Computer Science Department Technical Report
University of California
Los Angeles, CA 90024-1596

A THEORY OF DIRECTED LOGIC PROGRAMS AND STREAMS

D. Stott Parker April 1988
R. R. Muntz CSD-880031

A Theory of

Directed Logic Programs and Streams ¥

D. Stott Parker
R.R. Muntz

Computer Science Department
University of California
Los Angeles, CA 90024-1596

ABSTRACT

For some time it has been recognized that logic programmers com-
mouly write directed predicates, i.e., predicates supporting only certain
input and output patterns among their arguments. In many logic program-
ming implementations, programmers are encouraged to use ‘mode
declarations’ to announce this directedness, both as a matter of style and
as a directive for compiler optimization.

A common application of directed programming is stream or list process-
ing. Programs that operate on streams or lists usually have specific input
and output arguments. More generally, directed predicates can represent
functions, with specific inputs and outputs.

We present a new declarative formalism for directedness in logic pro-
gramming systems. The formalism is based on the use of partial ordering
constraints rather than unification. Semantics of the resulting system are
rigorously definable, and extend ordinary logic program semantics in a
natural way.

The approach to directed logic programs presented here will probably pro-
vide higher performance than is possible with undirected programs.
Furthermore, the approach provides perspective relating diverse concepts
such as predicate ‘modes’, functional computation, constraint processing,
and stream processing.

+ This work was done within the Tangram project, supported by DARPA contract F29601-87-C-0072.

A Theory of

Directed Logic Programs and Streams ¥

D. Stott Parker
RR. Muntz

Computer Science Department
University of California
Los Angeles, CA 90024-1596

1. Introduction

Tangram is a Prolog-based environment for modeling being developed at UCLA [16].
Its emphasis is on processing both non-numeric and numeric models, in a framework that
combines management of complex structures (e.g., models) and regular flat structures
(e.g., relational databases containing large quantities of model output). We feel that most
of the parallelism to be exploited in modeling and in real non-numeric programs lies in
stream processing. Consequently, one of our main goals is the introduction of efficient
stream processing into Prolog. This goal is clearly shared by the designers of AND-
parallel Prolog systems. A simple, efficient mechanism for stream communication is
vital.

There have been many attempts to incorporate stream processing into logic programming
systems such as Prolog. For a number of reasons, this incorporation is not easy. Among
other things, Prolog does not naturally support clause access other than with backtracking
[23], and does not support multiple processes working on streams. Also, many perfor-
mance tradeoffs arise in reconciling the power of logic programming with the realities of
practical stream processing.

Unification, or some analogue of unification, is often relied upon to provide a communi-
cation mechanism in systems supporting stream processing. This is a natural approach,
since unification forms the basis of communication in ordinary logic programs. Unfor-
tunately, unification does not properly capture a notion of ‘flow’, i.e., directed communi-
cation, that is common in stream processing. Unification is not directed; it is a two-way
affair, Capturing the notion of flow correctly is important not only for conceptual
elegance and correctness (e.g., in dealing with communication of partially instantiated
terms [14] — terms containing variables) but also for performance, since it affects both
control and communication overhead. Two-way communication with unification is
inherently more complex and expensive than the one-way communication found in ordi-
nary streams.

As a result, the treatment of unification differs among parallel Prolog systems. For exam-
ple, let us consider a simple PARLOG merge program [9] taking two input streams (the

-2.

first and second arguments) and producing an output stream (the third argument). A
mode declaration is used to indicate this directedness, i.e., that the first two arguments
are expected as input, and the third is output:

mode Merge{?,7?,7).

Merge({[xlal,b, [x|c]) <~ Merge(a,b,c).
Merge{(a, [x1b], [x]|c]) <- Merge(a,b,c).
Merge([], b,b).

Merge(a,[],a).

This program can be put in Parlog’s standard form by using one-way unification against
all input arguments:

mode Merge(?,7,7).

Merge(vl,v2, v3) <— [x|a] <= vl, b <= v2 : Merge(a,b,c), v3 = [x]|c].
Mexge(vl,v2, v3) <- a <= vl, [x|b] <= v2 : Mergel(a,b,c), v3 = [x|cl.
Merge(vl,v2, v3) < {] <= vi, b <= v2 ;1 v3 = b.
Merge (vl,v2, v3) <- a <= vl, {] <= v2 : v3 = a,

The one-way unification primitive (x <= y) binds variables only in x so as to make x
and y unify, if this is possible. Briefly:
(1) If there is a way to bind variables in x to make it unify with y without also
binding variables in y, then these bindings are made and the call to <=
succeeds;

(2) otherwise, if there is a way to unify x and y, then the call to <= suspends;
(3) otherwise the call to <= fails.

Thus, one-way unification is more a pattern-matching operation than unification. One-
way unification can be used to reduce the overhead of full unification, but at a price in
complexity of semantics. Simpler mechanisms for communication would be helpful
here.

It turns out that the one-way unification operator above is very similar to £, the partial
ordering of generality (subsumption) among terms. That is, (x <= y) is very close
semantically to the logical constraint (x € y), which requires the term x to be less gen-
eral than the term y, i.e., that x must be subsumed by y. For example, given the con-
straint (f (x,y)E f(a,g (b)), wemusthavex =g andy =g (b).

When x and y are terms that have no variables in common, x Ty is essentially identical
semantically to x <= y. Inthis case x €y is ‘one-way’. That is, x is constrained by y,
but not vice versa. A simple implementation of this case in Prolog could be as follows,
using Edinburgh Prolog syntax with X and Y instead of x and y:

XEY :- copy term(Y,T), unify(X,T).

Our thesis is that logic programs can use & as a basic primitive. It would be a mistake to
discard this connection between <= and € as an interesting curiousity. In many situa-
tions € can take the place of unification. In particular, use of ordering constraints like &
is natural in stream processing. For example, we will study stream-processing logic pro-
grams like the merge program below:

-3

merge(V1,V2,V3) « [XIAIQVI1, BGV2, XI1CY12V3, merge(B,AC).

merge(V1,V2,V3) « ALV, [XI1B1EV2, XIC12V3, merge(B,AC).
merge(V1,V2,V3) « [1EV], BLV2, B 2V3,
merge(V1,V2,V3) « AEV], [nev, A 2V3.

More generally, we feel that replacement of unification by a variety of ordering con-
straints provides an elegant way to define ordering relationships among loosely-coupled
computations, such as those in stream processing. Here € is an important ordering, but
many others can be used.

This approach gives a declarative way to deal with the more general issue of directed
predicates, predicates supporting only certain input and output patterns among their argu-
ments. Programs that operate on streams typically have specific input arguments and
output arguments, defining a directed ‘flow’ of stream processing. Directedness mani-
fests itself whenever predicates represent functions; some of the arguments represent
inputs to the function, while others represents the function’s output.

The perspective offered by this approach gives us an interesting handle on stream-based
computation in general. Many of the basic ideas in this paper appear in Gregory’s book
[9], but the formal approach here raises and clarifies important issues. The approach also
helps in appreciating generalizations of streams, such as Tribble et al’s channel [26], a
stream-like object providing partial ordering among data items. This approach also
makes formal connections between stream processing and constraint programming, as
represented by Prolog II [7], Constraint Logic Programming (CLP) [10, 11], and Partial
Order Programming [22].

2. Foundations

In this section we review basic results for partial orders and the subsumption ordering on
first-order terms. In the interest of clarity and a self-contained presentation we reproduce
a number of standard definitions, We then go on to explore properties of term subsump-
tion constraints.

2.1. Partial Orders

Definition
A partial order is a pair <D ,= > where C is a binary relation on D such that

(P1) Forallx inD,x Ex.
(P2) Forallx,y,zinD,ifx Cy andy Ez,thenx £ z.
(P3) Forallx,y inD,ifx Cy andy S x,thenx =y.

A preorder is a pair <D ,C > satisfying (P1) and (P2).

A total order <D ,E> is a partial order in which for every pair of elements x,y either
x Ey ory Cx holds.

Definition

In a partial order <D, >, an upper bound of a subset S of D is an element z in D such
that for every x in §, x C z. The least upper bound of a set S, written LI S, is the least z
such that z is an upper bound of §. By P3, it is unique if it exists.

Definition

A directed set S in a partial order <D ,C > is a nonempty subset of D with the property
that if x,y are arbitrary elements in §, then there is another element z in § such that both
xCzandy Cz.

A complete partial order (cpo) is a partial order <D ,E > in which every directed subset
S of D has a least upper bound U S.

Definition
A function on a partial order f : D — D is monotone if x Ty implies f(x)C f(y).

Definition
A function f : D —D on a cpo <D ,C> is called continuous if for every directed subset
SofD,

fFUs) =Ure).

Fixed Point Theorem
Let f : D —D be a continuous map on the cpo <D ,C > with a least element L. Then f
has a least fixed point equal to

fixf = U{fYL) lkew)

where ® is the natural numbers, f* is f iterated k times, i.e., f¥ =f of ¥, and fOis
the identity. See e.g. [12,22].

Definition
A complete lattice is a partial order <D 2> such that every subset S of D has a least
upper bound LU §. In particular L € D, since 1 = Q.

Complete lattices are sometimes defined as partial orders in which LI § and I'1§ exist for
every set §. Because 1S = U{x |y 2x,foreveryy inS§ }, the definition here is
equivalent.

2.2. First-Order Terms and Unification

We include here basic material about first-order terms and unification from [15]. An
excellent reference is [13], which reviews previous work and clarifies many confusing
issues concerning unification.

The set T of (finite} first-order terms over a given set of function symbols is defined as
follows. Let F be the set of function symbols f of interest, each of which has an arity
(number of arguments). Symbols with arity zero are constants. Also, let V' be an infinite
set of variables. T is the least set defined inductively by the following set of require-
ments:

(1) Every variablein VisaterminT.

(2) If f is a function symbol of arity n in F, and ¢y, ..., ¢, are terms in T, then
f(@y, ., tp)isaterminT,

For example, if f hasarity 2, F = {f },andV ={X,¥,-- - }, then
T ={X,Y,fXX),fXY)fXX)LfXY)fXSEXX) ..}

For simplicity we will follow the Prolog convention of introducing specific variables
with upper-case letters, and specific constants and function symbols with lower-case
letters. General terms will be denoted by r, 5, ¢, etc.

A ground term is a term that contains no variables.

A substitution 0 is a member of V—T, i.e., a set of bindings {(X1/1¢,...,X, /t,} map-
ping each variable X; to the first-order term #;. The variables X; are distinct, and 7; can-
not be X;.

Applying the binding X; /¢; to the variable X; results in the replacement of X; by the
term 7;, and we say X; is bound to 1;.

If r is a term, the instance t© of ¢ is the result of simultaneous application of all bindings
in O to the corresponding variables in r. A ground instance is an instance that is also a

ground term.

A substitution 0 is a renaming if it is of the form {X; /Y, ..., X, /Y, } where the X; are
distinct variables, and the ¥; are distinct variables.

Two terms s and ¢ are called variants if there exist renamings ¢ and 6 such that both

-6-

s =toandt =50, Thus s and ¢ differ only in the names of their variables.

Letp={X1/71, .. Xm /tm} and 6 = {Y1/51,.... ¥y / 5, } be substitutions. Then the
composition po is the substitution obtained from the set

(X1/1r16, ... Xpu 110, Y1/51, 0 Y 15, }

by then deleting any binding X; / r;o for which r;c is X;, and deleting any binding
Y; /s; for which Y; is some X for some k. Composition is associative, i.e., for all sub-
stitutions p, ©, 6, and all terms ¢, p(c0) = (po)B, and ¢ (08) = (1 0)0.

A substitution 0 is idempotent if 60 = 8.

A unifier of two terms s and ¢ is a substitution 8 such that s8 and ¢0 are identical. A
unifier © is a most general unifier (mgu) of s and t if for every other unifier ¢, there
exists a substitution ¥ such that 6 = 6y.

For example, a most general unifier fors =f (X ,b)andt =f @,¥Y)is0={X/a,Y /b},
and s0 =10 =f (a,b). This substitution is idempotent.

If s and ¢ have a unifier, they have an idempotent unifier. In fact, Robinson’s unification
algorithm [15] always produces idempotent most general unifiers.

2.3. First-Order Term Subsumption
First-order terms may be ordered by generality, or subsumption. For example,

F&E, fWUSV.W), f(f@l)Z)

are first-order terms, and the first term is called more general than either the second or
the third. Equivalently we say the first subsumes the second and the third. Henceforth
we write this relationship of subsumption as a binary relation =2 on terms, whose
definition includes:

F&x.Y)y 2 f(USV.W),
f&XY) 2 f(f@.z2)Z).

By convention, we will usually write these ordering statements below with = rather than
with €

Definition
Let s and ¢ be first-order terms.

We say s =t if there exists an idempotent substitution 8 such that 50 =1¢.

For example, if s =f (X ,Y), t =f (U f(V,W)),then0={X /U,Y / f(V,W) } satisfies
s8=t,s05 2t. However fX,Y)Bf (¥ X),and f (X, Y) £ f (@ X).

Idempotency of © is included in this definition in order for subsumption to be ‘reason-
able’ when s and ¢ have variables in common. In many situations (such as when analyz-
ing properties of subsumption by itself) subsumption can be defined without insisting on

-7-

idempotency of 6, but in the situations we deal with later it is important. For example,
with s =f(X,Y), t =f (¥ ,X), the non-idempotent substitution 6={X /¥,Y /X }
satisfies s0 =t (and t0 =s). However, in the context of a logic program it will not be
reasonable for £ (X ,Y) to subsume f (Y X).

Intuitively, = is related to = (set containment). If a term s is more general than 7, then
the set of instances of s contains the instances of . Formally, denote by ground(t) the
set of all ground instances of z.

Prop. 1
If s 2t then ground(t) = ground(s) M ground(t).

The converse of Prop. 1 holds provided that s and ¢ have no common variables, since
then it can be proven that ground (s) M ground(t) = ground(¢8), where 0 is a most gen-
eral unifier of s and t. See [27], where ground (t) is referred to as proj (¢).

Corollary
If s 2t then ground(s) D ground(t).

Again the converse holds provided that s and ¢ have no common variables. Note in par-
ticular that if s 2¢ and s is a ground term, then s =¢.

Prop. 2
Ifboths =2t andt =5, then 5 and ¢t are variants,

Definition

A common instance of a set of terms § is a term 7 such that r T s for every element s in
S. The greatest common instance 1§ is the greatest such instance (modulo variants),

A common generalization of a set of terms § is a term ¢ such that r =25 for every element
s in S. The least common generalization |15 of S is the least such generalization (again
modulo variants).

Example
LetS={f(a.g(¥).fX.g®)N,f@Z)} ThenUS=fX,Z),and NS =f(a,g®)).

Prop. 3
Let T, be the set of equivalence classes of first-order terms in T, where two terms are
equivalent if and only if they are variants. Then <T, ,=> is a complete lattice.

Proof

To show <T,,E> is a partial order, note the equivalence class definition satisfies
property P3. The only problem is in showing that property P2 (transitivity) holds.
If s 2t and r 2u there are idempotent substitutions ¢, © such that s6 =t and
t8=u. Although the composition of idempotent substitutions is not idempotent in
general, by applying renaming substitutions to 0 if necessary we can force o8 to be
idempotent here, and thus s 2u. So 21is transitive.

To show that <T, ,& > is a complete lattice, we must prove that every set S of term

-8-

variants has a least upper bound L S. This follows [24, 25] since we can find a least
generalization s |17 for any pair of term variants s and ¢ via an anti-unification
algorithm, and if S ={sy, 5, ..} the sequence <fi,¢3,..>, where 71 =5, and
t; = 1;-1 U 5; otherwise, must stop increasing in generality at some finite index (giv-
ing the least common generalization), since #;_; £¢; and there cannot be an infinite
increasing sequence of finite term variants. [

Prop. 4
s 2t if and only if 18 =1 for some idempotent most general unifier @ of s and .

Proof

If there is an idempotent mgu O such that 1@ =1, then s6=16=1¢, so s =2¢. Con-
versely, if s =2¢ there is an idempotent substitution ¢ such that so=7. But then
s66 =t6. However since ¢ is idempotent, s66=50, so ¢t =¢0. Thus O is an
idempotent unifier of s and ¢. If ¢ is also a most general unifier, setting 6 = ¢ com-
pletes the proof. Otherwise there is an idempotent most general unifier 0 and a sub-
stitution v such that ¢ = 8y. We may assume ¥ includes no renaming substitutions,
since we may require © to include all necessary renamings. But then t =16 =18y,
so no variable in ¢ is bound by 6y, and hence no variable in ¢ is bound by 6. So
t0=t also. O

Definition

Let s and ¢ be first-order terms. An orderer of s over t is an idempotent substitution 6
such that s 2¢0. A ground orderer of s over t € is an orderer that makes s6 and 6
ground terms, so s 9 =¢6.

We say 0 is a most general orderer (mgo) of s over t if for any other orderer o, there
exists a substitution W such that 61 = ©.

Prop. 5
There is an orderer of s over ¢ if and only if s and ¢ are unifiable.
Proof

If s and ¢ have an orderer G, then s6 2¢6 and s6p =t 6 for some idempotent p.
But then s opp =tGp =t G, and op is a unifier of s and ¢. Conversely, if s and 1 are

unifiable, then they have an orderer, since there is a idempotent mgu € such that
s80=16,s059=270. O

We now show how to construct a most general orderer for unifiable terms.

Definition
Let S be a set of first-order terms. An impartial substitution for S is an idempotent sub-
stitution 0= { Xy /4y, ..., X, / 4, } where no u; contains variables of any term in §.

Prop. 6

If two terms § and ¢ are unifiable, they have an impartial most general unifier (that is, an
idempotent mgu that is impartial for {s,t }).

Proof

-9.

In any idempotent mgu 8 with bindings X /u where u contains Y appearing in 5 or
in ¢, we can produce a new mgu 6" = 0p by applying the renaming p= (Y / V} for
some new variable V. Proceeding again in this way we can eliminate all bindings
to variables in § or in z. The resulting mgu is also idempotent. [J

Theorem 1
Let 6 be an impartial mgu for s and z. Define 0, ;) < 0 by

Os0) = {X/u €0 | X is avariable that appears inz }.

Then [;7 is an mgo of s over .
Proof

Since 0 is idempotent, 8 = 0, ;7 U (8 = B(5.¢)) = O[5 ,11(0 — O[5 ¢7), both (8 — 6y, ;1) and
B[] are idempotent, and so 50 ;] =50. But s80=18=1¢0,). So O is an ord-
erer of s overt.

We must show that €[, ;] is most general. Let ¢ be any other orderer of s over ¢.
We claim there is a substitution | such that O ,ju = ©.

We know that sop=to for some idempotent p. Thus as in Prop. 35,
sopp=top=t0, and op is a unifier of s and ¢. Furthermore, we can assume
without loss of generality that p introduces renamings if necessary so that no vari-
able in the right of some binding in Gp also appears in the right of some binding in
8. Since 6 is also an mgu, we know there exists a substitution ¥ such that 6y = op.

Now, let X be any variable appearing either in s or in ¢, assuming without loss of
generality that ¢ makes bindings only to these variables. If X is in ¢, then
X0, ;1=X06 and Xop =X 0. Also, since 6,) contains only bindings X / u where
u is a term having no variables that appear only in s,

X0 y=X0y=Xop=Xo.
On the other hand, if X is notin z, then X 0 ;) =X, so
Xe[_,,,]O' =X0.

Define p as follows:

g o= {X /u €y | X isavariable that appears in 0, ;] }
U {Y/v € o |7 isavariable that appears ins butnotint }.

Then W satisfies the claim. [

It may help to look at the situation pictorially. Given the constraint ¢~ s =2, we must
bind variables in s and ¢ appropriately. When 6 is an mgu of s and ¢, s0 =10 is the
‘intersection’ of s and ¢. Furthermore s is more general than s 85), and s 6, ;] is more
general than s 0. A portion of the term lattice is shown in Figure 1.

-10 -

50=10 =10

Figure 1. Term Subsumption and 6, 1

For example, the terms s =f(X,Y) and t=f(a.X) have most general unifier
8=(X/a,Y /a}, and the subset O, ={X /a } satisfies 50,1220). This is
shown in Figure 2.

f&X,\y) f(a.X)

fla.a)

Figure 2. Example of Term Subsumption and 6,)

Theorem 1 shows that 8, has the same effect on s and ¢ as a most general unifier of ¢
and a copy of s that retains all the variables s shares with z. In other words, if s" =sp
where p renames all variables in s that are not in ¢ t0 new variables, then there is a mgu
0’ of s’ and ¢ such that 185, =16" and 50, = 5s0". For the example above, if we take
p=(Y/Z}, then a mgu of s and ¢t is '={X/a,Z/a }, and s6'=f(a.Y),

18’ = f (a,a). We will show later how this result can be exploited in implementations of
subsumption.

-11 -

2.4. Term Subsumption Constraints

Let us now investigate how the two-argument predicate = behaves as a constraint, so that
we may include first-order term subsumption in a logic programming system.

Consider first some examples. For the goal

— a=2Z
to be satisfied, Z must be bound to @. Similarly, for

«~ fX.a)2f X Z)

to be satisfied, Z must be bound to a. In general, Theorem 1 tells us that the single logic
programming goal

« 52t
can be satisfied by finding an impartial most general unifier © for s and ¢, selecting the
subset 85 ¢ < 0 of bindings for the variables that appear in ¢, and then applying 9, 1] to
the goal. In other words, since s 85 ;] =¢8],], the goal and substitution

€« (S QI) 0[5-';]

is satisfied, whether the terms s and ¢ have common variables or not.

In the important case where s and ¢ have no variables in common, 58 ;) =+, and this
goal and substitution are equivalent to
— 5 205 .

In this case, s 2t is a one-way constraint. As long as s and ¢ have no variables in com-
mon, only ¢ can be affected by bindings made to satisfy the constraint. This is an impor-
tant property, as it gives a formal definition for ‘one-way unification’ within the existing
theoretical framework for logic programming.

It is natural to view =% as a constraint when it appears in a conjunction of goals. Above,
when we considered the goal

« fX.a)2f Y .2)

we noticed that Z must be bound to @. Additionally, however, this goal constrains X to
subsume Y. That is, all bindings applied to X for other conjuncts must also be applied to
Y. For example, with

— fXa)2f¥.Z), X=b
Y must be bound to b for the goal to be satisfied. Also, with
— fXW)2fT.2Z) X=W

Y must be unified with Z to satisfy the goal. (Why? For « f (X X)2f (Y ,Z) to be
satisfied there must be an idempotent © such that f (X ,X)0 matches f (Y ,Z). This is pos-
sible only if ¥ matches Z.)

We call = a constraint because its satisfaction can constrain bindings without actually
applying them.

-12-

A particularly useful example of a goal conjunction is
— s2r,t2s

which constrains s and ¢ to be variants, as mentioned in Prop. 2. That is, in order to
satisfy both goals any binding applied to s must also be applied to ¢, and vice versa.
This is operationally equivalent to unifying s and t. For this reason we use
(s 2, t 25)interchangeably with (s = t) later.

A final interesting example of a goal conjunction is
« X 2Za, X 2b.

This conjunction is noteworthy since it is satisfied if X remains a variable, yet no assign-
ment of X to a ground term will satisfy it. This example points out that there are two
different domains over which we can select bindings to satisfy constraints:

(1) the full set T of first-order terms, including variables;
(2) the Herbrand universe of all ground terms.

Definition

A conjunction of one or more constraints G is Term-satisfiable if there exists a substitu-
tion O that is an orderer for each constraint in G. G is Term-satisfied if each individual
constraint in G is satisfied, i.e., the empty substitution is an orderer for each constraint.

A conjunction of constraints G is Herbrand-satisfiable if there exists a substitution 0 that
is a ground orderer for each constraint in G. G is Herbrand-satisfied if it is Term-
satisfied and has a ground orderer.

For example, if G is (X =*a,X 2b), then G is Term-satisfiable (in fact, it is Term-
satisfied), but G is not Herbrand-satisfiable.

Definition

A Term most general orderer (Term mgo) of a conjunction of subsumption constraints G
is a substitution © such that G 0 is Term-satisfied, and 0 is most general: if G o is also
Term-satisfied, then there exists y such that 6y=c.

A Herbrand most general orderer (Herbrand mgo) of a conjunction of subsumption con-
straints G is a substitution 0 such that G 0 is Herbrand-satisfied, and 0 is most general: if
G ¢ is also Herbrand-satisfied, then there exists ¥ such that 6y= 6.

Theorem 2a

Term most general orderers of a conjunction G of subsumption constraints are unique up
to renaming, and there is a simple algorithm for computing them.

Proof

Given the conjunction
G = 51211, ", 8, an
define

-13-

g = [[51,t1] DT [Snstn]]
so g is a first-order term. Here [,] is a function symbol that can be used to con-
struct lists. Also define, for 1 <i{ <n,

(11l s [0 Va1l O 1f Oy, exists
Filllugval,s s lnVall) = [upvid, oo, eVl otherwise

where Oy, 1,1 is an mgo of u; over v; that is impartial for [{u,,v 1seentty Vi 11

We claim that each f; is monotone, i.e., if g1 =g, then f;(g1) =fi(g2). First, if
g1 =g, then g0 = g, for some idempotent substitution o, so for each i:

i@y = g1 %um
fi(82) = 819000

Now 0[,,6,v.6] is an mgo of ;o over v; G, 50 08[,5,,0] is an orderer of u; over v;.
Since Oy, v, is an mgo of u; over v;, there is a substitution p such that

e[u.-,v.-] H=¢C G[HEU.V:O']'

It follows that £;(g1) 2fi(g2), so f; is monotone as claimed. Similarly, we can
show that each f; is continuous, i.e., f; (1S5) = N f;(§) for any directed set S of
terms. This follows from

NS = Ut ltEsforallse S} = U(sylseS, v asubstitution }.

Since finite compositions of continuous functions are continuous, the function

F(g)=f1(f2..fr(g)..))

is continuous. The first-order terms modulo variants form a complete lattice (Prop.
3), so the partial order <7, ,& > where & is the reverse of T (ie., x Cy iff x 2y)is
a cpo whose least upper bound operator is the greatest common instance operator [
onT,. Alsog 2F(g),sog 2F(g)2F%g)2.. andg CF(g)CF%(g)C .., and
as in the Fixed Point Theorem the greatest common instance

M Fk(g)

kew

exists and is the least fixed point of F under C (the greatest fixed point of F under
€). Thus we can find an orderer 0 for the constraints G, when an orderer exists, by
composing the substitutions applied by each f; in the fixed point just defined. That
is, the greatest fixed point of F under Tis g 6.

This orderer O is in fact a weak most general orderer of G. Any other orderer p
satisfies s;p =4;p for all i, so fi(gp)=gp, and F(gp)=gp. Thus gp is a fixed
point of F. But g 6 is the greatest such fixed point under .

The fixed point is attained by F¥, for some finite k, since any unifier o for G is an
orderer for G, and any Term mgo 0 satisfies O|L = ¢ for some substitution i. That
is, if ¢ is an idempotent mgu such that

-14 -

[§1500008p]C = [#15000stn]G,

then ¢ gives a bound on the size of (number of symbols in) a Term mgo for G,
since it is also an orderer of G.

Each application of F either increases the size of the orderer obtained, or leaves it
undisturbed (in which case the fixed point has been reached). Since the size of the
Term mgo is bounded, we must arrive at a greatest fixed point in a finite number of
applications, and the fixed point approach here can be used as an algorithm to com-
pute a mgo. O

A Herbrand mgo is just a Term mgo with the additional property that it can be extended
to a grounding substitution without violating any constraints. It is easy to determine
whether a Term mgo is also 2 Herbrand mgo:

Theorem 2b
A Term most general orderer 0 is also a Herbrand most general orderer of

G = sl;}tl,"',s’qgtn

if and only if the two terms [s,...,5,] and [¢1,...,#;] are unifiable.
Proof

If ¢ is unifier of [s4,...,5,] and [71,...,1,], there is a substitution p so that, for each i,
s;0p and t;op are ground and equal. So op is a ground orderer of G. Thus there
must be a Term mgo 6 of G for which some 7 exists such that op = 0y. But then 0
must be a Herbrand mgo, since By is also a ground orderer for G.

Conversely, assume G has a Term mgo 0 that is also a Herbrand mgo. Then there
is a substitution ¢ such that G 0o is made ground and satisfied. But then 6 is a
unifier of [s1,...,s,] and [#1,....2,]. O

A conjunction of subsumption constraints
G = s12t1, " ,8, 2y

is a particular kind of partial order program [22]. These programs have applications of
independent interest. For example, we will show later how collections of = constraints
are sufficient for specifying polymorphic types for predicate arguments in logic pro-
grams. In other words, they are sufficient for inferring basic type and mode declarations
for logic programs. Also, as indicated above they are solvable by fixed point iteration, or
relaxation as it is often called.

-15-

3. Directed Logic Programs

In this section we define directed logic programs and show how directed programs relate
to ordinary logic programs. We assume the reader is familiar with basic concepts in the
semantics of logic programs. A more complete reference for ordinary logic programs is
[15].

3.1. Definition of Directed Logic Programs
Every clause in a logic program

plty,.nty) ¢« G
can be written
p(Vi,oy Vp)e (Vi=1)), .., V,=1,), G
where V1, ..., V,, are newly introduced variables, or equivalently

p(Vl’ms Vn)('"' (Vl ;tl, tlgvl), very (Vn ;}tns In Qvn); G.

A clause is directed if instead of (V; =1;) it contains only (V; 2¢;) or (f; 2 V;) for one or
more values of i, 1 £i <n. Thus a directed clause uses a subsumption constraint instead
of unification for at least one of its arguments. We identify the i** argument of p in the
clause as an input argument, output argument, or both if its corresponding constraint is as
follows:

input argument Vi 24)
output argument (t 2Vi)
input and output argument (V; 24, 4 2V;).

A directed logic program is a logic program containing at least one directed clause.
Directed logic programs as defined here do nor include a clausal definition of the predi-
cate =, since (as we will show below) Z}is not specifiable with Horn clauses.

The undirected version P, of a directed logic program P is the program obtained by
replacing all occurrences of Ztin P by = (unification), and including the clause

X=X ¢&.

3.2. Semantics of Directed Logic Programs

Corresponding to the two notions of satisfiability (Term-satisfiability and Herbrand-
satisfiability) introduced earlier, we now define two notions of entailment and two
notions of provability. In many situations Herbrand-satisfiability is more appropriate, but
Term-satisfiability is desirable for type inference, so we continue our investigation with
both.

-16 -

Let P be a directed logic program, and G be a conjunction of atoms, so < G is a goal.
We say P Erem G if P U{ & G} is not Term-satisfiable, and P Eyerprang G if
P v { « G } is not Herbrand-satisfiable.

Here Eg.rbrana 15 the usual Herbrand model-theoretic notion of entailment, and it differs
slightly from [=71,,,. As an example, consider the program P containing the single predi-
cate:

variable X) « X Za,X 2b
This predicate has no Herbrand models! Under the definitions above we have

P Erem variable(Z)
P ¥ Herbrang variable (Z).

Since the choice of Term- or Herbrand-satisfiability is usually implicit from context,
below we omit the subscript on &.

A correct answer for P and ¢« G is a substitution 6 such that P E G 9.

Now let us develop a proof theory by extending SLD resolution slightly to deal with =
An extension is needed since = is not specifiable with Hom clauses: The goal « X Za
should succeed with the empty answer substitution, but if =2 is specified with Horn
clauses the goal’s ordinary SLD resolvent must then be the empty clause. However, the
goal « X Za, X =b should then also succeed. So = is not specifiable with Hom
clauses.

Derivations can be defined as for Prolog II [7] and CLP [10]. We say the sequence

«—Gg, <G, oy « G,

is an SLD(2) -derivation from « G and P if, for each i between 1 and n, one of the fol-
lowing holds:

(1) G; is the resolvent of G;_; and some clause in P. Thus if
Gi.1 = A1, .4, ., A

and we select a clause A « B, ..., B, from P where an mgu of A and 4; is
0;, then

Gi = (A1,.wAj1,B1,.,Bg ,Aj41, . AL) 6.
(2) G; is the result of enforcing a subsumption constraint of G;_;. If
Gi1 = Ay, LA, LA
and A; = (s 21) is selected, then
Gi = (A1, w0dj, . 0uAp) O,

where as usual Oy; ;) is an impartial mgo of s and 7. If we permit an arbitrary
orderer to be used instead of an mgo, we call the derivation an unrestricted
SLD(2)-derivation.

-17-

An SLD(3)-refutation from « Ggand P is a finite SLD(Z)-derivation < Gy, ..., &« G,
in which G,, is

S1 2 o Spm ol

and every constraint in this conjunction is satisfied. (Note: if m is 0, we get the
definition [15] of ordinary SLD-refutation.) More precisely, we call the refutation a
SLD(2)-refutation using Term-satisfiability if G, is Term-satisfied, and SLD(H)-
refutation using Herbrand-satisfiability if G,, is Herbrand-satisfied.

The answer substitution of the refutation is the substitution
0 = 0,6,---9,

composing all unifiers obtained in the derivation.

Finally, we write P |- G 0 if there is an SLD(=)-refutation from ¢~ G and P with answer
substitution 8. Equivalently, there is an SLD(Z)-refutation from « G9 and P with
answer substitution &. Where needed, we write P Frpmm G0 O P bgerbrand G 9, Tespec-
tively, to make precise that the final conjunction of constraints is Term-satisfiable or
Herbrand-satisfiable.

Theorem 3

Let P, be the undirected version of a directed logic program P. If P, G, then
P EGO. Also,if P, —GO,thenP GB6.

Proof

The theorem follows since equality implies subsumption. That is, (s =¢) is
equivalent to (s 2t) A (t 25), so (s =1) logically implies (s 2¢), and « (s =2¢)
logically implies «— (s =t). Consequently any directed clause
Pe— (21, G)= |[Pv es2t)v <—(G)]
logically implies
[Pv<—(s=t)v <--(G)] P« (s=1) (G)
Thus, every directed clause logically implies its undirected version, and so every

directed program logically implies its undirected version. Consequently if P, =G 6
then P £ GO.

Also, if P, GO, then P G O. If Go= G0, any SLD-refutation « Gy, ..., « G,
from <G 9 and P, immediately yields an SLD(2)-refutation from «-G 9 and P in
which all subsumption constraints are satisfied in advance, i.e., no mgo 6 ;) must
be used in the derivation.

Furthermore, if Gy=G, any SLD-refutation « Gy, ..., ¢ G, from <G and P,
yields an unrestricted SLD(=)-refutation in which every substitution applied to
enforce a subsumption constraint is an orderer, but not necessarily a most general
orderer. Consequently every subsumption constraint is satisfied by 6. [

We say a goal (& G) respects the direction of a directed program P if for any answer

-18 -

substitution @ such that P | GO, then also P, - G 6. Intuitively, a directed logic pro-
gram behaves exactly like its undirected version when the arguments are used in the
proper directions.

3.3. Example
Consider the following directed program:
merge(V1,V2,V3) « VI12[], V22B, V3LB.

merge(V1,V2,V3) & V124, V22[], V3LA.
merge(V1,V2,V3) ¢« VI12[X1A], V22B, V3L[XIC], merge(B,A,C).

In this program the input variables V 1 and V2 constrain the terms that the original pro-
gram would unify them against, and V'3 is constrained by the result of the merge. An
SLD(Z)-derivation from the goal

«— merge ([al.|b.,c1.2).

and this program results in the conjunction of the following constraints:

Vii = [a] Vi, = B Vis = B2
V2: = [b,c] V2, = A V2s = A;
Vi, = Z V3, = C Vi = C:
Vi, 2 [XilA] Vi 2 [X2A2] Vi, 2 []
V2: =2 B V2, =2 B2 V23 =2 B3
Vi, € [XilCi) V3. € [X.Cs] V3a £ B

We have included equality constraints here for clarity. Subscripts on variables indicate
the step in which they were introduced. This conjunction of constraints has as its unique
solution the usual substitution obtained by a logic program with equality (ordinary
unification) constraints, i.e., with the undirected version of the merge. It does so because
the goal respects the direction of merge. So there is an SLD(=)-refutation from the goal.

On the other hand, the goal
—merge([X],[X],[a.b])

has an SLD() -refutation using Term-satisfiability from the directed program! This refu-
tation does not bind X, since (X Za) A (X 2b) is already Term-satisfied. However, the
goal has no SLD(Z)-refutation using Herbrand-satisfiability. Also, this goal will fail with
the undirected version of the program, i.e., there is no SLD(=)-refutation from this goal
and the undirected version of the program. The goal does not respect the direction of the
program, since the input arguments to merge are not ground and have the variable X in
common.

3.4. The Problem of Respect
The discussion above raises the question of how we can solve the following problem:

-19 -

Given a directed logic program P and a goal « G,
does < G respect the direction of P?

This problem seems undecidable in general. A complete answer to the question of how
to solve the problem is an interesting open issue. Note that Gregory [9] defines direc-
tional programs and discusses basic issues involving this problem and results like those
of Theorem 3.

For the moment we content ourselves with a partial answer that covers many useful situa-
tions. A simple sufficient condition for « G to respect the direction of P is that in the
final result

«— (S]_ ;tl)’ nany (SM th)

of every SLD(2)-refutation from (& G) and P, every s; is ground. This follows since 2
is equivalent to = when its first argument is ground,

-20-

4. Implementation of Term Subsumption Constraints and the Importance of Types

This section describes how to apply the formalism developed above in real implementa-
tions of = and directed logic programming systems.

4.1. Implementing Term Subsumption in Prolog
A sketch of how = can be implemented in Prolog is as follows:¥
YEx - x 2v.
XY :- subsume now(X,Y), subsume_henceforth(X,Y).
subsume_now(X,¥) :— term variables(Y,L), term copy (X, L,T), anify(T,Y).

subsume_henceforth(X,Y) :— ground(X), f.
subsume_ henceforth(X,Y) :— ...

This implementation of (X 2 Y) first forces X to be more general than Y at the point of
invocation, by unifying Y with T, a copy of X that retains all variables appearing in Y.
(As we remarked at the end of section 2.3, this unification is equivalent to applying a
most general orderer to X and Y.) The implementation then must constrain future bind-
ings to X and Y.

In the implementation of (X =2Y), when X is a ground term the future generality
constraint subsume henceforth (X, Y) is trivially satisfied. However, if X is not
ground, the constraint (X 2 Y) must be enforced for any future bindings to X. Enforce-
ment of this kind generally requires suspension of execution. Concurrent Prolog and
PARLOG suspend on unbound input variables, MU-Prolog suspends negated goals [18],
and both Prolog II [8] and CLP [11] defer such constraints until they become bound. In
the same way, (X =2 Y) can suspend when X contains a variable.

The implementation discussion here is not really intended to cover committed choice
languages such as PARLOG. In these languages one often wants execution of the current
process to suspend until X becomes nonvariable. In fact, suspension of the current pro-
cess is ultimately necessary to guarantee determinism of execution in processing guards
and commitment. However it seems that the ‘flat’ versions of these committed choice
languages could be covered by a similar kind of suspension.

Prolog II's freeze primitive [5,7] provides a basic mechanism for suspension. The
goal freeze (X, G) normally suspends the goal G until X is nonvariable. Since it pro-
vides basically what we need, let us continue the implementation sketch with it.

It is easiest to develop a complete implementation for the constraint (X = Y) by consider-
ing three different restrictions that can be known to hold on the argument X:

(1) Eventually Ground Terms,
If X is known always to be either variable or ground, we can write:

+ This and subsequent Prolog implementations all use unify (unification with the occur check)
and not Prolog’s ‘=" (unification without the occur check). Some applications of =, such as type
inference, explicitly require the occur check.

-21-

K=Y :— freeze(X, unify(X,¥)).

This restriction arises frequently in ordinary functional computations
[2,4,19,20,21].

(2) Eventually Terms with Independent Variables.
If X is known always to be either variable or a term in which a variable can never
appear more than once, and X is also known to never have have any variables in
common with ¥, then whenever X is of the form f(sy,...,sp), Y must be
fy,...,t,), where 5; 2¢; for 1<i<n. In other words, in this case the
constraint X =Y can be decomposed into the independent constraints s; =21,
1 £i £ n. This may be implemented naively as follows:

XY :— freeze(X, subsume(X,Y)).

subsume (X, Y) :— functor{X,F,N),
functor(¥Y,F,N),
subsumeArgs (N, X, Y) .
subsumeAxrgs (0, _,_).
subsumeArgs (I, X,Y) :— 0 < I, arg(I, X, Xi), arg(I,¥,¥i), xi=2vi,
I1 is I-1, subsumeArgs(Il, X,Y).

This restriction arises commonly in stream computations, where X will be bound to
a list-like structure [s1ls2] in which all variables in s, and s, are independent of
one another.

(3) Arbitrary Terms.
Otherwise, if X is unrestricted, implementation of subsume henceforth is
more challenging. The challenge comes from goals like

- f£(A,B) 2f(C,D), A = B.

which should result in the binding C = D. This can be achieved only with exten-
sions to the Prolog unifier that permit monitoring and enforcement of = constraints.
Implementation requires something more powerful than freeze, like the
general delay primitive [5] which activates its delayed goal whenever the variable
upon which the delay is done is bound to any value, variable or nonvariable. A
sample implementation in Prolog using delay is given in the Appendix. This
implementation enforces only Term-satisfiability of subsumption constraints.
Extending it to enforce Herbrand-satisfiability would not be difficult.

This discussion shows the importance of typing on the implementation of = When an
input argument is eventually a ground term, or eventually a term with independent vari-
ables, efficient versions of = can be used.

t The implementation shown is very like that of PARLOG [9] for the one-way unification primi-
tive:

¢l <= ¢2 <= EQCONST(cl,c2):;

vl <= v2 <— EQVAR(vl,v2):;

v <= t <- LOCKVAR(v) : BIND{v,t);

strl <= str2 <- (DATA{strl) & STRLIST(strl,listl)),

(DATA(str2) & STRLIST(str2,list2)) :
listl <= list2;
(h1|tl] <= [h2|t2] <— hl <= hZ, tl <= t2.

-22-

4.2. Argument Typing and Streams

With the previous section in mind, we can define a stream to be either a term of type (1),
or a term of type (2) with a fixed function symbol (e.g., [_!_]) whose arguments are, in
turn, streams. This simple definition generalizes list-oriented stream structures. The
implementations sketched above will give efficient directed stream-processing Prolog
programs for streams of this kind. This definition is like Tribble et al’s channel [26], a
stream-like object providing partial ordering among data items. Now let us clarify how
we can exploit argument typing information.

Fortunately, term subsumption can serve as a typing mechanism! In fact, subsumption
constraints are often used precisely as typing constraints. Mycroft and O’Keefe [17]
present a polymorphic typing system for Prolog based upon subsumption constraints.
Chou [6] has applied the system to show how type inference for a Prolog program
reduces to solution of a set of subsumption constraints on types, and how these con-
straints can be solved by relaxation. We briefly review the system and its application
here.

Given a program P, a typing of P consists of a set of type attachments assigning a non-
extended type to each term and subterm in P, and type premises assigning a type term to
each predicate p, functor f, and variable X of P. These premises are written respec-
tively as

Pi<T,...,Ty>
i<t ., > Ty
X:

A typing of P is a well-typing if it satisfies the following conditions. Let p(f1,...,1,)
be a predicate and arguments appearing somewhere in a clause of P. If the typing has
type premise p : <1y,...,T, > for p and assigns types Gy, ...,0, to the arguments
t1, ..., then:

(1) Whenp(ry,...,t,)is the head of the clause, the typing must satisfy
<T,...,Th> = <61,...,0,>
In a well-typing, every clause agrees with the typing of its predicate.
(2) Whenp(ty,...,t,)1sin the body of the clause, the typing must satisfy
<Ty,...,Tp> =2 <06, ...,0, >
In a well-typing, every use of a predicate obeys the typing of the predicate.
For example, consider the following Prolog program:

append([], L, L).
append ([X|L1l], L2, [XI|L3]) :— append(Ll, LZ, L3).

Assume we begin with types for [] and [_|], and the corresponding type premises:

-23-

[1: — lisy(T)

[1_1: <T, lisf{T) > — list(T)
append: <A,B,C>

L: D

X: E

L1l: F

L2: G

L3: H

The unknown types A, B, ..., H are then constrained as follows:

<A,B,C> = <lis{T),D,D>
<A,B,C> = <I,GJ>

<T, lis{T)> > lisT) = <E F>-—1I
<T, list(T)> - lisfT) = <E,H>-=>J
<A,B,C> = <F, G H>

For this conjunction of constraints, the bindings (A / lis«(T), B / lisy(T), C / lis{T) } give
a well-typing. The type of append is correspondingly inferred to be

< lis(T), lis{T), list(T} >.

This approach can be used to define streams, and to deal with the problem of respect
defined earlier for stream processing programs. We simply define stream to be another
type like lis¢(T). Mycroft and O’Keefe [17] suggest type descriptions for functors of the
form

type lis(T) => [1,[Tlis{(T)].
To continue the discussion, let us make the further definition
type stream => list(ground})

where ground is the type of all ground terms. With this definition we then constrain the
types of all stream arguments to obey corresponding type subsumption relationships. A
goal and program that meet the type subsumption constraints will respect the direction of
the program.

For example, consider the following version of the merge program investigated in the
previous section:

merge (V11,v21,v31) :— v1l =2 [], v21 2 B, v31 £ B.
merge (V12,V22,V32) :— V12 = A, v2z 2 (1, v32z € a.
merge (V13,v23,V33) :— v13 = [X|L]l, v23 2 Y, v33 L [X|z], merge(L,¥,2).

This program yields the following type constraints:

_24 .

<VI1,V2,V3> = <VII, V21, V3l>
Vil = list(T)
V21 = B
V3l = B
<V1,V2,V3> = <Vi2,V22,V32>
vi2 = A
V22 2 lisyT)
V32 T A
<V1,V2,V3> = <VI3,V23,V3i>
<T, list(T)> - lisyT) =2 <X,L>—->R
<T listT)> = listT) =2 <X, Z>->8§
Vi3 2 R
V23 2 UsyT)
V33 € s
<VI,V2,V3> 2 <L Y Z>
This system of inequalities reduces to:
L = lisyX) A 2 liseX)
R = lisgX) B =2 list(X)
hY = lis(X) T 2 X
V3l = lis¢X) Vi 2 lis(T)
V32 = list{X) vi 2 A
V33 = lisgX) Ve 2 lisqT)
V3 = lisi(X) vZ = B
Z = list(X) ve 2 Y

The type of merge is < VI, V2, V3 > where from the above we can extract VI = lisy(T),
V2 2lisy(T), V3 L list(T). Now, if we add the information that the first two arguments are
known to be instances of streams,

V1< list(ground)
V2 € list(ground),

then the type of merge is inferred to be < list(ground), list(ground), list{(ground) >, i.e.,
< stream, stream, stream >.

The Mycroft-O’Keefe system permits static declaration of type constraints, and is
appropriate for use with an optimizing compiler. In some situations it is desirable to per-
mit dynamic specification of type constraints, as with the Prolog goal

X isa stream,

and allow these constraints to be included directly in programs. In the next section we
investigate generalizations of the subsumption mechanism to handle partial orders
beyond the subsumption ordering we have investigated thus far.

-25-

5. Extensions

The foregoing addresses the use of the first-order term partial ordering within the context
of logic programming. This discussion can now be extended to permit more general ord-
ering constraints defined for more specific argument types.

For example, if arguments are known to be functional expressions (terms representing the
application of a function to some arguments) a reduction ordering can be used. Simi-
larly, if arguments are members of a predefined type hierarchy, a type inclusion ordering
can be used.

Existing work has explored a variety of useful ordering constraints. Jaffar et al’s Con-
straint Logic Programming incorporates linear equality and inequality constraints
[10, 11], and Ait-Kaci and Nasr’s system generalizes first-order terms and unification to a
partial order (more precisely, a distributive lattice) of y-terms and a meet operator on
these terms [1,3]. Recently this system has been extended to include functional terms
and suspension of evaluation [2, 4].

In this paper we will concentrate on the Log(F) system of Narain [19, 20, 21], since it has
immediate applications in stream processing. Log(F) is an efficient integration of func-
tional programming with Prolog. Log(F) programs appear as collections of rewrite rules:

append([1,B) => B,
append([X|A],B) => [X|append(A,B)].

Log(F) rules are compiled into Prolog clauses in a straightforward way. For example, the
two rules above are translated into something functionally equivalent to the following
Prolog code:
reduce({ [1, []1).
reduce((H|T], [HIT]).
reduce (append (V1,V2),B) :— reduce(Vl, []), reduce(VZ,B).
reduce { append (V1,B), V3) :— reduce(Vl, [X|A]), reduce([X|append(A,B)]1, V3).

The reduce rules here can operate nondeterministically, and can be used directly with
Prolog. With the rules above, the goal
7— reduce(append([l1l,2,3]1,[4,5,6)), X).
yields the result
X = [1)|append([2,3],14,5,61)1.
That is, in one reduce step, the head of the resulting appended list is computed. The

tail, append([2,31,14,5,61), can be further reduced if necessary. Thus
Log(F) also provides lazy evaluation.

The formal foundation of Log(F) accommodates stream processing:

(a) Log(F) makes the basic requirement that terms to be reduced are ground terms.
Furthermore, left hand sides of all rules are required to be linear, i.e., to not include
duplicate variables. This avoids issues encountered by parallel Prolog systems in
providing consistency of bindings to variables used by processes on opposite ends
of streams.

-26 -

(b) Determinate code is easily detected using only syntactic tests. Rules that backtrack
can be localized, avoiding distributed backtracking where it is not absolutely neces-
sary.

These features of Log(F) make it a nicely-limited Prolog sublanguage in which to write

high-powered programs for stream processing and other performance-critical tasks.

Log(F) reductions can be treated like subsumption constraints. The insights described
earlier for directed logic programs can also be applied to Log(F) code. The only
difference is that the partial ordering of subsumption among first-order terms is replaced
by the partial ordering (or more generally a preordering) defined by reduce, whichis a
rewrite or functional evaluation ordering. In other words, we can write directed logic
programs using reduce rather than =.

A naive Prolog merge predicate, for example, whose first and second arguments are input
streams and whose third argument is an output stream, can use the reduce predicate on
its arguments:

merge (V1,V2, V3) :— reduce(V1l,[]), reduce (VZ2,B), reduce(B,V3).
merge (V1,V2, V3) :— reduce(V1l,A), reduce (V2, []), reduce(a,V3).
merge (V1,V2, V3) :— reduce(Vl, [X|A]), reduce(VZ2,B), reduce([X|C],V3),

merge (B, A, C).

Thus we can type arguments to predicates as of ‘Log(F) type’, and being either input or
output. With these arguments, the reduce ordering can be used, giving at the same
time functional evaluation and stream consumption.

In other words, we are led to the definition of a general directed logic program as a logic
program whose clauses can be put in the form

p(Vl 3 ey Vn) <« ﬂl(Vl, tl), ooy nn(Vnatn)’ G.

where the variables V; appear only as shown, and each =; is a binary predicate defining a
partial order (or at least a preorder) constraint such as &, 2, =, reduce, etc. It appears
that general directed logic programs appear quite frequently in practice, and clarifying
their properties will be important.

-27 -

6. Conclusion

We have presented a theory of directedness in logic programming systems. The theory
replaces unification with partial ordering constraints on predicate arguments, making the
arguments ‘directed’. When enough is known about an argument’s type, efficient imple-
mentation of these constraints is possible. The resulting system retains theoretical
elegance and may attain higher performance than is possible with a system required to
support (undirected) unification.

Since directedness manifests itself in both stream and functional computations, the theory
gives insight in a number of important contexts. A stream is naturally defined here to be
any structure, or term, about which certain instantiation patterns are guaranteed. The
Tangram environment makes heavy use of streams and functional operations on streams,
so the theory is of definite practical significance.

Many interesting further avenues for work are available at this point:

(1) The precise relationship between £ and PARLOG’s one-way unification opera-
tor <= must be clarified. Applications of our notion of directedness in committed-
choice languages should also be investigated.

(2) The extension of the theory for subsumption on infinite (rational) terms [7] is of
immediate concern for implementation of £ in Prolog systems.

(3) Clearly the directedness and variable instantiation patterns of predicate arguments
give only a limited notion of typing. Extension of this approach for other types and
ordering constraints is of pressing interest as well. For example, there are many
different types of streams: partially ordered streams, backtrackable streams,
lookahead-access streams, multiaccess streams, time-series streams, streams of
streams, unreliable streams, etc.

There is a lot to be done here.

Acknowledgement

Paul Eggert provided extensive comments and suggestions that have reshaped this paper
in a number of ways. His standards are a source of inspiration. Mike Gorlick, Shen-
Tzay Huang, Richard Huntsinger, Carl Kesselman, Brian Livezey, Sanjai Narain, and
"Tom Page also provided a number of important improvements on the manuscript.

-28 -

Appendix: An Implementation of General First-Order Term Subsumption

Below is a listing of a simple implementation of the term inequality constraint = using
the delayed execution primitives freeze/2, frozen/2, and delay/2 [5]. This
implementation runs successfully on SICS Prolog, distributed by the Swedish Institute of
Computer Science. It is not particularly efficient. It is presented as a sketch of how =
can be implemented, and as a starting point for further investigation by the reader.

% __
% Term Subsumption Constraints

%

% X >== enforces the constraint that X must be more general than Y.

% The constraint is enforced by unifying ¥ with less general terms.

%

% The goal 7= X>==Y, Yr==X, results in X and Y being unified.

%

% Current implementation uses delay primitives provided by SICS Prolog.

G e e a2 T T T T P T R e e
= op{700,xfx, >==).

- op{700,xfx, <==).

X == ¥ = ¥ >== X,

X »>= Y :- var(X), !, mergeFrozenGoals(X,Y).

X »>== ¥ ;- atomic(¥X), !, X=Y,

X »>== Y :- subsume(X,Y,X,¥).

B o o S B T T P T T e
% subsume (+Xsubterm, +¥Ysubterm, +Xterm, +¥Yterm)

% sets up constraints Xsubterm >== Ysubterm that are implicit in

% the original constraint Xterm >== Yterm,

% These constraints need to be set up only where Xsubterm is variable.

%

% User unification of wvariables in Xterm should cause unification of the

% corresponding variables in Yterm. This is implemented with delays.

% All variables in Xterm have wvariable tests set up.

%— __
subsume (S8, T,X,¥Y) :- var(S), !, mergeFrozenGoals(S,T), varTest(S,T,X,Y).

subsume ($,T, ,_) :- atomic(8), !, § = T,

subsume (3, 7T,X,Y) :- functor(s,F,N), functor(T,F,N), subsume(S,T,X,¥,0,N}.

subsume(_,_ ,_,_ ,N,N) :- !,
subsume (S, T,X,¥Y,I0,N} :-
I is I0+1,
arg(I,s,si),
arg{I,T,Ti),
subsume (Si,Ti, X, ¥),
subsume (5, T,X,¥Y,I,N).

varTest (+Xsubterm, +¥Ysubterm, +Xterm, +¥Yterm)
This predicate is normally delayed when Xsubterm is a variable,
and is then invoked when Xsubterm is (nontrivially) unified against.
We need four arguments here since usually a constraint Xterm >== Yterm
is not fully decomposable into constraints on subterms. Ex: Although
£(S,T) »>== £(U,V) 4implies both § >== and T »== V, the binding
5 = T requires us enforce the global constraint by unifying U and V.

%
%
%
%
%
%
%
%
% 1. If Xsubterm is variable, Yterm must be inspected for occurrences of

% Xsubterm, If any are found, s¢ Xterm and Yterm share the variable

% Xsubterm, then Xsubterm must be unified with Ysubterm (unless they

% are already identical) in order to satisfy :- (Xterm >== Yterm).

% [The mgo theta such that {(Xterm) theta >»>== (Yterm)theta will have some

% idempotent rho such that ((Xterm)theta)rho = (Yterm)theta, where rho

% does not affect shared variables of Xterm and Yterm. Thus the most

% general orderer must make all necessary bindings to shared variables.]

% Ex: Xsubterm = 5, Xterm = £(S,T), Yterm = f{a,8) => S and a are unified.
%

%

%

%

%

%

%

%

%

%

%

2. If Xsubterm is still variable, then all of Xterm must be searched for
cther matching coccurrences of Xsubterm that may have appeared recently,
and corresponding occurrences of Ysubterm must be unified with each other.
Ex: Xsubterm = S, Xterm = f£(5,5), Yterm = £(U,V) => U and V are unified.
Afterwards we must again delay, waiting for further bindings to Xsubterm.

3. If Xsubterm has become a structure, Xsubterm >== Ysubterm is enforced.
Then all variables in Xsubterm are constrained to subsume the
corresponding part of Ysubterm, 1In the process of doing this,
all variables in Xsubterm have varTest done for them as well,.

varTest(S,T,¥,Y) :— unifylfNecessary(S,T,¥%,Y), checkSubsume(S,T,X,Y).

unifyIfNeceasary{S,T,_,¥) :- vari{S), S \== T, occursIn(S,Y), !, unify(s,T).
unifyIfNecessary(,_, ,_) .

checkSubsume (5, T,X,Y) :- var(5), !, checkMatch(X,Y¥,S5,), delay(S,varTest(S,T,X,¥)).
checkSubsume (S, ,_,_) :- atomic(S), !.

checkSubsume (3,T,X,Y) :- subsume(S5,7T,X,Y).

checkMatch(¥,¥Y,V,W) :=- var{X), !, matchCorrespondingSubterm(X, Y,V ,W).
checkMatch(X,_,_,_) i- atomic(X), !.

checkMatch(X,¥,V,W) :- functeor(X,F,N), functor(¥,F,N), checkMatch(X,¥,V,W,0,N).

c¢heckMateh(_, , , ,N,N) := 1.
checkMatch(¥X,Y,V,W,I0,N) :-
I is I0+1,
arg(I,X,Xi),
arg(I,Y,Yi),
checkMatch(Xi,Yi, v, W),
checkMatch(X,Y,V, W, I, N).

matchCorrespondingSubterm(X,Y,V,W) :- V == X, !, unify(W,Y).
matchCorrespondingSubterm(, , , }.

% __
% Frozen goal management

%

% mergeFrozenGoals(X,Y) determines 1f X >== can be simplified (X is var):
% 1. If X »>== Y has already been specified, the constraint is ignored.

% 2, If X »>== Y, Y is variable, and Y >== X is inferrable, then X=Y,

% 3. Otherwlise we freeze X >== Y. Freezing is sufficient here, since

% this predicate need not handle variable matching constraints as above.

% __
mergeFrozenGoals (X,Y) :- frozen(X,FGs), memberGoal ({freeze (X, X>==Y) FGs), !.
mergeFrozenGoals (X, Y) :- var(Y), equatedvars(X,¥), !.

mergeFrozenGoals (X,Y) :- freeze(X,X>==Y),

memberGoal (G, (A, }) :- memberGoal (G,A).

memberGoal (G, {_,B)) :- !, memberGoal (G,B).

memberGoal (G,A) :— G == A.

equatedvars(¥X,Y) :- X ==Y, !.

equatedvars(X,Y) :- varsBetween(Y,X,[],L,1), unifyList(L,X).
varsBetween(U,V,L,L, 1) :-= U ==V, !. % variable V reached from U successfully
varsBetween (U, ,L,L, 0) :- memberchkVar(U,L), !. % cycle detected, failure
varsBetween(U,V,L,L1l,1) :- frozen(U,FGs), varsB(FGs,V,[U|L],L1,1), !.
varsBetween(, ,L,L, 0).

varsB{{G,H),V,L,L2,F}) :- !, varsB(G,V,L,Ll,RA), varsB(H,V,L1,L2,B), F is A \/ B.
varsB(freeze (X, X>==Y),V,L,L1,F) :- var({Y), ¥ \== X, !, varsBetween(Y,V,L,L1,F}.
varsB(_,_,L,L,0).

unifyList (fl,_) :- !.

unifylList ([YIL],X) := X ==Y, !, unifylList(L,X).

unifyList ([¥YIL], X} :- unify(X,¥), unifyList(L,X).

memberchkVar (X, [¥|_1) :- X == ¥, .

memberchkVar{X, [_|L]) :- memberchkVar (X,L).

delay(X,G) :— fSYSCALL' (' Sgeler’ (X,G)).

% like freeze/2, but calls G when X is bound to anything, even a variable.

¥ Utilities
% In the interest of performance some users may prefer the definition:
% unify(X,X).

% __
unify(X,¥) :- var(¥X), wvar(Yy), !, X=Y.

unify(X,¥) :- var(X), !, occursCheck(X,¥), X=Y.

unify(X,¥) :- var(Y), !, occursCheck(Y,X), Y=X.

unify(X,Y¥) :- functor{X,F,N), functor(¥Y,F,N), unifyArgs(N,X%,¥Y).

unifyArgs (0, ,) :— 1.
unifyArgs (N,X,¥Y) :-

-31-

arg(N,X,A),
arg(N,Y,B),
unify(a,B),

N1l is N-1,
unifyaArgs (N1,X,Y).

occursCheck (V,T) :- \+ occursIn{v,T).

occursIn(v,T) :- var(T), !, Vv ==T,.

occursIn(V,T) :- atomic(T), !, fail,

occursIn(v,T) :- functor(T,_ ,N), occursInhArgs(Vv,T,0,N).

occursInArgs(V,T,I0,N) :-
I0 < N,
I is I0+1,
arg(I,T,A),
occursInArgument (V,T,I,N,4).

occursInArgument (V, , , ,8) :- occursIn(V,A),

occursInArgument {V,T,I,N, } :- occursInArgs(V,T,I,N).

-32 -

References

1.

10.

11.

12,

13.

14.

15.

Ait-Kaci, H., *“A Lattice-Theoretic Approach to Computation Based on a Calculus
of Partially Ordered Type Structures,’”’ Ph.D. dissertation, University of Pennsyl-
vania, Dept. of Computer and Information Science, Philadelphia, PA, 1984.

Ait-Kaci, H. and R. Nasr, ‘‘Residuation: A Paradigm for Integrating Logic and
Functional Programming,’’ Technical Report AI-359-86, MCC, October 1986.
Ait-Kaci, H. and R. Nasr, ““LOGIN: A Logic Programming Language with Built-in
Inheritance,”” Journal of Logic Programming, vol. 3, no. 3, pp. 185-215, October
1986.

Ait-Kaci, H., P. Lincoln, and R. Nasr, ‘‘Le Fun: Logic, equations, and Functions,”
Proc. Symp. on Logic Programming, pp. 17-23, IEEE Computer Society #799, Sep-
tember 1987,

Carlsson, M., ‘‘Freeze, Indexing, and Other Implementation Issues in the WAM,”’
Proc. 4th Intnl. Conf. on Logic Programming, pp. 40-58, MIT Press, Melbourne,
Australia, May 1987.

Chou, C.-T., ‘‘Relaxation Processes: Theory, Case Studies and Applications,”’
Report CSD-860057 (M.S. Thesis), UCLA Computer Science Dept., Los Angeles,
CA, February 1986.

Colmerauer, A., H. Kanoui, and M. van Caneghem, ‘‘Prolog, theoretical principles

and current trends,”” Technology and Science of Informatics, vol. 2, no. 4, pp. 255-
292, 1983.

Colmerauer, A., ‘‘Equations and Inequations on Finite and Infinite Trees,”’ Proc.
Intnl. Conf. on Fifth Generation Computer Systems (FGCS’84), pp. 85-99, North-
Holland, Tokyo, November 1984,

Gregory, S., Parallel Logic Programming in PARLOG: The Language and its
Implementation, Addison-Wesley, Reading, MA, 1987.

Jaffar, J. and J-L. Lassez, ‘‘Constraint Logic Programming,”” Proc. 12th ACM Sym-
posium on Principles of Programming Languages, pp. 111-119, Munich, West Ger-
many, January 1987.

Jaffar, J. and S. Michaylov, ‘‘Methodology and Implementation of a CLP System,”’
Proc. 4th Intnl. Conf. on Logic Programming, pp. 196-218, MIT Press, Melbourne,
Australia, May 1987.

Lassez, J-L., V... Nguyen, and E.A. Sonenberg, ‘‘Fixed Point Theorems and
Semantics: A Folk Tale,’’ Information Processing Letters, vol. 14, no. 3, pp. 112-
116, 16 May 1982.

Lassez, J-L., M.J. Maher, and K.G. Marriott, *‘Unification Revisited,”” in Founda-
tions of Deductive Databases and Logic Programming, ed. J. Minker, pp. 587-625,
Morgan Kaufmann Publishers, Los Altos, CA, 1988.

Li, P.-Y.P. and A.J. Martin, ‘*The Sync Model: A Parallel Execution Method for
Logic Programming,”” Proc. Symp. on Logic Programming, pp. 223-234, Salt Lake
City, 1986.
Lloyd, J., Foundations of Logic Programming, 2nd Edition, Springer-Verlag, New
York, 1987.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

26.

27.

-33-

Muntz, RR. and D.§ Parker, ‘“Tangram: Project Overview,” Technical Report
CSD-880032, UCLA Computer Science Dept., Los Angeles, CA 90024-1596,
April 1988.

Mycroft, A. and R.A. O’Keefe, ‘“A Polymorphic Type System for Prolog,”
Artificial Intelligence, vol. 23, 1984,

Naish, L., ‘‘Negation and Control in Prolog,’”” LNCS #238, Springer-Verlag, New
York, 1986.

Narain, S., *‘A Technique for Doing Lazy Evaluation in Logic,”” J. Logic Program-
ming, vol. 3, no. 3, pp. 259-276, October 1986.

Narain, S., “LOG(F): A New Scheme for Integrating Rewrite Rules, Logic Pro-
gramming and Lazy Evaluation,”” Technical Report CSD-870027, UCLA Computer
Science Dept., Los Angeles, CA 90024-1596, 1987.

Narain, S., “LOG(F): An optimal combination of logic programming, rewrite rules
and lazy evaluation,”” Ph.D. Dissertation, UCLA Computer Science Dept., Los
Angeles, CA 90024-1596, forthcoming, 1988.

Parker, D.S., *“Partial Order Programming,’” Technical Report CSD-870067, UCLA
Computer Science Dept., Los Angeles, CA 90024-1596, 1987.

Parker, D.S., T.W. Page, and R.R. Muntz, *“‘Improving Clause Access in Prolog,”
Technical Report CSD-880024, UCLA Computer Science Dept., Los Angeles, CA
90024-1596, March 1988.

Plotkin, G.D., ‘A Note on Inductive Generalization,"’ in Machine Intelligence 5,
ed. B. Meltzer, D. Michie, pp. 153-163, J. Wiley/Halstead Press, New York, 1970.

Reynolds, J.C., ““Transformational Systems and the Algebraic Structure of Atomic
Formulas,” in Machine Intelligence 5, ed. B. Meltzer, D. Michie, pp. 135-151, J.
Wiley/Halstead Press, New York, 1970.

Tribble, E.D., M.S. Miller, K. Kahn, D.G. Bobrow, and C. Abbott, ‘‘Channels: A
Generalization of Streams,” in Concurrent Prolog: Collected Papers, vol. 1, ed. E.
Shapiro, pp. 446-463, MIT Press, 1987.

Wheeler, T.A., “‘Unification and Predicate Locking,”” Technical Report CSD-
880023 (M.S. Thesis), UCLA Computer Science Dept., Los Angeles, CA 90024-
1596, 1986. Issued as a Technical Report, April 1988.

