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ABSTRACT

We propose to define, simulate and evaluate a special-purpose, high-performance processor archi-
tecture for the execution of Flat Concurrent Prolog (FCP). Our objective is to achieve at least two

orders of magnitude performance increase compared to current implementations on general-purpose
processors.

We propose a novel FCP Processor Execution Model that defines the overlapped execution of
Goal Management operations and Goal Reduction. It is derived by partitioning the FCP Sequential
Abstract Machine into concurrently executing units.

We propose a special-purpose FCP Processor organization to support the internal concurrency
defined in the FCP Execution Model. The FCP Processor architecture consists of the following
concurrent functional units or processing elements: Reduction Processor, Tag Processor, Goal
Management Processor, Instruction Processor and Data-Trail Processor. We identify two features
in the execution of FCP: Goal Management and Data Trailing, which are supported at the functional
unit level by the Goal Management Processor and Data-Trail Processor respectively.

The Goal Management Processor performs the efficient management of concurrent FCP goals
reduced by the Reduction Processor. Goals are stored in a special-purpose Goal Cache. The Data-
Trail Processor implements a Data Cache with a novel cache management algorithm called Delayed
Binding which supports shallow backtracking.

We specify the FCP Processor Execution Model and architecture using FCP. The specification
is part of a working simulator. We find the concurrency implicitly defined in FCP suitable for
modeling the execution of concurrent functional units.

We are currently investigating the attainable performance of the FCP Processor architecture.

We propose a novel methodology to evaluate the contribution of each concurrent functional unit in
the FCP Processor.



1 Introduction

Flat Concurrent Prolog (FCP) is a concurrent logic programming language proposed by Shapiro
[25]. It defines non-deterministic goal reduction and data-flow synchronization using annotated
shared variables. An FCP program is written as a set of guarded Horn clauses. The term Flat
denotes that only simple test primitives are allowed in the clause guard.

The design and implementation of FCP using a sequential interpreter is proposed in [Mier]
and a Sequential Abstract Machine, similar to the abstract machine for Prolog define by Warren
[35], is proposed in [15]. Both implementations exhibit performance inferior to implementations
of conventional langnages. Improved results are reported in [18] using target host compilation
techniques. Nevertheless, the current implementations of FCP exhibit inadequate performance. To
achieve performance comparable to conventional languages, a special-purpose environment for the
execution of FCP is required.

Since FCP is a concurrent programming language, one way of improving the performance is to
define a concurrent execution model and distribute the execution of an FCP program on multiple
processors. Parallel Inference Machines for the execution of Concurrent Logic Programming lan-
guages have been proposed in [16], [22]. Similarly, preliminary results of implementing FCP on a
Hypercube architecture are reported in [30].

Besides inter-processor concurrency, further performance improvements are possible by exploit-
ing the parallelism at the processor architecture level, that is, the intra-processor concurrency. By
supporting the parallelism inherent to the execution of FCP on a single processor, one may ob-
tain high-performance processors which could also be used as building blocks in a multiprocessor
environment.

The goal of our research is to investigate the prospects of a special-purpose, high-performance,
single-processor architecture for the execution of FCP. Our objective is to achieve at least two orders
of magnitude performance improvements compared to the currently available implementations of
FCP. We divide our research effort into the following three phases:

¢ Propose a special-purpose FCP Execution Model and processor architecture.
e Simulate the functionality of the FCP Processor.

o Evaluate the performance of the proposed architecture.

Execution Model and Processor Architecture

In the first phase we propose an execution model for FCP and a corresponding FCP Processor
architecture, designed for high-performance. We propose an overlapped execution model that ex-
hibits internal parallelism. It is derived by modifying the Sequential Abstract Machine for FCP
and overlaps the execution of Goal Management and Goal Reduction. We also define a suitable
FCP Processor architecture designed with the following characteristics:

o Internal functional concurrency within the single processor is exploited to achieve high per-
formance.

e A wide-bandwidth memory hierarchy is integrated into the processor architecture to reduce
memory response time, and increase processor performance.



The following two features that distinguish FCP from other logic programming languages de-
serve special attention:

e The use of goal invocation or process call as the basic control mechanism.

o The use of read-only unification as the basic data manipulation primitive.

The first feature is supported at the functional level by a separate Goal Management Processor
using a special-purpose Goal Cache. The motivation for introducing a separate Goal Cache for
the manipulation of concurrent FCP goals is analogous to the use of multiple windows to support
nested procedure calls in procedure-oriented architectures [Patterson]. The second feature is also
supported by a separate functional unit called the Data-Trail Processor. It manipulates a special-
purpose Data Cache which implements a cache policy we termed Delayed Binding.

FCP Processor Functional Simulation

The second phase of our work consists of functionally specifying the FCP Processor architecture
using a suitable simulation language. The main reason for this is to verify the functionality of the
proposed execution algorithms. We use FCP to functionally specify the processor architecture. We
find the concurrency implicitly defined in FCP suitable for simulating concurrent, communicating
functional nnits.

FCP Processor Evaluation

In the final phase of our work we determine the performance of the FCP Processor. We evaluate
the FCP Processor architecture and compare its performance to other existing implementations.
We propose a unique methodology to determine the contribution of each concurrent functional unit
in the FCP Processor. We find this an important aspect of our research since it will evaluate the
design choices made.

1.1 Research Proposal Organization

This report is organized in the following way: In Section 2 we describe the scope of the proposed
research. We identify the main research problems and our approach to resolve them.

In Section 3 we describe how our research compares to other related work. As of yet, we are
unaware of any published results in the area of processor architectures for Flat Concurrent Prolog.
However, we do not restrict the scope of related work to just the implementation of FCP since the
implementations of other logic programming languages have provided us with useful experience.

In Section 4 we propose and evaluate solutions to problems identified 1 Section 2. We describe
the state of the current research and the future work.

Finally, in Section 5 we summarize our research goals and the current state of the research. We
conclude by specifying what results we expect to obtain.



2 Scope of Proposed Research

The goal of our research is to define, simulate and evaluate a high-speed single-processor architecture
for the execution of FCP. In this section we define the scope of the proposed research. To understand
issues concerning the implementation of FCP, we find it necessary to first discuss how FCP relates to
other logic programming languages. In the following subsection we give a simple abstraction of the
FCP programming language and discuss features that distinguish it from other logic programming
languages. After identifying FCP in the spectrum of logic programming languages, we discuss the
following focal points of our research.

e FCP Execution Model
e FCP Processor Architecture:

— Organization
—~ Specification
~ Ewaluation

¢ Goal Management in FCP
o Data Trailing in FCP

For each issue we describe the problem, our approach to solving it and the scope of research.

2.1 FCP and Logic Programming

Even though logic programming evolved from research in the field of theorem proving, its applica-
tions today range over diverse areas of computer science such as data-base systems [10], operating
systems [27] and problem solving. Furthermore, the declarative semantics of first-order predicate
calculus logic has been proposed as a means for representing Declarative Knowledge in articifical

intelligence [12]. For a concise review of the foundations of logic programming, refer to the book
by Lloyd [20].

Horn Clause Form

The use of logic as a computer programming language was first proposed by Kowalski [19] and
Colmeraurer [5]. The first practical logic programming language, Prolog, is based on a subset of
logic expressed in the Horn clause form. A Horn clause is an implication of the form

A(t1, ..., tn) — BrandBjand...andB,., n,m > 0.

A(ty, ..., ty) is a distinguished positive literal referred to as the clause-head and the B,’s literals are
the body goals. All free variables in the clause are implicitly universally quantified. The clause
form is read as: " A is true if all the B;” are true.

From the logic point of view, there is no constraint imposed on the ordering of goals B;. This
form of concurrency is referred to as AND-parallelism. Moreover, given a goal query B;, any one of
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the matching clauses from the set of clauses in the logic program may be chosen for goal reduction.
This form of concurrency is called OR-parallelism.

Sequential Logic Programming Languages: Prolog is an example of a sequential logic pro-
gramming language. The goals B; are reduced sequentially from left to right and the clauses are
selected in textual order. If a goal fails, the control execution backtracks to an alternative path in
the AND/OR search space. Alternative sequential search strategies are possible.

Parallel Logic Programming Languages: Define the same semantics as the sequential logic
languages, only attempt the search in parallel. Parallel execution models have been proposed in

[36], [6], {2].

Guarded Horn Clause Form

A gaurded Horn clause has the following form:

A(t1, . tn) — G1,...,G; | ByandByand...Bp,., j,n,m,> 0.

The Gjs are clause-gnards and | denotes the commit operator. A guarded Horn clause is read as:
" A is true if the conditions G are all satisfied and all B; evaluate to true. The | operator separates
the clause-guard from the clause-body. The implication of the clause-guard is that once the guards
evaluate to true, the control execution ”commits™ to the selected clause and cannot backtrack.

Committed Choice Languages, (CCL): The logic programming languages that use the guarded
Horn clause form are generally referred to as Committed Choice Languages since at some point in
the search path the control commits and cannot backtrack. Examples are Concurrent Prolog (CP)
[25], Parlog [4] and Guarded Horn Clause (GHC) [34].

Flat Committed Choice Languages, (FCCL): Define a subset of CCL that allow only simple
test primitives defined in the clause-guard. FCCL have been introduced to circumvent implemen-
tation problems encountered in CCL. Examples of FCCL are: Flat Concurrent Prolog (FCP), Flat
Parlog (FP) and Flat Guarded Horn Clause (FGHC).

2.1.1 Flat Concurrent Prolog (FCP): A Simple Abstraction

In [26], FCP is described as a process-oriented language. An analogy is drawn between the non-
deterministic scheduling of processes in a multi-processing system and the non-deterministic sched-
uling of goals in FCP. The concurrent goals in FCP communicate via shared variables. The data-flow
synchronization is implemented by annotating shared variables with the read-only construct ”?”.
For example, the shared variable X in goal P(X) annotated as read-only, X%, in goal Q{X?), implies
that goal P is the producer of the value for X and goal @ is the consumer. Goal @ will suspend if it
attempts to assign a value to the shared variable X. The suspended goal Q is woken-up when goal
P produces a value for the shared variable X.

2.2 FCP Execution Model

It is common practice in the design and implementation of high-level languages to first specify
an abstract machine implementation and a corresponding machine instruction set. Abstract ma-
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Figure 1: FCP Execution Model

chines are defined as machine independent implementations used for fast prototyping and simple
compilation. However, to execute the high-level language, the proposed abstract machine is then
emulated on the host, physical machine using a suitable emulation language. At this point, the
user is obviously concerned with the efficiency of program execution, which may raise questions
regarding the "machine independence” of the proposed execution model.

Therefore, even though abstract machines represent machine independent execution models,
they are ultimately judged by their performance, which translates to issues of "machine suitabil-
ity”. Since the currently available execution environments are commonly sequential, one readily
defines a sequential abstract machine followed by optimization techniques which may lead to an
implementation with acceptable performance.

Current implementations of FCP are based on the Sequential Abstract Machine (SAM) defined
in [15]. This execution model is similar to the one defined by Warren for the Prolog programming

langunage [35]. Both implementations on off-the-shelf processors report similar performance results
[15].

Since our goal is to define a high-speed, special-purpose processor and since the SAM for
FCP is designed for execution in a general-purpose environment, there is no reason for us to
use an execution model that was constrained by architectural features that may not be part of the
FCP Processor architecture. Rather than building the FCP Processor and then finding a suitable
"machine independent abstract machine”, we first propose a special-purpose execution model with
features for higher performance, and then define a suitable processor architecture for the defined
execution model.

Therefore, our approach is to actually emphasize the suitability of the execution model and
processor architecture, rather than claiming "abstractness of implementation”. We do not refer to
the FCP Processor execution model as an abstract machine, but rather as an execution model suit-
able for the special-purpose FCP Processor. In Figure 1 we symbolically represent the unsuitability
of the SAM for the FCP Processor and the FCP Execution Model for an off-the-shelf sequential
processor. As the FCP SAM may be suitable for implementation on sequential machines, so we
expect the FCP Execution Model to execute efficiently on the FCP Processor architecture.

2.3 FCP Processor Architecture

The following issues regarding the FCP Processor are within the scope of our research:



e Processor organization;
¢ Functional specification and simulation of processor execution;

e Processor Evaluation using defined metrics;

Since the question is often raised, we find it necessary to explicitly state that the implementation
of the FCP Processor into a VLSI design is not within the scope of the proposed research. Similarly,
implementation details will be addressed only within the context of the scope of research. Therefore,
our approach is to explore the space of possible architectural solutions so that the appropriate design
decisions are made depending on the state-of-the-art of VLSI processor implementations.

FCP Processor Organization

The FCP Processor organization depends on the design of the execution model discussed earlier in
this section. Since we are not concerned with the generality of the proposed architecture (which may
be addressed later), we explicitly tailor the FCP Processor to execute the execution model in an
efficient way. Therefore, the FCP Processor organization reflects the structure of the FCP Processor
execution model. We propose to identify the main components of the processor architecture, define
their functionality and interface to other units.

FCP Processor Simulation

The functionality of the FCP Processor components should be specified using an appropriate spec-
ification language. Our concern is not to determine the suitability of the simulation language but
to use the existing environment for fast prototyping. Using the functional specification of the
FCP Processor architecture we propose to simulate the execution of the FCP Processor. We are
concerned with features such as simulation speed and the class of programs that execute on the
simulated architecture.

FCP Processor Evaluation

After proposing and simulating the FCP Processor we plan to verify the following two claims set
throughout our research.

e The FCP Processor and Execution Model are suitable for the execution of FCP.

o The FCP Processor is a high-speed processor architecture for the execution of FCP.

We distinguish the two claims in the following way. The first claim relates to the design of the FCP
EM and the suitability of the corresponding processor architecture. Within this claim we are not
concerned with the physical performance of the FCP Processor but rather the use of resources and
other defined metrics. That is, by verifying the first claim we are evaluating the FCP Processor
organization.

The second claim states that the proposed FCP Processor is superior to other existing imple-
mentations of FCP. Particularly, we refer to two different implementations of the SAM for FCP on
a conventional processor. One implementation compiles FCP to the SAM instruction set which is



Goal Management Operations || Boot Logix | Compilerl | Compiler2 | Compiler3
Creations 1126 81251 8838 231165
Suspensions 1328 75039 8654 158008
Activations 1328 74910 8654 156865
Switches 3 285 15 1018
Reductions 2399 272 360 29205 736748
Terminations 1126 81122 8830 1 230020
CPU time {ms) 1930 101900 10940 271680
LIPS 1211.62 2672.82 2669 2711.82

Table 1: GMP Operations

interpreted at the abstract machine emulation level, and the other uses a host machine compiler
[18].

To verify both claims we need to determine a precise and meaningful methodology and define the
evaluation metrics. The performance of logic programming languages is commonly measured using
a very vague and deceptive metrics that counts the number of Logical Inferences Per Second (LIPS),
Given the fact that logical inferences may vary in size and complexity, quoting the number of LIPS
is meaningless unless one also cites the evaluated program. Selecting meaningful benchmarks for
the evaluation of the FCP Processor architecture is also within the scope of our research.

2.4 Goal Management in FCP

A significant part of our research is devoted to the study of Goal Management in FCP. The man-
agement of logical goals in FCP represents the main control mechanism analogous to procedure
call/return used in procedure-oriented languages. The efficient management of goals in FCP is
essential to achieve higher performance. A typical FCP program spawns numerous reducible goals
that may be scheduled non-deterministically. Furthermore, FCP goals communicate and synchro-
nize execution using shared communication channels. This implies that goals may suspend waiting
for messages, and are activated upon their arrival.

In Table 1, we show the number of goal management operations performed during various
executions of the Logix operating system [27] written in FCP. The first column shows Logix being
booted and exited while the other columns were obtained by having Logix run the FCP Compiler
(written in FCP) compiling portions of the FCP Processor Simulator (also written in FCP),

From the above example, one can note that for each goal reduction, at least two goal manage-
ment operations are performed. The goal management operations may be quite complex especially
goal suspension and goal activation. In [9], it is reported that two of the most expensive operations
in the implementation of Flat Committed Choice Languages, FCCL, are related to goal manage-
ment. We take this observation even further and claim that goal management may in fact pose a
bottleneck in FCP execution, if not architecturally supported.

In our research we propose a method to reduce the effect of goal management on overall per-
formance. We are also concerned with evaluating alternative goal management strategies that may
algorithmically improve the execution of FCP programs.



2.5 Data Trailing in FCP

Goal reduction requires the unification of goal head arguments with arguments of a matching clause
in the FCP program, followed by the successful evaluation of clause guards. These two steps are
jointly referred to as a clause-try. If there are several matching clauses, a clause-try is attempted
for each clause, until a successful clause-try is found, otherwise the goal fails. During a clause-try,
variables in the clause may have values assigned to them. If a clause-try fails, memory must be
restored to the state preceding the clause-try, so that another clause-try is attempted. This is
referred to as shallow backtracking. If the clause-try is successful, the bindings performed during
the clause-try are available to the body of the clause.

Trailing in the SAM

To restore a previous memory state, variable assignments performed during a clause-try are trailed.
Trailing consists of saving the address and value of the trailed variable in a trailstructure. Restoring
the previous memory state is then performed by reading the old variable values from the trail and
writing them to memory. In Figure 2 we show a Reduction Processor for the execution of FCP
programs performing a clause-try in memory. Figure 2a shows the state of memory and treil prior
to the clause-try. During the clause-try, the RP stores the address and the old value of the variable

in the trail. This is shown in Figure 2b. These values are read and restored in case of a clause-try
failure.

We propose a novel trailing mechanism to reduce the overhead of saving and restoring a memory
state upon a clause-try failure. This mechanism is defined as an integral part of the FCP Processor
architecture.

2.6 Summary of Expected Contributions

We expect the following contributions from the proposed research:

o A novel execution model for FCP.

A high-performance FCP Processor architecture.

An analysis of suitable Goal Management Strategies.

e A novel Data-Trail Algorithm.

A working FCP Processor simulator.

A set of meaningful evaluation benchmarks.

A methodology for the evaluation of the FCP Processor architecture.

A performance comparison between the FCP Processor and other existing implementations.

s A processor architectural model suitable for other FCCL.



Reduction
Processor

v

4

Heap Trail Stack

a) Memory, prior to clause-try

Reduction
Processor

<>
>
=
>
3]
<
13

!
_

NN
Heap Trail St

Figupe) 2%3& glll?i'ﬂgeita’ause-’l‘ry

o1}

///%;
*W2;

10



3 Related Work

Architectural support for the execution of logic programming Janguages is an active area of research
[33]. We distinguish two main research directions. First, a number of parallel machines for the
execution of logic programming languages, called Parallel Inference Machines, have been proposed
(3], [7], [11], [13], [16], {17], [22], [23], [28]. The main issues that these architectures are concerned
with are the type of parallelism to support (OR, AND or perhaps AND/OR) and how to implement
an efficient multi-processor execution model.

A comparably smaller research effort is directed towards the design of high-performance sequen-
tial processors for logic programming languages, called Sequential Inference Machines (8], [14], [29],
[31]. All of these machines are designed for the execution of Prolog and they are all based on the
sequential execution model proposed by Warren [35].

Our research effort consists of designing a special-purpose processor for FCP [1], which is quite
different from Prolog. As it is explained in Section 2, FCP belongs to the FCCL class of languages.
Sine FCP does not allow backtracking, there is no need to use a stack to store the goal control
records, alternative choice-points or data environments, as is the case for Prolog. Furthermore,
Prolog requires a stack of trailing environments, whereas trailing is only one level deep in FCP.

In [32], Tick investigates one aspect of Prolog architectures, namely, the processor memory-
referencing behavior and the use of specialized buffers and caches. Stack and choice-point buffer hit
ratios as well as traffic ratios are reported. We also suggest and investigate the use of specialized
caching functions to increase the processor-memory bandwidth and thus processor performance.
The functions we define are specialized for the execution of FCP. Furthermore, we define a processor
execution model which enables the overlapped execution of the specialized caching units.

11
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4 FCP Processor Execution Model

We propose a special-purpose FCP Processor Execution Model (EM) that uses internal paral-

lelism to achieve high performance. It enables the overlapped execution of Goal Reduction and
Goal Management. The FCP EM is derived by modifying the SAM for FCP in the following way:

» All goal structures are contained within a separate Goal Memory (GM) area;

» A Goal Heap Pointer (GHP) and a Goal Free List (GFL) are used for memory allocation and
garbage collection in the Goal Memory;

o There are two, (instead of one in the SAM), Suspension Tables (ST) that enable the overlapped
execution of the goal suspension mechanism. While a goal is being suspended using one ST,
the other is used for overlapped goal reduction.

o A Wake-up Queue (WQ) is used to enable the concurrent execution of goal wake-up and
continuous goal reduction.

In Figure 3 we symbolically denote the overlapped execution of Goal Management and Goal
Reduction. We allow a single goal management operation to be overlapped at a time. An alternative
is to queue goal management requests. We have considered this approach and observed significant
implementation complexity that would not yield a gain in performance. In the following subsection
we describe the overlapped execution of goal management and goal reduction.

4.1 Overlapped Goal Management and Goal Reduction
In this subsection, we describe how the FCP Processor EM defines the overlapped execution of goal
management operations and goal reduction execution. We do so by first describing goal reduction

as it is performed in the SAM. Following this we identify the main goal management operations
and describe how we propose to support their overlapped execution.

Goal Reduction

Goal reduction in FCP consists of the following three steps:

12
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Figure 4: FCP Clause Types

1. Selecting a clause whose head unifies with the goal and whose guard succeeds.
2. Commiting to the selected clause.

3. Spawning the body of the committed clause.

Given a goal and a set of matching clauses, any clause may be selected for goal reduction,
conditioned that the clause-head arguments unify with the goal arguments, and the clause-guards
evaluate to true. Selecting a clause may consist of a sequence of unsuccessful cleuse-tries, that is,
clause-tries that have failed. If there were assignments made during a failed clause-try, they are
restored to the values prior to the clause-try.

Following a successful clause-try is the commit phase of goal reduction. Committing to a clause
implies that all bindings created during the clause-try become permanent. What remains to be
done at commit time is to verify if assignments were made to variables that had goals suspended
on them. If so, these goals must be scheduled for execution, that is woken-up.

After clause commitment the non-empty body of the selected clause is spawned. This is per-
formed by allocating goal structures, forming the goal arguments and scheduling the goal for ex-
ecution. If the clause body is empty, the goal terminates and another reducible goal is scheduled
for execution.

Goal Management Operations

To understand how the goal management operations are overlapped with goal reduction execution,
consider the three types of FCP clauses shown in Figure 4. The first clause is called the halting
clause, the second dterating clause and the third is referred to as the spawning clause type. Let us
symbolically represent the operations performed during goal-head unification with the get abstract
instruction and the formation of goal arguments with the put instruction. We represent the three
possible outcomes of goal-head unification with the following abstract instructions:

e commit
o suspend

o fail

Following successful goal-head unification the commit instruction denotes the waking-up of sus-
pended goals that received data during the clause-try. If, during goal head-unification, an attempt
is made to bind read-only variables, the current goal suspends. This is denoted by the suspend

13



instruction. Finally, if goal-head unification does not succeed, the fail instruction implies that an
alternative clause must be considered for goal reduction.

After successful goal-head unification and commitment, the goals in the body of the clause
are spawned using the put and spawn instructions. If there are no goals in the body, the halt
instruction denotes the termination of the goal. If there is only one goal in the clause body, the
iterate instruction implies tail recursion optimization by reusing the old goal instead of spawning
a new goal. This feature is merely an optimization and the iterate instruction may be replaced by
spoawn instruction.

In Figure 5 we show the three FCP clause types compiled using the abstract instructions: get,
put, commit, fail, suspend, spawn, tterate and halt. We highlight the abstract instructions switch,
spawn, suspend, halt and commit that manipulate FCP goals. In the SAM these instructions are
executed sequentially. In the FCP Processor Execution Model, we propose the overlapped, or
concurrent, execution of goal management operations and goal reduction instructions.

Overlapped Execution

In Figure 6a we show that there is no data dependency between the goal management instruction
halt and the get instruction of the following goal reduction. Therefore, these two operations could
overlap. Similarly, in Figure 6b we show that there is no data dependency between the put instruc-
tion during the spawning of the clause-body, and the spawn instruction of the previously "put”
goal. That is, the successive putting and spawning of goals in the clause-body could overlap.

However, allowing the overlapped execution of the suspend and commit instructions is not as
simple. During the clause-try, the get instruction uses a Suspension Table defined in the SAM, to
store the addresses of variables that the goal may suspend on. If the outcome of a clause-try is
indeed "suspend”, the suspend instruction accesses the Suspension Table and implements the goal
suspension mechanism. Therefore, the suspend instruction can not overlap execution with the get
instruction of the next goal reduction, since they would both access the same structure. We show
this conflict of access in Figure 7a.

We propose the use of two suspension tables in an alternating manner. When the suspend
instruction is encountered, goal reduction continues with the free Suspension Table, while the goal

suspension is implemented concurrently using the old Suspension Table. This is shown in Figure
7b.

The commit instruction consists of waking up goals and scheduling them for execution. In
Figure 8a we show two shared variables that have goals suspended on them. This is denoted by
storing the goal pointer in the variable location. Goal reduction may not continue since it may
overwrite the pointers to the goals that should be woken up.

We propose a Wake-up Queune (WQ) to store the pointers to the goals that should be woken up.
The commit instruction then consists of enqueueing the goal pointers onto the WQ, after which

goal reduction may proceed while the scheduling of goals in performed in an overlapped mode. This
is shown in Figure 8h.

14
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4.2 Discussion, Status and Future Work

We have proposed a novel FCP Processor Execution Model which defines the concurrent execution
of goal management and goal reduction. This is achieved due to the following observations:

o The goal management operations Halt, Spawn, Suspend and Cornmit are identified as separate
high-level instructions in the abstract instruction set.

e Their execution manipulates goal structures stored in a separate Goal Memory.

o The nature of the data dependencies between the GMP instructions and the goal reduction
instructions is well defined. For the Halt and Spawn operations there is no data dependency,
thus they may execute concurrently without any special support. The concurrent execution
of the Suspend instruction is enabled by adding a second Suspension Table.

o The Commit operation is supported by adding the Wake-up Queue.

We have implemented a working simulator of the overlapped execution of goal management
and goal reduction operations in the FCP Processor. In our future work we intend to evaluate the
performance gain due to the overlapped execution model.
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Figure 9: The Organization of the FCP Processor

5 FCP Processor Architecture

In this section we describe the FCP Processor organization, the processor simulator and evaluation
methodology. The FCP Processor simulator is written in FCP. We find the concurrency of FCP
goals implicitly defined in the FCP execution model suitable for describing the concurrent execu-
tion of functional units in the FCP Processor. The communication and synchronization between
functional units is modeled using the FCP read-only variables. In this section we use portions of
the simulator where appropriate to describe the FCP Processor architecture.

5.1 FCP Processor Organization

The FCP Processor consists of a set of functional units or processing elements for the single-
reduction execution of FCP. Figure 9 depicts the three-layer hierarchal structure of the FCP Pro-
cessor organization. The top of the hierarchy contains the tightly coupled execution processors,
the second level consists of specialized memory management processors and the third level contains
the special-purpose memory modules. The following are the FCP Processor concurrent functional
units:

1. Execution Processors: Reduction (RP) and Tag (TP) Processors;

2. Memory Management Processors: Goal Management (GMP), Data-Trail (DTP) and Instruc-
tion (IP) Processors;

3. Memory Modules: Goal, Data, Tag and Instruction Memory;

In Figure 10 we describe the organization of the FCP Processor using FCP. The parallel exe-
cution of communicating processors is described using concurrent FCP goals. The communication
protocol between the functional units is modeled using shared variables as communication channels

and read-only variable annotation (¢) to model the direction of communication and' synchroniza-
tion. The predicate fep_processor has four arguments representing the initial values of the four
memory modules. It spawns goals corresponding to the parallel functional units: rp, tp, gmp, ip,
dtp, and memory modules: instruction_memory, data-memory, tag-memory, goal_memory. The
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fcp_processor(IIM,I DM,I. TM,I GM) :-
rp(ToGMP,ToDTP,TolP, ToTP?),
tp(ToIP?,ToTP, ToDTP1),
gmp(ToGMP?,ToGM),
ip(TolIP?,ToIM),
dtp(ToDTP?,ToDTP1?,ToDM,ToTM),
instruction.memory(IIM,ToIM?),
data_memory(I_.DM,ToDM?),
tag_memory(I_.TM,ToTM?),
goal memory(I.GM,ToGM?).

Figure 10: Program 1: FCP Processor Organization

rp predicate contains arguments ToGMP, ToDTP, TolIP, ToTP which correspond to the inter-
processor communication channels. The predicate gmp shares a read-only version of the variable
ToGMP with the rp. This means that the GMP waits for a message from the RP.

The next subsection describes the FCP Processor functional units.

5.2 FCP Processor Functional Description
Reduction Processor

The RP is a special-purpose processor for the reduction of FCP goals. It is the main processing unit
in the FCP Processor. The purpose of the remaining functional units is to enhance the performance
of the RP. The RP performs goal reduction using the FCP read-only unification algorithm [25].
The RP requests and manipulates three types of operands: Goals, Instructions and Data. A goal
is an abstract data structure that contains a pointer to a sequence of instructions (called the goal’s
program counter) and a set of pointers to the goal’s arguments. The RP reduces goals by executing
the instructions denoted by the current goal’s program counter. The instructions are requested and
received from the IP. The RP executes instructions, thus requesting data manipulation from the
DTP or goal management from the GMP.

Tag Processor

FCP incorporates polymorphic operations on primitive data types. Unless some architectural sup-
port is provided, our observations indicate that tag processing consumes a significant part of pro-
gram execution and compiled code size. In the FCP Processor tags are separated form data objects
and stored in the Tag Memory. A separate processor-memory path for tags enables concurrent
tag access and the TP performs concurrent tag processing. The instruction requested by the RP
from the IP contains two fields indicating concurrent operations for the RP and TP. The RP does
not execute the next instruction until both the RP and the TP are finished executing the current
instruction.
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Goal Management Processor

In FCP and in other committed-choice concurrent logic programming languages, spawning and
halting of concurrent goals represents the main control mechanism. This is analogous to the proce-
dure call and return in conventional langnages. We propose a novel mechanism for the management
of concurrent goals on a single processor. Using a Goal Cache structure described in Section 4, the
GMP implements efficient goal switching, goal creation, suspension, activation and termination.

Instruction Processor

The IP fetchs instructions from the IM when requested by the RP. Additional features could be
added to the functionality of the IP: prefetching, instruction caching etc.

Data-Trail Processor

The data trailing algorithm is performed by the DTP, concurrently with RP execution. The DTP
is a special-purpose Data Cache with a cache policy that supports the efficient saving and restoring
of a previous memory state.

Memory Modules

The FCP Processor memory modules service the read{Address, Value) and write(Address, Value)
memory requests from the GMP, DTP and IP. The address space of a FCP program is partitioned
into four areas: Code, Goal, Memory and Tag Memory. The compiled program is stored in the
Code Memory which is accessed and managed by the IP. The Goal Memory is used for storing
goal structures. It is accessed and managed only by the GMP. Tags are stored in the Tag Memory

whereas the Data Memory is used for storing objects like lists, variables, tuples, integers etc. It is
managed by the DTP.

5.2.1 FCP Processor Execution

The FCP Processor maintains a consistent hierarchy of processor execution. The RP requests goals,
instructions and data values from the GMP, IP and DTP respectively. Each of these processing
units acts as a cache of objects requested by the RP. If there is a cache hit, the RP will be
serviced immediately, and if there is a cache miss, the corresponding cache processor will perform
the necessary memory request. There are no explicit requests by the RP to the memory modules,

The RP executes FCP programs by requesting goals from the GMP. The received goal becomes
RP’s current goal. The RP requests from the IP the instruction corresponding to the goal’s program
counter. The received instruction contains instruction fields that determine the operation of the
RP and TP. The execution of the instruction manipulates structures in the Data and Tag Memory
by requesting changes to the memory state from the DTP. All read or write requests to the DTP
fetch or store the appropriate data and tag pair of values.

Some of the instructions that the RP receives from the IP require the management of the
current goal. These instructions are executed by the GMP while the RP continues executing the
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rp(ToGMP,ToIP,ToDTP,ToTP) :-
rp(done,done,ToGMP,ToIP,ToDTP,ToTP, initial_state(...}).

rp(done,done,[G|Gs?],[I|Is?},[D|Ds?},[T| Ts?},State):-
fetch(I,State,Instruction),
execute(Instruction?,done,Done,done,Busy,G,D,T,State? NewState),
rp(Done?,Busy,Gs,Is,Ds,Ts,NewState?).

rp{done,done,|close],[close][close],[close],state()).

execute(store(A,T,V),D,D,B,B,noop,noop,write( A, T,V),set(T) state(..PC..) state(..PC1..):-
PC1:= PC + 1| true.
execute(gmpop,Done,Done,Busy,Busyl,gmpop(Busyl),noop,noop,state(..PC..) state(..PC1..)}:-

PC1 := PC + 1, ground(Busy) | true.

fetch(read(PC,Instruction),state(...,PC,...),Instruction).

Figure 11: RP Instruction Execution Cycle

next instruction. Therefore, the RP continuously reduces goals while the GMP manages the goal
structures in an overlapped mode.

The communication protocol between the RP and the GMP allows a single GMP operation to
be requested at a time. Using FCP, this protocol is modeled in the following way: The RP sends
the GMP an operation together with a Busy variable, shared by the two processors. When the
GMP receives the message, it performs the requested operation, and upon completion, assigns it the
value done. Meanwhile, the RP continues to execute instructions. Instructions that are executed
only by the RP, do not depend on the status of the Busy flag, and thus they ignore it. When a
GMP instruction is encountered in the RP, the Busy status flag is first tested by attempting to
assign the done value. If the GMP finished its previous operation, this shared variable is bound to
done, thus leading to successful unification which results in continuous RP execution. If the GMP
is still busy, the RP will suspend waiting for the GMP to finish the current instruction.

In Figure 11 we describe the RP execution using FCP. The fetch predicate requests an instruction
from the IP, which is received by the ezecute predicate. We show the execution of two types of
instructions: store(Address, Tag, Value) is an example of an instruction executed only by the RP

and the instruction gmpop is given to the GMP for execution. The Busy variable denotes the shared
flag used for synchronization.

5.3 A Proposed Methodology for FCP Processor Evaluation

Let Pycpp denote the FCP Processor, where fepp = {rp, gmp, tp, dtp,ip}. We denote each concur-
rent processor in the FCP Processor as P; where ¢ € fepp. The proposed methodology consists of
three phases.
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Phase 1

Let T,-I, i € fepp — rp = {gmp,tp, dip,ip}, be the time to execute an FCP program on Py, with
the operations of processor P; taking zero time. Let TF, i € fepp — rp = {gmp, tp, dtp, ip}, denote

]
the time to execute the same FCP program on the FCP Processor with processor P; removed and

its functionality emulated by the remaining architecture denoted as F(s.p,,_ij. We then represent
the maximum or ideal performance benefit due to processor P; as

sl =TE/T] (1)

where i € fepp — rp = {gmp, tp, dtp,ip}.

Phase 2
Let TR, i € fepp—rp = {gmp,tp,dip,ip}, represent the realistic (non zero) time it takes to execute

an FCP program on Py.p and TE the time to run the same program with processor P; emulated.
The realistic performance benefit due to processor P; is:

SF = TP T} (2)

where i € fepp — rp = {gmp, tp, dtp,ip}.

Phase 3

Let S represent the set of values for the ideal and S;R realistic performance speedups due to

each processor P; where i € fepp — rp = {gmp, tp, dtp,ip}. The FCP Processor evaluation factor
measuring performance improvement due to the concurrent execution of FCP on communicating

processors is modeled as:
E'=[[s! =[1(TF/T) (3)

BR =T] s = TI(T?/TF) (4)

where i € fepp — rp = {gmp, tp, dtp, ip}.

5.3.1 Discussion

A discussion of the proposed methodology for the evaluation of the FCPP architecture is ap-
propriate at this point. We have suggested a method for evaluating the performance benefit of
functional units by successively removing a single unit and emulating its functionality on the re-
maining architecture. As we have previously objected to the approach of comparing emulated level

language implementation with other machine level implementations, the following question must
be answered:

o What if the architecture denoted as Pypp_; is particularly unsuiteble for the emulation of
processor P; ¥
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Or, for example, what if the operations of the GMP are particularly time consuming when emulated
on the Pgoy, gmp architecture? Moreover, if this were the case, one would readily modify the
Pfepp—gmp architecture to emulate the GMP more efficiently.

To avoid the circulus viciosus situation of first removing a processor P; and then creating it for
the sake of efficient emulation on Pgcpp—i, we find it necessary to verify whether indeed the Pyqpp_i
enables efficient emulation within its execution environment. To further illustrate this problem,
consider a processor architecture where one of the units is specialized to perform trigonometric
operations. If we then emulate these operations on the remaining architecture, we are concerned
that the emulation is performed efficiently. If this is true, the emulation approach is evaluated,
otherwise, additional features are considered to further optimize emulation execution.

The following question regarding the proposed methodology should also be discussed:
o How does it model domains of specialized functional units that are not disfunctive?

For example, it is possible that emulating processor P; on Pyepp.; executes part of the domain of
processor P; € Pyopp—i where i # j. For example, if a significant part of goal management consists
of tag processing, the emulated GMP operations would benefit considerably from the concurrent
Tag Processor, TP.

In the given example, we are concerned with the GMP operations that are disjunctive with
the operations of the Py, gmp architecture. The tag operations would lead to a more efficient
emulation of the GMP and diminish its contribution to the performance evaluation of the Py,
Therefore, we consider such cases to be correctly modeled by the proposed evaluation methodology.

5.4 Future Work

We propose to extend the currently available FCP simulator to obtain performance evaluation
parameters. For benchmarks, we propose to use programs developed for FCP Processor simulation
or perhaps parts of the Logix operating system written in FCP. Furthermore, we propose to use
programs which are particular for the FCP programming language. For example, a termination
detection meta-interpreter using the short-circuit technique.
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6 Goal Management In The FCP Processor

A separate functional unit, the Goal Management Processor GMP, is dedicated to the management
of FCP goals. The purpose of the GMP is to reduce the effective time spent performing goal
management operations. By effective time, we imply the time as seen by the RP, which also
includes the overhead of communication and synchronization. This is achieved in the following
way:

¢ The FCP Processor execution model allows the execution of GMP operations concurrently
with goal reduction in the RP.

e The GMP is designed for the efficient execution of goal management operations using a Goal
Cache (GC).

In Section 4 we have discussed in detail the proposed overlapped execution model, and now we
show the efficient implementation of goal management operations.

6.1 Efficient Goal Management

The GMP performs efficient goal management by manipulating a Goal Cache (GC) used for storing
FCP goals. The GC consists of a set of N goal windows marked active, ready, free or spaumn. The
active window contains the currently executing goal, ready windows contain goals that are ready
to be reduced, free windows are vacant and spawn denotes the window used by the RP to spawn
a new goal. The windows that are addressable by the RP are the active and the spawn windows.
The GC is shown in Figure 12.

The GMP manipulates the GC so that it always has at least one free window used for fast
spawning, and one prefetched goal for fast goal scheduling. A goal is spawned in the cache by
marking it ready. The successive spawning may cause overflow. If the GC overflows, a goal is
selected in the cache and moved to a queue in the Goal Memory. A goal is terminated in the
cache by marking it free. Successive goal termination may cause underflow. In this case the GMP
dequeues a goal from the queue in the Goal Memory, and stores it in the GC.

When a goal suspends, it is moved to the goal queue in memory, and when goals are woken
up, they are added to the end of the goal queue. All operations in the GC consist of changing the
status of the goal windows and manipulating goal window pointers.
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6.2 Discussion, Status and Future Work

‘We propose a novel policy for the efficient implementation of concurrent goal management opera-
tions using a Goal Cache. The GC policy has the following properties:

o It enables the fast spawning, halting and scheduling of goals by manipulating the goal status
bits.

e Supports the concurrent execution of goal suspension and goal wake-up.
» Buffers the frequent halting and spawning of FCP goals.

s Captures the locality of inter-goal communication.

Currently, a working simulator of the GMP is available. We propose to evaluate the proposed
GC policy and investigate other cache strategies. We are concerned to determine how parame-
ters vary with the size of the GC and to investigate the complexity of the GC implementation.
Furthermore, we are concerned to evaluate the load balance between the GMP and the RP. The
load balance will determine to which degree one needs to optimize the execution of the GMP. For
example, if the GMP creates a bottleneck for RP execution, it may be effective to further increase
the speed of goal management operations with hardware support.
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7 Data Trailing In The FCP Processor

In FCP, given a goal query, any clause from a set of matching clauses may be selected for a clause-
try. The outcome is success or failure. A clause-try success commits to the body of the selected
clause whereas a clause-try failure leads to an alternative clause-try attempt.

Trailing data assignments in the FCP Processor is necessary since one does not know in ad-
vance which clause-try will succeed. This non-determinacy of clause selection is a necessary and
powerful feature of logic programming. It implies that a number of unsuccessful clause-tries may
be attempted before a successful clause-try is found.

We consider as overhead all the time spent executing clause-tries that lead to failure. To reduce
their effect on performance one may:

¢ Improve the clause selection strategy;

¢ Provide architectural support for data trailing;

Clause Selection

Improving the clause selection strategy is possible if more processing is performed at compile time,
and if the user provides some "inside information” regarding program behavior. For example, if
the implicit clause selection strategy is determined by the textual order of clauses in a program,
the user may order the clauses according to his/her knowledge of the probability of clause failure
or success, Alternatively, in [Kliger], input mode declarations are used to aid the clause selection
strategy. In this case, the clause selection is compiled to a sequence of argument dereferencing and
testing, until a single clause is selected. In cases where this knowledge is not available to the user

or the program i.e. it is data dependent, a clause-try may lead to failure. In these situations the
overhead of data trailing is incurred.

Program analysis and transformations should be used extensively to reduce the overhead of
clause selection in FCP, since they lead to a compile time instead of run-time overhead. Never-
theless, because of data dependencies and lack of knowledge about program behavior, clause-try
failures are unavoidable. Therefore, given that the clause selection strategy is not ideal, we are
concerned with reducing the overhead of data trailing in the FCP Processor. Improving the clause

selection strategy is beyond the scope of this work, but it should be combined with the data trailing
mechanism proposed here.

Clause-try Overhead
There are three parts to the clause-try overhead:

® Processing necessary to determine clause-try failure;
s Saving a previous memory state;

e Restoring a previous memory state when failure occurs;

The processing that is performed in order to determine whether the selected clause may succeed, is
unavoidable, given that the compiler or user were not able to provide the program execution with
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such information. This execution consists of operations such as argument unification, argument
testing and general data processing.

In addition to clause-try processing, the state of memory before the clause-try must be saved
and restored in case of clause failure. Saving a memory state consists of saving the address and old
value of bindings performed during a clause-try. Restoring a previous state consists of reading the
stored addresses and reassigning the old values into memory.

DTP Objective and Design Approach

The purpose of the Data Trail Processor described in this section is to provide hardware support
for both saving and restoring the memory state prior to and after a clause-try failure.

This is achieved by delaying all the bindings into the Data Memory until the outcome of the
clause-try is known. In this case, if the outcome is successful, the bindings are included as part
of the memory hierarchy, otherwise, the bindings are ignored. During the clause-try, memory
assignments are kept in a structure used for storing temporary bindings which are accessible to
the RP. If a clause-try fails, the temporary bindings are ignored and if the clause-try succeeds the
bindings become valid.

Therefore, the design approach allows the RP to "see” the the Data Memory, the way it would
look if the clause-try were to succeed. This design approach is depicted in figure 13.

7.1 Data-Trail Cache Policy

We refer to the following DTP policy as Delayed Binding:

All assignments performed during o clause-try are delayed until the outcome of the clause-try is
known. If the outcome is successful, the bindings become permanent otherwise they are cleared.

The DTP is a data cache that implements the Delayed Binding policy. In this paper we do
not discuss the details of the data cache organization or mapping policy. We only emphasize those
features that relate to the data trailing property. For simplicity, we assume that the data cache is
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fully associative with a write-back memory policy. The data cache stores the address, the value and
the status of the cached elements. The status may be: Empty, Clean, Dirty or Trailed. An entry
labeled Empty is vacant. If the status is Clean the cached element is identical to the corresponding
value in the DM. A Dirty status indicates that the stored value in the cache differs from the value
in memory, and the Trailed status indicates that the value in the cache is temporary.

The DTP receives read, write and trail memory requests. The read and the write requests are
treated in the conventional way. Upon receiving the trail memory request, the DTP performs the
following operation:

¢ trail(Address,Value): If there is a cache hit, the following cases may occur depending on
the status of the cached element. If it is Clean, the new value is stored in the cache and
marked as Trailed. If it is Dirty the cached value is written back to the DM and the new
value is stored in the cache and marked as Trailed. If it was already Trailed, the new value is
written in the cache and remains Trailed.

In case of a cache miss, the cache replacement policy vacates an entry that is not Trailed,
writes the new value in the cache and marks it as Trailed.

The following operations are performed when the control signals fail and commit determine
clause-try failure or success.

e fail: All Trailed entries are marked Free,

e commit: All Trailed entries are marked Dirty.

In Figure 14a we show the DTP cache during a clause-try. The elements marked as T are being
trailed. In Figures 14a and 14b we show the contents of the cache after a clanse success and failure,
The Data Trail Cache Policy is described in 15.

Therefore, the proposed data cache policy implements the Delayed Binding approach to data
trailing by keeping the trailed values in the cache and either committing them to Dirty upon
clause-try success, or resetting them upon clause-try failure, One should note that Trailed values
are never replaced by the cache replacement policy. Furthermore, trailed values are accessible
during the clause-try even before they commit or fail. Trailed values that commit to Dirty remain
in the data cache as valid cache

One should note that there is no need to replace any of the trailed values that have committed
to dirty. They remain valid entries in the cache and may be replaced using the general cache
replacement policy. With the implementation proposed in this report, the RP does not need to
perform the trailing or the undoing of the trail.
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Figure 15: Data Trail Policy
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7.2 Status and Future Work

We propose to simulated and evaluate the DTP Delayed Binding cache policy and determine the
performance gains due the support for data trailing.
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8 Conclusion

We propose to define, simulate and evaluate a special-purpose, high-performance single-processor
for the execution of FCP. We define an execution model which exhibits internal, intra-processor
concurrency. The execution model is derived by modifying the SAM for FCP. We also propose
the organization of the special-purpose FCP Processor architecture which consists of the follow-
ing concurrent functional units: Reduction Processor, Tag Processor, Goal Management Processor,
Instruction Processor and Data-Trail Processor. The Reduction and Tag Processors execute instruc-
tions received from the Instruction Processor, reducing goals supplied by the Goal Management
Processor and sending data requests to the Data-Trail Processor. We propose architectural support
for goal management in the form of a Goal Cache. We define the Delayed Binding data cache policy
used by the Data-Trail Processor to reduce the overhead of saving and restoring a previous memory
state upon clause-try failures. The FCP Processor architecture and execution model are described
using FCP. We are currently investigating the attainable performance of the FCP Processor.
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