Computer Science Department Technical Report
Dependable Computing and Fault-Tolerant Systems Laboratory
University of California
Los Angeles, CA 90024-1596

MULTI-VERSION SOFTWARE DEVELOPMENT:
A UCLA/HONEYWELL JOINT PROJECTR FOR FAULT-TOLERANT

FLIGHT CONTROL SOFTWARE

Algirdas Avizienis April 1988
Michael R. Lyu CSD-880034

Werner Schutz

TABLE OF CONTENTS

1. Introduction: Origin and Scope of the Project ... e 1
2. The Problem and the CONSIraingscccoiceivrecininniitiiiitise s s s ssss s esss s assn e snssnsaaes 3
2.1 The Global Scope of the ApplicCation ... 3
2.2 The Automatic Landing Problem ... e 3
2.3 The Choice of Diversity Dimensionsc..cciviemiinninnmssniseess s 6
2.4 Requirements for Software TeStNE ...t e 7
2.5 The Rationale for Applying Design Diversity in TeStNgocervemrmernsicnennnicnnseninenens 8
3. Guidelines and the Process of Multi-Version Programming ... 10
3.1 Personnelcccomnceninnicnnninnininn. RO OO E OO OP e OPON 10
3.2 Schedule Of the EXPETIMENLccoviriiisinsmsiosesiisnsinesseisssessessesessssssesessssassasssassaeserese 10
3.3 The Programming PrOCESScc.cuivuiviosisimssssmnesiinieseresssssesesaasassssssssssssssassasasssssessents 13
3.4 Experience with the Communication Protocol ..., 15
3.5 Exercise of the Phased TEStNEcccooeimiiiniinimismi e sss e sae s anisssasnesssn 16
4. The Evolution of the Specification cttresssieasstaae s assnnes eereteetteeeesasetesseen e naenrse st b bt sanennes 20
4.1 Process of Writing the SpecifiCationcuumeeieeinienreniiieriie s st 20
4.2 QUESLIONS ANA ATNISWETS ..ovvvreieienreriireistiessstiisssssssrisssssbsssssrstssbsssasssssassnssastessassaessssssesnen 22
4.3 Specification Changes erereeeteesestessessesseeresstessentesieihebrterees s e as Rt sR b s b s en b eanaen 24
4.4 Other Questions and CIArifiCatioNScvmerrerecinenninniiiee e itssse s erss s sssssss 29
4.5 Summary and ODSEIVAONS ...cvcveriisiieiisiitciiirenneniinie s sisnbee s s rsasas essssssesssasssassnes 32
5. Properties of the Versionsccceeeneee eeereesseeesate s sepnsa st esbe bR esnnen e reeertress s e bes st eb st enn 36
5.1 Software Metricsccunreernnee Veereseesesssesasessanesbeseeateneersane st et e b teR Rh s s ereRRe s R b e b e R a R e s s 36
5.2 Faults Detected during Program Developmentooeeconicinicsinanesininennin. 36
5.3 Additional Observations censsrabeisasarenss eeetetessesteseneesiaestenteaere s e teRsateR bt sR s re s 40
6. Testing and Evaluation After Acceptance of the VErsionsccueeinniiininnn. 42
7. Results of Testing and Evaluation ttessersreensessesssissseressnseeetesaeseesatiat et iebe e se syt as b n e bena e anas 45
7.1 Disagreements Detected by Flight Simulations ... 45

7.2 Faults Found During Inspection 0f Code ... 46

7.3 Assessment of Structural Diversityccccocveenevenennnns eetrsresssrsrserrennns rreserseisrennssaninssansess 48
7.4 Observations from the Diversity ASSESSINENTvvrieiininiiienienee e sctne s ssresnsaeansees 53
8. Conclusionsc.ccouvmvrerniccnseirancnniane teeeseessesstressessessteatietat s teant e et ea e eess s A e e RSt e e R b e R eR b eR e e AR e e 56
Referencescccovrnmnnieniivsssnnesnannas reeerteseesersaseanserases rerervereresaeeeree e rettaetat st e st s s e e s ar b ae st e anan 58
APPENDIX I Current Version of the Software Specificationcovviiimnccninnieneeecnenecn I-1
APPENDIX I Forms and Guidelines Used in the EXperimentcciiiiinirenninnnnsncnnnncnncennens II-1
APPENDIX III Summary of All Faults Found s srenessares S m-1

Multi-Version Software Development:
A UCLA/Honeywell Joint Project for

Fault-Tolerant Flight Control Software

Algirdas AviZienis
Michael R. Lyu

Werner Schiitz

UCLA Dependable Computing and Fault-Tolerant Systems Laboratory
University of California, Los Angeles, CA 90024, U.S.A.

1. Introduction: Origin and Scope of the Project

The investigation being reported here is the consequence of a coincidence of research
interests in design diversity {Aviz82] at the UCLA Dependable Computing & Fault-Tolerant
Systems (DC & FTS) Laboratory and at the Sperry Commercial Flight Systems Division of

Honeywell, Inc., in Phoenix, Arizona (abbreviated as "H/S" in the following discussion).

Four of the long-range goals of UCLA research, which was initiated in 1975 [Aviz85b],

arc:

)] The development of rigorous design guidelines (a paradigm) that will eliminate all
identifiable causes of related design faults in two or more independently generated

versions of a program or design.

(2) Testing for and detailed study of all potentially related design faults that actually

produce similar errors in two or more versions independently generated from a given

specification.

(3) Development of qualitative criteria that allow the assessment of the potential for
diversity through the study of a specification from which the versions are to be

generated.

4) Development of methods for the study of a set of multiple versions to determine to what
extent diversity is actually present in the set, and search for the means to quantize the
relative diversity of versions that originate from a given specification. The relative

benefits of random vs. "enforced" diversity are also of great interest.

Honeywell/Sperry CESD has been a very successful builder of aircraft flight control
systems for over 30 years. A recent major product of H/S is the flight control system for the

Boeing 737/300 airliner, in which a two-channel diverse design is employed [Will83].

The main research interest of H/S is the generation of demonstrably effective N-version
software in an industrial environment, such as exists now and is being further developed by
H/S. This objective includes all four above stated topics of UCLA research, referenced to the
industrial environment, as well as the estimation of the effectiveness of N-version software and

of its relative safety as compared to a single-version approach.

It was mutually agreed that an experimental investigation was necessary, in which H/S
would supply an automatic flight control problem specification, specify H/S software design and
test procedures, deliver an aircraft model and sets of realistic test cases, and also provide prompt
expert consultation. The research was initiated in October, 1986 and carried out at the UCLA
DC & FTS Laboratory, funded jointly by H/S and the State of California "MICRO" program. A
six-version programming effort in which six programming languages were used and 12
programmers were employed took place during 12 weeks of the summer of 1987. An intensive

evaluation followed, and is continuing as of February, 1988.

2. The Problem and the Constraints
2.1 The Global Scope of the Application

The control laws implemented in this particular experiment are typical of those certified
for the automatic pitch control of commercial airliners, in the landing flight phase. The

experiment features the following activities:

1. Simulation of the automatic pitch control of a transport aircraft, in the final approach to
the airport. The elements of the control loop are control laws, the airplane, sensors

mounted on the airplane, the landing geometry, and wind disturbances.

2. Programming of control laws by independent teams, based on software requirements

document (i.e., the software specification).
3. Modelling of airplane and wind turbulence on Unix environments.

An aircraft model definition document, which describes the global structure of the whole
flight control system, was supplied by H/S. This document provided mathematical models for
functions within the landing/approach control loop, but external to the control laws to be
implemented by multi-version software. These models were programmed on the host computer

in order to provide a suitable control problem for the experiment.
2.2 The Automatic Landing Problem

Automatic (computer-controlled) landing of commercial airliners is a flight control
function that has been implgmented by H/S and other companies. The specification used in the
UCLA-H/S experiment is part of a specification used by H/S to build a 3-version Demonstrator
System (hardware and software), employed to show the feasibility of N-version programming

for this type of application. The specification can be used to develop a flight control computer

(FCC) for a real aircraft, given that it is adjusted to the performance parameters of a specific

aircraft. All algorithms and control laws are specified by diagrams which have been certified by

the Federal Aviation Administration (FAA). The pitch control part of the auto-land problem,

i.e., the control of the vertical motion of the aircraft, has been selected for the experiment in

order to fit the given budget and time constraints. The major system functions of the pitch

control and its data flow are shown in Figure 1.

BAROMETRIC I —a]
I —»{ ALTITUDE AL&%DE
COMP, FILTER
COMMARD
I I — MonTTORS cM
RAD @
18] ["GCIDE SLOPE |
Faviiee I —a
1 —=» ALTITUDE Moez CAPTURE = LC
COMP. FILTER Bt LOG & TRACK
{ —» DISPLAY | D
GLIDE 5L0 T T 1
I —»{ DEVIATION I — FLARE
COMP. FILTER x ¥y z
Legend: 1= Airplane Sensor Inputs

LC = Lane Command

CM = Command Monitor Qutputs

D = Display Outputs

Figure 1: Pitch Control System Functions and Data Flow Diagram

Simulated flights begin with the initialization of the system in the Altitude Hold mode,

at a point approximately ten miles from the airport. Initial altitude is about 1500 feet, initial

speed 120 knots (200 feet per second). Pitch modes entered by the autopilot-airplane

combination, during the landing process, are: Altitude Hold, Glide Slope Capture, Glide Slope

Track, Flare, and Touchdown.

The Complementary Filters preprocess the raw data from the aircraft’s sensors. The
Barometric Altitude and Radio Altitude Complementary Filters provide estimates of true
altitude from various altitude-related signals, where the former provides the altitude reference
for the Altitude Hold mode, and the latter provides the altitude reference for the Flare mode.
The Glide Slope Deviation Complementary Filter provides estimates for beam error and radio

altitude in the Glide Slope Capture and Track modes.

Pitch mode entry and exit is determined by the Mode Logic equations, which use filtered

airplane sensor data to switch the controlling equations at the correct point in the trajectory.

Each Control Law consists of two parts, the QOuter Loop and the Inner Loop, where the
Inner Loop is very similar for all three Control Laws. The Altitude Hold Control Law is
responsible for maintaining the reference altitude, by responding to turbulence-induced errors in
attitude and altitude with automatic elevator control motion. (The elevator is the surface of an
airplane that controls the vertical motion.) As soon as the edge of the glide slope beam is
reached, the airplane enters the Glide Slope Capture and Track mode and begins a pitching
motion to acquire and hold the beam center. A short time after capture, the track mode is
engaged to reduce any static displacement towards zero. Controlled by the Glide Slope Capture
and Track Control Law, the airplane maintains a constant speed along the glide slope beam.
Flare logic equations determine the precise altitude (about 50 feet) at which the Flare mode is
entered. In response to the Flare control law, the vehicle is forced along a path which targets a

vertical speed of two feet per second at touchdown.

Each program checks its final result (elevator command) against the results of the other
programs. Any disagreement is indicated by the Command Monitor output, so that the

supervisor program can take appropriate action.

The Display continuously shows information about the FCC on various panels. The
current pitch mode is displayed for the information of the pilots (Mode Display), while the
results of the Command Monitors (Fault Display) and any one of sixteen possible signals

(Signal Display) are displayed for use by the flight engineer.

Upon entering the Touchdown mode, the automatic portion of the landing is complete

and the system is automatically disengaged. This completes the automatic landing flight phase.

The original specification of this application given to the programmers was a 64 page
document (including tables and figures) written in English. Its development required about 10
weeks of effort by two members of the coordinating team, plus consultation by H/S experts. Its

current version can be found in Appendix I, and its detailed evolution is presented in Section 4.

2.3 The Choice of Diversity Dimensions

Design diversity is a potentially effective method to avoid similar errors that are caused
by design faults in N-version software systems. The choice of diversity dimensions in this
experiment was based on the experience gained from (1) previous experiments at UCLA
[Chen78, Kell83, Aviz84, Kell86], (2) recommendations from H/S, and (3) published work
from other sites [Gmei79, Bish86, Knig86].

Independent programming teams are the baseline dimension for design diversity. This
allows the diversity to be generated with an uncontrolled factor of "randomness”. However,
different dimensions of design diversity, including different algorithms, programming
languages, environments, implementation techniques and tools, should be investigated and
explored, and possibly used to assure a certain level of "forced” diversity [Aviz85b]. It was
decided that different algorithms were not suitable for the scope of FCCs due to potential timing
problems and difficulties in proving their correctness (guaranteed matching among them). The

investigation of different programming languages was attractive since it provides protection

from subtle compiler errors and avoids the need to certify compiler correctness. Moreover,
although research had been initiated in this direction [Gmei79, Bish86], significant comparisons
of different high order programming languages for the same critical application have not yet

been reported.

Six programming languages were chosen to implement the application problem in this
project. They included: two widely used conventional procedural languages (C and Pascal),
two modern object-oriented programming languages (Ada and Modula-2), a logic programming
language (Prolog), and a functional programming language (T, a variant of Lisp). It was
hypothesized that different programming languages will force people to think differently about
the application problem and the program design, which could lead to significant diversity of
programming efforts. Choices of the Prolog and T versions presented challenges to this project,
since it was thought that they might not be suitable for this computation-intensive application.
Nevertheless, it was still considered to be worthwhile to investigate this unexplored area,

especially to assess the impact of Prolog and T on the structure of the auto-land programs.
2.4 Requirements for Software Testing

H/S, along with other avionics suppliers, must adhere to the requirements of the
document DO-178A [RTCAS8S5], the industrial software design and test standard approved by
the FAA. The following definitions apply to software testing, as specified in [RTCA85].

(a) Requirements-Based Tests (black box testing). Test cases are derived from the software
requirements independent of the software structure. Primarily, these are the requirements
specified in the Software Requirements Document (Software Specification), but further
requirements may emerge during the design process (e.g., scheduler requirements). These tests
demonstrate that the software performs its intended functions. Each software requirement

should be traceable to an associated verification test or tests.

{(b) Software Structure-Based Tests (white box testing). Test cases are derived from the
software design itself. As such, they can address features of the implementation which may or
may not be apparent from a requirements perspective. Typically, requirements-based tests are
analyzed for structural coverage and augmented as necessary. In this sense the structure-based
tests complement the requirements-based tests to provide sufficient test coverage. Such
structure-based tests are necessary to provide some measure of protection from unintended
functions in software that may pass all of its requirements-based tests. All of the software must

be exercised to a degree commensurate with its software certification level.

Therefore, software errors are postulated to be caused by two types of human-made
faults: requirement faults and structural faults. A requirement fault exists when a specified
requirement is not or not completely complied with. A structural fault is the complement of the
requirement fault, i.e., it is any fault which is not exposed by system testing based on the system

specification.
2.5 The Rationale for Applying Design Diversity in Testing

Three categories of aircraft systems are distinguished by the FAA, namely flight critical,
flight essential, and non-essential, with different testing efforts required for each. In general,
avionics equipment is designated as "critical" when loss of the function provided by the
equipment can cause a catastrophic aircraft failure. The probability of such an occurrence must
be demonstrated by test or analysis to be 10™ or less over the duration of the flight. Avionics
equipment is designated as "essential" when loss of its function can significantly impact safety.
For essential equipment the probability of loss of function must be demonstrated to be 1075 or

less over the duration of the flight.

The software portion of the critical equipment must, then, have a probability of failure

less than 10~ depending on the failure rates in remaining portions of the system. To protect

against failures in single-version software that cause total loss of a critical function, a
structural-based testing methodology is required in addition to requirements-based testing.
Any fault will manifest itself identically in all redundant computation channels that use
identical software; but this exhaustive testing procedure (Level 1) is assumed to assure the
desired reliability. For software which can fail and cause loss of an essential function only,

‘requirements-based testing alone is required (Level 2).

While requirements-based testing may be extensive, the number of test cases is bounded
by the system requirements. Structure-based testing, on the other hand, is likely to be very
extensive, possibly involving permutations of all inputs together with a rather subjective
evaluation of each result. If more than a few inputs are involved, the time required to prepare
and run the test, and to analyze the results becomes prohibitive and may present a serious
scheduling and cost problem. Structural testing appears to be analogous to the hardware
"failure modes and effects analysis" procedure with LSI circuits, which is acknowledged to be
extremely difficult to implement fully [Trea82]. Therefore, the FAA encourages manufacturers,
where practical, to reduce the level of testing by architectural means. The architectural
techniques to reduce test levels that the FAA has accepted, or is likely to accept, employ design
diversity as their central attribute. The application of threefold diversity in critical software is
based on the conjecture that the likelihood of two identical, critical structural faults in 3-version
software is, in the verified and validated release, substantially reduced from the likelihood of a
critical structural fault in a single version; thus only Level 2 testing may be required in 3-
version architectures. The FAA has recognized, however, that the conflicting requirements for
design independence and of having the diverse elements perform the same function impose an
important design constraint. Therefore, these systems must be shown to monitor each other

under all forseeable conditions and critical modes of operation.

3. Guidelines and the Process of Multi-Version Programming
3.1 Personnel

The recruitment and interviewing of programmers started about 3 months before the
12-week version generation phase in June, 1987. The summer is an especially favorable time to
recruit highly qualified personnel from the about 260 CS graduate students at UCLA, since
about 20 Teaching Assistants (many of them from programming classes) and several fellowship
holders are able to accept summer employment. About 20 candidates, most of them graduate
students at UCLA, submitted applications. The final choice of 12 programmers and their
assignment to six teams were made one month before starting the software generation. Table 1
shows the specialties, graduate standing, and qualifications of the programmers identified by
their assigned languages. The data indicate a mature, experienced, and well qualified group of
research programmers. The effort was directed by the Principal Investigator, and coordinated
by a three-member coordinating team, who started the work of writing the specification and
developing guidelines and procedures, with support of H/S personnel, in November, 1986. A
senior staff expert in flight control computing from H/S maintained continuous contact and

regularly made visits to UCLA.
3.2 Schedule of the Experiment

The software version generation for this experiment was conducted in six phases:

1. Training meetings (five in total, 2-4 hours each): One project-introduction meeting
was offered to all the applicants, and all other four meetings were held after the
selection of personnel. H/S presented a discussion of flight control systems as
background information. Introductory presentations were made summarizing the
experiment’s goals, requirements and the multiple version software techniques. Issues

of different programming languages were also discussed. A kick-off meeting was

10

Degree held CS standing in summer '87 | Programming
Team member - ;
Field | Degree | Year | Program Year experience

-Ada-1 CS B.S 1984 M.S. 2nd 3 years
ECE B.S. 1982

Ada-2 ECE M.S. 1984 Ph.D. 2nd 3 years
IE B.S. 1981

C-1 cs M.S. 1983 Ph.D. 3rd 2 years
CS B.S. 1982

C-2 cs MS. 1984 Ph.D. 2nd 5 years
ECE B.S. 1982

Modula2-1 ECE MS. 1984 Ph.D. 2nd 3 years

Modula2-2 ECE B.S. 1984 M.S. 2nd 2 years

Pascal-1 EE B.S. 1984 M.S. 4th 6 years
EECS B.S. 1984

Pascal-2 ECE MS. 1986 Ph.D. 2nd 2 years
EE B.S. 1984

Prolog-1 cs M.S. 1986 Ph.D. 2nd 3 years

Prolog-2 CS B.S. 1986 M.S. 2nd 3 years

T-1 EECS B.S. 1983 M.S. 3rd 2 years

T-2 CS B.S. 1986 M.S. 2nd 3 years
ECE B.S. 1981

Coord-1 cs M.S. 1984 Ph.D. 4th 6 years
CS B.S. 1984

Coord-2 cs M.S. 1986 M.S. 2nd 3 years

Coord-3 ECE B.S. 1986 M.S. 2nd 2 years

Table 1: Summary of the UCLA Programmer and Coordinator Background

held on the first day of the software development phase. At that meeting, the
programmers were given the written specifications and documentation on system
tools to start their 12-week effort. Rules and guidelines about schedules, deliverables,
and communication protocols were also clearly defined. The programmers were

strongly motivated and showed serious concerns about the project in these meetings.

il

The need for inter-team isolation was thoroughly discussed and clearly acknowledged
by all programmers.

Design phase (4 weeks): At the end of this four-week phase, each team delivered a
design document following the guidelines and formats provided at the kick-off
meeting. Each team delivered a design walkthrough report after conducting a
walkthrongh which was attended by UCLA and H/S principal investigators, the
UCLA coordinating team, and an H/S software expert.

Coding phase (3 weeks): By the end of this 3-week phase, programmers had finished
coding, conducted a code walkthrough by themselves, and delivered a code
development plan and a test plan. Code Update Report forms were distributed for
them to record every change that was made after the code was generated.

Unit testing phase (I week): Each team was supplied with sample test data sets
(generated by H/S) for each module that were suitable to check the basic
functionality of that module. They had to pass all the unit testing data before they
could proceed to the next phase. One week was allotted to this phase. At the end of
this phase, each team conducted a coding/testing review with UCLA coordinators and
H/S representatives to present their progress and testing experience.

Integration testing phase (2 weeks): Four sets of partial flight simulation test data
were produced by H/S and provided to each programming team for integration
testing. This phase of testing was intended to guarantee that the software was suitable
for the closed-loop simulation of the integrated system.

Acceptance testing phase (2 weeks): Programmers formally submitted their
programs. Each program was run in a test harness of nine flight simulation profiles.
When a program failed a test it was retumed to the programmers with the input case
on which it failed, for debugging and resubmission. By the end of this two week

phase, five programs had passed this acceptance test successfully. The T program

12

encountered difficulties in using the T interpreter and it was necessary to do

additional work over the next month before that version passed the acceptance test.

All the participants of this project presented concluding talks and met each other
socially at a final one-day workshop when the software generation phase ended. During that
occasion programmers were free to talk with each other, exchange their experiences, and fill out
a Post—Experinient Questionnaire. A large variety of experiences, viewpoints and difficulties

encountered were brought out during this final workshop and following party.

All the forms and documents that were distributed in this experiment are listed in

Appendix II.
3.3 The Programming Process

The software engineering process involved in this project included formal reviews,
well-planned record keeping, isolation rules, a formal communication protocol, and carefully
executed testing phases. This controlled process provided continuous interactions between the

coordinators from UCLA and H/S, and each individual team.

The design review, the coding/testing review, and the final review and workshop were
the three formal reviews within this project, all with the participation of H/S experts. These
reviews were designed to follow industrial standards as much as possible. Moreover, they
served as checkpoints to observe the progress of each programming team and to adjust the

development process according to their feedback.

For the purpose of keeping a complete record, several "deliverables” were required from
each team. These deliverables, representing the products of the project, included two
"snapshots" of each separate module (before and after unit tests), four snapshots of the complete

program (those before and after integration tests, and those before and after acceptance tests),

13

two design documents (preliminary and final versions), program metrics, design walkthrough

reports, and code update reports.

Since error reporting was considered extremely important for this project, each team was
required to report all the changes made to their program, starting from the time when the
program first compiled successfully. All changes had to be reported, no matter whether they
were due to detected faults, efficiency improvement, specification updates, etc. For each change
a "Code Update Report", a standardized form designed by the coordinating team, had to be
turned in. If a code change was made because of a design change, a "Design Walkthrough
Report" (another standardized form) had to be submitted as well. For the subsequent analysis,

we consider only those changes that were done to correct faults in the programs.

The purpose of imposing isolation rules on the teams was to assure the “‘independent
generation’’ of programs, which meant that programming efforts were carried out by individuals
or groups that did not interact with respect to the programming process. In order to keep this
constraint, the programming teams were assigned physically separated offices for their work.
Additionally, programmers were strictly admonished not to discuss any aspect of their work
with members of other teams. The coordinating team monitored the progress of each team.
Work-related communications between programmers and the coordinating team were
conducted only via a formal tool (electronic mail). The programmers directed their questions to
the coordinating team, who then tried to respond as quickly as possible. Whenever necessary,
the help of the H/S flight control experts was provided by phone calls and personal meetings to

resolve questions.

Generally, each answer was only sent to the team that submitted the corresponding
question. The answer was broadcast to all teams only if the answer led to an update or
clarification of the specification, if there was an indication of a misunderstanding common to

some teams, or if the answer was considered to be important or relevant for other teams for

14

some other reason. In the first case, a broadcast constituted an official amendment to the
original specification. This contrasts with the communication protocol used in the NASA
experiment [Kell86] where the answers to all questions were broadcast, regardless of which
team submitted the question. The resulting flood of messages proved to be a bothersome
overload, that was avoided this time. The communication diagram among H/S experts, the

UCLA coordinating team and the programming teams is presented in Figure 2.

Honeywell/Sperry CESD
Meetings,
Phone Calls
UCLA Coordinating Team
Ema\\\
Ada C Modula-2 Pascal Prolog T
Team Team Team Team Team Team

Figure 2: Communication Diagram of the Experiment

3.4 Experience with the Communication Protocol

The communication protocol was designed in order to: (1) prevent the ambiguity of oral

communications; (2) give the coordinating team time to think and discuss before answering a

15

question and to summon the help of H/S flight control experts, if necessary; (3) provide a record
of the communication for possible analysis; (4) reduce the number of messages sent to each
individual team; and (5) adhere to the principle of supplying only absolutely necessary
information to the programming teams, aiming to avoid any bias on a team’s design decisions

by supplying unnecessary and/or unrequested information.

With respect to the first three goals the protocol was very successful although
occasionally it was felt that it was more difficult to write the answer to a certain question, that
oral communication would have been easier and more efficient in some cases. The
communication with H/S was very efficient; thus it was possible to answer all questions within a

short time, usually less than one day.

Altogether, about 120 questions were sent by the programming teams. The answers to
only 30 of them were broadcast. The total number of broadcast messages was 40, three of
which required an additional follow-up message, to provide further clarification or to correct
errors in the original message. 10 broadcast messages were not triggered by a question; 5 of
them were sent because either the coordinating team or H/S detected an error in the
specification or for some other reason decided to update it, and 5 of them were a result of the
Design Review at which some common misinterpretations of the specification were observed.
The individual teams received between 53 and 64 messages; that constitutes a reduction by a
factor of 2 in comparison with the number of messages that would have been received if the

communication protocol of the NASA experiment [Kell86] had been used.
3.5 Exercise of the Phased Testing

To emphasize the importance of testing, three phases of testing, unit tests, integration
tests, and acceptance tests, were introduced for error detection and debugging. Different

strategies for program testing were provided during program generation phase in order to clean

16

up programs before they were subjected to a final evaluation. Table 2 lists the differences

among these phases.

category unit test phase integration test phase acceptance test phase
test case open loop by PC Basic | closed loop by PC Basic | closed loop by
generator multiple languages
test data access || file i/o by each version | interfacing C routines interfacing C routines
test procedure by individual teams by individual teams by coordinating team
tolerance level | 0.01 for degrees 0.01 for degrees 0.005 for degrees
(except prolog)

Table 2: Different Schemes Used in the Testing Phases

At first a reference model of control laws was implemented and provided by H/S flight
control software engineers. This version was implemented in Basic on an IBM PC to serve as
the test case generator for the unit tests and the integration tests. Criteria of open loop testing
and closed loop testing were used, respectively. Due to the wide numerical discrepancies

between this version and the other six versions, a larger tolerance level was chosen.

Later in the acceptance test, this reference model proved to be less reliable (several
faults were found) and less efficient, since the PC was quite slow in numerical computations and
I/O operations. It was necessary to replace it with a more reliable and efficient testing
procedure for a large volume of test data. For this procedure, the outputs of the six versions
were voted and the majority results were used as the reference points to generate test data
during the acceptance tests. This was also the test phase that programmers were required to
submit their programs to the coordinating team and wait for the test results. A finer tolerance
level was used based on the observation that less discrepancies were expected if programs
would compute the results right. An exception had to be made for the prolog program due to

the lack of accuracy in its internal representation of real numbers.

17

As to the numbers of test cases performed in each phase, the detailed information is

presented in the following three tables, Table 3, Table 4, and Table 5.

name of the module number of test cases
baro altitude filter 7
radio altitude filter 11
glideslope filter 7
mode logic 11
altitude hold mode outerloop 10
glideslope mode outerloop 12
flare mode outerloop 15
innerloop 23
command monitor 5
display module 32
total 133
total frames about 1330"

* There were roughly ten frames per each test case.

Table 3: Test Data in Unit Test Phase

id testing time | involved modes wind turbulence

data.l | 12sec AHD mode only no wind turbulence
data.2 | 12sec AHD-GSCD-GSTD | no wind turbulence
data.3 | 12sec AHD mode only average wind turbulence
datad4 | 12 sec AHD-GSCD-GSTD | average wind turbulence
total frames 960 frames

* Each second has 20 frames of execution.

Table 4: Test Data in Integration Test Phase

18

id time involved modes turbulence | other test
data.l | 100sec | AHD-GSCD-GSTD no no
data.2 | 180sec | AHD-GSCD-GSTD-FD-TD | no no
data.3 | 100sec | AHD-GSCD-GSTD average no
data.4 | 180sec | AHD-GSCD-GSTD-FD-TD | average no
data.5 | 100sec | AHD-GSCD-GSTD maximum j no
data.6 | 180sec | AHD-GSCD-GSTD-FD-TD | maximum | no
data.7 | 30sec AHD mode only maximum | recovery
data.8 | 22 sec AHD-GSCD-GSTD-FD-TD | maximum | recovery
data.9 | 30sec AHD mode only maximum | display
total frames 18440 frames

* Each second has 20 frames of execution.

During the above testing phases, numerous errors were found. The audit of errors in

both the specification and the programs, together with their descriptions and classifications, is

Table 5: Test Data in Acceptance Test Phase

discussed in later sections.

19

4. The Evolution of the Specification

In this section we will briefly describe how the specification (also called Software
Requirements Document) for the application problem was developed. We will also cover the
changes made to the specification during the course of the experiment. Finally, some remarks
and criticism from members of the programming teams, as well as some other observations are

reported.
4.1 Process of Writing the Specification

The efforts to develop a specification that is suitable to be used by the programming
teams started early in 1987. Since it was clear from the beginning that programming the
complete autopilot would be too complex and too large a task for a twelve week programming
experiment, the first major task was to find a subset of the autopilot that, when programmed,
would result in a program of "reasonable” size. "Reasonable” was informally defined as "as
large as possible while still being manageable within twelve weeks". It was decided that the

"pitch” function of the autopilot with some added display functions should be programmed.

In the next step, representatives from H/S extracted the information needed for the
experiment from their original Demonstrator specification and provided it in a "System
Description Document”, which was subsequently reviewed by the members of the coordinating
team. The goal was to understand the problem as thoroughly as possible, in order to avoid as
many ambiguities as possible and to provide a clear specification. Many meetings of the
coordinating team with representatives from H/S were devoted to clarify various aspects, partly

on a very detailed level.

To write the specification that was given to the programmers, the UCLA coordinating
team followed the principle of supplying only minimal (i.e., only absolutely necessary)

information to the programmers, so as not to unwillingly bias the programmers’ design

20

decisions and overly restrict the potential design diversity. The diagrams describing the major
system functions were taken directly from the System Description Document, while the

explanatory text was shortened and made more concise.

The original System Description Document specified "test points”, ie., selected
intermediate values of each major system function which had to be provided as outputs for
additional error checking. A further enhancement to the specification was the introduction of
cross-check points [Aviz85a) and a recovery point [Tso87]. Seven cross-check points are used
to cross-check the results of the major system functions (e.g. Complementary Filters, Mode
Logic, Outer Loop, Inner Loop, etc.) with the results of the other versions before they are used
in any further computation. They have to be executed in a certain predetermined order, but
again great care was taken not to overly restrict the possible choices of computation sequence.
One recovery point is used to recover a failed version by supplying it with a set of new internal
state variables that are obtained from the other versions by the Community Error Recovery

technique [Tso87].

In an appendix, the symbols used in the graphical representations of the system
functions were explained, and it was explained how to deal with feed-back loops that appeared
in the charts. In addition, the coordinating team imposed the requirement that two input
routines and eight so-called "vote routines" be inserted at well defined points of the computation
sequence. The purpose of the input routines was to facilitate the reading of sensor data for each
channel. The purpose of the vote routines was to allow cross-checking and comparison of
different versions’ outputs of major system functions, as well as of some selected intermediate

results (test points). A second appendix defined the syntax of all these vote routines.

We have noted that a small number of errors in the original specification could lead to
numerous ambiguous and contradictory addenda in the form of question and answer pairs

[Kell86]. To prevent the confusion, the coordinating team at UCLA was very careful about

21

message replying in order to minimize the broadcast information. Since there was always a
quick response from H/S ftight control engineers when the question needed to be forwarded to

them, the turn-around time for the programmers to receive their answers was very short.

During software generation, many errors and ambiguities in the specification (including
the electronic communications) were revealed. All questions by the programming teams were
handled according to the communication protocol described before. Throughout the program
development phase, the specification has been maintained as clear and precise as possible.
More details about the questions that programmers came up with, as well as the changes to the

specification they triggered, can be found later in this section.

The specification has now been restored to a single document, a document that has
benefited from the scrutiny of more than 16 motivated programmers and researchers. This
current version of the specification is provided in Appendix I. The changes of the specification,

compared with its original version given to the programmers, are marked in bold faces.
4.2 Questions and Answers

The so-called "Question and Answer" messages conveyed information that the
coordinating team judged to be important for all teams. Therefore, these messages were
broadcast to all programming teams. Specification updates and changes were always announced
with messages of this type, but not all Question and Answers contained specification updates.

The following is a short summary about the "Question and Answer" messages.

All in all, there were 40 Questions and Answers. (There was another one that did not
deal with specification related issues and is therefore not counted here.) In addition, 3
Questions and Answers required a follow-up message, to provide further clarification or to

correct errors in the original message.

22

With respect to the time these messages were sent, we found that the majority of them
(34) were sent during the Design and Coding phases of the experiment, and that 6 were sent

after the coding phase.

Another interesting aspect is to examine the reason why these messages were sent. Most
of them (30) were sent in response to a question from one or more programming teams. The
answer to such questions was broadcast if there was an indication of a common
misunderstanding of some teams, if the question revealed a problem in the specification and the
answer thus contained a specification update, or if the answer was considered to be important to
other teams for some other reason. 6 messages were initiated by the coordinating team, because
some mistake was discovered. 5 of these latter messages were a result of the Design Review,
and were broadcast to all teams because some common misinterpretation of the specification
were found then. 3 Questions and Answers were sent because of specification updates or
changes from H/S, made after the experiment had already begun. Finally, one specification

update was necessary after an error had been detected during testing.

The number of Questions and Answers, grouped by their content, is shown in Table 6.

typos and readability problems

Inner Loop

Mode Logic

Vote Routines

Initialization

switch SW3 in G/S Control Law
general questions on basic operations
miscellaneous rest

W W W A OO

Table 6: Distribution of Broadcast Questions and Answers

Note that the numbers do not necessarily add up to 40 because some messages might

have been counted more that once. For instance, if a Question and Answer was concerned with

23

the initialization of the Inner Loop, then it is counted in the category "Initialization", as well as

in "Inner Loop".

4.3 Specification Changes

In this section we give a list of all specification changes made during the twelve weeks
of the experiment. Only the correction of typos is ignored. These changes can be audited by
either reviewing the 40 Question and Answer messages, or by comparing the version of the
specification at the end of the experiment with the first version. In the following, changes are

reported in the order in which they are found in the specification, not in chronological order.
4.3.1 Changes in Chapter 2 (System Overview)

In the section on the major computation sequence the words "with path integrator” have
been deleted in item 6) because they did not convey any information at this point, and led to
some confusion. The mistake here was to copy directly from H/S’s System Description

Document.
4.3.2 Changes in Chapter 3 (Complementary Filters)

In the section on the Radio Altitude Complementary Filter, the initialization of
integrator 16 was specified twice, and inconsistently. This was solved by deleting the words
"and 16" in the first sentence of the initialization part. The reason for this error is a typo during

editing that was not found by subsequent proof-reading.

In Figure 3.3, the Glide Slope Deviation Complementary Filter, the drawing note 2) had
to be changed from "see Fig. 5.3.3-2" to "see page 13". The old version of the drawing note
related to a figure in H/S’s original System Description Document. Instead of using that figure

the information was given in textual form in the specification. This was simply an oversight

24

when taking the figures from the System Description Document and putting them into the

specification.
4.3.3 Changes in Chapter 4 (Mode Logic)

A lot of changes had to be made in the Mode Logic. First of all, the sentence "The
initial values for GSCD, GSTD, FD, and TD are all ’false’" was added at the end of section 4.3.
It was decided to add this sentence for clarity although it is stated in the introduction that the
initial mode is Altitude Hold Mode, therefore the variables for all other modes have to be 'false’

initially.

In figure 4.1 of the Mode Logic, three changes were made: First, the sign of the input
FPDC1 was changed from ’-’ to ’+’, indicating that it should be added to FPECI instead of
being subtracted from. Then, additional inputs were added to the last AND-gates before the
outputs AHD, GSCD, and GSTD, to ensure all Mode Logic variables are properly reset, even if
a mode should happen to be skipped (i.e. not entered at all). These two changes were made
because of specification updates received from H/S. Last, a statement was added to the drawing
note 2), saying that zero should be regarded as a positive number in this case. This was done to
ensure that comparing the sign of magnitude of two numbers was a defined operation even if

one (or both) of these numbers happened to be zero.

In figure 4.2 of the Mode Logic, the drawing note 1) was changed from "initialize to

input” to "initialize to zero". This was a specification change from H/S.
4.3.4 Changes in Chapter S (Altitude Hold Mode Control Law)

A paragraph was added to the section "Processing of the Inner Loop" to explain the
special case of a feedback loop overlapping with another computation path. Rather detailed

instructions were given on how to deal with and how to compute this special case. The reason

25

for this change was that it was not easily possible to apply the general explanation about how to

determine the computation sequence (Appendix A) to this case.

Some changes were made to figure 5.1, Altitude Hold Control Law. The gain constant

above summer SU10 was changed to Tlg the gain constant to the left of summer SUS was

changed to 0.05, and the input "Pitch Attitude" was fed to summer SU3 (with a negative sign)
instead as to summer SU6. These three changes were due to specification updates from H/S.
Then, the line leading from the output of limiter LM1 to the determination of the condition for
switch SW2 was moved to the right, so that it originates on top of the rate limiter LR1. This
was done in order to clarify the fact that the history of rate limiter LR1 has to be used to
determine the condition for SW2. (Note: The same change, for the same reasons, was made in
figures 6.1 and 7.1, Glide Slope Capture and Track and Flare Control Laws, resp.) Finally, the
drawing note 1) was removed from integrator I1, in order to eliminate an inconsistency between

the figure and the text — where the text turned out to be correct.
4.3.5 Changes in Chapter 6 (Glide Slope Capture and Track Control Law)

A paragraph was added in the section "Processing of the Outer Loop” to explain the
condition for switch SW3. This was necessary because the notation used was not self-
explanatory. In figure 6.1, OQuter Loop of G/S Capture and Track Control Law, the condition for
switch SW3 was changed from "GSCD + 0.5 SEC" to "(GSCD + GSTD) + 0.5 SEC" to account
for the possibility that G/S Track Mode is entered immediately after Altitude Hold Mode.

Furthermore, the labels "A" and "B" were added to the appropriate inputs of divider D6.

As for the Inner Loop of the G/S Capture and Track Control Law, the gain constant
above summer SU10 was changed to ILG’ and the drawing note 1) was deleted from the rate

limiters LR1 and LR2 to ensure that the rate limiters are only initialized when the Altitude Hold

26

mode is entered. These changes were due to specification updates from H/S. Furthermore,
changes in the corresponding text (in the part on the differences to the Altitude Hold Inner Loop
and on initialization) had to be made to stay consistent with the changes made to figures 5.1 and
6.1. Last, the formulation "... resulting value of @(T)=0.(T-1) .." was altered to "..
resulting value ©(T) approximately equals ©¢(T-1) .." because H/S found that the exact
equality could not be guaranteed in every case. (Note: Similar changes to the text were also

made in the description of the Flare Control Law Inner Loop.)
4.3.6 Changes in Chapter 7 (Flare Control Law)

In figure 7.1, the following changes were made to the Inner Loop of the Flare Control

Law: the gain constant above summer SU10 was changed to Tlé— and the drawing note 1) was

removed from the rate limiters LR1 and LR2 (for the same reasons as before). Furthermore,
changes in the corresponding text (in the part on the differences to the Altitude Hold Inner Loop
and on initialization) had to be made to stay consistent with the changes made to figures 5.1 and

7.1.
4.3.7 Changes in Chapter 8 (Command Monitors)

In figure 8.1, Command Monitor, "2" was replaced by "<" in the condition for function
F13, because the output should be "true” if no error was detected, "false” otherwise. This error
was due to a misunderstanding of what the actual meaning of the Command monitor output

was.
4.3.8 Changes in Chapter 9 (Displays)

In the description of the displays "eight-bit field" was replaced by "seven-bit field” to
remove an inconsistency between text and the corresponding figure. Furthermore, in the section

on special requirements, the sentence "If the voter alters their values, the altered values must be

27

left in the variables" was deleted because in the case of display no meaningful voting can be

done, and the vote routine is jﬁst used to output the results of the Display routines.
4.3.9 Changes in Appendix A (System Diagram Symbols)

In Appendix A8, "Function", two changes were made: The word "filter" in the last
sentence of the first paragraph was replaced by "function” because here we wanted to talk about
functions in general, whereas a filter is just a special function. In the second paragraph, the
sentence "The input X(T-1) is set to zero during the initialization of a linear filter" was added

because this turned out to be generally true; so we decided to state it only once.

In Appendix A15, "Computation Procedures”, the following paragraph was inserted as
the first one: "Each integrator in the diagram should complete the integration process before the
output is computed, so that the output includes the most recent input.” Also, Appendix AlS5.1
and the following example were updated to meet this principle. Last, wrong constants "32.2"

instead of "32" had been used in this example.
4.3.10 Changes in Appendix B (Parameter List Definitions of External Routines)

In Appendix B4, the test points "tp_9" and "tp_11" were added to the parameters of the
routine VOTEMODE.

A forth note was added at the end of Appendix B, in order to make clear what should be
done if some test point or a state variable is undefined: "Whenever some parameters in a voting
routine are not defined or are not up-to-date because the corresponding part of the computation
was not performed in the current frame, default values of 0.0 should be passed to that voting

routine."

28

4.4 Other Questions and Clarifications

Answers to other questions that were not considered important for all the teams were
sent only to the team that asked the question. The same applied for inquiries for more
background information or for general discussions. Table 7 shows the total number of such
questions asked by each teamn. Only questions related to specification issues are counted here.
This number is not necessarily equal to the number of messages sent because sometimes more
that one question was asked (and answered) in the same message, or sometimes it took more
than one message to answer a question satisfactorily. One message per team was initiated by
the coordinating team to provide some individual feedback from the Design Review. This

message is disregarded in the subsequent discussion.

team # questions raised # quest%ons. raised
by each team by coordinating team
ADA 20 1
C 12 1
MODULA-2 10 1
PASCAL 9 1
PROLOG 18 1
T 15 1
Total g6 6

Table 7: Number of Questions and Answers Replied Individually

The ADA team had many questions concerning the Mode Logic. Most of these,
however, were just to confirm some poorly legible text on the figures pertaining to the Mode
Logic. Some confusion was due to the fact that figure 4.2 was just a copy of part of figure 6.1,
which led to some name conflicts, although it was stated in the specification that these two
figures should be regarded as being independent from each other. Some questions related to the

Inner Loop, specifically to the initialization of the Inner Loop state variables and to switch

29

SW2. Other specific questions were asked regarding limiter LM9 in the Flare Control Law,
which is a special case because it does not have an upper bound, and to switch SW3 in the Glide
Slope Capture and Track Control Law. Another concern was the use of the vote routines

provided by the coordinating team. The rest of the questions was about miscellaneous topics.

One of C team’s concerns was poorly legible text in the Mode Logic and Flare Control
Law figures. Two of their three questions on the Command Monitor asked for a background
explanation of some statements in the text of the specification. The question of "figure 4.2
versus figure 6.1" also came up. Specific questions were asked about limiter LM12 and
function F9 in the Glide Slope Deviation Complementary Filter. The former is a special case
because it uses dynamic upper and lower bounds, the latter was given in a graphical
representation and was not so easy to read. One question was concerned with the initialization
of a Flare Control Law variable because an intermediate result had to be used which was not
available at the entry point of the Flare Control Law. The rest of the questions was about

miscellaneous topics.

Most of the questions of the MODULA-2 team addressed the Mode Logic. Two of them
were concerned with poorly legible text in the figures. The name conflict of test points between
figures 4.2 and 6.1 (mentioned above) prompted another one. The other questions were due to
uncertainties of how to compute (parts of) the Mode Logic algorithm. Most of the other
questions were general questions on the use and implementation of the vote routines. Another

questions was raised about the initialization of the rate limiters LR1 and LR2 in the Inner Loop.

The PASCAL team misunderstood at first the algorithm to compute a Linear Filter.
Poorly legible text in some figures (Mode Logic, Flare Control Law) was again a problem. The
use of default values for the vote routines (Mode Logic, Inner Loop) when a function is not
computed also caused some questions. Initialization of state variables (Inner Loop, Command

Monitor) was also one of their concems.

30

The PROLOG team had many general questions on the correct way to handle feedback
loops in the control laws and other functions. The way to compute the Mode Logic was unclear
and the question of "figure 4.2 versus figure 6.1" also came up. The use of default values for
vote routines (Mode Logic, Inner Loop) again raised some questions. Most of the other

questions were general ones, specifically about vote routines.

The T team asked many general questions about the overall control loop, initialization,
vote routines and test points, mode selection, and recovery. Poorly legible text in some figures
(Radio Altitude, Glide Slope Deviation Complementary Filter, and Mode Logic) was once more
a problem, The correct way to compute the Mode Logic was a major concern. Other questions

related to the initialization and the correct way to compute the Inner Loop.

In summary, Table 8 gives the number of questions asked by each team for each major

subfunction (or part of the specification).

Major Function ADA C MODULA-2 PASCAL PROLOG T
Main Program 3 1 0 0 3 4
Complementary Filters 4 2 0 0 1 1
Mode Logic 7 2 5 2 4 2
Alt. Hold Outer Loop 0 0 0 1 0 0
Glide Slope Outer Loop 1 0 0 1* 0 0
Flare Outer Loop 1 2 0 2" 0 0
Inner Loop 3 0 1 2 0 2
Command Monitor 0 3 0 1 0 0
Display 1 1 0 0 0 0
General, other 0 1 4 2 10 6
Total 20 12 10 9 18 15

: There was one message related to the Quter Loop in general, so it was counted in all three rows.

Table 8: Number of Questions Answered by Each Team for Each Subfunction

31

Table 9 distinguishes the questions according to their content, i.e. if the questions asked
about (some aspect of) initialization, about readability of text, the handling of feedback loops,

general background information, etc.

Question Contents ADA C MODULA-2 ;| PASCAL | PROLOG T
Initialization 2 1 1 2 1
Interpretation of 5 5 1 1 4 5
Diagram, Algorithm
Handling of Feedback 1 0 0 0 3 0
Loops
Main Program 2 0 0 ¢ 2 0
computation
Vote Routines 2 1 4 0 4 3
Readability 3 2 2 2 0 1
Background Information 0 2 0 0 0 1
Other 5 1 2 4 4 3
Total 20 12 10 9 18 15

Table 9: Distribution of Questions According to Their Content

4.5 Summary and Observations

Every team had difficulty reading some of the text in the figures (only some of the
figures were criticized). Ironically, most of the trouble occurred with machine-typed numbers
(or text) that became blurred or were reduced in size by frequent photocopying. In general,
handwritten numbers, however, were big enough to be easily discenible . This problem
occurred because the figures were not redrawn, but copies from H/S’s System Description
Document were used. The motivation behind this decision was convenience and the fear of

introducing errors (typos) during the the process of regenerating the figures. What should have

32

been done was a “figure walk-through" in order to ensure that all numbers were clearly
readable. Several teams (ADA, PASCAL, PROLOG) complained about the readability of

numbers in their Final Reports.

Another major drawback was that the part of the specification that tried to give a general
rule on how to handle feedback loops was not very precise and also not exactly correct in the
first version of the specification. Quite a few explanations and specification updates were
necessary to remedy the situation. It was especially disturbing because this rule is central to
develop almost all the algorithms of the problem and thus caused some delay in the Design
Phase. Some teams even had to re-develop some of their algorithms according to new rules.
The problem most likely was due to the fact that the coordinating team at the time of writing the
specification was already fairly familiar with the application and did not notice this poorly
defined guideline. Again, several teams (PASCAL, PROLOG) mentioned that problem in their
Final Reports.

The Mode Logic presented a big problem, too. The algorithm was specified as an
interconnection of logical AND and OR gates. However, had it been a piece of hardware, a
race condition would have occurred. Stated in terms of software, one output variable was
defined as a function of itself. Originally, H/S was reluctant to change the specification because
all diagrams used were "certified”. In the end, H/S and the coordinating team agreed on a
correct way to compute the Mode Logic, and the programming teams were simply told how to
implement it. Nevertheless, this procedure probably caused all teams to develop the algorithm

in a very similar manner — thus reducing some opportunity for diversity.

In two cases, the problem was that the graphic language used did not have the power to
express a complicated condition correctly. This occurred with the conditions for switch SW2 in
the Inner Loop and for switch SW3 in the Outer Loop of the Glide Slope Capture and Track

Control Law.

33

To determine the position of switch SW2 the rate of a certain signal had to be evaluated.
As the past value of that signal, the history of the rate limiter LR1 was supposed to be used.
However, there was no means of depicting this interrelationship, and many teams just used the

signal value itself instead of its rate.

Switch SW3 was to be closed 0.5 seconds after the system entered Glide Slope mode,
and had to be open before that time. This was represented as "(GSCD + GSTD) + 0.5 sec”,
which led to some confusion — probably because the first "+" represented the logical OR and the
second "+" was meant to say "after the preceding logical condition". Another problem was that
it was not clear whether the switch should remain closed after the specified time, or not. In both

cases, additional paragraphs were added to the specification to define these special cases.

When trying to determine the cause of committing the errors found during the test
phases, one must come to the conclusion that there are at least three more errors in the

specification (apart from typos):

A) In the Mode Logic (pp. 18-21), it is not specified that the variables FPEC1 and
FPDC1 have to be set to zero when the system is not in Altitude Hold mode. This
omission occurred because originally it had been decided that it should be up to the
programmers whether to compute FPEC1 and FPDC1 during modes other than
Altitude Hold or not. But later it turned out that a uniform decision has to be required
to avoid unnecessary error signals from the cross-check routines. (For example, if
one version always computes updated values of FPEC1 and FPDCl1 and another
version stops computing these values after Altitude Hold mode, these two versions
will — most likely — disagree at the cross-check point that checks FPECI and
FPDC1.)

B) On page 30, the method for transitioning from Altitude Hold mode to Glide Slope

Capture and Track mode is not described correctly, because it is possible that the

34

system goes from Altitude Hold directly to Glide Slope Track mode. Thus the

transition should be described as follows:

1) Compute the states of GSCD, Glide Slope Capture Discrete, and GSTD,
Glide Slope Track Discrete.

2) If GSCD = 0 and GSTD = 0, proceed with Altitude Hold mode
computation.
3) FGSCD=10orGSTD =1

(... rest as before ...)
G On pages 30 and 35 it is not specified that the input of integrator I1 in the Inner Loop
must be re-initialized with zero upon the mode transitions from Altitude Hold to
Glide Slope Capture and Track and from Glide Slope Capture and Track to Flare.

This omission is due to a deletion during a specification update.

In general, many participants in the experiment felt that the specification was very
detailed, strict, and pretty much partitioned the problem. While this saved some development
time, it was considered unlikely on the other hand that the resulting programs could be in any
significant way "different”. This observation is certainly correct; it is due to the nature of the
application. Partitioning according to function seemed very natural, and so each function was
described in a chapter of the specification. The sequence of computing these functions was also
almost completely determined by the data dependencies between them. And since every
function was small enough so that it did not need further partitioning, each function became
essentially a software module. We feel that not much could have been done about it, or how
does one unpartition a specification? It remains to be evaluated how much diversity there

nevertheless is between different programs.

35

5.2 Faults Detected during Program Development

A total of 82 faults was found and reported during program development. The following
four tables present the distribution of these faults in the six versions under different categories.

Detailed description of all these faults is shown in Appendix IIL,

Table 11 shows the fault distribution in each system function. The total adds up to more
than 82 since all the modules affected by one fault are counted. An asterisk indicates such a

case.

Classification of faults according to fault types is shown in Table 12. This category
considers the following type of faults: (1) typographical; (2) error of omission (missing code);
(3) unnecessary implementation (which was deleted); (4) incorrect algorithm; (5) specification
misinterpretation; and (6) specification ambiguity. "Incorrect algorithm" is the most frequent

fault type, which includes miscomputation, logic fault, initialization fault, and boundary fault.

Metric ADA C MODULA-2 | PASCAL | PROLOG T
LINES 2253 1378 1521 2234 1733 1575
STMTS 1031 746 546 491 1257 1089
LN-CM | 1517 861 953 1288 1374 1263
OBJS 85.6k 83.7k 51.9k 37.5k N.A. N.A.
MODS 36 26 37 48 77 44
STM/M 29 25 15 10 16 25
CALLS 97 - 68 65 93 81 87
LIBS 2 2 2 10 7 N.A.
LCALL 3 9 6 12 61 N.A.
GBVAR 139 141 91 81 90 97
LCVAR 117 197 132 127 209 251
CONST 68 21 18 16 N.A. N.A.
BINDE 74 114 78 118 74 86

N.A. = not applicable

Table 10: Software Metrics for the Six Programs

37

ADA C MODULA-2 | PASCAL | PROLOG T Total
Main Program 1 2 0 0 7 6 || 16
BACF 1 0 1 0 2 T 7
RACF 0 0 0 0 1 1 2
GSCF 1 i 1 4 7 27| 16
Mode Logic 1 4 0 0 N M
Alt. Hold OQuter Loop 0 0 0 1" 0 0 1
Glide Slope Outer Loop 0 1 0 0 0 0 1
Flare Outer Loop 1 2 0 1 2 1 7
Inner Loop 1 3 0 4" 4 2 14
Command Monitor 0 0 0 0 1 2 3
Display 0 0 1 3 1 1 6
General, other 0 0 1 0 5 4 [10
Total 6 13 4 13 3 24 91
*: This fault affected more than one subfunction.
Table 11: Fault Distribution by Subfunctions
ADA | C | MODULA-2 | PASCAL | PROLOG | T || Total
Typo 0 1 0 0 9 ol 10
Omission 1 3 0 0 8 5 17
Unnecessary 1 0 0 1 0 2 4
Incorrect Algorithm 3 5 2 7 9 13 39
Spec. Misinterpretation 1 3 1 4 0 1 10
Spec. Ambiguity 0 1 0 0 0 0 1
Other 0 0 1 0 0 0 1
Total 6 13 4 12 26 21 82

Table 13 shows during which phases of testing the faults were detected. A finer

Table 12: Fault Classification by Fault Types

granularity for classification of the Integration Testing and Acceptance Testing phases is

presented in Table 14, where each error is associated with the test data detecting it. The item of

"other" indicates those errors independent of the test data, but nevertheless found in these

38

phases (e.g., by code inspection).

ADA | C | MODULA-2 | PASCAL | PROLOG | T | Total

Coding/Unit Testing 2 4 4 10 15) 42

Integration Testing 2 5 0 2 7 4 20

Acceptance Testing 2 4 0 0 4 10 20

Total 6 13 4 12 26 21 B2

Table 13: Fault Classification by Phases

ADA | C | MODULA-2 | PASCAL | PROLOG | T || Total
Integration/data.1 1 3 0 2 1 1 8
Integration/data.2 1 2 0 0 0 0 3
Integration/data.3 0 0 0 0 0 0 0
Integration/data.4 0 0 0 0 0 0 0
Acceptance/data.1 0 1 0 0 0 0 1
Acceptance/data.2 2 2 0 0 1 2 7
Acceptance/data.3 0 0 0 0 0 1 1
Acceptance/data.4 0 0 0 0 1 0 1
Acceptance/data.5 0 0 0 0 0 0 0
Acceptance/data.6 0 0 0 0 0 0 0
Acceptance/data.”7 0 0 0 0 0" 3 3
Acceptance/data.8 0 1 0 0 1 0 2
Acceptance/data.9 0 0 0 0 0 0 0
Subtotal 4 9 0 2 4 7 26
Other 0 0 0 0 7 7 14
Total 4 9 0 2 11 14 40

Finally, Table 15 shows the classification of faults according to the categories of

Table 14: Error Classification by Test Data

"requirements fault" and "structural fault" (see section 2.4).

39

ADA | C | MODULA-2 | PASCAL | PROLOG | T | Total
Requirements 5 12 3 11 21 19 71
Structural 1 1 1 1 5 2 11
Total 6 13 4 12 26 21 82

Table 15: Fault Classification: Requirements Faults vs. Structural Faults

5.3 Additional Observations

All cross-check and recovery point routines were written in the C programming
language, and therefore five of the six programs had the additional problem of interfacing to
another language. The Prolog and the T team had the most severe problems. The Prolog team
had to modify the Prolog interpreter; the solution of the T team was to convert all parameters to
ASCII strings, pass them to a C routine, convert them back into numbers, do the cross-checking,

convert the results into strings, and pass them back to the T functions.

Three compiler or interpreter bugs were found during program development: the Ada
compiler did not support nested generic packages (which resulted in a design change to avoid
using this feature). With the Modula-2 compiler the expression "i+i" had to be used as an array
index instead of "2*i" to achieve the desired result. This fault is classified as the type "other” in
Table 12. The T interpreter had a problem with its garbage collection which resulted in
uncompleted long test runs. This problem delayed the T program’s passing of the acceptance

test for over a month.

In addition, we experienced a computing environment change during the experiment.
This did cost some time, but finally all teams were moved to the new Sun workstations. Only
the Modula-2 team had to continue to use the original VAX computers, due to their compiler

not being available on the Sun.

40

It is interesting to note that there was only one incidence of an identical fault, committed
by two teams, ADA and MODULA-2. In both cases the fault was discovered during unit
testing. The fault was the following: the output of an integrator in the Barometric Altitude
Complementary Filter must be limited by 65,536. Both teams mistook the comma after the
1000’s place for a decimal point and used the constant 65.536. We are not sure whether to
classify that fault as a typo or a specification misinterpretation. Although we think that this
particular number is easily readable, the example still shows that it is dangerous to provide

hand-written numbers in a specification.

In conclusion, we believe that the number of faults found indicates that all six programs

were quite thoroughly tested before they were accepted.

41

6. Testing and Evaluation After Acceptance of the Versions

Requirements-based stress testing and structural analysis are the two employed
approaches for the evaluation of the six programs. The efforts of finding more faults
(requirements-based or structure-based) and the search for evidence of structural diversity

among these programs have been the major concerns.

For the purpose of industrial-standard validation and verification, a Model Definition
Document was supplied by H/S to provide mathematical models for functions within the
landing/approach control loop, but external to the control laws defined in the System
Description Document. These models were programmed by the UCLA coordinating team to
provide a suitable control problem for the experiment. Two program versions of the aircraft
models, one in C and the other in Pascal, were independently generated. They were rather short
programs of about 100 lines of code. Nevertheless, "back-to-back” testing between these two
versions effectively revealed a bug in one of them. These versions were later certified by H/S
pgrsonnel. Generation of input data and interpretation of the results were also performed and

suggested by H/S experts.

Based on these tools, the UCLA coordinating team has been conducting H/S approved
"Level 2" stress testing for months since the software generation phase was completed in early
September 1987. The major strategy in this requirements-based testing is so-called "dynamic
closed-loop" tests, which have the purpose of verifying performance, detecting any tendency
towards dynamic mistracking between the different program versions, and exposing
requirements faults not caught in static testing. In practice, the 3 channels of diverse software
each compute a surface command to guide a simulated aircraft along its flight path. To ensure
that significant command errors could be detected, random wind turbulences of different levels
are superimposed. The individual commands are recorded and compared for discrepancies

which could indicate the presence of faults.

42

The configuration of the flight simulation system (shown in Figure 3) consists of three
lanes of control law computation, three command monitors, a servo control, an airplane model,

and a turbulence generator.

T IANEA
OMPUTATION
COMMAND
MONITOR A
TINEE SERVO-
OMPUTATION CONTROL/ AIRPLANE / SENSORS /
= NTR! LANDING GEOMETRY
MONITOR B SERVOS
TURBULENCE
GENERATOR
L LANEC
OMPUTATION
COMMAND
MONTTORC ||

Figure 3: 3-Channel Flight Simulation Configuration

The lane computations and the command monitors are the redundant software versions
generated by the six UCLA programming teams. Each lane of independent computation
monitors the other two lanes. However, no single lane can make the decision as to whether
another lane is faulty. A separate servo control logic function is required to make that decision,
based on the monitor states provided by all the lanes. This control logic is based on a strategy
that ignores the elevator command from a lane when that lane is judged failed by both of the

other lanes, and these lanes are judged valid.

43

The airplane is a mathematical model that computes the response of the airplane to an
elevator command in terms of attitude, attitude rate, flight path, altitude, altitude rate, and
vertical acceleration. In a real aircraft these values would be directly measured b.y sensors. The
landing geometry model describes the deviation from the glide slope beam center as a function
of aircraft position relative to the end of the runway. Moreover, in order to provide a set of
inputs to the airplane model which create large error magnitudes, and thereby force off-nominal

software operating conditions, turbulence in the form of vertical wind gusts is introduced.

One run of flight simulation is characterized by the following five initial values: (1)
initial altitude (about 1500 feet); (2) initial distance (about 52800 feet); (3) initial nose up
relative to velocity (range from 0 to 10 degrees); (4) initial pitch attitude (range from -15 to 15
degrees); and (5) vertical velocity for the wind turbulence (0 to several ft/sec). One simulation
consists of 5000 time frame computations of 50 msec/frame, for a total landing time of 250

seconds.

For the purpose of efficiency, a testing procedure equivalent to Figure 3 was used
(approved by H/S): first, each lane by itself guided the airplane for a complete landing; second,
the whole history of the flight simulation was recorded; and finally, the flight profiles of all
versions were compared and analyzed to observe discrepancies and determine faults. In this
manner, over 1000 flight simulations (over 5,000,000 time frames) have been exercised on the

six software versions generated from this project.

In addition to the flight simulations, a structural analysis also was carried out. The six
versions were compared to find the differences in structure and implementation that resulted
from the application of the N-version programming methodology [Schu87]. An additional
benefit of this analysis was that it necessitated a thorough code inspection, during which some

additional faults that were not caught by any tests were detected.

44

7. Results of Testing and Evaluation
7.1 Disagreements Detected by Flight Simulations

So far, four disagreements at the Inner Loop cross-check point have been detected
during the flight simulations. Due to the additional information provided by the test points, it
was relatively easy to determine the faulty part of the code in each case. The C version
experienced two disagreements. The first one resulted in the detection of two faults, namely
initialization with a wrong value (an intermediate value of the present time frame computation
was used instead of a result of the previous time frame computation), and the introduction and
use of an unnecessary state variable. This latter fault is related to the "underground variables”
discussed in the next section; the only difference is that in this case the fault caused a
disagreement. This fault is traceable to an ambiguity in the specification: the graphical language
used was not powerful enough to express the exact semantics of the required operation. The
third fault discovered in the C version is the too frequent initialization of a state variable (it is
re-initialized at every pitch mode change, while it should be initialized only once at the entry of
Altitude Hold mode). In this case, the team did not follow a specification update that was made

very late in the programming process (during integration testing).

Two disagreements were traced to an identical fault; they occurred in the Prolog and T
versions. Both teams made the same design decision to update a state variable of the Inner
Loop twice during one computation of the Inner Loop. This fauit is due to the same
specification ambiguity as mentioned above, but in addition these teams did not pay attention to
a broadcast clarification that addressed exactly that problem. Although similar in nature, the two

versions disagreed in slightly different ways from the other versions.

It is noteworthy that all observed disagreements were very small, and further

experiments showed that the versions with these discrepancies are always able to achieve proper

45

Touchdown. Furthermore, all these faults are specification related. It is interesting to note that

the Inner Loop was the program part that was most thoroughly tested during all test phases.
7.2 Faults Found During Inspection of Code

The following faults were detected during the code inspection performed as part of the

structural analysis (see section 3):

One requirements fault was found in the Display, where rounding to 5 significant digits
was not done correctly. The error occurs only when rounding overflow (e.g., 6 or more
subsequent 9°s) changes the decimal point position. This special case was not triggered by any
of the acceptance test or flight simulation data. Other teams, however, had discovered the same
kind of fault during unit testing. Therefore one explanation might be that this team did not

perform the unit test sufficiently carefully.

The other six faults were three types of structural faults, discovered in the C, Modula-2,

Pascal, Prolog, and T versions. They and their possible impacts are discussed next.

One fault was Type 1, as described next. Normally, the boundaries within which the
output of certain functions (integrator, rate limiter, and magnitude limiter) had to be limited was
a finite constant. There were a few cases (in the Inner Loop and the Command Monitor),
however, where the bound was either 400 or -.o. To implement these special cases, the C
version used the arbitrarily chosen values +99999.0 or -99999.0 and passed them as parameters
to the subprogram that implements the functions mentioned above. This is a structural fault
because an unintended (unspecified) function (i.e. the limiting of an output value) is performed
if this value exceeds the arbitrarily chosen values. In this application, however, this might not
be a problem since the output of the Inner Loop (elevator command) will be further limited to
+15 dégrees. Similarly, the Command Monitor will indicate a disagreement between two

versions long before this structural fault has any effect.

46

Type 2 faults are more serious. They are caused by the introduction of new, unspecified
state variables which we call "underground variables", since they are neither checked nor
corrected in any cross-check or recovery point. This may lead to an inconsistent state which is
impossible to recover from. An example follows: the C team decided to move the computation
of some parameters for the Glide Slope Deviation Complementary Filter outside of this Filter.
Unfortunately, this computation depends on some other, state dependent computations in this
Filter. These latter computations were re-implemented outside the Glide Slope Deviation
Complementary Filter which also led to a duplication of their state variables. Therefore, a new
design rule for multi-version software must be stated as "Do not introduce any ‘underground’
variables”. Note that this rule is irrelevant if only cross-check points are used, since these do

not attempt to recover the internal state of the version. Only one Type 2 fault was uncovered.

Type 3 faults occurred when the C, Modula-2, Prolog, and T teams used the output of
the Mode Logic in some further (but different!) computations before it was voted upon. This
was in violation of a rule stated in the specification, explicitly forbidding that. If the Mode
Logic output is corrected by the Decision Function, an fault of this kind could lead to a situation
where the Mode Logic output is correct, but the variables dependent on this output are not,
since they were computed using the old, uncorrected values of the Mode Logic output. Then an
inconsistent state between different variables of the version might exist which could be
impossible to recover from. Apparently, more programmer training is necessary to prevent these
types of mistake since the reason for this fault is obviously a misunderstanding or unawareness
of some of the multi-version software design rules. Although this might seem a dangerous
possibility of introducing common faults, faults of this kind are easily checked for. Thus they
can be eliminated by the acceptance test. We conclude that the acceptance test should always

check for compliance with all the N-version software design rules specified.

47

The six discovered structural faults that are described above are uncorrelated, and thus

will be tolerated by the multi-version software approach.
7.3 Assessment of Structural Diversity

A fundamental first step in assessing the diversity that is present in a set of versions must
be an assessment of the potential for diversity (PFD) that is indicated by a given specification.
Some reasonable evidence that meaningful diversity can occur is needed in order to justify the
effort of multi-version programming. Here we exclude the "pseudo-diversity” that can be
attained by rearranging code, using simple substitutions of identities, etc. It is introduced too
late in the programming process to be effective, and is likely to replicate and camouflage

already existing faults.

After the PFD assessment, a decision must be made whether certain diversity shall be
"enforced”, i.e., specified; examples would be a requirement to use different algorithms
[Chen78], several versions of the specification [Kell83], different compilers, programming
languages, etc. The alternative is to depend on the isolation between programmers and on the
differences in their backgrounds and approaches to the problem as the means to get diversity.

This is the "random"” approach to the attainment of diversity.

It is our position that the minimal requirement must be (1) the isolation of programming
efforts, and (2) "enforced" diversity that is needed to avoid predictable causes of common faults,

such as compiler bugs and other defects that could exist in a shared support environment.

In the present investigation the only additional choice of "enforced™ diversity is the use
of six different programming languages. One of our goals is to evaluate the effectiveness of this
choice in attaining meaningful diversity between the six versions that originated from one

specification. A summary of the observations follows.

48

Program Module PFD Observed Diversity

Main Program good level of detail implemented, information
handling, organization of state variable
initialization, placement of calls to vote
routines

Radio Altitude | poor grouping, sequence

Complementary Filter

Barometric Altitude | medium | grouping, sequence

Complementary Filter

Glide Slope Deviation | medium | grouping, sequence, time-dependent

Complementary Filter computation

Mode Logic good constants, sequence, algorithm

Altitude Hold Control | poor constants, grouping, sequence

Law, Outer Loop

Glide Slope Capture | good constants, grouping, sequence, time-

and Track Control Law, dependent computation

Outer Loop

Flare Control Law, | good constants, grouping, sequence

Outer Loop

Inner Loop poor constants, grouping, sequence, organization

Command Monitor poor grouping, algorithm, organization

Mode Display poor algorithm

Fault Display poor algorithm

Signal Display medium | algorithm

Primitive Operations poor choice, organization

Table 16: Potential for and Observed Diversity

The "PFD" column of Table 16 gives our assessment of the extent of diversity

(structural differences) that may be expected for each program module. A module has "poor”
potential for diversity if it is either so small and simple, or else if its computation sequence (in
terms of primitive operations) is so well-defined by data dependencies, that there is little room
for diversity in implement'ation and organizational aspects. In the modules with "good"
potential for diversity, many (between 5 and 10) independent computation paths exist which
could be traversed in any order. In the case of the Main Program the sequence of the major

system functions is determined by data dependencies (cf. Figure 1); here the PFD lies in the

49

organizational aspects. Modules with "medium" PFD are estimated to lie somewhere between
these two limiting cases. It must be noted that the PFD assessment is somewhat subjective; the
factors used in the assessment include the specification of each program module as well as the

observed structural differences.

The column "Observed Diversity" of Table 16 lists the attributes in which structural
diversity actually was observed between two or more of the six versions. Further explanations

and comments on this column follow.

The first notable difference between the Main Programs is the level of detail
implemented there. The Ada version is one extreme example; it deals with all the
organizational details, such as initialization of state variables, or determination of which
function to perform at a given instant, in the Main Program. This leads to a calling hierarchy
which is exactly one level deep, if some auxiliary subprograms and the calls to primitive
operations are ignored. The T version is similar in the sense that all the system functions are
called directly by the Main Program. However, most of the organization (especially
initialization of state variables) is done locally by these system functions. The other versions
(C, Modula-2, Pascal) generally show a two-level calling hierarchy, i.e., they define relatively
general subprograms like "Filter Module", "Mode Logic", or "Altitude Hold Control Law", and
deal with the organization of the appropriate system functions locally. Nevertheless, there are
some differences between these latter versions, too. For instance, the C and Modula-2 versions
organize the Control Laws into three different Control Laws (one for each pitch mode), each
consisting of an Outer and an Inner Loop. The Pascal version, on the other hand, divides the
Control Laws into an Outer and an Inner Loop, where the Outer Loop consists of three different
Outer Loop procedures. Finally, the C and Modula-2 versions differ also in the organization of
their Filter Module, or their Mode Logic. The Prolog version is a special case. It has a rather

large and complex calling hierarchy because the language is such that IF-statements have to be

50

implemented by function calls.

Another important difference that was noted is the strategy chosen to handle
information, i.e., state, interface, and output variables. Solutions range from extensive
parameter passing (Pascal) to the exclusive use of global variables (C, Prolog). We note that
this choice was unavoidable for the Prolog version because of the language properties. The
other versions use solutions between these two extremes, by trying to define as many variables
as possible locally. The choices are partly programming language dependent, e.g., dependent
on the availability of local static variables. A related aspect is the organization of state variable
initialization: the two basic solutions are initialization by the Main Program, or initialization

within each program module.

The third aspect of diversity in the Main Program concerns the placement of vote
routines: either all vote routines are called in the Main Program, or they are called in the system
function whose result they check. The recovery point routine, however, is always called by the

Main Program.

The notation "constants” in Table 16 indicates that some teams chose to simplify the
computation by manually evaluating some expressions consisting of constants only.
"Grouping" refers to the fact that different teams chose different ways of combining primitive
operations into statements of their programming language. "Sequence” denotes that some
versions use a different computation sequence (in terms of primitive operations) to implement a
system function than others. Sometimes the differences are very minor, for instance in the

Outer Loop of the Altitude Hold Control Law or in the Inner Loop.

"Time-dependent computation" means that this system function contains an algorithm
that is dependent on real time. In both cases, we observe much variety among the strategies

chosen (1) to keep track of real time; and (2) to guard against effects of limited precision of real

51

number representation. (Note: Real time was simulated in this application.)

"Algorithm" indicates that different versions use different algorithms to implement a
certain system function. These differences are mostly minor ones; only in the Signal Display
more interesting differences can be found, both in the structure of the algorithm and in

implementation details.

"Organization" refers mainly to the fact that some versions chose to implement a certain
subprogram as a procedure (results are returned via parameter passing), while other versions
used a function (a RETURN statement or similar construct is used). In the case of the Inner
Loop, slightly different requirements existed for different pitch modes. A variety of solutions to

cope with these has been found.

Primitive operations are integrators, linear filters, magnitude limiters, and rate limiters.
The algorithms for these operations were exactly specified, however, different choices of which
primitive operations to implement as subprograms have been made, mainly whether the
integrators include limits on the magnitude of the output value (as is required in most cases), or
not. Only the Prolog version implemented a "switch" subprogram; this choice has clearly been
influenced by programming language properties — all other versions just use IF-statements. The
T version defined only a subprogram for magnitude limiting, all other primitive operations are
implemented directly in each system function. The Prolog version uses procedures to
implement these operations, all other versions use functions. Lastly, the Ada functions also do
the state update, in the case of state dependent primitive operations; all other versions have to

do this within each system function.

Due to space constraints, no examples could be given here. These and more details can
be found in [Schu87]. In conclusion, we note that both the PFD assessment and the search for

meaningful structural differences were based on individual judgements of the investigators and

52

are somewhat subjective. However, it is evident that (1) aspects of meaningful diversity can be
identified; and (2) diversity in programming languages definitely motivates structural diversity
between the versions. We hope that our modest first steps will stimulate further investigations
into the problems of qualitative and quantitative assessment of meaningful diversity in a set of

program versions.

7.4 Observations from the Diversity Assessment

In general, it can be said that more diversity was observed in the aspects whose method
of implementing was not explicitly stated in the specification, such as the Signal Display, the
organization of different Inner Loop algorithms (depending on the pitch mode), the organization
of state variable initialization, or the implementation of time-dependent computations.
Furthermore, not all the design choices outlined above can be made independently. For
instance, whether a primitive operation is defined as a function or a procedure determines if it
can be combined with other operations in a single statement, or not. Similarly, if the update of
state variables is performed as part of the primitive operation the upper levels do not have to be
concerned with this. As a last example, if the state variables of a system function are defined as

local static variables, then they cannot be initialized by the Main Program.

Two factors that limit actual diversity have been observed in the course of this
assessment, One of them is that programmers obviously tend to follow a "natural” sequence,
even when coding independent computations that could be performed in any order. The
observation made was that algorithms specified by figures were generally implemented by
following the corresponding figure from top to bottom. In this case the "natural” order was
given by the normal way to read a piece of paper, i.e. from left to right and from top to bottom.
Only when enforced by data dependencies, a different order was chosen, e.g. from bottom to

top. It can be safely assumed that the same phenomenon would occur if the specification was

33

stated in another form than graphical; especially this is true for a textual description. The latter
can be exemplified by the Display Module: Only one team chose the order of computation Fault
Display, Mode Display, Signal Display; all other teams chose the order Mode Display, Fault
Display, Signal Display which was also the order used in the specification. That means that if
there is a number of independent computations that could be performed in any order there exist
some permutations of these computations that are more likely to be chosen than other

permutations, due to human, psychological factors.

The Outer Loops of the Glide Slope Capture and Track and the Flare Control Law, and
the Mode Logic were affected the most; their good potential diversity was not exploited as
much as expected and possible, due to this phenomenon. In retrospect, a second reason for this
lack of diversity is that we have concluded that the logic part of the Mode Logic was
overspecified. A description of the conditions that have to be met to enter the next pitch mode
would have been more appropriate than the logic diagram which biased the programmers too

much towards using identical or very similar algorithms.

One possible solution to the "natural” sequence problem is to provide different
specifications to individual teams. They could either be required to follow a specific unique
computation sequence, or the order of presenting the independent computations could be
different in each specification while still having each team decide which sequence to follow.
The problem of this approach is the possibility of introducing additional faults into the
specification, i.e., more faults than would have been made in a single specification, unless the

process of generating different versions of a specification can be proven to be correct.

The H/S concept of "test points” is the second factor that tends to limit diversity. Their
purpose is to output and compare not only the final result of the major subfunctions, but also
some intermediate results. However, that restricted the programmers on their choices of which

primitive operations to combine (efficiently!) into one programming language statement. In

54

effect, the intermediate values to be computed were chosen for them. These restrictions are
rather unnecessary and can easily be removed. An additional benefit is that output and the use
of vote routines would become simpler. On the other hand, the test points proved very
beneficial in version debugging. A way to preserve this useful feature is to add test points only
during the testing and debugging phase, and to remove them afterwards. Each team should be
free to choose its own test points; in addition, the program development coordinator can request

specific test points if it is intended to compare the results of two or more different versions.

55

(D

@

(3)

@

)

(6)

7. Conclusions

The major conclusions of this study are:

The UCLA paradigm for systematic generation of multiple-version software is
sufficiently complete and stable for application in industrial environments.

The use of different programming languages has supported very effective inter-team
isolation, since different support environments were used. It also has promoted the
appearance of diversity in versions that began with a common specification.

Identical faults in two versions were very rare. Only one identical pair existed in the
82 faults removed from the six versions before acceptance - and it was due to a
comma being misread as a period. During post-acceptance testing and inspection,
five faults were uncovered by testing. One pair again was identical, and this fault was
due to failure to properly incorporate a clarification to a specification ambiguity. Six
more faults were discovered by code inspection, all unrelated and different.

The "Type 3" structural faults (section 6.2) are due to disregard of clearly stated
multi-version software design rules. They are potentially identical and therefore
dangerous. This is also true of the Type 2 "underground variable" fault. Very strict
verification that design rules were followed must be a part of the acceptance test.

The order of computations that is implied by the specification has a strong influence
on the programmers’ choice, even if other alternatives exist. This is especially true of
graphical specifications used in this effort. "Test points” given in the specification
also tend to limit diversity. There is a need to develop effective means to minimize
these diversity-limiting factors.

The original specification, as received from H/S, contained too much information on
implementation issues, which would tend to limit diversity. Our concentrated effort
to reduce the specification as much as possible to the "what”, removing the "how",

paid off by encouraging diversity.

56

We also note that we found only two identical faults that cause similar errors, described
in (3) above. This is very different from previously published results by Knight and Leveson
[Knig86]. Upon reviewing that reference, we conclude that there are several significant
differences: the previous problem had limited potential for diversity, the programming process
was rather informally formulated, testing was limited, and the acceptance test was totally
inadequate according to industrial standards that we have followed. For this reason, our
conjecture is that a rigorous application of the paradigm described in this paper would have led

to the elimination of most faults described in [Knig86] before acceptance of the programs.

57

[Aviz82]

[Aviz84]

[Aviz85a]

[Aviz85Db}

[Bish86]

[Chen78]

[Gmei79]

[Kell83]

[Kell86]

(Knig86]

References

A. AviZenis, ‘‘Design Diversity - The Challenge for the Eighties,”’ in
Digest of 12th Annual International Symposium on Fault-Tolerant
Computing, Santa Monica, California: June 1982, pp. 44-45.

A. AviZienis and J.P.J. Kelly, ‘‘Fault-Tolerance by Design Diversity:
Concepts and Experiments,”” Computer, Vol. 17, No. 8, August 1984, pp.
67-80.

A. AviZienis, P. Gunningberg, J.P.J. Kelly, L. Strigini, P.J. Traverse, K.S.
Tso, and U. Voges, *“The UCLA DEDIX System: A Distributed Testbed for
Multiple-Version Software,”” in Digest of 15th Annual International
Symposium on Fauli-Tolerant Computing, Ann Arbor, Michigan: June
1985, pp. 126-134.

A. AvizZienis, ‘“The N-Version Approach to Fault-Tolerant Software,’’
IEEE Transactions on Software Engineering, Vol. SE-11, No. 12,
December 1985, pp. 1491-1501. ‘

P.G. Bishop, D.G. Esp, M. Bamnes, P. Humphreys, G. Dahll, and J. Laht,
“PODS - A Project of Diverse Software,”’ IEEE Transactions on Software
Engineering, Vol. SE-12, No. 9, September 1986, pp. 929-940.

1. Chen and A. AviZenis, ‘‘N-Version Programming: A Fault-Tolerance
Approach to Reliability of Software Operation,”” in Digest of 8th Annual
International Symposium on Fault-Tolerant Computing, Toulouse, France:
June 1978, pp. 3-9.

L. Gmeiner and U. Voges, ‘‘Software Diversity in Reactor Protection
Systems: An Experiment,”” Proceedings IFAC Workshop SAFECOMP'79,
May 1979, pp. 75-79.

JP.J. Kelly and A. Avifenis, ‘‘A Specification Oriented Multi-Version
Software Experiment,”’ in Digest of 13th Annual International Symposium
on Fault-Tolerant Computing, Milan, Italy: June 1983, pp. 121-126.

I.P.J. Kelly, A. AviZenis, B.T. Ulery, B.J. Swain, R.T. Lyu, A.T. Tai, and
K.S. Tso, ‘‘Multi-Version Software Development,’” in Proceedings IFAC
Workshop SAFECOMP’ 86, Sarlat, France: October 1986, pp. 43-49.

J.C. Knight and N.G. Leveson, ‘‘An Experimental Evaluation of the
Assumption of Independence in Multiversion Programming,’” /EEE
Transactions on Software Engineering, Vol. SE-12, No. 1, January 1986,
pp. 96-109.

58

(L187]

[RTCASS5]

[Schu87]

[Trea82]

[Tso87]

[Will83]

H. F. Li and W. K. Cheung, ‘‘An Empirical Study of Software Metrics,”’
IEEE Transactions on Software Engineering, Vol. SE-13, No. 6, June 1987,
pp. 697-708.

RTCA, Radio Technical Commission for Aeronautics, ‘‘Software
Considerations in Airborne Systems and Equipment Certification,”
Technical Report DO-178A, Washington, D.C., March 1985. Order from:
RTCA Secretariat, One McPherson Square, 1425 K Street, N.'W., Suite 500,
Washington, DC 20005.

W. Schuetz, ‘“‘Diversity in N-Version Software: An Analysis of Six
Programs,”’ Master Thesis, UCLA Computer Science Department, Los
Angeles, CA, November 1987.

J. J. Treacy, ‘‘Certification of Digital Avionics: A Review of Recent FAA
Experience,”’ in Aerospace Congress and Exposition, Anaheim, California:
October 1982, pp. 3-7.

K.S. Tso and A. AviZenis, ‘‘Community Error Recovery in N-Version
Software: A Design Study with Experimentation,”” in Digest of 17th Annual
International Symposium on Fault-Tolerant Computing, Pittsburgh,
Pennsylvania: July 1987, pp. 127-133.

J. F. Williams, L. J. Yount, and J. B. Flannigan, ‘‘Advanced Autopilot
Flight Director System Computer Architecture for Boeing 737-300
Aircraft,”’ in Proceedings Fifth Digital Avionics Systems Conference,
Seattle, WA: November 1983.

59

APPENDIX I. Current Version of the Software Specification

UCLA / HONEYWELL JOINT PROJECT

FCS DESIGN UTILIZING N-VERSION PROCESSING
SOFTWARE REQUIREMENTS DOCUMENT
FOR A

FLIGHT CONTROL COMPUTER

September—4-1987

Version 1.3

TABLE OF CONTENTS

page

1 INTRODUCTION ...cciviinniinironiiescstestssssssnissssnsasssssssaesisssessssessasssessesinsssessssessnsesssessasns 1
1.1 Overview of the PTODIEIMNcuicitie et nese st casssesesasone 1

1.2 Organization of this DOCUMENEc.ccccviverrrccnenintrecrrnrsensssasessssesssnssesssesssrenes 2

2 SYSTEM OVERVIEWoiiiiiiecececiinirrnnenaesessesssssess e s s essesassossssessssossssncsssnsseone 5
2.1 Major COMPUIAHON SEQUENCEccceieirecirreneressessetsssntonsssssmessssessssssssssasassasssssorensssanes 5
2.2 Fault-Tolerant MeChaniSMSccccvmirenircrmreienecesnnrsnsissesssnsssiasassessssssesssssesseeensasens 6
2.3 Special REQUITEMIENLScccccvirrrerissnreessssasseosencamenraasassessesesesssesessssessessssensssasosessssrsonas 7
3 COMPLEMENTARY FILTERSc.oooerenensnnsessssssseesssesssssnssisssesssssssssnsasssnes 9
3.1 Barometric Altitude Complementary FIlterccccoivvmvervrienisevmesesnesssnsssenes 9
311 INPULS ettt e s s ssss et ssas st s se st sa s e s sen e nr s e asesserersens 10

3.1.2 OULPULS ...coieiirecreenrerressseessssssesesessrsssssssssssssssesisssssssesssasassnssssesasenssssens 10

3.1.3 PIOCESSING ..ccconeiieereirsssnessssessassessorsssenssemaessasarenssssssesassesasesessensssasnsssssessones 10

3.2 Radio Altitude Complementary FIltercumicnninernreincrsrnssssnssssessrsssasesseses 10
3.2.1 INDULS oottt tntesn st sseesessrsesssssnsnsassssassnsrassnatsssnassessensansssansasssnssnasns - 11

3.2.2 OUIPULS .vviietiiiinisieeniesssrenereesascsessssnsssessssssssssssssasasssassssssensssssasessssnesance 11

3.2.3 PIOCESSINE ..cvvrirressrseereerienssesseressnssssesesssnsessesssssssssssssssnsssssssssnssssesssssensansssss 11

3.3 Glide Slope Complementary Filter ... oeeeecceenreercsnrsssssessssssssssessssanes 11
3.3.1 INPULS ceiceccineresssssesnesssessensasssssssensnsesnsststesssassassssnasssensnssssasensesssssnssns 12

3.3.2 OULPULS cviiiiiiiinnreereneesceseesatesasassastessanssnsatsssessssnessessessesss stsesbanasassnsesassannen 12

3.3.3 PIOCESSINE ..ocorererecinrersrsessrsssisessssssussssanamsenmssssssessessssssssnssensnsensensssssssesessnsas 12

3.4 Special REQUITEINENLSccveeirererereentrecssreesrtessrsssrassensssessessessssossssssesessssesasessons 14

4 MODE LOGIC .ottt reseete e senssasstasessstassssssnssssasanasassssssesesssassassssssnress besesssrssenses 18
4.1 INPULS coeroiimercrertestniistictisctesnesessas sesnsassss sestssenercnsassresssnssensasaasessnssesasssssssssesseneses 18

4.2 OUIPULS .ccuiireceiniirisssssasssssssersasssssssssassssssansstenesesaesesssesssesassensensassssssensesanssssessenes 19

4.3 PIOCESSINE .ooueeeerreeririccecrsiintnesieassmessssssasassrssesssasassssssesssssssateseanasensestsensssmssensesass 19

4.4 Special REQUITEMENLScceeuiverrcereieccrseirsaesrransssrssnssssassesessossssessrnsssssssssesersesas 19

5 ALTITUDE HOLD MODE CONTROL LAWovieriinirinienenienessmsessassessesesessenses 22
5.1 OULET LOOP .coiviciiicrnsereriennrennsssnsosssssssssssnesinseassranstessasasssnssessesssesssssensssesssensrnenee 22

3. 1.1 INPULS et ctnintosssss sttt sne s ssanesssnssessscssessanassssesssssassns sasnsssacasanans 22

5.1.2 OUIPULS .oeiiiiiiiieereeirresteerceecssssserssasarassesasssarsessanssassnsesssessanstssnssrsmsnessesantan 23

5.1.3 Processing of the QUter LOOP ...cciiiiennnireniieneninsoinsscnsmnmesssmossessasenas 23

5.2 INNET LIOOD cooriimiiiniicnet it nrren st ersesesssansnesesrasne e ssesssanassss sassssstmsesentenarns 23
S.2.1 INPULS ceveciiiieriiiinirsietesaraeensesassnsensnsseatesassnssenssessssaesnssssnsesaenssesanssensassssenses 23

S5.2.2 OUIPULS coovrreeserunseiinnsisiesssessersessssssseniresssasansssssossanse st ssas st srassosansresnsssssssnas 24

5.2.3 Processing of the Inner LOOpciveiiinninnnmsnin s 24

5.3 Special REQUITEIMENIScceeiieercecercece st ete et reresesssae e ss e sr s enssans e eassansassssresanes 25

6 GLIDE SL.OPE CAPTURE AND TRACK CONTROL LAWcccviinecncreoneeravenns 27
6.1 OULET LOOP cciicciiiririseirnicsirasnisesnasnssnsssnssssstsssesssssssnsnssessossasssssase senssassssnsnsansssasen 28
0.1.1 INPULS iiciiemiereeciereeeereeeereesesnae e sane e sasssanssessansesesnsssssassresesansssarsesssnsnsrasaseses 28

6.1.2 OUIPULS c.vecvieierieererensseesinrrineraraeeasemeaesesesassassessssssaseessasassesestasansnssasannsen 28

6.1.3 Processing of the Quter LOOPcccviiieieienisnnnncnccnninerercoesssmiessssssssscas 28

T-iii

6.2 Inner Loop ...

7.
7.

8 COMMAND MONITORS
8.1 Inputs .ceoererrrrerreresninen
8.2 Oulputscovreeeereerernarne
8.3 Processingcceeenenee

4.4 Special Requirements

9.2 Outputsccvemriverereenrrenes
9.3 Processingc..ccvenneee

9.3.2 Word Descriptions

9.3.2.1 Mode Words
9.3.2.3 Signal Data Words

9.4 Special Requirements

Appendix A SYSTEM DIAGRAM
Al Scopeieiieeveicrnenns

A4 Gainscovriininne

6.3 Special Requirements

7FLARE CONTROLLAW ...
7.1 Outer Loop ..ocrcecccecannees
7.1.1 Inputs ...civcvisnennne
7.1.2 Ouiputscceene
7.1.3 Processing of the Quter Loop

2 Inner Loop ...eeceeceeinnn
3 Special Requirements ...

--

9.3.1 Display Descripioncceececsirmesensnssessns

--

A2 Signal Flowce...
A3 Summerscocreirinienne

--

--

--
--
--

--

--

--

..
..
..
...

--

--

--

--

oooooooooooooooo
--

--

--

SYMBOLS

--

oooooooooo

A5 Path Integrators
A6 Magnitude Limiter

A7 Rate Limijter .

A8 Functioneciveeneerconenn .
A9 SWIICh ...ccceerecinnieinnennnenee
Al10 Multiplierccoverererenns
All Dividercccmiecnnnernnees .
Al12 Absolute Value
A13 Frame Delaycceuun.
Al4 Drawing Note

Al5 Computation Procedures
Al5.1 Computation Sequence

--

--

--

Appendix B PARAMETER LIST DEFINITIONS OF EXTERNAL ROUTINES

B1 SENSORINPUT Routne

29
31

33
33
33
34
34
34
35

38
33
39
39
39

41
41

42
42
42
43
43

- 43

53
53
53
33
53
54
54
55

55

55
55
56
56
56
56
56
56

61
61

B2 VOTEFILTERI Routine .

B3 VOTEFILTER2 Routine .

B4 VOTEMODE Roudne
B5 VOTEQUTER Routine ...
B6 VOTEINNER Routine ...
B7 LANEINPUT Routine
B8 VOTEMONITOR Routine
B9 VOTEDISPLAY Routine
B10 VOTESTATES Routine

...
...
...

...
..

61
61
62
62
62
62
63
63
63

LIST OF FIGURES

page
Figure 1: N-Version Processing Experiment Block Diagramcoovecvveveeveeeeeveccveerinnn 4
Figure 2: Submodules of the Lane Command Computation and Data Flow 8
Figure 3.1: Barometric Altitude Complementary Filterocooevreimeereeemssencesmomecesoees 15
Figure 3.2: Radio Altinde Complementary Filter et ss e 16
Figure 3.3: Glide Slope Deviation Complementary Filterc..coervmrevvercrinecserereonensens 17
Figure 4.1: Pitch MOdel LOZIC ...ttt stansnnreesrae e e esnsnssnis s setsesssssessseenssceen 20
Figure 4.2: FPECI, FPDCI AIGOTithInScccooiiineercrrererenssssesssesenssssnensssssnssmsssssssensnens 21
Figure 5.1: Alttude Hold Control Lawceierenirecresenssssessssiorsssmssssesesssssesansssecns 26
Figure 6.1: Glide Slope Capture and Track CONTOLLAWoooveoesemmsmsssmsmmneeeeeeeeeees 32
Figure 7.1: Flare CORTOI LAWcocciiciistsencransenssssnemessmanesassesassensesessssesssssssassesssssses 37
Figure 8.1: Command MORIMOTccccurnmisscsnsissarsnsnssceasssssssrmsssssssesssasssssassssssesssassasssss 40
Figure 9.1-1,2,3: Mode Display, Fault Status and Signal Display Panelscccccoorueneen. 45
Figure 9.2-1,2,3: Typical Mode / Fault Display, and Seven-Segment Element 46
Figure 9.2-4: Typical Signal Panel ReadoULcocereeereeeiessrnsesarenenssceenenseensnsassessnsseses 47
Figure 9.3-1: Mode Display Data WOrdsccocoreevreerererarssssrsnssssissssssssssssssessssnesns 48
Figure 9.3-2,3: Fault Status and Signal Display Data Wordsccceceevenerrererererenssencnenens 49
Figure A.1: Filter Computing AIZOMhIRcomioeeeecictiieenecae et cnserenesnsssssessanmsassresassesens 59
Figure A.2: Barometric Altitude Complementary Filtercccevnvcnnincnenniiisssseresosnnes 60

Pitch modes entered by the autopilot-airplane combination, in the landing process, are
Altitude Hold, Glideslope Capture and Track, Flare, and Touchdown. Mode entry and exit is
determined by the mode logic equations, which use filtered airplane sensor data to switch the

controlling equations at the correct point in the trajectory.

Flight begins with the initialization of the system in the Altitude Hold mode, at a point
approximately ten miles from the airport. Initial altitude is about 1500 feet, initial speed 120
knots (200 feet per second), with zero flight path angle. Responding to turbulence-induced
errors in attitude and altitude with automatic elevator control motion, the aircraft maintains the

reference altitude until the edge of the glideslope beam is reached.

If the capture conditions are met, the airplane enters the Capture and Track mode and
begins a pitching motion to acquire the beam center. A short time after capture, the track mode

is engaged to reduce any static displacement towards zero.

The airplane maintains a constant speed along the glideslope until an altitude of about
50 feet is reached. Flare logic equations determine the precise altitude at which the Flare mode
is entered. In response to the Flare control law, the vehicle is forced along a path which targets a

vertical speed rate of two feet per second at touchdown.

Upon entering Touchdown mode (altitude less than 10 feet), the automatic portion of the
landing is complete and the system is automatically disengaged by the control mode logic. This

completes the automatic landing flight phase.

1.2 Organization of this Document

After the definition of some terms that will be used in the rest of the document, chapter 2
gives a general, high-level view of the subsystems that your software consists of, and of how

they interact. It also informs about the special features that have to be included in the software

T2

in order to achieve fault tolerance and to get experimental data on the performance of the

software.

Chapters 3 through 7 describe the function of the various subsystems, i.e. the
Complementary Filters, the Mode Logic, the Altitude Hold control law, the Glideslope
Capture and Track control law, and the Flare control law. These subsystems take care of the

lane command computation,

Additionally, you have to provide a Command Monitor, to compare your lane command
with the ones computed by the other lanes, and a Display Module, to display the status of the
flight control system on the pilot’s and the flight engineer’s consoles. These functions will be

discussed in chapters 8 and 9, respectively.

Since the main information about the algorithms is given in terms of diagrams, the
Appendix A contains an explanation of all symbols used in these diagrams. You will also find
there examples on how diagrams have to be read and understood, and on how they can be
transformed into a program. Parameter list definitions of external routines are provided in the

Appendix B.

CHAPTER 2
SYSTEM OVERVIEW

You are required to write a parameterless routine named "AUTOLAND", for the
management of automatic landing of an aircraft. Figure 2 shows the submodules of the lane

command computation and data flow diagram.

In this document, the following terms will be used: A "frame" is defined as one pass of
execution of the FCC. The notation X(T) refers to the value of X in the current computation
frame, while X(T-1) refers to that in the previous computation frame. At refers to the length of
a frame, which must be defined as a constant named DELT and set to the value 0.050 (second).
This time limit is required to the hardware design. In this software experiment, you do not have
to be concerned with this time requirement. However, efficiency of your software is always a

good practice.

2.1 Major Computation Sequence

This section provides general requirements for the sequence of computations.

Computations of control law and monitoring functions within the frame interval are to be
performed in the following sequence:
1) Call SENSORINPUT to receive airplane sensor data from DEDIX.

2) Compute data estimates from complementary filters (Chapter 3), and call
VOTEFILTER1, VOTEFILTER2 properly to cross check output values of

complementary filters,

3) Determine mode from mode logic (Chapter 4), and call VOTEMODE to cross check
output values of mode logic.

4)

5)

6)

7)

8)

9

10)

11)

12)

13)

If model valid discrete (MODV) is false, terminate your program, This lane is closed.

If the mode is TOUCHDOWN, set lane command to 0.0 and call VOTEINNER, then go
to 9) to perform monitor function and display module.

Initialize capture/track or flare control law (deletion) if mode has changed.

Compute the outer loop from altitude hold, capture/track, or flare control laws (Chapters
5, 6 or 7). Then call VOTEQUTER to cross check output values of outer loop.

Compute lane command from inner loop of altitude hold, capture/track, or flare control
laws (Chapters 5, 6 or 7), and call VOTEINNER to cross check output values of inner
loop.

Call LANEINPUT to receive the lane commands from the other lanes via DEDIX.

Perform the command monitor functions (Chapter 8). Then call VOTEMONITOR to
output the monitor results and get the recovery command (via the variable
RECOVERY).

Compute display outputs (Chapter 9), and call VOTEDISPLAY to cross check output
values of display.

If RECOVERY is true, call VOTESTATES to recover the internal states of the FCC.

If the mode is TOUCHDOWN, terminate your program. This completes the execution of
the flight control. Otherwise, go to 1) for the computation of the next frame.

2.2 Fauilt-Tolerant Mechanisms

DEDIX serves as a supervisory system which continually operates to receive data from

your program, perform the appropriate data comparison and returns the corrected value. Three

types of fault-tolerant mechanism are used in this experiment for error detection and recovery:

Test Point — a point indicated by a hexagonal symbol to observe the computed data.
When you reach a test point symbol specified in a diagram, the signal value (usually a
real number) at that point must be stored in order to be used in the subsequent cross-
check point. '

Cross-Check Point — a point to cross check values with other lanes.

Seven cross-check points are specified: VOTEFILTER1, VOTEFILTER?2,
VOTEMODE, VOTEINNER, VOTEOQUTER, VOTEMONITOR, VOTEDISPLAY.
They will be preformed from time to time.

I-6

. Recovery Point — a point to recover the failed version,
One recovery point is used at the end of each computation: VOTESTATES. It is
performed only if failure occurs in the FCC and the recovery command is issued.

The major difference between recovery point and cross-check point is that all the state
variables (which keep the history of the program) of your program are specified in the recovery

point, thus no other internal variables of your program can be used in next frame’s computation.

Complete definitions of the parameter list of the above external routines are provided in

Appendix B.

2.3 Special Requirements

In order to achieve high degrees of modularity and design diversity, you are required to
decompose each major function (described in the following chapters) into at least two (or more)
modules. Monitor function (Chapter 8) is the only exception that you can implement it as a

single module.

<=1 AVIdSId [=—

mol,{ ere] pue uoneindwo)) puewwIo) Jue Syl JO sINpowqng g AmIL]

(srag Areyuswsdwod
e woxy senea ndino)

e

HAV'Td

i

A

A

< | JOLINOW
ANVINNOD |=—

AOVIL%®
S/O

aT0H
HANLILTY

)19 0|
HAONW

|

JaL T 'dINOD

HdO7IS 3dI'TO

YAL T dINOD

<—%— HANLLLTV

o1avy

JHLT dNOD

JANLLLTY
JRALLINOYVY

1-8

CHAPTER 3
COMPLEMENTARY FILTERS

The complementary filters for barometric and radio altitude provide an estimate of true
altitude from various altitude related signals. The Barometric Altitude Complementary Filter
provides the altitude reference for the Altitude Hold Mode, and the Radio Altitude

Complementary Filter provides the altitude reference for the Flare Mode.

The complementary filter for the glide slope mode provides estimates for beam error and

radio altitude in the Glide Slope Capture and Track mode.
All filters are initialized when the altitude hold mode is entered.

Which filters have to be computed depends on the mode the system is in. At this point in
the computation sequence it was not yet possible to compute the new mode variables (AHD,
GSCD, GSTD, FD, and TD) for the current frame. This is done later, by the Mode Logic (cf.
chapter 4). Therefore, to determine the mode at this point, use the values of the mode variables

that were computed in the previous frame.

3.1 Barometric Altitude Complementary Filter

The long-term accuracy of the barometric altitude is complemented with the superior

short-term accuracy of vertical acceleration and inertial altitude rate.

3.1.1 Inputs

Description Units Range Resolution .

Altitude (H) ft +2500.0/0.0 0.10
Aldtude Rate (HR) ft/sec +/- 50.0 0.01
Vertical Acceleration (VA) | ft/sec/sec | +/-32.2 0.001

3.1.2 Outputs

Description Units Range __| Resolution
Baro Aldtude Estimate (BAE) | ft +2500.0/0.0 0.10

3.1.3 Processing

Filter processing is shown in Figure 3.1. Since the output of this complementary filter is
used only in the Altitude Hold Control Law, processing is necessary only while the system is in
Altitude Hold mode. However, to facilitate cross checking (cf. chapter 2) and display (cf.
chapter 9), a default value of 0.0 must be assigned to the output variable BAE whenever the
filter function is not computed. The same applies to the values of the test-points inside this

filter.

Upon entering Altitude Hold mode, the following initializations have to be performed:

)y The input values of the integrators 12, I3, and I4, as well as the output value of integrator
14, are initialized by zero.

2) The output value of integrator 12 is initialized by the current input HR.

3) The output value of integrator I3 is initialized by the current input H.
3.2 Radio Altitude Complementary Filter

The long-term accuracy of the radio altitude is combined with the superior short-term

accuracy of vertical acceleration.

I-10

3.2.1 Inputs

Description Units Range Resolution
Radio Altitude (RA) ft +2500.0/0.0 0.10
Vertical Acceleration (VA) | ft/sec/sec +/-32.2 0.001
3.2.2 Outputs
Description Units Range Resolution
Radio Altitude Estimate (RAE) ft +2500.0/0.0 0.10
Radio Altitude Rate Est (RARE) | ft/sec +/- 30.0 0.01

3.2.3 Processing

Filter processing is shown in Figure 3.2. Since the output of the Radio Altitude

Complementary Filter is used in the Glide Slope Complementary Filter, the Mode Logic, and

the Flare Control Law, it has to be computed during all flight modes.

Upon entering Altitude Hold mode, the following initializations have to be performed:

1)

Both the input and output value of integrator I5 (deletion), the input value of integrator

16, and both the input and output value of filter F8, are initialized by zero.

2)

3.3 Glide Slope Complementary Filter

Basic shaping and filtering of inertial and radio beam signals to generate an improved

estimate of the airplane position relative to the beam is provided.

I-11

The output value of integrator I6 is initialized by the current input RA.

3.3.1 Inputs

| Description Units Resolution

Radio Altitude Estimate (RAE) | ft +2500.0/0.0

Vertical Acceleration (VA) ft/sec/sec | +/-32.2 0.001

Glide Slope Deviation (GSD) deg +2.0/-1.0 0.001

3.3.2 Outputs

Description Units | Range Resolution
Rad Alt G/S Filter (RAGSF) ft +2500.0/0.0 0.10
G/S Rate Error (GSRE) ft/sec | +/-30.0 0.01
G/S Deviation Est (GSDE) ft +/- 600.0 0.10
G/S Error Lambda {GSEL) ft +/- 600.0 0.10
G/S Dev Rate Limited (GSDRL) | deg +1.0/-2.0 0.001

3.3.3 Processing

Filter processing is shown in Figure 3.3. The first stage generates a rate-limited beam
error from the primary glide slope sensor. The rate limited error is combined with vertical
acceleration to provide the glide slope displacement and rate signals utilized in the Glide Slope

Capture and Track mode. A third part of the filter generates a smoothed radio altitude signal.

Since the output of the Glide Slope Complementary Filter is used in the Mode Logic (cf.
chapter 4) to determine the transition from Altitude Hold mode to Glide Slope Capture and
Track mode as well as for the Glide Slope Capture and Track Control Law, it must be computed
while the system is in Altitude Hold and in Glide Slope Capture and Track modes. It need not
be computed during Flare mode. However, to facilitate cross checking (cf. chapter 2) and
display (cf. chapter 9), a default value of 0.0 must be assigned to all its output variables
(RAGSF, GSRE, GSDE, GSEL, and GSDRL) and to all' the values of test-points inside this

filter, whenever the filter function is not computed.

I-12

Upon entering Altitude Hold mode, the following initializations have to be performed:

D) The input values of all integrators (17, 18, I9, I10), the input value of filter F10, and the
output values of integrators 17 and I9 are initialized by zero.

2) The output of integrator I8 is initialized by the output variable G/S Error Lambda
(GSEL).

3) The output of integrator I10 is initialized by the current input G/S Deviation (GSD).

4) The output of filter F10 is initialized by the current input Radio Altitude Estimate
(RAE).
Note that GSEL can be computed by using 110 and F10 only; the result is then used to

initialize I8.

The magnitude limiter LM12 is a special case that needs to be explained: The arrow

entering the box on the left side and leaving it on the right side represents the quantity to be

limited, as usual. The arrow entering the limiter symbol from the bottom is meant to denote

variable (dynamic) upper and lower limits. The absolute magnitude of that signal is to be taken

as the upper limit, while the lower limit is the negétivc value of the upper limit.

1)

2)

3)

The following values for the constants Ky, K;, and K; (cf. Figure 3.3) are to be used:

For 10 seconds after Altitude Hold initialization and before G/S Capture and Track
mode:

Ko=1; K2=%; K3=0

After the initial 10 seconds and before G/S Capture and Track mode:

1 1 200ft
=]_ = — = +
Ko=1 Ky 8’ Ks 1024 820*RAGSF(T)

During G/S Capture and Track mode:

200ft 200ft Kx 200ft 1
=" K« K
Ko RAGSE(T) X

2= RAGSE(T) 16.5° 3~ RAGSE(T) 820

I-13

where __200ft is limnited to L minimum
RAGSE(T) 5.5
and Ky = B%ﬂ is limited to minimum 0 and maximum 1

Note that you can compute the output value RAGSF without using the gains Ky, Ky, and
K;. The current value of RAGSF can then be used to determine the current value of these

"constants"”.

3.4 Special Requirements

As soon as the output variables of the Radio Altitude Complementary Filter have been
computed, and before they are used in any further computation, they and the values of all the
test points inside this filter must be passed to the voter routine VOTEFILTERI. This routine
may change the values you computed. If it does, computations must proceed with the new

values,

As soon as the output variables of the other two complementary filters have been
computed, and before they are used in any further computation, they and the values of all the
test points inside the filters must be passed to the voter routine VOTEFILTER2. This routine
may change the values you computed. If it does, computations must proceed with the new

values.

I-14

B/ =™ 2™ ﬁM\M “N

TS AdvivIv Nawa)
Jom .L...< .u_u_-wzc¢<ﬂ

¥

(M =9) asaw @Y @ 91- 4
?xu..; adow B 4 o -

ACow (@ o312 ot I - A_

.NN

(H) 3dnu 11y

C(am) avy
Fenir LMy

&
0 Q 1Yy
1 (SC LY IA

~ T\L = ['€ 232n9/4
o (Ye)="¥
|
oS 7 _,m
¢ —
O/ 1 " %
£1 rs - % &U a“.&n#-
Lvw7)
£y
W t>
)] " 5 4y
1 A
- 29 17
ht
(2vg) q 3_@0“.-
1$3 .:— 4 . thy1¢3
Ly ouve S ¥ &
9 :
W 765597 17 Ny oSh NS

§Er

1-15

(3v)
HUY wiLSS
Aw orevy

(79vy)
A g3 UYY
A7 orav¥

w4 >¢(§1WJL1QU
3anarity omvy

TE 3an9/14-

N«&cq@ adory @ Yy . 04 2t 3

ndo @ b4 o1 -
oo'f« A
|MN- - _V—

(VA)
100V

WrIZ)

Mnao =n
ROk 2N [o Shyasty

_
1 3
7 t
u.H —jxo

4q O

(vy)
RNy
oIgky/

I-1b

. EELY z
Frsaty Rwvicaw 31ave) . &1 3o4d /_

LI TLET R R R Adoly 1V
£'¢ wn9rd ¥n720 L Y TN
4y
(119v2) - _
) = ey o -
s do- vh T
(rz41) - (ava)
R - el |78 e
s
(as9)
azacl9
oLns
(aas9) . »afen s (va)
Jig-niq oy —L — % - 1337v hun

- WED Bivy h\‘

) - Tare 6705 Lz) 3205 :
o

-1

CHAPTER 4
MODE LOGIC

This set of logic statements controls the transitions from one mode to the next, as a
function of the model status and the magnitude of certain system variables. Mode logic provides
the mode status for the flight control system. Using data from the complementary filters, the
points in the landing trajectory at which mode transfer takes place are defined in terms of the

five states: Altitude Hold, Glideslope Capture, Glideslope Track, Flare and Touchdown.

4.1 Inputs
| Description Units Range | Resolution |

Model Valid (MODV) disc +1/0 -
G/S Capture Discrete (GSCD) disc +1/0 -
G/S Deviation (GSD) deg +2.0/-1.0 0.01
G/S Deviation Estimate (GSDE) ft +/- 600.0 0.10
G/S Rate Error (GSRE) ft/sec +/- 30.0 0.01
Rad Alt Estimate (RAE) ft +2500/0.0 0.10
Rad Alt Rate Estimate (RARE) ft/sec +/- 30.0 0.01
Rad Alt G/S Filter (RAGSF) ft +2500/0.0 0.01
G/S Dev Rate Limited (GSDRL) deg +2.0/-1.0 0.001
Vertical Acceleration (VA) ft/sec/sec +/-32.2 0.001
Pitch Attitude Rate (PAR) deg/sec +/-128.0 0.01

I-18

4.2 Qutputs

Description Units Range Resolution
Alt Hold Discrete (AHD) disc +1/0 -
G/S Capture Discrete (GSCD) disc +1/0 -
G/S Track Discrete (GSTD) disc +1/0 -
Flare Discrete (FD) disc +10 -
Touchdown Discrete (TD) disc +1/0 -

4.3 Processing

Mode logic functions, in AND and OR gate format, are shown in Figure 4.1. Figure 4.2
provides algorithms required to compute the quantities FPEC1 and FPDC1 during the Altitude
Hold Mode. These two quantities are developed from certain of the algorithms included in the

Glideslope Capture and Track control Law, Figure 6.1. However, there is no data dependency
between these two figures. The logic provides the following functions:

1 Ensures that the model portions of the experiment are operational throughout the run as
long as the model valid variable MODY is true.

2) Provides the clues to transition from the initial state (altitude hold mode) to subsequent
states in accordance with the magnitude or sign of critical variables.

The "delta” wrap-around (A) shown in the figure denotes a one-frame delay, and
provides a latching function. The initial values for GSCD, GSTD, FD, and TD are all

"false".
4.4 Special Requirements

As soon as the mode logic output variables have been computed, and before they are
used as a basis for any further flight control computations, they must be passed to the voter
routine VOTEMODE. This routine may change the value you computed. If it does,

computations should proceed with the changed value.

I-19

B> ocr 7 ™E 0/3 0LV & AT PAT™H QD8
HAVE OPPCHTE SGNS OF MAGETUDL

* PITCH MODE LOGIC
Froure 4.

I-20

MooV Lt
. AMD
45€0 1730 12
-)83
Pl R —d
B -C
GSD pEL,Y
FPEC!
EPDCI 2
’ sot
GSDE
ABSI
52
GSRE AS
maodyv ’
GSeh = e L - Gs 7o
™
P A:L\
(A E T @——— R 113 m £ED
A e
RARE >
v
Mo [R0 0
B ug c3z=3(Npe) P

(oo CoUNTS B PoC TV f}

SWHLINOYTY Trd oo 1HIdy oy 0L FLTIN M) 7/
Th FuhI/ sizz oL 31y <J

la ?‘_inc

| cee’ _ e o vee e v e
2 T2 an 1
— 00T
—N UQLnC Cr1es Y _ u\”“H\Ma¢>V
I woo omainya te1 | 45" e <P — yis-TIV IVR
WiV 1919 27 <
— 00{
519 tw m_mv . A_ i
6" ~N
D ! o Mo] v 570 1 wn ﬂwﬂuu.,u h
) * —Il— /{I_J- v €15 ooz-/+ ||||ﬁ - 153-A30 %/3 !
Twey Pov3 | . hY 1 1)
wvd 1HONS sa w2 '™ | ?mauou
{219
(L 5344) i . E n.”.w . lmwu.m.;m\uu_.:

F. - 7 = ey

Ivy
1nn
- 9 w7 £ wn
] QA TRy VI-v/
—°+ N .\./ﬂ\({ oot
. SH zd

Y 1mn

9
\..mw A%\@ ol + j = A __
T ” n.\q—.a T}
&)

CHAPTER 5
ALTITUDE HOLD MODE CONTROL LAW

This control law generates the pitch commands required to hold the aircraft at a
reference altitude. The mode is entered when the aircraft is in level flight at an altitude of about

1500 feet. It is the initial mode.

The control law has two parts which are called "outer loop” and "inner loop",
respectively. The outer loop is the first part of the control law, while the inner loop is the
second part of the control law. The signals Theta Command Integral, Flight Path Error
Command, and Flight Path Damping Command (i.e. the values at the test-points 8, 9, and 11)
are the interface between the inner and the outer loop (refer to Figure 5.1). Note that the inner

loop is very similar for all three control laws; therefore it should be implemented only once.

5.1 Outer Loop

5.1.1 Inputs

Description Units Range | Resolution

Altitude Hold Discrete {AHD) | disc 1/0 -

Baro Altitude Estimate (BAE) | ft +2500/0.0 0.01
Altitude Reference (HREF) ft +2500/0.0 0.01
Flight Path (FP) deg +/-15.0 0.01
Equalization (EQ) deg +/-5.0 0.01

[-22

5.1.2 Outputs

Description Units | Resolution
Theta Command Integral (THCI) degfsec
Flight Path Error Command (FPEC) deg
Flight Path Damping Command (FPDC) | deg

5.1.3 Processing of the Outer Loop

Control law functions are shown in Figure 5.1. The algorithm computes the intermediate
values Theta Command Integral, Flight Path Error Command, and Flight Path Damping
Command. Any variation in these controlled quantities, due to external disturbances, is reduced
by the feedback action. The main feedback quantities are the displacement, the rate, and the

integral of the altitude error.

Although the variable Altitude Reference (HREF) is a true input to the Altitude Hold
Control Law, it does not change while an automatic landing is performed. (It is selected by the
pilot by his control panel.) Therefore, it will not be input at the beginning of each computation
frame. Instead, you are required to set it to the value of the input variable BAE at the instant

when the Altitude Hold mode is entered (cf. switch SW1, Figure 5.1).
There are no filters, integrators, or rate limiters that need to be initialized.

5.2 Inner Loop

5.2.1 Inputs
Description Units Range Resolution
Theta Command Integral (THCI) deg/sec | +/-10.0 0.01
Flight Path Error Command (FPEC) deg +/- 20.0 0.01
Flight Path Damping Command (FPDC) | deg +/-20.0 0.01
Pitch Attitude (PA) deg +/- 150 0.01
Pitch Attitude Rate (PAR) degfsec | +/- 128.0 0.01

1-23

5.2.2 Outputs

Description Units Range Resolution |
Lane Command (1.C) deg +/-15.0 0.01

5.2.3 Processing of the Inner Loop

Control law functions are shown in Figure 5.1. The algorithm computes elevator
commands due to changes in the input variables. Any variation in these controlled quantities,
due to external disturbances, is reduced by the feedback action. The main feedback quantities

are the displacement, the rate, and the integral of the altitude error.

A number of signal limiters are required, as shown in Figure 5.1, to prevent a large error
from overdriving the following stages. In addition, the design includes provisions to limit the
input to the path integrator 11 when limiting output conditions are reached. If the output exceeds
a specified rate limit, the input contribution to the integrator from the path command is set to
zero. If the output exceeds a displacement limit, the excess is fed back to the integrator to
reduce the input command. This helps ensure prompt control system response to input signal

changes, by minimizing error buildup before the integrator.

Upon entering Altitude Hold mode, both the input and the output value of integrator 11
have to be initialized by zero. The output values of the rate limiters LR1 and LR2 must be

initialized with their current inputs (i.e. a rate of 0.0 is assumed in that case).

It is important that the (intermediate) value Theta Command (8c), i.c. the signal at test-
point 3, be saved as a state variable because it will be used upon transition to Glide Slope

Capture and Track mode.

A general requirement is that the final output of a computation (in this case LC)

should depend on the most current input values (see Appendix A.15). A little complication

1-24

arises in the case of the inner loop because the computation path from integrator Il to the
final output LC overlaps with the feedback loop of I1. The way to resolve this problem is
as follows: First, use the old output of I1 to compute the feedback value for I1, i.e. the
input to summer SUS coming from testpoint 7, and to determine the position of switch
SW2. Then you can compute the new input value of I1, and thus do the integration. Now,
use the new integrator output to compute THETA sub C, and subsequently the final
output LC. Note that you compute summer SU4 and limiter LM1 twice, once with the old
integrator output to get the feedback value, and once with the new integrator output to get
the final output. Also, the testpoints 4 and 6 are encountered twice; the values that should
be passed to the voter routine VOTEINNER are the values that were computed using the

new integrator output.

5.3 Special Requirements

As soon as the outer loop output variables have been computed, and before they are used
in any further computation, they and the values of all the test points inside the outer loop must
be passed to the voter routine VOTEOUTER. This routine may change the values you

computed. If it does, computations must proceed with the new values.

If the control law is not computed (Glide Slope Capture and Track mode, Flare mode),
the values of the test points in its Outer Loop must be set to 0.0 for the voter routine

VOTEOUTER.

As soon as the inner loop output variables have been computed, and before they are used
in any further computation, they and the values of all the test points inside the inner loop must
be passed to the voter routine VOTEINNER. This routine may change the values you

computed. If it does, computations must proceed with the new values.

I-25

YT WOMINGD GI0OH 1 IFZ—QL -hhmlh O

15 anJry

feve) avy
ANV Wiptrd

:&A

LndN oL anTeiLiNG <

T pILTREL I I (va)
Loy haw.hw - Oﬂ 7+ MY Wi
(>443)
2% . 0 Freduva
SEOS | pawg anind
£ | _ .
_-..M woyey m h-nw iy
QI 14
: “ﬂw U..lhu ool
7Y - R mv va k108
- e + . 1
3ny .r-l.,\i _dlh “ﬂ — - S . (3v8) Mvwys
rmwe e ohl IMNV '3 il e - - — AoniLnd omvg
Q& ” small dwm LW v Pvm "o ek
. -I
9 , . ane
t'o¥
(v»)
34 * T Talts k)
Ty Ave?

I-26

CHAPTER 6
GLIDE SLOPE CAPTURE AND TRACK CONTROL LAW

This control law generates the pitch guidance commands required to maneuver the
aircraft to capture and track the glide slope beam upon receipt of the capture discrete from the
capture mode logic. The control law is designed to acquire the glide slope beam and hold the

airplane on the beam in preparation for flare and touchdown.

The control law has two parts which are called "outer loop" and "inner Ioc;p",
respectively. The outer loop is the first part of the control law, while the inner loop is the
second part of the control law. The signals Theta Command Integral, Flight Path Error
Command, and Flight Path Damping Command (i.e. the values at the test-points 8, 9, and 11)
are the interface between the inner and the outer loop (refer to Figure 6.1). Note that the inner

loop is very similar for all three control laws; therefore it should be implemented only once.

I-27

6.1 Outer Loop

6.1.1 Inputs
Description Units Range Resolution
G/S Capture Discrete (GSCD) disc 1/0 -
G/S Track Discrete (GSTD) disc 1/0 -
Rad Alt G/S Filter (RAGSF) ft +2500/0.0 0.10
G/S Rate Error (GSRE) ft/sec +/- 30.0 0.01
G/S Error Lambda (GSEL) ft +/- 600.0 0.10
G/S Dev Rate Limited (GSDRL) | deg +2.0/-1.0 0.001
G/S Dev Estimate (GSDE) ft +{- 600.0 0.10
Vertical Acceleration (VA) ft/sec/sec +/-32.2 0.01
Pitch Attitude Rate (PAR) deg/sec +/- 128.0 0.01
Equalization (EQ) deg +/-5.0 0.01
6.1.2 Outputs
Description Units Range Resolution
Theta Command Integral (THCI) degfsec | +/-10.0 0.01
Flight Path Error Command (FPEC) | deg +/- 20.0 0.01
Flight Path Damping Command (FPDC) | deg +/- 20.0 0.01

6.1.3 Processing of the Quter Loop

Capture and track control law functions are shown in Figure 6.1. The algorithms consist
of a blend of the following feedback quantities: displacement, rate, acceleration, and integral of

the beam error.

It should be noted that no control law effect results from a transition from capture to
track mode. Acquisition of the beam is initiated when the conditions for capture or track are
met. Track mode annunciation indicates that the beam error is reduced below that required for

capture.

I-28

In general, the same comments as made for the Altitude Hold control law are applicable

here.

The switch SW3 is a special case, which requires some extra information. The
condition (GSCD + GSTD) + 0.5 SEC has to be understood as follows: Switch SW3 is
closed 0.5 seconds after the expression (GSCD OR GSTD) became ’true’ for the first time,
i.e. 0.5 seconds after entering the Glide Slope Capture and Track mode. For example, if
the frame length is 0.05 seconds, SW3 would be closed during the eleventh frame, counting
the first frame as that in which (GSCD + GSTD) = 1 for the first time, i.e. in the eleventh
frame of the Glide Slope Capture and Track mode computation. The effect is to force the
airplane to rotate nose-down to acquire and hold the beam. While the switch is open, the

input to SU11 from SW3 is zero.

Upon entering the Glideslope Capture and Track mode, some initializations have to be

performed:
1) The input values of the filters F1 and F2 are initialized by zero.
2) The output value of filter F1 is initialized with its current input.

3) The output value of filter F2 is initialized by zero.

6.2 Inner Loop

Refer to section 5.2 for a description of the inner loop. There are three differences that

have to be observed:

The first difference is that the input variable PA is not used at summer SU3 (refer to

Figure 6.1).

I-29

The second difference is that the gain constant immediately before summer SUS

has a different value.

The third difference concerns the initialization of the output value of integrator 11, for

the following reason:

As described in Section 4, Mode Logic, the outputs from the complementary filters
determine the mode state. The mode changes generally result in replacing current
complementary filter signals and control laws with changed signals and control laws. If these
changes are made without consideration of the possible effect on surface (elevator) position,
undesirable surface transients may result. In order to ensure a smooth transition from one mode
state to another, the path integrator is initialized, prior to the mode change, to absorb the lane
command difference due to the state change. The method for transitioning from the Altitude

Hold mode to the Capture and Track mode is as follows:

(1) Compute the state of GSCD, Glide Slope Capture Discrete.
2) If GSCD = 0, proceed with Altitude Hold mode computation.
3) IGSCD=1

. Close the sensor and complementary filter signal switches to Glideslope Capture

and Track control laws.
. Recall ©(T-1) from the previous frame of Altitude Hold mode.

] Use the present input values FPEC(T) and FPDC(T) to initialize the output value
of integrator 11 with: ©¢(T-1) - [FPEC(T) + FPDC(T)), so that the resulting
value of ©(T) approximately equals ©¢(T-1) in the first Glideslope Capture

and Track computation frame. (deletion)

1-30

Again, it is important that the (intermediate) value Theta Command (@), i.e. the signal

at test-point 3, be saved as a state variable because it will be used upon transition to Flare mode.

6.3 Special Requirements

As soon as the outer loop output variables have been computed, and before they are used
in any further computation, they and the values of all the test points inside the outer loop must
be passed to the voter routine VOTEOUTER. This routine may change the values you

computed. If it does, computations must proceed with the new values.

If the control law is not computed (Altitude Hold mode, Flare mode), the values of the

test points in its Quter Loop must be set to 0.0 for the voter routine VOTEOUTER.

As soon as the inner loop output variables have been computed, and before they are used
in any further computation, they and the values of all the test points inside the inner loop must
be passed to the voter routine VOTEINNER. This routine may change the values you

computed. If it does, computations must proceed with the new values.

I-31

MY7 WYLNOD HWUL

QNY B I3NLIGD o5 1D (odad)
19 730014 a4 INIJUed
uud WE.& nd
on T cur {2 ORT
anyHwey | 295/

ENUT oh ¥

117y 4 .\
225/9%4 o~
¥ oZ+
ta?
. oins*

' i)
1 bL3EL

s/ eq T h 71N

Loviag L3391 O

MOILIINGYL Aoy LY BR)TWILING A
0¥2e 9 T <]

Lodnt oL 2T <]

235502
(aLsS+ 39)

eI ¢ Ew £ms

(oFd-) du> Jodxur
HL8d LTS

I-32

CHAPTER 7
FLARE CONTROL LAW

This control law generates the pitch guidance commands required to flare the aircraft,
upon generation of the flare discrete by the flare mode logic. The flare control law is designed

to bring the airplane to a suitable vertical speed at touchdown (landing).

The control law has two parts which are called "outer loop" and "inner loop”,

| respectively. The outer loop is the first part of the control law, while the inner loop is the
second part of the control law. The signals Theta Command Integral, Flight Path Error

Command, and Flight Path Damping Command (i.e. the values at the test-points 8, 9, and 11)

are the interface between the inner and the outer loop (refer to Figure 7.1). Note that the inner

loop is very similar for all three control laws; therefore it should be implemented only once.

7.1 Outer Loop

7.1.1 Inputs
Description Units Range Resolution |

Flare Discrete (FD) disc 1/0 -

Rad Alt Estimate (RAE) ft +2500/0.0 0.10
Rad Alt Rate Est (RARE) ft/sec +/- 20.0 0.01
Pitch Attitude Rate (PAR) deg/sec +/- 128.0 0.01
Flight Path (FP) deg +/- 15.0 0.01
Vertical Acceleration (VA) ft/sec/sec +/-32.2 0.01
Equalization (EQ) deg +/-5.0 0.01

I-33

7.1.2 Outputs

Description Units Range | Resolution
Theta Command Integral (THCI) deg/sec +/- 10.0 0.01
Flight Path Error Command (FPEC) deg +/- 20.0 0.01
Flight Path Damping Command (FPDC) | deg +/- 20.0 0.01

7.1.3 Processing of the Outer Loop

Flare control law functions are shown in Figure 7.1. Essentially, the flight path is
compared to a reference path and the error (difference) applied to a displacement and integral
functions. Altitude rate and vertical acceleration are added as stabilizing terms. Any variation

in the path variables, due to turbulence, is reduced by the pitch rate feed back action.

In general, the same comments as made for the Altitude Hold control law are applicable

here.
Upon entering the Flare mode, the following initializations have to be performed:
1) The input value of the filter F6 and F7 are initialized by zero.

2) The output value of filter F6 is initialized with its current input, i.e. the current signal

value after summer SU16.

3) The output value of filter F7 is initialized by zero.

7.2 Inner Loop

Refer to section 5.2 for a description of the inner loop. There are three differences that

have to be observed:

I-34

The first difference is that the input variable PA is not used at summer SU3 (refer to

Figure 7.1).

The second difference is that the gain constant immediately before summer SUS has a

different value.

The third difference concerns the initialization of the output value of integrator II.
Essentially the same method for transitioning from Glide Slope Capture and Track mode to

Flare mode as before (section 6.2) is used:

1 Compute the state of FD, Flare Discrete.

(2) If FD = 0, proceed with Glide Slope Capture and Track mode computation.

3 ¢KFD=1
) Close the sensor and complementary filter signal switches to Flare control laws.
° Recall &(T-1) from the previous frame of Glide Slope Capture and Track mode.

. Use the present input values FPEC(T) and FPDC(T) to initialize the output value
of integrator I1 with: ©c(T-1) - [FPEC(T) + FPDC(T)], so that the resulting
value of O(T) approximately equals ©¢(T-1) in the first Flare computation

frame. (deletion)

7.3 Special Requirements

As soon as the outer_loop output variables have been computed, and before they are used
in any further computation, they and the values of all the test points inside the outer loop must
be passed to the voter routine VOTEOUTER. This routine may change the values you

computed. If it does, computations must proceed with the new values.

I-35

If the control law is not computed (Altitude Hold mode, Glide Slope Capture and Track
mode), the values of the test points in its OQuter Loop must be set to 0.0 for the voter routine

VOTEOUTER.

As soon as the inner loop output variables have been computed, and before they are used
in any further computation, they and the values of all the test points inside the inner loop must
be passed to the voter routine VOTEINNER. This routine may change the values you

computed. If it does, computations must proceed with the new values.

I-36

oLL SNE UL adey Ly 321761 LN <] 2 oLIN) 2804 LY 230Y °}

[-) ® t

0d3Z ol .U.H A 2yl nv 33474 LY 3HY =%y

iviod 1320 O Logm . >T <

(20dd) av> INMU Bins_ 7 risel
MU7 »inNed 302 a1vd Lwdrd / n“ _I|.__.uu
16 330914 N
(>7)
TNUYD
N
.,.uu..nssw
e ou) U
® @ WE Lo
147 hns Y7
255/9f | loj~ o)~

TTh¥)jloel] +
137

ons
%
F1o) %e
3y [W .
i "Nqsa.i. Sh 0% 03
@L Grevii o Y hu?
275/3242Ty 700 UloHL

I~37

CHAPTER 8
COMMAND MONITORS

Command Monitors, by comparing each locally computed lane command with the two
others, provide the basic fault detection function in critical flight control systems. Two
command monitors are included in each computing lane. One of these monitors compares the
elevator command of its own lane (LCA, i.e, LC of your program) with that of one adjacent
lane (LCB, to be provided), and the second performs the identical task with the other lane
(LCC, to be provided). If the magnitude of the difference between the two inputs lies within a
designated band (threshold), no action is taken and the detector output is MXY = 1. If the
difference exceeds the threshold, the difference is integrated. A lane miscompare state occurs if
the integrated difference exceeds a fixed number of degree-seconds. In that case the
miscompare state (MXY = 0) is annunciated to the DEDIX supervisor program. DEDIX will

base upon the overall opinions from all three lanes to issue the recovery command.

8.1 Inputs

Resolution

Lane A Command (LCA)
Lane B Command (LCB)
Lane C Command (LCC)

I-38

8.2 Outputs

Description Units Range Resolution
Monitor State B by A (MAB) disc +1/0 -
Monitor State C by A (MAC) disc +1/0 -

8.3 Processing

Monitor processing is shown in Figure 8.1. The monitor provides an output when the
absolute value of the error (difference between two lane commands) exceeds a threshold AM.
The error is integrated and a fault declared if the integrator output exceeds a value specified in

Table 1 in Figure 8.1.

The integrated error is proportional to the physical response that the airplane would have
if the surface were moved an amount equivalent to the integrated error. Stated another way, the.
error usually presents a disturbance of very short duration relative to the airplane time response,
and the airplane response is then dependent only on the integral of the error, not the shape.
Therefore, a monitor based on error integral (time-magnitude monitor), rather than error, is an

effective way to establish fault tolerance levels.

When the error drops below the threshold AM, a negative signal of magnitude AM/2 is
applied to the integrator. This feature is designed to ensure that the monitor can recover from
temporary faults. The integrator lower limit is zero, so that the application of the negative input

cannot drive the integrator to negative values.
4.4 Special Requirements

When the command monitor output variables have been computed, they must be passed
to the external routine VOTEMONITOR. This routine will return the input variable

RECOVERY to indicate the recovery command.

I-39

yoipow aNYWWO)

I'8 3no:y

V09 & LIMO N
W-oxoh:IV
2% 0') =WV

1 38vL
)
s KTl)
_ _e Few) Wy Daat ¢ n.....uub
v > 37 s “_\n Yy~
AXWH ||__ 1 120 B /) = |TAX.WVI)4
oM 7
_ &4 :u_u_ W ._ d 4
_ 00 A.—Wm-sc . - _
| | MidasEl . x37
o /

I-40

CHAPTER 9
DISPLAYS

Three display panels will provide continuous information to the crew on autopilot
modes, fault status, and signal levels for each lane. The Mode Panel is located in the cockpit
below the glare-shield and contains one mode display consisting of ten five-by-seven dot matrix
grids. The Fault Status Panel is located in the Flight Engineer’s station and contains two fault
displays each consisting of four seven-segment elements. The Signal Panel is located at the
flight test engineer’s station and consists of a single display which can provide the value (sign
and magnitude) of any one of sixteen signals from each lane. The signal is selectable from push
button switches located on the panel. The display consists of five seven-segment elements for

the signals.

Figure 9.1-1~3 shows the layout of the three panels.

9.1 Inputs

Most of the input variables to the display module are those that have been computed

inside the FCC. The only external input variable is the following:

Description Units Range Resolution
Signal Display Indicator (SIGIN) - 1/16 -

I-41

9.2 Outputs

Description Units Range Resolution
Mode Word 1 (MWORD1) - 0/2"%-1 -
Mode Word 2 (MWORD2) - 0/2'%-1 -
Mode Word 3 (MWORD3) - 0/2'°-1 -
Mode Word 4 (MWORDA4) - 0/2'%-1 -
Mode Word 5 (MWORDS5) - 0/2'%-1 -
MAB Fault Status Word 1 (ABFWORD1) | - 0721 -
MAB Fault Status Word 2 (ABFWORD2) | - 0721 -
MAC Fault Status Word 1 (ACFWORD1) | - o211 -
MAC Fault Status Word 2 (ACFWORD2) | - 021 -
Signal Word 1 (SWORD1) - 0/2"-1 -
Signal Word 2 (SWORD2) - 0/2"-1 ~
Signal Word 3 (SWORD3) - 0/2-1 -

9.3 Processing

9.3.1 Display Description

The content of the Mode Display will be a string of characters denoting the mode
mnemonic; a typical mode display is shown in Figure 9.2-1. Table 9.1 provides the relation
between the character symbol and the ASCII hexadecimal code. Table 9.2 defines the modes to
be displayed.

The content of each Fauit Display will depend upon the faults detected by the lane
comparators located in each lane. If no fault is detected, the display will read "PASS".
Otherwise, the display will correspond to a code as shown in Table 9.3. A typical fault display

is shown in Figure 9.2-2.

Figure 9.2-3 shows a seven-segment digit. The segments are denoted "A" -"F" in a
clockwise direction starting at the top with the center bar being segment "G". Each digit maps

to seven bits, one for each segment of the display, as shown in Table 9.4. A segment of a digit

I-42

is tumed on by setting its corresponding bit in a seven-bit field of an output word to zero (the

digits use negative logic). The mapping from segments to symbols is as shown in Table 9.5.

The content of the Signal Display will be a symbol corresponding to the selected display
signal which is a number consisting of two sign indicators, six decimal point indicators and five
seven-segment digits; a typical readout is shown in Figure 9.2-4. Table 9.6 provides the
relation between the components and the function appearing in the number display. Table 9.7

describes the data types to be displayed as indicated by the SIGIN indicator.

9.3.2 Word Descriptions

Assume that the display driver that would be a part of the final program extracts the
necessary data from the word format and ignores the unneeded bits. An O in a particular bit

position indicates that bit should be set to zero. "(" and ")" mark the bounds of a digit field.

9.3.2.1 Mode Words

The mode display is driven by a five word output as shown in Figure 9.3-1. Digits D,
through Dy, coded in hexadecimal format, represent a maximum of 10 characters. D,

represents the first letter of the mode; remaining letters will be transmitted in sequence.

9.3.2.2 Fault Status Words

Each fault status display is driven by two two-word outputs as shown in Figure 9.3-2.
Words 1 and 2 provide display data for 4 seven-segment elements which correspond to the fault
status. D; represents the first letter of the fault status; remaining letters will be transmitted in
sequence. One of these outputs concerns with the fault status of monitor AB, while the other

one concerns with the fault status of monitor AC.

I-43

9.3.2.3 Signal Data Words

Each signal data display is driven by a three-word output as shown in Figure 9.3-3.
Words 1 through 3 provide display data for 5 seven-segment elements. The signal is to be
transmitted upon receipt of the signal indicator code from the flight test engineer given in Table

9.7. The signal display format is shown as follows:

Signed Decimal: Signed fixed point numbers ranging from
-99999. to -.00001, .00000, and +.00001
to +99999. The value being displayed is
to be rounded to S5 significant digits
during conversion. Values in the open
interval (-0.000005, 0.000005) are
displayed as ".00000" . Values greater
than +99999. are displayed as "+99999.",
and similarly values less than -99999. are
displayed as "-99999." .

The indicator bars used for sign indication (S, and S,) are turned on by setting a zero in
the appropriate bit of Word 3 of the display control variable. The decimal point indicators P,
through Py use positive logic and are turned on by setting a one in the appropriate bit of Word 3

of the display control variable.

9.4 Special Requirements

The computed values of the display control words must be passed to the voting routine

VOTEDISPLAY as soon as they have been calculated. (deletion)

Mode
Display

Figure 9.1-1: Mode Display Panel

Monitor AB
Fault Status

Monitor AC
Fault Status
Figure 9.1-2: Fault Status Display Panel
/ Signal Indicator
Signal
Display

Figure 9.1-3: Signal Display Panel

I-45

Figure 9.2-1: Typical Mode Display

Figure 9.2-2: Typical Fault Display

A

F B
G

E Cc
D

Figure 9.2-3: Seven-Segment Element

I-46

Figure 9.2-4: Typical Signal Panel Readout

I- 47

Word 1

MSB LSB
(D,) D,)
15 14 13 12 11 10 8 3 0
Word 2

MSB LSB
(D,) Dy)
15 14 13 12 11 10 8 3 0
Word 3

MSB LSB
(Ds) Dg)
15 14 13 12 11 10 8 3 0
Word 4

MSB LSB
(D,) Dy)
15 14 13 12 11 10 8 0
Word 5

MSB LSB
(Dy) Dyp)
15 14 13 12 11 10 8 0

Figure 9.3-1: Mode Display Data Words

I-48

Word 1

MSB LSB
0 0 (D,)« D,)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Word 2
MSB LSB
0 0 (D,)« D,)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

Figure 9.3-2: Fault Status Display Data Words

Word 1
MSB LSB
0 0 (D,) D,)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Word 2
MSB LSB
0 0 (D,) D,)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

Word 3
MSB LSB
0 S S P, P, Py Py Ps Pg (Ds)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Figure 9.3-3: Signal Display Data Words

I-49

Character

ASCII (hexadecimal)

»<><g<c.—lww;o'vozgr‘m'-'”mo*nmcow:»

EN
A

Table 9.1: Relation Between Characters and ASCII Code

41
42
43
44
45
46
47
48
49
4A
4B
4C
4D
4E
4F
50
51
52
53
54
55
56
57
58
59
S5A
20

Mode Status Symbols to Be Displayed
o Altitude Hold Mode A L T H O L D
0 Guide Slope Capture Mode | G S C A P T U
0 Guide Slope Track Mode G S T R A C K
o Flare Mode F L A R E
o] Touchdown T O U C H D O W

Table 9.2: Displayed Modes

I-50

Comparator Status Related Output Display
Monitor AB Fail ABFWORD1, ABFWORD2 CI12F
Monitor AC Fail ACFWORD1, ACFWORD2 C13F

Table 9.3: Fault Status Conditions

Segment:

Bit:

MSB

LSB
A B C D E F G

6 5

4 3 2 1

Table 9.4: Segment-To-Bit Mapping

Symbol

Segments

LY Z~=ITMOmOOEP>POCeNM AW —=O

Blank

ABCDEF
BC
ABDEG
ABCDG
BCFG
ACDFG
ACDEFG
ABC
ABCDEFG
ABCFG
ABCEFG
CDEFG
ADEF
BCDEG
ADEFG
AEFG
BCEFG
EF
ABCEF
ABEFG
ACDFG
none

Table 9.5: Symbol to Segment Mapping

I-51

0

Component

Function

Ds

Vertical Bar.
Horizontal Bar. S, is used as a minus sign

for displaying negative numbers. S, and S,
together form a plus sign for positive numbers.

Decimal Points. These allow a display
range of .00001 up to 99999.

Digits of the display. D, is the most
significant digit, D5 is the least.

Table 9.6: Signal Display Relation of Components to Function

Value of SIGIN Signal to Display Variable Name

i Baro Altitude Estimate BAE

2 Pitch Attitude PA

3 Pitch Attitude Rate PAR

4 Flight Path FP

5 Altitude H

6 Altitude Rate HR

7 Vertical Acceleration VA

8 Rad Alt G/S Filter RAGSF

9 G/S Rate Error GSRE
10 G/S Error Lambda GSEL
11 G/S Dev Rate Limited GSDRL
12 G/S Dev Estimate GSDE
13 . Rad Alt Estimate RAE
14 Rad Alt Rate Est RARE
15 G/S Deviation GSD
16 Lane Command LC

Table 9.7: The 16 Signal Data Types

I-52

APPENDIX A
SYSTEM DIAGRAM SYMBOLS

Al Scope

This appendix provides guidelines for interpreting requirements stated in the form of
system block diagrams of the type included in this document. These diagrams are a typical
feature of current specifications for flight control systems. Signal flow, elementary functions and
computation procedures are covered in the following discussion. References are to Figure 3.1,
Barometric Altitude Complementary Filter, from Chapter 3.

A2 Signal Flow nd

Signal flow, denoted by a line with an arrow, shows the time sequence of signal
processing. The signal VA and the signal from I4 flow into summer SU19. The operation
performed by SU19 is completed before an output flow to SU20 takes place. Similarly, the
operation performed by SU20 is completed before an output flow to I2 can take place.
However, all operations included in the entire diagram will be completed in a single frame of
computation,

-
Xl » X -X
A3 Summers *x r 1
2

Summers are symbolized by a circle with intersecting lines and designated by the
expression SU19, SU20, etc. A summer acts to provide as an output the sum or difference of its
inputs in accordance with the sign associated with its input signal flow arrows. The sum of its
inputs is outputted by SU19, but SU23 ocutputs H minus BAE. When two or more summers are
connected by signal flow lines without intervening functions, the inputs may be combined as a
single summer. Thus, SU19, SU20, and SU22 could be treated as a single summing junction.

A4 Gains x; 0.12 p——eeeely 0.12°X . aX

Gains are symbolizéd by blocks containing numbers or mnemonics which represent the
desired gain, the amount by which the incoming signal is to be multiplied. K2 represents a gain
of 0.15, which is to be applied to the output of SU24.

I-53

Y(0)

A5 Path Integrators =¥ .LLay

Path integrators are symbolized by the expression 1/s within a block, and designated by
the expression 12, etc. A path integrator acts to provide the time integral of an input quantity, so
that its output consists of a previous value (integral of the previous frame) plus the integral of
the input generated in the current frame. Initialization of an integrator consists of setting the
output to a desired initial value before proceeding with the calculation of the integral of the
input.

It may be desirable to use a common digital algorithm for integration, in order to assure
signal matching in all versions. If trapezoidal integration is used, the following algorithm
applies. The input X(T-1) is set to zero during the initialization of a trapezoidal integrator.

Y(T) = Y(T-1) + 0.5 * At * (X(T-1) + X(T))
Y(T-1) = Y(T)
X(T-1)=X(T)

where Y(T) is integrator output at end of computation,

Y(T-1) is integrator output at beginning of computation,

X(T) is integrator input during the current computation frame,
X(T-1) is integrator input during the previous computation frame,
At is computation frame time interval.

When two limiting values are specified outside of an integrator, the integrator output is
limited by the Lower and Upper bounds before it is output and stored as the history for the next

computation. ULsX LleX
a b

A6 Magnitude Limiter X . —E—b x.

Magnitude limiters are usually symbolized by a diagonal line within a block having one
or both ends bent to show the namre of the limiting. The limiting value is often provided by
notation outside or inside the block, such as +/- 500, UL 500/LL -200, +500/-200, etc. The
designation for a magnitude limiter is LM9, etc.

Magnitude limiting calls for restricting the output from a given input to the defined
limits, and no more. The signal within the limit region is transmitted without change (unity
gain).

I-54

UL".(R U.-X
A b

—
A7 Rate Limiter ¢ "7"- % X_ (RawLim)

- —-

Rate limiters are similar to magnitude limiters, except that the rate of change of the
output is limited rather than the magnitude. The designation for a rate limiter is LR. Rate of a
variable is computed by dividing the difference of the variable in two successive frames by the
frame duration:

X = (X(T) - X(T-1)) / At

Magnitude limiting is performed on X. If X violates the specified limits, then X(T) has
to be recomputed such that the new value of X will be equal to either the upper or the lower
bound, depending on the type of the violation. X(T) has then to be retained as the history for
the next frame computation. Rate limiters are always initialized to the input quantity.

2] | ‘ L]
R — — x * LY ﬁ —
A8 Function xt N Xor X4 Lg xo e xt 1+KS e

Functions are indicated in blocks which describe (by formula or by graphs) either a
nonlinear operation or a linear transfer function filter. Linear filters are frequency sensitive and
therefore contain functions of s, showing that integration is required. The designation for a
function is F.

Linear filters to be mechanized in the experiment are first-order lag type, meaning that a
single integration is to be performed. A procedure for generating a computing algorithm for
this filter is suggested in Figure A.1. The input X(T-1) is set to zero during the initialization
of a linear filter.

A9 Switch —-'O/GSC/D Oo—

Switching functions are symbolized by a two-position switch whose blade position is
determined by a logic statement. The logic statement is normally placed next to the contact to
which it applies. A truth of the statement means the switch is to be closed. The designation for
a switch is SW.

X *X
1 12
A10 Multiplier X
2

Multipliers are normally symbolized by a block containing cross- diagonals indicating
time-variable multiplication. While the diagrams show this function, the present design usually
requires only constant multiplication. The designation for a multiplier is M.

I-55

et

All Divider X X
2 2
Dividers are normally symbolized by a block containing a single diagonal indicating
time variable division. Designation for a divider is D.

X ———
Al2 Absolute Value L i| ¥ ‘ I x;l

Absolute value is indicated by a "V" imposed on a Cartesian coordinate pair within a
block. The input quantity is transformed to a magnitude independent of sign.

xXm y
A13 Frame Delay t _E—'—b X @

Frame delay is indicated by a triangle symbol within a block. The input discrete is
delayed one frame. Application is usually to ensure latching of a new mode state for the
condition that the enabling discrete appears once.

-

A14 Drawing Note >

A note to the system drawing is indicated by a number within a triangle symbol.

Al5 Computation Procedures

Each integrator in the diagram should complete the integration process before the
output is computed, so that the output includes the most recent input data.

Figure A.2, Barometric Altitude Complementary Filter, is a modified version of Figure
3.1 from Chapter 3. It provides the basis for an example of a procedure for computing BAE in
terms of VA, HR and H.

A15.1 Computation Sequence

a. Label each interior signal point with a convenient symbol, such as X1, X2, ... X14, as
shown,

b. Define the integrator initial conditions, based on mode entry.

c. Write the system summing point and gain equations associated with integrator inital
conditions. Generally best to work backwards from last integrator in loop -- in this case,
13.

d. Write integrator equations in an order such that each integrator receives the input

I-56

corresponding to a previous integration (compute X2, X5, then X9 last.)

e Assign the integration past value terms in preparation for the next pass.

Example:

Initial Conditions:

X50 = HR({0) X30
X% = H(0) X80
X200 = 0.0 X120
Program:

X10 = H-X9%0

X6 = HR-X50

If -500<=X10<=500 then X11
If -500>X10 then X11 = -500
If X10>500 then X11 = 500
X7 = K1*X11

X1z = K4*X11

X2 = X20 +0.5*T(X12+X120)
{Limit function similar to that for X35}

X1l = VA+X2

X13 = K3*X11

X14 = K2*X6

X4 = X13+X14

X3 = X1+X4

X5 = X50 +0.5*T (X3+X30)
If X5<-32then X5=-32

If X5>32 then X5 =32
X8 = X5+X7

X9 =X90 +0.5*T(X8+X80)

{Limit function similar to that for X5}

BAE

X50 =

X3¢
X%0

= X9

X5
X3
= X9

1-57

i

oo
T
oo

0.0

X10

X80 = X8

X20 = X2
X120 = Xl2
Return

Note: 1) The above example is for your reference only. You are encouraged to come up with a
different computation sequence as long as it is correct.

2) The effort to save the value of each test point is not shown in this example.

I-58

.

Original Filter Diagram :

X > > Y
KS+1
Y 1
X KS+1
SeY = (1/K)(X-Y)
Equivalent Diagram :
S-Y 1
+ 1
X
K
S
Computing Algorithm :
Y_ wY 80 XYL ey]
T Tt YTk i by
Y =Y
T4 T

(6Y)_ = (XYY

FIGURE A.1 Filter Algorithm

I-5%

23U A 3N 1IN

r«\}QQS\ @f— Oh\thA

. J1yglanadvg H=
ek Q«ﬂ_. -m mc:p_FJ< 7 A
‘- - ol
Mot nwﬁ v 3yn9// uh = e 0
..aﬂw\nvu . A
2 ™ ﬁu\nw. L | adow @ o ol IT-
> I
(53 ; — (#) 30nLLTY
<
O e @ 3
e PN L.
®—/ =1 o |
MM ny 7 “.-sx (k]
. b1 ; 3
5w . k
o E/x .

'y
- Qk
& 4
HTNS
(3v9) a1 e T
153 % ¥ me\w
B - 4 Nz X
9 g ST+ N ITns '
§7 Go)
e
3%
£

\lt}

APPENDIX B

PARAMETER LIST DEFINITIONS OF EXTERNAL ROUTINES

B1 SENSORINPUT Routine

SENSORINPUT (
var H : real;
var HR : real;
var VA : real;
var RA : real;
var GSD : real;

var MODY : Boolean;

var PA : real;
var PAR :real;
var FP : real;
var EQ : real;

var SIGIN : integer;

)

B2 VOTEFILTERI1 Routine

VOTEFILTERI1 (
var RAE : real;
var RARE : real;
tp_110: real;
)

B3 VOTEFILTER?2 Routine

VOTEFILTER2 (
var BAE : real;
var RAGSF : real;
var GSRE : real;
var GSDE : real;
var GSEL : real;
var GSDRL : real;

tp_101, tp_104, tp_105, tp_106: real; { test points of Baro Altitude Filter)

{ Altitude)

{ Altitude Rate }

{ Vertical Acceleration }
{ Radio Altitude }

{ Glide Slope Deviation }
{ Model Valid }

{ Pitch Attitude }

{ Pitch Attitude Rate }

{ Flight Path }

{ Equalization }

{ Signal Display Indicator }

{ Radio Alttude Estimate }
{ Radio Altitude Rate Estimate }
{ internal test point }

{ Baro Altitude Estimate }

{ Radio Altitude G/S Filter }

{ G/S Rate Error }

{ G/S Deviation Estimation }

{ G/S Error Lambda }

{ G/S Deviation Rate Limited }

tp_121, tp_122, tp_128, tp_129, tp_130: real; { test points of G/S Filter }
)3

B4 VOTEMODE Routine

VOTEMODE (
var AHD : Boolean; { Altitude Hold Discrete }
var GSCD : Boolean; { G/S Capture Discrete }
var GSTD : Boolean; { G/S Track Discrete }
var FD : Boolean; { Flare Discrete }
var TD : Boolean; { Touchdown Discrete }
tp_9,tp_11, tp_61, tp_62, tp_65, tp_66, tp_67: real; { test points }
)

B5 VOTEOUTER Routine

VOTEOUTER (
var THCI : real; (Theta Command Integral }
var FPEC : real; { Flight Path Error Command }
var FPDC : real; { Flight Path Damping Command }
tp_60: real; { common test point for all control laws }

tp_61, tp_62, tp_63, tp_65, tp_66, tp_67: real; { G/S mode test points }
tp_80, tp_81, tp_82, tp_83, tp_84, tp_85, tp_87: real; { Flare mode test points }
%

B6 VOTEINNER Routine

VOTEINNER (
var LC : real; { Lane Command }
2. tp_3, tp_4, tp_5, tp_6, tp_7: real; { Inner Loop test points }
) '

B7 LANEINPUT Routine

LANEINPUT (.
var L.CB : real; ({ Lane B Command)
var LCC : real; { Lane C Command }

)

7-62

B8 VOTEMONITOR Routine

VOTEMONITOR (
MAB : Boolean; { Monitor State B by A }
MAC : Boolean, (Monitor State Cby A }
var RECOVERY : Boolean; { Recovery Command from Dedix }
)

B9 VOTEDISPLAY Routine

VOTEDISPLAY (
MWORDI1 : integer; { Mode Word 1 }
MWORD?2 : integer; { Mode Word 2 }
MWORD?3 : integer; { Mode Word 3 }
MWORDM : integer; { Mode Word 4 }
MWORDS : integer; { Mode Word 5 }
ABFWORD1 : integer; { MAB Fault Status Word 1 }
ABFWORD? : integer; { MAB Fault Status Word 2 }
ACFWORDI1 : integer; { MAC Fault Status Word 1)
ACFWORD?2 : integer; { MAC Fault Status Word 2)
SWORD1 : integer; { Signal Word 1 }
SWORD?2 : integer; (Signal Word 2 }
SWORD?3 : integer; { Signal Word 3 }

)%

B10 VOTESTATES Routine

VOTESTATES (
(input of I2 in Figure 3.1 } { Barometric Altitude Complementary Filter }
{ output of 12 in Figure 3.1 }
{ input of I3 in Figure 3.1 }
{ output of I3 in Figure 3.1 }
{ input of 14 in Figure 3.1 }
{ output of 14 in Figure 3.1 }
{ input of IS in Figure 3.2 } { Radio Altitude Complementary Filter }
{ output of I5 in Figure 3.2 }
{ input of 16 in Figure 3.2 }
{ output of 16 in Figure 3.2 }
{ input of F8 in Figure 3.2 }
{ output of F8 in Figure 3.2 }
{ input of I7 in Figure 3.3 } { Glide Slope Complementary Filter }
{ output of I7 in Figure 3.3 }
{ input of I8 in Figure 3.3 }

{ output of 18 in Figure 3.3 }

{ input of 19 in Figure 3.3 }

{ output of 19 in Figure 3.3 }

{ input of 110 in Figure 3.3 }

(output of 110 in Figure 3.3 }

{ input of F10 in Figure 3.3 }

{ output of F10 in Figure 3.3 }

{ input of F1 in Figure 4.2 } { Mode Logic }
(output of F1 in Figure 4.2 }

{ input of F2 in Figure 4.2 }

{ output of F2 in Figure 4.2 }

{ input of F1 in Figure 6.1 } { outer loop of G/S Capture and Track Mode }
{ output of F1 in Figure 6.1 }

{ input of F2 in Figure 6.1 }

{ output of F2 in Figure 6.1 }

{ input of F6 in Figure 7.1 } { outer loop of Flare Mode }
{ output of F6 in Figure 7.1 }

{ input of F7 in Figure 7.1 }

(output of F7 in Figure 7.1 }

{ input of I1 in Figure 5~7.1 } (inner loop }

{ output of I1 in Figure 5~7.1 }

{ output of LR1 in Figure 5~7.1 }

{ output of LR2 in Figure 5~7.1 }

{ input of I11 in Figure 8 } { Command Monitor AB }
{ output of I11 in Figure 8 }

(input of I11 in Figure 8 } { Command Monitor AC }
{ output of I11 in Figure 8 }

)

Note: 1) Boolean type variables should be represented by an integer in which "1" means true
and "0" means false, and nothing else.

2) Parameter names in VOTESTATES routine contain those internal states of your
program and are therefore not defined here. Whenever some state variables are not
defined or are not up-to-date because the corresponding part of the computation was not
performed in the current frame, default values of 0.0 should be passed to
VOTESTATES.

3) The names of the test point variables (“tp_<id>") are generic and primarily define the
required sequence in the parameter list of the voter routines; you can use any name you
like.

4) Whenever some parameters in a voting routine are not defined or are not up-to-
date because the corresponding part of the computation was not performed in the
current frame, default values of 0.0 should be passed to that voting routine.

I- 64

APPENDIX II. Forms and Guidelines Used in the Experiment

UCLA / HONEYWELL JOINT PROJECT

FCS DESIGN UTILIZING N-VERSION PROCESSING

FORMS AND GUIDELINES

June-15-1987

to

September—4-1987

The forms and guidelines broadcast in the experiments are listed as follows:

UCLA/Sperry Software Fault Tolerance Project Application Form (April 1987)

UCLA/Sperry Software Fault Tolerance Project Intention Form (May 5, 1987)

10.

11.

12,

13.

14.

Rules and Guidelines For Programmers (June 15, 1987)

Design Document Qutline (June 15, 1987)

Weekly Progress Report (June 19, 1987)

Design Walkthrough Keypoints (July 6, 1987)

Design Walkthrough Checklist (July 6, 1987)

Design Walkthrough Report (July 13, 1 9875

Code Development Plan & Unit Testing Plan (July 14, 1987)

How to Use Code Update Sheets & Code Update Report (July 27, 1987)
On-line Program Milestones (July 29, 1987)

Coding/Testing Meeting Guidelines (Aug 9, 1987)

Final Meeting Guidelines (September 2, 1987)

Fault-Tolerance Project Post-Experiment Questionnaire (September 4, 1987)

II-1

UCLA/SPERRY Software Fault Tolerance Project Application Form (April 1987)

NAME Login-id Phone (o) DATE
Last First N (.))
A. EDUCATION BACKGROUND
1. Please list your degree(s) awarded, and degree being sought:
School Department Degree from 10
2. How many hours of computer science courses have you taken? graduate:
undergraduate:

3. If employed at UCLA, describe position:

4. Please list graduate courses you have taken (with grade) or are taking in the spring quarter:

Course number or title Quarter Year

Grade

5. Please list any other training (e.g., industry sponsored seminars) in computer science you have had.

B. GENERAL SOFTWARE ENGINEERING EXPERIENCE

1. How many years (or months) of full-time programming experience have you had?

2. How many years (or months) of part-time programming experience have you had?

3. How many years (or months) of experience have you had performing the following functions?

preparing design description

programming
testing programs

4. Please evaluate your knowledge of the following programming languages:

Language

Fluency (O:novice, 5:expert)

Longest lines of code written

Preference order (1:best, 7:worst}

Ada

C

Fortran

Lisp

Modula-2

Pascal

Prolog

Any other programming languages you are familiar with? (please identify fluency)

5. Please evaluate your knowledge of the Unix system:

System

Fluency (O:novice, S:cxpert)

Years of experience

Unix

C. SPECIFIC SOFTWARE ENGINEERING EXPERIENCE

In the space below, please describe the software development projects that you have participated in. Attach
additional pages if necessary.

Including the following in your description:

L. Project Title

2 Project Size (i.e. lines of cade, no. of modules, no. of participants)

3. Project Duration

4, Development Environment (i.e. programming language, operating system, command language, development
techniques)

5. Your Responsibilities (i.e. full-time or part-time involvement, percent of different activities performed)

UCLA/SPERRY Software Fault Tolerance Project (May 5, 1987)

NAME Login-id Phone (0)
Last First - M

1. Do you have an office right now? yes no

if yes, where is your office?

2. Are you available during the whole summer? (from 6/15 to 9/4) yes no

if no, when are you not available?

3. Please indicate the time which is NOT good for you to have a weekly meeting this quarter:

Time 89 1910 | 10-11 | 11-12 | 12-1 | 12 | 2-3 |34 [45|56
Monday
Tuesday
‘Wednesday
Thursday
Friday

4. Are you interested in this project?

yes, very yes not sure not quite not at all

5. Would you be willing to take the position if you get the offer?

definitely possibly not sure no

T-4

Rules and Guidelines For Programmers

UCLA /Sperry Summer Project
June 15, 1987

1 Work Environment

1.1 First Day

On the first day you will be given slide presentations on the goals of the experiment,
the phases of the experiment, and an overview of N-Version Programming. You
will also be given all written training materials, empty log books, the application
specifications you are to design, code, and test, and all other information you
should need.

On this day, you will need to review all written materials and familiarize your-
self with the schedule and rules. If necessary, read about and use any Unix tools
you are not comfortable with. You should log onto your Unix account to make
sure it is set up, see if you have any mail, and create the first-level subdirectory
“Timesheets”. This directory will hold all your online timesheets, that you will
create daily with the “tsheet” program. (Note : The timesheets will not be used
for payroll or accounting purposes, they will be used to determine how much time
“really” was needed to develop the required program.)

1.2 Your Unix account

Each student has a Unix account. Each team has a different Unix group id, so each
team’s online work will be read and write protected from all others, yet members
of one team will be able to freely read and write in each other’s directories and
files. Do not change protections on any work-related files.

A “calendar” file will be provided to you by mail, please put it into your home
directory. It causes mail reminders of due dates, etc. to automatically be mailed
to your account on the appropriate days. You may append to the calendar file as
you wish, but do not remove the file.

1.3 Time and Time sheets

You must work a minimum of 40 hours a weeks. Any time over 40 hours a week
is optional; you will not be paid for overtime, but you are expected to meet all
deadlines and complete this project. No strict work schedule will be enforced; you

jiagh)

may work any combination of hours that adds up to 40 per week, but you must
coordinate with your teammate so both of your schedules coincide as much as
necessary.

You will log your time every day you work. An online log has been provided
for you. The system will remind you every afternoon if you are logged in to fill out
your time log. If you do not fill out a log for any one day, you will receive a mail
message the next morning asking you if you forgot to fill it out. Ignore it if you
did not work the previous day, otherwise fill it out promptly. (The command to
run the timesheet program is “tsheet”.) The timesheet files made by this program
will be stored in your home directory unless you create the directory “Timesheets”
(note the upper case “T”) as a first level subdirectory.

1.4 Communication Policy
1. General

Communications are restricted during this experiment, as follows. You may
openly communicate with your teammate on all aspects of the experiment.
However, you may not discuss any aspect of your work in this job with
members of other teams. Any work-related communication between you
and the coordinating team is to be conducted via Unix mail. We require
this so in the event of an error or ambiguity in the specifications, or some
other significant event, all team members may be sent a copy of the mailed
question and its answer.

Every day you work you must log onto your Unix account. In this way you
will receive in a timely manner all mail concerning answers to questions, any
updates in the specifications, calendar reminders of important due dates,
and you will be able to fill out your daily time sheets.

2. Administrative Problems and Questions
All administrative or personnel problems and questions should be directed to
the Professor or the Administrative Analyst, through the Unix mail system.

3. Site-Specific Problems and Questions
All site-specific questions should be directed to the coordinating team. An
exception is requests for maintenance of terminals, printers, etc. In any case,
you should notify CECS and the coordinating team by mail if at any time
your work is hindered by nonfunctioning hardware.

4. Technical Problems and Questions
Direct all technical questions to the coordinating team through Unix mail.
All valid technical questions and their answers will be broadcast to all pro-
gramimers.

5. Responses to your Questions
The coordinating team members will read their Unix mail once in the early

-

morning and again in the late evening (Monday through Friday guaranteed),
to keep up with all work-related mail. (You should do the same.)

2 Phases of the experiment

2.1 Design of the Experiment (6/15—7/10)

Four weeks are allowed for this stage. A design document outline has been pro-
vided, and tells you what information is required in your preliminary and final
design documents. At the end, you will have developed a design document, con-
ducted a walkthrough of the design , made any changes found necessary by the
walkthrough, and neatly formatted and printed the final design document.

Deliverables at this stage are daily time sheets and weekly progress reports
(about 1 page summarizing the weeks activities, to be turned in every Friday
afternoon). On Friday 7/10, a preliminary design document will be due. It will be
used as the basis for a design walkthrough to be conducted during the following
week (tentatively on Wednesday, 7/15 and Thursday, 7/16). After that, you will
have to submit a final design document which includes the design walkthrough
results.

2.2 Coding/Unit Testing (7/13—8/7)

Approximately four weeks are allowed for this stage. (A total of six weeks are
allowed for the Coding/Unit testing and Validation Testing phases; each phase
need not take you exactly the time alotted, but the total time allowed will not
exceed six weeks.) Code and unit test responsibilities should be divided evenly
between team members, and an order of development must be worked out. At the
end of the first week, you will turn in a code development plan and a test plan
that is consistent with the development plan. At approximately the end of the
four-week period, you will have coded the design, conducted a code walkthrough
and prepared a walkthrough report, and made any changes found necessary by
the walkthrough. Please remember to use the RCS revision control to maintain
your software development.

Deliverables of this stage are daily time sheets, weekly progress reports at the
end of each week , a code development plan (including a list of who will code/unit
test which parts) , a test plan description, and the compilable source programs.

2.3 Validation Testing (8/10—8/21)

Approximately two weeks are allowed for this stage also, as explained above.Several
test cases will be provided to you in the beginning of of this phase. In this time
you must complete your test harness program and test the program. During the
testing you will keep a validation test log, detailing inputs, outputs, and program
failures.

Deliverables in this phase include daily time sheets, weekly progress reports,
and a completed validation test log.

2.4 Acceptance Testing (8/24—9/4)

Two weeks are allowed for this stage. You will hand in your program which
will be run in a test harness, and will be subjected to a given number of input
sets. Once your program passes all tests, you have completed your summer work
obligation, and any remaining time before the 2-week work period is over becomes
paid vacation time. If your procedure does not pass the first time it is subjected
to acceptance testing, it will be returned to you with the input cases that it failed
on, and you will be required to debug and reset your procedure. Then you once
again submit it for acceptance testing. This process continues until your procedure
passes an acceptance test.

Deliverables in this phase are daily time sheets, weekly progress reports, an
acceptance test log (only if your procedure fails an acceptance test), final program,
and a post-experiment questionnaire.

Design Document Outline

1. Title page

(a) Title

(b) Design version number
(c) Authors

(d) Team id

(e) Date

2. Table of Contents
(a) Shows chapters, sections, subsections
3. Introduction (Chapter 1)

(a) Structural diagram showing abstraction layers, and the abstract data
types in those layers.

(b) Al layers and abstract types named and labeled.
(c) Brief (couple of paragraphs) describing design.

4. Global Information (Chapter 2)

(a) List all global data types.

(b) List all global variables.

(c) List all global functions, procedures.
(d) Brief comments describing the above.
(e) Pseudocode of main program.

5. Non-Global Information (Chapter 3-N)

(a) Chapter for each major function (there should be at least two modules
per function), containing:
i. Subsystem structure chart showing relationships of modules to that
major function, and the computation sequence among modules.
ii. Section for each procedure, containing:
A. comment briefly describing its function
B. module heading and interface to other modules

C. all local types, variables, subprocedures, sub-functions defined
and commented

D. Pseudocode (combination of English and control structures) defin-
ing its computation algorithm and computation sequence.

6. Summary of Design Walkthrough Results (The last Chapter, for
final version only)

{a) For all problems found, brief comment on them and describe the solution.
(b) Attach a design walkthrough sheet for each change.

7. Index, glossary optional

-9

weekly Fri Jun 19 15:01:43 1387 1

Please turn in a hardcopy (1-2 pages) of the weekly progress report.
The format should be something like:

UCLA/Sperry Joint Project
Weekly Progress Report
{(team id)
(your names)

week # (date)

{the text goes here)

O-i0

Design Walkthrough Keypoints

You will meet with experimenters for just one hour. The entire design walkthrough is
expected to take much longer. You will conduct the second and subsequent hours privately.

Obviously, the entire detailed design cannot be reviewed in a formal way at a design

walkthrough in any reasonable time. Instead, the presenters are asked to perform the following
tasks:

1. Present the software development plan.

2. 'Present the program hierarchical functional definition and design architecture using data
flow diagrams, flowcharts and explanatory narrative as appropriate.

3. Show that the program definition and design architecture are technically feasible and
compatible and responsive to the software functional requirements.

4. Present implementation testing criteria, plans and procedures, and show that these are
adequate. ‘

5. Provide evidence that the design is complete: all modules are defined, and have specific
and definitive interfaces.

6. Provide evidence that all technical requirements have been satisfied.

7. Report on status.

8. Answer the design walkthrough checklist questions on next pages.

July 6, 1987 at UCLA

10.

11.

Design Walkthrough Checklist

Is the design complete with respect to the specification? Have you considered all normal
cases as well as boundary conditions?

Can you trace both from your design to the specification and from the specification to
your design? Has anything been left out? Are all functions in the external specification
reflected in the program? Has anything been included that should not be? Does the
program do more than that stated in the external specification?

What is the global control flow?
Are all global data structures consistent?
Are all specified input variables used? Are all required output variables produced?

Is the design of your program modular? Examine the following features:

e simple interfaces

o small modules

e low connectivity

e top-down design

e information hiding

Are all these modules well defined?

Is the decomposition complete? That is, can the logic of each module be easily
visualized?

Do you use all the modules, data structures and variables? Are any modules, data
structures or variables missing?

Is the algorithm for each module completely specified?

Are there multiple modules in the program that seem to perform the same function?

I-12

12.

13,

14.

15.

16.

17.

Is each module described by its function rather than by its context or internal logic? Has
each function been stated accurately?

Are all interfaces precisely defined and consistently invoked? Is there any unnecessary
redundancy in any interface?

Are the interface data to each module consistent with the definition of the module’s
function?

What is the implementability of the whole design? That is, is there any aspect of the
design that is precluded by the programming language to be used?

Is the design obscure? Does it contain anything that might be easily misunderstood?

Have any unstated assumptions been made?

July 6, 1987 at UCLA

I-13

Design Walkthrough Report

Function (Module): Date:

Change number:

From: (Identify boundaries of text in document where change will be made)

To: (Describe the change to be made)

Change type:
Types are:

1: typo 6: spec ambiguity
2: error of omission 7: update to match new specs
3: unnecessary-deleted 8: efficiency increase
4: incorrect algorithm 9: other (explain:
5: spec misinterpretation

Detected by: programming team coordinating team

The cause of the fault:

plans Tue Jul 14 17:19:25 1987 1

The following information are required for these two documents which are
due next Monday (7/20).

Code Development Plan (1 page):

the hardware and software environment

the language and the compiler version to be used
partition and allocation of the coding duty
tentative schedule

* ok X %

Unit Testing Plan (1-2 page):

* methods to be used on particular modules
(walkthroughs, inspections, static analysis, dynamic tests,
formal verification, etc.}

* test completion criteria

* available testing tools

* tentative schedule

-coordinating team

o-i¥

How to Use Code Update Sheets

1. General

The purpose of this document is twofold. First, it is a means of logging ail results of
your code walkthrough, so you may easily divide between you and your teammate the work to
correct your software following the walkthrough. Secondly, it will serve to mark all the changes
in your code during the testing phases as your program evolves.

2. Instructions for Completing

Use one sheet for each logical code change to be made. Fill out the Change number,
Date, Module and Procedure sections on each sheet. The term "Procedure” is indicative here;
use the corresponding unit in the language you are using.

In the “‘From:’’ section, identify the exact location of the code to be changed. For
example, you may need to change Module X, Procedure Y, lines 2 through 4. If one fault
causes more than one contiguous portion of code to be changed, clearly identify all portions on
one change sheet.

In the ‘“To:"’ section, you may either give a general description what the change will be
or you may specify the exact code substitution (for simple changes).

Be sure to identify the type of change by its type code. If a change is of type 4 (incorrect
algorithm), classify it furthermore as miscomputation (e.g., value miscomputed), logic fault
(e.g., control flow fault, missing code), initialization fault or boundary fault (e.g., value out of
bound, divide by zero). If a change does not fit one of the categories provided, identify it as type
"other" and give explanation,

Finally, indicate during which phase the fault is corrected and give explanation about its
cause (similar to the Design Walkthrough Report). Code update reports should be turned in each
week (on Monday, together with the weekly progress report) for all the code updates of previous
week.

I-16

Code Update Report

Team: Change number: Date:
Function (Module): Procedure:
File name: RCS id: before change: after change:

No. of corresponding Design Walkthrough Report (if appropriate):

From: (Identify boundaries of code to be changed/deleted, or where to be added)

To: (English, pseudocode, or language description of correction to be made)

Change type (mark as many as appropriate):

1: typo 6: spec ambiguity (on page)

2: error of omission 7: software reqs doc. update (question-answer No.___)
3: unnecessary-deleted 8: efficiency: (time___storage_)

4: incorrect algorithm 9: clarity: (change structure_ add comments__)

5: spec misinterpretation (on page ___) 10: other (explain:)

(option) What is it if type 4: miscomputation logic fault initialization fault boundary fault
(option) Error due to peculiarities of language or of hardware/operating system
(option) Error introduced by previous change (No.): simply deleted___ further change

Detected during: coding unit test integration test acceptance test

Detected by: reading the code your own test data the coordinators’ test data (test data id:

Time spent in the change, including fault location (approximately):

Cause of the fault, or other comments:

(Use additional sheets if needed)

T-17

milestones Wed Jul 29 21:25:35 1987 1

We plan to archive "snapshots" of your programs when certain
milestones are reached: we are asking you to turn in these
snapshots, i.e., when the corresponding milestone is reached, you
should proceed as follows.

For each milestone, we will provide a directory, (the figure
below shows the tree structure for all these directories)

and vou shall put into it a consistent copy of all the pertinent
files, and mail us a message telling that the milestone has been
reached and the copy has been put there.

The directory structure is as follows:
under zeus:/s/sl/dedix/Sperry
there are directories called "ucla.ada", "ucla.c", etc.

Fach one of these contains the following directories:

ucla.* ————memm——— e e ————— e — AUTOLAND —--—————==- l.complete
: i ————— 2.tested
: l ————— 3.submitted
: l ————— 4,final
{ l ----- harness
i ---------------------- commonit —===—————- l.complete
: l ————— 2.tested
: l ----- harness
l ______________________ display
L ______________________ filter.ba
i ______________________ filter.gs
l ---------------------- filter.ra =
l ______________________ inner
l ______________________ modelog
l ---------------------- outer.ah
l ______________________ outer.f
l ______________________ outer.gs

The directories pertaining to the modules contain subdirectories
for two milestone snapshots; the one called AUTOLAND for four.
Each also contains a directory called "harness", for the tests
instruments you used.

By "all pertinent files" we mean:

- there must be a file, called ’'SDDrefer’, telling which are the
numbers of the Design Walkthrough Report and the Code Change
Report that describe the last change made before the milestone,
i.e. all changes made before that are reflected in the snapshot,

n-1§

milestones Wad Jul 29 21:25:35 1987 2
all changes after that are not.

- there must be a series of RCS files, sufficient for 'making’
the objects, as explained in the next item, in the state they are
at the time of the milestone. If this directive reaches you when
you are already past the milestone, make sure your makefile
extracts the RCS release corresponding to when the milestone was
reached.

- there must be a makefile, containing commands to make the

relevant object code (’all’ for the whole autolanding package:
filter.ba for the barometric complementary filter; filter.ra for

the radio altitude complementary filter; etc.....); when one invokes
"make" from within this directory, it must be able to execute without
accessing anything outside the directory itself. In the makefile,

all commands that check out a file from RCS must contain explicit
revision numbers.

In this way, we can have a consistent copy to look at, and you
can keep modifying your own files without concurrency problems.

The milestones are:
1} for each individual function (corresponding to the SRD):

- first time that any given function is complete and
ready for Unit Testing :

- first time that any given function passes Unit Testing with
all the test data provided by the coordinators;

2) for the complete programs:
- first time that it all compiles together;
- first time it passes your own integration testing;
- first time it is ready for acceptance testing;

- first time it passes acceptance testing with all the
acceptance test data (this is the last milestone!) .

3) for the test harnesses, we only require that they are
sufficient to test all the other programs you submit.

We should be able to validate that your milestones indeed
pass the required test by these test harnesses.

I-t9

test .meet Sun Aug 9 21:21:13 18987 1

Dear Fellows:

8/12 (Wed) and 8/13 (Thur) will be the time of our scheduled meeting.
There will be three teams for each day, tentative schedule as follows:

it EE R L e e b e e e P L e L +
I Wednesday (8/12) [Thursday (8/13)

o m e mm e fomm—mmmm e — e mmm——— e +
| | Modula |
| | {(9:00 ~=-- 10:30 am) |
I [|
R e L D e e T +
| | |
| C | Prolog |
! (10:00 =--- 11:30 am) | (10:45 --- 12:15 pm) |
|] |
s i o +
fomm——————— e ———— e P L T Tt +
| T | Ada |
| (1:00 ==~ 2:30 pm) | (1:30 ==~ 3:00 pm)

| I {
[———mmmm e e o — e +
| i Discussion |
i Pascal | with |
| (3:00 -—= 4:30 pm) | Sperry

I | {(3:30 --- 5:00 pm) |
e N e B e e +

Again, if have any problems, please reply to us ASAP.

It is anticipated that each team should prepare slides and give

a detailed {of course within the time allotted) presentation about
what’s been going on since the last walkthrough meeting.

However, since testing is the most important issue right now,

you don’t have to spent too much time (say, less than half of a day}
in the preparation for the presentation.

There will be three topics to be presented: 1. Progress Report,
2. Testing Experience, 3. Program Statistics. Each team has one
hour for the presentation and half of an hour for the discussion.

Here is the suggested framework for each item:

Topic 1 {Progress Report) should discuss current status of each medule,
including difficulties, problems encountered, and time spent.

Topic 2 (Testing Experience) should include number of bugs found in
each module, sufficiency or insufficiency of the test data, and
those tools that have been used.

Topic 3 (Program Statistics) ‘refers to the following list of the
"suggested" items. Ttems 1,3,4 are required (can be easily done by "wcT",
"gize", "grep", "ls -1ls", ...). We would be appreciated if you can
come up with others, or more.

1. LINES lines of code count ({(including comments)

2. STMTS statements count
** STMTS counts executable statements such as
assigements, control, I/0, and arithmetic statement
functions. **

3. LN-CM total number of lines excluding comments
4. OBJS size of object ceode
5. MODS counts programming modules: subroutines, functions,

procedures, etc

I-20

test .meet Sun Aug 9 21:21:13 1987 2

6. STM/M mean number of statements per module
7. CALLS number of calls to programming modules (MODS)
8. LIBS counts library functions
9. LCALL number of calls t¢ library functions (LIBS)
10.GBVAR number of global variables
11 .LCVAR number of local variables
12 ,CONST number of constants
13.BINDE number of binary decision
e.g.,
if (a>b)
then ... <=== this counts as one
else
if (a>b)
then ... === this counts as one
** no else part **
if (a>b}
then ...
else if (b>c¢)
then ... <=== this counts as three
else if {(c>d)
then ... {hint: VA)
else /N
/N
/A
FA
/A
** for the decision part c¢f "do loop”,
*while loop™, or what you have,
count as one **
** Tf you have a case statement with,
e.g., four outcomes, then BINDE=3,
i.e., in order to calculate BINDE,
try to simulate a case statement by
if then ... else if * %
** Pregsent tree structure of 13 by extra slides if necessary.
14.COMSQ computation sequence of those symbols in each diagram.

eg. F5 -> SU15 -> D9 => M6 -> SU17T -> ...

** Pregsent 14 by extra slides if necessary.

Another note: The statistics you present should be summarized in tables,
for each module. (Some of the above items, e.g., COMSQ, might not

fit into a table. You can show them on separate slides.)

Besides that, we recommend that you show them according to your

levels of abstraction, e.g., if you have under AUTOLAND the following
modules: filter.ba, filter.gs, filter.ra, inner, ..., display, you can
have the following table summarizing your first level of abstraction:

Fm———-— fam——— e e e N +
I | main | filter.ba | filter.gs | | total

I | I I f | (AUTOLAND} |
pm——— o m—— fom e ————— fommm—————— e e +
Jitemli 35 | 96 I 128 [| 1403

e fommmm R Fommm e e LT e +
|item2 | I | i i I
R e s fom R R Fommmmm——— +
litem3| i I I | !

test .meet Sun Aug 9 21:21:13 1987 3

—+—+

+
!
+
I

The last note: Please make two copies of your slides and give to us right
before the presentation so that we can have a clearer picture of your work.
Thanks and Good Luck.

~coordinating team

msgs/final.1 Wed Sep 2 10:57:55 1987 1

Dear Fellows,

September 4th is the end of our project. There will be, as promised,
an all-get-together party on this date, and we would like each team to
prepare an half hour presentation. Of course, half an hour will never
be enocugh for each team, but basically, we would like each team to
address the following topics:

1)
2)
3)
4)
5)
6)
7)
8)

your whole idea and experience of the project,

major difficulties encountered,

your testing experience, including major bugs encountered.
programming language experience,

characteristics of the programming language explored by your program,
program statistics,

subjective observation of this experiment,

your recommendation of how to evaluate these programs.

You can also express your viewpoints of the specification and the
communication protocol used and how to improve the future exercise
if you would have to do it again, and further topics that you can
think of.

Before 5:00 pm of September 3rd, please submit a pretty printed final
report which covers all the above topics that are related to this
project. We will collect them all and make copies for all the
team members. Every team will be able to know what other teams have
been doing, and most of all, all of us can benefit from your insight
and experience.

We will hold our party at the Archive beginning from 10:00 am and
after that will be an all-get-together dinner (place not decided yet},
temporary schedule as follows:

P L e S B Lt R e e L +
| 10:00 am ——-- 1:30 pm | 1:30 =-~- 8:00 pm I
e S e e e e L Lt +
I | |
| Introductory | Prolog |
] Material i {1:30 -=- 2:00 pm} |
| (10:00 === 11:00 am) | I
e ———— e ————— +
J f i
| Pascal | Ada]
| {(11:00 --- 11:30 am) | {(2:00 —-—— 2:30 pm) |
I ! |
e ———— e e ———— e +
| I |
| C t Coffee Break |
{ (11:30 --- 12:00 am) | "(2:30 -—- 3:00 pm) J
I | I
fmm e e e +
I { |
[Lunch | T I
| (i2:00 --= 1:00 pm) | (3:00 =--- 3:30 pm)

| | |
Fom - +
I | |
! Modula-2 | Conclusions |
| (1:00 === 1:30 pm) i (4:00 -=-- 5:00 pm)

| f i
fommmmm e m - R ettt +

I

msgs/final.l

Wed Sep 2 10:57:55 18987 2
I Dinner Party i
| (5:00 —=—~ 8:00 pm) |
| |
B e e e +

p.s. Please ask Jackie for slides.

p.s. ABbout the program statistics, please refer to the mail we sent
you about the last progress report meeting for items. Please
prepare for all the 14 items in your final report. You don't need
to mention everything in the presentation, though. Following is
an excerpt from the previous mail about the program statistics:

1. LINES
2. STMTS
3. LN-CM
4, OBJS

5. MODS

6. STM/M
7. CALLS
8. LIBS

9. LCALL
10.GBVAR
11.LCVAR
12.CONST
13.BINDE
14.COMSQ

lines of code count (including comments)

statements count

** STMTS counts executable statements such as
assignments, control, I/0C, and arithmetic statement
functions. *=*

total number of lines excluding comments

size of object code

counts programming modules: subroutines, functions,
procedures, etc

mean number of statements per module

nurber of calls to programming modules (MODS)
counts library functions

number of calls to library functions (LIBS)

number of global variables

number of local variables

number of constants

number of binary decision

e.qg.,
if (a>»b)
then ... <=== this counts as one
else ...
if (a>b)
then ... === this counts as one

** no else part **

if (a>b)
then ...
else if (b>c)
then ... <=== this counts as three
else if (c>d)
then ... {hint: /\)
else /A

*% for the decision part of "do loop”,
"while loop”, or what you have,
count as one **

** If you have a case statement with,
e.g., four cutcomes, then BINDE=3,
i.e., in order to calculate BINDE,
try to simulate a case statement by
if then ... else if **

computation sequence of those symbols in each diagram.
eg. F5 -> SU1l5 -> D9 -> M6 -> sU1l7 -> ...

I-24

msgs/final.l Wed Sep 2 10:57:55 1587 3

hnother note: The statistics should be summarized in tables

for each module. (Some of the above items, e.g., COMSQ, might not

fit into a table.} We recommend that you show them according to your
levels of abstraction, e.g., if you have under AUTOLAND the following
modules: filter.ba, filter.gs, filter.ra, inner, ..., display, you can
have the following table summarizing your first level of abstraction:

fm———— Fm———— fomm————————— Fomm———————— et L L L pmmmmmm—— +
| | main | filter.ba | filter.gs | | total

| [i i 1 | (AUTOLAND) |
to———= fmm———— fommm e o e e Fmmmmm +
liteml| 35 | 96 | 128 |] 1403

Fom——— tm————— tmm———————— o ————————— e fomm +
|item?2 | | I |] i
e Fmm———— frmmm o e LT e +
[item3 | I [i I |
tm——— B it tomm e Fomm i m———— e T LT Fom—m———————— +
|itemd | | | | |
o Fomm—— R e T fmmm +

! I |

+.

-coordinating team

Ir-2¢

M

2

3

4)

&)

(6)

F-T Software Project Post-Experiment Questibnnaire (Part 1)

September, 1987

How hard was the program-writing effort? 1(simple) -- S(very difficult)

How many hours on the average did you spend each working day for this project?

How do you think you and your teammate compared as far as skill level goes? (Only consider
skills needed for all phases of your work this summer.) Use the scale : 1(almost equal skill
levels) -- S(extremely different skill levels)

_ Estimate the percentages of the total work you and your teammate did.

You:
Teammate:
(total = 100%)

Rate your record-keeping on a scale of 1{extremely inaccurate) -- 5(extremely accurate).

Did you have or notice any application-dependent conversations across team boundaries? If
s0, about how many times, and concerning what?

Ir-26

F-T Software Project Post-Experiment Questionnaire (Part 2)

Name: Team: Date:

(1) How difficult was it to use your language for the "autoland" application? 1(simple) -- S(very
difficult)

(2) For each phase of this experiment please comment on how well the amount of work was
matched to the time allowed for completion of that phase.

phase alotted ime | time spent | your recommendation
design 4 weeks

coding 3 weeks

unit test 1 week

integration test | 2 weeks

acceptance test | 2 weeks

(3) Did you use any references in the course of the summer? If so, please specify titles and type of
information referenced.

(4) What, if anything, would you do differently if you were designing a similar experiment in the
future?

(3) How much interest do you presently have in research of this type? Scale: 1 = very little, to 5 =
very high.
Fault-tolerant software: 1 2 3 4 5

Fault-tolerant systems: 1 2 3 4 5

o-27

APPENDIX ITI. Summary of All Faults Found

UCLA /HONEYWELL JOINT PROJECT

FCS DESIGN UTILIZING N-VERSION PROCESSING

AUDIT OF ALL UNCOVERED FAULTS

June-15-1987

to

February—19-1988

With the help of the change documentation submitted by each team at the end of each
test phase (Coding and Unit Test, Integration Test, and Acceptance Test), the following

summary of faults was produced. Changes that were not made due to a fault are ignored.

Starting with a particular id, each fault is described, the location and the type of the fault
is given (e.g. typo, omission, unnecessary, incorrect algorithm, specification
misinterpretation/ambiguity etc.), and the method of detection is mentioned, followed by special
remarks, if any. Reference to the corresponding Design Walkthrough Report(s) (DWR) and/or
Code Update Report(s) (CUR) is given. Finally, a classification of the fault into requirements or

structural fault (unintended function) is attempted.

TII.1 ADA Version

M1.1.1 Faults detected during Coding and Unit Test

al. Some unnecessary statements in the initialization of the Inner Loop (CUR #1)
Type: unnecessary. Detected by: reading the code

Classification: structural fault

a2. Wrong constant (wrong place of the decimal point) for the upper limit in the declaration
of an integrator in the specification part of the Complementary Filter Module (CUR #3)
Type: typo / spec misinterpretation [due to poor readability. Detected by: test data
data.2, data.13

Classification: requirements fault

m-1

The other changes were due to floating point representation problems (CUR #2),

compiler peculiarities (CUR #4), and a specification update (CUR #5).
I11.1.2 Faults detected during Integration Test

a3. There were some unnecessary local variables in the main program which interfered with
global (imported) variables (CUR #6).
Type: incorrect algorithm. Detected by: test data data.1

Classification: requirements fault

ad, Two initialization statements were omitted when initializing the Glide Slope
Complementary Filter (CUR #8).
Type: incorrect algorithm (due to lack of communication with team mate). Detected by:
test data data.2

Classification: requirements fault

The other changes were due to a specification update (CUR #7) and to adjust to the C

interface (CUR #9).

IIL1.3 Faults detected during Acceptance Test

aS. In the outer loop of the Flare Control Law, some test points which are not used in Flare
Mode were not reset to the specified default value (CUR #10).
Type: omission. Detected by: test data data.2

Classification: requirements fault

ImI-2

a6. A new version of the Mode Logic was written because a numeric error exception
resulted from execution (CUR #11).
Type: incorrect algorithm. Detected by: test data data.2

Classification: requirements fault

II1.1.4 Faults detected after Acceptance Test

No faults were detected.

II1.2 C Version

IIL2.1 Faults detected during Coding and Unit Test

cl. A wrong constant was used in the Mode Logic (CUR #4).
Type: specification misinterpretation (due to poor readability of Fig. 4.2). Detected by:
reading the code

Classification: requirements fault

c2. OR-gates in Mode Logic were implemented wrong (CUR #5).
Type: incorrect algorithm. Detected by: team’s own test data

Classification: requirements fault

¢3. In the Inner Loop, another state variable for the determination of the condition for
switch SW2 was added (CUR #9).
Type: incorrect algorithm. Detected by: test data data.18.

Classification: requirements fault

I1I-3

c4.

Note: As it was detected during operational testing, this change resulted in an incorrect

algorithm.

200

Part of the Outer Loop of the Flare Control Law was not implemented correctly (VA

was used instead of -—2\%) (CUR #10).

Type: incorrect algorithm. Detected by: reading the code and the coordinators’ test data.

Classification: requirements fault

The other changes were made in order to confirm to the C interface (CUR #1), to obtain

a clear structure of the program (CUR #2, 3), or were due to a specification update (CUR #6, 7,

8).

IIL2.2 Faults detected during Integration Test

cs.

c6.

In the Outer Loop of the Glide Slope Control Law, a comparison statement of "time >=
0.5" had to be changed to "time > 0.45", due to the lack of infinite precision in real
number representation (CUR #11).

Type: due to peculiarities of real number representation. Detected by: test data data.1

Classification: structural fault of the C compiler

In the Inner Loop, initialization of the integrator I1 was not done upon the transition
from Altitude Hold to Glide Slope Track Mode (CUR #12).
Type: incorrect algorithm (due to specification ambiguity). Detected by: test data data.2

Classification: requirements fault

I11-4

cl.

c8.

c9.

I1.2.3

cl0.

cll.

In the Inner Loop, the state of the rate limiters LR1 and LR2 was not saved correctly
(CUR #13, 14).
Type: incorrect algorithm (count as only one fault here) Detected by: test data data.2

Classification: requirements fault

In the main program, the test points of the Quter Loops were not properly reset to the
specified default value (CUR #15).
Type: omission. Detected by: test data data.1

Classification: requirements fault

In the Mode Logic, the values FPEC1 and FPDC1 were not reset to zero when not in
Altitude Hold mode (CUR #16).
Type: spec misinterpretation or ambiguity. Detected by: test data data.1

Classification: requirements fault

Faults detected during Acceptance Test

Some functions used in the Quter Loop of the Flare Control Law were not declared to
return double precision values (CUR #17).
Type: omission. Detected by: test data data.2

Classification: requirements fault

The constant K3 of the Glide Slope Complementary Filter was computed incorrectly

while in Altitude Hold mode. It was assumed that the factor ﬁ% is always limited

1o 5—15- minimum, but this applies during Glide Slope Capture and Track modes only

-5

cl2.

cl3.

IL2.4

cl4.

cls.

clé.

(CUR #18).
Type: spec misinterpretation. Detected by: test data data.l

Classification: requirements fault

In the Mode Logic, a wrong variable was used in an expression (CUR #19).
Type: typo. Detected by: test data data.8

Classification: requirements fault

In the main program, all the parameters of the routine "VOTESTATES" were forgotten
(CUR #20).
Type: omission. Detected by: test data data.2

Classification: requirements fault

Faults detected after Acceptance Test

In the Inner Loop, initialization of integrator I1 should be in the beginning of the module
(CUR #21).
Type: incorrect algorithm. Detected by: flight simulation test data.

Classification: requirements fault

Introduction of an underground variable "rr_old" which made the internal states
inconsistent (CUR #22).
Type: specification ambiguity. Detected by: fli ght simulation test data.

Classification: structure fault (which happened to be detected by requirements test)

LR1 and LR2 of the Inner Loop should be initialized only once upon entering AHD

I1-6

cl7.

cl8.

mode instead of every mode change (CUR #23, #24 and #25).
Type: incorrect algorithm. Detected by: flight simulation test data.

Classification: requirements fault

Using +/- 99999.0 instead of +/- e in the Inner Loop and the Command Monitor.
Type: incorrect algorithm. Detected by: code inspection.

Classification: structure fault

Output of Mode Logic was used in some further computations before it was voted upon.
Type: incorrect algorithm. Detected by: code inspection.

Classification: structure fault

1I1.3 MODULA-2 Version

IIL3.1 Faults detected during Coding and Unit Test

ml.

"2*i" as index to an array did not work; "i+i" had to be used instead (CUR #3).
Type: compiler fault Detected by: team’s own test data

Classification: structural fault of the compiler

In the Barometric Altitude Complementary Filter, the wrong constant (wrong position of
the decimal point) was used for the upper limit of the output of integrator I3 (CUR #4).
Type: typo / spec misinterpretation / due to poor readability. Detected by: test data
data.2, data.13

Classification: requirements fault

Note: same as ADA team!

-7

m3. A wrong computation sequence was used in the Glide Slope Complementary Filter: The
constants KO, K2, and K3 were computed without first computing the value of the
variable RAGSF (DWR #18; CUR #3).
Type: incorrect algorithm, Detected by: test data data.1

Classification: requirements fault

md., The Signal Display Algorithm (procedure todigit) could not handle a boundary case
(DWR #21; CUR #9).
Type: incorrect algorithm, partly due to language peculiarities (floating point operations
for LONGREAL variables). Detected by: test data sig_words

Classification: requirements fault

The other changes were due to specification updates (DWR #17; CUR #2, 6) and to
compiler peculiarities (too many LONGREAL parameters in a procedure call — DWR #19, 20;

CUR #7, 8 — and too complicated an expression in a RETURN statement — CUR #1).
II1.3.2 Faults detected during Integration Test
No faults were detected.

Changes were made because of an specification update (DWR #22; CUR #10), and the
interface to "VOTESTATES" had to be changed because the compiler could not handle so

many parameters (see abové) (CUR #11, 12).

1mI-8

II1.3.3 Faults detected during Acceptance Test
No faults were detected.

L3.4 Faults detected after Acceptance Test

m5. Output of Mode Logic was used in some further computations before it was voted upon.
Type: incorrect algorithm. Detected by: code inspection.

Classification; structure fault
III.4 PASCAL Version

II1.4.1 Faults detected during Coding and Unit Test

pl. The Signal Display did not round correctly (DWR #32, CUR #1).
Type: incorrect algorithm. Detected by: reading the code

Classification: requirements fault

p2. A wrong constant was used in the Fault-word Display (CUR #2).
Type: incorrect algorithm. Detected by: test data fault_words

Classification: requirements fault

p3. In the Signal Display, zero was displayed as "+.00000" instead of as ".00000" (CUR #3).
Type: spec misinterpretation / incorrect algorithm. Detected by: test data sig_words

Classification: requirements fault

p4. The constants of the Glide Slope Complementary Filter were not computed correctly in

111-9

p3.

p6.

7.

p9.

all system modes (CUR #4).
Type: spec misinterpretation. Detected by: test data data.18

Classification: requirements fault

The output of integrator I8 in the Glide Slope Complementary Filter was not initialized
correctly (CUR #5, 6).
Type: spec misinterpretation. Detected by: test data data.11

Classification: requirements fault

The initialization of the variable HREF in the Outer Loop of the Altitude Hold Control
Law was incorrect (CUR #7, 8, 10).
Type: incorrect algorithm. Detected by: reading the code

Classification: requirements fault

The initialization of Inner Loop variables was incorrect (CUR #9).
Type: incorrect algorithm. Detected by: reading the code

Classification: requirements fault

Logic Fault in the evaluation of the condition for switch SW2 in the Inner Loop (DWR
#36; CUR #19).
Type: incorrect algorithm. Detected by: test data data.20

Classification: requirements fault

In the Outer Loop of the Flare Control Law, the function F4 was evaluated incorrectly

(wrong setting of parenthesis) (DWR #34; CUR #13).

I-10

Type: typo / spec misinterpretation. Detected by: test data data.11

Classification: requirements fault

pl0. Redundant computation of test point 7 in the Inner Loop (DWR #37; CUR #20).
Type: unnecessary. Detected by: test data data.20

Classification: requirements fault

Other changes were made in response to specification updates in the Mode Logic (CUR
#11, 21), to aid in debugging (CUR #14 - 16, 18), and to remove a compiler warning message

(CUR #12, 17).
I1L4.2 Faults detected during Integration Test

pll. The variable RAGSF in the Glide Slope Complementary Filter was not initialized
correctly (CUR #26, 27).
Type: incorrect algorithm. Detected by: test data data.1

Classification: requirements fault

pl2. The integration of the integrator 18 in the Glide Slope Complementary Filter was not
performed during the very first computation frame (CUR #26).
Type: incorrect algorithm. Detected by: test data data.l

Classification: requirements fault

Other changes were made to be compatible with the C interface and to remove

debugging facilities introduced before Unit testing.

nI-11

II1.4.3 Faults detected during Acceptance Test

No faults were detected; some changes were made for the sake of compatibility with the

C interface.

I11.4.4 Faults detected after Acceptance Test
No faults were detected.

NLS PROLOG Version

II1.5.1 Faults detected during Coding and Unit Test

pgl. The names of some Mode Logic variables (Fig. 4.2) conflicted with variable names in
the Flare Control Law (DWR #24).
Type: incorrect algorithm. Detected during coding

Classification: requirements fault

pg2. In the Inner Loop, the variable names THETA_C and THCI were confused (DWR #29;
CUR #15).
Type: incorrect algorithm. Detected during coding

Classification: requirements fault

pg3. Integrator I8 in the Glide Slope Complementary Filter was not initialized correctly
(DWR #30; CUR #7).
Type: incorrect algorithm / spec misinterpretation. Detected by: test data filter. gs/data.9

Classification: requirements fault

II-12

pg4.

pes.

pg6.

pg7.

pe8.

pgo.

A comma was misplaced in the Barometric Altitude Complementary Filter (CUR #2).
Type: typo. Detected during coding

Classification: requirements fault

Initialization of the Inner Loop was forgotten in the main program (DWR #32).
Type: omission. Detected during coding

Classification: requirements fault

The order of parameters in the definition of the integrator function was inconsistent with
its use (CUR #3).
Type: typo / incorrect algorithm. Detected by: test data filter.ba/data.1

Classification: requirements fault

The order of parameters in the definition of the linear-filter function was inconsistent
with its use (CUR #5).
Type: typo / incorrect algorithm. Detected by: test data filter.ba/data.1

Classification: requirements fault

A wrong global variable was used in the Glide Slope Complementary Filter (CUR # 8).
Type: typo. Detected by: test data filter.gs/data.9

Classification: requirements fault

The constant K3 in the Glide Slope Complementary Filter was computed incorrectly

(wrong magnitude limitation when not in Glide Slope Capture or Track modes) (CUR

#9).

mI-13

pgl0.

pell.

pgl2.

pgl3.

pgld.

Type: incorrect algorithm. Detected by: test data filter.gs/data.18

Classification: requirements fault

In the main program, the initialization of the variable "first_ahd" was forgotten (CUR
#11).
Type: omission. Detected by: team’s own test data

Classification: requirements fault

Missing declaration of THETA_C as a global variable (CUR #14).
Type: omission. Detected by: reading the code

Classification: structural fault

In the Inner Loop, a wrong algorithm was used (CUR #16).
Type: typo / incorrect algorithm. Detected by: test data inner/data.6

Classification: requirements fault

In the Inner Loop, SU4 and LM1 are computed twice, but no new variable names were
used for the second computation (CUR #17).
Type: omission, due to language peculiarities (one cannot reassign a value to a bound
variable). Detected by: test data inner/data.6

Classification: structural fault due to the language

Wrong constants were used in the Outer Loop of the Flare Control Law (CUR #49).
Type: typo (readability problems). Detected by: coordinators’ test data

Classification: requirements fault

nI-14

pgl5. The value of SIGIN was not input to the Display procedure, to determine which signal
should be displayed (CUR #54).
Type: omission. Detected by: coordinators’ test data

Classification: requirements fault

The other changes were due to specification updates (DWR #23; CUR #53), efforts to
increase the efficiency (DWR #25, 27, 28; CUR #1, 4, 6, 51), were made to add debugging
facilities (CUR #10, 12, 13, 18), and to add an "absolute value" routine to the Prolog interpreter

(CUR #58).

CUR #55 is questionable: it seems that this update was actually not done (comparison

with code).

II1.5.2 Faults detected during Integration Test

pgl6. Wrong initialization of Filter F10 in the Glide Slope Complementary Filter (DWR #34,
35; CUR #19, 20, 33, 34, 35).
Type: typo / incorrect algorithm. Detected by: test data data.l

Classification: requirements fault (count as only one fault)

pgl7. A wrong function name was used in the definition of "do_ahd" (main program) (CUR
#23).

Type: typo

Classification: requirements fault

pgl8. Incorrect organization of the command monitors (global variables) (CUR #24).

OI-15

pgl9.

pg20.

pg2l.

pg22.

Type: incorrect algorithm. Detected by: reading the code

Classification: requirements fault

Syntax error in a comment in the main program (CUR #28).
Type: typo. Detected by: Prolog interpreter

Classification: requirements fault

Inconsistencies between the global database and the Barometric Altitude
Complementary Filter, the Radio Altitude Complementary Filter, the Inner Loop, and
the toutine "VOTESTATES". Also, a "retract" statement was forgotten in the
initialization of the Barometric Altitude Complementary Filter (CUR #29, 30, 37, 44).
Type: omission. Detected by: reading the code

Classification: structural fault

A state variable of the Glide Slope Complementary Filter was not entered into the global
database (CUR #31, 32).
Type: omission. Detected by: reading the code

Classification: structural fault

A wrong variable name was used in the "VOTEFILTER2" function in the interface
(CUR #39).

Type: typo.

Classification: requirements fault

[I-16

The other changes were due to adding/deleting debugging facilities (CUR #21, 22, 25,

26, 38, 42), to efforts to increase efficiency and/or clarity (CUR # 27, 43, 56, 58), to numerical

difficulties (CUR #36), and to the installation of the Display procedure in the Prolog interpreter

(CUR #40, 41). CUR #33, 34 are duplications of CUR #19, 20, respectively.

I11.5.3 Faults detected during Acceptance Test

pg23.

pg24.

pg2s.

pg26.

Fault in “"do_gscf' function: VOTEFILTER2 must be called for every frame
computation (DWR #33; CUR #47).
Type: incorrect algorithm. Detected by: test data data.4

Classification: requirements fault

The condition for initializing the Outer Loop of the Flare Control Law was wrong (CUR
#45).
Type: incorrect algorithm. Detected by: test data data.2

Classification: requirements fauit

The function name "set_gsp" was misspelled in the main program (CUR #46).
Type: typo. Detected by: reading the code

Classification: requirements fault

In the definition of "callVotestates" for the C interface, new variable names had to be
introduced for the réturn values (CUR #60).
Type: omission, due to language peculiarities (one cannot reassign a value to a bound

variable). Detected by: test data data.8

nI-17

Classification: structural fault due to the language

II1.5.4 Fauits detected after Acceptance Test

pg27. A state variable of the Inner Loop was updated twice during one computation (CUR
#61).
Type: specification ambiguity. Detected by: flight simulation test data.

Classification: requirements fault

pg28. Rounding errors in the Display module (CUR #62).
Type: incorrect algorithm. Detected by: code inspection.

Classification: requirements fault

pg29. Output of Mode Logic was used in some further computations before it was voted upon.
Type: incorrect algorithm. Detected by: code inspection.

Classification; structure fault
1.6 T Version

I1L6.1 Faults detected during Coding and Unit Test

tl. No magnitude limitation was performed on the output of integrator 12 in the Barometric
Altitude Complementary Filter (CUR #1).
Type: omission. Detected by: test data data.11

Classification: requirements fault

t2. The output of integrator I2 in the Barometric Altitude Complementary Filter was

aI-18

3.

t4.

15.

t6.

initialized by zero, instead of by HR (DWR #10; CUR #2).
Type: omission. Detected by: test data data.13

Classification: requirements fault

The output of integrator I8 in the Glide Slope Deviation Complementary Filter was
initialized by zero, but it should be initialized by the current value of the output variable
GSEL (DWR #8, 9; CUR #3).

Type: The team claimed the fault was due to a spec ambiguity, but we feel that it could
be a spec misinterpretation or a oversight.

Classification: requirements fault

Several changes in the Mode Logic (CUR #5).
Type: wrong algorithm, typos, omissions. Detected by: test data data.1, data.6

Classification: requirements fault

In all the Complementary Filters, the variables of the current computation state were
initialized, instead of the variables of the previous computation state (CUR #6).
Type: incorrect algorithm. Detected by: test data data.1

Classification: requirements fault

Incorrect computation of the output of the Command Monitor, "smaller” and “smaller or
equal" was confused (CUR #7).
Type: incorrect algorithm. Detected by: reading the code

Classification: requirements fault

nI-19

t7.

Incorrect rounding in the Signal Display function (CUR #8).
Type: incorrect algorithm. Detected by: test data

Classification: requirements fault

Other changes were due to specification updates concerning the Mode Logic (DWR #11;

CUR #4).

1I1.6.2 Faults detected during Integration Test

t&.

t9.

t10.

t1l.

In the Inner Loop, the rate limiters and switch SW2 were implemented incorrectly (CUR
#9).
Type: incorrect algorithm. Detected by: test data data.1

Classification: requirements fault

The global variable definitions in the main program were incomplete (CUR #11). Type:
omission. Detected by: reading the code

Classification: requirements fault

The overall organization of the initialization (main program, Mode Logic) had to be
fixed, so that all functions would get properly initialized. Originally, a flag indicating a
mode change was erroneously reset by the Mode Logic (CUR #13, 14).

Type: incorrect algorithm. Detected by: reading the code

Classification: requirements fault

The arguments standing for global variables were deleted from the functions

VOTEMODE and VOTEFILTERI1. Only test point variables are passed as arguments

1I1-20

(CUR #15, 16).
Type: unnecessary code. Detected by: reading the code

Classification: structural fault

The other changes were made to add comments, and to correct the interface between C
and T (CUR #10). To make the program more clear, arguments were explicitly added to the

VOTEFILTER?2 function (CUR #12) - this could also indicate a fault, however.
IL6.3 Faults detected during Acceptance Test

t12. In the VOTESTATES function, some variables were omitted from the format
statements, and some variables were not assigned their value as returned by
VOTESTATES (CUR #19, 20).
Type: omission. Detected by: reading the code, test data data.7

Classification: requirements fault

t13. In the VOTESTATES function, some wrong variable names were used when assigning
the return value (CUR #21).
Type: typo, incorrect algorithm, due to inconsistent naming conventions among team
mates. Detected by: test data data.7

Classification: requirements fault

t14. The transition from Glide Slope Capture to Glide Slope Track mode was considered a
mode change requiring reinitialization of the Inner Loop (CUR #22).

Type: incorrect algorithm. Detected by: test data data.3

II-21

t15.

t16.

t17.

t18.

t19.

Classification: requirements fault

In the interface to the C routines, the parameters of VOTESTATES were called by value
instead of by reference (CUR #23).
Type: omission, incorrect algorithm. Detected by: test data data.7

Classification: requirements fault

The current value of RAE was used in function F3 in the Flare Outer Loop, instead of
the value of RAE at Flare initiate (CUR #24).

Type: incorrect algorithm, possibly caused by typo or omission. Detected by: test data
data.2

Classification: requirements fault

A parameter was omitted in the definition of VOTEOUTER (CUR #25).
Type: omission. Detected by: test data data.2

Classification: requirements fault

A global variable was initialized twice in the Main Program (CUR #27).
Type: unnecessary statement. Detected by: code reading

Classification: structural fault (but did not cause any error)

The routine LANEINPUT, the Command Monitors, and the Display are not called when
the mode is Touchdown.
Type: incorrect algorithm. Detected by: code reading

Classification: requirements fault

1-22

t20.

121,

The Command Monitors are re-initialized at every mode change.
Type: incorrect algorithm. Detected by: code reading

Classification: requirements fault

The rate limiters LR1 and LR2 in the Inner Loop are re-initialized at every mode
change.
Type: incorrect algorithm. Detected by: code reading

Classification: requirements fault

II1.6.4 Faults detected after Acceptance Test

22

t23.

A state variable of the Inner Loop was updated twice during one computation (CUR
#28).

Type: specification ambiguity. Detected by: flight simulation test data.

Classification: requirements fault

Note: same as PROLOG team!

Output of Mode Logic was used in some further computations before it was voted upon.
Type: incorrect algorithm. Detected by: code inspection.

Classification: structure fault

The other changes were made in order to increase storage efficiency (CUR #17), to

increase the size of the buffer in which arguments are passed from the C routines to the T

functions, just to be on the safe side (CUR #18), and to make the structure of the Mode Logic

more clear (CUR #26).

II-23

