTHE-TARCET
obhject «DEMAND-OBS
to aTHE-ACTOR
from THE-TARGET
plan PLAN actor =THE-ACTOR
lan aTHE-ASK
the-ask ACT typea MTRANS
wtor =THE-ACTOR
to aTHE-TARGET
skject COND if «aTHE-DEMAND
slse «THE-THREAT
tha-demand ACT type ATRANS
actor «THE-TARGET
object sDIMAND-OBY
to «THE-ACIOR
from «THE-TARGET
damand -obj P-OBJ typa MONLY
. amount DOLLARS relative-numbar LARGE
the-threat ACT type KILL
actor «THE-ACTOR
object sTHREAT-OBJ
thraat-obj HUMAN
the-targat HUMAN relation IPT type FAMILY-REL
of sTHREAT-OBJ
incoma-class RICH
the-actor HUMAN

the-actsr-response, the-prep etc.

COERCE tha-targat-outceme GOAL -QUTCOME goal GOAL goal STATE value YIS
type P-HEALTH
objecy saTHAEAT-OB)
actor sTHE-TARGET
ator »THE-TARGET
type SUCCES.
the-actor-rasponse ACT to «THE-TARQRET
from =THE-ACTOR
object saTHREAT-OBJ
ator sTHE-ACTOR

type ATRANS
the~-ask ACT object COND then »THI~-ALTERNATIVE
the-alternative ACT type ATRANS
actor saTHE-ACTOR
object "DEMAND-QBJ
to nTHE-TARGET
o ‘frr;n!;sm-AC‘rOI
the-prap ACT type A
actor «THE-TARGET >
object nDEMAND-OWJ
1o «sTHE-ACIOR

Figure 8-14;: A specialization of the kidnapping schema formed from generalizing
Kidnapping-8. This specialization indicates how the target's goal of
preserving the health of the child was achieved. The specialization is
indexed in memory under the kidnapping schema.

8.6. Summary

This chapter provided details of explanation-based learning in OccaM. The process of
explanation-based learning consists of three steps:

1. Generalization rules suggest a causal relationship between an example event and its
outcome.

2. Existing knowledge verifles and refines (or denies) postulated relationships.

3. A generalized event is created by retaining only those features of the example which
were needed to establish causal relationships.

130

Explanation-based learning creates schemata by identifying the class of situations for which
the same explanation for a single example event wili apply. When the underlying cause can be
identified, the conditions under which the causal relationship will hold can be derived analytically
rather than empirically. occaM is unique among explanation-based learning systems in that it has
the ability to acqutre the knowledge needed for analytical learning via empirical techniques.

131

Chapter 9
Experiments in Integrated Learning

One of the most curious features of the history of
economic sanctions has been the extent to which the

experience of past cases has been overlocked or
ignored. (Renwick, 1981, p. 1)

In this chapter, | discuss several examples of 0CCAM acquiring schemata in several different
domains. These examples illustrate {n detail the points made tn the dissertation. So far. [have
described occam’s similarity-based leamning mechanism in Chapter 6, occaM's theory-driven
leamning mechantsm (n Chapter 7 and occam’'s explanation-based learning mechanism in Chapter
8. In this chapter. I show how these mechanisms can work together in an integrated learning

system. SBL and TDL acquire schemata that can serve as background knowledge for EBL In
OCCAM. A number of examples are illustrated:

* Acquiring a coercion schema with SBL. The coercion schema provides a framework

(and representation) for understanding economic sanction incidents and kidnapping
stories. '

» Acquiring economic sanction schemata with explanation-based learning., occam relles

on the coercion schema and hand-coded political and economic knowledge to explain
indtvidual events which are generalized.

*» Answering questions about the possible outcomes of economic sanction incidents.
OCCAM utilizes the schemata acquired via EBL to perform this task

s Theory-driven learning of the social knowledge needed to explain the goals of the
target in kidnapping. o

e Acquiring a kidnapping schema and some specializations of kidnapping with EBL.
The coercion schema that occaM uses was acquired via SBL and some social
knowledge was acquired via TDL.

9.1. Learning About Coercion

The process that occam goes through to learn about coercion is identical to the process that
occaM goes through to learn delta-agency. The only differences are the complexity of the domaln
and the complexity of the examples. The coerce domain is more complex than delta-agency
because more goals and participants are involved, For example. apple-1 is an instance of
delta~-agency while broccoli-1 is an instance of coezce.

 apple-1: Karen wants an apple. She asks her mother. Chris. for one and Chris gives
her one.

e broccoli-1: Chris wants Karen to eat her broccoll. Chris tells Karen that if Karen
eats her broccoli, then Chris will let Karen have some soda to drink. Otherwise, Chrils
will give Karen water. Karen has a goal conilict between avoiding a food she doesn't
like and not eating a food she does like. Karen decides to eat her broccoll and Chris
gives Karen some soda.

132

The event. broccoli-1, contains a goal for Chris as well as two goals for Karen. coarce 1s
also more complex than delta-agency because more objects are involved. There is a differsnt
object involved In the threat (drink water). the demand (eat broccoll) and the altermative {drink
soda). Earller. I choose to describe similarity-based leaming with delta-agency for two reasons.
First, it is less complex so that figures of the intermediate stages are not cluttered with too many
details to fit on a single page. Second. it provides support for the claim that the leaminé
mechanisms in OCCAM are general since [have successfully applied them in several domains.

Another difference between learning dalta-agency and learning cocezce is the greater
complexity of the coerce examples. [n delta-agency, all of the initial examples were examples of

goal success. Some of the coerce examples illustrate fallures as well as successes. For example,
one example presented to occaM is the following event:

e ball-1: Mat and Sam are playing football. Mat tells Sam that if he doesn't allow Sam
to kick the ball, Sam wili take his ball and go home. Mat decides that he does not
want to play with Sam, and that he will go buy a {risbee. Mat goes to the store. but

finds that he does not have enough money to buy a frisbee. Both Sam’'s and Mat's
goals fail.

The greater variety of examples results in a more general coarce schema that does not
predict the outcome of a coercion incident. Instead, specializations In various domains, such as
economic sanctions and kidnapping, allow the outcome to be predicted.

The input to OCCAM In the coercion examples is represented in terms of primitive CD goals,
actlons, and states. Since coercion is sufficiently complex, oCCAM will create a macro-schema

when {t encounters a number of coercion examples. A third coercion example is all that i{s needed
to start the generalization process.

e swing-1: Brian tells Ben that unless Ben gets off the swing and gives Brian a turn,
Brian will hit Ben with a stick. Ben doesn't get off so Brian hits him.)

Once occaM has encountered three coercion examples (broecoli-1, ball-1 and swingﬁ—ll it
finds the common features of the three events and their subordinate goals and plans. A simple
schema that is a specialization of the goal schema is formed. In addition, a macro-schema that [

call coezrcae (for its mnemonic value) 13 created. The generalized event for the coarce schema is
shown in Figure 9-1.

The coerce schema contains a number of different roles®2:

s the-actor: the person who has a goal and plans to make a threat to achieve the
goal. In the generalized event, the features of the actor are those features which
Chris, Mat, and Brian have in comumon.

+ the-bene: the person who benefits if the goal of the actor is achieved. Typically, this
is the actor. however in broccoli-1, it 18 Karen who benefits since Chris has a goal of
making sure Karen eats a healthy meal.

» the-target: the person who the actor threatens. In the coarce generalized event.
the-target is a composite of Karen, Sam, and Ben.

+ damand-ob3j: The cbject involved In the demand. In the coezcs generalized event,
this is generalized from broccoli, a football, and a swing.

e threat-obj: The object involved in the threat. The threat-obj is a composite of
water, a ball. and a stick.

e the-alt-cbj: The object involved (n the alternative. the-alt-obj is generalized
from soda, a ball and a stick.

62necall that a user types a name for these roles. Names such as role.17 would have the same semantics 1o 0CCAM . I.:\il
occam knows about a role such as the-threat is that structurally it can be found as the flller of the alse role of the ler

of the objact role of an mtrans and that the-threat will lead to a goal falure for the-target. the-target is simg.y ine
to of an mtrans.

133

[SCERCE te-actor mUMAN pair BAOWN
: the-cana HUMAN age KID :
the-target HUMAN eyes BLUE
age KID
demand=ocbj P-08J
threat-oby P-0BJ
the-alt-ob) P-QBJ
response~obj P-CBJ
goal GOAL outcome sOUTCCOME
plan zPLAN
goal =GQAL-STATE
actor =THE-ACTOR
goal-atate STATE actor aTHE-BENE
outcome GOAL-OUTCOME geal GOAL goal sGOAL-STATE
actor =THE-ACTOR
actor =THE~ACTOR
plan PLAN plan sTHE-ASK
actor «sTHE~-ACTOR
the-ask ACT type MTRANS
actor =THE-ACTCRA
ooject COND If =THE-DEMAND
then s THE-ALTERNATIVE
else sTHE-THREAT
to =THE-TARGET
the-prep ACT actor aTHE-ACTOR
the-cemand ACT actor =THE-TARGET
object =DEMAND~0BJ
the-threat ACT actor =THE-ACTCR
object aTHREAT-08J
to «THE-TARGET
the~uiternative ACT actor aTHE-ACTOA
object sTHE=-ALT-08J
to sTmE-TARGET
tha-sub-goai GOAL-CONFLICT actor nTHE-TARGET
. goall GOAL-QUTCOME-LINK goali-b GOAL actor =THE-TARGET
goai-a GOAL actor =THE-TARGET
goai2 GOAL-OUTCOME-LINK goai-b GOAL actor sTHE-TARGET

oal-a GOAL sctor sTHE-TA| T
the-sub-plan PLAN plan sTHE-TARGET-RESPONSE ¢ RGE
actor sTHE-TARGET
the=target-response ACT objaect -EESPONSE-O!J
actor xTHE-TAAGET
the-actor-response ACT actor sTHE-ACTOR
the-target-outcome GOAL-OQUTCOME actor sTHE-TARGET

Figure 9-1: The Initial ccarce schema.

* response-obi: The object involved in the response to the actor's demand. In the .
coerce generalized event, this is a composite of broccolt. a frisbee, and a swing.

The generalized event contains abstract goals, plans and events in addition to the people and
objects that participate in coercion. In the coarce generalized event (n Figure 9-1 these roles are:

» goal: The goal that the actor wishes to achieve.
¢ goal-state: The state that would be true f the actor,achieves his goal.
* outcoma: The outcome of the actor’s goal.

o plan: The plan the actor has to achieve his goal. In coazce the plan is to tell a target
that if he meets a demand then the actor will do the-alternativae. otherwise the
actor will do the=-threat.

¢ the-ask: The actual act of asking the target to do the demand.
+ the-prep: The preparation that is necessary for the actor to carry out the plan.

o the-demand: The act the actor wants the target to perform. This act will achieve the
actor's goal.

« the-threat: The act the actor will do if the target meets the demand.

« the-alternativae: The event that will occur if the target does not meet the demand.
The alternative is sometimes that the actor will not perform the threat (as in ball-1
and swing-1) but it can also be that the actor will do something else (as in
broceoli-1).

s tha-sub-goal: A goal of the target that is motivated by the actor making the
demand. In coezce. this goal is a goal conflict caused by the target linking the
outcome of the demand. to the outcome of the threat.

134

* the-sub-plan: the plan the target pursues to resolve the-sub-goal.

* the-target-responsa: The actlon the target performs that realizes the-sub-plan.

This response may be meeting the demand. ignoring the demand, or pursuing some
plan which mitigates the effect of the threat.

* tha-actor-zesponse:

The action that the actor performs tn response to
the-targeat-responsa.

* tha-target-cutcoma: The cutcome of the target’s goal.

When occaM forms a macro-schema such as coexca, it also constructs a sequence of events
which records the temporal, causal, or intentional relationships (Dyer, 1983) between Lhe vartous

components of the event. In Figure 9-2 the sequence of events for the coerce schema is
llustrated.

E?GOAL"‘IHTEHBS ‘jl?PLAN]

' REALIZES

OUTCONE TTAE-SUB-GOAL
INTENDED-BY
?THE-SUB-PLAN
REALIZED-BY
L ¥
TOUTCOME HE-TARGE

Figure 9-2: The sequence of ¢events for the coercion schema.

Like any schema formed with similarity-based learning, the coercion schema is subject to
revision when further experiences are encountered. Once the initial coercion schema has been
constructed, future examples refine the schema, removing detatls that were just coincidences. For
example, the initial coercion schema indicates that the target 1s a child with blue eyes and the
actor has brown hair. These features are deleted after 0CCAM processes more events. The [inai
version of the coercion schema which occam will specialize to create kidnapping and economic
sanction schema 1s displayed in Figure 9-3. This schema removes all constraints on the possible
actors and participants. For example, 0CCAM is presented with a Berenstain Bears story in which
the Mother Bear coerces the Father Bear (Berenstain & Berenstain, 1985). This story removes the
constraint that the actor and target are human.

9.2. Economic¢ Sanctions

When ocCcaM learns about economic sanction incidents, it utilizes the coercion schema in two
ways. First, the input representation to OCCAM is in the high-level language of coercion rather than
the primitive goals and plans. 1 am assuming that the understanding process which would parse
accounts of economic sanction incidents would have access to the representational transfer
created when OccaMm creates the coerca schema. This assumption is not too unrealistic in
Section 9.4, | demonstrate OCCAM's question answering capabilities which include parsing
questions into a CD primitive representation. The process of searching memory converts the CD
primitive representation to the high level representation.

OCCAM 1s provided with a large amount of domain knowledge which helps it to learn about
economic sanction incidents. This knowledge is of two sorts:

e economic knowledge: inference rules which indicate the eflects of decreases in
supply, increases in price ctc.

« political knowledge: inference rules which indicate the goals of political entities. For

133

CCCALE goal GUAL outcome aQUTCIME
. olam =RLAN
oal aGOAL-STATE
jctor sTHE-ACTOR
goai-state STATE actor =THE-BENE
outcome GOAL-OUTCOME goal GOAL goal sGOAL-STATE
actor sTHE-ACTCORA
actor xTHE-ACTOR
plan PLAN plan sTHE-ASK
actor aTHE-ACTCR
the-ask ACT type MTRANS
actor sTHE-ACTOR
object COND if =THE-DEMAND
than =THE-ALTERNATIVE
alge sTHE-THRAEAT
to wTHE=TARGET
the=-prep ACT aetor =THE-ACTOR
the-damand ACT actar =THE-TARGET
object =DEMANG-0BJ
the-threat ACT actor aTHE-ACTOR
object sTHREAT-0B8J
to =sTHE-TARGET
the-aiternative ACT actor aTHE-ACTOR
object aTHE-ALT-0BJ
to aTHE-TARGET
the-sub-goal GOAL-CONFLICT actor »THE-TARGET
goall GOAL-QUTCOME-LINK goal-b GOAL acter sTHE-TARGEY
goat~s GOAL actor aTHE-TARGET
goal2 GOAL-OUTCOME~LINK goal=b GOAL actor sTHE-TARGET

goal-a GOAL actor »sTHE-TARGET
the-sub-plan PLAN pian aTHE-TARGET-RESPONSE
actor aTHE-TARGET
the-target-response ACT object =RESPONSE-0B.
actor sTHE-TARGET
the-actor-rasponse ACT actor aTHE-ACTOR
the-target-outcome GOAL-OUTCOME acter »THE-TARGET

Figure 9-3: The final refined version of the generalized event for the coerce schema.

example, one inference rule states that countries have the goal of reducing the
influence of their adversaries.

In addition, occaMm starts with some pre-exsting schemata representing Conceptual
Dependency goals, states and actions (see Figure 6-1 on page 70).

These inference rules can explain the outcomes of economic situations and infer the goals of
the participants. With this knowledge, EBL is possible and occam does not need to rely on
correlational information. Furthermore, this knowledge prevents occaM from indexing events in
memory based on simple surface features. For example, consider the following two economic
sanction stories:

Economic-Sanction-1

In 1983, Australia refused to sell urantum to France, unless France ceased nuclear
testing in the South Pacific. France paid a higher price to buy uranium from South
Africa and continued nuclear testing.

Economic-Sanction-3

In 1961. the Soviet Union refused to sell grain to Albanta {f Albania did not rescind
economic ties with China. Albania continued the ties with China. and China sold
Albania wheat tmported from Canada

If these two episodes were in memory, which episode would be considered more similar to
Economic-Sanction-27?

Economic-Sanction-2

In 1980, the US refused to sell grain to the Souiet Union uniess the Soulet Union
withdrew troops from Afghanistan. The Soutet Unton paid a higher price to buy grain
from Argentina and did not withdraw from Afghanistan.

There are more surface similarities between Economic-Sanction-2 and Economic-Sanction-3.
than there are between Economic-Sanction-2 and Economic-Sanction-1. In both, Economic-
Sanction-2 and Economic-Sanction-3, the commodity in dispute is grain and the target 1ska
communist country. However, clustering these two episodes together would ignore the goals of the

136

country who assisted the target.

In particular. in Economic-Sanction-2. Argentina sold the grain
to make a profit:

While Argentina had apparently scheduled deliveries of its grain to its traditional
customers the deals had not been finalized and the contracts had not been signed. As
the Soutets began bidding up the price of grain the Argentines reneged on these informal

understandings with other countries and sold almost all thetr grain to the Souvtets.
(Brown, 1985, p. 341)

However. in Economic-Sanction-3, the goal of China was not to monetarily profit from the
incident but to reduce the influence of the Soviet Union in Albhania;

As part of an Albantan-Chinese trade and assistance agreement signed (n early 1961,
Chinese agreed to extend $123 million to Albania. That is $118 million more than the
amount promised by the Sovtet Unton. China also buys 60,000 tons of Canadtan wheat
and has i shipped to Albania. (Freedman, 1970, p. 77}

Because of these different goals, Economic-Sanction-2 and Economic-Sanction-3 should not

be treated as stmilar. The goal of South Alrica is tdentical to the goal of Argentina when they profit
from the sanction incidents,

Even If a correlational learner were to properly cluster Economic-Sanction-1 and Economic-
Sanction-2, it would face a more serlous problem of determining which of the similarities between
these two events are relevant. If a schema were formed encoding all of the similarities between
these two events it would Indicate that when an English speaking democracy which tmports oil
threatens a country in the Northern Hemisphere which has a strong economic heaith and exports

weapons, then the sanction will fall because a country in the Southern Hemisphere will sell the
preduct.

Explanation-based learning solves both the problem of selecting the relevant features and the
problem of classifying events. Rather than treating all features identically, similarity relationships

are only based on relevant surface features (i.¢., those which are essential in explaining the goais
and actfons of the countries involved).

In the domain of economic sanctions, 0CCAM was presented with examples in the twentieth
century In which econornic sanctions were not accomparied by covert or overt military
operations®3. In total, 15 incidents were presented to occam. However, because many of the
sanction incidents had identical explanation structures, occaM did not acquire 15 different
schemata with explanation-based learning. For example, once ocCaM acquired a schema from

Economic-Sanction-1, it merely recognized that Economic-Sanction-2 was an instance of that
same schema.

9.2.1. A detailed example

In this section. I provide a detailed example of 0CCAM acquiring an economic sanction schema
with EBL. In Section 9.2.2 I sketch the generalizations that occaM builds from a number of other
examples. The detailed example [present is Economic-Sanction-4:

Economic-Sanction-4

In 1948, the Souviet Union threatened to stop granting economic aid to Yugoslavia {f
Yugoslavia continued its attempts at polttical independence from the Souvtet Union. The
United States offered $35 million in economic aid to Yugoslavia which continued to
distance tself from the Soviet Union.

Figure 9-4 contains OCCAM'S representation for the objects and countries which participate in
this episode. Figure 9-5 continues the representation of Economic-Sanction-4 by flustrating the

830 addition, 1 did not present occaM with a number of examples of sanction incidents involving the sale of fuel for
nuclear reactors.

137

TZERCE the-actor POLITY type CLLNTRAY

nama USSA

Ideciogy COMMUNIST
language FS!USEIIAN

LAVIC
location NORTHERN-HEMISPHERE
continent ASIA
aconomic-heaith STRONG
political-relationanips ANTAGONISTIC with =RESPONSE-08J

business-relationsnip =THE-TARGET
aRESPONSE -084
POLITY type COUNTRY
name FINLAND

exports CCMMODITY type MANUFACTURED-
P CCMMODITY t;g. GAS RED GOOOS

imports COMMODITY type FOQD
‘ COMMODITY tgﬁo CONSUMER-GOCOS
life-expectancy *SEVENTIES®
lteracy *NINTIES*
realigions AUSSIAN-QRTHODOX
MUSLIM

the=bane =THE-ACTOR

the-targat POLITY type COUNTAY
name YUGOSLAVIA
aconomic-heaith WEAK
pusiness-reiationship aTHE-ACTOR
strategic-importance HIGH

threat-obj MONEY dollars 35000000

*ha~alt-ob| aTHREAT-OBJ

asponse-obj POLITY type COUNTRY
nama US
economic~-health STRONG
location NORTHERN~HEMISPHERE

Figure 9-4: The countries and objects which participate in Economic-Sanction-4.

events. Note that these two figures do not contain all of the features of the coercion schema.
There are two reasons for this. First, some of the features take their values from the general
coercion schema. For example, the plan in Economic-Sanction-4 is the same as the general
coercion plan: to make a demand of the target. Second, some of the feature values are unknown.
In particular, Econormnic-Sanction-4 does not indicate the reason that the United States helped out
or why Yugoslavia adopted this plan. The features the-sub-goal and the-sub-plan are not
specified for this reason. These features are the same as the ones from the coerce schema. but
the values of the features are too abstract to be useful. For example, the value of tha-sub-plan in
coarce is that the target has a plan which leads to the cutcoma. The mechanism with which
events take default values from a schema is rather simple: occaM finds the most specific schema
for an event. If the event does not contain a feature of the most specific schema, then the feature
value of the most specific schema is used for the feature value of the event. Although occam
maintains a hierarchy of schemata, it does not need an inheritance mechanism to find values from
more general schemata. Instead, when a schema is specialized, all information from the more
general schema is copied to the more spectfic schema. This implementation detail could easily be
changed to inherit the information when needed.

0CCAaM is relying on a hypothetical natural language interface to build the representation in
Figure 9-5. Of course, 0CCAM does not deal with issues such as ellipsis, pronominal reference. or
word sense disambiguation. OCCAM can accept its input in either the high-level coerce
representation, or the CD representation of goals and actions. If the input is in the primitive goals
and actions, the memory search converts it to the coerce representation. Section 9.4 presents an
example of changing representations. In this section, I deal with the cocerce representation
because it is more compact and easier to read.

When Economic-Sanction-4 is added to occaM's memory, it must determine if it can account
for the outcome of the new event. occaM finds that the coercion schema is the most spectfic
schema in memory for this event. However, it does not account for the event's outcome: a goal
failure for the Soviet Union.

Since the coercion schema does not predict the outcome of this event, 0ccAM must scarch for
an explanation by identifying the circumstances that led to this goal failure. OCCAM constructs the
following chain of events to explain the outcome:

138

ICLERCE tha-threat ACT tyce ATRANS
actor =THE-ACTOR
object =THREAT-0OBJ
to =THE-TARGET
mode NO
tha-aiternative ACT typa ATRANS
actor =THE-ACTOR
object =THE-ALT-0BJ
to =THE-TARGET
mode YES
the-demand ACT type CHANGE-RELATICNSHIP
actor =THE-TARGET
to DCMINATED with =THE-ACTOR
the-target-responsa ACT type AGREEMENT
actor =THE-TARGET
object =RESPONSE-0BJ
agreement ACT type ATRANS
actor =RESPONSE-QBJ
object =THREAT-0BJ
to =THE-TARGET
mode YES
goal-state STATE type RELATIQONSHIP
actor =THE-BENE
object DOMINANT with aTHE-TARGET
outcome GOAL-QUTCOME type FAILURE
actor =THE-ACTOR
goal GOAL actor =THE-ACTCOR

cal =GOAL-STATE
the-actor-response ACT type ATRAN
actor =THE=-ACTCOR
object aTHREAT-0BJ
to sTHE-TARGET
mode NO

Figure 8-5: The events which occur in Economie-Sanction-4.

1.

7.
8.

Once occAM has constructed the explanation, it can create a schema by deleting those
features of the example, which were not needed to explain the fatlure of the Soviet Union's goal.
The generalized event which occaM constructs for this situation is displayed in Figures 9-6 and
9-7. Figure 9-6 contains abstract descriptions of the participants and

When the Soviet Union issues the threat to halt the economic aid to Yugoslavia. this
motivates conflicting goals for Yugoslavia. In effect. the threat of the Soviet Union
has linked together the outcome of two goals. Either (a) the goal of maintaining -
economic health will fail and the goal of achieving political freedom will succeed. or
(b) the goal of maintaining economic health will succeed and the goal of achieving
political freedom will fail.

. Yugoslavia has a plan to undo the linkage between the two conflicting goals. Its plan

is to find ancther means of maintaining economic health and to continue on the path
toward political freedom.

. Since the United States is an adversary of the Soviet Union, it has a goal of reducing

the political influence of the Soviet Union.

. Providing economic assistance to Yugoslavia will reduce influence of the Soviet
Unlon.

. Since the United States has a strong economy, it can afford to give economic aid to
Yugoslavia,

. When the United States gave aid to Yugoslavia, Yugoslavia's goal of economic health
was achieved.
Since Yugoslavia's goal of economic heaith was achieved by the United States. the

Soviet threat will not cause a goal failure.

When Yugoslavia continued to distance itself from the Soviets, the Soviet goal of
dominating Yugoslavia was thwarted.

general description of the episode for which the explanation found by occaM is applicable.
following constraints are placed on the coercion structure so that this explanation applies:

139

events, This is the most

CZERCE tma=actor POLITY political-relaticnships ANTA T1 = SEREE B
_ the-target FOLITYpeé:or;om.ic-.heanh "’&E”f‘ o GONISTIC with =RESPONSE-CB.
strategic-importance Hi
the-threat ACT type ATR%NS P
actor sTHE-ACTCH
objact =THREAT-08J
to =THE-TARGET
mode NO
response-obj POLITY economic-healith STRONG
the-target-rasponse ACT type AGREEMENT
actor =THE-TARGET
ocbjact =RESPONSE-QBJ
agresemant ACT typa ATRANS
actor =RESFONSE-QOBJ
object =THREAT-0BJ
te =THE-TARGET

mode YES
ocutcomae GOAL-QUTCOME type FAILURE
actor =THE-ACTCR
goal GOAL actor sTHE-ACTOR
goal =GOAL-STATE

Figure 9-6: The generalization which occam acquires in Economic-Sanction-4.

COERCE the-sub-goal GOAL-CONFLICT actor sTHE-TARGET
goail GOAL-OUTCOME-LINK goai-b GOAL actor sTHE-TARGET
goal STATE type POSS-8Y
actor aTHE-TARGET
object sTHAEAT-0BJ

wvalua YES
outcome=-t SUCCESS
goal2 GOAL-QUTCOME-LINK goal-b GOAL actor aTHE-TARGET
goal STATE type POSS-8Y
actor =THE-TARGET
object aTHREAT-CBY
value YES

outcoma-id FAILURE
the-sub-~pian PLAN sctor =THE-TARGET
plantype UNDO-GOAL-LINKAGE goal GOAL actor aTHE-TARGEY
goal STATE type POSS-BY
actor aTHE-TARGET
object :THREAT-08J
{an o THE=-TARGET-RE velue YES
. -
?ntondl GOAL actor -HEE%-OGJ
goal STATE type RELATIONSHIP
sctor sTHE-ACTOR
obi.ct DOMINANT with o THE-TARGET
value NO

actor zRESPONSE-08.)

Figure 9-7: The generszlized goal and plan of the target in an economic sanction
schema,

« the-acter must have an adversarial relationship with the response-cbj. This
feature is required for the response-obj to have a goal of reducing the influence of
tha-actor, :

e tha-target must have a weak economy. This is required so that the threat will harm
the-target. In addition, the-target must have high strategic importance so that it
is worthwhile for the rasponsae-obj to intervene.

e the responsa-obj must have a strong economy so that it can afford to intervene.
e the-threat is that the-actor will not give tha-target the threat-obj.

¢ the-target-response I8 for the-target to make an agreement with the
responsa-cbj for the response-obj to give tha-target the threat-obj

« the outcome is that the goal of the-actor will fail.

In the process of constructing the explanation, occaM also Infers the goal of Yugoslavia and
the plan Yugoslavia was undertaking in pursuit of its goal. Since the goal and plan are feature; of
the coercion schema. they are also included in the generalized event for the economic sanction
schema. the-sub-goal and the-sub-plan are illustrated in Figure 9-7. The generalized goal
indicates that the target has a conilict between some unspecified goal and the goal of obtaining the
threat-obi. The plan that the target took to resolve this conflict was to find a different means of
obtaining the threat-obj.

When OCCAM creates a specialized version of a macro-schema such as coerce it also updates
the sequence of events for the schema. For example, the coercion schema states that the outcome

140

of the actor's goal comes after the target's response (see Figure 9-2). In this type of economue
sanction incident, the sequence of events is specialized to indicate that the target's respon;e
thwarts the actor's goal so the outcome is a failure. Figure 9-8 shows the modified sequence of
events for this econornic sanction schema.

[?THE-QUTCOME | GOAL actor ?RESPONSE-0OBJ
1

goal STATE type RELATIONSHIP

actor ?THE-ACTOR

obiect DOMINANT with ?THE-TARGET
QUTCOME value NO

ACHIEVES

?THE - ?THE-TARGET-RESPCNSE

4

INTENDS ACHIEVES

FTrE-

[PTRE-SUB-PLAN | [?THE-TARGE]T-OUTCOME]

f

PLAN |
h

REALIZES INTENDS QUTCCME

TTHE-ASK -0 L I u 8 T £ .8

Figure 9-8:

The schema

The sequence of events of an economic sanction schema. This sequence of
events elaborates on the relationships specified in the coercion schema.
For exampie., the subgoal which ?THE-TARGET-RESFONSE achieves s
specified.

acquired from explanation-based learning on Economic-Sanction-4 accounts for

several other incidents. For example, consider the following two episodes:

Economic-Sanction-8

In 1948, the Soviet Union threatened to block the import of goods into West Berlin to
prevent the formation of a West German government. The Untted States agreed to airlift

supplies to

West Berlin.

Economic-Sanction-8

In 1960, the United States cut off all exports to Cuba (n retaliation for the nationalizing
of ol refineries. The Soutet Union then ships goods and extends credit to Cuba

Both of these incidents fit the same general pattern as Economic-Sanction-4. When occam

encounters these examples. it can already predict their outcomes and there is nothing for occaM to
learn. Furthermore, OCCAM can easily infer the goals of the target countries and the motivation of

the supporting country by stmply instantiating the explanation saved with the schema. However,

the schema does not account for the following economic sanction incident:

Economic-Sanction-7

In 1983, South Africa threatened to block the import of goods into Lesotho {a small
country completely surrounded by South Africa) {f Lesotho did not expel members of the
African National Congress. Twenty-two members of the African National Congress left

within two weeks of the implementation of the blockade.

141

There are several reasons the schema acquired from the Soviet threat to Yugoslavia does nat

fit this pattern. First, South Africa does not have a wealthy adversary who would gain politically
by helping Lesotho. Second, the strategic importance of Lesotho is minimal. [ts location is of no
military importance and it has little mineral reserves. This example does demonstrate that (n the
proper circumstances, economic sanctions can be effective. In the words of Lesothoan Foreign
Minister Evaristus Sekhonyana in the Washington Post on 12 August 1983:

But unless some kind of pressure can be brought to bear on South Africa there s
nothing we can do. We have to comply with the demands. We have no other options.

From this example, OCCAM acquires another econormic sanction schemna that indicates when a
country is of low strategic importance., poor economic health, and the actor does not have a
wealthy adversary. then a threat to cut off imports will produce the desired efTect.

9.2.2. Summary of economic sanction schemata

OCCAM acquires a total of seven economic sanction schemata. In this section, [summarize a
few of the economic sanction incidents and the lessons that occaM learned from the incidents.

occaM learns that there is an alternative means for the target to acquire the commodity.
From Economic-Sanction-4 OCCAM acquires a schema that indicates that another country might
supply the commodity to satisfy a political goal. From Economic-Sanction-1 (repeated below),
OCCAM learns that the heiper may be pursuing an econornic goal.

Economic-Sanction-1

in 1983, Australia refused to sell uranium to France, unless France ceased nuclear

testing in the South Pacific. France paid a higher price to buy uranium from Scuth
Afrlca and continued nuclear testing.

From this example, OCCAM acquires a schema which indicates that if a country that exports a
commodity tries to coerce a wealthy country which imports the commeodity by refusing to sell them
the commodity, then a response might be to buy the commodity at a higher price from another
country. This schema also applies to the US grain embargo (Economic-Sanction-2) and 1981
incident in which the US refused to sell pipeline equipment to the USSR.

In addition to the Lesotho example, economic sanctions have been effective tn two other types
of circumstances in the examples that occaMm has ericountered. First, in the 1960's there were a
number of incidents of the nationalization® of American companies. The following example is
typical:

Economic-Sanction-8

In 1962, Brazil expropriated the national telephone company, a substdiary of the ITT
corporation valued at $7 million dollars. The United States threatens to cut off foreign
aid totaling $173 million and Brazil agrees to reimburse [TT.

From this example, 6CCAM acquires a schema which indicates that if a threat to cut off ald s
for an amount which is greater than a demanded payment. the target country will agree to the
demand. OCCAM comes up with the schema through a rather simple cost-benefit analysis of
choosing between two goals. Once acquired, this schema applies to a number of cases, such as
Ceylon's expropriation of oil companies in 1961, and Peru's nationalization of oil and sugar
companies in 1968. In response to a series of similar incidents, the US Congress approved the
Hickenlooper amendment that requires a termination of US aid to countries that do not seitle
expropriation disputes. This amendment was quite successful in producing favorable settlements
{Hufbauer & Schott, 1985).

Another example of an economic sanction incident in which the desired goal was achieved is
also the first example in modern times. It is also noteworthy because it is an example of stopping
a military aggression with economic sanctions:

84note that occam does not treat verbs such as “expropriate’ and “natonalize” as primitive elements. These .oc
represented (n terms of the primitive atrans.

142

Economic-Sanction-9

In 1921, the League of Nations voted to stop all exports including food supplies to
Yugoslavia in retaliation for an invasion of Albania. Yugoslavig ylelded to the threat
before the sanctions were tmplemented.

The schema that occaM acquires in this case indicates that f the withheld commodity s
essential and not manufactured internally, and the target economy is weak (to prevent the country
from bidding up the price of the product until it finds a supplier), then the goal will be successful.
occam’s domain knowledge determines the relevant features of this schema. This same schema

also applies to another threat by the League of Nations which stopped Greece from invading
Bulgaria in 1925,

Despite the best intentions, not all League of Nations sanction incidents were successiul:

Economlic-Sanction-10

In 1935, Italy invaded Abyssinia (Ethiopia). The League of Nations refused to sell Italy
weapons if it continued its conquest. Italy, which had the capabiity of manufacturing
its own weapons, {gnored the threat and quickly occupied Abysstnia.

From this example. occaM learns that if a threat s made to refuse to sell a country a
commodity which 1s manufactured by that country, the threat will be tgnored.

There is a common theme in occAaM's mastery of the domain of economic sanctions. The
understanding of a novel episode requires a great deal of search of a rule base consisting of
domain knowledge and general knowledge of plans and goals to explain the ocutcome of an episode.
Onece this work is performed, the result of the search is saved as a schema. The schema serves as
a quick efficilent method of recognizing when a general explanation applies. Once a set of economic
sanction schemata is acquired, 0CCAM can function as an economic sanction expert system.

9.3. Comparing EBL and SBL

How much of an improvernent is EBL over SBL? To answer this question, ! compared EBL
and SBL on the same economic sanction data. [varied the number of training examples and
measured how accurate 0CCAM was at predicting the outcome of the remaining data and predicting
the outcome of five hypothetical sanction incidents. A political analyst from the Rand Corporation
was consulted to predict the cutcome of the five hypothetical incidents. There were a total of at
most 15 training instances presented to the learning programs. While this may seem like a small
amournt of data, there have not been many major sanction incidents.

The number of training instances (N) varied betweent 3 and 15. For each N, | ran 64 trials of
selecting N instances at random from the set of actual sanction incidents, and then measured how
accurately the resulting hierarchy of schemata classified the remaining actual and all the
hypothetical cases. Each condition was repeated 64 times because the SBL module is sensitive to
the order of examples. Of course, both leamning strategies are sensitive to the specific subset of
examples selected as training examples. To test the SBL module of occaM, [deleted the knowledge
base of political and economic rules so that EBL was not applicable.

Figure 9-9 plots the mean percentage of correct predictions made by occam with EBL and
SBL as a function of the number of training examples. The graph clearly illustrates the superiority
of EBL over SBL for this class of data. For example, with 5 examples SBL predicts an average of
14% correctly, with 10 examples 17% are predicted correctly and 25% are predicted correctly with
15%. EBL makes an average of 54% correct with 5 examples, 83% with 10 examples, and 100%
with 15 examples. Of course, fifteen {s a small number of examples for an empirical learning
program and in this situation EBL has a clear advantage over SBL. With al ffteenn actual
examples, the EBL program always creates the same schemata which are sufficient for making
correct predictions on the flve hypothetical cases. The actual and hypothetical cases are listed in
Appendix A.5.5.

In this experiment the explanation-based learning module of occaMm does not make any
incorrect predictions. This is a consequence of OCCAM having domain knowledge that is compiele
enough, and accurate enough to create schemata which account for the actual and hypothet:cal

143

@ 5 19 15
SBL ZCorract -
EBL “Correct - - - - - =

Figure 9-9: Percent of correct predictions made by occam with EBL and SBL as a
function of the number of training examples.

cases. When occaM is asked to make a prediction, it searches memory for the most spectfic
schemata and instantiates the outcome of that schemata. When there are no economic sanction
schemata that apply. then the more general coercion schemata is used. However, the coercion
schemata has a very vague prediction about the outcome of coercion incidents. It predicts that
after the threat is made. the target will perform a response which will result {n an outcome. The
specializations of coercion provide more specific predictions, For example, one schema formed by
EBL indicates that when a country refuses to sell a commaodity to a target country with a strong
economy, then the target country's response will be to purchase the commodity at a higher price
from another country which exports the cornmodity and the outcome will be a goal failure. When
using SBL on the same data, occAM makes a small number of incorrect predictions. Figure 9-10

plots the percent of unclassified examples (i.e., those which do not predict a failure or a success)
and the percent of incorrect predictions.

e 3 19 15
SEL Znclassifie SBL Z2Incorrect -=-<--~=-=
EBL ZUnclassified — — ~

Figure 9-10: Percent of unclassified examples and incorrect predictions made by
occaM with EBL and SBL as a function of the number of training
examples. EBL does not make any incorrect predictions on this set of
data.

Of course. one should not forget that there are important qualitative differences between EBL
and SBL. The most important difference is that the schemata formed by EBL provide the
knowledge needed to create an explanation of why a prediction is made. The schemata formed by
SBL cannot support this task.

144

9.4. Question Answering

occaum demonstrates its knowledge of economic sanctions by answering questions about the
effectiveness of applying economic sanctions in hypothetical circumstances. It is not designed to
predict whether or not a nation will implement a program of economic sanctions. Indeed. this

would be a much more difficult problem because it appears that economic sanctions are often
attempted when there is no hope of success®3.

OCcAM’s question answering capabilities are quite lUmited. It only deals with one tvpe of
question: the user requesting oCcCAM to predict the outcome of an event. All of OCCAM'S questions
start with "What wouid happen {...". In addition, the only subject that occaMm deals with is
economic sanctions. This question answering capability was developed to demonstrate that the
knowledge that occaM acquires can he accessed to solve a useful problem. An overview of the
issues tn question answering and a taxonomy of question types {s presented in (Lehnert, 1978) and
extended in (Dyer, 1983). In Lehnert's taxonomy, 0CCAM answers concept completion questions. In
this type of question, the question describes some detalls of a situation and asks for additional
detalls. occaM answers these questions by {inding the most specific schema assoclated with the
question and filling in the default value for the missing Information. In the questions presented to
occaM, the missing infermation is the outcome of the hypothetical event.

The process of question answering has a number of steps involved. First, ocCAM must parse
the user's question to represent the meaning of the question in terms of CD goal, plans. and
events. Next, 0CCAM must search memory to atternpt to recognize the question as referring to an
instance of a known schema. The process of searching memory can re-represent the meaning of

the question by creating a high-level representation. There are three possible results of the
memory search:

1. occaMm does not have any schemata that can help answer the question. In this case,
occaM simply replies that it does not know the answer to the question. One could
think of extending occaM so that it attempts to construct an explanation when it
cannot find an appropriate schema in the same manner that it builds an explanation
to acquire schemata with EBL. However, during question answering the search to
construct an explanation would be more difficult. During learning, examples
presented to OCCAM contain a problem statement and a resolution, and occaM must
explain the resolution in terms of information in the problemn statement. During
question answering, however, only a problem statement is given. Since it 18 easier to
verify that a plan achieves a goal than te find a plan to achieve a goal, searching for
an answer to a question would be computationally more expensive, However. if
OCCAM were capable of this task, it would raise the {nteresting {ssue of learning when
answering a question.

2. There is exactly one schema in memory which accounts for the situation. In this
case, OCCAM instantiates the sequence of events of the schema with information {rom
the question. This instantiation process provides an answer for the question and
occaM's justification for the answer.

3. There is more than one applicable schema in memory. In this case, 0OCCAM cannot
decide on a correct answer to the question. For example, if the United States were to
try to threaten Kuwait by refusing to sell a necessary commodity, there are two
schemata that apply: Kuwalt might be willing to pay a higher price for the
commedity and ignore the threat, or Kuwait might approach an adversary of the
United States such as the Soviet Union for assistance. OCCAM cannot decide amoeng
these explanations and offers both.

When occam finds an answer and a justification, these are represented in Conceptual
Dependency. OCCAM must select some of this information to tell the user. Finally, a response s
generated by converting the CD representation of the answer to English.

650ne reason that economic sanctions are proposed when they cannot bring about the desired goal becomes az: v
when one considers the alternatves: doing nothing or military retaliation.

143

An example will help to ilustrate this process of question answering. In one example, cccan
is presented with the following question:

Question: What would happen if the US refused to sell computers to South Korea
unless South Korea stopped exporting automobiles to Canada?

The four separate tasks of parsing, memory search, instantiation, and generation will be
llustrated on this example, A

9.4.1. Parsing

occaMm has a simple expectation-based parser based loosely on CA (Bimbaum & Seliridge.
1981) and DYPAR (Dyer, 1983). The interested reader is referred to either of these references for a
more detailed treatment of this type of parser. The parser in occaM is driven by word definitions. A
definition of a word typically adds a template concept which represents the mearung of the word to
a local memory, and assoclates a number of requests with the concept. The requests implement
expectations. A request looks for other concepts in certain positions and connects them together.
Typlcally, the definition of a noun simply adds a representation of an object to the local memory.
The definition of a verb adds an action representation to memory and locks for objects to fiil the
roles of the action. For exampie, the definition of the word "Canada" is shown in Figure 9-11. This
simply adds the representation of Canada to working memory.

(def-lax canada
(add-cd (polity typa (country)
name {canada)
econcmic-health (strong)

location (northern-hemisphere))))

Figure 9-11: The lexical entry for the word "Canada". It contains the function add-cd
which adds the definition to working memory.

The deflnition of the word "export” is {llustrated in Figure 9-12. This definition adds an
atrans concept to memory and activates a request. When a request is considered. the variable
cd {s bound to the concept associated with the request. Typically. a request calls the functicn
find-cd to locate a CD structure of a certain type. If a CD structure is found. it becomes the
value the variable *tow. If a CD structure of the appropriate type cannot be found. the request is
delayed until one can be found. When find-cd finds a CD structure, the remainder of the request
is executed. In the deflnition of "export”, the first request looks for a polity to flll the actor and
source of the atrans with the polity®®. This request also activates a request to find a commodity
which is the object of the atzans and a request to find a polity which is the destination.

The parsing process consists of interpreting the definitions of the words in the sentence in a
left-to-right order. The definition adds a CD concept to local memory, and optionally activates
some requests. When a structure is added to memory. requests are tested to see if the test of a
request 1s satisfled. Requests are tested in a most recently activated first order. If the test of a
request is not satisfied, it remains active. When the test is satisfied, the remainder of the request
is executed and the request (s deactivated. This simple control strategy is ail that occaM needs to
parse questions. Most of the work is done by the word definitions®7.

The results of parsing the question “What would happen if the US refused to sell computers to
South Korea unless South Korea stopped exporting automobiles to Canada?”’ is shown in Figure
9-13. The representation indicates that the US has a goal and the outcome of the goal is in

S8additionally. in the word "export” the actor of atzans (of a commodity} is aleo the destination of an atrans of money
which is initiated to pay for the exported commodity.

671; should be pointed out that the definition of "export” in Figure 9-12 is not sufficient for parsing passive scln'.c.".j €3
stnce the ordering of the requests assumcs that the polity which is the actor will appear in the sentence before the po- ¥
which is the destination. A more complex definition would make use of syntactic cues which indicate the posiucn ui "¢
actor.

148

(def-lex export
{add-cd (act type (atrans)
’ initiatas (act type (atrans)
ocbject (monay)
)
)
(add~-raguast *cd*
{cond ((find-cd polity)}
(set-role *cod* actor *tow)
{set.-rola *cd* f£rom *tow)
{set-rola *cd* (initiates to) *to*)
(add~requast *cd*
(cond{ (find-cd commodity)
{set-rcle *cd* object *to*)))})
(add-ragquest *cd*
{cond {{find-cd polity)
{sat-role *cd* to *to¥)
(sat-role *ed* (initiates actor) *to*)
NN

Figure 9-12: The lexical entry for the word "export”. It adds an atrans in exchange for
money to memory, and then activates a request (via add-requast) to flnd a
polity which 1is the actor and the source of the atrana. When it finds the
actor, it ilssues another request to find & commodity which is the object of the
atrans and a polity which is the destination.

question, The plan the US {s pursuing to achieve the goal is to tell South Korea that the US will
not sell computers to South Korea unless it stops the exporting of automobiles to Canada.

GOAL actor POLITY type COQUNTRY
name US

outcorme GOAL-QUTCOME question-focus *7*
&xmsnnsuiﬁ

PLAN actor POLITY nama us
pian ACT type MTRANS
actor POLITY type COUNTRY

name L3
to PCLITY nama SQUTH-KOREA

imports SET COMMODITY type QIL
COMMCDITY type CCMPUTERS
exports SET COMMODITY type ELECTRONICS
COMMODITY type TEXTILES
blact COND If ACT typa ATRANG | YP® AUTOMOBILE
objec e
i%ﬁiatn AC? type ATRANS

object MONEY

to POLITY name SOUTH-KSREA
actor POLITY nama CANADA

actor POLITY name SOUTH-KOREA

from POLITY name SOUTH-KOREA

mode NO
object COMMODITY tﬁ?c AUTOMOBILE
to POLITY type COUNTRY
Isa ACT ATRARS CANADA
elsa type
ir‘miates AC§ type ATRANS
object MONEY
to POLITY name US
actor PCLITY name SOUTH-KOREA
actor POLITY name US
from POLITY name US
mode

NG
object COMMODITY type COMPUTER
to POLITY name SOUTH-KCOREA i

Figure 9-13: The result of parsing the question, "What would happen if the US refused
to sell computers to South Korea unless South Korea stopped exporting
automobiles to Canada?'. Many features of the countries are not shown
to conserve space.

147

9.4.2. Finding an applicable schema

Once the question has been parsed. the next step is to traverse memory to {ind a schema
which can answer the question. In the current example, the memory traversal starts at the top of
the goal hierarchy. Following an index of the plan feature, 0CCAM arrives at a simple schema that
represents those goals whose plan is to issue a threat. This schemna has no specializations, but it
contains a representational transfer which can convert the goal representation to a coercae
representation. The question is re-represented in a higher-level representation

{CCERCE the-actor POLITY type COUNTRY
rame U3
imports COMMQDI O‘L%

COMMODI E‘ypo ELECTRCONICS
exports =THREAT=-0B

COM ype WEAPQNS

Yt
Y type ELECTRORICS
Y type MANUFACTURED-GCODS

Y type
YV

COMM
the-target POLITY tyne COUNTRY
e S COMMaD TY ¢ LECTRONICS
axXports
Ports LBMMIBITY tY2e FESFIES
NO-O)

=DE
imports CCMMOOD!L
] =THREAT-08
continent ASIA
e*onomic-hctlth %TRONG
threat-obj COMMODITY tyfn COMPUTER
dernand-obj COMMORITY, wo AUTOMOBILE
the-threat ACT type ATRANS
actor sTHE-ACTOR
object sTHREAT-08J
to zTHg-TARG;T
from =THE-ACTOR
mode NO
Initiates ACT actor sTHE-TARGET
to =THE-ACTOR
object MONEY
gypo ATRANS
tha-demand ACT typa ATRAN
actor zaTHE-TARGET
object =DEMAND-OBJ
frem sTHE-TARGETY
to POLITY type COUNTRY
name CANADA
mode NO
initiates ACT actor POLITY type COUNTRY
narme CANADA

| GOAL acter aTHE-ACTCR
goa outcor:no GOAL-QUTCOME question-focus *7*

Figure 8-14: The new representation for the question created during memory
traversal

The new high-level representation for the schema is llustrated in Figure 9-14. This
representation indicates that tha-actor s the US, tha-target is South Korea, tha-threat Is 10
refuse to sell computers and the-damand s to stop selling cars to Canada. The outcome of the
goal is the focus of the question. OCCAM continues memory traversal with the new representation.
following indices from the general coercion schema formed by SBL. There are many schemata
indexed under the coerce schema. including the kidnapping schema (which is not appropriate
since the threat is not to kill someone), and several economic sanction schemata. Only one
economic sanction schema is appropriate. This schema (which is displayed in Figure g-15]
indicates that since the-target has a strong economy, its response would be to buy the
cornmodity at a higher price from another country which exports the commodity. Notice thal the
schema in Figure 9-15 contains a general description of the target's response, the target's plan
(the-sub-plan) and the goal outcome. This information will be specialized with information from
the question to form an answer.

9.4.3. Instantlation

Once a schema with a general explanation has been found. the next step in the proccss'uf
question answering in OCCAM is to specialize the general explanation so it applies to the pamcg..sf
circumstances described by the question. In occaM, all that is needed s to match the input evert

148

STE cmacgeris BT

Tt oLt BrLoOrts ITeEEAT LS
tre-rarget PCLTY econsrmic-raaitn 5T
. lr‘-eorrs aTHREAT-C
| thrreat-ob) COMMOD!T |
i the~irreat ALT type ATRANS
acter aTHE-ACTOR
1o =THWE-TARGET
object sTRHAEAT-0BY
fram = T=E-ACTOR

mode NO
tha-demand ACT actor aTHE-TARGET

mode '¥0 .
tha-target-response ACT initistes ACT type AGﬁEéEMEN‘r
actor =ThE-TARGET
onject POLITY business-reiatianghip «THE-TARGET
axporta xTm=A AT-OEQ.J
agresment ACT type ATRAN
;yco ATRANS

witiates AC
i rom =THE-TARGET
i oD ject MONEY vaiue *MARKET
! actor aTHE-TARGET
i objegt aTHREAT-084
to zTHE-TARGET
mode YES
outcomae GOAL-OUTCOME type FAILURE

actor aTHME-ACTOR

goal GOAL actor 'GTOHAE_A%LOTH

SRl = -

tha-suo-goal GOAL-CONFLICT actor STHE-TARGET ~ 10

GET
piantypes UNDO-GOAL-LINKAGE goal GOAL actor sTHE-TARGET ‘

goal STATE type POSS-BY |
actor =THE-TARGET |
oglocc 3 T=REAT-0BJ
v

plan =THE-TARGET-RESPONSE ue YES I

Figure 9-15: The schema which provides a general explanation to answer the
. question, "What would happen if the US refused to sell computers to
South Korea unless South Korea stopped exporting automobiles to
Canada?’. This schema is a more complex version of the schema
presented In Figure 8-11. It indicates that if a country that exports a
commodity tries to coerce a country which imports the commodity by
refusing to sell them the commodity, then a response might be to buy the
commaodity at & higher price from another country.

against a pattern, binding a number of variables. Typically, there is one variable for each feature
of the macro-schema. The values of these variables are substituted into the general explanation to
produce a particular explanation that applies in the current situation.

The explanation in the current example (which is partially illustrated in Figure 9-16} indicates
that the threat motivated a goal conflict in the South Koreans by linking together the success of
their goal to export automobiles and the fatlure of their goal to possess computers. A plan to
resolve the conilict 1s to find another means of possessing computers. [mporting computers {rom

another country is one such plan to obtain computers. This will result in the fatlure of the US
goal.

9.4.4. Generating a response

Once 0ccaM has found the CD representation of the answer, it must generate the answer in
English. There are two subproblems: deciding how much information the user should be told and

converting the CD representation of the answer to English. occam does not have novel solutions
for either of these problems.

occaM has a number of stmple heuristics for dectding what information to tell the user. First.
OCCAM always tells the user the concept that is the direct answer to the question. Next. if the
direct answer s a goal failure, then occaM reports the action that led to the goal fallure. This
stmple heurtstic is adequate for selecting the (nformation to report in the current example.

After selecting the content of the answer. 0cCAM must generate an English sentence. This (s
accomplished by simple recursive application of patterns that transform CD representations (nto
English. A pattern is matched against a CD structure, binding a number of variables. Each
pattern has an action which indicates that certain words be output and that the generatcn
process should recurse on the value of some variables.

Figure 3-17 contains the generator definition of the word "sell". When there is an atrars ol

149

(SCAL-CUTCIME type FAILUREL gur—me GOAL goal ..,
| actor LS i acter Us

THWRRTED~-BY

1

ACT initiatas ACT typa AGREEMENT
actor SOUTH-KOREA
object POLITY bu’in“.-'o.n.'«l:.!tllj%ﬁhmt SOUTH-KOREA
axports
agresment ACT tfp. ATRAN. yPe COMPUTER
iArtiates ACT typ TRANS
] QUTH-KOREA
ject MONE'Y v%m. SMARKET
tor SOUTH-K A
Y type COMPUTER

Y

[
from
ob
. BC
object COMMQDIT
to SCUTH-KQREA

A
S
ct

r

modae YES

REALIZES

r
FLAN plantype UNGO-GOAL-LINKAGE goal GUAL actor S0UTH-KOREA !
goal STATE type POSS-8Y I
actor SQUTH-KOREA
object COMMODTTY type COMPUTER|
actor SOUTH-KOREA value |

Figure 9-16: Part of the explanation which indicates why the US goal will fail.

{daf-word
:pattern {act type (atranas)
actor ractor
initiates (act type (atrans)
cbiject (monay)
to ?actor)
to ?to
object ?object
noda ?moda)
taction (?actor ?moda "sell” *Pobject “"to" 7to))

Figure 9-17: The generator deflnition of the word "sell”.

an object in exchange for money, the pattern of the definition is satisfled. The action of the
definition indicates the English for the actor should be generated, followed by the English for the
mode (e.g.. "not"), the word "sell", the English for the object, the word "to" and the English for the
destination. Although quite simple, patterns such as this one are sufficient to generate
understandable English replies for questions. The following is occaM’'s answer to the question:

Question: What would happen if the US refused to sell computers to South Korea
unless South Korea stopped exporting automobiles to Canada?

OCCAM: The goal of the United States that South Korea not sell
automobilas to Canada will fail and South Korea will agree to
purchase computers from a country which exports computers.

There are a number of possible extensions to the question answering capabilities of occaMm.
For example, occaM finds an abstract spectfication of the country which would sell computers (0
South Korea: "a country which exports computers”. A simple scheme to find such a country could
be implemented so that occaM might be able to generate "some country, such as Japan. which
exports computers” for this concept. In addition, since the schema which produces the answer is
already located, it should be simple to retrieve an example to help make the point:

OCCAM+: The goal of the United States that South Korea not sell
automobilas to Canada will fail and Scuth Korea will agree to
purchase computers from a country which exports computers in
the sama manner as the Soviats purchased grain from Argentina
during the US grain embargo.

Finally, a more elaborate question answering capabllity might provide for a more interaciive

130

clalogue. occaM currently cannot adjust the level of detail it includes in an answer. Although the
instantlated explanation for the question contains information about supply and demand, occan
currently has no means of articulating this informatton. For example, the answer which occam

finds for this question {s similar to the answer provided by an expert political analyst with the
Rand Corporation:

Question: What would happen if the US refused to sell computers to South Korea
unless South Korea stopped exporting automobiles to Canada?

Answer: S. Korea will probably buy computer equipment from some other country.

Although occaM has the necessary tnformation. it Is not able to continue the
dtalogue in the same manner as the political analyst:

Question: Why?

Answer: If the US restricts S. Korea's supply of computers, they would be willing to

pay a higher price for the computers and some other country would move
in.

In spite of the limitations of OCCAM's language capabilities, | belleve that the approach
outlined in this dissertation is a promising means of creating knowledge-based systems to perform
useful functions. ocCAM directly addresses the issue of knowledge acquisition for knowledge-based
systems. In Section 9.6, I demonstrate how 0CCAM acquires the knowledge needed for EBL.

9.5, Kidnapping: An Example of Integrated Learning

The primary advantage of the approach to learning advocated in this dissertation is that the
learner gets better at learning. At first, the learner relies on simnilarity-based and theory-driven
learning. As a consequence, learning s slow and requires a large number of examples to rule out
incorrect hypotheses that are consistent with a small number of initial observations. However, the
knowledge which the learmer acquires through these data-intenstve mechanisms focuses later

learning. Once the learner has sufliclent background knowledge, explanation-based learning, a
kmowledge-intenstve leaming mechanism, is possible.

occaM demonstrates the advantage of this strategy by acquiring a kidnapping schema. Much
of the knowledge needed to explain why a ransom is paid in kidnapping is learmed by empirical
means. [n addition. the coercion schema that provides a general framework for understanding
kidnapping (and economic sanctions) is acquired through similarity-based means (see Section 9.1).
An important issue arises when relying on empirical learning techniques to provide the
background knowledge for EBL. The background knowledge may be incorrect. Therefore, Lhe
schernata that are acquired by EBL may also be incorrect and are subject to revision. In this
section, I demonstrate how occaMm deals with this pioblem. First, I demonstrate how oCCam
acquires the knowledge used to produce an incorrect explanation of why the ransom is patd. Next,
I demonstrate how it is possible to create an incorrect kidnapping schema by relying on an
incorrect theory. Then, I demonstrate how OCCAM revises its background knowledge when it
encounters more examples. Finally, I show how occaMm detects that a schema formed by EBL
relied on an tncorrect theory and how oCCAM revises the schema to reflect a change in the
background knowledge.

9.8.1. Acquiring background knowledge for kidnapping

OCCAM acquires two rules that are needed to explain why the ransom s paid by the
kidnapper. The first is the simple rule discussed in Section 7.4. This rule states that in order to
give someone an object, you must first possess the object. OCCAM uses this rule to explain why LSC
target in kidnapping is required to be wealthy. Only a wealthy person can afford to pay I..Ie
ransom. OCCAM acquires this rule when an example of dalta-agency fails to achieve the goal
because the helper does not possess the object.

The first rule that occAM acquires for kidnapping explains why the target would be ab.e _)
pay the ransom. The second rule explains why the target would want to pay the ransom. ‘-« M

151

must acquire a rule which indicates that a certain class of persons have a goal of preserving the
health of another class of persons. This rule will explain why the target pays the ransom. since
paying the ransom In kidnapping is a means of preserving the health of the hostage. occaum is
presented with two similar examples of a small child who 1s hurt when she falls off a swing:

* aid-1: Lynn is playing on the swing and she falls off and scuffs her knee. Her
mother. Chris, gets a band-aid and puts it on her knee.

» aid-2: Lynn is playing on the swing and she falls off and scuffs her knee. Her
neighbor, Tiffany. gets on the swing and rides it.

occaM contatns a dispositional generalization rule to deal with these two cases. The
generalization rule states: if an event (?e) motivates a goal (?g} for someone (?p1}, and someone else
{?p2} observes the event (Pe} and performs an action (?a) which achieves the goal (?g) for ?pl, then
the event (?e) motivates the goal (?g) for ?p2. The dispositional generalization rule tries to account
for counterexamples by focusing on ?p2 when a person observes the event, but does not assist. In
this example. occaM postulates that a difference between Chris in aid-1 and Tilfany in aid-2 is
responsible for the different goal and, therefore, the different behavicral response. However.
without any knowledge to favor one feature over another. ¢CcaM selects one feature at random:
height. occaM constructs a dispositional attribute {disp-17) and indicates that tall persons have
this disposition. Furthermore, it constructs a rule which indicates that when a person with
disp-17 observes an action which motivates a goal of preserving the health of another person.
then the person with disp~17 will also have a goal of preserving the health of that person. The
dispositionatl attribute is illustrated in Figure 9-18 and the rule is illustrated in Figure 9-19.

[HUMAN height TALL]

ENQUGH for GOAL-OUTCOME type SUCCESS
goal STATE object HUMAN
typae P-HEALTH
value YES

Figure 9-18: A dispositional attribute: tall persons have a potential called disp-17.

This attribute is postulated to be responsible for the different reactions
in aid-1 and aid-2.

ACT object TACTQOR HUMAN
motivates GOAL actor ?PACTCR HUMAN
goal STATE object ?7ACTQOR
type P-HEALTH
value YES

T

v
T

GOAL actor HUMAN disp-17 ...
goal STATE object 2ACTOR
type P-HEALTH
value YES

Figure 9-19: A rule which indicates that persons with disp-17 (l.e., tall people) have

a goal of preserving the health of others,

9.5.2. Explanation-based learning with an incorrect theory

Once occaM has acquired some background knowledge, it can use that knowledge to pertorm

EBL. When occaM has learned rules that indicate that tall people have a goal of preservind '
health of others and In order to give somecne an object. you must first possess the object.

o‘..e

-

capable of producing an explanation of the actions in a kidnapping incident. Of course. >.mu2

152

there is an incorrect rule, the resulting explanation will also be incorrect.
forming an incorrect theory, 0CCAM is presented with Kidnapping-4. repeated below:

For example, aier

Kidnapping-4

John. a 10-year-old child, was abducted on his way to church on Sunday moming by a
heroin addict His father, Richard. a wealthy, fair skinned man, recetved a phone call
that evening. The kidnapper threatened that John would be killed unless Richard paid
a $100.000 ransom. Monday at noon, Richard left the money in a locker at the tratn
station. Four hours later. his son was released in a wooded area two miles from the

train station.

The first problem for occam is to explain how the kidnapper's goal of obtaining mcney was
achfeved. The following explanation chain is constructed:

1. The goal was achieved when the target paid the ransom.

2. The target possessing the money (l.e.. betng rich) is a state which enables the

payment.

3. The threat to kill the ch
(because the father s tall).

{ld motivates a goal to preserve the health of the chid

.

4. The demand motivates a goal for the target to retain his wealth,

5. The action of paying the ransom I8 a realization of a plan to prefer the achtevement
of the more important goal: preserving the child's life.

The knowledge occaM acquired from empirical learning techhiques was responsible for

producing the second and third st

eps in this explanation. Once O0CCAM explains the target's action,

it can now generalize the plan it observed for obtaining money by retaining only those features
which were needed to produce the explanation. For example, the target is required to be rich. so
that he can afford the ransom, and the target {s required to be tall so that he is willing to pay the
ransom. The generalization which occAM constructs is tllustrated in Figure 9-20.

COERCE goal GOAL
the-target-

the-demand ACT type ATRANS

deamand-cbj P-0BJ tyre MONEY
the-threat ACT type KILL
threat-obj HUMAN .
the-target HUMAN height TALL
thea-actor HUMAN

goal =GOAL-STATE

actor =THE-ACTOR

rasponse ACT type ATRANS
actor =THE-TARGET
object =DEMAND-0BJ
to =THE-ACTOR
from =THE-TARGET

actor =THE-TARGET
objact =DEMAND-0BJ

to =THE-ACTOR
from =THE-TARGET

armount DOLLARS ralativa-number LARGE
actor =THE-ACTOR
object sTHREAT-0BJ

income-class RICH

Figure 9-20: The kidnapping schema formed from generalizing Kidnapping-4 with an
incorrect domain theory. Note that occas's incorrect theory indicates
that the target should be tall, because tall persons have a goal of
preserving the health of others.

This example {llustrates a danger of learning with an incorrect theory. Simply stated. & "he

theory is incorrect, then explanatl

on-based learning will produce incorrect generalizations. ©ocC

does contain a mechanism to revise a rule that makes incorrect predictions. In add.on,

generalizations formed with an inc

orrect theory also need to be updated.
153

#

9.5.3. Revising an incorrect domain theory

As described in Section 7.1.3.1, occaM contains a mechanism to evaluate its knowledge.
First, occam must detect that an inference rule |s making an incorrect prediction. Confldence !s
reduced In an Incorrect inference rule until it ts finally eliminated and a new hypothesis that is
consistent with the data is created. After oCCAM creates an incorrect inference rule from aid-1
and aigd-2. it s presented with the following example:

*aid-3: Lynn is playing on the swing and she falls off and scuffs her knee. TiUTany's
mother, Lorelf, who is eating an ice cream by the swing does not help.

Since there was very little support for the inference rule which predicts that Lorell will help
because she is tall, it is abandoned. When the Inference rule {s abandoned, 0CcCAM no longer has a

justification for believing that tall people are good targets in kidnapping. Should occaM discard its
kidnapping generalization at this point?

There have been a number of techniques proposed in artificial intelligence for withdrawing
conclusions of erronecus bellefs (e.g., see {de Kleer, 1984, McDermott, 1983, Doyle, 1979)). 1t
would be possible to incorporate such a truth maintainance technique in occaM. However, there
are two problems with all of these approaches. First, they are very expensive computationally
(Charniak et al., 1980). Second, there is much evidence from psychology experiments that
indicates that people maintain erroneous beliefs after the (nitial support for the belief has been
discredited (Anderson et al.. 1980, Nisbett & Ross, 1978, Hoenkamp, 1987). A recent article on
weight-loss is an excellent example of a fallure to revise "compiled” knowiedge when the underlying
facts change (Hosansky. 1987). The article advised against drinking diet soda because the
consumnption of diet soda results in water retention. This was good advice when diet scdas were
sweetened with sodium saccharin. However, most dlet sodas are now sweetened with aspartame
and the caution i3 unjustified since the sodium was responsible for the water retention.

Rather than performing an expensive truth maintainance task when an inference rule is
abandoned. 0CCAM utilizes a less expensive technique that may introduce a few errors. occam
does not abandon or update a schema until it makes an incorrect prediction®8, Recall that when a
schema makes an incorrect prediction, 0CcaM attempts to explain why the incorrect prediction is
made. One reason that a schema makes an incorrect prediction is that the schema was formed
with an incorrect theory. Therefore, when a schema formed by explanation-based learning makes
an incorrect prediction, occaM checks to see if it can verify the explanation saved with the schema

with its current theory. U it cannot, then the schema is abandoned, and an attempt is made to
explain and generalize the new example.

In the current example, after abandoning the hypothesis that tall people have the geal of
preserving the health of others, occaM must come up with a new hypothesis. Unfortunately. the
new hypothesis is not much better than the first. One difference between Chris who helped Lynn
and Lorell and Tiffany who did not is that Chris has brown hair while Lorell and Tiffany both have
blond hair. Once again, this fllustrates the hazards of guessing: one is likely to guess wrong. This
example also illustrates why it would not be a good idea to update the kidnapping schema with the
new hypothesis. The expensive process of rederiving the kidnapping schema would only create
another tncorrect schema which indicates that a good target for kidnapping is a rich person with
brown hair.

Finally, OCCAM is présented with another example which forces it to formulate a correct
hypothesis:

e aid-4: Karen falls off her bike and bruises her lip. Her sister, Lynn, gets an ice cube
to put on Karen's lip. ‘

In this example. since the person who helped (Lynn) also has blond halr, the uﬁerepce rule
which indicates that blonds will not help must be discarded. oCCAM finds another difference
between those people who helped and those who did not in these examples. In all the cases thata

68A more conservative (and more expensive) strategy would check cach schema before it is used to verify that schema s
justified by the current theory. However, In occaM. [am willing to tradeoff accuracy for effictency. Much more researca :a
psychology needs to be done to determine the exact conditions under which a person’s belicfs do change.

134

person helped, they were related to the person who was injured. occaMm creates a pew
dispositional attribute which might be called "caring”. The feature that one person has a familv
relationship with another is used to indicate when the caring disposition applies. Additionaily. a
new rule ts created which indicates that when a person cares for another. then they have a goal of
preserving their heaith®®, Once occam has acquired this rule, it {s in a position to leam a correct
kidnapping schema. The reason that occaM took a number of examples to acquire this rule is that
without any prior knowledge occcaM must simply randomly select one hypothesis from the set
which ts consistent with the data. If there were a dispositional attribute already present. then it
would have been much simpler for occaM to arrive at the correct conclusion. In fact, 1n Secticn
7.4, I showed how occaM acquired the “caring” disposition in another manner. That example
showed that the caring disposition was also useful in delta-agency for distinguishing those
people who give a desired object when asked’®. If occam is first presented with the delta-agency
examples, {t learns the caring disposition in that domain. Then, 0CCAM can reach the correct

conclusion from fewer examples in the playground domain and the incorrect version of the
kidnapping schema is not formed.

9.6. Detecting and Correcting an Incorrect Generalization

Once occaM :as acquired an updated domain theory, it is in a position to update its incorrect
kidnapping schema. It requires an example of an incorrect prediction to make it evaluate the

schema. The following example will cause an Incorrect prediction since the ransom is not
demanded of a tall person:

Kidnapping-3

While fiming a television show for the new season, Webster was interrupted with an
important phone call. Hts mother was being held hostage and the kidnapper demanded
$50,000. Webster had his chauffeur deliver the money immediately.

This example does not conform to the prediction of the incorrect kddnapping schema. The
target of the coercicn is predicted to be a tall, wealthy person. lInstead, the target is Webster. a
wealthy child actor, who is quite small. Instead of simply reducing confldence in the kidnapping
schema, OCCAM attemnpts to identify the source of the erroneous expectation, It determines that
the intentional link which indicates that tall persons have a goa! of preserving the health of cthers

s no longer supported by the domain theory. The kidnapping schema is abandoned and occam
inttiates EBL con the new problem.

Now that occaMm has a correct domain theory (from our point of view), it can correctly explain
why the target pays the ransom. Instead of indicating that the target is motivated to preserve the
health of the hostage because he is tall, the explanation indicates that the target wants to save the
hostage because he is related to the hostage. The new kidnapping schema correctly indicates that
the target should be a rich person related to the hostage (see Figure 9-21).

The principle limitation to the approach to revising schema outlined in this section is that it
does not deal with the situation in which a schema formed via EBL makes an Incorrect predicticn.
but the domain theory has not been revised. This is a sign that the domain is incorrect. However
occaM currently has no mechanism to assign blame to a particular rule. One direction for {uture
research is to record and exploit the dependencies between a relevant operational feature and the
specific rule which determines the feature's relevance. Another potential problem could arise
OCCAM uses a schema formed by explanation-based learming with an incorrect theory as part of the
explanation for another schema. For example, suppose OCCAM learns that tall people want to help
others, and then creates the kidnapping schema which indicates that the ransom note should <o
to a tall, rich person. When presented with a counterexample 0CCAM can retract the rule (nhat
indicates that tall people want to help others. However, the incorrect implication of this rule 's

890ne should not forget that occaM doesn't have a complete notion of caring. Perhaps, [should have said "Add:t:on.. «
new rule {8 created which indicates that when a person has disp-18, then they have a goal of preserving the heatn i 7o 7
relatives”.

70The disposition applies in this situation because the same class of generalization rule ts involved (f.e.. tnose ~° -~
attribute a difference in goals to a difference in a feature of the actor).

135

CWERLCE gzal GOAL goal =GOAL-STATE
actor =THE-ACTCR
the~threat ACT type KILL
actor =THE-ACTOR
object =THREAT-02J
threat-obj HUMAN
tha-targat HUMAN ralation IPT type FAMILY-REL
of =THREAT-CBJ
incame=-class RICH
tha-actor HUMAN

Figure 9-21: Part of the kidnapping schema formed from generalizing Kidnapping-5
with a correct domain theory. Note that now the target is required to
have an interpersonal relationship with the hostage (l.e., the threat-obi).

present in the kidnapping schema. The kidnapping schema might be used as part of an
explanation to explain some other incident. For example, some companies offer ransom {nsurance
to pay the ransom in kidnapping. occaM might learn that tall rich people should buy this
insurance. To avold this possibility, occaM should be extended to check to see if the support for a
schema has been retracted when the schema is used In an explanation.

9.7. Specializations of Kidnapping

Once occaM has formed a kidnapping schema, it is ready to learn about some specilalizations
of kidnapping. Since kidnapping is a complex event. there are many goals involved. For example,
in addition to the central goal of the kidnapper (to obtain money) and the target (to ensure the
safety of the hostage), the kidnapper also wants to avoid going to jail. the hostage wants to remain
alive. the police want to arrest the kidnapper, etc. The spectalizations of kidnapping will focus on
the features of the various agents which determine the outcome of these subordinate goals.

For example, occaM forms a specialization of kidnapping when it is presented with the
following episode {Alix, 1978):

Kidnapping-6

In May 1933, Mary McElroy, twenty-five-year-old daughter of the city manager of
Kansas City, Missouri was abducted. The abductors demanded $60.000 for her safe
return. They accepted a $30.000 ransom and released the hostage unharmed from a
farm in Kansas where she had been held for twenty-nine hours. The kidnappers were
arrested by the FBL The testimony of the victim was largely responsible for their
conviction. The kidnappers received a sentence of life in jail.

In this episode, the kidnappers' goal of preservirg their freedom was thwarted when they
received the punishment of life in jall. To create a specialized kidnapping schema. CCCAM must
identlfy the circumstances which led to this goal failure. A possible explanation {s suggested by
the following generalization rule: {f a preservation goal s thwarted after an action which is needed
to perform a plan which achieves a goal then the action results (n a state which enables the
preservation goal to fatl. This generalization rule suggests that abducting the hostage results in a
state which enables the conviction of the kidnappers. OCCAM's domain knowledge is needed to
complete the explanation. The complete explanation indicates that abducting the hostage results
in the hostage seeing the kidnapper which enables the hostage to testify against the kidnapper.
occAaM generalizes this explanation and uncovers an inherent flaw in kidnapping: the hostage sees
the kidnapper when he is abducted and can testify against the kidnapper. A new schema :s
created (see Figure 9-22) and indexed in memory under the kidnapping schema. The explanation
is saved as the sequence of events for the specialized kidnapping schema (see Figure 9-23).

Another kidnapping episode results in a different specialization of kidnapping that avoids tne
problem of the previous incident {(Moorehead, 1980):

156

ClZrCE the-prep ACT type ATRANS
actor =THE-ACTOR
to =THE-ACTOR
object =THREAT-0BJ
after ACT type 3TRIAL
efendant =THE-ACTCR
verdict GUILTY
witness =THREAT-08BJ
thwarts GCAL actor sTHE-ACTOR
goal STATE type P-FREEDCOM
actor =THE-ACTOR

Figure 9-22: A specialized version of kidnapping which represents an inherent flaw:

the hostage sees the kidnapper when he is abducted and can testlfy
against the kidnapper.

PTHE-PREF

RESULT-ENRBLES

3

ACT type MTRANS
to ?THREAT-0BJ
inst ACT type ATTEND
actor ?THREAT-0BJ
object EYES
obJect ACT type ATRANS
actor ?*THE-ACTOR
object ?THREAT-0BJ

RESULT-ENRBLES

4
ACT type STRIAL
efendant 7THE-ACTOR
verdict GUILTY
witness ?THREAT-0BJ

THWARTS

4

GOAL actor ?THE-ACTOR
goal STATE type P-FREEDOM

actor ?THE-ACTOR

Figure S-23: Part of the generalized explanation stored with a speclalization of
kidnapping. Since the hostage sces the kidnapper during the abduction,
the hostage can testify against the kidnapper.

Kidnapping-7

On June 2, 1920, Blakely Coughlin, the thirteen-month-old son of a wealthy
Pennsylvania family vanished from his bedroom. A ladder was found abandoned near
the window to the nursery. Several nights later, a ransom letter arrived and instructed
Mr. Coughlin to throw $12,000 from a moving tratn when he saw a white flag betng
waved

When this kidnapping episode is added to memory, a generalization rule suggests an
explanation for the selection of the hostage: {f a preparation (s performed on an obfect. look for
other schemata which have a goal fatlure. Postulate the preparation avotds the goal fallure. ©CCAM
searches memory and finds the specialization of kidnapping in which the kidnapper is convicted
by the testimony of the hostage. Since the hostage does not testify in this case, the generalization
rule suggests that this particular victim was chosen to avoid the goal fatlure. OCCAM next tries to
determine if the hostage in this episode would be able to testify against the victim. However. the
explanation which worked in the previous case will not work in this case because the hostage is an
(nfant. Therefore, OCCAM constructs an explanation which indicates that the kidnapper selected

157

this particular hostage as a plan to avold the fallure of the kidnapper's goal to preserve his

freedom. The generalized event which occam constructs for this situation is Ulustrated in Figure
9-24,

COERCE threat-co] HUMAN age INFANT
the-prep ACT type ATRANS
actor =THE-ACTOR
to =THE-ACTOR
object =THREAT-~0BJ

Figure 8-24: A specialized version of kidnapping which avoids a potential problem
with kidnapping by selecting an infant as the hostage.

The new kidnapping schema is indexed under the kidnapping schema by the age of the
hostage and the preparation (lL.e.. abducting the hostage) since these are the only features needed
to construct the explanation. Alternative examples might focus on other reasons that the hostage
might not be able to testify by interfering with other locations in the causal chain. For exarnple. by
killing the hostage the kidnapper can prevent the hostage from testifying as well as preventing the

hostage from assisting the police by providing information which might lead to the kidnapper's
capture.

9.8. Summary

This chapter presented a number of examples of schemata acquired by occaM. The primary
beneflt of the theory of learning proposed in this dissertation is demonstrated. In familtar domains
in which occaM has the relevant background knowledge, learning is quick. New schemata which
encode novel Interactions among existing knowledge are created via explanation-based learning.
In unfamillar dorains. learning is slower as OCCAM uses empirical techniques to acquire new
knowledge. Simple causal relationships acquired via empirical techniques, can be combined
analytically to forrn more compiex relationships. For example, via empirical techniques. occam
acquires a coercion schema and a rule which indicates that members of the same family have a
goal of protecting other family members. occaM uses explanation-based learning to create a
kidnapping schema from only one example. The kidnapping schema is a specialization of coercion

which indicates that a relattve is willing to pay the ransom of the hostage so that the hostage is not
harmed.

occaM has been used to create the knowledge-base for a system that predicts the cutcome of

economic ‘sanction incidents. The system accepts questions in English, searches mermory for the
relevant schema and constructs an English answer.

138

Chapter 10
Future Directions and Conclusions

When two theortes are equally defensible on other
counts, certainly the simpler of the two s to be
preferred on the score of both beauty and convenience.
But what (s remarkable ts that the stmpler of two
theories (s generally regarded not only as the more
desirable but also as the more probable. If two theorles
conform equally to past observations. the stmpler of the
two (s seen as standing the better chance of
c%rg)‘mtmn tn future observations. (Quine, 1963, p.
1

What has been accomplished In this dissertation? First and foremost. | have proposed a
theory of learning causal relationships that integrates two different sources of information: the
experiences the learner observes and the knowledge the learner possesses when the observations
are made. Furthermore, the theory claims that analytical learning techniques that make use of
prior knowledge are to be preferred to empirical learning techniques when both are applicable.
Chapter 5 reviews the psychological evidence that supports the claim that people exhibit this same
preference. In Chapters 4 and 6, I tndicate the computational reasons for this preference. In
addition, I have argued that people possess a general theory of causality to assist in learming

causal relationships. and demonstrated how a machine learning system can benefit from this
source of knowledge.

10.1. Integrated Learning Systems

To appreciate the strengths and weaknesses of the learning strategy proposed in this
dissertation, it is worthwhile to compare this strategy to alternative means of integrating SBL and
EBL. One such strategy would be to first use SBL to form a correlational generalization, and then
use EBL to verify that the generalization is consistent with existing knowledge. Those parts of the
correlational generalization that are not supported by the existing knowledge are to be discarded.

Figure 10-1 illustrates this approach. This strategy is employed by the UNIMEM program
(Lebowitz, 1986¢, Lebowitz, 1986Db).

There is one important beneflt of this strategy. Rather than explaining individual events.
generalized events are explained. Generalized events encode an observed regularity between
events. Many of the features of the individual events are not tncluded in the generallzed event, so
the search for an explanation is more focused. However. there are two weaknesses of this strategy.
First, the EBL program is limited by the biases of the SBL program. For example, the similanty-
based learning module of UNIMEM is limited to uncovering the situation in which one feature
predicts the presence of another feature. It cannot produce a generalization which indicates that a
combination of features is predictive due to the amount of storage that a similarity-based program
would require to perform this task. However, it Is trivial for an explanation-based learmning
program to perform this task. Additionally, the similarity-based program limits the explanation-
based program by relying on a syntactic clustering algorithm for the aggregation of events into
useful clusters. The second weakness of this strategy is that the explanatory power of the learner
does not increase. Since the results of the simiarity-based module are filtered through he
explanation-based leamning module, only generalizations which are implications of existing

139

N
.

N
Enou?zs

examp Remember EXAMPLE]
?

v
G = SBL(EXAMPLES)]
|

Discard G
{assume coinicidence)

Explain(G}?

GENERALIZATION = EBL(G)]

Figure 10-1: Preferring similarity-based to explanation-based learning.

knowledge are created’!. Finally, this strategy is not consistent with findings in psycholegy that
indicate that people overlook correlations which are not anticipated by existing knowledge (Nishe:t
& Ross. 1978). However, this strategy has been employed (n domains which are typically more
data-intensive than the tasks which people commonly encounter {Lebowitz, 1987}. For example.
one domain that UNIMEM operates in is finding and explaining correlations between the voting
records of Urnited States senators. In this domain. the program performs a task that would te
difficult or impossible for many people. The program is presented with data on how 100 senatcrs
voted on 15 issues in addition to 20 features describing each senator. and builds predictive
generalizations. In such a domain, the benefits of this strategy outweigh its weaknesses.

Another strategy which would combine existing knowledge and correlational informat.-n
would be to use existing knowledge to explain an event. However, rather than using EBL lor e
generalization. SBL can find regularities between events and their explanations. Flgure .0 2
illustrates this approach. Such a strategy has been Laplemented in the WYL program (Flann %
Diettrich, 1986) which performs inductive generaliization on explanation structures. In Purpcse
Directed Analogy (Kedar-Cabelll, 1985), the explanation of a new example is produced by anra’
with a known example and a generalized concept definition is formed by combining common ¢
of the explanation.

One important benefit of this strategy is that the learning system does not have o hue
enough knowledge to be able to produce the explanation. The explanation may be suppliec v
some external agent. For example, a parent might tell a child “You can't have a cookie now
because it's too close to suppertime and it might spoll your appetite.” Although a parent m: ™t
give an explanation, rarely are the principles from which the explanation was dertved given le J
"One hour before supper is too close” or "Foods with more than 100 calories are fllling) = 2
situation such as this, EBL is not applicable. Of course, {f the explanation is derived from "¢
learner's knowledge, or even verified by the learmer’s knowledge, it is more effective to use ELL
generalize explanations. Otherwise, irrelevant coincidental information is likely to appear v ~° *
generalized explanations.

?1n Diettrich's terms, there {s no learning at the knowledge level.
160

EXPLAHATION = Explain(EXARPLE}
!

[GEHERALIZATION = SBL(EXAMPLES LEXPLANATIONS)]

Figure 10-2: Similarity-based learning of explanation structures.

The final aiternattve I consider is the one proposed in this dissertation and implemented in

occaM. In this approach, EBL is applied if applicable and similarity-based leaming is used as a
last resort’2. This approach ts illustrated in Figure 10-3.

GENERALIZRATION. = EBL(EXANPLE)]

GENERALIZATION = SBL(EXANPLES)]

Remenmbar EXANPLE]

Figure 10-3;: occaM: preferring explanation-based to similarity-based learning,

The primary beneflt of this approach is that the knowledge necessary to perform EBL can be
acquired by the learning system. Explanation-based learning is preferred, but {f there is not
enough knowledge to produce an explanation, SBL can acquire this knowledge. The primary
disadvantage of this approach ts that knowledge that is needed to make generalizations can be
incorrect. This is a consequence of using SBL which makes unjustified inductive leaps to acquire
this knowledge. It is tmportant to realize that occaM i{s much more than a switch that decides
when to run each type of learning program. The separate parts of OCCAM cooperate by utilizing the
same memory for leaming and explanation. Figure 10-4 illustrates the flow of information tn
occaM. Schemata are formed by SBL or EBL and serve as background knowledge for EBL.

Learning and Memory Principle 27

Preferring EBL toc SBL makes the
results of SBL available to EBL.

72Fgr the moment, [am ignoring the theory-driven learning component of 0ccAM.
161

, CENERALIZATION = EBL(EXAMPLE)]
? i i
y |

i N Schematal

/ N
ﬁﬁﬂs/—v—psusanuzmmu = SBL(EXANPLES))

1]
L4
Remember EXAMNPLE]

Figure 10-4: The flow of Information in occaMm. Schemata are formed by similarity-
based or explanation-based learning and serve as background knowledge
for explanation-based learning.

10.2. Comparisons to Related Work

In the previous section, [compared occam’s learming strategy to alternative means of
combining pricr knowledge and correlational information. In this section, I compare occaM to a
number of different approaches to learning,

10.2.1. Empirical learning

In machine learning, empirical techniques which create a concept definition from a number of
examples have been extensively studled (e.g. (Bruner et al., 1956, Granger & Schlirmmer, 1983.
Hayes-Roth & McDermott, 1977, Michalskl, 1977, Mitchell, 1982, Lebowitz, 1980, Vere, 1973,
Winston, 1975)). There are serious problems with considering an empirical learning method to be
the only mechanism for learning causal relationships. In particular. empirical learming methods
cannot distinguish between relevant similarities and coincidences. In addition, empirical learning
methods cannot account for the {act that relationships consistent with current beliefs are easier to
detect {see Section 5.1.1), or that it is easier to learn relationships that are consistent with a
general theory of causality (see Section 5.2.2). Furthermore, empirical learning programns are
sensitive to biases that might affect the collection of data. For example {Shell, 1987], {n one study
it was found that people in a hospital with pancreatic cancer had consumed more coffee than a
control group of hospital patients with other illnesses. This might suggest that heavy coffee use
increases the chances of pancreatic cancer. However, further investigations showed that over
thirty percent of the control group were hospitalized for digestive allments and were less likelv to
consume coffee for this reason. This example illustrates one manner in which prior knowledge can
assist SBL: by reasoning about how well the observed cases represents the entire population.

10.2.2. Cpnnectlonlam

Recently, there has been renewed interest in connectionism. an artificfal intelligence
paradigm which makes radically diferent assumptions than the research in this dissertation.
OCCAM is consistent with Newell's physical symbol system hypothesis (Newel. 1980). Thus
hypothesis proposes that reasoning consists of manipulating symbols with mentally represented
rules. Connectionist networks need not contain symbols or rules. Instead. computation [whicn
can perform reasoning tasks) is performed on a connected network of simple neuron-like elemen:s.

-

One of the most influential connectionist models has been proposed by the Puri..
Distributed Processing Research Group (Rumelhart & McClelland, 1986). This model has a st
input units connected to at least one layer of hidden units which are connected to a set of cu;t

162

units. The connections between the output of one unit and the input of the next are weigh:s
Figure 10-5 shows a small network of three input units, four hidden units and two output uhmis
For each unit j. the output o, glven an input pattern p is: '

1
0 e
]
1+e'(2 *u*8)
where w, is the weight from unit i to j and BJ {s a "threshold” for unit ;.

Figure 10-5: A multl-layer network that contains hidden units.

The key to the success of this type of network is a learning rule called the generalized-delta
rule (also known as back-propagation) which 18 used to adjust the weights of the network to train
it to present the proper output for a given input. The generalized-delta rule is a significant advance
over previous network learning procedures which either (1) were limited to two-layer networks
(Widrow & Hoff. 1960) and thus incapable of solving a number of interesting problems (Minsky &
Papert. 1969), or (2) required stochastic units (Hinton & Sejnowslkd, 1986) and a large amount of
computation for each learning cycle. The generalized delta rule indicates how the weight w on the

connection from unit i to unit j should be changed after presentation of an input pattern p: !

B,w,=08,0,,

where

SP}-quj(l—o)t

- pj—opj) if j s an output unit

and

§,=0,(1-0, ,)E 8,v 1f j1s a hidden unit

where 7 {s a parameter which controls the learning rate: . i3 the target output for unit ; with tnput
pattern p; Spk is the error propagated back to unit j from a unit k whose input I8 o; and w, is the

weight of the connection from unit j to unit . The interested reader is referred to (Rumelhart et al.
1986) for a derivation of the generalized deita rule.

A natural question to ask is how well would this type of network do at learning causal
relations. In this case, the input to the network might be a description of an event, and the output
would be a description of the outcome of the event. Such a network would learn by being trained
on palrs of events and outcomes and perform by computing outcomes for an input event.

However, such a system would have a number of problems. First, the generalized delta nuie
is an empirical learning rule. It would suffer from the same problems as any other empirical
learning systems. Some regularities which the system detects are bound to be just comcidcr‘iccs‘
especially if there are a large number of features and a small number of examples. For examp.e. in
the economic sanctions domain, there are only about 40 examples of economic sanctions in
modern times. and OCCAM uses about 100 features to represent the events and countries for each
Incident. In Section 9.2, I showed how an SBL program might find illogical regularities sucn as

163

when an English speaking democracy which imports ol threatens a countrv in (he Nomiern

Hemisphere which has a strong economic health and exports weapons. then the sanction wul i.!

because a country in the Southern Hemisphere will help. The generalized delta rule also wil firnd
such {rrelevant regularities.

The generalized delta rule is more powerful than earlier network learning rules (and even
most svinbolic learning systems) because it can leam more complex functions (such as exclusive
or} and (mperfect regularities. However. it does not do particularly well at selecting a simpler
qypothesis over a more complex hypothiesis when both are consistent with the data. The problem
arises when the network {s not shown every possible combination of input features. In this
situatlon. there will be several duerent generalizations possible. Vartous empirical learning
programs have dillerent biases {Utgoff, 1986) which are used to favor certaln hypothesis such as
the most specific hypothesis, or the simplest hypothesis.

Research in psychology indicates that people select simpler hypotheses over mocre complex
when both are consisterit with the data. Bower and Trabasso have extensively investigated concept
identification when there are redundant attributes (Bower & Trabasso, 1968). For example, if two
atiributes always vary together (Le. squares are always blue, and blue things are always squares!.
then hurnan subjects fall into three classes: those that use one of the relevant attributes (e.g..
blue). those that use the other relevant attribute (e.g., square) and those that use both. Since
Bower and Trabasso were primarily concerned with determining whether or not subjects attended

lo both attributes. they grouped together those subjects who conjunctively and disjunctively
combined the redundant attributes.

In a small redundant relevant cue experiment with only three features, a subject might be
presented with two positive examples (a small blue square and a large blue square), and two
negative examples {e.g., a small red circle and a large red circle) and asked to find a means of
distinguishing positive examples {from negative examples. In this situation, subjects do not report
complex concept definitions such as "small squares or large blue objects" or "large squares or
small blue objects” when a simpler description ("blue square'} 18 possible.

An experiment with the generalized delta-rule revealed that the generalized-delta rule dces
not consistently find a sirn?le solution (Pazzani & Dyer, 1987). In this experiment there were three
input attributes, z.y and z’3. [n these experiments, the number of hidden nodes was 8 and the
value of 1 was .25. The value of z was always the same as the value of z. Presentation of the four
input patterns were repeated until the network would respond with 1 when x (and, therefcre.)
was 1 and with O otherwise. After the network had learned this concept, it was presented with all
eight possible input patterns. The output value of the network determined what function 1t had
learned. For example, {f the network reported 1 only when x was 1, then it had leamed that x was
the relevant attribute,

In this experiment, for some input patterns which were never seen the output value might not
be greater than .85 (which is considered 1} or less than .15 (which ts considered 0). In thelr
experiments on generalization, Rumelhart, Hinton, and Williams accept a value of greater than cr
equal to .5 for 1, and less then .5 for 0. This strategy was adopted in Condition 1 in which 1600
trials were run from random initial states (38 did not terminate before 5000 iterations of the
learning procedure). In Condition 2, 5000 trials were run but the boolean function was recoris.l
only if the ocutput was above .85 or below .15 for all eight possible inputs. This occurred in €5
the 5000 trials. The results of these experiments are displayed in Figure 10-6.

There are sixteen possible boolean functions consistent with the four input patterns wo.oh
were presented. Of these, human subjects only report the first four (z. x. xz and xvz) In Fuor
10-6. In human subjects, the attribute that is not correlated with the output () is not consicers .
relevant. The exact distribution among the four functions depends on several factors such as 1.
saltency of the cues. In the Trabasso and Bower experiment, 34% classifled on one attribute. 5. ‘
classified on another, and 15% classified on both attributes. In network learning with Conditiun ..
the network did not find one of these simple solutions more than 50% of the ttme. The r: =
complex solutions include the irrelevant attribute (y). In Condition 2. when the network “was .

731n an experiment with human subjects, r might represent shape with O = square and 1 = circle. y might represe:
with O » red and | = blue, and z might represent size with 0 = big and 1 = small.

164

Function Condition 1 Condition 2

Closest Only Exact
z 269 235
x 267 223
vz 119 32
xz 92 30
x¥vz 91 7
xyvz 65 15
xvyz 73 13
xvyz 85 16
xzvyz 70 13
xvyz 87 18
xyvxz 57 9
Xy vxz 86 25
xyvyz 38 2
xzvIyvyz 40 4
xIvX¥yvyz 86 16
XZVIXYV Y2 36 3

Figure 10-8: Distribution of concepts learned when there are redundant relevant cues.

sure” of the rule learned, the irrelevant attribute was included 20% of the time. This problem is
more severe when the number of inputs 18 Increased. For example, with 5 input features instead
of three, under various conditions, the network included irrelevant attributes in 76% to 99% of the

solutions. The expewriments were also repeated with different numbers of hidden units, and
similar results were found.

The results of this experiment question the ability of the generalized delta rule to arrive at a
reasonable generalization when some input configurations have not been presented. The concept
descriptions of human subjects in the redundant relevant cue experiments are simpler than those
which are learned by the generalized delta rule. Occam's razor favors a simpler hypothesis over a
more complex hypothesis when both are consistent with the data. Note that "simpler” is defined
symbolically. A distributed network that computes x is just as complex as one that computes
xzvxyvyz.

So far. | have been arguing on the ground that people favor a simple hypothesis. However,
there i{s evidence from philosophy (Quine, 1963) and the theory of computation (Pearl, 1978,
Blumer et al., 1987) which indicates that a simpler hypothesis 1s more likely to be correct. The key
to understanding this resuit lles in the uniqueness of a simple solution and the ambiguity of a
complex solution. For example, there is exactly one simple conjunction in Figure 10-6. However,
there are twelve solutions which are more complex than this simple solution. Selecting any one of
these twelve requires assuming that a feature which did not correlate at all with the solution on
the observed training cases is an important predictive feature on the unobserved cases.

Some have criticized the concept identification task because the learning takes place in an
artificial environment without regard to the leamer's goals or prior knowledge (Murphy & Medin.
1985, Holland et al., 1986, Schank et al., 1986). For example, consider the following more realistic
redundant relevant cue expertment. Someone familiar with many sports but who has never seen a
game of basketball notices that there are flve players with green shirts, blond hair. and various
color sneakers. When one of these players has the ball, all the players run to one end of the court.
Five other players have yellow shirts, black hair, and various color sneakers. When one of these
players has the ball, everyone runs to the other end of the court’4. Two opposing players collide.
and are injured. Two replacements come in, one with a green shirt and black hair, the other with
a yellow shirt and blond hair. The new player with the green shirt and black hair gets the ball. To
which end will everyone run? An intelligent person would use his prior knowledge of sports (l.e .
players on the same team wear the same color uniform) to determine that shirt color is relevant

74Some may recognize this as a Lakers-Celtics game.

163

and hair color is not relevant and make the correct prediction. This is in sharp contrast ta an
artificial situation in which a learner must decide whether the color or the size »f a rectangle is
relevant. However, the nature of the concept identification task makes no difference to neural
networks. One way to bias the saliency of attributes in network learning is to set the initial
weights differently (e.g.. shirt color is initlally stronger than hatr color). However. a simple blas
would not suffice for all problems. To see this, consider the following different task. One of the
players with the green shirt and blond hair also endorses halr products. He is arrested on drug
charges and the company decides to find another basketball player to represent their products. In
this situation. hair color may be more important than uniform color. Instead of always favoring

one attribute over another, a more complex process is required to take into account the goals of
the learner.

In these simulaticns, network learming with the generalized delta rule did not exhibit a
number of similarities with hurmnan learmning on a number of concept identification tasks. This is in
contrast with the results of network learmning on other tasks. such as classical conditioning {n
animals (Barto & Sutton, 1982}, prior leamning which blocks attention (Gluck & Bower, 1986) and
human skill learning (Cohen et al.. 1986). Human learning is a very complex process and it is not
clear that any single rule or strategy can account for all human learmning (Rumelhart & Norman,

1978). Tulving [Tulving, 1985] has distinguished three types of human memory. each with its own
type of learning and retrieval:

¢ In procedural memory which retains connections between stimull and responses, the

learning mechanism is tuning. Retrieval from procedural memory is by performing
(i.e.. acting or perceiving).

+In semantic memory, which represents knowledge of the world, the leaming
mechanism !s called restructurtng. Retrieval from semantic memory is called knowing.

¢ [n episodic memory, which represents knowledge about personally experienced

events, the learning mechanism is termed accretion. Retrieval from episodic memory
is called remembering.

The generalized delta rule seems to correspond most directly with tuning. Indeed, it has been
most successful at simulating the learning of those activities of humans and animals which
improve gradually over time. An important problem that neural networks must address to be a full
model of human learning is the manner in which current knowledge influences the learner. At the
semantic and episodic level, humans can acquire complex symbol structures in single trials. For
many of these high-level tasks, the symbolic level is more appropriate than the neural level for a
description of other human behaviors. There are two possible ways of unifying these different
levels of description within the parallel distributed processing framework:

1. Look for network architectures which implement “virtual machines" which
manipulate symbols (Touretzky. 1986, Touretzky & Hinton., 1985). This approach
acknowledges that humans have "connectionist" hardware, but admits that (at least
by adulthood) humans have bullt up some capabilities which are better
characterized at the symbolic level.

2. Look for network architectures and learning rules which explain intelligent behaviors
without reference to symbols (Carpenter & Grossberg, 1986). For example, it is
possible that such an architecture can follow Occam's razor without explicitly
representing hypotheses as symbols and Occam's razor as a rule.

10.2.3. Explanation-based learning

Explanation-based leaming provides a solution to the central problem of empirical learning,
All empirical learning programs must make an unjustified inductive leap when it is assumed that a
regularity which has been true in the past will be true in the future. In contrast. EBL 13 an
analytical technique which makes justifiable generalizations. When the underlying causes for a
regularity are known, the exact conditions under which the regularity will hold can be derived.

However, there would be several problems with the claim that EBL is the only mechanism
necessary to learn causal relationships. In particular, EBL cannot answer the question of how the

168

and halr color (s not relevant and make the correct prediction. This is tn sharp contrast to an
artificial situation in which a learner must decide whether the color or the size of a rectangle is
relevant. However, the nature of the concept identilication task makes no difference to neural
networks. One way to bias the saliency of attributes in network learming s to set the initial
weights differently (e.g., shirt color is initially stronger than hair color). However, a stmple bias
would not suflice for all problems. To see this. consider the following different task. One of the
players with the green shirt and blond hair also endorses hair products. He is arrested on drug
charges and the company decides to {ind another basketball player to represent their products. In
this situation, hair color may be more important than uniform color. Instead of always favoring

one attribute over another, a more complex process i8 required to take into account the goals of
the learner.

In these simulations. network learning with the generalized delta rule did not exhibit a
nurnber of similarities with human learming on a number of concept identiflcation tasks. This is in
contrast with the results of network learning on other tasks, such as classical conditioning in
animals (Barto & Sutton, 1982), prior learning which blocks attention (Gluck & Bower, 1986) and
human skill learning (Cohen et al., 1986). Human learning is a very complex process and it is not
clear that any single rule or strategy can account for all human leaming (Rumelhart & Norman,

1978). Tulving (Tulving, 1985) has distinguished three types of human memory, each with its own
type of leamning and retrieval:

¢ In procedural memory which retains connections between stimull and responses, the

learning mechanism 18 tuning. Retrieval from procedural memory is by performing
(ie.. acting or perceiving).

+In semantic memory, which represents knowledge of the world., the leaming
mechanism is called restructuring. Retrieval from semantic memory is called knowing.

+ In eptsodic memory, which represents knowledge about personally experienced

events, the learning mechanism Is termed accretion. Retrieval from episodic memory
is called remembering.

The generalized delta rule seems to correspond most directly with tuning. Indeed. it has been
most successful at sirulating the learning of those activities of humans and animals which
improve gradually over time. An important problem that neural networks must address to be a full
model of human leaming is the manner in which current knowledge influences the learner. At the
semantic and episodic level. humans can acquire complex symbol structures in single trials. * For
many of these high-level tasks, the symbolic level Is more appropriate than the neural level for a
description of other human behaviors. There are two possible ways of unifying these different
levels of description within the parallel distributed processing framework:

1. Look for network architectures which implement “virtual machines” which
manipulate symbols (Touretzky, 1986, Touretzky & Hinton, 1985). This approach
acknowledges that humans have "connectionist” hardware, but admits that (at least
by adulthood) humans have bullt up some capabilities which are better
characterized at the symbolic level.

2. Look for network architectures and learning rules which explain intelligent behaviors
without reference to symbols (Carpenter & Grossberg, 1986). For example, it is
possible that such an architecture can follow Occam's razor without explicitly
representing hypotheses as symbols and Occam's razor as a rule.

10.2.3. Explanation-based learning

Explanation-based learning provides a sclution to the central problem of empirical learning.
All empirical learning programs must make an unjustified inductive leap when it is assumed t_hat a
regularity which has been true in the past will be true in the future, In contrast, EBL is an
analytical technique which makes justiflable generalizations, When the underlying causes for a
regularity are known, the exact conditions under which the regularity will hold can be derived.

However, there would be several problems with the claim that EBL is the only mechams:n
necessary to learn causal relationships. In particular, EBL cannot answer the question of how the

166

underlying knowledge of causality is learned. In occam, it ts the role of SBL and TDL to create this
knowledge.

A further problem with EBL is that most researchers have considered an explanation to be a
deductive proof (e.g., (Hirsh, 1987, Kedar-Cabelll, 1987})). However, in many instances explanation
cannot properly be viewed as a deductive process (Charniak & McDermott, 1985, Josephson et al.,
1987, McDermott, 1986). Instead, explanation should be viewed as an abductive process (Peirce,
1932) which generates hypotheses to account for facts. Explanation cannot be deduction. because
in the typical case, information Is missing which would allow a deductive proof to be completed
(Rajamoney & DedJong, 1987), This problem has been called the incomplete theory problem
(Mitchell et al.. 1986a). When a domain theory Is incomplete, missing information must be
assumed. and multiple inconsistent explanations arise because it s possible to make multiple
Inconsistent assumptions. A crucial problem is deciding between alternative explanations.

While it is true that the explanation-based learning component of occaM suffers from the
problem of treating an explanation as a deducttve proof, occaM does address the issue of selecting
between alternative explanations In its theory-driven learning component. The theory-driven
learning component of occam can be thought of as explanation-based learning with a weak.
incomnplete domain theory. For example, In TDL, it is often the case that more than one
generalization rule may apply In a situation. In this case, occam does not have enough knowledge

to determine which of the possible explanations is correct. However, occaM has two strategies for
selecting a hypothesis from the set of alternatives:

» Select the simpler hypothesis. The generalization. rules in oCCAM are ordered in
increasing complexity of the explanation. Exceptionless generalization rules have the
highest priority, followed by dispositional generalization rules which attribute different
outcomes to different features of the objects, and finally historical generalization rules
which attribute different outcomes to different histories of the objects.

* Dispositions. When other factors are equal, occaM selects explanations which utilize
the distinctions that have been useful in previous explanations,

One important aspect of EBL with incomplete theories which {s addressed in TDL is the
evaluation of explanatory hypotheses and the revision of incorrect hypotheses. occaMm is unique
among EBL programs in dealing with this issue.

10.2.4. Chunking

Chunking is the process of saving the results of problem solving activity so that, in the future,
similar problems can be solved directly without a search for a solution. The goal of chunking
(Laird et al., 1984) is similar to the goal of EBL. Soar (Laird et al., 1986) is an example of a
chunking system. Soar starts with an initial base representation which indicates the goal to be
achieved and operators that can search for the goal state. In Soar, all basic operations are
represented as subgoals. For examnple, subgoals will be spawned to select among applicable
operators, to test if a goal (or subgoal} has been achieved. and to find the result of applylng an
operator to a state. With the base representation and subgoaling strategy, Soar can search for the
solution to a problem but this search may be expensive. In Soar, efficiency is achieved by rules
(expertise knowledge) which guide the search. These rules are automatically acquired by creating
chunks of knowledge implicit In the base representation. Chunking Is a technique for recording
the solution of a subgoal so that the chunk can substitute for the expensive subgoal processing
the next time the same subgoal is encountered. For example, chunking a goal to select among
operators will result in a chunk which selects the proper operator in that state and chunking a
goal to apply an operator to a state will result in a chunk which directly achieves the effect of the
operator. Chunking is accomplished by creating a new rule. The test of the rule is found by
noting what facts were accessed to solve the subgoal. The action of the rule is computed by noting
what facts were added to memory during the processing of the subgoal which are needed by the
parent goal. The chunking strategy of Soar has been applied to a number of systems. For
example, R1-Soar (Rosenbloom et al., 1985) is an attempt to duplicate the performance of .Rl
{(McDermott, 1982), a rule-based expert system that configures computer systems, by learning
knowledge-intensive configuration strategles.

As a general theory of learning, Soar suffers from the same problem that EBL does since it

187

does not have an empirical learning component to find regularities tn a number of observations. It
might be possible to add an empirical learning module to Soar. For example, one might pose a
problem to Soar to {ind the common features of a number of examples. The first time this {s done
Soar could use any of the empirical learming techniques to find a concept description. The results
of this problem solving activity would be a chunk which could be retrieved later as a concept
description. However, the problem solving strategy of Soar 1s too general to be constdered as a
cognitive model. That is, Soar provides an architecture more than a specific cognitive model. For
example, different operators {n Soar could implement different learning strategies. Some of these
might correspond to human performance on some learning task, but there is no reason to expect
that all of them would. For example, it should be possible to implement Scar operators which
follow each of the three alternative strategies for combining prior knowledge with empirical

learning methods in Figures 10-1, 10-2, and 10-3. A specific set of operators must be specified for
Soar to be evaluated as a cognitive model.

One area that would need much more development in SOAR is the indexdng of learned rules
in memory. Currently, Soar stores all rules in a uniformm manner and does not make use of a
hierarchy of abstraction in which to index new rules.

10.2.5. Case-based reasoning

Recently, there has been a large amount of interest in case-based reasontng (e.g., see
(Schank, 1986, Harmmmond, 1987, Kolodner. 1987, Leake & Owens, 1986, Kass, 1986, Schank,
1982)). Case-based reasoning is to a large extend compatible with the theory of memory in which
occaM is embedded. According to Schank's MOP theory (Schank, 1982}, understanding a new
event consists of finding the best knowledge structure in memory which accounts for the event,
and using the knowledge structure for inferences, predictions, and explanations. There are two
primary differences between occaMm and most case-based reasoning systems. First, case-based
reasoning systems to date have focused on SBL to acquire new generalizations, Second. in case-
based reasoning, sometimes the best knowledge structure is a specific experience in memory,

rather than a generalized experience. When the best knowledge structure can be a specific case,
there are two problems that must be solved:

» Finding the best case in memory. In occaM the most specific schema to account for a
new event cannot contradict any of the features of the new event. This 1s no longer

true In case-based reasoning, since a specific case is bound to differ on some
(trrelevant) detalils.

s Adapting the explanation of a previous case to flt a new situation. For example, one
systemn (Alterrnan, 1985), modifies a plan for riding on the subway system in San
Francisco to ride on the subway in Washington D.C.

A critical {ssue for case-based reasoning systems is finding a good previous case. Clearly. a
plan to ride the subway in Washington D.C. could not be easily constructed by modifying a plan
to visit the Lincoln Monument in Washington D.C. This cructal problem for case-based reasoning
has been addressed by 0CCAM since it contains a mechanism for determining which features are
relevant to solving a goal. This mechanism could be used by a case-based reasoning sysiem to
select which features to index an event by so that it can be recalled when relevant. The second
issue which faces case-based reasoning systems, dynamically modifying old explanations to fit new
situations is not addressed in occaM. Instead. occaM generalizes explanations when they are
added to memory, so that they can be specialized when needed for a new case.

10.2.8. Discovery systems

An area of research which is related to the learning of causal relationships in 0CCAM is the
discovery of scientific laws (e.g. (Langley & Nordhausen, 1986, Langley et. al,, 1986). There are.
however, a number of differences between occam and scientific discovery systems. Most sclentific
discovery systems operate on data that do not include irrelevant attributes. For example, in a
version of BACON (Langley et al., 1983) which discovers the ideal gas law. the system is presented
cases representing the pressure, volume, and temperature of varlous gases. If the system were
also presented with data indicating the height and age of the experimenter, the size of the Searci'}
space would be increased considerably. A general theory of causality such as the one implemen:2d
in occaM could help to rule out irrelevant attributes.

168

The second difference between occam and discovery systems is that most discovery systems
have looked for quantitative laws which summarize numerical relationships (e.g., the velocity of a
falling object Increases at 9.81 meters per second). In contrast, 0CCaM focuses on qualitative laws
{e.g.. objects except helium balloons fall toward the ground).

10.3. Future Research on Integrated Learning

Numerous directions exist for future research on integrating empirical and analytical learning
methods. Additional research directions include the acquisition of generalization rules and the use
of empirical learning techniques to compiete an explanation. ;

10.3.1. Learning generalization rules

Currently. in occaM there is a fixed set of generalization rules that never changes as the
program learns. When the program starts, it has its complete theory of causality. While there is
evidence that very young infants are able to perceive causal relationships {Leslie & Keeble, 1987),
there {s no question that older children are better at attributing causality than younger children
(Plaget, 1930, Bullock, 1979). It might be better if occam started with a few very simple
generalization rules, and leamed the more complex generalization rules. Certainly, I would not
want to claim that the more complex social rules are innate in humans (e.g., If an event (?e}
motivates a goal (?g) for someone (?p1). and someone else (?p2) observes the event (?e} and performs
an action (?a) which achteves the goal (?g) for ?p1, then the event (?e) mottvates the goal (?g) for ?p2}.

How might a general theory of causality be acquired? The answer is that it can be learned

from experience. For example, it might be possible to start with a very stmple theory of causality
with only one generalization rule:

If an event (?e) is followaed by a result (?r},
Then ?a causes ?r

This generalization rule is necessary to warrant the inference of a causal relationship from a
temporal relationship.

This simple generalization rule doesn't contain any constraints between causes and eifects.
Although, it will make some correct causal inferences, it also allows a number of mistakes. For
example, if the cat meows shortly before the doorbell rings, the inference that the cat caused the
doorbell to ring will be made. Eventually, with further examples of the doorbell ringing without the
cat meowing and the cat meowing without the doorbell ringing, this mistake will become apparent.
Other proposed causal relationships will be confirmed after a large number of examples have been
observed. If similarities could be detected between the examples in which the simple
generalization rule successfully proposes causal relationships, then the generalizatton rule could
be specialized. This scheme alters the deflnition of generalization rules slightly. In occam. a
generalization rule is intended as an encoding of a causal theory. In the empirical scheme for
specializing generalization rules sketched here, a generalization rule is a commonly encountered
pattern of causal relationships. By equating these two deflnitions, an answer to the question of
how a theory of causality could be learned: by noticing common patterns in established causal
relationships.

To llustrate how this scheme would work consider the following example. A causal
relationship is noticed about balloons: when air is blown into balloons, they get bigger. This
relationship is illustrated in Figure 10-7. Other examples suggest another causal relationship
when a glass object is struck, it shatters. This relationship is illustrated in Figure 10-8.

ACT type EXPEL
to P-0OBJ type BALLOON

RESULT

\d
STATE type INFLATED
object P-0BJ typa BALLOON

Figure 10-7: A causal relationship: a balloon is inflated when air is blown into it.

169

ACT type F=OPEL
to P-0BJ composition GLASS

RESULT

STATE type SHATTERED
cbject P-0OBJ composition GLASS

Figure 10-8: A causal relationship: a glass object shatters when it is struck.

By noticing the common features between these two generalizations, a new generalization rule
could be created. Such a scheme has been implemented and the resuit is shown in Figure 10-9.
This generalization indicates that one pattern of causal relationships occurs when the destination
of an action changes as a result of the action. When a number of such patterns have been
detected and confirmed. future learning can be focused by first considering only those regularities

which have proved useful in the past. Figure 10-10 shows the flow of Information when
generalization rules are acquired through SBL.

|ACT to ?708J |

RESULT

A 2
[STATE object 708J |

Figure 10-9: A generalization rule formed by detecting the common features of the

generalizations in Figures 10-7 and 10-8.

Causal
Pattarns

Remenber EXAMPLE
N

EXARMPLE(S)
natch causal
pattarn?

SCHEMRTA = TDL(EXRHPLES“
{SCHEMATA = SBL{EXARPLES)]

Enough
Sch;antn

¥
[PATTERN = SBL{SCHEMATA)|—»

[d
Figure 10-10: The flow of information in an extended version of occaM. Backgroun
¢ knowledge for explanation-based learning is acquired through similarity-
based or theory-driven learning. Generalization rules are learned by
similarity-based learning.

170

However, this scheme for acquiring generalization rules is not yet integrated into occaM and
occaM does not use the generalization rule illustrated (n Figure 10-9. A number of questions
remain. How many examples should be encountered before a causal relationship is confirmed?
How many examples of conflrmed causal relationships are needed before a generalization rule is
formed? What sort of clustering algorithm would find useful pattems in causal relationships?

The ability to acquire new causal patterns to guide generalization would enable occaMm to
adapt to new domains. These causal patterns would suggest causal mechanisms for state
changes. For example, one would not want to claim that people are borm with a theory of electric
switches. However, as aduits, we are more likely to attribute a change in an electronic device to a
pushing of a button or the flicking of a switch than to another random action {such as a cat
meowing). This is true even if the wires are hidden (as in a light switch) or the connection is not
observable (as (n the remote control for a television}. This knowledge could be acquired by noticing
similarities among the control of electrical devices and could be represented as a new causal
pattern:

If a switch is pressad
immadiately bafore a state change of an elactronic davice
then pressing the switch results in the state change.

10.3.2. Learning inference rules when failing to explain

Must a learmer resort to empirical learning techniques when there ts not enough knowledge to
complete an explanation? Currently, in occaM, if it is not possible to produce a complete inference
chain, EBL is not attempted. This {8 a problem because occam's domatn knowledge is ignored
even if only one inference rule needed to complete an explanation ts missing. Ideally, one would

want to use the existing incomplete domain knowledge to focus the learning process on acquiring
the missing inference rule. '

There 1s a serious problem that must be addressed in acquiring a missing Inference rule:
there are typically many possible ways to complete an inference chain. To tllustrate, suppose that
OCCAM does not contain an inference rule that indicates that an increased demand for a product by
one country can enable another country to sell the product at a price greater than the market

price. Now when It is presented with Econormnic-Sanction-1 (repeated below) it is not able to
explain the outcome.

Economic-Sanction-1

In 1983, Australia refused to sell uranium to France, unless France ceased nuclear
testing in the South Pacific. France pald -a higher price to buy uranium from South
Africa. .

In this situation, there are several inference rules that indicate some implications of refusing
to sell a product (e.g., France will have an increased demand for the product, and Australia will
still have the product) and there are rules associated with France obtaining the uranium (e.g.,
France obtaining the uranium is a result of France purchasing the uranium, France purchasing
the uranium is enabled by France having $30.000,000, and France purchasing the uranium
results in South Africa not possessing the uranium]. The problem is that there {8 no connection
between Australia refusing to sell the uranium, and France obtaining the uranium from South
Africa. This situation is {llustrated in Figure 10-11.

Furthermore, there are numercus connections which could be made if one were to propose
any possible connection as a new inference rule. For example, one could propose that Australia
refusing to sell the uranium results in France possessing the money. If intermediate states and
events could also be proposed, then there are an inflnite number of ways to complete an
explanation. For example, Australia refusing to sell uranium could result in the existence of pigs
that fly which could be an enabling condition of France purchasing the uranium from South
Africa. The problem here is that without any structure to judge which explanations are
acceptable, there is no way. to control the number of alternative ways to complete an inference
chain.

In some applications, there is a means of controlling the possible inference paths. For
example, in a circuit, the structural connectivity of the circuit indicates the possible causal

171

STATE type POSSESS STATE type POSSESS

SByct LRANILM s A ANIUM
valye Y -
aotor AUSTRALIA acter SOUTH-AFRICA

3
3

RESULT
RESULT

ACT typa SELL
TH-AFRICA
ATY Type SEL - actor SoU
Eyce to FRANCE
e A ALIA oBlect UAANIUM | objact URANIUM
obact UFT\NIUM vaiue YES arnount WEIGHT numbaer 1500
~ace NEG sctar FRANCE units TONS
: price MONEY dottars 300000000
value YMARKET

REBULY
ENRBLES

y
STATE type DEMAND-INCREASE STATE type POSSESS
actor FRANCE cbject MONEY doliars 300000000
object URANIUM valua YES
actor FRANCE

Figure 10-11: The situation when there is some domain knowledge, but not enough to
complete an explanation. There is no inference rule which connects the

two events in bold: Australia refusing to sell uranium to France and
France obtalning the uranium.

connections. This structure has been exploited in a program which learns by failing to explain
(Hall, 1986). The general idea is that if one knows the function of an entire circult, and kriows how
the circuit 18 realized by a number of connected components, and knows the functionality of all

but one of the components, it is possible to infer what the functionality of the remaining
component must be, o

In occaM, there is a mechanism that provides a structure for- explanations. Recall that
generalization rules propose abstract explanations that are verified and refined by domaln
knowledge {see Section 8.1). The abstract explanation provides a structure that can focus the
learning of an inference rule to complete an explanation. For example, consider the example
Hlustrated in Figure 10-11. occaM has a gdeneralization rule which proposes an abstract
explanation that the state which results from the initial act enables the subsequent action which
results In the outcome. ©OCCAM has encugh domain knowledge to verify two of the three causal
links proposed In the abstract explanation (see Figure 10-12).

When there is missing knowledge. it should be possible to utilize the abstract explanation to
propose a causal lnk in the detatled explanation and to utilize SBL techniques to acquire an
inference rule to be used in future explanations. For example, fromm Economic-Sanction-1, one
would leamn that France's increased demand for uranium enabled South Africa to sell the uranium
at a premium. From Economic-Sanction-2 (repeated below), one would learn that the Soviet
Union's increased demand for grain enabled Argentina to sell the grain at a prernjum.

Economic-Sanction-2

In 1980, the US refused to sell grain to the Soviet Union unless the Souviet Union
withdrew troops from Afghanistan. The Soviet Union patd a higher price to buy grain
from Argentina and did not withdraw from Afghantstan.

By finding the common features of the proposed causal link in these two examples, the
inferenice rule could be created that indicates that an increased demand for a commodity by a
country that exports arms enables a country in the Southern Hemisphere to sell them the
commodity at a premium. Further examples should eventually eliminate the irelevant
coincidental features from the inference rules.

172

ACT typa 7ATYPE=1 ACT typa SELL

- ACT type SELL
object 70BJECT actor COUNTRY :ﬁ&t‘:uafg:mﬂa actor COUNTRY axports 7
to COUNTRY name FRANCE o X CQUNTRY imports 7
impaorts URANIUM ?ncﬁ;:tNEE‘
RES objact URANIUM
uLT mode NEG
RESULT RESuLT
¥ 1
STATE ablect TLBJEC STATE type DEMAND-iNCREASE STATE type DEMAND-INCREASE
actor COUNTRY name FRANCE actor 7%
object URANIUM object 7Y
ENRBLES
4
ACT type TATYPE-2 ACT type SELL ACT type SELL|
oblect 70BJECT actor COUNTRY name SQUTH-AFRICA 1o X
te COUNTAY marme FRANCE object 7Y
object URANIUM
armount WEIGHT number 1500
units TONS
RESULT price MONEY dollars 300000000 RESULT
valua JMARKET
RESULT
L4 ¥ ¢
STATE typa ISTY STATE type POSSESS STATE type POSSESS
value TVALUE object URANIUM object Y
objact 708JECT value YES vaiue YES
actor COUNTRY name FRANCE actor X

Figure 10-12: An abstract explanation proposed by a generalization rule is illustrated
in the first column. The middle column illustrates the incomplete
causal chain. The explanation cannot be completed because an
inference rule is missing which indicates that an increased demand for
a product by one country can enable another country to seil the product
at a price greater than the market price. The last column illustrates
two inference rules that produced the incomplete causal chain.

10.4. Limitations of occaM

In the previous section, I suggested extensions to occam that address some limitations to
OCCAM's capabilities. In this section, I point out some tnadequacties of occam that may be more
difficult to address in the current framework

10.4.1. Nondeterministic concepts

One class of concepts that is difficult for occam to leam 1s nondeterministic concepts such as
"dangerous"” or "slippery”. Part of the problem is that these concepts are awkward to represent in
the conceptual dependency framework. It would be trivial for occaMm to learn when things are
slippery If the input were that "On monday, it was snowing and the road was slippery and on
Tuesday the road was clear and it wasn't slippery.” However, more realistically, 0CCAM's input
shouldn't refer to "slippery” but some observable result of slipperiness. For example, 0OCCAM might
be presented with input data about the weather and information about cars driving by. Suppose
that when the roads are clear, one out of every 50 thousand examples are of a car that drives by
and swerves off the road. When it is snowing, one out of every thousand examples of a car going
by indicates that the car swerves off the road. A problem arises because the learning of these
concepts conflicts with occaM's method for judging the accuracy of a learned rule. The fact that a
road is slippery is not enough to predict that a car will have an accident. It really means that a car
is more likely to have an accident. occaM has a flxed threshold which indicates whether or not a
prediction is usually true. A more flexible technique might look for conditions under which a
prediction is more likely to be true. However, such a technique might be prone to discovering more
coincidences than actual tendencies.

10.4.2. Simplicity and accuracy

occaM's method of evahiating the accuracy of learned rules can cause an additional problerrll.
There is a tradeoff between the accuracy of a rule and the simplicity of a rule. oCCAM currentiy
selects the simplest explanation for an event that does not introduce too many errors. A problem

173

arises because a slightly more complex explanation might make significantly fewer errors. It might
be possible to extend occAM to look for a more complex explanation when a prediction fails and to
favor a more complex explanation which produces more accurate predictions. However, one must

be careful not to "overfit" the data if the exception to a simple rule may be a notsy data point (Pearl,
1978, Blumer et al., 1987).

10.4.3. Leamning about unobserved states

The general philosophy behind occam is to try the most knowledge-intenstve form of learning
first and resort to weak methods when the knowledge-intensive methods fail. occam demonstrates
this by learning complex schemata through knowledge-intensive analytic techniques. The
background knowledge necessary for knowledge-intensive techniques can be acquired empirically.
However, occaMm does not acquire this background knowledge {rom complex examples. Instead,
OCCAM is presented with simple input examples In which there is an observable actlon and an
observable consequence of that action. By comparing similarities and contrasting differences,
occaM can empirically acquire the conditions under which a cause results in an effect. For
example, ocCAM does not leam the background knowledge for kidnapping from examples of

kidnapping. Instead, occaM acquires this knowledge from examples such as parents helping hurt
children.

A more difflcult problem for an empirical learning program is the acquisition of knowledge
about unobserved intermediate states. For example, from examples of glass cups breaking when
dropped. it's easy enough for occaMm to learn that glass objects break. What 13 more difficult is
from an example of a table setting in which the children have plastic cups and the adults have
glass cups, to induce that glass cups break and the person setting the table kmew that children are
likely to drop their cups and wanted to avoid a broken cup.

10.4.4. Partitioning the Input

OCCAM currently assumes that its {nput is the description of an tmportant situation. The
learning that occaM does makes the understanding of similar situations easier in the future. A
problem arises if the input describes a unique event which may never occur again. For exarnple, tf
OCCAM were presented a complete novel or even a complex short story, such as those understood
by BORIS (Dyer, 1983). then occaM would attempt to generalize the particular explanation
structure of that story. occaM probably will never see another story with the exact same
explanation. However, future examples may share part of that explanation structure because
subgoals may be achieved in the same manner.

To deal with this sort of situation, a mechanism could be added to occam that identiftes
“important” subgoals, and creates schemata to deal with the resolution of these subgoals. This
mechanism would serve two purposes:

¢ To avoid learning from events which one may never encounter again.

+ To partition an event, so that learning can occur from more than the description of a
top-level event.

10.4.5. Learning concepts without operational descriptions

Researchers in Al have proposed knowledge structures which cannot be recognized simply as
a conjunction of surface features that describe an event. For example, Thematic Abstraction Units
(TAUs) (Dyer, 1983) have been proposed as a knowledge structure which encode information about
planning errors. TAUs are not recognized by a set of surface features, but rather by a certain
configuration of goals and plans connected by intentional links. If occam is presented with
examples of a TAU-like situation, it does not learn the general form of the TAU. For example.
occaMm finds a flaw in kidnapping because when the kidnapper abducts the hostage, the hostag'e
sees the kidnapper and can identify him later (see Section 9.7). This is a special case of TAU-
CONFUSED-ENABLEMENT, tn which a plan to achieve one goal causes the fatiure of another goal.
However, OCCAM does not learn the TAU from this situation because the TAU cannot be
represented as a conjunction of the surface features of the event. If occaM is presented an‘other
example, of the same TAU. such as the Aesop fable of the Fox and the Crow, then it would ieam
another special case of the TAU. However, 0CCAM does not ever learn the general description ¢l
this ciass of situations. 174

One approach to learning TAUs has been implemented in the CRAM system, (Dolan & Dyer
1985}, This approach composes complex TAUs by noticing the interactions among simpler TAUSs.
However, CRAM does not address the issues of how these simpler TAUs might be leamed. One
approach to acquiring TAUs could be to use a similarity-based program to find the commonalities
between the explanation structure of spectal cases of the TAU. In occam. these special cases

would be represented In the same manner as any other schema (e.g.. see Figure 9-22 on page
157}

10.4.6. Consolidating multiple descriptions of the same event

OCCAM currently assumes that its tnput is a complete description of an event. However. one
typically does not find out all the details about a situation all at once. For example, there might be
several newspaper stories about a kidnapping incident. Individual stories might report on the
abduction, the ransom demands, the release of the hostage, the arrest of a suspect, and the trial.
It is not clear how this would affect the learning component of 0ccaM but a number of Interesting

issues are raised for the memory component and the hypothetical natural language understanding
component:

« How should a parttal description of an event be represented and indexed in memory?

Should the representation of a partial event contain "questions' which could be
answered by later information?

* How can one recognize that two partial descriptions of a story are referring to the
same event?

* How should conflicts between multiple descriptions of the event be resolved?

*» When should inferences be made and what mechanism should there be to retract
erroneous inferences?

10.5. Summary

In this dissertation. I have shown how a system can start with very little knowledge and
become expert in a domain. [have analyzed both empirical and explanation-based learning
techniques and shown how thelr strengths and weaknesses are complementary. 1 have proposed a
learning theory that utilizes empirical techniques to acquire a base-level understanding of the
simple regularities in a domain and uses explanation-based learning to create schemata which
record the useful implications and interactions of the base-level knowledge.

The theory gives an account of how a children might learn about the physical and social
world. Through childhooed experiences, such as playing with toys or interacting with family and
friends, children must acquire many facts and principles. The knowledge acquired through these
{nitfal experience influences later learning. This inittal knowledge constrains future learning so
that it is easler to acquire new knowiedge that ts consistent with the existing knowledge. Expertise
in an area is achieved by creating a memory of abstract experiences that de not contain the
trrelevant detatls of specific experiences. The basic knowledge of a domain is used to distinguish
the relevant from the irrelevant details. It is difficult. but not impossible, to learn when new
experiences conflict with the existing knowledge. When this occurs, existing knowledge must be
revised and factors that were initially believed to be trrelevant must be reconsidered.

1 have implemented occaM, a computer model, to test the theory of learmning developed in this
dissertation. OCCAM progresses from a systemn with very little world knowledge to a system with
detailed knowledge of kidnapping and economic sanctions. At first, learning requires many
examples as OCCAM acquires its initial knowledge of coercion. Once occaM has acquired relevant
background knowledge, it requires fewer examples to learn about kidnapping and economic
sanctions because it can rely on the background knowledge to identify relevant features.

Figure 10-13 {lustrates the dependencies among some of the schemata learned by occam.
This figure demonstrates that 0ccaM is an integrated system that can make use of the knowledge
it acquires to facilitate future leaming. For example, by stmilarity-based learning., occaM learns
about coercion. The coercion knowledge is specialized into kidnapping knowledge by explanation-
based learning. The knowledge needed to explain kidnapping was acquired through theory-driven

175

~AMD-CCJED
ECONCNMIC-KNQULEDGE

HAND-CODED ESL
PCLITICAL-KNOWLEDGE ECONONIC-SANCTIONS
ESL
JRILED-KICNRPPER
g8l o E3L
COERCION]| KIDNAP EBC
[INFANT -KIDNRP

TOL
GIVE-REQUIRES-HRVE

TOL
POSSESS-DELTR-AGENCY

TDL
PRRENT -P-HERLTH-CHILD

g8l
DELTA-AGENCY FTZPESITION
CONGERN
h
TBC
PARENT -DELTR-RGENCY
THL _ [PTSPaSITION TOC
REFRIGERATOR STRENGTH *oaLLGONS

Figure 10-13: The dependencies among the schemata learned by occam.

learning. occAM learns a schema which I call give-requires-have. This schema states that to
give someone an object, an actor must first possess the object. This schema was acquired to
account for an exception to delta-agency. delta-agency i8 a schema formed by SBL to
represent one plan to achieve a goal: ask another person for assistance. OCCAM learns
give-requires-have when delta-agency fails because the actor asked for an object which the
potential assistant did not have. give~requires-have explains why it is important to demand a
ransom from a wealthy person: wealthy people have money and one must have money to be able
to pay a ransom.

occaM learns another schema that indicates why someone would want to pay a ransom. This
schema which I call parent~p-health-child indicates that parents have a goal of protecting the
health of their children. parent-p-health-child is acquired by theory-driven learmning when
occaM detects a regularity in examples of people helping a child who 1s hurt. occaM notices that
the child's parents are likely to help. When occaM makes a distinction between two groups of
people, it can be aided by dispositional attributes that encode knowledge of previous distincttons.
occaM learns a disposition that might be called “caring" or "concern”. This disposition was learned
to account for the fact that delta-agency is more likely to be a successful plan if an actor asks a
parent or relative for assistance.

Dispositions can facilitate learning about physical causes as well as social causes. OCCAM
learns a disposition called "strength” to account for a distinction between adults and infants:
when adults pull on a refrigerator door, it opens. However, infants cannot open a refrigerator. 1t
takes many examples to acquire the "strength” disposition. However, once OCCAM knows that
adults are stronger than children, it takes few examples to recognize this distinction in other
domains. For example, 0CCAM easily learns that adults can inflate balloons but young children
cannot.

Learning is more rapid and more accurate when 0CCAM has a correct domain theory. In the
domain of economic sanctions, 0CCAM's domain theory consists of the knowledge of coerclon which
it acquired by similarity-based learning as well as economic and political rules which were hand-

176

coded. This initial knowledge alone is not sufficient for occam to function as an economic sanction
expert. Instead, this knowledge is organized through problem-solving experience so that useful
interactions between the initial knowledge can be easily recognized. Several speclalizations of
coercion which represent common patterns of economic sanction Incidents are constructed. Once

this memory of abstract sanction incidents is acquired, occAaM can answer questions about
hypothetical sanction incidents.

10.6. Conclusions

{n this -~ ssertation, I have argued for a theory of explanation that is composed of two different
explanatory . .cesses. The first preferred process for producing explanations is a recognize and
instantiate strategy. This strategy explains a new event by recognizing the event as an instance of
a known schema (i.e., a general class of events} and instantiating a causal chain assaciated with
the schema. The recognition process is guided by a hierarchy organization of schemata In
memory. The second process for producing explanations Is a constructive strategy which butlds
new explanations by chaining together separate general facts. This general knowledge of the world
can also be represented as schemata in memory. However, the search to construct an explanation
is more expensive than the search to recognize an explanation because many combinations of
schemata must be attempted to construct a causal chain.

There are two different ways in which learning can improve the explanation process. First,
learming can increase the number of situations that one can explain by a recognition process,
Explanation-based learning performs exactly this task by exploiting the interactions among
existing knowledge and creating a schema which recognizes the class of situations in which these
interactions will occur. Second, learning can increase the number of situations that one can
explain by a construction process. Empirical techniques can detect regularities in data and
hypothesize that these regularities will hold In future cases. New schemata created by empirical
techniques increase the ability of a learner to construct new explanations as well as the abtlity to
recognize new explanations. An important point of this dissertation is that once new knowledge is
acquired by empirical methods new explanations can be constructed. When new explanations are
constructed. they can be generalized by explanation-based techniques so that the situations in
which these explanations apply can be recognized. Empirical leamning techniques provide the
necessary background knowledge for explanation-based learning. EBL alone is not sufficient for
increasing the number of situations that one can explain by constructing explanations.

10.6.1. Integrating empirical and explanation-based learning

For many tasks in occaM, there are two separate strategies which could be used. There {s a
knowledge-intensive method which is attempted first. The knowledge-intensive method is powerful
but limited in its applicability. If the knowledge-intensive strategy fails, then there is a weak
method that can also perform the task if one is willing to sacrifice time, space or accuracy. The
specific components of occaM which utilize these dual methods are:

s Aggregation-- The knowledge-intensive method for grouping events into clusters falls
out of the way that 0CCAM generalizes with explanation-based leamning, If there is no
schema that recognizes the explanation for an event, then occAM constructs a new
explanation (provided there is sufficient background knowledge). A new schema is
created by retaining only those features which were needed to produce the
explanation. Future events that share these features will be indexed under this
schema. The effect of the knowledge-intensive aggregation process is that a schema
groups together those events that share the same explanation structure. The weak
method that OCCAM can use to aggregate events is to group together those events
which have the most features in common. (see Section 6.1.2 for the details). This
weak method can run into problems if events which share many surface similarities
do not share the same explanation structure. In this case, the clusters formed will
not group together those events which share the same explanation structure.
Generalizations formed from such clusters may not perform well at prediction or
explanation tasks (see Section 9.3).

« Generalization-- Explanation-based generalization {s the knowledge-intensive
generalization method in occaM. If an event can be explained by constructing a

177

causal chain linking several separate schemata together, the EBL can construct a
description of the class of events to which that explanation applies. This knowledge-
intensive generalization method constructs a generalized event description by
retaining only those features of a single example that were needed to form the causal
chain. The weak method that 0cCAM uses for generalization is an empirical technique
that constructs a generalized event description by retaining only those features which
are shared by all examples of a group of events. The generalizations produced by
empirical techniques may be frrelevant, coincidental regularities. This problem is
particularly severe if only a small number of examples is available. In contrast, EBL

can identify relevant features and true regularities since this information is derived
analytically.

s Exceptions-- There are two methods that can deal with exceptions (i.e., when a
schema makes an incorrect prediction). The knowledge-intensive method is to try to
explain why the schema makes an incorrect prediction. One such reason is that the
schema was formed by EBL but the knowledge used to create the explanation has
been discredited (see Section 9.6). Other explanations might be constructed using
general world knowledge. For example, in Section 7.4 I discuss an example in which
OCCAM encounters an exception to a generalization which indicates that a parent will
give a child what the child asks for. Because occaM can explain why the parent does
not give a requested object (the parent does not have the requested object), it does not
reduce confidence in its schema. o0occaM has a weak method for dealing with
exceptions to schemata which cannot be explained: with each exception, it reduces
confldence in the schema until the schema is finally deleted or revised to
accommodate the exception. If these explanations are available for exceptions they

should not reduce confldence in established principles. Rather, there is much that
can be learned from exceptions.

+ Selecting hypotheses-- When leaming a new causal relationship., occaMm has two
methods for selecting among hypothesis which are consistent with the data. The
knowledge-intensive method s to make use of dispositions. specific world knowledge
about the capabilities of actors and the potentials of objects. Hypotheses which
propose differences which are supported by existing dispositions are preferred. The
weak method in occaM for selecting among consistent hypotheses is random
guessing. Those guesses which happen to work out well serve as the foundation for
creating dispositions and making new distinctions.

10.6.2. Causal theories

A common theme in the approach to learning in this dissertation is that knowledge-intensive
strategies are to be preferred to weak strategies. A corollary might be: a little knowledge is better
than no knowledge. The theory-driven component of occam follows this philosophy. Explanation-
based learning makes use of detalled specific world knowledge. Theory-driven learning makes use
of an approximate, general theory of causal relationships that 1s not sufficient to make predictions.
However, given an example, the general causal knowledge can produce potential explanations
which are subject to being supported or discredited by further experiences. In Section 7.3, 1
demonstrated emplrically that theory-drtven learning 1s an improvement over the weaker forms of
empirical leaming. In addition, in the psychology experiment that I ran (see Section 5.2.2}. 1
demonstrated that it 1s also easier for people to learn when the experiences conform to a common
pattern of causal relationships. Since TDL is more powerful than SBL, TDL is preferred over SBL
in occaM. However, EBL is preferred to TDL since EBL makes use of specific world knowledge as
opposed to an approximate, general theory.

10.6.3. Memory organization

occaM provides a solution to some of the issues of indexing explanatory schemata in memory.
In particular, schemata are indexed by those surface features which were used to create an
explanation. This strategy allows explanatory schemata to be retrieved by following indices
corresponding to the surface features of a new event. Once an explanatory schemata is retrieved.
the causal chain associated with the schema can be instantiated to explain a new event. Of
course, OCCAM does not solve all the issues concerned with memory-based inference. In particular,

178

occaM (and EBL) do not address the issue of locating and modifying explanations that seem to
"almost” apply to a new case.

The memory organization in OCCAM has also proved useful for indexing rules in memory.
Rules are indexed under the most specific schema in memory which accounts for the antecedent of

a rule. This organization perrmits rules to be retrieved and applied in order of decreasing spectflcity
to the situation.

10.7. Final Comments

In this dissertation, I have argued that both empirical and explanation-based learning
techniques are necessary components of a system that learns causal relationships. The role of
empirical techniques is to acquire background knowledge such as simple causal rules by noticing
regularities in observed data. The role of explanation-based techniques is to recognize new
interactions among existing knowledge and determine the class of situations in which the
interactions occur. The most important results of this research are the analysis of :he situations
in which each learning strategy is appropriate and the integration of the learning strategies in a

single system that takes advantage of the complementary nature of empirical and explanation-
based learning,

179

References

Alix. E. {1978). Ransom ktdnapping (n the United States, 1874-1974: The creation of a capttal crime.
Southern Illinios University Press.

Allport. G. {1954). The nature of prejudice. Addison-Wesley.

Alterman. R. (1985}. Adaptive planning: Refitting old plans to new situations. Proceedings of the
Seventh Annual Conference of the Cognitive Science Society. Irvine, CA. Lawrence Erlbaum.

Anderson. J.R. (1983). Knowledge Compilation: The General Learning Mechanism, Proceedings of
the International Machine Leamning Workshop. Moaonticello, Illinois.

Anderson, J R (1987). Causal analysis and inductive learning. Proceedings of the Fourth
Internattonal Machine Learning Workshop. Irvine, CA.

Anderson, C.A., Lepper, M.R., & Ross, L. (1980). The perseverance of social theories: The role of
explanation in the persistence of discredited information. Journal of Personality and Social
Psychology, 39, 1037-1049,

Ausubel, D.M. & Schiff. H. M. (1954). The Effect of Incidental and Experimentally Induced
Experience on the Learning of Relevant and Irrelevant Causal Relationships by Children.
Journal of Genetic Psychology, 84, 109-123;

Barrett, S. & Murphy. G. (1986). Feature conelattc;ns in children’s concepts (Tech. Rep.). Brown
University,

Bartlett, F. C. (1932). Remembering: A study in expertmental and social psychology. New York:
Cambridge University Press.

Barto, A & Sutton, R. (1982). Stmulation of anticipatory responses in classical conditioning by a
neuron-like adaptive element. Behauvioral Brain Research, 4, 221-235.

Berenstain, S. & Berenstain, J. (1985). The Berenstain Bears forget thetr manners. NY: Random
House.

Berwick, R. (1986). Learning from positive only examples: The subset principle and three case
studies. In Michalski, R, Carbonell, J., & Mitchell, T. (Ed.), Machine Learning, Vol 2. Los
Altos, Ca.: Morgan Kaufmann Publishers.

180

Bimbaum, L. & Selfridge, M. (1981). Conceptual analysis of natural language. In Schank, R, &
Riesbeck, C. (Ed.), Inside computer understanding: Five programs plus mtnatures. Hillsdale,
NJ.: Lawrence Ertbaum Assoclates.

Blumer, A, Ehrenfeucht, D., Haussler & Warmuth, M. (1987). Occam's razor. Information
Processing Letters, 24, 377-380.

Bobrow. D.G.. Kaplan. R., Kay, M., Norman, D., Thompson, H.S., & Winograd, T. (1977). GUS, a
Frame-driven Dialog System. Artificial Intelligence, Vol. 8(1).

Bower, G. & Trabasso, T. (1968). Attention in Learning: Theory and Research. New York: John
Wiley and Sons.

Bower, G., Black, J. & Turner, T. . (1979). Scripts in Memory for Text. Cognitive Psychology. Vol.
11.

Brachman, R., & Schmolze, J. (1985). An overview of the KL-ONE knowledge Representation
System. Cognitive Science, Vol. 9(2).

Brown, M.L. (1985),. Economic sanctions: A cost-benefit approach. Doctoral dissertation, Harvard
University,

Bruner, J.S.. Goodnow, J.J., & Austin, G.A. {1956). A Study of Thinking. New York: Wiley.

Buchanan, B. & Mitchell, T. (1978). Model-directed learning of production rules. In Watérman,
D. & Hayes-Roth, F. (Ed.). Pattern-directed Inference Systems. New York: Academic Press.

Bullock, M. (1979). Aspects of the young child's theory aof causalify. Doctoral dissertation,
University of Pennsylvania,

Bullock, M., Gelman, R & Balllargeon, R. (1982). The development of causal reascning. In
Friedman, W. (Ed.}, The developmental psycﬁology of time. New York, NY: Academic Press.

Carey. S. {1984). Conceptual change in childhood. MIT Press.

Carpenter, G. & Grossberg, S. (1986). Adaptive Resonance Theory: Stable Self-organization of
Neural Recognition Codes in Response to Arbitrary Lists of Input Patterns. Proceedings of
the Eight Annual Conference of the Cognitive Sclence Soclety. Amherst, Mass.

Chapman, L.J., & Chapman, J.P. (1967). Genesis of Popular but Erronecus Diagnostic
Observations. Journal of Abnormal Psychology, 72, 193-204.

Chapman, L.J.. & Chapman, J.P. (1969). Illusory Correlation as an Obstacle to the Use of Valid
Psychodlagnostic Signs. Journal of Abnormal Psychology, 74, 271-280.

Charniak, E. & McDermott, D. (1985). Introduction to Artificial Intelligence. Reading. Mass:
Addison-Wesley. 7

Charniak, E.. Riesbeck, C. & McDermott, D. (1980). Artificial Intelligence Programming. Hillsdale,

NJ: Lawrence Erlbaum Associates. 181

Cohen. N.. Abrams, 1., Harley, W.. Tabor. L. & Sejnowski. T. (19886). Skill Leaming and Repetition
Priming in Symmetry Detection: Parallel Studies of Human Subjects and Connectionist
Models. Proceedings of the Eight Annual Conference of the Cognitive Sctence Saclety.
Ambherst, Mass.

Cullingford, R. E. (1978). Script Application: Computer Understanding of Newspaper Stories
Computer Science Research Report 116). Yale University,

Davis, R (1982). Expert Systems: Where Are We? and Where Do We Go From Here? (Tech. Rep. Al
Memo No. 665). MIT Artfficial Intelligence Laboratory,

de Kleer, J. (1984). Choices without backtracking. Proceedings of the National Conference on
Artffictal Intelligence. Austin, TX, Morgan-Kaufmann,

de Kleer, J. and Brown, J. (1984). A Qualitative Physics Based on Confluences. Artificial
Intelligence, Vol. 24(1).

Dean, G. (1986). Does astrology need to be true? Part 1: A lock at the real thing. The Skeptical
Inqutrer, 11(2), 166-185.

DeJong G. {1977). Skimming Newspaper Stories by Computer Compt.iter Science Research Report
104). Yale University,

DeJong, G. (1986). An approach to learning from observation. In M.lchalski. R., Carbonell, J., &
Mitchell, T. (Ed.), Machine Learning, Vol 2. Los Altos, Ca.: Morgan Kaufmann Publishers.

Dedong, G. & Mooney, R (1986). Explanation-based learning: An alternate view. Machine
Leaming, Vol. 1{2).

Diettrich, T. (1986). Learning at the knowledge level. Machine Learning, 1(3), 287-315.

Dolan, C. & Dyer, M. (1985). Learning planning heuristics through observation. Proceedings of
the Ninth Intemational Joint Conference on Artificial Intelligence. Los Angeles, CA, Morgan-
Kaufmann,

Doyle, J. (1979). A truth maintenance system. Artificial Intelligence, 12(3), 231-272.

Dyer, M. (1983). In Depth Understanding. MIT Press.

Fikes, R, Hart, R, & Nilsson. N. (1972). Learning and executing generalized robot plans. Artificial
Intelligence, 3, 251-288.

Fisher, D. (1987). Knowledge acquisition via incremental conceptual clustering. Machune
Leamning, 2(2), 139-172.

Fisher, D. & Langley, P. (1985}. Approaches to conceptual clustering. Proceedings of the Ninth
International Joint Conference on Artificial Intelligence. Los Angeles, CA, Morgan-Kaufmann

Flann, N. & Diettrich T. (1986). Selecting appropriate representations for learning from examples

182

Proceedings of the National Conference on Artificial Intelligence. American Association for
Artificial Intelligence, Morgan-Kaufmann.

Flowers, M., McGuire, R, & Bimbaum, L. (1982). Adversary arguments and the logic of perscnal
attacks. In Lehnert, W. & Ringle, M. (Ed.), Strategies for Natural Language Understanding.
Hillsdale, NJ.: Lawrence Erlbaum Associates.

Forbus, K. (1984). Qualitative Process Theory. Artificial Intelligence, Vol. 24(1).

Freedman, R. O. (1970). Economic Warfare in the Communist Bloc: A study of Soviet economic
pressure against Yugoslavia, Albania, and Communist China. New York: Praeger.

Fu, L. & Buchanan, B. (1985). Learning Intermediate Concepts in Constructing a Hierarchical
knowledge base. Proceedings of the Ninth Intemational Joint Conference on Artificial
Intelligence. Los Angeles, CA, Morgan-Kaufmann.

Garcia, J., McGowan, B., Ervin, F.R., & Koelling, RA. (1968). Cues: Thelr relative effectiveness

| é; reinforcers. Science, 160, 794-795.
Gardner, J. (1966). The Resuwrrection. New American Library.
Genesereth, M., Bennett, J.S.. Hollander, C.R. (1981). DART: E‘.xpen Systems for Automated

Computer Fault Diagnosis. Proceedings of the Annual Conference. Baltimore, MD.:
Association for Computing Machinery.

Getner, D. (1983). Structure-Mapping: A theoretical framework for analogy. Cognitive Science,
Val. 7(2).

Gluck, M. & Bower, G. (1986). Conditioning and Categorization: Some Common Effects of
Information Variables in Animal and Human Learning. Proceedings of the Eight Annual
Conference of the Cognitive Sclerice Soctety. Amherst, Mass.

Goldman, S., Dyer, M. & Flowers, M. {1985). Learning to understand contractual situations.
Proceedings of the Ninth Intemational Joint Conference on Artificial Intelligence. Los Angeles,
CA, Morgan-Kaufmann,

Goodman, N. (1983). Fact, Fiction and Forecast, fourth edition. Cambridge, Mass: Harvard
University Press.

Graesser, A., Gordon, S., & Sawyer, J. (1979). Recognition Memory for typical and atypical
actions in scriptal activities: Tests of a script pointer + tag hypothesis. Journal of Verbal
Leaming and Verbal Behavior, Vol. 18.

Granger, R. & Schlimmer, J. (1985). Combining Numeric and Symbolic Leamming Techniques.
Proceedings of the Third Intermnational Machine Learning Workshop. Skytop. PA.

Hall, R (1986). Learning by Failing to Explain. Proceedings of the National Conference on Artificial

Intelligence. American Association for Art{jcial Intelligence, Morgan-Kaufmann.

Hammond. K. (1984). Indexing and causality: The organization of plans and strategies in memory
Computer Science Research Report 351). Yale Unlversity,

Hammond, K. (1987). Learning and reusing explanattons. Proceed(ngs of the Fourth International
Machine Learmning Workshop. Irvine, CA,

Hanson, A. & Riseman, E. (Ed.). (1978). Computer Vision Systems. New York: Academic Press.

Hawkins. G. (1965). Stonehenge Decoded. Doubleday.

Hayes-Roth, F. & McDermott. J. (1977). Knowledge Acquisition from Structural Descriptions.
Proceedings of the Fifth International Joint Conference on Artificial Intelligence. Cambridge.
Mass., Morgan-Kaufmann.

Heider, F. (1958). The psychology of interpersonal relations. New York: Wiley.

Hepworth, M. (1975). Blackmail London: Routledge & Kegan Paul.

Hinton, G.. & Sejnowski T. (1986). Learning and Relearning in Boltzmann Machines. I[n
Rumethart, D. & McClelland, J. (Ed.}, Parallel Distributed Processing: Explorations in the
Microstructure of Cognition. Volume 1: Foundations, MIT Press,

Hirsh, H. (1987). Explanation-based learning in a logic programming environment. Proceedings of
the Tenth International Jotnt Conference on Artiflcial Intelligence. Milan, Italy, Morgan-
Kaufmann.

Hoenkamp, E. (1987). An analysis of psychological experiments on non-monotonic reasoning.
Proceedings of the Tenth International Jotnt Conference on Artificlal Intelligence. Milan, Italy,
Morgan-Kaufmann,

Hoffrnan, M. (Ed.). (1986). The 1987 World Almanac and Book of Facts. Pharcs Books.

Holland. J., Holyoak, K., Nisbett, R., & Thagard, P. (1986). Induction. MIT Press.

Holyoak, K. {1985). The pragmatics of analogical transfer. The Psychology of Learning and
Motlation, 19, 59-87. _

Hosansky. A. (22). How not to gain weight during the holidays. Family Ctrcle, , pp. 44-45.

Hoyle, F. (1972). From Stonehenge to modern cosmology. W.H. Freeman.

Hufbauer. G.C.. & Schott, J.J. {1985). Economic Sanctions Reconsidered: History and Curent
Policy. Washington, D.C.: Institute For International Economics.

Hume, D. (1739). A treatise of human nature. Oxford: Claredon.

Jones E., Rock L., Shaver K., Goethals, G. & Ward, L. (1968). Pattern of performance and ability
attribution: An unexpected primacy effect. Journal of Personality and Social Psychology. 10,
317-340. |

Josephson, J., Chandraskaran, B., Smith, J., & Tanner, M. {1987). A mechanism for forming

184

composite explanatory hypotheses. IEEE Transactions on Systems, Man. and Cybemetics,
17(3), 445-454.

Kant, I. (1781). Critique of pure reason. New York: Macmillan.

Kass. A. (1986). Modifying explanations to understand stories. Proceedings of the Eleventh Annual
Conference of the Cognitive Science Society. , Lawrence Erlbaum.

Kedar-Cabelli, S. (1985). Purpose-directed analogy. Proceedings of the Seventh Annual Conference
of the Cognitive Science Society. Irvine, CA, Lawrence Erlbaum.

Kedar-Cabelli, S. (1987). Explanation-based generalization as resolution thecrem proving.
Proceedings of the Fourth International Machine Learning Workshop. Irvine, CA.

Keller. R (1987). Concept Learning in Context. Proceedings of the Fourth International Machine
Learning Workshop. Irvine, CA.

Keller, R. (1987). Defl.nmg operationality for explanation-based learning. Proceedings qof the
National Conference on Artifictal intelligence. Seattle, WA., Morgan-Kaufmann.

Kelley, H. (February 1983). The process of causal attribution. America Psychologtst, ., pp.
107-128.

Kolodner, J. (1984). Retrieval and organizational strategles in conceptual memory: A computer
model. Hillsdale, NJ.: Lawrence Erlbaum Associates.

Kolodner, J. (1987). Extending problem solver capabilities through case-based inference.
Proceedings of the Fourth Intemnational Machine Learning Workshop. Irvine, CA.

Kowalski, R. (1979). Logic for Problemn Solving. North Holland,

Kulpers, B. (1984). Commonsenée Reasoning about Causality: Deriving Behavior from Structure.
Artificial Intelligence, Vol. 24(1).

Laird, J., Rosenbloom, P., & Newell, A, (1984). Towards Chunking as a General Leaming
Mechanism. Proceedings of the National Conference on Artificial Intelligence. Austin. Texas:
American Association for Artificial Intelligence, Morgan-Kaufmann,

Laird, J., Rosenbloom, P., & Newell, A ({1986). Chunking in Socar: The anatomy of a general
learning mechanism. Machine Learning, Vol. 1(1).

Langley, P. & Nordhausen, B. (1986}. A framework for empirical discovery. International Meeting
on Advances {n Learning. Les Arc, France.

Langley, P. Bradshaw G. & Simon, H. (1983). Rediscovering chemistry with the BACON system.
In Michalski, R., Carbonell, J., & Mitchell, T. (Ed.), Machine Learning: An Artfical
Intelligence Approach; Palo Alto, Ca.: Tloga Publishing Co.

Langley, P., Zytkow, J., Simon. H., & Bradshaw, G. (1986). The search for regularity: Four

183

aspects of scientific discovery. In Michalski, R., Carbonell, J.. & Mitchell, T. (E4.). Machine
Leamning, Vol 2. Los Altos, Ca.: Morgan Kaufmann Publishers,

Lau. RR. (1984). Dynamics of the attribution process. Journal of Persondlity and Social
Psychology, 46. 1017-1028.

Leake, D. & Owens, C. (1986). Organizing memory for explanations. Proceedings of the Eleventh
Annual Conference of the Cognitive Sctence Society. . Lawrence Ertbaum.

Lebowitz, M. (1980). Generalization and memory n an integrated understanding system Computer
Science Research Report 186). Yale Unlversit)}.

Lebowitz, M. (1982). Correcting erroneous generalizations. Cognition and Bratn Theory, Vol. 5(4).

Lebowitz, M. (1984). Interest and predictability: Deciding what to leamn, when to learn [Tech. Rep.).
Columbia University,

Lebowitz, M. (1986). Concept Learning in an rich input domain: Generalization-based Memory.
In Michalsld, R.. Carbonell, J., & Mitchell, T. (Ed.}, Machine Learntng, Vol 2. Los Altos, Ca.;
Morgan Kaufmann Publishers.

Lebowlitz, M. (1986). Not the path to perdition: The utllity of similarity-based learning.

Proceedings of the National Conference on Artificial Intelligence. American Association for

Artificial Intelligence, Morgan-Kaufrnann. .

Lebowitz, M. (1986). Integrated learning: Controlling explanation. Cognitive Science, Vol. 10.

Lebowitz, M. (1987). Experiments with incremental concept formation: UNIMEM. Machine
Leaming, 2(2), 103-138.

Lehnert, W. (1978). The Process of Question Answering. Hillsdale, NJ: Lawrence Erlbaum
Associates.

Lehnert, W. {1982). Plot Units: A Narrative summarization strategdy. In Lehnert, W, & Ringle,
M. (Ed.), Strategies for Natural Language Understanding. Hillsdale, NJ.: Lawrence Erlbaum
Associates,

Leslie, A., & Keeble, S. (1987). Do six-month-old infants perceive causality? Cognition, 25,
265-288.

Levine, M. (1966). Hypothesis behavior by humans during discrimination learning. Journal of
Experimental Psychology, 71, 331-338.

Levine, M. (1967). The size of the hypothesis set during discrimination learning. Psychology
Review, 74, 428-430.

Mackie, J. {1967). Mill's Methods of Induction. In Edwards, P. (Ed.). Encyclopedia of Philosophy,.

New York: Crowell Collier and Macmillan. Inc.

186

McArthur, L. (1972). The How and What of Why: Some Determinants and Consequences of
Causal Attribution. Journal of Personality and Soctal Psychology, 22(2), 171-193.

McDermott J. (1982). RI: a Rule-Based Configurer of Computer Systems. Artifictal Intelligence.
Vol. 19(3).

McDermott, D. (May 1983). DUCK: A Lisp-Based Deductive System {Tech. Rep.). Smart Systems
Technolagy,

McDermott, D. (1986). A Critique of Pure Reason Computer Sclence Research Report 480). Yale
Universtty,
McDermott, J., & Forgy. C. (1978). Production system conflict resolution strategles. In

Waterman, D. & Hayes-Roth, F. (Ed), Pattem-directed Inference Systems. New York:
Academic Press.

Michalski, R. (1977). A system of programs for computer aided induction: A sumimary.
Proceedings of the Fifth International Joint Conference on Artificial Intelligence. Cambridge,

Mass., Morgan-Kaufmann,

Michotte, A. (1963). The Perception of Causality. New York: Basic Books, Inc.

Minsky, M. (1975). A Framework for Representing Knowledge. In Winston, P.H. (Ed.), The
Psychology of Computer Vision. New York, NY: McGraw-Hill,

Minsky, M. (1986). The society of the mind. Simon and Schuster.

Minsky, M. & Papert, S. (1969). Perceptrons. MIT Press.

Mitchell, T. (1982). Generalization as search. Artificial Intelligence, Vol. 18(2).

Mitchell, T., Kedar-Cabelll, S. & Keller, R. (1986). Explanation-based learning: A unifying view.
Machine Learning, Vol. 1{1).

Mitchell, T., Mahadevan, S., & Steinberg, L. (1986). LEAP: A Learning Apprentice for VLSI Design.
International Meeting on Advances tn Learning. Les Arc, France,

Mooney, R & Bennett, S. (1985). A domain independent explanation-based generalizer.
Proceedings of the Ninth International Joint Conference on Artificial Intelligence. Los Angeles,
CA, Morgan-Kaufmann.

Mooney,. R. & DeJong, G. (1985). Learning schemata for natural language processing. Proceedings
of the Ninth International Joint Conference on Artificial Intelligence. Los Angeles, CA, Morgan-
Kaufmann.

Moorehead, C. (1980). Hostages to Fortune: A Study of Kidnapping tn the World Today. New York:
Atheneum, ‘

Mostow, J. (1987). Searching for operational concept descriptions in BAR, Metalex, and EBG.
Proceedings of the Fourth International Mafglfxe Leaming Workshop. Irvine, CA.

Murphy. C. (June 1987). The longest day. The Atlantic, .

Murphy, G. & Medin, D. (1985). The Role of Theories in Conceptual Coherence. Psychology
Review, 92(3), 289-3186.

Murphy. G. & Wisnlewski, E. (1986). Feature correlations (n conceptual representations (Tech.
Rep.). Brown University,

Neisser, U. (19786). Cognition and reality. W H. Freeman.

Nelson, K. (1981). Soclal cognition In a script framework. In Flavell, J.H. & Ross L. (Ed.), Soctal
Cognitive Development. Cambridge: Cambridge University Press.

Nelson, W.R. (1982). REACTOR: An Expert Systemn for Diagnosis and Treatment of Nuclear
Reactor Accidents. Proceedings of the National Conference on Artificial Intelligence.
Pittsburgh, PA: AAAL

Nelson, K. & Gruendel, J. (1981). Generalized Event Representations: Basic Bullding Blocks of
Cognitive Development. In Lamb, M. & Brown, A. (Ed.}, Advances in Developmental
Psychology. Hillsdale, NJ.: Lawrence Erlbaum Associates.

Newell, A. {1980). Physical Symbol Systems. Cognitive Science, Vol. 4(2).

Newell, A, (1981). The knowledge level. Al Magazine, 2, 1-20.

Nisbett, Richard & Ross, Lee. (1978). Human Inference: Strategles and Shortcomings of Social
Judgments. Engelwood ClIs, NJ: Prentiss-Hall, Inc.

Pazzani, M. (1983). Interactive Script Instantiation. Proceedings of the National Conference on
Artifictal Intelligence. Washington, D.C., Morgan-Kaufmann.

Pazzani, M. (1985). Explanation and generalization-based memory. Proceedings of the Seventh
Annual Conference of the Cognitive Science Soclety. Irvine, CA, Lawrence Erlbaum.

Pazzani, M. (1986). Learning Fault Diagnosis Heuristics from Device Descriptions. International
Meeting on Advances in Learntng. Les Arc, France.

Pazzani, M. (1986). Refining the Knowledge Base of a Diagnostic Expert System: An Application of
Failure-Driven Learning. Proceedings of the Nattonal Conference on Artificial Inteliigence.
American Association for Artificial Intelligence. Morgan-Kaufmann.

Pazzani, M. & Dyer, M. (1987). A Comparison of Concept 1dentification in Human Learning and
Network Learning with the Generalized Delta Rule. Proceedings of the Tenth Intermational
Joint Conference on Art{ficial Intelligence. Mtlan, Italy, Morgan-Kaufmann.

Pearl, J. (1978). On the connection between the complexity and credibility of inferred models.

' International Journal of General Systems, 4, 255-264.
Peirce, C. (1932). The collected papers of Charles Sanders Petrce. Volume 2. Cambridge: Harvard.

188

Plaget, J. (1930}. The child’s conception of physical causality. London; Kegan Paul.
Quine, W. (1963). On simple theories of a complex world. Synthese, 15, 103-106.

Rajamoney, S. & DeJong, G. (1987). The classiflcation, detection and handling of imperfect theory

problems. Proceedings of the Tenth International Jotnt Conference on Artifictal Intelligence.
Mtilan, Italy, Morgan-Kaufmann,

Reiser, B. (1983). Contexts and Indices th Autobiographical Memory Cogxﬂtive Science Technical
Report 24). Yale University,

Renwick, Robin. (1981). Economic Sanctions. Center for International Affairs, Harvard University.

Roberts, R. & Goldstein, I. (1977). The FRL Manual MIT Al Lab. Memo 409). MIT,

Robinson J.A. (1965). A Machine Oriented Logic Based on The Resolution Principle. Journal of the -
Association of Computing Machinery, 12, 23-41.

Rocsh, E., Mervis, C., Gray, W., Johnson. D. & Boyes-Braem, P. (1976). Basic objects in natural
categories. Cognitive Psychology, Vol. 8.

Rosch E. (1978). Principles of categorization. In Cognition and categorization {Ed.), Rosch E. &
Lioyd B.. Hillsdale, NJ.: Lawrence Erlbaurn Associates.

Rosenbloom, P. & Laird. J. (1985). Mapping explanation-based generalization onto Soar.
Proceedings of the Ninth International Joint Conference on Artifictal Intelligenice. Los Angeles,
CA, Morgan-Kaufmann.

Rosenbloom, P., Laird, J., McDermott, J., Newell, A,, and Orciuch, E. (1985). RIl-Scar: An
Experiment in Knowledge-intensive Programming in a Problem-Sclving Architecture. [EEE
Transactions on Pattern Analysts and Machine Intelligence, Vol. 715).

Ross, L. (1981). The intuitive scientist formulation and its developmental implications. In Flavell,
J.H. & Ross L. (Ed.), Social Cognitive Development Cambridge: Camnbridge University Press.

Rumelhart, D. & McClelland, J. (1986}, Parallel Distributed Processing: Explorations n the
Microstructure of Cognition. Volume 1: Foundations. MIT Press,

Rumelhart, D. & Norman D. (1978). Accretion, Tuning and Restructuring: Three Modes of
Learning. In Cotton, J. & Klatzky, R (Ed.), Semantic Factors in Cognition. Hillsdale, NJ.:
Lawrence Erlbaum Associates.

Rumelhart, D.; Hinton, G., & Williams, R. (1986). Lcarmrig Internal Representations by Ertor
Propagation. In Rumethart, D. & McClelland, J. (Ed). Parallel Distributed Processing:
Explorations in the Microstructure of Cognition. Volume 1: Foundations. MIT Press.

Sacerdott E. {1974). Planning in a hierarchy of abstraction spaces. Artifictal Intelligence. 5.

'115-135.

189

Salzberg, S. (1985). Heuristlcs for inductive learning. Proceedings of the Ninth International Joint
Conférence on Artificial Intelligence. Los Angeles, CA, Morgan-Kaufmann.
Scarl, E.A., Jamieson, J., and Delaune, C. (1985). A Fault Detection and Isolation Method Applied

to Liquid Oxygen Loading for the Space Shuttle. Proceedings of the Ninth International Joint
Conference on Artifictal Intelligence. Los Angeles, CA.

Schank, R (1982). Dynamic Memory: A Theory of Reminding and Leamning in Computers and
People. Cambridge University Press.

Schank, R.C. (1986). Explanation patterns: understanding mechantcally and creatively. Hillsdale,
NJ.: Lawrence Erlbaum Associates.

Schank, RC. & Abelson, RP. (1977). Scripts, plans. goals, and understanding. Hillsdale, NJ.:

Lawrence Erlbaum Associates,

Schank, R. Collins, G. & Hunter, L. (1986). Transcending inductive categoery formation in
learning. Behavioral and Brain Sciences, 9, 639-686.

Schlimmer, J.. & Granger, R (1986), Simultaneous Conflgural Classical Conditioning.
Proceedings of the Eight Annual Conference of the Cognitive Sctence Soclety. Amherst, Mass.

Shell. E. (November 1987). The risks of risk studies. The Atlantic, .

Shortliffe. E.H. (1976). Computer-based Medical Consultation: MYCIN. New York, NY: American
Elsevier.

Shultz, T. (1982}. Rules of causal attribution. Monographs of the Soctety for Research in Child
Development, Vol. 47,

Shultz, T. & Mendelson, R. (1975). The use of covarlation as a principle of causal analysts. Child
Development, 46, 394-399.

Shultz, T., Fisher, G., Pratt, C., & Rulf, S. (1986). Selection of causal rules. Child Development,
57, 143-152.

Skorstad, J.. Falkenhainer, B.,, & Getner, D. (1987). Analogical processing: A simulation and
empirical corroboration. Proceedings of the National Conference on Artifictal Intelligence.
Seattle, WA., Morgan-Kaufmann.

Smith E.E., & Medin, D. (1981). Categortes and Concepts. Cambridge, Mass.: Harvard University
Press.

Touretzky. D. (1986). BoltzCons: Reconciling Connectionism with the Recursive Nature of Stacks
and Trees. Proceedings of the Eight Annual Conference of the Cognitive Science Society.
Ambherst, Mass.

Touretzky, D. & Hinton, G. (1985). Symbols among the Neurons: Detalls of a Connectionist

190

Inference Architecture. Proceedings of the Ninth International Joint Conference on Artificial
Inteiligence. Los Angeles. CA. Morgan-Kaufmann.

Trabasso, T. (1963}. Stimulus emphasis and all-or-none learning on concept identification.
Joumnal of Experimental Psychology, 65, 83-88.

Tulving, E. (May 1983 How Many Memory Systems Are There? American Psychologist. . pp.
385-398.

Utgoff. P. (1986). Shift of bias for inductive concept learning, In Michalski, R., Carbonell, J., &
Mitchell, T. {(Ed.), Machine Learning, Vol 2. Los Altos, Ca.: Morgan Kaufmann Publishers.

Vallant, L. (1984). A theory of the learnable. Journal of the Assoclation of Computing Machinery,
27(11), 1134-1142,

Vanlehn K. (1983). Felicity conditions for human skill acquisition: validating an Al-based theory.
Doctoral dissertation, MIT,

Vere, S. (1975). Induction of Concepts in the Predicate Calculus. Proceedings of the Fourth
International Joint Conference on Artificial Intelligence. Tbilist, USSR, Morgan-Kaufmann.

Wagner, RE. {1983). Expert System for Spacecraft Command and Control. Computers in
Aerospace IV Conference. Hartford, CT: American Institute of Aeronautics and Astronautics.

Waldinger, R. (1977). Achfeving several goals simultaneously. Machine Intelligence, Vol. 8,

Weiner, Bernard; Frieze, Irene; Kukla, Andy; Reed, Linda; Rest, Stanely & Rosenbaum, Robert M.
(1971). Percetving the Causes of Success and Failure. In Jones, Edward E., Kanouse, David
E.. Kelley, Harold H.. Nisbett. Richard E., Valins, Stuart & Weiner, Bernard (Ed.). Atirtbution:
Perceiving the Causes of Behavior. Morristown, NJ: General Learning Press.

Weiner, B. ((in press}, 1986). An Attributional Theory of Achievement Motivation and Emotion.
Springer-Verlag.

Weiner, B., Russel, D., & Lerman, D. (1978). Affective Consequences of Causal Ascriptions. In
Harvey, J.H., Iches, J.W., & Kidd. RF. (Ed.)., New Directions in Attribution Research.
Hillsdale, NJ.: Lawrence Erlbaum Associates.

Widrow, G.. & Hoff, M. {1960). Adaptive switching circuits. Institute of Radio Engineers, Westerm
Electronic Show and Conventton, Convention Record, Part 4. .

Wilensky, R. (1978). Understanding Goal Based Stories Computer Science Research Report 140).
Yale University,

Wilensky, R. (1982). Polnts: A theory of the structure of stories in memory. In Lehnert, W. &
Ringle, M. (Ed.}, Stra.;.egtes Jfor Natural Language Understanding. Hillsdale, NJ.: Lawrence

Erlbaum Associates.

191

Winston, P. (1870). Learning Structural Descriptions from Examples (Tech. Rep. AI-TR-231).

Winston, P.H. (1975). Learning Structural Descriptions from Examples.

MIT.

In Winston, P.H. (Ed)),
The Psychology of Computer Vision. New York. NY: McGraw-Hill.

Winston, P. (1977). Artificial Intelligence. Reading, Mass: Addison-Wesley,

192

Appendix A
Code Listing

This appendix contains the Common Lisp source code for OCCAM-UTE, a simplified version of
occam’>. There are a number of differences between 0CCAM and OCCAM-LITE:

* OCCAM-LITE is smaller. OCCAM-UTE contains 19 files, 309 definitions {of functions,
rules, parameters etc.), 2866 lines of code. and when compiled occuples 114,688
words of memory cn a Symbolics 3640. Its longest example (the trace in Appendix B)
consumes 360.448 words of memory and takes 133 CPU seconds. ©ccaM contains 25
files, 1209 definitions, 10,877 lines of code, and when compiled occuples 720,896
words of memory on a Symbolics 3640. Its largest example, (learning delta-agency,
coarce, kidnap, seven sanction schemata and answering two questions) consumes
1.622.316 words of memory and takes 327 CPU seconds.

* OCCAM-LITE does not contain a natural language parser or generator.

* The representation of coerce in OCCAM-LITE s considerably simpler than the
representation learned and used by occam.

* A role filler in 0CCAM can be a CD object or a set of CD objects. In OCCAM-LITE, a role
filler can only be a single CD object. This considerably simpiifies many uttlity

functions such as copying. matching, and instantiating CD structures which ail
require a special case for sets of objects.

*+ When evaluating the accuracy of a schema formed by theory-driven leaming or
similarity-based leaming, occaM can tolerate some noise or indeterminacy.
OCCAM-LITE deletes a schema when it encounters one exception.

* When occaM encounters enough exceptions to a schema formed by similarity-based
learning, it revises the schema to accommodate the exceptions by removing only those
parts of the schema which are fnaccurate. OCCAM-LITE simply deletes the schema and
a new schema is formed by similarity-based learning. OCCAM-LITE's approach is
simpler to implement but more time consuming. However, the effect of the two
processes is the same.

* OCCAM-LITE does not learn or make use of dispositions.

* OCCAM-LITE does use historical generalization rules. However, a similar effect is
achieved by making the pattern matcher following temporal or intentional links when
matching the antecedent of a generalization rule.

s oCCAM-LITE does not deal with the situation in which the rules used to justify a
schema formed by EBL are shown to be erroneous. Inference rules In 0CcaM can have
an arbitrary set of preconditions assoclated with them. In occam.-UITE, rules do not
have this set of preconditions. The only preconditions expressible {and, therefore,
learnable) are restrictions on the features of the antecedent and consequent.

s In occaM, during theory-driven learning, a generalized event is constructed by

7Soccam-UTE contains 75% less code than our regular 0cCaM.

193

dropping all of the features of objects matched by variables in the pattern. The intent
is to generalize the object to the most specific class, but this requires that the most
specific class be the "head” of a CD structure. oOCCAM-UTE improves upon this by
having a special class of features to represent a type hierarchy (e.d.. type and
sub-type). These type features are no longer dropped automatically and as a
consequence, occAM-UITE does not require the most specific class to be the head of a
CD structure’s.

A.1l. System Definition

This section contains the definition of the OCCAM-LITE system. OCCAM-LITE consists of four
groups of files: general utilities, sirmnilarity-based learning code, theory-driven learning code, and
explanation-based learning code.

A_1.1. File: occam-lite-system.iisp

;1 =%- Mode: LISP: Syntax: common-lisp; Package: user: Base: 10 -¥-
{defsystam OCCAM-lite

[:short-name "OCCAM-lite"

:default-pathname "mocse:>mike-T>occam-lite>")

(:module basic (“objects” “lisp-utils” “"cd-utils” “schemata"

"init-schemata" "cd-match"))

{:module sbl ("sbl"” "macro-schema" "play-deh"))

(imodule tdl ("tdl" "genrules" "glass")})

(:module ebl ("infer" "ebl" "rules" "coerce" "sanctiona"})

)

A.2. Utilities

This section contains the definition of six flles which are the general utilities used by
OCCAM-LITE. These files are:

* objects: contains definitions of the structures used by occaMm-UITE (schemata, CD
structures, etc.).

« lisp-utils: definitions of some simple lisp utilities used throughout OCCAM-LITE.
e cd-utils: definitions of functions for creating, and accessing CD structures.

¢ schemata: deflnition of functions for creating' schemata and indexing events in
memory, Also contains the top-level definition of OCCAM-LITE.

* init-schemata: definition of the initial schema hierarchy.
¢ cd-match: definitions of a matcher for CD structures.

A_2.1. File: objects.lisp

76This change was motivated by a discussfon with Keith Holyoak.
194

; ~*- Modae: LISP.; Syntax: common-llsp: Package: cl-user; Base: 10 -#*-
;;:dafinition of schema structure
(defatruct (schema (:print-functien
(lambda (o stream ignors)
(format stream "<~a ~a>"
{schema-nama o)
{schema-cd o)

"

cd ;sat of faaturaes

name

{links nil) ;links to other schemata or instances
pattern ;ed pattarn

avents ;sag. of avants, filled

type ;abl, abl, tdl

{parent nil) ;parent of this schama

transfer ;repressntational-tranafer

rule ;rule assaclated with cd

support ;justification information
outcome~slot ;alot which indicatas result of event

)

;;:;definition of cd structure
{defstruct (cd (:print-functien
(lambda {0 stream ignors)
[format stream “"<~a =~a>"
{cd-name o)
(cd-head o)
N
head
featureas
name
{links nil)
{aliat nil))

;irdefinition of intentional links which relate 2 cds
{(defatruct {(ilink (:print-functien
(lambda (o0 stream ignore)
(format stream "<~a ~a ~a>"

(ilink-from o)

{ilink-ilink o)

(Llink-to o))})}

from ilink to)

-

;::dafinition of link which connects schema and event or schema and sub-schama
{(defatruct (link (:print-function
{(lambda (o atream ignozrs)
{format stream "<-a ~& ~-a>"

{link-slot o)

{link-cd o)

{link-child o)

1))

schana ;from

child ;te

alot ;slot name

cd ;alot valum

(eount 0) ;oumber of "similar" links
type ; :sub-schema or :event

}

;;:dafinition of generalization rule
(defatruct (gen-rule (:print-function
(lambda (o stzream ignore)
(format stream "<gen-rule ~a -a ~3 ~a>"
(gen-rule-nams o)
(gen-rule-from o)
{gen-rule-link o)
{gen-rule-to 9a)
nn
namea from link to ilinks exceptions)

198

A.2.2. File: lisp-utils.lisp

;i) =%- Moda: LISP:; Syntax: common-liasp; Package: cl-user; Base: 10 -#*-
;7 (first-image #’'odd-p ' (10 3 8 7)) = 9
(dafmacre first-image (fn lis)
‘{do* ((flist ,lis (cdr flist))
(result nil))
({or (null flist) (satqg result (funcall ,fn (car flist)})) result)))

;i {all-images ¥’ {lambda(x) (if {(odd-p x) (- x 1))) ‘(10 9 B 7)) = (8 &)
(dafmacro all-images (fn lis)
“{der ((flist ,lis (cdr fliat))
(littla-rasult)
({reaault nil))
({null flist) (nreverse result))
{1f (satq little-result (funcall ,fn {car fliast)))
(puah little-result result))))

;::{subset #'0dd-p '(10 98 M) = (9 7
{defmacro subset (fn lLis)
‘(remova-if-not ,fn ,lia))

;2 nondestructive mapcan
(defmacro omapappend (fn lis)
‘{do* ((flist ,lis (cdr flist))
{result nil})
({null f£liat) (apply #’append (nreverse reault}))
(setf result (cons {(funcall ,fn (car flist}) result})))

Jri(untque ‘{1 23 2 3)) = (1 2 3)
(defun unique (1lis)
{do* {((fliat lis {(cdr flist))
(result nil})
{{null flist) (nreverse result))
{if (not (mamber {car flist) resalt))
{(push (car flist) result})})

;2:1ike unique with equal
(defun unique-equal (lis)
(do* {((flist lis (cdr flist))
{result nil))
{(null flist) (nreverse result))
(if (not {(member (car flist) reasult :test #' equal))
(push (car flist} result)))})

;;:creats new intarned symbol
{defun genarate-symbol (x) (intern (format nil "~a" (gensym x)))}

}i:;macre to dafine properties
{defmacro defprop (sym ind val)
‘(matf (get ‘,aym ‘,ind)
*,val))
(defvar *anawers®* ail "if :ask user is prompted"”)

;:: {ask-user-for-name object type)- prompt user to nams cbiect
(dafun ask-user-for-nama (ocbject type faux name)
{cond ((eq *answers® :ask)
(format t "What do you want to call this ~a?~&" type)
{xpn ebject)
(read))
(t (Lf (null *anawers®)
(satf "answars* ‘ (delta-agency the-plan ask sub-goal aub-act
cutcoma goal helper the-actor the-ob))))
(setf nama (pop *answers®))
(format t "~%Creating new ~a called ~a." type nams)
{xpn object)
nama}})

1968

A_2.3. File: cd-utils.lisp

This section contalns some of the important functions for defining and manipulating CD
structures;

¢ (def-cd name cd)-- A macro used to define CDs. See the file play-doh.lisp on page
216 for some examples of daf-cd.

s (daf-ilink from-cd link to-cd)-- A macro used to define intentional links
between two cds. For example, . the call
(def-ilink pizza-p-l1 realized-by pizza-a-1) defines an intentional link:
pizza-p-1{s a plan which is realized by the act pizza-a-1,

e (xpn cd)-- A function to prettyprint cd structures.

; =%- Mode: LISP; Syntax: common-lisp; Package: ¢l-user; Rase: 10 -*-
;12 (make. faature nams value}- creats a feature
(proclaim ’ (inline - xcake. feature))
({dafun make.featurs (an v) (list 0 v))

;i (feature-nama feature)- returns name of a feature
(proclaim ’ (inline feature-name))
(defun feature-nama (f) (car f))

::: (featurs-value feature)- returns the filler of a feature
(proclaim ’ (inline feature-value))

(defun feature-value (£} (cadr f))

{proclaim ’ (inline rplacadr))

(defun rplacadr(x y) (rplaca (edr x) Yy} Y)

(defsetf feature-value rplacadr)

Ji:(find-feature fsature featuras)- lookup a featurs in a fsatuzrs list
(proclaim * (inline find-fsature))
(defun find-feature (fasature featuras)

{assca feature features))

;i (role-fillar cd role) - returns filler of named role of cd
(defun role-fillar {(cd role)
{(whan (cd-p cd)
{faature-valua {find-feature role {cd-featurss cd)))))

;71 (rolea-fillez* ed rolas)- like role-fillar but takes a list of roles
;:: (rela=fillezrv (make.cod ' (act actor (persen nama (john)}) ' (actor nama))
;:: w <CD98 JOHN>
{(defun role~filler* (od roles)
{cond{(null rclea) cd)
{{null ecd)nil)
{(t (let{(new (role-fillar cd (car roles))}))
(Lf neaw (role=-filler* new {(cdr coles))
nil)})))

;1; {(delete-role cd role)- delete a role from a CD
{dafun delete-role (cd role)
{make.cd (cd-head cd)
(remove-1f #’ (lambda (fpair)
(eq (feature-name fpair) role))
{cd-features cd))))

:;; (delete-rola! od role)- destructivaly dalete a role from a CD
(defun delete-role! {cd role)
(satf (cd-features cd)
(remove-1f #' (lambda (fpair)
(eq (feature-name fpair) rolae)}

{cd-features cd})})

197

;o (set-role-filler cd rele filler)- change valua of a role
(defun set-rola-filler (cd rola fillar)
(lat ({new (delate-role cd reole)))
{push (make.feature role filler) (cd-features new))
neaw
|}

7ii(sat=role-fillexr! ed role filler)- destructivaely change valus of a rola
{defun seat-rolae-=filler! (cd role fillar)
(delete-rola! cd rola)
{push [(make.feature role fillar) (cd-features cd))
cd)

;oi(set-role-fillar!* cd roles fillar)- like set-role-fillar! but takes liat of roles
{defun set-role-filler'* (cd roles filler)
(cond { (null {cdr roles))
{set-role-fillert cd (car roles) filler} ed)
{t (set-role-filler!* (role-filler cd (car rolaes)) {cdr roles) fillaer)
ed)))

;i {def-role cd role filler)- like sat-role-fillar!, doasn’'t aval reles
(defmacro daf-rola {(ad role filler)
‘{set~rola-filler! ,cd ’',role ,fillar))

;;: {make.cd head features name)-creates a nav CD structure with
;::the spacified head and features.
(dafun make.cd (head &optional (features nil) (name (genarate-symbol “CD=-")))
(setf {(get name ‘cd) ;plist is used for debugging only
{make-cd :head head :features features :name name)))

;72 (var? x)- determines if an cbject is a cd variablae
(defun var? (x)
{and (consp =}
(aq (car x) ’'*vazrw)))

;i (var-name x)- returnm the name of a variable
{proclaim ‘ (inline var-nama)}
(defun var-name (x) (cadr x))

;1: (var-constraint x)- raturns the constraint of a variable
{(proclaia ’ (inline var-constraint))
{defun var~-constraint (x) (caddr x))

;1 {role? x)- datermines if an object is a role token
{defun role? (x)
{and (consp x)
(eq {(car x) ’'*zole®)))

;2 {role-name X)- returns the nama of a role

{proclaim ' {inline role-nams))
{dafun role-name (x) (cadr x))

198

7 {list->cd lis nama)- internals the Cepresentation of a cd

;i7E.G. (list->cd ’ (act actor {(human name (John))

i . to ("role®™ actor)

HEH from {*var* from)))

H = <CD101 ACT>

(defun list->cd (lis &optional (nama (genecate-symbol "CD-"))}
(cond ({atom lis) lis)

((var? lis) (cond ({var-constraint lis)
(l1ist ’'*var* (var-nama lis)
(list->cd (var-constraint lis) nili)
(t 1is)))
({role? lis) lis)
(t (make.cd (car lis)
{do* ((flist (edr lix)
{result nil))
((null fliat) result)
(push (make.featura (car flist)

(list->cd (cadr flist) nil))
result))

(cddr flist))

nama))))

i7:(ed->list ed)- creates the external rep of a cd.
ir:inverse of list->ed

(defun cd->1list (cd)
{cond ((cd-p ed)
(¢ons (cd-head ed)
{mapcan
#' (lambda (fp)
(cone (feature-nama fp)

{list (od->list (featurs-value £2))0))
{cd-faatures cd))})
{{var? cod)

{1f (var-constraint od)
{(list 'tvar* (var-name cd)
{ed=->1iast

{(var-conatraint cd)))
ed))

({rela? cd) ed)
{t =d)))

£y

(def-cd name cd)~- macro used to define CD3
)7 sets name to cd structure
(defmacro def-cd (nama cd)

' {progm
(sntq ,name (list->cd ',cd ’,namae))
,nama))

;7 (def-1link from-ed link to-cd)- macro used to define link between two ods
{defmaczro def-ilink (from link to)

‘(push (make-ilink :from ,from :ilink ', link :to ,to}
(ed-links , from)))

;¢ (copy~-cd-structure od)- creates a copy of a cd structure
(defun copy-cd-structure (cod)
(cond ((var? cd) (cond {(var-constraint cd)
(list ‘*var* (var-name cd)

(copy-cd-structurs (var-constraint cd))))
(t i)
({role? cd} cd)

{{cd-p cd)
(make.cd (cd-head cd)
{mapcar #’ {lambda {(fpair)
{make.feature {(feature-nama fpair)
(copy-cd-atzucture (featurs-value fpair))))

(cd-faatures cd))))
(t ed)))

199

;2! (containg-no-vars cd)- returns t if cd dcesn’'t contain any vars
(defun contains-no-vars (cd)
(cond (({vaxr? ed) nil)
({rola? cd} &)
{{cd-p ed)
(avery #’ (lambda (fpair)
(contains-no-vars (feature-value fpair)}}
(cd-faatures cd)})

(t £)))

;;:; (collact-vars cd}~- returns all vars of cd
(defun colleact-vars {cd)
{(cond {(var? cd) (cons (var-nama cd)
(collect-vars (var-constraint cd)}))
({role? ed) nil)
({cd-p cd)
{mapcan #’' (lambda (fpair)
{(collect-vars (feature-valus fpair)))
(cd=-featuras cd)))
{t nil)))

;!¢ (ed-head~only ed) - ramoves all features from s cd
(defun cd-head-only (cd)
{cond {(cd~p cd) (make.cd {cd-head cd)}}
{{or (zrole? cd) {(vazr? cd)) cd)))

;i; (follow=ilink od ilink)- returns a cd pointed to by an Ilink
(defun follow-ilink {ed 1ilink)
(firat-image #' (lambda(l)
{1f {(eq ilink {ilink-ilink 1)}
(1link~to 1)))
(ed-links od)))

127 {filler-or-4ilink od nams)- returns a cd which is
;;ieither a role filler or peinted to by an Ilink
{dafun filler-or-ilink (cd name)
{or (rolea-filler cd name)
(follow+ilink ¢d name)))

;! (make-faaturs-unless-null name valuae)
(defun make-featurse-unless-null (name value)
{i{f value (make.feature nams valuae)))

;7 (inverse-ilink link)~- returns the inverse of an ilink
{defun inverse-ilink (link) v
{get link ’inverse-ilink})

{(defprop result inversea-ilink resulted-from}
{defprop resulted-from inverse-ilink result)
(defprop before inverse-ilink after)
(defprop aftar inverse-ilink bafore)
{dafprop snables inverase-ilink snabled-by)
(dafprop snabled-by inverse-ilink anables)

(defprop blocks inverse-ilink blocked-by)
{defprop blocked~by inversa-ilink blocks)
(defprop leads-to inverse~ilink led-to-by}
{defprop led-to-by inverase-ilink leads-to)

{defprop result-snables inverse-ilink result-anabled-by)
{defprop result-enablad-by inverse-ilink result-enables)
(defprop intends inverse-ilink intended-by)

{defprop intendad-by inverse-ilink iatends)

{defprop realizes inverse-ilink rsalized-by)

(dafprop realized-by inverse-ilink realizes)

200

{defprop achieves inverse-ilink achieved-by)
(defprop achlieved-by inverse-ilink achleves)
(dafprop motivates inversa-ilink motivated-by)
(defprep motivated-by inversa-ilink motivataa)
{defprop thwarts inverse-ilink thwarted-by)
(defprop thwartad-by inverse-ilink thwarts)

(defprop outcome inverse-ilink outcoma-of)
(dafprop outcome=-of inversea-ilink ocutcome)

i (xpn ed)- Prettyprint a cd
{defun xpn (ed)
(format & “"~%")
{cond { (not {(or (cd-p cd) {(var? cd)))
(setq cd (get ed ’‘ed})))
(i1f {and (cd-p ecd)
{var? {(cd-bead cd}))
(satg cd (cd-head ed)})
{(pp-xpn cd 0))

;7 (pp-xpn ed celumn) perform the actual printing of a ed-head
(defun pp-xpn (cd goptional (celumn 0})
{cond ((cd-p <d)
(lat*{ (haad (format nil " (~a" ({(cd-head cd)})
(length {length bead)))
(format t "~a" haad)
(pp-faatures (reverss (reamove-ids (cd-faatures cd))}
{(+ column langth)})}
({and (var? cd) (var-constraint cd))
(let* ({head {(format nil " {(*VAR* ~a " (var-name cd)))
{length (length head)))
(format ¢t "~a" head)
(pp-xpn (var-constraint cd) (+ column langth))
{format t ")")))
(¢ (format €t “"~a“ cd))))

(defvar *remove-~ids® t "controls the removal of unique-ids")
;i (remove~ids flist)~ removes unique-id from feature list
(defun remove-ids {(flist)
(1f *remcve~-idas®
(subset #’ (lambda(x) (neq (feature-name x) ‘unique-id))
£list)
fliat})

;:: (pp-features features column first)- print each feaatura
;::followed by ita values. Rach feature starts in the same column
(defun pp-features (features column &optional (first t))
{cond { {null fasatures)
(format & ")"))
(t (lat*{(name (feature-name (car features))}
{(name-string (format nil "~ ~a " name)}
(length (length nama-string))
{(valus (feature-valus (car fsatures))))
{unless first
(format t "~8~a” (blank-string column)}))
(format t "~a” name-string)
(pp-xpn value (+ column length))
(pp-features {cdr features) column nil}))))

;:: (blank-string n)- generates a string of blanks of langth n

{defun blank-string (a}
(Lf (= n Q) "~
{string-append * " (blank-string (- n nnn

201

A.2.4. File: schemata.lisp

This sections contains routines for deflning and manipulating schemata. The macros
def-schema and def-sub-schema are deflned here. See the flle init-schemata.lisp on page 206 for
examples of their use. The function occam-1lite is also defined in this flle.

Ji: =%- Mode: LISP! Syntax: common-lisp; Package: cl-usar; Basa: 10 -*-
;:: (occam=1lite event)- top lavel call to occam-lite
;7 finds the mest speclfic schema for event and
;sithen attempts ebl, tdl, and sbl.
(defun occam-lite (event)
(£OLMAL € "wRaBesmeom ot oo m— e meesssesseee—m o —eeameeem—mmmamememme— e aa——— "
(format t "~%¥Looking for moat specific schema for ~a" evant)
(satg *reamovae-ids* nil) ;contrels xpn printing of unique-ids
(xpn eveant)
(satq *ramove-ida* t)
(lat ((schemata (find-most-spacific-schemata event)))
(mapec #' (lambda (schema)
(format t "~AFound moat apecific schema for avent: ~a" svant)
(format t "~%Bvent is accounted for by:")
{xpn (schema-cd schema))
{cond {{abl avent schema)}
{(tdl avent aschema})
{{ebl event aschemna))
{t (index-evant svent schema))))
schamata)))

(defvar *top* nil "atart of schema trea")
(Cefvar *all-sub-schemata® nil "hll user defined specializations- used by reset-memory")

;i {def-schema name cd pattern avents)- macro to define a new schama
{(defmacro def-schema (name cd pattern svents)
‘(let {(schema (make-schema :name ', name
ed (list->cd ', cd)
:pattern (list->cd ', pattern)
ravants ,avents)))
{satf (get ', name ’'schema) schema)
{setq *top* (cons achama {(subsat #' (lambda(m)
{not (compatible {achama-cd schema) (schema-cd m))))
top)}) remove duplicates

)}

;:: (def-sub-schema name parent cd pattern events)
;iilike def-schema but creates specialization of parent schema.
(defmacro def-sub-schema (name parsnt cd pattern events)
‘{let ((schama {(make-scheama :name ', nane
red (list->ed ', cd)
:pattern (list->cd ', pattern)
;avents ,evants))
(parent-schema (get ',parent 'schema)))
(setf (get ', name 'schema) schema)
{(mapc #' (lambda {link)
(add-link parent-schema link)}
{make~iinks (delate-difference (achema-cd schema)
(schema-cd parent-schema})
parent-achema
schams
’ : sub-gschema
1}
;;insert uniquely into *all-sub-schemata*
{let {(key (assoc ’,name *all-sub-schamata®)))
(£f kxay (satf (cdr key) (list schema ', parent))
(puah {list ', name schema ', parent) *3ll-sub-schemata*}})

‘., nama))

202

il (reset-memory) - restores memery to initial statae
{defun reset-memory ()
;;reset top level schemata
(mape #' {lambda(x) (setf{achama-links x) nil)) *topv)
//Te-index user defined sub-schemata
{mape #' (lambda(key) (lat ((schama (#econd key)}
(parent-schama (get (third key) ‘schema)))
(mape #° (lambda (link)
{add-link parent-schema link)}
(make-links (delete-difference {schema-cd schema)
{schema~-cd parant-schema))
pareant-schama
acheama
’ i sub-schema
1)
;;reset usar defined sub-schemata
(setf (schama-links schama) nil)))
all-sub-schemata))

;;; (make.schema cd)- return a new schema structurs
(dafun make.schema (cd)
(let* {(name {generate-symbol "SCHEMA-")))
{setf (get name ’'schema)
{nake-schena :cd cd :name name})))

;i /MRKR-SUB-SCHEMA creatas a Ravw sub schema. It gets the similar features and
;/;atores them as features of the new schama. It stores tha avents as the
;7:instances of the new sub schema, and adds the sub schema to the sub schema list
;;/of the "parent" achema. Finally, it moves the old events from the
;/:"parent” schemata instance liast.
(defun make-sub-schema (cd events parent type)
(let* ((sub-schema (make.schema cd)))
;. remove-events from parent schema
(when parent (mapc #' (lambda (link)
(1f (meamber (link-child link} eventa)
{remove-link parent link)))
{schama-links parent))
;7:7index new sub-schema under parent
(mape #’ {(lambda (link)
{add-link parent link})
{make-liinke (delsta-difference cd (schema-cd parsnt))
parent
sub-schama
! : sub-schana) }
(setf (schama-pattern sub-aschama) (schema-pattern parent))
(satf (schema-ocutcoma-slot sub-schema) (schema-cutcome-slot parent))
(setf (schema-events sub-schama) (schema-events parent))
(setf (schema-parent sub-schema) paraent)
}
;2 iindex evants under new-schema
(mape (lamkbda {(svant)
(indax-evant event sub-schema})
avanta)
{setf (schama~type sub-achama) type)
sub-achama
)

;i (Aindeax-event aevent schema)- creaata links from schama to event
(defun index-event (event schema faux d4iff)

(format ¢ "~%Indexing evant ~a undar schema ~a." event schama)

{satq diff (delete-diffearence avent (schema-cd schema}))

(let ({links {(make-links dJdiff scheama event ’':event)))

{mapc #’ (lambda (link)
(add=1ink scheama link)}
links))}

203

/ (make-links difference from to type)~ for each difference batwean
:::from and to create a new link to index to.
(defun make-links (difference from to typa)
(mapcar #’ (lambda (fpair)
(make.link from to (feature-name fpalr) (feature-value fpair) typae))
{cd-features diffarence)))

;i (delate-differance cdl cd2)- retain cnly those features of cdl
;77 which are not in ed2
{dafun delete-difference (cdl od2)
{cond ((null cd2) cdl)
{(cole? cdl} (cond{({and (role? cd2)
(eq (role-name cdl} (role-name <d2)))
nil)
{t edl)})
{(not {ed-p cdl})
(cond ({egq edl ed2) nil)
(& =dl)))
{(not (cd-p cd2)} nil)
((aq (cd-head odl) (cd-head cd2})
(let ((diff-feat (delete-diffarance-features (cd-faatires
cdl) (cd-featuras cd2)))}
(1f diff-feat (make.cd {cd-head cdl) diff-feat) nil)})
{¢ nil})}

;i (delete-diffarance~featurws fll €12) - retain a feature in 11 if £12
;!: doasn't have that featurs -
{defun delate-difference-features (fl1 f£12 caux fpair2)
(all-images #’' (lambda (fpalr)
{lat ({(name (feature-nama fpair})
{valus (featurs-valus fpair)})
{unless {(eg name "unique-id) ;;ignore meaningless differance
{cond {(setg fpair2 (find-feature nams f12})
(let ((new (delets-differenca valuas
{featura-value fpair2)}))

(£ (not (null naew))
(make.faature (feature-name fpair2) new)
nil)))
(t fpair))h))
£11}) o

;:: (make.link from to slot od type)- creats a link structuras
(defun make.link {from to slot e¢d type)
(makea-link :schema from :child to :slot slot :od cd :type type))

;7 {add-link schema link)- add a link to a schema- incrementing counters
(defun add-link {schema link)
{let* ({new~cd (link-cd link))
{slot (link-slot link))}
(matched-links {(subset #' (lambda {lnk)
{and (eg (link-slot lnk) slot)
(compatible new-cd (link-cd 1lnk))))
{(schema-links achema))})
}
;;incremant counter of similar events
(mape #’' (lambda (1)
(inef (link-count 1l))})
matched-links)
(setf (link-count link) (1+ (length matchad-links)}))
{puah link (schema-links schema))))

204

7 {remove-1link schema link)- ramove
(defun remove-link (schema link)
(lat ((new-cd (link-cd link))
(slot (link-slet link)})
;) reamove link
(setf (schema-links schema) (remove link {achama~
;/decrement countaer of similar svents
(mape #' {lambda (lnk)
(Lf {and (eq {link-slot lnk) slot)
{compatible (link-cd link)
new=cd))
(decf (link-count ink)}})
{schama=-1links achema})))

2 link from a schema- decrementing countaers

links schama))}

ii: (compatible cdl cd2)- returnas T if there are
;i:i.e. CD2 has a role that cdl has
{defun compatible (cdl cd2)
(cond((role? cdl) {and (role? ed2)
{eq (rolea-name cdl) (role-nams ed2)})))
({not {cd-p edl)) (equal cdl cd2})
{({neq (cd-head edl) {cd-head od2))
nil)
(t (avery #’ {lambda {featurs)
(let*({name (feature-name faature))
{fillerl (feature-value faature})
(filler2 {(role-fillar cdz name)))
{1f (and filler2 (naq name ’'unique-id))
(compatible fillerl filler2)
t)})) .
(cd-features cdl)))))

no conflicts between cdl and cd2
but with a diffarent filler

7;; {find-schema-subtree cd)- finds
(defun find-schema-subtree (cd)
{first-image #’ (lambda (m) (wvhen (compatible (schema-cd m) od)
m))

the right branch of *top* to start sesrch

=tep¥))

(defvar *unigueness-threshold® 2
"number of times a feature can ApPpear in other schemata and atill be predictiven)

;7 {find-most-apacific-schemata cd schama) - returns set most specific of
;i most specific schema in memory that account for cod.
(dafun find-most-specific-schemata (cd Soptional (achema {find-schema«subtres ed))}
. (cond ((compatible-with-schema od schema)
(lat* ((sub-schamata
(follow-links (schema-links schema) cd ’:sub-schems
*uniqueness-thresholdr))
(goed-subschamata
(mapcan #' (lambda (sub-schema)
(find-most-specific-schemata cd sub-gchama))
aub-schesata)))
(1f gocd-subachemata
good-subachemata
{list achema))))
(t (delete-schama cd achema)
nil)})

;i; (compatibla-with-schema od schema)~ makes surs cd matches schema-cd and
!1:1f achema formed by :tdl makes sure ilink matches also
(defun compatible-with-gchema (cd schama)
{and (compatible cd (schema-od achama})
{1f (eq (schama-type achema) :tdl)
and
((follow-1ilink cd (gen-rule-link (schema-support schema)})
(compatible (follow-ilink cd (gen-rule-link (schema-support schema)})
(follow-1ilink (schema-cd schema)
(gen-rule-1ink (schema-suppert schema)))}))

9N

205

;o0 (follow-links links instance type max)- for each feature of instance,

;;:follow links of type
(defun follow-links (links instance typa max)

{(unique (mapcan #’ (lambda (fpalr)
(find-link {(featura-value fpair)

{feature-name fpalr)
links
tyre
max))
({cd-faaturas instanca))))

;i {find-1link cd slot links type max)-
/for sach link, retuzrn the child if the the slot and value ars compatiblae

;and the link count is less than tha thrashold
{defun find-link {(cd slot links type max)

(unigque (all-images #' (lambda(link}
{(whan (and (eq (link-elot link) aslot)

{(>= max (link-count link))
(eq (link-type link} type)
{compatible {link-cd link) cd))}
(link=-child link)))
links)))

;i (delete-schema <d schema)- remove schema from mamory
;;;and re-index children
(defun delete-schema {cd schema)
(cond ((or (eq (schema-type schama) :asbl)
{eg (schama-type schama) :tdl})
(format t "~%Deleting schema, incorrect prediction.”)
(if (eq (schems-type schema) :tdl)
(xpn (follow-ilink (schema-cd schama)
(gan-rule-link (schama-support schema))})
{xpn {deleta-difference (schema-cd schema)
(make-genaral-cd cd (schema-cd schema)))})
(lat {{children (retrieve-children schama))
{parent (schema-parent schema)))
{remove-schera-indices schema parant)
(mape #’ {lambda{avent)
{index-avent avant parent)}
children}))})

(1f (schema-transfar schama)
(satf *gop* (remcve (third (schema-transfar schema)) ;high=-level schema

top})))

::; (retriave-children schema)- raturns all ratrieveable children indexed
;1;under a schama
{defun retriseve-children (schema)

{unique (all-images #‘ (lambda(link)
(if (and (eq (link-type link)} :event)
(>= *retrievability-thresholdw

{link-count link)})
{link-child link}))
(schema~links achema))}}

::; (remove-schema-indices schema parent)~- removes indices from a
;;;pavent-schema to a specialization, effectively deleting the schama

(defun remove-schama-indices (schema parent)

{mapce #' (lambda (link)
(if (eg (link-child link) schema)

{remove-link parent link}))
(schema-1inks pazent))})

A.2.5, File: init-schemata.lisp
This file contains the definition of the initial schema hierarchy. The hierarchy is stmilar to

the one displayed in Figure 6-1 on page 70.

206

;7 -*- Mode: LISP; Syntax: common-liap: Package: cl-user; Base: 10 -w-
(def-schema goal (goal) (goal) ail)

(d-!-lchona‘zgg {act) (act) nil)

(daf-schema plan {plan) (plan) nil)

{(def-gchema stata (stata) (statae) nil)

(daf-sub-achama #sll-schema act (ACT type (SELL})
(ACT type (SELL)) nil)

{def-sub-schema atrans-schama act (ACT type (ATRANS))
(ACT typa (ATRANS)) nil)

(daf-sub-schama mtrans-schema act (ACT typs (MTRANS))
(ACT type (MTRANS)) nil)

{def-sub-schama Erogol-cchoma act (act type {(preopel))
{act typa {propal)) nil)

A.2.6. File: cd-match.lisp
This file contains the code for two important utilities used by oCcCAM.LITE:

¢ (cd-match pattern cd)-- A function that matches a CD agalnst the pattern,
returning an association lst of variables and bindings.

e (instantiate pattern bindings)-- A function which instantiates a pattern by
substituting CD structures for variables in the pattern. bindings 18 an assoclation
list of variables and thelr values.

::; -*- -Mode: LISP; Syntax: common-lisp; Package: cl-user; Base: 10 -*-
;i (cd-match pat od bindings)- retuzn set of variable bindings if
;r:pat unifies with cd
{dafun cd-match (pat ed scoptional (bindings nil))

{setq bindings

(bind-var '*pattern® pat
{bind-var ‘*ecd* cd bindings)})
(cd-match-1 pat ed bindingas})

;1: (ed-match-1 pat cd Dbindings)- perform the actual matching
(defun cd-match-l {(pat cd bindings)
{(cond ((null ed) bindings) ;no conflict
{(role? pat) (if (and (role? cd)
{(eql (role-nams pat) {role-name ed})
)
bindings))
{{var? pat)
(bind-var pat od bindings))
{(and (cd-p cd) {eql (cd-head pat) (cd-head ad)))
(match-featuras (cd-fsatures pat) cd bindings))
(t nil)))

::: (match-features pat-f1l od bindings)- for aach featurs in pat-fl
;::insure that if cod contains featurs, then faature matchas
;::returns bindings list. €4 aan oontain feature as role naze
;:;or as ilink
(dafun match-features (pat-fl od bindings &Gaux filler)
(1f (every #' (lambda {(fpair}
(lat ({names {(feature-nams fpair))
(valus (featurs-value fpaiz}))
(cond {(setq fillar (filler-or-ilink cd aams))
(setg bindings
{cd-match-1 value filler bindings)))
(t e))
pat-£1)
bindings
nil)})

;1 {lockup-var var var-alist)- find variable value in allst

(defun lookup-var {(var var-alist)
(cdr {(assoc vazr var-alist)))

207

770 (bind-var var cd bindings)- add var to bindings alist

fails if constraint fails or var incompatible with
i/ presant binding

(defun bind-var {(var cd bindings)

{cond ({not {var? var}) ;*cd* or pat>

(cens (cons var cd) bindings})
{{vazr-constraint wvar)

{lat ((b (cd-match-1 (var-constraint var) od bindings)})
(1f b (bind-var~l (var-name var) cd 1-IRD B
{t (bind-var-l1 (var-name var) cd bindings)}))

;i7 (bind~var-1 var cd bindings}~ add var to bindings
;/;unless incompatible with existing binding
(dafun bind-var-l1 (var cd bindings)

(lat ((v (lookup-var var bindings)))
(Lf v

(Lf (compatiblae v cd)
bindings
nil)

(cens {cons var cd) bindings))))

;7 {instantiate pat bindings)- create a new cd by substituting
Ji:valueas from bindings for variables

(defun instantiate (pat bindings)
(cond ((var? pat)

(lookup-var {var-name pat) bindings))
({rola? pat) pat}
{{ed-p pat)
(1f (var? (cd-head pat))
//spacial syntax only if the a scens is a variabla

(lockup-var {var-name (cd-head pat)) bindings)
(nake.cd (cd-head pat)

(mapcar #' (lambda (fpair)
(make.feature {(feature-name fpair)
{lnatantiate {feature-value fpair)

bindings)))
(cd-fsatures pat})))))
{t pat)))

A.3. Similarity-Based Learning

This section contains a group of files which define the similarity-based learning module of
OCCAM-LITE. Three flles are included:

* sbl: contains the basic similarity-based learning module,

* macro-schema: contains the

routines which create
representational transfers.

macro-schemata and

* play-doh: contains deflnitions of the flve goal conflgurations. These serve as input to
OCCAM-LITE,

A.3.1. Flle: sbl.lisp

The definitlons of the functions in this file closely follow the discussion of SBL in Chapter 6.
In particular, the functions aggregate. retrieve-events, and make-general-cd, are defined in
this file. sbl is the top-level entry to the similarity-based learning module.

-*- Moda: LISP; Syntax: common-lisp; Package: cl-user; Base: 10 -*-
{defvar *levels-of-detailw 2

"Indicates the number of levels of detail to keep in skeleton")

;:; {create-skelaton cd base n)- retain n lavels of detail more than basa
(dafun create-skaleton (¢d base n}

(lat {{skeleton (create-skeleton-1 cd base)))
(1f (= n 1)

skeleton
(create~-skalaton cd skeleton (- n 1})})))

208

/i {creata-skelaton ecd basae n) - retain one level of detail meorea than base
{defun create-skeleton-1 (cd base)
(cond ((null basa) (cd-head-only ed))
({not (ed-p ed)) ed)
{t (make.cd {cd-head ed)
(napcar #' {lambda(fpair)
(let*((name (feature-name fpair))
{f1llerl (feature-value fpair))
(filler? (role-filler base nama))}
(make.feature name
(create-skelaton-1 fillarl
filler2))})

{cd-features cd))))))

{(defvar *min-cluster-sizer 3 "minirum size of a cluater")

/77 (aggregate event schema asize)- Find a sat of eventas similar to evaent
{defun agqregate {(avent schema &optional (size *min?clultor-lizt-))
(let ((akelaton (creata-skelaton evant (mop-cd schama) 'lovcla-of-dltall'))
{cluster nil))
(mapc #° (lambda(feature)
(lat* { (avents (retrieve-avants schema faaturas))
(nnw-clulhlr(lnrq.lt-subs.t featura skeleton aventa)))
(1f (< (length cluster) (length new-cluatar))
(setq cluster new-cluster)}))
(cd-features skelaton))
(Puah evant clustar)
(1f (>= (leangth clustar) aize)
cluater
nil)))

(defvar *retrievability-threshold* 4
"The number of times a fsatures can Appear in other
eveants and still be retrieved“}

i (retrieve-events achema feature) - retrisves svants similar %o an evant
/77 indaxed by faature.
(defun retrieve-avents {scheama featurs)
(find-link (feature-value faatura)
(feature-name featurs)
(schema-links schemas)
leavant
*ratrievability-thrashold))

;i1i{largest-subset faaturs skeleton eveants)- finds the largest subset of evants
;::which have at least two featuras in common with
{defun largest-subset (feature skelaton avents)
{let ({cluster nil})
(mapce #’ (lambda (new-featurs)
(vhen (neq new-featurs featurs)
(let { (cd (featurs-value newv-featurs)}
(nama (feature-name naw-featurse})
(tampeluster nil)
)
(mape #’ (lanbda (nevevent)
(let ((filler (role-filler newevant name)))
{if (and filler (compatible filler cd))
(push nawavent tempclustar))))
aventa)
(if (< (length cluaster) (length tempcluster))
(setq cluster tampcluster)))))
(cd-features skeleton))
cluster))

209

(defvar *enough-for-a-macro-schema* 4
"Humber of events nesded to create macro schema")
/7:(sbl avert schema)- Top level similarity-based learning function
(defun sbl (event schema)
{format T "~%Attempting similarity-based learning for new aevent.")
(lat {{cluater (aggregate event schema)))
{when cluater
(format t "~%Retrieved cluster of similar events.-%~a" cluster)
(let* {(gensral-cd (make-general-cd* cluater))
(ilinked-evants (process-event-1links (car cluster)
genaral-cd cluater))
{aub-achema (make-sub-schema general-cd cluster schama :abl)})
(format t "~%Creating new aspeclalization:")
(xpn general-cd)
(1f (> {(leangth ilinked-avents)
anough-for-a-macro-achema)
(create-macro-scheama sub-schema general-cd
(mapcar #'edr ilinked-events)
cluatar)})

1)

;i (make-genaral-cd* cds)- Find all features a numbar of cds have in common
(dafun make-genaral-cd* (cda)
{cond ({null {cdr cda))
{car cds))
{(make-general-cd (car cda)
(make-general-cd* (cdr cda))l}))

;i (make-geanezal-cd adl cd2)- finds all features that two cds have in common
;;:;and creates new unigue-ids
{deafun make-general-cd (cdl ed2)
{(cond ((not (cd-p edl))
(cond ((equal cdl cd2) edl)
(€ nil)))
({net (cd-p cd2)) ail)
({{(eq (cd-head cdl) {cd-head ed2))
(lat ((same (make-genaral-cd-faatures (cd-featuras edl)
(cd-features cd2))))

(maka.cd (cd-head cdl) same))})
(t ail}))

;0 (make-genaral-cd-features fll f£12)- finds all commonalitias
1;er two sats of feature lists
(defun make-general-cd-features (£f11 £12 gaux !pairZ{
(make~id £11 £12
{all-images
#’ {lambda (fpair)
(lat ((name (feature-name fpair)}
{(value (featurs-value fpair)))
(cond ((setq fpair2 (find-feature name f12))
{let {(new (make-general-<d valus
(feature-value fpalr2))))

(£f new
{make.featurs (fsature-name fpairl) new)
nil)))
(¢ nilh)}H
£11)))

210

;o {make-id £11 £12 £1)- add a general id to feature liat

;7:a general id is a concatenation of unique ids in a =anonical
;7! (alphabetical) order

(defun make-id (£f11 f£12 1)
{(let { (fl1-id (find-feature ‘unique-id £1l1})
(£12-4d {(find-feature ‘unique-id £12}))
(Lf (or (null fll-id) (null fl2-1id})
£l
{cons (make.fesaturs ’'unique-id

(make-id-nama (feature-value fll-id)
{fsaturs-value £12-id))}
(subset #’ (lambda(fpair) (neq (feature-name fpair)

‘unique-1id))
))))

;i (make-id-name idl id2)- construct {f name by combining componants
;iief Ldl and id2

(dafun maka~-id-nama (idl id2)
{let*((1dliastl (aplit-id 1dl))
{1dlist2 (split-id 1d2))
(unique-ids (unique (append idliastl idlist2)))
(slist (sort (mapcar #' (lambda(x) (format nil "~a” x}) uniqua-ids)
#/string<)})
(intern (append-strings slist "1"))}))

;:; {append-strings aliat char)~- appands stings in slist together,
;i:separated by char

{defun append-strings (alist char)
{cond ((null sliast) nil)
{t(let {{x {append-atrings{cdr alist) char)))
{1f x (format nil “~a-a-a* (car slist) char x)
(car slist)))}))

;:r{split-id atom)- returns a list of atoms by separating components

;;;of atoms. The component of atom are saparated by !

(defun split-id (atom)

(lat*{ (s (format nil "~a" atom))
{1{poaition #\! & :test #’'charm)}))}
{1f (not 1) ({list atom) :
{cons (intern (subseq s 0 i))
(split-id (intarn (subseq & (+ i 1))} }))

A 3.2 File: macro-schema.lisp

The functions of this file follow the discussion of macro-schemata and intentional links in
Section 6.2.5 on page 80.

;2: =%- Mode: LISP; Syntax: common-lisp; Package: cl-user: Base: 10 -*-
::; {process-event-ilinks event general-cd all-events visited)-
;;irecursively find and genaralize concepts connectad to avent
;;;attach genaralizations td general-cd
{defun process-event-ilinks (event general-cd all-events &optional (visited nil))
{(process~-ilinks event genazal-cd all-evants
{cons {cons event general-cd) visited)
{cd-links event)))

211

Ji{process-ilinks evant general-cd all-eventa visited ilinks)-
Jr/proceas each 1link in Lllinks
;i:1f the ilink-te has been viaited akip
;:7:1f some evants don’t have ilink skip
;;iotherwise- generalize ilink-tos and attach
/;;and recurse on ilink-to
;iivisited 1is ({event . genazalization)®)
(defun Erocols-ilinkl {avent general-cd all-eavents visitaed ilinks)
{cond ({(null ilinks) visitad)
(t {(let* {(link (car ilinka))
(link~name {ilink-ilink link))
(naw-event (ilink-to link))
{(new-eavants (mapcar #' (lambda(x) (follow-ilink x link-name))
all-events))
(visited-event (cdr(assoc new-evant visited))))
{cond ((and viszited-event
{soma #' (lambda(link)
{and (ag (ilink-1link link) link-nama)
(aq (ilink-to link)
visited-avent)})
(cd-links gensral-cd)})
(process-ilinks svent general-cd all-events visited (cdr ilinka)))
{ (mamber nil new-svents)
(process-1links svent genaral-cd all-events
{(c¢ons (list naw-event) vialted) ;net generalized
{edr ilinks)))
(t {let ((new-general-cd (or visitad-evant
(make-general-cd* naw-events))))
(push (make-ilink :from general-cd
to new-general-cd
:ilink link-name)
(cd=-links general-cd))
(push (make-ilink :£from new-~general-cd
:to genezal-cd
:ilink (inverse-ilink link-name))
(cd-links new-general-cd))
(process-ilinks event general-cd all-events
{(1{f visited-evant
visitad
{(proceas-event-ilinks naw-avent
new-general-cd
new-events
visited))
{cdr 1links)))))))))

212

;i {create-macro-schema sub-schama Jeneral-cd 1link.da-v-ntl)-
1. get & nama for the schema.
2. collect and name avents
775 3. collect and name rolaes
: 4. create a generalized avent for the nacro schema
5. create a pattern to instantiate saquence of events
¢7; 6, create representational transfer
(defun create-macro-schema (sub-schema general-cd events clustar)
(format T "~%Creating a macro achema")
(let* {(macro-name (ask-user-for-name general-ecd "scheama"))
(macro-avents (name-events avants))
(macro-rolas (name-roles avants macro-eventa))
(macro-cd (create-macro-cd TACIO-nama macro-rolaas))
(macro-patcern (make.cd {cd-head macro-cd)
{mapcar
#’ (lambda (fpair)
(make.feature (fsature-name fpair)
(list '*vare
(featura-name fpair))))
(cd-fantures macro-cd) })})
{macro-seq (create-sequence-of-events macro-events))
(tranafer-from (make.cd {(replace-ids-with-varas general-cd macro-roles)))
(tranafer-to (make-transfer-to macro-cd macro-~rcles transfer-from))
(transferred-childran (mapcar #’ (lambda {a)
(transfar~zrap e
transfer-from
transfar-to))

cluster)) .
(transfer-schama {make-sub-schama ascro-od transferred-childran nil :abl))
) B

(setf (schema-transfer sub-schema)

(list transfer-from transfer-to tranafer-schema))
(format t "~%Creating rapresentational transfer.”)
(xpn transfer-from)

{xpn transfer-to)

(format t "~%Creating macro schama.")

{xpn macro-ed)

{setf (achema-avents transfer-schema) macro-seq)
(aatf (schama-pattern transfer-schema) macro-pattern)
transfer-schema

N

il (name-events events)- returna an alist of nama and avent
(dafun name-events {evants)
(mapcar #' (lambda (e}
{cons & (ask-user-for-tame e *rola=)})
avents))

. i:l(namm-reles events roleas)-
;i/create a name for each uniqua componant of tha events
{defun name-rolas (events rolas)
{labals ((ssarch-event-for-rolas {cd)
(cond ((cd-p od)
{let ((id (role-filler cd ‘unique-id}))
{vhen
{(and id
{net (assoc id roles
‘teat (lambda(id role}
{eql (role-fillar role ‘unique-id)
id))}))
(push {cons cd (ask-user-for-name cd "role*}))
reles))

{mape #' (lambda (fpair)
(ssarch-event-for-rolas (feature-valus fpair)}))
{cd-featurss cd)))

BB N
(napc #’ search-avent-for-roles events)
roleas))

213

'/ {sreata-macro-cd nama rolaea-allst)-
/7 /make the macro structure by replacing features by role tokens
(defun create-macro-od (name role-aliat)
(maka.cd name
(mapcar #' {lambda(cd.role-name)
(lat ({cd {car cd.role-nama))
(role~-nama (ecdr cd.role-nama)))
{make.feature role-namas
{inssrt-role-nama cd role-aliat nil)}y)

rola-aliat))}

fi7 (insert-role-name cd roles ésoptional (do-it t))-
[/ /COPY &d inserting role-tokens in faaturas
//:de-it = nil on top level
(defun insert-role-nama (cd roles &opticnal (da-it t))
(1f (not (cd-p ad))
cd
(make.cd (cd-head cd)
{mapcar
#’ (lambda (fpair)
{make.feature
(feature-nama fpair)
(let* ({{value (featurs-value fpair})
{id (role-filier valus funique=-id))
role)
(Lf {(and id do-it
(smatq role
{cdr (assoc 14 roles
rtest
#' (lambda(id recla)
{eql (role-filler role
‘unique-1id)

dninmm
(1ist "*role* rolae)

(insert-role-name value roles)))))
(cd-faatures ad))}))

/i (cTeata-sequence-of-aventa events-alist) -
;i;each avent in network of genaralized svents ias replaced by & variablae
/7;the variables correspond to the name of the zoles in the macro-schema
(defun cremate-sequence-cof-events {evaents-alist)
(let ((var.events (mapcar #' (lambda (cd.role)
(cons (car cd.rcla)
(make.cd (list ’"*var* (cdr ed.rolae)))))
aventa-aliast)))
;jvar.events is ((old-evant . cd-variabla}*)
(mape #' (lambda (cd.role)
{let* {(avent (car cd.role))
(naw-from (cdr{asacc event var.sventa})}))
{mapcar #' (lambda(ilink)
(let ((new-to (cdr(assoc (ilink-to 1ilink) var.avents)}))
{push (make-ilink :from new-frem
1to naw-to
:ilink (ilink-1link 1link))
{(cd~-links new-from))))
{cd-1links avaent))))
svants-alist)
(cdz(fizst var.eventa))))

214

;.. {replace-ids-with-vars <¢d macro-rolaes)-
;:;copy ed but replace cds with tokens by variablas
(defun replace-ids-with-vars (cd rclaa)
{1f (not (cd-p cd))
nil
{let (({id (role-filler <d ‘unique-id))
{role (cdr (assoc cd rolas)))
{rast (make.cd (cd-head cd)
{all-images
#' (lambda(fpair)
{make-feature-unlass-null
{(featura-nama fpair)
(replace-ida-with-vars
{feature-value fpair) rolaes)))
(cd-faatures cd)))}))
(condi{role (1f (containsa-no-vars Irest)
{list "*var~* rolas)
{list '"var* role rest))}

{({and 1d
{(satg role
(cdr {assoc 1d roles
‘tast
#' {lambda (id role)
{eql (role-filler role
"unique-1d)

idy)

(Lf (contalins-no-vars rast)
(list '*var* role)
{list '*var* role rest)))
{{contains-no-vars rest) nil)
(t rest)))))

;;:(roles->var cd)- replace roles with variables
{defun roles->vars (cd)
{cond ({var? cd) {cond ({(var-constraint cd)
(liat r*var* (var-nama cd)
(rolas->vars (var-constraint cd)}})
(t ed)})
({role? ed) (list ‘*var®* (rola-nama ed))})
{({ed-p ed)
{make.cd (cd-head ecd}
(mapcar #’ (lambda (fpair)
{make.feature (feature-name fpair)
{rolas~>vars (faaturs-value fpair)}))
{cd-featuras cd))))
{t =a)))

;:1; (make-transfer-te cd roles pattarn)- create transfer-to
;;:by substituting vars for used roles
;;:;rolas 18 { {cd . TOla)Y¥)
{dafun make-transfer-toc {(cd roles pattarn)
(let* ((used-vars {(unique (cellect-vars (cd-head patterm))))
(unused-var-alist (subset #’ (lambda{cd.role)
(mamber (cdr cd.zole) usad-vars))
roles))) .
(roles->vars (insart-role-nama cd unused-var-aliat))))

;:: (transfer-rep cd frem to)- use representational transfer
;::te change rep of ed to high-lavel rep
s;:instantiate to with bindings from from
;i:roles is { {ed . rele)t)
(defun transfer-rep (cd from te)
{1f (and {cd-p from)
(var? (cd-head from)))
{setf from {cd-head from))) .scene syntax
{let* {(transfezr-cd (inatantiate to (ed-match from cd)))
{rolea (mapcar #' (lambda(fpair)}
{cona (featurs-valus fpair)
{fedture-name fpaiz)))
{cd-features transfer-cd)}))
(insert-role-name transfer-cd roles nil}))

213

A.3.3. File: play-doh.lisp

This file defines five CD events zoo-1, refrigarator-1l, play-doh-1., pizza-1 .nd
cookie-1. These same examples were used to llustrate SBL in Chapter 6.

77: ~*- Mode: LISP; Syntax: common-lisp: Package: cl-user; Base: 10 -#-
7//lynn wants play-doh
(def-cd play-doh-1
(goal actor (human name (lynn) age (kid) hair (blend)
eyes (blue} unique-id lynn)
goal (state type (poss-by) unique-id poas-by.5
acter {human name (lynn) age (kid)
hair (blond) ayes (blue)
unique-id lyan)
value (yea)
ebject (p-obj type (toy)
stypa (play-doh)
unique-id play-doh.l)}
unique-id play-doh.l})

:rlynn plans to asks mike
(def-cd Elaz-doh—gnl
(plan actor (human name (lynn) age (kid) hair (blond)
eyes (blue} unique-id iynn)
Plan (act type (mtrans) unique-id mtrans.S
actor (human name (lynn) age (kid)
hair (blond) eyes {blua)
uniquae-id lynn)
to (human name (mike)
relation (ipt type(family-rel)
stypes (fathaer)
of (human uniqua-id lynn))
age (grown-up)
hair (brown)
ayes (graen)
unique-id mike)
obiject (act type {(atrana)
actor (buman name (mike}
relation (ipt type(family-rel)
stypa (father)
of (human
unique-id lynn})
age (grown-up)
hair (brown)
ayes (grean)
unique-id mike)
object (p-obj type (toy)
stypa (play-doh)
unique-id play-doh.l)
to (human name (lynn)
age (kid)
halir (bland)
ayes (blue)
uniqua-id lynn)})
unique-id play-doh-p.1))

218

i lynn asks mike
(daf-cd play-doh-a-1
{act type (mtrans)
unique-id mtrans.5
acter (human nama (lynn) age (kid) halr (blond)
eyes (blue) unique-id lynn}
to (buman nama (mike)
relation (ipt type({family-rel)
stype (father)
of {(human unique-id lynn))
age (grown-up)
hair (brown)
ayas (greaen)
unigque-id mike)
cbiect (act type (atrans)
actor (human name (mika)
relation (ipt type(family-rel)
stype (fathar)
of (human uniqua-id lynn))
age (grown-up)
hair (brown)
ayes (green)
unique-id mike)
objeact (p-ob) type (toy)
stype (play-deh) u
unique~-id play-deh.l)
to (human name (lynn) age (kid)
hair (blond) eyes (blua)
uniqua-id lynn))})

;;imike wants to give lynn play-doh
(daf-cd play-doh-ga-1
(goal actor (human name (mike)
relaticn {ipt type{family-rel)
stype {father)
of (buman unique-id lynn))}
age (grown-up)
hair (brown)
eyas (grean)
unique-id mike)
goal (act type (atrans) unique-id atrans.5
actor (human name (mike)
relation (ipt type(family-rel)
atype (father)
" of (human unique-id lynn)}
age (grown-up)
hair (brown)
ayes (graen)
unique-id mika)
chject (p-obj type (toy)
stypa (play-dob)
unique-id play-doh.l)
to (human nams (lynn) age {kid) hair (blond)
eyes (blue) unique-id lynn})
unique-id play-doh-ga.1l))

217

So.make gives lynn play-deh
{daf-cad play-doh-a-2
(act type (atrans) unique-id atrans.5
actor (human name (mike)
ralation (ipt type(family-rel)
stype (father)
of (human unique-id lynn))
age {grown-up)
hair (brown}
ayes (green)
unique-id mike)
object (p-obj type (toy)
stype (play-doh)
unique-id play-doh.1l)
to (human nams {(lynn)
age (kid)
hair (blend)
ayas (blue)
unique~-id lynna)})

;2 lynn gets the play-doh
(def-cd play-doh-r-1
{geal-outcoma type (success)
actor (human name (lynn) age (kid)
hair (blend) eyes (blue)
unique-id lynn)
goal (state type (poss-by) unique-id poss-by.5
actor (human name (lynn) age (kid)
bair (blond) eyes (blue)
unique-id lynn)
valua {(yas) .
object (p-ob] type (toy) stype (play~-doh)
unique-id play-doh.l})
unique-id play~-doh-r.1l))

(daf-role play-deh-1 plan play-doh-p-1)

(daf-ilink play-doch-l intended-by play-deh-p-1)
(def-1link play-doh-p-1 intends play-doh-1)
(def-ilink play-doh-p-1 realized-by play-doh-a-1)
(def-ilink play-doh-a-1 resalizes play-deh-p-1)
(def~ilink play-dch-a-1 motivates play-doh-ga-1)
(daf-ilink play-doch-ga-l motivated-by play-doh-a-1)
(def-ilink play-dech-a-2 achieves play-deh-1)
(def-ilink play-dch-1 achieved-by play-doh-a-2)
(def-1lipk play-doh-a-2 achieves play-doh-ga-1)
(daf-ilink play-doh-ga-1l achieved-by play-deh-a-2)
({def-ilink play-doh-1l outcoms play-doh-r-1)
{def-ilink play-doh-r-l outcome-of play-doh-1)
(daf-role play-doh-1l outcoms play-doh-r-1}

;karen wants to go to the zoe
(def-cd zoo-1
(goal actor (human name (karen) age (kid) hair (blond)
eyes (blue) unique-id karen)
goal (state type (location)
actor (human name (karen} age {kxid) hair (blond)
ayes (blua) unique-id karaen)
valua (yveas)
object (p-objd type (lecation)
stype (z0o0) unique-id zoe.l))

unique-id zoe.l)}

218

‘..karen plans to asks mikae
(def-cd zoo-p-1
(plan actor (human nama (karen) age (kid) hair {blond)
syes (blue) unique-id karen)
plan (act type (mtrans) unique-id mtrans.?7
actor (human name (karen) age (kid) hair (blond)
eyes (bluae) unique-id karaen)
to (human name (mike)
ralation {ipt type(family-rel)
stype (fathar)
of (human unique-id karen))
age (grown-up) hair (brown)
ayes (green) unique-id mike)
object (act type (ptrans)
actor (human name {mike)

Telation (ipt type(family-rel)
stype {father)
of (human

unique-id karen))
age {(grown-up) hair (brown)
eyes (green) unique-id mikae)
object (human name (karen) -
age (kid)
hair {blond)
ayas (blue)
unique-id karen)
to (p-obj type (location)
stypa (200)
uniquea-id zeo.1)))
unique-id zos-p.1))

J:;karen asks mike
{daf-cd zoo-a-1
{act type (mtrans) unique-id atrans.?7
actor (human name (karan} age (kid) hair (blond)
eayss (blue) unique-id karen)
to (human name (mikae)
relation (ipt type(family-rel)
stype (father)
of {human unique-id karen))
age (grown-up)} bhair {brown)
eyes (grean) unique-id mike)
object (act type (ptrans)
actor (human name (mike)

Telation (ipt type(family-rel)
stypa (father)
of (buman unique-~id karen))

age (grown-up) hair (breown)

eyes (gresn) unique-id mika)

object (human name (karen) age (kid) hair (blond)
eayes (blue) unique-id karen)
to {p-ob] types (location) stype (zoo)
unique-id zoo.1))))

219

JlmLke Wants to take xaren to the zoo

(def-cd zoo-ga-1i
(goal actor (human nams (mike)

relation (ipt typs(family-rel)
stypa (father)
of (human unique-id karen))
age {(grown-up) hair (brown)
ayess (grean) unique-id mike)
goal (act type {(ptrans)
actor (human name (mika)
ralation {ipt type({family-rel)
stypa (father)

of (human unique-id karen))

age (grown-up) hair (brown)
eaYes (gresen) unique-id mike)

¢bject (human name (karen) age (kid} haizr (bleond)

ayeas (blue) unique-id karen)

to (p-obj type {location) styps (zoo) unigque-id zoo.l})

unique-id zoo-ga.l))

;:;;mike takes karen to the 200
{daf-cd zoo-a-2
{act type {ptrans)

actor (human name (mike)
relation (ipt type(family-real)
stype (father)
of (human unique-id karen))
age (grown-up) halr (brown)
eyas (gresn) unique-id mike)
object (human name (karen) age (kid) hair (blond)
eayes (blue) unique-id karen)
to (p-ob) type (locatiocn) stype (zoo) unique-id zoo.l)
unique-id zoo-a.2))

;;;karen goes to tha zoo
(def-cd zoo-r-1
(goal-outcoms type (succass)

actor (human nama (karen) age (kid) hair (blond)
ayeas (blue) unique-id karen)
goal (state type (location)

actor (human name (karen) age (kid) hair (blond)
syes (blus) unique-id karsn}

valua (yes)
object (p-obj type (location) stype
unique-id zoe.l))
unique-id zoo~-r.l))

(def-role zoo-1l plan zoo-p-1)

(def-11link
(daf-ilink
{def-ilink
(def-1link
(def-1link
(daf-ilink
(def-ilink
(daf-1ilink
(daf~-ilink
(def-1link
(def-ilink
(daf-ilink

zov-1 intended-by zoe-p-1}
zoo-p-1 intends zoo-1)
zoo-p-1 realized-by zoo-a-1)
zoo-a-1 realizes zoo-p-1)
zoo-a-1 motivates zoo-ga-1}
zZoo-ga-1l motivated-by zoo-a-1)
zoo-a-2 achieves zoo-l)

2¢o0-1 achiaved-by zoo-a-2)
200-a-2 achieves zoo-ga-l)
zoo-ga-1l achiesved-by zoo-a-2)
zoo~1l outcome zOO-r-l)
zoo-r-1 outcoma-of zo0-1)

(def-role zoo-1 outcoma zoo-r-l)

220

‘karen wants to cpen the refrigerator
(def-cd rnfrig-:ator-l
(goal actor (human name (karen) age (xid)} hair (blond)
eyas (blue) unique-id karen)
goal (state object (p-obj type (refrigerator)
celor (white)
unique-id ref.001)
type {opan)
valua (yas))
plan {act type (propel)
acter (human unique-id karen)
object (component type (door)
of (p-obj uniqua-id ref.001))

H
outcoma {(goal-outcome type {(failurae)
actor (human unique-id karen)
goal (state object (p-obj unique-id ref.001)
typa {(open)
value (yeas)))

unique-id refrigeratoer.l))

/! :karsn wants pizza
(def-cd pizza-1
(goal acter (human namea {(karen) age {kid) hair (blond)
eayes (blue) unique-id karen)
geal {(state type (poss-by) unique-id poss-by. 002
actor (human name (karan) age (kid} hair (blond)
eyes (blue) unique-id karen)
value (yas)
object (p-ob] type (food) stype (pizza)
unique-id pizza.001))
unique-id pizza.l))

;’:karen plans to asks mike
{def-cd pizza-p-1
(plan actor (human nama (karen) age (kid) hair (blond)
eyes {blue) unique~id karen)
plan (act typs (mtrans) unique-id mtrans.002
actor (human name (karen) age (kid) bair {blond)
syes (blue) unique-id karen)
to {human name (mike)
relation (ipt type(family-rel)
stype (father)
of (human unique~id karen})
Age (grown-up) hair (brown)
ayes (green) unique-id mike)
object (act type (atrans)
actor {human name {mikae)
relation {ipt type{family-rel)
stypa (father)
of (human
unique-id karen))
ags (grown-up) hair {(brown)
ayes (green) unique-id mike)
object (p-obj typa (food) stype (pizza)
unique-id pizza.001)
to (human name (karen) age (kid) hair (blond)
eysa (blue) unigque-id karen)))

unique-id pizza-p.l})

221

Jr.karen asks mike
{def-cd pizza-a-1
(act type (mtrans) unique-id mtrana.002
actor (human nama (karen) age (kid) hair (blond)
syas (blue) unique-id karen)
to (human name {(mike)
ralation (ipt type(family-rael)
stype (father)
of (human unique-id karzen))
age {(grown-up) hair (brown)
eyas (green) unique-id mike)
object {act type (atrans)
actor (human name (mike)
relation (ipt type(family-rel)
stype (fathar)
of (human unique-id karen))
age (grown-up)
hair {brown)
syes {green) uniqua-id mike)
object (p-obj type (food) stype (pizza)
unique-id pizza.001)
to (human name (xaren) age (kid) hair (blond)
eyes (blue)} unique-id karen)}})

;;imike wants to give karen pizza

{def-cd pizza-ga~l

(geal actor (human name (mike)

relation {(ipt type(family-rel)
stype {(father)
of (human unique-id karen))
age (grown-up}
hair (brown)
ayes {(grean) unique-id mike)
goal (act type (atrans} unigua-id atrans.002
actor (human name {mike)

relation (ipt type(family-ral)
stype (father)
of (human unique-id karen))
age (grown-up)
hair (brown)
eyes (green} unique-id mike)
ocbiect (p-obj type (food) stype (plizza)}
unique~id pizza.00l1)
to (human name {(karen) age (kid) bair (blond)
ayes (blue) unique-id karen))
unique-id pizrza-ga.l))

;o ;mike gives karen pizza
(def-cd pizza-a-2
(act type (atrans)
unique=-id atrans.002
actor (human name (mikae)
ralation (ipt type(family-rel)
atyps (father)
of (human unique-id karen))
age {(grown-up)
halr (brown)
ayes (grean) unique-id mike)
object (p-obi types (food) stype (pizza)
unique-id pizza.001)
to (human name (karen) age (kid) hair (blond)
ayas (blue} unigue-id karen)
1)

222

;. :karen gets the pizza

(def~cd pizza-r-1
{goal-outcome type (success) ™7
actor (human name {karen) age {kid) hair (blond)
eYes (bluae) unique-id karen)
goal (state type (poss-by) unique-id poss-by.002
acter (human name (karen) age (kid) hair (blend)
syas (blue} unique-id karen)
value (yes)
object (p-obj type (food) stype (plzza)
unique-id pizza.001))
unique-id pizza-r.l)}

(def-role pilzza-l plan pizza-p-1l}

(daf-1ilink pizza-1l intended-by pitza-p-1}
(def-ilink pizza-p~l intends pizza-l)
(daf-ilink pizza-p-1 realized-by pizrza-a-l)
{def-ilink pizza-a-l tealizes plzza-p-l)
{def-ilink pizza~-a~l motivates pizza-ga-l)
(def-ilink pizza-ga-l motivated-by pizza-a-l)
(def-ilink pizza-a-2 achieves pizza-l)
{daf-1ilink pizza-l achieved-by pizza-a-2)
(def-ilink pizza-a-2 achleves pizza-ga-1l)
(daf-ilink pizza-ga-1 achieved-by pizza-a-2)
{(def-ilink pizza-l ocutcoms pizza-r-1)
(def-ilink pizza-r-1 outcomm-cf pizza-l)
{def-role pizza-l outcome pizza-r-l)

;. karen wants a cookise

({daf-cd cookia-1
{goal actor (human name (karen) age (kid) hair (blond)
eyss (blua) unique-id karen)
gecal (stats type (poss-by) unique-id poss-by.102
actor (human name (karen} age {(kid) hair (blond)
syes (blus) unique-id karen)
value (yes)
object (p-obj type {food) stype {cookie)
unique-id cookis.001))
uniqua-id cookie.l))}

;:karen plans to asks lynn
(daf-cd cookie-p-1
(plan actor {(human name (karen) age {(kid) hair (bload)
eyas (bluas) unique-id karen)
plan (act type (mtrans) unique-id mtrans.102
actor (bhuman name (karen) age (kid) halr (blond)
ayeas (blue) unique-id karen)
to {human name {(lynn)
ralation (ipt typs{family-rel)
atype (sistar)
of (human unique-id karen)}
age {kid) hatir (blond)
syes (blua) unique-id lynn)
objesct (act type (atranas)
actor (human name (lynn)
rulation (ipt type(family-zel}
stype (siatar)
of (human

unique-id karen))

age (kid) hair (blond)
eyes (blue) unique-id lynn)
object (p-oby type (food) stypa {cookie)
unique-id cookie.001)
to (human name (xaran) age {kid) hair (blend)
eyes (blua) unique-id karen)))

unique-id cookie-p.l))

223

;. karen asks lynn
(def-cd cookie-a-1
(act typa (mtrans) unigque-id mtrans.l02
actor (human name (karen) age (kid) hair (blond)
eyes (blue)} unicque-id karen)
to (human name {lynn)
relation (ipt type(family-rel)
stype (sistar)
of (human unique-id karen))
age (kid) hair (blond)
eyes (blue} unique-id lynn)
object (act type (atrans)
actor {human name (lynn)
relation (ipt type{(family-rel)
stype (sister)
of (human unique-id karen))}
age (kid)
hair (blond)
eyas (blue) unique-id lynn)
object (p-obj type (food) atype (cookie)
uniqua-id ceokie.00L)
te (human nama (karan) age (kid) hair (blond)
syes (blue) unique-id karen))})

;7o lynn wants te give karan a cookis

(daf-cd gockie-ga-1

(goal actor (human name (lynn)

relation (ipt type(family-rel)
stypa (siaster)
of (human unigue-id karen)}
age (kxid)
hair (blond)
syeas (blue) unique-id lynn)
goal (act type (atrans) unique-id atrans.l02
actor {(human name (lynn)

relation (ipt type({family-rel)
stype (sister)
of (human unique-id karan)}
age (kid)
halr (bklond)
eyas (blue) unique-id lynn)
object (p-ob]j type (food)} stype (cookie)
unique-id coockie.001)
to (human nama (karen) age (kid} bair (blond)
ayes (blue) unique-id karen))
unique~id cookie-ga.l))

;:::lynn gives karsn a cookie
(def-cd cookie-a-2
(act type (atranas)
unique-id atranse.l02
actor (human name {(lynn)
relation {ipt type(family-rel)
stype (siataer)
of {(human unique-id karen))
age (kid)
hair (blond)
ayas (blue) unique-id lynn)
object {p-obj type (food) stype {cookiae)
unique-id cookie.001)
to (buman name (karen) age (kid) hair (bloend)
syes (blue) unique-id karen)

1}

224

;. karen gets the cookie
{def-cd cookie-c-1
(goal-cutcoma type {(success)

actor (human name {karen) age (kid) halr (bland)
eyess (blus) unique--1 karen)
(state typa (poss-by) unigie-id poss-by.102
actor (human name (karan) age (kid) hair (bleond)

ayas {blue) unique-id karen)

geal

valus (yss)
object (p-obj type (food) stype (cookie)
unique-id cookie.001))
unique-id cookie-r.1l))

{def-role cookie-l plan cookie-p-1)

(def-ilink
(def-11link
(def-1ilink
(def-ilink
(def-ilink
(daf-ilink
(def-ilink
{def-ilink
(def-ilink
{def-ilink
{def-1ilink
(def-1ilink

cookie-1l inteandad-by cockis-p-1)
cookie-p-1 intends cookie-l)
cockie-p-1 realized-by cookie-a-1)
cookle-a-1 realizes cookie-p-1)
cockie-a-1 motivates ccokie-ga-l)
cookie-ga-l motivated-by cookie-a-1}
cockie~a-2 achieves cookie-]l}
cockie-1 achisved-by cookis-a-2)
caookie-a-2 achieves cookle-ga-1)
coockie-ga-1l achieved-by cookie-a-2)
cookie~l ocutcome cockie-r-1)
cookiea-r-1 outcome-of cookie-1)

{deaf-role cookie-l cutcoms cookie-zr-1)

{defvar *all-sbls* {(list zoo-1 refrigerater-l play-doh-1 pizza-l cookie-1))

A.4. Theory-Driven Leaming

This section contains the code for the theory-driven learning component of occam-LITE. Three
files are included:

s tdl: functions that implement the theory-driven learming component of OCCAM-LITE.
« genrules: definitions of the generalization rules used by OCCAM-LITE.

s glass: definitions of the three CD structures concerning the effects of dropping cups.
These serve as training instances for the theory-driven learning component of
OCCAM-LITE.

A.4.1. File: tdl.lisp

This file contains the Common Lisp source code for the theory-driven learning component of
OCCAM-LITE. The macro def-gen-rule defined here (s used to deflne generalization rules. See the
file genrules.lisp on page 230 for exampies of its use. tdl is the top-level entry to the theory-
driven learning module.

223

-%~ Mode: LISP; Syntax: common-lisp: Package: cl-user: Basa: 10 -=-
(defvar *all-gen-rulesa* nil "alist of all generalization rules (name .
;def-gen-rule -macro to defina generalization rule
;/6tores rule in *all-gen-rules*
(defmacro def-gen-rule (name from link to ilinks doptional eXxceptions)
‘{progn
{satqg , name
(make-gean-rule :name ', name
:from (list->cd ', from)
ito (list->ecd ', to)
link ’,link
:ilinks (mapcar #° (lambda{pre)
(make-1link :from (list->cd (first pre))
tilink (second pre)
:te (list->ed (third pre))
1)

rule) ™)

‘.1links)
axceptions ‘', exceptions)
3 "
(let ((kay (assoc ' name *all-gen-rulaes?)))
(Lf key (setf (cdr key) L nama)
(satf *all-gen-rules*

{appand *all-gen-rules* (list (cons ’',nama ,nama)}))))

', nama))

/7 (tdl avent schema)- theory driven learning component of occam
(defun tdl (event schema)
(format T "~%Attempting theory dtiven learning for new svent.")
(lat* ((events (aggregate svent schama 0}))
(first-image
#’ (lambda (name. rule)
{let*{(rule {cdr name.rulae))
;;make sure rule applies and would specialirze schema
(bindings (match-gen-rule rule event (schema-cd schama)}))
(when bindings
{let* ((similar (eimilar-outcomes rule avent evants))
(different-eveants (subset #’ (lambda(e)
{not (member e similar)))
avents)))
{cond({null different-events) ;no axceptions
{whan (null (gen-rule-exceptions rula})
(format t "~%Situation matches axceptionless gen rule.")
(xpn (gen-rule-from rule)}
{xpn (gen-rula-to rulae))
(let ({g (make-general-cd* sgimilar)))
(make-sub-schema-from-tdl simtlar g rule schema))))
(t (when {(gen-rule-axceptions rule) ;dispositional
(leat*{ (g (make-general-cd* similar))
(differenca (blama-difference g
(gen-rule-exceptions
rula)
differant-avantsa
{gen-rule-from rule)}))

(when difference
(format t "~%Situation matches dispositional gen rule."}
{xpn (gen-rule-from rule))}
{xpn (gen-rule-to rula))
(format t “~%Attributing difference to ~a."
(gen-rule-excepticns rulae))
{xpn diffarence)
{make-sub-schema~-from-tdl similar g rule achema diffarance)
1))

1NN
all-gen-rulas)))

226

;7. {match-gqen~rule rula event parent)- detarmines if evant matches a genrule
;.7 1f bindings of from and to are consistant and link is present and all vars
are bound.
J/parent is used to prevent tdl from recrsate the same schama as a specialization
(defun match-gen-rule (rule event &optional (parent nil})
(lat ({(b (cd-matech {gen-rule-from rule) event)})
(when (and b
(avery #' (lambda(v)
{lookup-var v b))
{collect-vars (gen-rule-from rule}))
{1f parant
(let ((parent-b {cd-match (gen-rule-from rule) parent)))
{soma #' (lambda (v)
{not {(lookup-var v parent-b))}
(collact-vars (gean-rule-from rule})))
£
(lat {(®@ (follow-ilink svent {gen-rule-link rule)}})
(when &
(cd-match {gen-rule-toe rule) e B)1)1})))

;i {similar-outcomas rle avent svents)- determines which
;:;events have tha sama outcome {(type and value)} as avent
(defun similar-outcomes (rule event avants)
(let* ((ilink (gen-rule-link rule})
{to (fellow-ilink avent ilink))
(to-type (role~filler to ‘type))
{to-valua (role-fillar to ‘value)))
{subset #’' (lambda(a)
(lat ({cd {(follow-1link « (gan-rule-link rulae))})
(and cd
(compatible to-type (role-filler cd ‘typa))
{compatible to-value (role-filler cd ’'value))}))})

svanta)))
(dafvar *type-roles* ' (type sub-type) "used to raprassnt type bierarchy")
(dafvar *match-vars* ' (*pattern* *cd*} “fake variables used by matchar")

;i: (generalize-bindings bindings rulae)- retain only type information in bindings
;;:this creates the most specific class consistent with examples
;:;add special *from* and *to* variables to bindings to represent
;;:;the from and to of generalization rule
{defun generalize-bindings {(bindings rule)
(lat ({(gbindings (mapcar #' (lambda(v.cd)
(let ((v {caxr v.cd})
{cd (cdr v.cd}))
{1f (membar v *match-varas?*)
v.cd
{cons v {generalize-to-class cd))}))
bindings)})
(bind-var-1 ‘*from* (inatantiate (gen-rule-from rule) gbindings)
{bind-var~l ‘*to* (inatantiate (gen-rule-to rule) gbindings)
gkindings))))

::: (gensralize-te-class cd)- remove all fsatures sxcept type features
{defun generalize-to-class (cd)
{make.cd (cd-head cd)
(subset #’ (lambda (fpair}
(mambar (feature-name fpair)
*cype-roleat))
(cd-faatures cd))))

227

‘oo {instantiate-mechanism ilinks bindings) create a generalized cd
isistructure by instantiating the variables in the structurs
(defun instantiate-mechanism (ilinks bindings)
{cond ({null 1links)
{lookup~var ’'*from* bindings))
{t {(let*{({ilink {car ilinks))
{from (ilink-from ilink))
{to (ilink-to ilink))}
(name (ilink-ilink ilink))
{from-cd (instantiate from bindings))
{to-cd (inatantiate te bindings))
)
{(format t “~%Instantiating mechanism.*")
(xpn from-cd)
(format t "~%~a" name)
(xpn to-cd)
{push (make-ilink :from from-cd
rto to-cd
:ilink name)
(ed-links from-cd})
{push (make-ilink :from to-ad
:to from-cd
tilink (inverse-ilink nama))
(ed-1links to-cd))
(when (and {var? from)
{nall (lockup-var (var-name from) bindings)))
(setf bindings (bind-var-l (var-name from) from-cd kindings)))
(when {(and (var? te)
(null (lookup-var (var-nams to)} bindinga)})
(satf bindings (bind-var-l (var-nama to)} to-cd bindings)))
(instantiate-mechanism (cdr ilinks) bindings)))))

;77 (make~-rule-from-cd rule gbindings) create a rule for a schema.
;;:;only works if mechanism is cone ilink because it ignoras
;;;remainder. The remainder should be usad as precenditions
(defun make-rule-from-cd (rule bindings)
(lat* (({1link (first (gen-rule-ilinks rulae)))
(from (subsitute-pattern (ilink-from ilink) rule))
{to (subsitute-pattern (ilink-to ilink)} rule))
{frem-vars (cellect-vars from))
;;to-pat will only contain variables if in from-pat
(to-pat (instantiate-pat to bindings from-vars nil))
{(from-pat (instantiate-pat from bindings (collect-vars to-pat) t))

)
(format t "~%Creating new ~a rule” (ilink~-ilink ilink})
{xpn from-pat)
(xpn to-pat)
(make-ilink :from from-pat :to to-pat :ilink (ilink-ilink ilink)}})

;;:replacea special from and to variables by corresponding cblect from zule
(defun subsitute-pattern {(var rula)
{cond ((var? wvar)
{cond ((eq (var-nams var) ‘*from*)
{(gen-rule-from rule})
((eq (var-name var) ’'*to¥®)
(gen~rule-to rule))
(t var)))
(t vax)}}

228

;i {instantiate-pat pat bindings vars lhs)- instantiate pattern using bindings
;;:for constraint if var is member of vars and lhs is true. If membar
;7-0f vars and lhs is false, retain var. Otherwise, replace var by

;;substituting bindings.
(defun instantiate-pat (pat bindings vars &optiocnal (lhs nil))

(cond ({var? pat}
{1f (member (var-name pat) vars)

{1f lhs
(list "*var* (var-name pat)
{list '*var* (var-nama pat)))

{locokup-var (var-name pat) bindinga)}))

{{rcla? pat) pat)

{{cd-p pat)
{1f {var? (cd-head pat))
;:spacial syntax only if the a scene is a variable

(instantiate-pat (cd-head pat) bindings vars lhs)

(make.cd {cd-head pat)
{mapcar #' (lambda (fpair)
{make.feature {feature-nams fpair)
(instantiate-pat (feature-value fpair)
bindings vars lhs))})

{logkup-var (var-name pat) bindings))

{cd-features pat))}))

{t pat)))

;i (blame-differance cd axception avents pat)-
:::finds a feature of od which is not pressnt in evaents
;;:1if no one feature will do, then the conjunction of features

;s:1s tried
(defun blame-difference {cd exception events pat)
(lat ({filler (lockup-var sxception (cd-match pat cd}))
(event-fillars (mapcar #' (lambda(e)
{lookup-var axception
{cd-match pat e)))

avants)))

(whan filler
{or (first-image #' (lambda (fpair)
{let { {(name (feature-nama fpair))
(value (feature-value fpair)))
(unless {(aq name ’‘unique-id)
{1f (some #' (lambda(ef)

{compatible value
(role-filler ef name)))

avent-fillars)
nil
(make.cd (cd-head fillaer)
(list fpair))))))

(cd-faaturss filler})

(if (some #’ (lambda (af)
(eveary #' (lamkda(fpair)
(lat { (name (feature-nama fpair))

(valus (feature-value fpair}})

(compatible value
{rola~filler af namae)})})

(ed-faatures filler)))
event-fillars)

nil
filler}))})

:;; (marge-roles cdl cd2)~ add roles of cd2 to cdl uniess role
;;ils present in cdl

{defun merge-roles {(cdl cd2)

(make.cd (cd-head cdl)
{append {cd-features cdl)

{subset #' (lLambda (fpair)
{not (find-feature {(feature-nama fpair)

(cd-features cdl})))

{cd-features cd2})))}

229

- tmake-sub-schema-£from-tdl similar gen rule parent differsnce)-
add ilinks from rule to gen- done so match-gen-rule will work
tatain only type information from bindings
create cd for new achema by instantlating ilinks of gen-rule
make-sub-schama indexas similar
; add rule format to schema
c::6. 1f difference change schema-cd to account for difference
(defun make-sub-schema-from-tdl (similar gen rule parent &toptional (diffscance nil))
(process-eveant-ilinkas {(car similar) gan similar)
(lat ((bindings (match-gen-rule rule gen)})
(when bindings
(lat* ((gbindings (generalize-bindings bindings rula))
{gdbindings (insert-difference-into~bindingas difference rule gbindings}}
(schema-cd (instantiate-mechanism {(gen-rule-ilinks rule) gdbindings))
(sub-schema (make-sub-schema schema-cd aimilar parent :tdl}l)
(irule (make-rule-from-cd rule gdbindings))
H
(push (cons (genarata-symbol "RULR-") irule)
(schema-rule sub-schema)}
{setf (schema-support sub-schema) rula)
11))

s Wl

7i{insert-diffarance-into-bindings difference ruls bindings)
;;merge features of difference with the corrasponding variable in bindings
(defun insert-difference-into-bindings (difference rula bindings)
(lat {{var-name (gen-rule-exceptions rula}))
(cond (difference (mapcar #’ (lambda(var.val)
(lat ((var (car var.val))
(val (cdr var.val)))
(1f (eq var var-name)
(cons var (merge-roles val differsnce))
var.val)))
bindings))

(t bindings))))

A.4.2. File: genrules. lisp

This file contains the definitions of three generalization rules. These rules can be used the
the theory-driven learning program to postulate a new explanation or by the explanation-based
learning program to propose an explanation to be verified by specific world knowledge represented
as inference rules indexed in memory.

:;7 =*- Mode: LISP.; Syntax: common-lisp: Package: cl-user; Base: 10 -¥-
:;;If an action on an cbiect always preacedas a state change
;::;for the object, then the action results in the state change.
{def-gen-rule gen-result
{act typa (*var* act-type)
objact (*var®* obiect))
after
(state typa (*var* state-type)
value (*var* valua)
object (*var* object))
(((*vazr* *from®) result (*var* *to*)})
((*var® *from*) aftar (*var® *tot*))))

230

;7:If similar actions performed on some objects have diffarent rasulcs,
7//and the objecta have different featyres, the differing featuras of
‘.:the obiact are rfesponsible for the different resylt.
(def-gan-rule gen-result-obiect-difference
{act cypa (*varw act-type)
object (®varw cbiact})
aftar
(state type (*var+ stata-type)
value {(*var* valua)
ebiect (*var* obiect))
{{{*var* *from®) result {(*var* *tgmy)
[(*var* *from*) aftar (*varw *=towr)))
cbiect)

:/If an initial action (2%act-1} on an object is always presant
;:when a subsequent action (?act-2) precedas a state change (?stata-2)
;:for the object, then Zact-1 results in a state (?state-1) which
‘;enables ?act-2 to result in the stats change (?state-2).
/77--note that the antecedent has a "beforae" role.
/;.this simulates the affect of a historical generalization rule
;;!bacause the pattern matcher can follow temporal or intentional linka
(daf-gen~rule prev-action
(act type (*var* atype-2)
obhject (*var* objy)
bafore (*var* act-1 (act type (*var* atype-1)
obiesct (*varw ebi)i)}
after
(state type (®"var* ptyre)
value (*var* value)
object (*varw obi})

{{*var* *from*) result (*vag* wtow))

((*vazr* act-1) result {(*"Var* state-1 (stats object (*var* obkiy))))
({*var* state-1) enables (*var* ~fromw%))

((*vazr* “from*) after (*varw *Eto®))

((*var* act-1l) aftear (*var# *from*})

)
)

A.4.3. File: glass.lisp
This file contains three examples of a cup falling. These are used as input to the TDL module.

-*- Mode: LISP; Syntax: common-~-lisp; Package: cl-user; Basa: 10 -#—
/:lynn dropped a clear glass cup,
(daf-cd glass-l-a
{act type (propal)
actor (human name (lynn) age (kid)
hair (blond) eyes {(blue) unique-id lynn)
ebject (p-obj type (cup) color {claar)
composition (glass)
UNIQUE-ID glaas.l)
to (p-ob) type (floer) location {kitchen)}))

;;the cup breaks
(def-cd glass-l-r
(stata type (broken)
object (p-obj type {(cup) color (clear)
couposition (glasas)
UNIQUE-ID glass.l)
value (yes)))
(def-ilink glass-l-a after glass-l-r)
{def-ilink glass-1-r bafors glass-l-a)

231

"lyan drops a red plastic glass-- nothing happenad
(def-cd glass-2-a
(act type (propal)
actor (human name {lynn) age (kid)
hair (blend) ayes (blue) unique-id lynn)
cbject (p-obj type (cup) color (red)
composition (plastic)
UNIQUE-ID glass.2)
toe {p-ob) typa (floor) leocation (kitchen))))

;lynn drops a red glass cup
(def-cd glass-3-a
{act typs (propel)
acter (human name (lynn) age (kid)
hair (blond) eyes (blua) uniquae-id lynn)
object (p-obj type (cup) color (red)
composition (glasas)
UNIQUE-ID glass.3)
to (p-obj typa {floor) location (kitchen))))
:;the cup breaks
{def-cd glass-3-r
(atate type (broken)
ocbject {p-obi typs {(cup) color (red)
composition (glass)
UNIQUE-ID glaas.3)
value (yes)))
{def-ilink glass-3-a aftar glass-3-r)
(def-ilink glass-3-r bafore glass-3-a)

{defvar *all-tdla* (list glass-l-a glass-2-a glass-3-a})

A.5. Explanation-Based Leaming
This section contains the code for the EBL module of occaM-LITE. Five files are included:
« infer: contains the code for defining rules, indexing rules in memory, retreving rules,
and making inference chains.

» ebl: contains the functions which Implement the explanation-based generalization
routine of OCCAM-LITE.

e rules: contains the definitions of some simple economic rules.
« coerce; contains the definition of a simple coercion schema.

» sanctions: ceontains the deflnition of one sanction incident which serves as input for
the EBL module of OCCAM-LITE.

A.5.1, File: infer.lisp

The basic inference routines of oCCAM-LITE. A rule is represented by an intentional link
structure., The :from and :to slots are patterns which contain variables. def-rule is the macro
which defines rules. See the flle rules.lisp on page 239 for examples of its use. Rules can also be
learned by the TDL component (see the function maka-rule-from-cd). infer-links is the entry
to the inference routines used by the EBL program.

232

-k

Mode: LISP: Syntax: common-lisp; Package: <¢l-user; Base: 10 -»-
7.’ (def-rule name lhs link rhs) - define a rule to infer rhs given lha,
;//index by lhs
(defmacro def-rule {name lhs link rhs)
'{progn -
{setg ,name (make-ilink :from (list->od ', lhe)
tto (list->cd *, rchs)
tilink ‘. link))
(find-schemata-to-index-rule (if (var? (ilink~from ,nama))
(var-constraint (ilink-from ,nama))
(Llink-from ,name))}
, name
* L, nane)

D)

7o (find-schemata-to-index-rule rula-cd rule name)~ find scheama (or schemata) to
frindex rule and add to list of rulas

(defun find-schemata-to-index-rule {rule-cd rule name)

(lat { {schemata {find-most-spacific-schemata rule-cd))}
(mape #’ (lambda (schema)
(let ({key (assoc name (schema-rulae schema))))
(Lf key (satf (cdr key) rule)
(satf (schema-rule schama)
(appand (schema-rule schema) (list (cons name rule)})))))

schamata)))

;i (retrieve-rules-from-schemata cd link)- returns rules wbhich can ba usad
;i:to infer link from cd.

(defun retrieve-rulas-from-schemata (cd link)

{let {(schemata (find-all-schemata cd (find-schema-subtres cd)}})
(mapappand #’ (lambda {achema)
(all-images #' (lambda(r)

(1f (eq (ilink-ilink {(cdr r)) ;rule

link}

(edr) })

{schama-rule schema)))

achemata))) .
/:7(find-all-schemata cd schema)- returns the set of schemata which AL® more general

than ed. Schemata ars ordered (most spacific first) so that the most specific
Ji;rules are tried first.

(defun find-all-schemata (cd schema)
{cond ((not (compatible-with-schema cd schema))
nil) Jeonflict, 80 no match
{(let ((sub-schemata {(follow~links {schema-links schama) cd ' :sub-schems
*uniquensss-threshold+))})
(append (mapcan ¥’ (lambda (sub-schema)
{find-all-schemata cd aub-schama))
suyb-schemata) (list schema)))} Jrecurse on sub-schemata

(t {(list schema))))

233

"o (infer-links links bindings matches)- tries %o verify that
7 :an explanation proposad by links can be astablished using bindings.
7if the ilink is present, then it is simply followaed
;:otherwise infer-link is called £o use inference riles.
:;1f destination of link is unbound variable, it is beound
;:returns (bindings . matches) where bindings is an alist
:2of variables used in inferring the ilinks and matches is
coran alist of (cd . pat) of patterns used in the infearence
(defun infer-links (links bindings &opticnal (matches nil))
(if (nuil linkas)
{cone bindings matches)
(let*=({link {(car links})
{(from-var (ilink-from link))}
(ilink (ilink-ilink link))
{to-var (ilink-to link))
{(from (lockup-var (var-nams from-var) bindings)}
(te {(lookup-var (var-nams to-var) bindings))
{(to? (follow-ilink from ilink)))
(format ¢t “~%Attempting to infer ~a." ilink)
(xpn (or from from-var))
(xpn (or to? to Le-var))
(whan from
{cond (to? ; already inferred from instantiation
(1f to ;;4.w. if variable is bound
(when {(eql to (follow-ilink from ilink))
(format £ "~%Established by following link.")
(infar-links {cdr linka) bindings matches))
{infer-links (cdr links)
(bind-var-1 (var-name to-var)}
to?
bindings))))

{t (first-image #’ (lambda (rula)
(lat {(m (infer-link rule from to}))
(whan m
{infer-links (cdr links)
{if (oull to)
(bind-var~l (var-nams to-var)
(cazr m)
bindings)
bindings)
{appand {cdr m) matches))}))
(retzieve-rulas-from-schemata from 1link)})}})))

;7 (infear-link rule from to)- detearmines if "to" can be inferred with "rule”
;;;from “"from" returns {to (cd-to. pat-to) (cd-frem . pat-from)) if inferred.
;i;nil otherwise
(defun infer-link (rule from to)
{lat {(b {(cd-match (ilink-from rule) from)))
{whan b
{(format t "~%Established by inference rule.")
(xpn (ilink-from rule))
{(xpn (ilink-to rule))
(1f (null to) ;;uninstantiated-var
(let { (naw-to (instantiata (ilink-to rule) b))}
{cons new-to (list (cons new-to (ilink-to rule))
{cons from (ilink-from rule)))})
{lat { (new-b (cd-match (ilink-to rule) to b)))
{(when new-b
{cons to (list (cons to (ilink-to rule)})
{cons from (ilink-from rule))}))))})))

A.3.2, File: ebl.lisp

This file contains the definition of the EBL module of 0CCAM-LITE. ebl is the top-level entry to
this learmning strategy.

234

; -*=- Mode: LISP: Syntax: common~lisp; Package: cl-usar; Base: 10 =
777 (ebl event schema)- top lavel explanation-based learning function
N dccompoac evant by instantiating and esxpanding components of the schema
;i2. if outcome needs to bae axplained
; 3. construct abstract explanation frem generalization-nuile
4. rafine explanation by verifying links with inferenca rules
- S. generalize explanaticn
(defun ebl (event schama)
(format T "~%Attempting explanation-basad learning for new event.")
{when (schema-eventas schema) !1s decomposible schema
(laz* {{copy (copy-cd-structure svant))
(expandead-avent (fill-in-roles COpY copy))
(schema-b (cd-match (schama-pattarn achema) eaxpanded-aevent))
{avents (instantiate-components schema schama-b))
{to-slot (role-fillar axpanded-event (schema-outcome-slot schema)))
(to (first-image #’ (lambda (e)
(when (compatible @ to-slot) e))
avants}))
;ite is "outcoms'- svent which needs to be axplained
{when (unexplained to)
(first-image #’ {lambda (rule)
(satf rule (cdr rule)) ;:ruls was {name. rulwe)
;;match aginst gen-rule
(let {(b ({cd-match (gen-rule-to rule} to))
(from (follow-ilink to
{(inverse-ilink
. (gen-rule-link rulae)})))
(when (and b from)
(lat ({all-b (cd-match (gen-rule-from rula) from b)))
;i:this gen-rule applies so varify explanatien
{wvhen all-b
{setf all-b (bind-var-1 '*from* from all-b))
{satf all-b (bind-var-1 "*to* tp all-b))
(lat ((bind.trail (infer-links (gen-rule-ilinks rule)
all~-b}))
(when bind.trail
(make-abl-sub-sgcheama (car bind.trail)
(cdr bind.trail)
schema
axpanded-avent
rule
avant
events))

nhn

(most-specific-first *all-gen-rules*)
IRRD

233

;.7 (make-ebl-sub-schema bind trail schema expanded-event rule event avents)-
J::generalizes the axplanation structure and the avant
P 1. mack features of avent which ware matched to creats axplanatiocn
2. remove features of event which are not markaed
3. replace role-tokens in event
4. create ssquence of events from explanation chain
5. creats sub-schama
(defun make-ebl-sub-schema (bind trail schema axpanded-avent rule avent events)
;;axplanation is verified
rotrall is alist of cds and patterns
;:bind is alist of vars from explanation
(leat {(mark (generate-symbol "EBL-"))
new-avents sub-schema)
;;mark the components used in matching
;/note that expanded-event and the svents
in trail can share components because
avents were formed by instantation with
componants of expanded-svent
(mape #’ (Lambda {ed.pat)
(mark-match {cdr cd.pat) {(car cd.pat) mark})
trail)
(mark-match (schema-cd schema) axpanded-event mark)
;i remove unreferanced features from axpanded-avent
(mape #’ (lambda (x) (reap-marked-cd x mark))
avants)
(reap-marked-cd axpanded-event mark)
J:insert *roles* into expanded-event
(reinsart-roles sxpanded-avent)
;;create permant explanation by asserting
;: ilinks from gen-rule
(insert-ilinks {(gen-rule-ilinks rule) bind)
J:create new scheama-events
(satf new-events (collect-sevents events))
(mape #’' replace-features-with-roles new-events)
;;the copy of expandad-events snsures that
;; the schema-svents and schema-cd no longer share
;; features since the schama-avents will have
;. variables inserted .
(setf expanded-eavant (copy-cd-structure axpanded-event))
;;insert tha sub-schema in memery
(amtf sub-schema (make-sub-schema sxpanded-event (list eavent) schema :aebl))
;;change the sxplanation inte the genaral explantion
; by replacing cd’'s with vars from schema-pattern
or by replacing roles with vars
:var marker is from instantiate-components
(mape #° (lambda (e) :
(let ({var (or (cdr{assoc :var (cd-alist e)))
{roles->vars e})))
{satf (cd~-head &) (cd-head var))
(satf {cd-faatures e) (cd-features var))})
new-evants)
{setf (schema-events sub-schama) new-events)
{format t "~%Creating generalization with EBL")
{xpn expandad-evant)
{mapc #’' (lambda (x)
{format t "~Alormed event ~a with linka" x)
(mape #’ {lambda{x) (format t "~%~a" X))
{ed-links x))
(xpn x))
naw-events)
sub-schema))

;:: (most-specific-first’ x)- reverses list of generalization rules
;::80 that longest explanation chain is used
(defun most-specific-first (x)

(reaverse Xx))

236

.. {unexplained czd)- detarmines if cd is supported by
an ilink which explains why cd cccurred
(defun unuxglaincd (cd)

(not (or (follow-ilink cd ‘resulted-from)
(follow=1ilink cd 'result-enabled-by)
{follow-1link cd 'enabled-by}
(follow-ilink cd ‘realizes)

(follow=-ilink cd 'achieves))))

;o {fill-in-Toles cd base)- replaceas role-tokens of form (*role® <slot>)
>2:with the filler of <slot> in base. Leaves a :role markar on alist
;s ;80 that operation can be undona after generalization
{defun fill-in-roles (cd base)
{cond ({rcle? cd) {let{(role (rcle-filler kbase (rolea-name cd})))
(unless (assoc :role {(cd-alist rocle))
{push (cons :role ecd)
{cd-alist role)))
role))
({cd-p ed)
(mapc #' (lambda {(fpair)
(satf (faature-value fpair)
(fill-in-roles (featura-valua fpair) basa)))
({cd-faaturas cd))
ed)
(t cd})}

;i (instantiate-components schema b)- instantiate the events of a schema
r;with valuas from b and install ilinks. Leaves a :var marker
;oren alist.
{defun instantiate-components (schema b)
(let* {(old (schema-events schema})
(naw (mapcar #' {lambda (event)
{instantliate avent b)
;instantiate could return nil if event ia unbound var
)
old))
(alist (mapcar #'cons old naw)))
(mapc #’ (lambda (o n)
(when n
(satf (cd-links n)
(appand (all-images #' {lambda(l}
(copy-and-substitute-link 1 n alist})
(cd-~links o})
(cd-links n)))
(push (cona :var o)
(cd-alist n))))

old new)
{remove nil new)))

;;: {copy~and-substitute-link 1 n alist)- create a new i1link like 1
from n to a copy of destination of 1 in alist
(dafun copy-and-substitute-link (1 n alist)
(let ((to (sublis alist (ilink-to 1}))})
{when to
(make-ilink :from n :ilink (ilink-ilink 1) :to to))})

237

coo(mark-match pat cd mark)- put a mark on thosa components of cd which
7//are precent in pat. RAssumes pat and cd are compatible since they wara
;7o returned by infer-link.
(defun mark-match (pat cd mark)
(cond {({null cd))
{{var? pat)
{mark-var pat cd mark))
({ed-p ed)
(mark-od od mark)
(mape #‘ {lambda (fpair)
(let ({name (feature-name fpair})
{valus (feature-value fpair})))
(mark-match value (filler-or-ilink cd name) mark)))
(cd-features pat)))
D]

;i (mark-var var cd mark)- recursively mark constraint of var
(defun mark-var (var cd mark)
(when (var-constraint var)
(mark-match (var-constraint var) cd mark)))

;7 (mark-ed cod mark)- install mark in alist of cd
(defun mark-¢d (cd mark)
(push (cons ' :mark mark)
(cd-alist cd)))

;7 {reap-marked-cd cd wmark)- destructively delete thosze features of CD
;;:which are not marked.
(dafun reap-marked-cd (cd mark)
{(cond ((cd-p cd)
(1f (has-mark? cd mark)
(lat { (fpalres (all-images
#’ (lambda{fpair)
(let { (fv (reap-marked-cd (feature-value fpair)
mark))}
{make-feature-unless-null (featurs-name fpair)
v)))
{cd~features cd))))
(setf (cd-features cd) fpairs)
ed))

(t nil)))

;;; (has-mark? cd mark) - detearmines if cd is marked
(defun has-mark? {(cd mark)
(first-image #' (lambda(key.value)
(and (eq {(car key.valuae) :mark)
(eq (cdr key.valus) mark}))
(cd-alist cd)))

;:; {reinsert-roles cd)- for each feature of cod
;.:replace the features of that features value with
;;:tole tokens
(dafun reinsert-roles (cd)
{mapc #’ (lambda (fpair)
(let*{{valus (feature-value fpair))}
(12 (ed-p value)
(replaca-features-with-roles valua))))
(cd=features cd)))

238

;. {replace-features-with-roles cd)- if a feature value has a
itrole marker (insarted by fill-in-roles) then replace with
;i:role-token
(dafun replace-features-with-roles (cd)
{mape #’ {lambda (fpair)
{(let*{{value (feature-value fpair)})
(when (cd-p valuae)
(lat {({role {(cdr (assoc ' role [(cd-alisc value)))))
(1f role
(setf (featura-valua fpair} role)
(replace~-faatures-with-roles value)}})})
(cd-features cd)))

;7 {collect-avents eavent-list)- returns a list of avents which are
;:connacted by ilinks
{defun collect-events {evant-list &optional (visited nil))
{cond ({null avent-list} visited)
{ (mamber {(car svent-list) visitad)
(collact-avents (cdr event-list} visitaed))
(t (collect-eveants {append (all-images # ilink-to
{cd=links (car event-list})))
{cdr avent-list))
(cons (car avent-list) visitaed))}))

;.7 (insert~ilinks links bindings)- follews through the links
;;;and ensures that the appropriate links and inverse are
! ;presant.
{(defun insert-ilinks {links bindings)
{mapc #' (lambda(link)
{(lat= ({from-var {ilink-from link))
(name ({link-ilink link})
{to=var (ilink-to link))
{(from (lookup-var (var-nama from-var) bindings))
(to (lookup-var (var-nama to-var) bindings}))
;;vars should always ba bound since they ware returned
;; by infer-link
(unleas
(aql to (follow-ilink from namm))
(push (make-ilink :from from
ko to
:1ilink name}
(ed-1inks from))
{(push (maka-ilink :from to
ito from
:1link {inverse-ilink nama))
(cd~links to)))))
links))

A.5.3. File: rules.lisp

; -*- Mode: LISP; Syntax: common-lisp; Package: cl-user; Base: 10 -*-
:;:sell results in posseasing
(def-rule sell-->possess
(ACT type (SELL)
TO (*var®* x)
OBJRCT (*var* y)
mode (yes))
result
(STATE TYPE (POSSESS)
OBJECT (*var* y }
VALUE (YES)
ACTOR (*var* x)}

239

‘refusing to sell results in an increased demand
{(def-rulea refusa-to-gall-->demand-increaase
(ACT type {SELL)}
actor (polity exports (*var* y)
)

TQ (*var* x (polity imports (*var+ ¥

OBJECT (*var* y (commodity))

mode (nag))

rasult

(STATE TYPE (demand-increase)
actor (*var* x)
VALUE {YES)
OBJECT (*var*® y}))

;7 /An increased demand allows a provide to szell at a gresater than market rate
(def-rule demand-increase-->price-increases
(STATE TYPE (demand-increase)
VALUE (YES)
actor (*var* x (polity econcmic-health (strong))})
OBJECT (*var* y})

enablaes
{ACT type (SELL)
actor (polity sxports {*var* y)
business-relationship (*var* x))
TQ (*var* x)
OBJECT (*var* y)
price (money value (>markat))
mode (yes)))

A.3.4. File: coerce.lisp

This file contains the definition of a stmple coercion schema. This schema is specialized to
create an economic sanction schema.

-*- Mode: LISP: Syntax: common-lisp; Package: cl-user; Base: 10 -*-
(d-f-cd thq-goal (goal actor (*var* actor)
goal (*var* demand}))
(def-cd the-plan (plan actor (*var* actor)))
(daf-cd the-threat {{(*var* threat)))
(def-cd th--:.cult {{*var* result)))
(def-cd th.-r--gonlo {(*var* responsa)))
(def-schema coerce (coarcae)
{coerca
actor (*var¥* actor)
objact (*var* object)
target (*var* target)
demand (*var* demand)
threat {(*var* threat)
response (*vVar* response)
result {*var®* rasult))
(list the-goal the-plan tha-threat the-response the-result)
)

(satf (schema-outcome-slot (gat 'coerce ’'schema)) ’'result)
{(def-ilink the-plan intends the-goal}

(def-ilink tha-goal intended-by the-plan)

(def-ilink the-threat realizes the-plan)

(def-ilink tha-plan realized-by the-threat)

(daf-ilink the-threat after the-rasponse)

(def-ilink the-response before the-threat)

(daf-ilink the-response after the-rasult)

(def-ilink the-result before the-responsze)

A.5.5. File: sanctions. lisp

This file contains the CD representation of Economic-Sanction-1 which is repeated below
This example is generalized by the EBL program.

240

Economic-Sanction-1
In 1983, Australia refused to sell uranium to France, unless France ceased nuclear

testing in the South Pacific. France

paid a higher price to buy uranium from South

Africa and continued nuclear testing.

-%~ Moda: LISP: Syntax: common-lisp; Package: cl-user; Base: 10 -#*-

(def-cd sanction-83-1

(coerce actor (polity type (country) name (australia)

lanquage (english)

location (socuthern-hemisphers)
goevernmant (demeocracy)
economic-haealth (strong)
continent (australia)

exports (*rolae* cbjact)
imports (oil))

object {commodity typa (uranium))
target (polity type (country) name (FRANCE)

language (FRENCH)

governmant (democracy)
aconomic-health " (strong)
centinent (surocpe)

location (northern-hemisphers)
imports (*role* obiject)

sxports (commodity type (wine))})

demand (act type (sxplode)
actor (*rols" tarqget)
object (weapons type (nuclear))
location (scuthern-bemisphere}
mode (neg))
threat (act type (sell)
actor (*role* actor)
objeact (*role* object)
te {*rola* targat)
mode (nag))

responsa {(act

rasult (state

type (sell)

actor (polity type {country) name (south-africa)
lanquage (english)
location {southern-hemispheras)
business-relaticonship (*role* target)
continent (africa)
exports (*role* object)
importa {(eoil))

cbjesct (*role* object)

price (money dollars (3000000) value {(>markat)})

to {(*role* target))

type {(possesas)

actor (*role* target)

valus (yves)

- object (*role* cbiect))))

241

Appendix B
Program Traces

This appendix contains annotated traces of OCCAM-LITE. These traces illustrate the similarity-
based. theory-driven and explanation-based learning components. The traces are edited slightly to
conserve space. The only changes from the actual traces are the deletion of features from objects
when the object is printed more than once.

B.1. Similarity-Based Learning Trace

The similarity-based learning module is presented with the Conceptual Dependency
representation of five goals and their resolution. The program creates and refines a delta-agency
schema from four of these examples. To run GCCAM-LITE on these examples the following command
is typed:

(mapc #’'occam-lite *all-sbla+*)

The program processes the examples one at a time. First, zoo-1 is added to memory. zoo-1
describes a situation in which Karen wants to go to the zoo, so she asks her father, Mike, and he
takes her,

242

Locking for most specific schema for <Z0C-1 GOAL>
(GOAL ACTCR (HUMAN NAME (KAREN)
AGE (XID)
HAIR (BLOND)
EYES (BLUR)
UNIQUE-ID KAREWN)
GOAL (STATE TYPE (LOCATION)
ACTOR (HUMAN NAME (KAREN)
-]
VALUE (YES)
OBJECT (P-OBJ TYPE (LOCATION)
STYPE (200)
UNIQUE-ID 200.1})
UNIQUE-ID Z0C.1
PLAN (PLAN ACTOR (HUMAN NAME (KAREN)
e)
PLAN {(ACT TYPE (MTRANS)
UNIQUE~-ID MTRANS.7
ACTOR (HUMAN NAME (KAREN)
e)
o TO (HUMAN NAME (MIKE)
RELATION (IPT TYPE (FAMILY-REL)
STYPE (FATHRR)
OF (HUMAN UNIQUE-ID KAREN))}
AGE (GROWN-TP)
HAIFR. [(BROWN)
EYES (GREEN)
UNIQUE-ID MIKRE)
CBJECT (ACT TYPE (PTRANS)
ACTOR (HUMAN NAME (MIKE)
P
OBJRECT (HUMAN NAME (XAREN)
e aa)
TO (P-CBJ TYPE [(LOCATION)
STYPE (200)
UNIQUE-ID Z200.1)))
UNIQUE-ID Z00-P.1)
QUTCOME (GOAL-OUTCOME TYPE (SUCCESS)
ACTOR (HUMAN NAME (KAREN}
P |
GOAL (STATE TYPE (LOCATION)
ACTOR (HUMAN NAME (XAREN)
<)
VALUR (YES)
QOBJECT (P-OBJ TYRPE (LOCATICN}
STYPE (200Q)
UNIQUE-ID 200.1}))
UNIQUE-ID ZOO-R.1))
Found most specific schema for event: <Z00-1 GOAL>
Event is accountad for by:
(GOAL)
Attempting explanation-based learning for new esvent.
Attempting theory driven learning for naw avant.
Attempting similarity-based learning for new event.
Indexing svent <Z00-1 GOAL> under schema <GOAL <CD-4422 GOAL>>.

Explanation-based learning does not apply because there are no rules which would explain
why Mike took Karen to the zoo. Theory-driven learning does not apply because this event does
not correspond to any known causal pattern. Similarity-based learning does not apply because
there are not any stmilar examples in memory indexed under the goal schema. The event is simply
indexed under the goal schema.

The next example is refrigerator-1, which describes a situatfon in which Karen wants to
open the refrigerator, so she pulls on the door but it doesn’t open.

243

Looking for most specific schema for <REFRIGERATCR-1 GOAL>
(GOAL ACTCOR (HUMAN NAME (XAREN}
e)
GOAL (STATE OBJECT (P-OBJ TYFE (REFRIGERATOR)
COLOR (WHITE)
UNIQUE-ID REF.O001)
TYPE (OPEN)
VALUE (YES))
PLAN (ACT TYPE (PRCPEL)
ACTOR (HUMAN UNIQUE-ID KAREN)
OBJECT (COMPONENT TYPE (DOOR)
OF (P~OBJ UNIQUER-ID REF.001)))
QUTCOME (GOAL-QUTCCME TYPE (FAILURR)
ACTOR (HUMAN UNIQUE-ID KAREN)
GOAL (STATE OBJECT (P-OBJ UNIQUE-ID REF.Q01)
TYPE (CPEN)
VALUE (YES)))
UNIQUE-ID REFRIGERATOR.1)
Found most specific schema for avent: <REFRIGERATCR-1 GOAL>
Event is accountad for by:
{GOAL)
Attempting explanation-based lesarning for new sveant.
Attempting theory driven learning for new avent.
Attampting similarity-based learning for new evant.
Indexing event <REFRIGERATCR-1 GOAL> undar schema <GOAL <CD-4422 GOAL>>.

This event is also indexed in memory under the goal schema. Simﬂanty-bésed learning is not
appropriate because there are too few events in memory under the goal schema.

The next event is play-doh-1 in which Lynn wants some Play-doh. so she asks her father
Mike to get her some and he does.

244

Looking for most specific achema for <PLAY-DOH-1 GOAL>
{GOAL ACTOR' (HUMAN NAME (LYNN)
AGE (KID)
HAIR (BLOND)
EYES (BLUE)
UNIQUE-ID LYNN)
GOAL (STATE TYPE (POSS-BY)
UNIQUE-ID POSS-BY.S
ACTOR (HUMAN NAME (LYNM)
e)
VALUE (YES)
OBJECT (P-OBJ TYPE (TOY)
STYPE (PLAY-DOR)
UNIQUE-ID PLAY-DOH.1))
UNIQUE~-ID PLAY-DOH.1
PLAN (PLAN ACTCR (HUMAN NAME (LYNN)
R |
PLAN (ACT TYPE (MTRANS)
UNIQUE-ID MTRANS.S5
ACTOR (HUMAN NAME (LYNN)
P
TO (HUMAN NAME (MIXR)
RS |
OBJECT (ACT TYPE (ATRANS)
ACTOR (HUMAN NAME (MIKE)
e)
OBJECT (P-OBJ TYPE (TOY)
PR |
TO (HUMAN NAME (LYWN)
)
UNIQUE-ID PLAY-DOH-P.1)
CUTCOME (GOAL-OUTCOMR TYPR (SUCCERSS)
ACTOR (HUMAN NAME (LYNN)
[|
GOAL (STATE TYPR (POSS-BY)
R
UNIQUR-ID PLAY-DOH-R.1))
Found most speclfic schema for event: <PLAY-DOH~-1 GOAL>
Event is accountad for by:
(GOAL)
Attampting explanation-basead learning for new event.
Attempting theory driven lsarning for new avant.
Attempting similarity-based learning for new svent.

Indexing evant <PLAY-DOH-~1 GOAL> under schema <GOAL <CD-4422 GOAL>>.

This event is als¢ indexed in memory under the goal schema. Similarity-based learning is not
appropriate. There are now enough events indexed under the goal schema for similarity based
learning to apply, but these particular events do not share a sufficient number of features to form

a new schema.

A fourth event is now added to memory. pizza-1 describes a situation in which Karen wants

some pizza, so she asks Mike for some and he gives it to her.

248

Looking for most specific schema for <PIZZA-1 GOAL>
(GOAL ACTCR (HUMAN NAME (KAREN)
[
GOAL (STATE TYPE (POSS-BY)
UNIQUE-ID POSS-BY.002
ACTOR (HUMAN NAME (KAREN)
P |
VALUE (YES)
CBJECT (P-0BJ TYPE (FOOD)
STYPE (PIZZR)
UNIQUE-ID PIZZA.001})
UNIQUE-ID PI2ZA.1l
PLAN (PLAN ACTOR (HUMAN NAMB (KAREN)
e)
PLAN (ACT TYPE (MTRANS)
UNIQUE-ID MTRANS.002
ACTOR (HUMAN NAME (KAREN)
R
TC (RUMAN NAME (MIXE)
P |
CBJECT ({ACT TYPE (ATRANS)
ACTOR (HUMAN NAME (MIKE)

e o)
OBJECT (P-OBJ TYFE (FOOD)
NP |
TO (HUMAR NAME (XAREN}
el
UNIQUE-ID PI2ZA-P.1)
OUTCOME {GOAL-QUTCOME TYPE (SUCCESS)
ACTOR (HUMAN NAME (KAREN)
cer ea)
GOAL (STATE TYPR (POSS-BY)
cee)

UNIQUR-ID PIZZA-R.1))
Found most specific schama for avent: <PIZZA-1 GOAL>
Event is accounted for by: .
{GOAL) i
Attempting explanation-based laarning for new avent.
Attespting theory driven learning for new event.
Attempting similarity-based learning for new avent.
Retrisved cluster cf similar avents.
(<PIZZA-1 GOAL> <200-1 GOAL> <PLAY-DOH-1 GOAL>)

There are now enough similarities between a large enough group of events for a new schema
to be created. The similarities between Pizza-1, zoo-1 and play-doh-1 are found and a new
schemna is formed which specalizes the goal schema.

Indexing evant <PIZZA-1 GOAL> under schema <SCHEMA-6072 <CD-5875 GOAL>>.
Indexing event <Z00-1 GOAL> undar schema <SCERMA-6072 <CD-5875 GOAL>>.
Indexing event <PLAY-DOH-1 GOAL> under schema <SCHEMA-507T2 <CD-5875 GOAL>>.

schema-6072 is the new specialization of the goal schema. Its generalized event is given below;

248

Creating new specialization:
(GOAL ACTOR (HUMAN AGE (KID)
: HAIR (BLOND)
EYES (BLUE))
GOAL (STATB ACTOR (HUMAN AGE (K1D)
..}
VALUE (YES)
OBJECT (P-OBJ)}
PLAN (PLAN ACTCR (HUMAN AGE (KID)
P
PLAN (ACT TYPE (MTRANS)
ACTOR (HUMAN AGE (KID)
PP |
TO (HUMAN NAME (MIKE)
RELATION (IPT TYPE (FAMILY-REL)
STYPE (FATHER)
OF (HUMAN))
AGE (GROWN-UP)
HAIR (BROWN)
EYES (GRERN))
CBJECT (ACT ACTCR (HUMAN NAME (MIKE)

R R D
OUTCOME (GOAL-OUTCOMBR TYPE (SUCCESS)

ACTOR (HUMAN AGE (KID)
I |
GOAL (STATE ACTOR (HUMAN (KID)
]
VALUER (YES)
CBJECT (P-0BJ)))) o

This generalization indicates that when a child with blue eyes and blond hair wants something and
asks her father Mike who has brown hair and green eyes, the child's goal will succeed. Obviously.

this generalization is not correct, but it is a reasonable summary of the examples encountered so
far.

Because this generalization describes a complex situation which contains many intentional
links, a macro schema will also be formed:

Creating a macro schema
Creating new schema callad DELTA-AGENCY.

The name for a macro-schema and the roles can be specified by the user. The program will
next create the roles of delta-agency by finding those components which occur more than ones
in the generalized goal configuration.

Creating new role called THR-PLAN.
(PLAN ACTCR (HUMAN AGE (KID)
HAIR (BLOND)
EYES (BLOUR)}
PLAN (ACT TYPR (MTRANS)
ACTOR (HUMAN AGRE (KID)
PSS |
TO (HUMAN NAME (MIXE)
RELATION (IPT TYPE (FAMILY-REL)
STYPE (FATHER)
OF (HUMAN))
AGE (GROWN-OP)
HATR (BROWN)
ETES (GREEN))
OBJECT (ACT ACTOR (HUMAN NAMR (MIXE)
S)30}
Creating new role called ASK.
(ACT TYPE (MTRANS)
ACTOR (HUMAN AGR (KID)
PP |
T0 (HUMAN NAMR (MIKR)
P
OBJECT (ACT ACTOR (HUMAN-NAME (MIXE)
)

247

Creating new rsle called SUB-GOAL.
{GOAL ACTOR (HUMAN NAME (MIFE)
e)

GOAL {ACT ACTOR (HUMAN NAME (MIKR)
R R D
Creating naw role called SUB-ACT.
(ACT ACTOR (HUMAN NAME (MIKR)

N S |
Creating new role called OUTCOME.
(GOAL-CUTCOME TYPE {SUCCESS)
ACTOR (HUMAN AGE (KID)
e e)
GOAL (STATE ACTOR (HUMAN AGE (KID)
R |
VALUE (YES)
OBJECT (P-OBJ}))
Creating new role called GOAL.
{GOAL ACTOR (HUMAN AGE (KID)
P |
GORL (STATE ACTOR (HUMAN AGR (KID)
cee)
VALUE (YES)
OBJECT (P-0BJ))
PLAN (PLAN ACTOR (HUMAN AGE (KID)
PR |
PLAN (ACT TYPE (MTRANS)
che wa)

QUTCOME (GOAL-QUTCOME TYPE {SUCCESS)
e)
Creating new role callad HELPER.
(HUMAN NAME (MIXE)

RELATION (IPT TYPE (FAMILY-RRZL)
STYPE (FATHER)
OF (HUMAN))
AGE (GROWN-UR)
HAIR (BROWN)
EYES (GREEN))
Creating new role called THE-ACTOR.
{HUMAN)
Creating new role called THE-ORJ.
{(P~OBJ)

Once the macro-schema is created, the events are re-represented and indexed under the
macro-schema. A representational transfer is created to change between the two representations.

Indexing event <CD-6300 DELTA-AGIENCY> under schema <SCHEMA-6377 <CD-6151 DELTA-AGENCY>>.
Indexing event <CD-6233 DELTA-AGENCY> under schema <SCHEMA-6377 <CD-6191 DRELTA-AGENCY>>.
Indexing event <CD~-6376 DELTA-AGCENCY> under schema <SCEEMA-6377 <CD-6191 DELTA-AGENCY>>.
Creating reprasentational transfar.
(*VAR* GOAL (GOAL ACTOR (*VAR* THR-ACTOR)

GOAL (STATRE ACTOR (*VAR* THR-ACTOR)

OBJECT (*VAR* THE-OBJ))
PLAN (*VAR* THE-PLAN (PLAN ACTOR (*VAR* THE-ACTOR)
PLAN (*VAR* ASK (ACT TO (*VAR* HELPER)

e 1))
OUTCOMR ({*VAR* OUTCOMR (GOAL-OUTCOME))})

The above pattern can be matched against an example represented in terms of CD goals and
plans. It recognizes instances of delta-agency and binds several variables. The delta-agency
representation can be formed by instantiating the following pattern.

{DELTA-AGENCY GCAL (*VAR™ GOAL)
OUTCOME (*VAR* OUTCOME)
SUB-ACT (ACT ACTOR (*VAR* HELPER))
SUB~GOAL (GOAL ACTOR (*VAR* HELPER)
GOAL (ACT ACTOR (*VAR* HELPER)})
ASK (*VAR*® ASK)
THE-PLAN (*VAR* THE-FPLAN)
HELPER (*VAR* HELPER)
THE-ACTOR ({*VAR* THE-ACTOR)
THE~OBJ (*VAR* THE-OBJ))

The generalized event for the macro schema is created next.
248

Creating macro schama.
(DELTA-AGENCY GORL (GOAL ACTOR (*ROLE* THE-ACTOR)
' GOAL (STATE ACTOR (*ROLE* THE-ACTOR)
VALUE (YES)
OBJECT (*ROLE* THER-CBJ)}
PLAN (PLAN ACTOR (*ROLE* THE-ACTOR)
PLAN (*ROLE* ASK))
CUTCOME (GOAL-OUTCOME TYPE (SUCCESS)
ACTOR (*RQLE* THE-ACTOR)
GOAL (STATE ACTOR (*ROLE* THE-ACTOR)
VALUR (YES)
OBJECT (*ROLE* THE-OBJ))}))
OUTCOME (GOAL-OUTCOME TYPE (SUCCESS)
ACTOR (*ROLE* THE-ACTOR)
GOAL (STATE ACTOR (*ROLE* THE-ACTOR)
VALOR (YES)
OBJECT (*ROLE* THE-OBJ)))
SUB-ACT (ACT ACTOR (*ROLE* HELPER))
SUBR-GOAL (GOAL ACTCR (*ROLE* HELPER)
GOAL (ACT ACTOR (*ROLE* HELPER}))
ASK (ACT TYPE (MTRANS)
ACTCR (*ROLE* THE-ACTOR)
TO (*RCLE* HELPER)
OBJECT (ACT ACTOR (*ROLE* HELPER)))
THE-PLAN (PLAN ACTOR (*ROLE* THR-ACTOR)
PLAN (ACT TYPEZ (MTRANS)
ACTOR (*ROLRE* THE-ACTOR)
TO (*ROLE* HELPER)
OBJECT {ACT ACTOR (*ROLE* HRLRPER})))
HELPER (HUMAN NAME (MIKE)
RELATION (IPT TYPE (FAMILY-REL)
STYPR (FATHER)
OF (*ROLE* THE-ACTCOR))
AGE {GROWN-UP)
HAIR (BROWN)
EYES (GREEN})
THE-ACTOR (HUMAN AGE (KID)
HAIR (BLOND)
EYES (BLUE))
TEE-OBJ (P-QBJ))

B.1.1. Revising & schema

Given the above four examples, OCCAM-LITE creates a delta-agency schema. This schema is
the most specific description of the examples which form the delta-agency cluster. Some of the
roles of the schema are much too specific and further examples wiil cause them to be generalized
further.

The program is next presented with cookie-1 in which Karen wants a cookie, so she asks her
sister Lynn to get her one and her goal succeeds. This example conforms to most of the
delta-agency schema, except the halpar is predicted to be the father of the actor.

ey

249

Leoking for most specific schema for <COCKIE-1 GOAL>
(GOAL ACTCR- (HUMAN NAMRE (KAREN)
R |
GOAL (STATE TYPE (POSS-BY)
UNIQUE-ID PCSS-BY.102
ACTOR (HUMAN NAME (KAREN)
)
VALUE (YES)
CBJECT (P-CBJ TYPE (FOOD)
STYPE (COOKIE)
UNIQUE-ID COOKIE.001))
UNIQUE-TIP COOKIE.1l
PLAN (PLAN ACTOR (HUMAN NAME (KAREN)
NP
PLAN (ACT TYPE (MTRANS)
UNIQUE-ID MTRANS.102
ACTOR (HUMAN NAMR (KAREN)
N |
TO (HUMAN NAME (LYNN)
RELATION (IPT TYPE (FAMILY-REL)
STYPR (SISTER)
OF (EUMAN UNIQUE-ID KAREN)})
AGE (KID)
HAIR (BLOND)
EYES (BLOUR)
UNIQUE~ID LY¥N)
OBJECT (ACT TYPE (ATRANS)
ACTOR (HUMAN NAME (LYNN)
R |
OBJECT :2-0BJ TYPE (FOOD)
e aed)
70 (HUMAN HAME (KAREN)
---13)
ONIQUE-ID COOKIE-P.1)
OUTCOME (GOAL-OUTCOME TYPE (SUCCRSS)
ACTOR (HUMAN NAMR (KAREN)
P |
GORL (STATR TYPR (POSS-BY)
e ead)
UNIQUR-ID COOKIE-R.1))

This example conflicts with the delta-agency schema and the schema is deleted. This is one
difference between occaM and 0ccaM-LITE. occaM would revise the schema instead of deleting it.

Celeting schema, incorrect prediction.
(GCAL PLAN (PLAN PLAN (ACT TO (HUMAN NAME (MIKR)
RELATICN (IPT STYPE (FATEER))
AGE (GROWN-UR)
HAIR (BROWN)
EYES (GREEN))
OBJECT (ACT ACTOR (HUMAN NAME (MIKE)
RELATION (IPT STYPE (FATHER))
AGR (GROWN-OP)
HAIR (BROWN)
EYRES (GREEN))}))))

When the delta-agency schema is deleted. its events are re-indexed under the next most general
schema. In this example, play-doh-1, zoo-1 are indexed pizza-1 under the goal schema. The
goal schema s the most specific schema for the new event.

Indexing event <PLAY-DOH-1 GOAL> under schema <GOAL <CD-4422 GOAL>>.
Indexing svent <Z00-1 GOAL> under schema <GOAL <CD-4422 GOAL>>.
Indexing avent <PIZZA-1 GOAL> under schama <GOAL <CD-4422 GOAL>>.
Found most specific schema for event: <COOKIE-1 GOAL>

Event is accountad for by:

(GOAL)

Attempting explanation-based learning for new event.

Atteampting theory driven learning for naew svant.

Attampting similarity-based lsarning for new evant.

Retrieved cluster of similar events.

{<COOKIE-1 GOAL> <PLAY-DOH-1 GOAL> <200-1 GOAL> <PIZ2ZA-1 GOAL>)

250

At this point, the program repeats the process of constructing a new schema and macro-
schema using a cluster of four events instead of three. Rather than repeating all the details, only
the result is shown. The only difference between this version and the previous delta-agency
schema is the helpaer role. The helper can now be any family member rather than an aduit father
named Mike with brown hair and green eyes.

Creating macro schema.
(DELTA-AGENCY GOAL (GOAL ACTOR (*ROLE* THE-ACTOR)
GOAL (STATE ACTOR (*ROLE®* THE-ACTCR)
VALUE (YES)
QBJECT (*ROLE* THE-OBJ))
- PLAN (PLAN ACTCR (*ROLE* THE-ACTOR)
PLAN (*ROLE* ASK))
QUTCOME (GCAL-QUTCOME TYPR (SUCCESS)
ACTOR ("ROLE* THE-ACTOR)
GOAL (STATE ACTOR (*ROLE* THE-ACTOR)
VALUR {YES)
OBJECT (*ROLE* THE-ORJ)))})
QUTCOME (GOAL-OUTCOME TYPE (SUCCESS)
ACTOR (*ROLE* THE~-ACTOR)
GOAL (STATE ACTOR (*ROLE* THR-ACTOR)
VALUR (YES)
OBJECT (*ROLR* THE-ORJ)))
SUB-ACT (ACT ACTCR (*ROLE* HELPEZR))
SUB-GOAL {GOAL ACTOR (*ROLE* HELPER)
GOAL (ACT ACTOR {*ROLE* HELPER)))
ASK (ACT TYPE (MTRANS)
ACTOR (*ROLE* THE-ACTOR)
TO (*ROLE* HRELPER)
OBJECT (ACT ACTOR (*ROLE* HELPER}))
THE-PLAN {PLAN ACTOR (*RCLE* THE-ACTOR)
PLAN (ACT TYPE (MTRANS)
ACTOR (*ROLE* THE-ACTOR)
TO (*ROLR* HRLPER)
OBJECT (ACT ACTOR (*ROLE* HELPER))))
HELPER (HUMAN RELATION (IPT TYPE (FAMILY-REL)
OF (*ROLE* THE-ACTOR)))
THE-ACTOR (HUMAN AGR (KID)
HAIR (BLOND)
EYES (BLURE))
THE-OBJ (P~-OBJ))

B.2. Theory-Driven Leaming Trace

In this section. 2CCAM-LITE is presented with three examples of cups being dropped. To run
this demonstration, ine following command is typed:
(mapc #’ occam-lite *all-tdla%)

The first example is glass-1-a in which a clear glass cup is dropped and the cup breaks.
The representation of glass-1-a is connected by a temporal link (i.e., before) to glass-1-r.
which describes the glass breaking (see the file glass.lisp on page 231).

251

Loocking for most specific schama for <GLASS-1-A ACT>
(ACT TYPE {(PROPEL)
ACTOR (HUMAN NAME (LYKN)
AGE (KID)
HATR (BLOND)
EYES (BLUR)
UNIQUE-ID LYNN)
CBJECT (P-0OBJ TYPE (CUR)
COLOR (CLEAR)
COMPOSITION {GLASS)
ONIQUE-ID GLASS.1l)
TO (P-CBJ TYPE (FLOOR)
LOCATION (RITCHEW))) :
Found most speacific schema for evant: <GLASS-1-A ACT>
Event is accounted for by:
(ACT TYPE (PRCPEL))
Attampting explanation~based learning for naw event.
Attempting theory driven learning for new avent.
Situation matches exceptionless gen rula.
(ACT TYPE (*VAR* ACT-TYPE)
OBJECT (*VAR* OBJECT))
(STATE TYPE (*VAR* STATE-TYPE)
VALUE (*VARY* VALUE)
OBJECT (*VAR* OBJECT))

This example matches the situation in which an action on an object precedes a state change for
the object. The mechanism of this generalization rule i{s instantiated. The generalization rule,
gen-result is the first generalization rule in the file genrules.lisp on page 230. A new schema is
created which states that when a force is applied to a cup. then the cup will brealk,

Instantiating mechaniam.
{ACT TYPE (FROPERL)
CBJECT (P-OBJ TYPE (CUP}))
RESULT
{STATE TYPE (BROKEN)
VALUE (YES)
OBJECT (P-0OBJ TYPE (CUP)))
Instantiating mechanism.
(ACT TYPE (FROPEL)
CBJECT (P-OBJ TYPR (CUP)))
AFTER
(STATE TYPE (BROXEN)
VALUE (YES)
CBJECT (P-OBJ TYPE (CUP}))
Indexing avent <GLASS-1-A ACT> under schema <SCHEMA-7367 <CD-7363 ACT>>.

A rule representation is also created and stored with the schema. This rule could be used as part
of an explanation chain (e.g., to explain how someone who walked on the floor after a cup was
dropped was lacerated).

Craating new RESULT rule
{ACT TYPE (PROPRL)
QBJECT (*VAR* OBJRCT (F-CBJ TYPE (CUP)}))
(STATE TYPE (BROKEN)
VALUE (YRS}
OBJECT (*VAR* OBJRCT))

The schema formed from the previous example is abandoned when the next example 1s
presented. The next example is of a red plastic cup which does not break.

252

Looking for most specific schema for <GLASS-2-A ACT>
(ACT TYPE (PROPEL)
ACTOR (HUMAN NAME (LYNN)
AGER (KID)
HAIR (BLOND)
EYES (BLURE)
UNIQUE-ID LYNN)
CBJECT (P-0BJ TYPE (CUP)
COLCR (RED)
COMPOSITION (PLASTIC)
UNIQUE-ID GLASS.2)
TO (P-0BJ TYPE (FLOOR)
LOCATION (KITCHEN))) .
Delating schema, incorrect prediction.
(STATE TYPE (BROKEN}
VALUE (YES)
OBJECT (P-OBJ TYPE (CUP)))
Indexing eveant <GLASS-1-A ACT> under schema <PROPEL-SCHEMA <CD-4439 ACT>>.

The schema is deleted and the previous example is stored under a propal schema.

Found most specific schema for event: <GLASS-2-A ACT>

Event is accounted for by:

(ACT TYPE {PROPEL))

Attempting explanation-based learning for naw svent.

Attempting theory driven learning for new avent.

Attaxpting similarity-based learning for new event.

Indexing event <GLASS-2-A ACT> under schema <PROPEL-SCHEMA <CD-4439 ACT>>.

OCCAM-LITE cannot apply theory-driven learning because the current example has no following
state change to match a generalization rule. OCCAM-LITE must wait until another positive example
is seen to apply a dispositional generalization rule. The next example, glass-3, describes a red,
glass cup which is dropped and breaks. This situation will match the dispositional generalization
rule gen-result-object-difference.

Looking for most spacific schema for <GLASS-3-A ACT>
(ACT TYPE (PROPEL)
ACTOR (HUMAN MAME (LYNN)
AGE (KID)
HAIR (BLOND)
EYES (BLUE)
UNIQUE-ID LYNN)
OBJECT (P-OBJ TYPR (CUP)
COLOR (RED)
COMPQOSITION (GLASS)
UNIQUE~ID GLASS.3)
TO {(P-0BJ TYPE (FLOOR)
LOCATION (KITCHEN)))
Found most specific schema for event: <GLASS-3-A ACT>
Evant is accounted for by:
(ACT TYFE {FPROPEL))
Attempting explanation-based learning for new event.
Attampting theory driven lsarning for new event.
Situation matches dispositional gen rule.
(ACT TYPR (*VAR* ACT-TYPR}
OBJRCT (*VAR* CRJECT))
{STATE TYPE (*VAR* STATR-TYPE)
VALUR (*VAR* VALUR)
OBJECT (*VAR* OBJECT))
Attributing difference to CBJECT.
(P-0BJ COMPOSITION (GLASS))

This generalization rule states that when actions are perforred on some objects with diﬂ'er_ent
results. and the objects have different features, the differing features of the object are responsible
for the different result.

253

Instantiating mechanism.
{(ACT TYPE (PROPEL)
OBJECT (P-OBJ TYPE (CUP)))
RESULT
(STATE TYPE (BROXEN)
VALUE (YES)
OBJECT (P-OBJ TYPE (CUR}))
Instantiating mechanism.
(ACT TYPE (PROCPEL)
OBJECT (P-OBJ TYPE (CUP)))
AFTER
{STATE TYPE (BROKEN)
VALUE (YES)
OBJECT (P-0BJ TYPE (CUPR)})
Indexing avent <GLASS-3-A ACT> under schema <SCHEMA-T460 <CD-7457 ACT>>.
Indexing event <GLASS-1-A ACT> under schama <SCHEMA-7460 <CD-7457 ACT>>.
Creating new RESULT rule
(ACT TYPE (PROPEL)
OBJECT (*VAR®™ OBJECT (P-OBJ COMPQOSITION (GLASS)
TYPE (CUR))))
{(STATE TYPE (BRCKEN)
VALUE (YES)
CBJECT (*VAR* OBJECT))

The new schema indicates that when a force {s applied to a glass cup. the result will be a
broken cup.)
B.3. Explanation-Based Learning Trace

The trace illustrates the explanation-based learning component. The example input is the CD
representation of Econornic-Sanction-1:

Economic-Sanction-1

In 1983. Australia refused to sell uranium to France, unless France ceased nuclear
testing in the South Pactfic. France paid a higher price to buy uranium from South’
Africa and continued nuclear testing.

To run the example, the following is typed:

(occam-lite sanction-83-1)
The CD representation of this example is from the file sanctions.lisp on page 240.

234

Looking for most specific schema for <SANGTION-83-1 COERCE>
(CCERCE ACTOR (POLITY TYPE (COUNTRY)
NAME (AUSTRALIA)
LANGUAGE (ENGLISH)
LOCATION (SOUTHERN-HEMISPHERE)
GOVERNMENT (DEMOCRACY)
ECONOMIC-HEALTH (STRONG)
CCONTINENT (AUSTRALIA)
EXPORTS (*ROLE* OBJECT)
IMPORTS (OIL))
OBJECT (COMMODITY TYPE (URANIUM))
TARGET (POLITY TYPE (COUNTRY)
NAME (FRANCE)
LANGUAGR (FRENCH)
GOVERNMENT (DEMOCRACY)
ECONOMIC-HEALTH (STRONG)
CONTINENT (EURCPE)
LOCATION (NORTHERN-AEMISPHERE)
IMPORTS {*ROLE* OBJECT)
EXPORTS (COMMODITY TYPER (WINE)))
DEMAND (ACT TYPE (EXPLODE)
ACTOR (*ROLE* TARGET)
CBJECT (WRAPON3S TYPR (NUCLEAR})
LOCATION (SOUTHRERN-HEMISPHERR)
MODE (NRG))
THREAT (ACT TYPER (SELL)
ACTOR (*ROLR* ACTOR)}
OBJRCT (*ROLE* OBJRCT)
TO (*ROLE*™ TARGET)
MODE (NEG))
RESPONSRE (ACT TYPE (SELL)
ACTOR (POLITY TYPR (COUNTRY)
HAME (SOUTE-AFRICA)
LANGUAGE (ENGLISH)
LOCATION (SCUTHERN-HEMISPHERE)
BUSINESS~RELATIONSHEIP (*ROLE* TARGET)
GOVERNMENT (APARTHEID) ’
CONTINENT (AFRICA)
EXPCRTS {*ROLE* OBJECT)
IMPORTS (OIL))
OBJECT (*RCLE* OBJRCT}
PRICE (MONEY DOLIARS (3000000)
VALUR (>MARKET))
TO (*ROLE* TARGET))
RESULT (STATE TYPR (POSSRSS)
ACTOR (*ROLE* TARGRT)
VALUR (YRS)
OBJECT {*ROLE* OBJRCT)))
Found most spacific scheama for event: <SANCTION-83-1 COERCE>
Event is accounted for by:
{(COERCRE)
Attempting axplanaticn-based learning for new avents.

The example is accounted for by the coerce schema. The example is decomposed Lv
matching against the coercion schema and instantiating its sequence of event. The simpie CD
representation of the coercion events indicates that after the threat is made. the target periorms .1
response which results in an outcome. This does not adequately explain the event because it does
not indicate why the particular response was chosen and what the particular outcome will be. The
instantiated sequence of events is displayed in Figure 8-3 on page 118. This sequence of events s
matched against the- generalization rules to produce an abstract explanation. Tr}e third
generalization rule in the file genrules.lisp (see prev-action on page 230) matches this situation
The mechanism of this generalization rule suggest as abstract explanation (see Figure 8-6 on paude
120): refusing to sell the uranium results in some intermediate state which enables Soutr_a alnca to
sell France the uranium at a higher than market rate. The economic rules {illustrated in the tle
rules.lisp on page 239} are used to verify and refine this explanation:

2553

Aattempeing to infer RESULT.
{ACT TYPE (SELL)
ACTOR (POLITY TYPE (COQUNTRY)
NAME (SCUTH-AFRICA)
LANGUAGE (ENGLISH)
LOCATION (SOUTHERN-HEMISPHERE)
BUSINESS-RELATIONSHIP (POLITY NAME (FRANCE)
-}
CONTINENT (AFRICR)
EXPORTS (COMMODITY TYPE (URANIUM))
IMPORTS (OIL))
CRJEZCT (COMMODITY TYPE (URANIUM})
PRICE (MONEY DOLLARS (3000000)
VALUE (>MARKET))
TO (POLITY NAME (FRANCE)
U B
(STATE TYPE (POSSESS)
ACTOR (POLITY WAMR (FRANCE)
LANGUAGE (FRENCH)
GOVERNMENT (DEMOCRACY)
ECONOMIC-HEALTH (STRONG)
CONTINENT (EURCPE)
LOCATICN (NCRTHERN-HEMISPHERE)
IMPORTS (COMMODITY TYPE (URANIUM))
EXPCORTS (COMMODITY TYPE (WINE)))
VALUE (YES)
OBJECT (COMMODITY TYPE (URANIUM)))
Established by inference rule.
(ACT TYPE (SELL)
TS (*VAR* X)
CBJECT (*VAR* Y)
MODE (YES))
(STATE TYPE (POSSESS)
OBJECT ("VAR* Y)
VALUE (YES)
ACTOR {*VAR* X))

This inference rule indicates that France possessing the uranium is a result of South Aftica selling
the uranium to France.

Attempting te infer RESULT.
(ARCT TYPE (SELL)
ACTOR (POLITY TYPE (COUNTRY)
NAME (AUSTRALIR)
LANGUAGE (ENGLISH)
LOCATION (SOUTHERN-HEMISPHERE)
GOVERNMENT (DEMOCRACY)
BECONOMIC-HEALTH (STRONG)
CONTINENT (AUSTRALIA)
EXPORTS (COMMCDITY TYPE (URANIUM))
IMPORTS (OIL})
OBJECT (COMMODITY TYPE (URANIUM)}
TO (POLITY NAME (FRANCRE)
. .3
MODE (NEG))
(*VAR* STATE-1 (STATRE OBJRCY (*VAR* 0BJ)))
Established by inferance rule.
(ACT TYPE (SELL)
ACTOR (POLITY EXPORTS (*VAR* Y))
TO {(*VAR* X (POLITY IMPORTS (*VAR* Y)))
OBJECT (*VAR* Y (COMMODITY))
MCDE (NEG)) ,
(STATE TYPE (DEMAND-INCREASE)
ACTOR (*VAR* X)
VALUE (YES)
OBJECT (*VAR* Y))

Refusing to sell the uranium results in an increased demand for the uranjum.

256

Attempting to infer ENABLES.
(STATE TYPE (DEMAND-INCREASE)
ACTCR (POLITY NAME (FRANCE)
e)
VALOR (YES)
OBJECT (COMMODITY TYPR (URANIUM)})
{ACT TYPE (SELL)
ACTOR (POLITY NAME (SOUTH-AFRICA)
PR |
CBJECT (COMMODITY TYPE (URANIUM))
PRICE (MONEY DOLLARS ({3000000)
VALUE (>MARKET))
TO (POLITY NAME (FRANCE)
S B
Established by infarence rulas.
(STATE TYPE (DEMAND-INCREASE)
VALUE (YES)
ACTOR (*VAR* X (POLITY ECONOMIC-HEALTH (STRONG)))
OBJECT (*VAR* Y))
(ACT TYPR (SELL)
ACTOR (POLITY EXPORTS (*VAR* Y)
BUSINESS-RELATIONSHIP (*VAR® X))
TO (*VAR* X)
OBJECT (*VART* Y)
PRICE (MONEY VALUE (>MARKRT))
MODE (YES))

This rule completes the causal chain. The increased demand for the uranium enables South
Africa to sell the uranium at a higher than market rate. Next, OCCAM-LITE must verify that the
temporal links specified by the generalization rule are also present:

Attempting to infer AFTER.
{ACT TYPE {SELL)
ACTOR (POLITY NAME (SOUTH-AFRICA)
[P |
CBJECT (COMMODITY TYPE (URANIUM))}
PRICE (MONEY DOLLARS (3000000)
VALUE (>MARKRT))
TO (POLITY NAME (FRANCE)
A}
(STATE TYPE (POSSESS)
ACTOR (POLITY NAME (FRANCX)
-)

VALUE (YES)

OBJECT (COMMCDITY TYPE (URANIUM)))
Established by following link.
Attempting to infer AFTER.

{ACT TYPE (SELL)
ACTOR (POLITY MAME (AUSTRALIA)
PP |
OBJECT (COMMODITY TYPE (URANIUM))
TQ (POLITY NAMR (FRANCE)
cen ees)
MODR (NEG))
(ACT TYPE (SELL)
ACTOR (POLITY MAME (SOUTH-AFRICA)
.
CBJECT (COMMODITY TYPR (URANIUM))
PRICE (MONEY DOLLARS (3000000)
VALUR (>MARKET))
TO (POLITY NAME (FRANCE)
S
Established by following link.

Now the example can be generalized by retaining only those features marked during matching
the rules in the explanation chain,

237

Indexing event <SANCTION-83-1 COERCE> under schema <SCHEMA-T7775 <CD-7774 CQERCE>>.
Creating generalization with ERL
(COERCE ACTOR {POLITY EXPORTS (*ROLE* CBJECT))
CBJECT {(COMMODITY)
TARGET (POLITY ECONOMIC-HEARLTH {(S5TRONG)
IMPORTS (*ROLE* CBJECT))
THREAT (ACT TYPER (SELL)
ACTOR (*ROLE* ACTOR)
OBJECT {(*RCLE* OBJECT)
TCO (*ROLE* TARGET)
MODE (NEG})
RESPONSE (ACT TYPE (SELL)
ACTCR (POLITY BUSINESS-RELATIONSHIP (*ROLE* TARGET)
EXPORTS (*ROLE* OBJECT))
OBJECT (*ROLE* OBJECT)
PRICE (MONEY VALUE (>MARKET))
TO (*ROLE* TARGET))
RESULT (STATE TYPE (POSSESS)
ACTOR (*ROLE* TARGET)
VALUE (YERS)
QBJECT (*RCLE* OBJECT)))

This generalization indicates that if a country that exports a commodity tries to coerce a
wealthy country which itmports the commodity by refusing to sell them the commodity, then a
response might be to buy the commodity a2~ 1 higher price from another country.

Finally. the sequence of events is c.reated. This saves the relationships found in the
explanation, so that the next tume a similar event is seen, the explanation can be found by
recognition and instantiation rather than by chaining.

Formed event <CD-7708 (*VAR* RESULT)> with links

<<CD~7708 (*VAR* RESULT)> RESULTED-FROM <CD-7721 (*VAR* RESPONSE)>>
<<CD~7708 (*VAR* RESULT)> BEFORR <CD-7721 (*VAR* RESPCNSE)>>

(*VAR* RESULT)

Formed event <CD-7721 (*VAR* RESPONSE)> with links

<<CD=7721 (*VAR* RESPONSE)> ENABLED-BY <CD-7757 STATE>>
<<CD=7721 (*VAR* RESPONSE)> RESULT <CD-7708 (*VAR* RESULT)>>
<<C0-7721 (*VAR* RESPONSE)> AFTER <CD-7708 (*VAR*® RESULT)>>
<<CD=-7721 (*VAR* RESPONSRE)> BEFORE <CD-7724 (*VAR* THREAT)>>
(*VAR*® RESPONSE)

Formed event <CD-7757 STATR> with linksa
<<CD-7757 STATE> EMNABLES <CD-7721 (*VAR* RESPONSE)}>>
<<CD-7757 STATE> RESULTED-FROM <CD-7724 (*VAR* THREAT)>>
(STATE TYPE (DEMAND-INCREASE)

ACTOR (*VAR* TARGET)

VALUE (YES)

OBJECT (*VAR* COBJRCT))

Formad event <CD-7724 (*VAR* THREAT)> with links

<<CD-7724 (*VAR* THREAT)> RESULT <CD-7757 STATE>>

<<CD=T7724 (*VAR* THREAT)> AFTER <CD-7721 (*VAR* RESPONSE)>>
<<CD-7724 (*VAR* THREAT)> REALIZES <CD-7754 PLAN>>

{*VAR* THREAT)

Formad event <CD-7754 PLAN> with links

<<CD=-7754 PLAN> REALIZRD-BY <CD-7724 (*VAR® THREAT)>>
<<CD=-7754 PLAN> INTENDS <CD-7753 GOAL>>

(PLAN ACTOR {*VARY ACTOR))

Formad avent <CD-7753 GOAL> with links
<<CD-7753 GOAL> INTENDED-BY <CD-7754 PLAN>>
(GCAL ACTOR (*VAR* ACTCR)

GOAL ({*VAR®™ DEMAND)) o

Notice that in the explanation saved with the sanction schema. an intermediate state. the
increased demand for the object by the target is saved. In addition, the fact that this state enables
the response to occur is also represented.

258

Appendix C
Prolog Occam

This appendix contains the source code listing of a simple version of occaM implemented in
Prolog. There are many differences between this version and 0CCAM or even OCCAM-LITE. However.
the top-level control is similar:

1. When a new example is encountered. try to recognize an explanation. In occam, this
consists of finding the most specific schema in memory that accounts for the new
event. In occaM_PROLOG, this consists of finding a causal rule which in one step
connects a cause and effect.

2. If the above step fails, try to construct an explanation by chaining together existing
knowledge. Generalize the explanation and create a new schema (or rule] which
recognizes when the explanation applies. OCCAM_PROLOG useés a generalization
algorithm which was dertved from PROLOG-EBG {Kedar-Cabelll, 1987).

3. explanation-based leaming fails, then empirical techniques are tried.
PROLOG_OCCAM uses a variation of Bruner's wholist method (Bruner et al.
1956} which incrementally generalizes a rule by removing those features which differ
between the present definition and a incorrectly classified positive example.
PROLOG_OCCAM'S empirical generalization step also requires that those sub-
components which were identical in the training example are identical in the rule
definition.

The differences between occaMm and PROLOG_occaM include:

¢ PROLOG _OCCAM does not create a hierarchy to represent its causal knowledge. It relies
on Prolog's indexing scheme and unification to select the appropriate rule. This
results in a linear search through all causal rules to make an inference.

¢ PROLOG_OCCAM does not use the taxonomy of causal and intentional links. Instead. it
uses only one link, cause.

« PROLOG_OCCAM has an extremely simple clustering algorithm. It groups together all
events that have the same type of outcome and assumes that there is onlv one
conjunctive class of actions for each type of outcome. The type of an outcome is
explicitly present in the input.

« The empirical component of PROLOG_0cCAM does not deal with negative examples.
¢ PROLOG_OCCAM does not create macro-schemata.

 PROLOG_OCCAM does not deal with notse in the data or relationships that are "usually”
true.

e Rules and training examples have the same fixed syntax. In ocCam, the order of the
roles in a CD structure is not fixed {lLe.. it uses a role and role filler representation}.
In PROLOG_OCCAM, the position of a role is important. This allows PROLOG_OCCAM 10
take advantage of Prolog's efficient unification algorithm.

e 0ccam has an interpreter for theory-driven learning. The generaiization rules serves

239

as data for this interpreter. In PROLOG-OccaM, there are only two patterns lor inducing
causal relationships. These patterns are built in to the learning algorithm.

In spite of its lmitations. PROLOG_OCCAM serves to illustrate the the central point of this
dissertation: knowledge-intensive learning techniques when applicable are preferable to data-
intensive techniques. Data-intensive learning techniques can provide the necessary background
knowledge which increases the ability of knowledge-intensive techniques to exploit interactions
between existing knowledge structures.

Prolog tends to be more concise than lisp. However. the major reason that PROLOG_OCCAM is
so much shorter than 0CCAM_LITE is that has fewer capabilities. In addition. only those capabilities
which are simple to implement in Prolog were implemented. These capablilities take advantage of
Prolog's built-in procedures for backward chaining, depth-first search with chronological
backtracking. pattern-matching and database indexing. In the lisp version. I had to implement
routines to perform these tasks. In many cases, the capability that I implemented are superior to
Prolog's built-in routines because my lisp implementation was designed for my specific goals. For
example, occaM indexes Its rules in a hierarchy of schemata. In effect, there {s a discrimination
net for finding the most specific rule. Searching a discrimination net is typically logarithmic in the
number of rules. With the representation [have chosen for rules, most prologs will perform a
linear search to find a causal rule. Of course, one could implement a hierarchical memory of
schemata in prolog. The most important contributfons of this dissertation are the description of a
learning process. This process does not depend upon a particular language or computer.

C.1. Code Listing of PROLOG_OCCAM

PROLOG_OCCAM runs under Quintus Prolog Release 2.0. With the exception of format and
listing which are used to print trace output, PROLOG_CCCAM makes use of constructs which are
found in almost all implementations of Prolog. It has also been run under SICStus Prolog. The
top-level predicate is PROLOG_OCCAM.

%%% the causs predicate “cause(X,¥Y)" indicates that X cauyses Y
%%% cause is declared dynamic because prolog_occam dynamically
*%% creates new "causa" structures. Soma Prolog’'s do not require
$%% or understand this daeclaration.

:-dynamic cause/2.

260

¥%% prolog_occam has the sama general top-level control as occam

¥%% 1, It attemptas to explain why Y coccurred after X by

*%% geeing if thaeare it is already known that X cause Y

¥%% 2. It tries EBL (via chain_explanation) by seeing if

3% X causes ¥ can be dearived by chaining togethar sxisting causal knowledge,
t%% 3. Empirical methods are triad.

%% prolog_occam contains two simple patterns for inducing new causal ruleas.

proleg_occam{aftear(X,Y), K cause (X, Y)): -
cause (X, Y), .
%3 already explained in ona stap
prolog_occam(after{X, Y), cause (NewX, NawY¥)): -
chain_explanation{cause(X,Y), K cause(NewX, NewY)}, ',
assart (cause (NawX, NawY)) ,
dkaxplanation is chained and generalized
¥%The next two clavae irplement a causal pattern which atates
¥sthat i1f an action on an object preceds a atate change for the object
s¥then the action causes the state change.
3¥Note that the variable "Q" appears in both the cause and the sffact
prolog_occam(after (act (AL . A.Q0.D),state(T.0)), V):-
cause (act {(Oldht,0ldA, 01ld0,01dD) , state(T,01d0)), ',
thexisting causal rule is retrzieved.
retract (cause (act (OldAt, OldA,L01d0, 0ldD), satate (T, 01d40))),
%%the rule must be too specific, so it is deletesd and generalized
find common (cause{act (At A, 0,D), state(T,0)),
cause (act (OldAat, O1dA,01d0,01dD) , state (T,01d0))},
v, (0. .
%%a new rule is creatad by retaining common featurss between
k%the old rule and tha new sxample.
assart (V).

prolog_cccam(after{act (At ,A,0,D), state(T,0)), V) :-
1

t¥this is the first instance of this state
%380 a new rule is created for just this case
find_common (cause{act (At A, 0, D), state(T.0)),
cause (act (At A, 0,.D), stata(T,0)),
v. 1. 0.
%% hera find common is called to changa ids to variables
asaart (V) .
*3The last two clausas implement a second causal pattern
¥4if an atate-change pracedes an affect, then the state changes
thcaused the affaect.
prolog_occam(attor(ltat.(T.O),ltf.ct(x.Y)).V):-
cause(state (T, 01d0O}, affeact (CldX, 0ldY}), !,
retract (cause (stata(T,01d0), affact (0ldX, Q1dY})),
find common{cause (state (T, 0),affect (X, Y)),
cause (state (T, 0140}, affact (QLldX, C14Y)}),
v, 11,).
asseart (V).
proeleog occam(after(state(T,Q), affect(X.Y)) V) -
!
tindqcommpn(causc(sgat.(T,O),a!!lct(x,Y)),
cause (stata(T,0),affact (X, ¥)},
v. 01, -
assert (V).

261

$:+find_common (CD1,CD2, GanCD, InBindinge, Cutbindinga)
¥3find_common substitutes variables for all features which differ
$3between two structurss. In addition, it ensures that all "ids"
¥%which are the same are replaced by the same variablae.
find common(X,Y.X,B,B):-atom(X), X=aY, !
%X and Y are identical, sc X is retained
find__common (1d({X),1d4(¥),14(2).I,I):~
find var(X,Y,2.I),!.
$The variabla for X and ¥ is found in I and used
find_common (1d(X), td (¥}, 4d(Z). I, [v(X, ¥, 2Z) | I]):-'.
¥since the variable was not found, a new one is created and added to I
find common(X,¥,2,I,0):-
nonvar (X) , nenvar (Y},
funector (X, F,A),
funetozr(Y,F,A),
%X and Y are two structures with identical predicatea and arity
%s0 find common is recursively called on the azguments
'

.

functer(Z,F, A},
find common(A,.X,Y,2,I,0).
find_commen(_, _._,I,I).
$when all else fails, the feature is dropped by substituting a variable

%%find common (ArgumantNQ, CDLl, CD2, GenCD, InBindings, Cutbindings) - iterates down
%%argumant atructure, calling find common on argqumants.
find_common(o,_,_,_,I,x) HE I
find_common(N.X,¥.2,1,0} :-

arg (N, X.Xn),

arg(N,. Y, Yn),

arg (N, 2,2Zn),

Nl ia N - 1,

find common (Xn,¥n,Zn,I,I0),

find common(Nl,X,¥,Z,I10,0).

$%find var(Idl, Id2, IdVar,Varliat)- looks up a variable for
t*%the pair Idl, Id2 in Varlist.

find var(_, _._,[1):-!, fail.

find var(A.B,V, [v(A1,B1,V)|_}):~Al=mA, Bla=B, !,

find var(A,B,V, [_IR]):~find_var(A,B,V.R).

%%Chain explanation{cause(Cause Effect),GensralCause)- determines if a causal
$%chain between Cause and Effect can ke constructed. If it can,
¥*sthe most general conditions under which that chain can be constructed
Y%are reacorded in General causs.
chain_sxplanation (cause{Cause,Rffact), cause (GenCause, GanEffect)) :-
causes (GanCause, GanRffact),
copy (cause (GenCause, CenEffect}, cause (Cause, Effact)).
¥%The sacond clause conatructs chains by tranaitively finding a cause.
chain_explanation{cause(Start,End), cause (GansStart, GenEnd)):~
cause (Start, Mid),
chain_explanation(causs(Start,K Mid), cause (GanStart, GanMid)),
chain_axplanation (cauae (Mid, Bnd), cause (GanMid, GanEnd)) .

$3copy creatas a new veraion of O, by uaing a Prolog trick
$%of asserting and retracting 0. This gets "naw” instances
$3of the variables in O.

copy (O.N) :- aasart (’$marker’ (0)),retract(’$markex’ (NO)),h NOwN.

262

*i¥stest runs prolog_occam on several examplas.
test: -

cd{(gl,Gl},

cd (g2,82),

cd {g3.G3),

cd (bl,Bl),

cd (b2, B2},

cd{el ELl),

retractall (cause{_. _}).

srainitialize the database

proleg _occam(Gl,).

foermat {' ~n Running prolog occam on gl’, (]),

listing(causae),

prolog_occam(G2,),

format (* ~n Running proleg_occam on g2'.(]).

listing (cause).

prolog_occcam(G3,),

format (' ~n Running preleg occam on g3’, [I).

listing{cause) .
$the above thres examples are about cbjacts breaking
proleg _occam(Bl,), prolog_occam(B2,),

format {’ ~n Running prelog_cccam on bl and b2’, (]},

listing{cause),

%these two examples are about people getting angry when objects break
prolog_occcam(El, },

format (‘' ~n Running proleg_occam on al’, []),

listing{causa) .)

‘34The final example is of a person getting angry when a glaas cbject
wis struck.

C.2. Data for PROLOG OCCAM

This section presents the training examples used to test OCCAM_PROLOG. There are three sets
of training examples.

e g1, g2 and g3: examples of glass objects breaking.
« bl and b2: examples of people getting angry when objects they own are broken.
e @l: an example of a person getting angry when a cat knocks over her vase.

$%%gl- Mike drops & clear glass cup and it breaks.
cd(qgl,
after{act (propel, actor(human, name(mike),
age {adult),
hair{brown),
id(bum 001)),
object (cup, colori{clear),
composition(glass),
owner {human, name (mike),
age (adult),
hair (brewn),
id (hum_001)),
- id(glases_001)),
to{floor)},
state{broken, object(cup, celor{clear),
composition(glaas),
ownar {human, name (mike),
age (adult),
hair(brewn),
id{hum_001}),
id({glass_COL)}})).

263

¥3g2- Jill knocks over a red, glass vase and it breaks.
cd (g2,
after(act (propel, actor(cat, name{jill),
age (kittaen),
hair(tan),
id{cat_002)),
object (vasa, color(red),
composition (glass),
owner (human, name{chris),
age {adult),
halr (brown),
id(hum 002)},
id(glass_002)),
to({tabla)),
state (broken, object (vase, color(red),
composition({glass),
ownar {human, name (chzris},
age (adult),
hairx(brown),
id{bum_002)),
id(glall_002))))).

¥%g3- Mike drops the cat’s bowl and it breaks.
cd (g3,
after (act (propel, actor(human, name{mike),
age (adult),
hair{brown),
id(hum_001)),
object (bowl, color{clear},
compogition (glass),
owner (cat, nama(3jill),
age{kitten),
hair(tan),
id(cat_002)),
id({glass_003)),
to({flaor}),
state (broken, object(bowl, color(claar),
composition{glasa),
owner (cat, name(3jill),
age (kitten),
hair(tan},
id({cat_002)),
1d(glasa_003)})}).

¥bl- Chris gets angry after hexr watch breaks

ad (b1,
after(state(broken, object (watch, color(white),
composition(plastic),
owner (human, name (chria)},
age (adult),

hair(brown),
id{bum 002)),
id(watch_001})),
affect (angry, actoer(buman, name{chris),
age {adult),
hair {brown),
id{hum_002))))).

$b2- Lynn gets angry after her pancil breaaks.

cd (b2,
after (stata{broken, cbject (pancil, color{yallow),
. compoaition {wood),
owner {human, name{lynn),
age(kid),
hair(blond),

id(bum 003)),
id (pencil_001})),
affact (angry, actor (human, name(lynn),
age (kid),
hair{blend),
id(bum _002)})}).

264

“*el- Chris gets angry after Jill knocks her vase ovar.

cdiel,
after(act{propel, actor({cat, nams{jill)
age (kitten),
hair(tan),
id(cat_002)),

object (vase, color(red),
composition{glanss),
ownar (human, name (chrias)

age{adultr},
hailr(brown),
id(hum 002)),
id(glass_002}),
to(table)).
affect (angry, actor{human, name(chris),

age (adult),
hair(brown},
id{hum 002))))}.

C.3. A Trace of PROLOG_OCCAM

This section presents an annotated trace of PROLOG_occaM. To run PROLOG_OCCAM on this
data, the command test 1s typed to Prolog. The ocutput from Prolog is edited slightly to make it
easier to read. The only changes are the formatting of the rules learned by PROLOG_OCCAaM by
adding spaces to align columns. First, PROLOG_OCCAM is presented with examples of glass objects
breaking. The first example. g1 is the CD representation of "Mike drops a clear glass cup and it
breaks.".

Running proleg_occcam on gl

cause (act (propel, actor (human, name (mike), age {adult) halr(brown), id(iA})),
object (cup, coler{clear), composition{glass),
ownet (human, name (mike) , age {adult) hair(brown),id(A)).
1d(B)},
to{floor)),
state (broken, cbjact {cup, color (clear), composition{glass),
owner (human, name (mike), age (adult) hair(brown), id(A)),
14(8)))) -

From this example, PROLOG_OCCAM creates a rule that indicates that when an adult named
Mike with brown hair drops a clear glass cup that he owns, it will cause the cup to break. This
rule is created by the empirical component. because there is no existing causal knowledge which
would explain gl. Note that the actor and the owner of the cup must be identical’’. This is
indicated by the fact that their id role must unify {i.e.. they must have the same id.). The next
example, g2 describes Jill knocking over and breaking a red, glass vase. This forces PROLOG_0CCAM
to generalize the previous rule.

Running prolog_occam on g2

cause (act (propel, actor (A, nama (B) , age (C) , halr (D), 1d(E)),
objact (F,color(G), composition(glass),
owner (human, nama (H) , age (adult), hair(brown}, id(I)),
14(3)).
te (X)),
state (broken, objact (L, color (M), composition(glass),
owner (human, nama (N) , age (adult) bair(brown},id(I)),

1d{31) .

The rule now indicates that when a glass object owned by an adult with brown hair is struck.
then the object will break. A variable can serve two purposes in Prolog. First, a singleton variable
{i.e.. one that appears only once in a Prolog clause.) indicates that the rule a"pplies no what ‘what.
constant will replace the variable In an example. This implements the dropping condition
operator for generalization. ' In the above rule, the singleton variables are A, B,C, D, E. F, G H. K M

77In Prolog, variables are capitalized.
265

and N. Second. a variable which is repeated more than once indicates that in an example the same
object must occur in the corresponding position for each instance of the variable. In the above
rule. I and J occur more than once. These variables are inserted by find_common because in g1
and g2, the same object is both the object which is struck and the object that breaks.

A third example. forces PROLOG_OCCAM to remove the constraint that the object which breaks
be owned by an adult with brown hair. This example is g3 which describes Mike dropping and
breaking the cat's bowl.

Running preolog cccam on g3

causa (act (propel, actor (A, nama (B), age (C) ,hair (D}, 14(B)),
object (F,color(G), compoaition{glass),
ownar (H, name (I), age {J) ,hair (K}, id4(L)},
id(M)).
te (M),
stats (broken, objact (O, color (P), composition{glass),
owner (Q, nama (R}, age{S) hair(T), 1d(L)),
id(M})).

The final version of the rule is also created by empirical means. The rule now indicates that
applying a force to a glass object causes the object to break.

PROLOG_OCCAM is next presented with two examples of a person getting angry after an object

owned by the person breaks. Using the empirical learning component, it creates a new causal
rule:

Running prolog_occam on bl and b2

cause (state (broken, ocbjact (A, color(B), composition(C),
owner (human, name (D} , age (E) , halz (F) . 1d(G)},
id(®))),
affact (angry, actor (human, nane (I), age(J) hair(K),1d4{(G))}).

This rule indicates that when an object breaks, it causes the owner of the object to become
angry. Note that the id of the owner and actor must be the same.

Now that prolog_occam has sufficient background knowledge, it can utilize its knowledge-
intensive learning method to exploit the interaction between its existing causal rules.
prolog_occan is presented with an example which can be explained by chaining together the two
previous rules. This example, el, describes an event in which Chris gets angry when the cat
knocks over.her vase.

Running prolog occam on el

cause (act (propel, actor (A, name (B), age (C) . halr (D}, 1d(R)),
object (F, celor (G) , composition (glass),
owner (H, nama (I), age(J) haiz (K}, 1d({L)),
id(my) .,
to(¥)),
affect (angry, actor (human, name (0) , age (P) , halzr(Q),id(L)))).

Since this new causal rule is created by explanation-based learning. it only requires one
example to analytically dertve the conditions under which the causal relationship will hold. The
rule states that when a force is applied to a glass object, then the owner of the object will get
angry. The constraint that object be made of glass Is retained because this is a precondition of the
rule which indicates that the object will break. The condition that the person who gets angry be
the owner of the object is required by the rule that indicates that the owner of an object that
breaks will get angry.

PROLOG_OCCAM is quite simple and has many limitations. However, I hope it will be takeq n
the spirit in which it was intended: as a simple illustration of the benefits of utilizing emp_mcal
techniques to acquire the background knowledge for empirical learning. Even in this simple
example, the benefits are apparent. because PROLOG_OCCAM requires three exarnplgg to learn
empirically that that glass objects break when struck, two examples to learn empirically Lhat’
people get angry when their possessions are broken, but only one example to learn analytically
that people get angry when a possession made 03: ass is struck.

Appendix D
OCCAM's Generalization Rules

This appendix contains the listing of all of occaM's generalization rules. They are divided into
two categories. The first section lists the rules used to infer physical causes and the second
section describes those which are used to infer goals In social situations. The syntax of these rules
is slightly different than that presented in the text and in occaMm-LITE. The format of these
generalization rules is:

(def-gen-rule <nama> ;;the name of the rule
<class> ;;a token indicating the claas
;:the class is used for diapositional rules
<focus> ;;the ilink to ba lesarned
<lha> ;:the antecedent pattern
<link> ;;the link batwesn antacedent and consaquent
<rhs> ;:the conssgquent pattermn
<axcaptions> ;rindicates dispositional or historical rule
<machanism> ;;the causal mechanism to ba postulated

)

The causal generalization rules are much more complete than the social rules (in the sense of
covering what people seem to know about general theories of causality).

D.1. Physical Causality

;if an action on an object precedes a state changs for the object,
;then the action results in the state change.
(def-gen-rule
gen-result
1state-action
rasult
{*var* state-1l (atate type (*var* ptype)
valua {*var* value)
object (*var® object)))
bafore
(*var* act-l (act type (T*var* atype)
objact (*var* object)})
{3
{({(*var* act-1) rasult (*var* state-1)})
((*var* act-l) after (*var* state-1))}
)

267

7if an action on a destination precedes a state change for tha dastination,
‘then tha action results in the state change.
(def-gen-rule

gan-result-dest

:stata~-action

result

(*var* astate-1 (stats type (*var* ptype)
valua {(*var* value)

objeckt {(*var* to)))
bafore

(*var* act-1 (act type ("var* atypae)

object (*var* objact)
to (*var* to)))

0

{({*var* act-1l) result {(*var* state-1)}

{((*var* act-1l) after (*var* atate-1)))
)

;if an action on a compeonent of an object precedes a stata change for the obiject,
then the action results in the state change.
{def-gen-rula

gen-rasult-componant

:state-action

result

(*var* state-1l (state type (*var* ptype)
value (*var® valus)

object (*var* object)))
bafore

(*var* act-1l {act type (*var® atypae) V-
objeact (component typa (*var® ct)
of {*var* objsct)}))
0

{{{*var* act-l) result (*var* state-1l))

{{(*var* act-~-l) after (*var* state-1)))
)

;;object dispositional version of gen-rssult
{def-gan~-ruls

gen-result-different-ocbject-features

tetate-action-exception-cblect
result

(*var* state-l (state typa {(*wvar* ptype)

valus (*var* value)

object (*var* object)))
before

(*var* act-l (act typa (*var* atype)

cbject (*vax* obljact}))
(:slot object)

({{*var¥ act~-l) result (*var* state-l})
{(*vax* act-1l) after (*var* state-l)))
)

;;ebject dispositional verasion of gen-result-component
(def-gen-rule

gen-rasult-different-cbiact-features-component
:state-action-exception-obiect
result
{*var* state-1 (state type (*var* ptype)
value {*var* valuas)

ochject (*var® object)))
befors

{*var* act-1l {act type (*var® atype)
object (component type (¥var* ct)

of (*var* cbiject))))
(:slot obiect of)

(({*vazr* act-1l) result (tvar* atate-l))

{(*var* act-1l) after (*var* state-l))})
} .

268

;/destination dispositional version of gen-result-dest
(def-gen-rule '
gen-rasult-differant-dest-featuras
:state-action-exception-to
rasult
(*var* state-l (state typea (*var* ptype)
value (*var* value)
object (*var* to)))}
befora
(*var* act-1 (act type (*var* atype)
object (*var* object)
te (*var* to)))
(:slot to)
(((*var* act-1l) result (*var* state-l))
{((*var* act-1l) after (*var* stata-1)))
)

;ractor dispositional version of gen-result-no-exception
({def-gen-rale
gen-rasult-cbject-differeant-features-actor
:state-action-excepticon-actor
result
(*var* stata-1 (state type (*var® ptype)
value (*vax* valua)
obiect (*var* object)))
baform
(*var* act-l (act type (*var" atype)
actor (*var* actor)
object (*var* object)))
{:slot actor)
({{(*var* act-1) result (*var* state-1))
{ {(*var* act-l1) after {*var* astata-l)))
)

;;actor dispositional varsion of gean-result-component
{def-gen-rule
gen-result-cbhbiesct-differant-featuras-actor-conponant
:state-action-excepticon-actor
result
(*var* state-l (state type {(*var* ptype)
value (*var* value)
object (*var* object)))
bafore
{*var® act-1 (act type (*var* atype)
actor (*var* actor)
objact (component type (*var* ct)
of (*var* object))))
(:slot actor)
{{{*var® act-1l) result (*var®* state-l))
((*var* act-1l) after (*var* state-l)})
)

;:actor dispositional version of gen-result-dest
(def-gen-rule
gen-result-dest-differsnt-features-actor
:state-action~exception-actor
result
(*var* state~l (state type (*var* ptype)
value ("var* value)
object (*var® to)))
bafors
{*var* act-1 {act type (*var* atype)
actor (*var* actor)
object (*var* object)}
to (®*var* to)))
(:slot actor)
({({*var* act-1l) result (*var* state-1l))
{{(*var* act-1) after (*var* atate-1)))}
}

269

s1if an initial action on a dest is always present when a subsequent
;action precedes a state change for the dasc, then
;the initial action results in a state which enables
/the subseaquent action to result in the state change.
(daf-gen-rule prev-action-dest
:statea-action~state-~action
result (*var* state-2 (state type (*var* ptype)
value (*var* value)
cbject (*var* to)))
bafors
{*var* act-2 (act type (*var* atype)
abject (*var* object)
toe {*var* to})}
{:link before (*var* act-l {act type (*var* atype-l)
from (*var® to)
object (*var* object)})))

{(*var* act-2) result (*var~® stata-2})
({*var* act-1l) raesult (*var* state-~l (atate object (*var® to))))
{((*var* state-1l) enables (*var* act-2))
{{*var* act~2) after ("var* state-2)}
({*var* act-l) after (*var* act-2))

)
)
;if an initilal action on an cbjact is always presant when a subsequant
Jaction precedes a state change for the object, then
;the initial action results in a state which snables
;the subsequent action to result in the state change.
(daf-gan-rule prev-action
iatate-action-stata-action
result {*var* state-2 (state type (*var* ptype)
valua (*var®* valua)
cbhisct (*var* object)))
before
(*var* act-2 (act type {(*var* atype)
objact (*var* obiact)))

(:link before (*var* act-1 (act type (*var* atype-l)
objact (*var* cbject)}))

{
{{*var®* act-2) result (*var* state-2))
{(*var* act-1l) result {*var* astata-l (state cbject ("var* oblact})))
{{*var* state-l) enables (*var* act-2)}
((*var* act=2) after (*var* state-2})
((*var* act~l) after (*var* act-2))
)
)

D.2. Social Causality

270

c:f a goal te perform an action is blocked by a state

;than the cpposite stata is an enabling ceondition for the action
(daf-gen-rule goal-thwazrt

:goal-thwart
blocked-by
(*var* gstate-l (state type (*var® ptype)
value (no)
actor (*var* actor)

object (*var* object))) i
blocks

{goal acter (*var* actor)
goal (*var* act-1 {act type {"var*® atype)
actor (*var* actor)

object (*var* object))))
()

{
{ (*var® act-1 {(act type (*"var® atype)
aator (¥*var®* actor)

oblact (*var* obiject}))
anabled-by

(state type (*var* ptype)
value (yes)
actor (*var* actor)

object (*var* obijact)))
))

:goal failure caused by differance in halper
(daf-gen-rule goal-failure
igoal-fail-eaxceptlon
outcome *
(*var* cutcoma (goal-outcoma typa (*var* q)
actor (*var* actor)
goal (*var* goal-state (state obijact (*var* o)

value (*var* v)1)))
outcoma=-of

(*var* goal (gocal plan (*var* plan (plan plan
{*var* act
(act type (*var* mtype)
object {act actor (*var* h))
to {(*var* h)
actor (*var* actor)
1)
actor (*var* actor)))
goal
(state object (*vax* o)
value (*var* v)
actor {*var* actor))
actor
(*var* actor)))
{:slot plan plan te)
{ ((*var* outcoms) outcome-of (*var®* goal))
{(*var* goal) intended-by (*var* plan))
{(*var* plan) realized-by (*var®* act))
({(*var* act} motivates (goal goal (act actor {(*var* h))
actor (*var* h})
(*var®* gq) (success))
({*var* goal) achieved-by (act actor (*var* h))
(*vax* g) (succeass))
)
H

271

;:simple goal-plan analysis

/a goal is achieved by an evantl which comas after svent? than mayba

;event2 motivates the goal

{def-gean-rule goal-outcome

:goal-outcome
ocutcoma (*var* outcome
(goal-outcome type {(*var* gq)
goal {(*var* goal-state (stata value (*var* v)

type (*var* stypa)
object (*var* actor)))))

cutcoma-of
{(*var* goal (geal goal (state value (*var* v) type (tvar* astype)
objact {(*var* acter))
actor (*var* actor)
aftear (*var* final-act (act type {(*var* aact)

actor (*var* aactor)))
motivated-by (act))}

O

{{{act object (*var* actor)
motivates {(goal goal (state valua {*var* v} type (*var* styps)
objact (*var* actor))
actor (*var* actor))}
motivates .
{(goal goal (state value (*var* v) type {*var* stype)
.] objact (*var* actor})
actoer (*var* aactor)))
({*var* goal) outcoms{*var* ocutcomm)))

;goal failure analogque of goal-outcoms
{def-gen-ruls goal-outccma-2
igoal~-fail-axception
cutcoma (*var* cutcoma (goal-cutcoms type (*var* q)
goal (*var* goal-state
{state value (*var* v)

type (*var* stype)
object (*var* actor)))))

ocutcoma-of
{*var* goal (goal goal (stats value (*var* v) typa (*var* stype)
object (*var* actor))
actor (*var* actor)
after (*var* final-act (act type (*var*® aact)
actor (*var* aactor}))
motivated-by (*var* init-act (act)))
)
{:slot after actor)
{
{ (act objact (*wvar* actor)
motivates (goal goal (state value (*var* v) typa (*var* stypse)
objeact (*var* actor))
acter (*var* actor)})
motivates {(goal goal (state valus (*var* v) type (*var?® stype)
object (*var* actor))
actor (*var* aactor))
{*var* g) {success))}
{(*var* goal) outcoms (*var* outcome)))
}

272

;;this rule ia used by many successful sanction incideats
::7it traces the geoal success to the plan which achisves the goal
(def-gean-rule cutcome-10
i outcoma-succass
outcome
(*var* outcoms
(geal-outcoma typa {(success)
outcoma-cf (*var* goal
{goal geoal (*var* goal-astate)))
goal (*var* g (geal geal (*var® goal-state)
actor (*var* a))}
acter (*var* a)))
bafore

{*var* act-1l (act)}

O
{

{{*var* act-1l) achiaves (*var* goal))

({*var* act-l} result (*var* goal-state)}

({*var* goal} intended-by {(*var* plan})

{(*var¥* plan) realized-by {(*var* act-2))

((*var?* act-2) motivates (*var* sub-goal))

((*var* aub-goal) intended-by (*var* plan2 (plan plan (*var* act-1))))}
{(*var* plan2) realized-by (*var* act-1)}

)
)

;:this zule is used by many unsuccessful sanction incidants
;it traces the goal failure to the act that thwartas the goal.
{def-gen-rule outcoma-11
routcoma-~fallure
outcoms
(*var* outcoma
{goal-outcome type (failure)
outcome-of (*var* goal
{(goal goal (*var* gcal-state))})
goal (*var* g (goal goal {*var* goal-statas)
actor (*var* a)))
actor {*var* a}))
bafore
{*var* act-l1 {act})
)

(
({(*var* act-1l) thwarts (*var* goal))
{{*var* goal) intendad-by (*var* plan})
({*var* plan) realized-by (*var" act-2))
{(*var* act-2) motivates (*var* asub-goal})
{{*var* sub-goal) intended-by (*var* plan2 (plan plan (*var* act-1})))
{(*var* planl?) realized-by (*var* act-l)}
)

273

;abstract explanation for goal failure in jailed kidnapper

blamas failure on an act that result enables an act that

;result enables the that that thwarts the goal.

/the sparseness of the social rules Ls apparant hete because

;there should be similar rules with result-enable chain of length 1.
{def-gen-rule unforessan-goal-failurs

:axplain-goal-failure
thwarts

(*var* goal (geoal))

thwartead-by

{*var® act (act))

()

{ ({*var* act) bafore (*var* act-2)}

({*var* act-2) result-enables (*var* act-3))
({*var* act-3) result-enables (*var* act))
((*var* act) thwarts (*var* goal))))

;71f a preparation is performed on an obiject,
;:lock for other schamata which have a goal failurs.

;;Postulate tha preparation aveids the goal
failure).

(def-gen-rule avoid-goal-failure
:explain-goal-failure
the-prep
(*var* act-l1 (act object {*var* object)))
rasult-enables
(*var* act-2 {(act))
{(:exists (*var* g) goal-fallure cbject goal)

{{(*var* act-l}) avoids-goal-failure (*var* g}))
)

274

Appendix E
Listing of Economic Sanction Incidents

E.1. Actual Incidents

1921 League of Nations ws. Yugoslavia
threat: Refuse to import to Yugoslavia
demand: Stop invading Albania

ocutcoma: success

1525 League of Nations vs. Greesce
threat: Rafuse to import to Grasce
demand: Stop invading Bulgaria
outcoma: succaess

1935 League of Nations vs. Italy

threat: Rafuse to sell weapons

damand: Stop invading Abyssinia

outcoma: (failure) Italy congquars Abyssinia,

1348 USSR vs. Yugoslavia

threat: Cut off foreign aid

demand: Stop political independence
outcoma: (failure) US give economic aid

1960 US vs., Cuba

threat: Cut off imports and exports

demand: Changs governmsnt policiaes)
ocoutcome: (failure) Soviats give aid, buy sugar

1961 US wvs. Ceaylon

threat: Cut off foreign aid (17 million)
demand: FPay for expropriated oil companies
outcoma: succass :

-

1961 USSR vs. Albania

threat: Rafuse to sell grain

demand: Stop econcmic ties with China

cutcoma: {(failure) China sells Albania Canadian wheat

1962 US vs. Brazil
threat: Cut off foriegn aid {$174 million)
demand: Pay for expropriated cil companies
outcoma: success '

1965 UK vs. Rhodasia
threat: Cutoff oil & food imports, tobacco exports
demand: Allow black majority to rule
outcome: (failure) Diversify agriculture;
Import oil from South Africa

273

1368 US vs. Peru

threat: Cut off foriegn aid ($30 millionm),

demand: Pay for expropriated oil, sugar, telephone industries
outcoma: succass

1376 US vs. Ethiopia

threat: Stop aid (57 million)

demand: Stop human rights violations
cutcoma: (failure) Soviets provida aid

1980 US vs. USSR

threat: Cut off grain saleas

demand: Withdraw troops from Afghanistan
outcome: (failure) Buy grain from argentina

1981 US wvs. USSR
threat: Not sell equipment for gas pipeline
demand: Lift martial law in poland
cutcoma: (failure) French supply pipeline squipment

1982 South Africa vs. Lasotho

threat: Not allow trains in and out of Lesotho
demand: Expel African National Congress Rafugees
outcome: succeaess :

1983 Australia vs. France

threat: Not sell uranium

demand: Stop nuclear tasts

cutcoma: (failure) France buys from South Africa

E.2. Hypothetical Incidents

Hl US wvas. South Korea

threat: Stop sales of computers
demand: Limit car exports
cutcome: fail

H2 US vs. Izan

threat: Releasa $100 million of Irxanian assets

demand: Pay $25 million for nationalized oil companies
outcoma: succeed

H3 US. vs. Ethiopia

threat: Limit food aid

demand: modernize agricultural production
cutcome: failure

H4: US vs. Israel

threat: Refuse to sall missila guidance technolegy
demand: Withdraw troops from lebanon

outcoma: failure

H5: Us vs. Greace

threat: Cutoff off foreign aid
demand: Allow US bases to expand
cutcoma: failure

E.3. CD Representation

This section contains the complete CD representation of 1962 economic sanction incident
between the US and Brazil. -

276

|zcercea
tha-actor (polity type (country) nama (us)
aconomic-health (strong)
location (northern-hemiaphere)
continent (north-amarica)
imports (*set* {*role* threat-obj)
(commodity type (oil))
{commodity type (electronica)})}
exports (*set* (commodity type (food))
(commodity type (weapons))
(commodity type (electronics))
(commodity type {manufactured-goods))}
political-relationships (*aat*
(cordial with (polity type (country)
name {uk)))
(cordial with (polity type {(country)
nane (france)))
)
the-bena {pelity type (country) nams (us)
economic-health (strong)
location (nerthern-hemisphere)
continent {north-amarica)
imports (*sat®* {(*role* threat-obj)
(commedity type (oil))
(commodity type (electreonics)}))
axports (*set* (commodity type (food))
{commoedity type (weapona))
(commodity type (electronics))
(commodity type {(manufactured-goods)))
political-relationships (*set*
(cordial with {polity type {(country)
name (uk}))
(cordial with (pelity type {(country)
nama (france})
m
the-target (pellity type (country) nama (brazil)
location (southarn-hamlsphere)
language {portuguase)
continent {(south-america)
economic~-health (strong)
strategic-importance (med)
business-relationship (*sat* (polity type (country)
nama {us}}
(polity typa (country)
name {saudia-arabla))
{polity type {country)
name (japan})
}
" imports (*sat® (commodity type (machinary))
(commodity type {(manufactured-good))
(commodity type (pharmaceuticals)))
axports {*set*(commodity type (soybeans))
(commodity type (coffee)))}
)
threat-obj (commeodity type (money)
amount {(dollars numbar (174000000}))
the-threat (act type (atrans)
actor (*role* the-acter)
obiect (*rele* threat-ob))
te (*rolea* the-target)}
mode (no})
tha-alt-ob} (commedity typs (money)
amount (dollars number (174000000)))
the-alternative (act type (atrans)
actor (*role* the-actor)
object (*role* the-alt-obj)
to (*role* the-target)
mode (yes))

277

demand-ob] (commeodity type (money)
amount {dcllars number (7300000)))
the-demand (act type (atrans)
actor (*role? the-target)
from (*role* the-target)
obiect (*roler demand-obj)
to (*rola® the-actor)
action-initiated-by (act type (atrans)
actor (*role* the-target)
to (*role* the-targat)
from (*role* the-actor)
object (company typa (oil}))
mode (yes))
the-ask {act object (¢ond 1f (*role* the-demand)
then (*role* the-alternativae)
elsa {(*role* the-threat))
to {(*role* the-target)
actor (*role* the-actor)
type (mtrans))
plan (plan plan (*role* the-ask)
actor (*role* the-actor))
response-obj (commodity type (monay)
amount (dollars numbar (7300000))}
the-target-response {(act typa (atranas)
actor (*role* the-target)
object (*rocla* responss-obj)
to (*role* the-actor)
mode (yes})
goal-state (state type (poss-by)
value (yes)
actor (*role* the-bane)
object (*role* demand-objy))
cutcoma (goal-outcome type (success)
actor ("role* the-actor)
goal (goal actor (*role* tha-actor)
goal (*"rola* goal-state)))
goal (goal actor (*role* the-actor)
goal (*rocle* goal-atate))
the-actor-reasponse (act type {atrans)
actor (*role® the-actor)
object (*role* tha-alt-obj)
to {("role* tha-targat)
mode (yes))

278

