ON STYLE, EXPRESSIBLITY, AND EFFICIENCY IN FUNCTIONAL
PROGRAMMING LANGUAGES

Gabriel Robins April 1988
CSD-880029

On Style, Expressibility, and Efficiency
in Functional Programming Languages

Gabriel Robins
Computer Science Department
University of California, Los Angeles

Abstract

A functional style of programming was proposed by Backus as an alternative to
conventional programming paradigms. Functional programming is intended to alleviate what
Backus dubbed as the "Von Neumann Bottleneck," a restrictive set of biases deeply ingrained in
the thought processes of programmers. The functional programming paradigm is investigated
here through the actual implementation of a series of common algorithms. One of the novel
features of this paradigm is the lack of side-effects; it is shown how this property can be used
to achieve considerable efficiency improvement in arbitrary implementations of functional
languages, using the idea of yalue-caching. This scheme is then shown to reduce the execution
of certain computations from exponential-time to polynomial-time, a formidable speedup. It is
also shown that the expressive power of functional languages can be greatly enhanced via the
utilization of both macros and idioms, without changing the original semantics of the language.

1. Introduction

A functional style of programming was proposed in 1978 by John Backus [Backus] as an
alternative to conventional programming paradigms. Functional programming is intended to
alleviate what Backus dubbed as the "Von Neumann Bottleneck,” a restrictive set of biases which
by now is deeply ingrained in the thought processes of programmers. Backus argues quite
eloquently that because the processor and the memory of a conventional computer are connected
via a narrow bus, processors end up spending most of their time ferrying useless data to and
from the main memory.

The more serious problem, however, is that the classical "word-at-a-time" model of
computer design has over the years managed to permeate up through the abstraction levels and
become fused into most programming languages, and indeed into the very thought processes of
the majority of computer scientists. According to Backus, this phenomenon is directly
responsible for many horrendously complex programming languages with convoluted and even
inconsistent semantics, where it is often impossible to prove formally even the most trivial
correctness properties.

Backus gave a syntax and semantics for a candidate functional programming language.
Some of the novel features of his language are the /ack of variable names, assignment
statements, global state, and side-effects. Instead, several powerful combining operators can be
used o compose functions, yielding clean and simple semantics, conciseness of expression, and
easily-derivable formal correctness properties. See [Vegdahl] for a more detailed discussion of
these issues. Considerable work regarding FP has also been performed at UCLA: [Alkalaj],
[Alkalaj, Ercegovac, and Lang], [Arabe], [Meshkinpour], [Meshkinpour and Ercegovac], [Patel
and Ercegovac], [Patel, Schlag, and Ercegovac], [Pungsornruk], [Sausville], [Schlag, 86],
[Schlag 84], [Worley].

In this paper | investigate some of the claims made by proponents of functional
programming, through the actual implementation of a series of common algorithms. Based on
these examples, | then draw some conclusions with regards to the practical advantages and flaws
of the functional programming paradigm. The language | use is Berkeley's functional
programming language, FP [Baden]. All FP forms which appear in this paper were verified to
be correct by actually typing them into the FP v. 4.2 (4/28/83) system. The rest of the paper
assumes that the reader is familiar with Berkeley FP; for a brief refresher on the syntax and
semantics of FP, the reader is referred to the appendix.

| show how the lack of side-effects can be used to achieve considerable efficiency
improvement in arbitrary implementations of functional languages, using the idea of yalue-
caching. This scheme is proved to reduce the execution time of certain FP computations from
exponential to polynomial, a remarkable speedup. Finally, it is shown that the expressive
power of functional languages can be greatly enhanced via the utilization of both macros and
idioms, without changing the original semantics of the language.

2. FP Solutions to Some Common Problems

In this section we examine how various common problems and algorithms can be handled in
FP. We do this in order to get some feeling as to what does "typical" FP code look like. The
notation "X ==> Y" will be used to denote that when the form X is evaluated it yields the value Y,
as in the following: "+ @ [%1 , %2] ==> 3" :

2.1. Permutations

The following function produces a permutation of the second argument, according to the
order specified by the first argument. That is, given the following data vector of length N: <dy,

dy, ..., dy>, and a permutation vector <py, pa, ..., pPN>, Where 1<p;<N and pp; if i#], we
would like to return the vector <dp1, sz' - de>. The following FP function will accomplish
this task:

{PERM1 &pick @ distr}
For example:
PERM1 : <<3 1 2 5 4> «is going what here on>> ==> <what is going on here>

But now one might argue that any straight-forward implementation of FP would cause the
"distr” operator to "copy" its second argument a number of times proportional to the length of
the first argument, using O(N2) space in total. In attempting a response to such criticism we
may modify our definition as follows:

{PERM2 (nul @ 1 -> 1 ; apndl @ [pick @ [1 @ 1, 2] , PERM2 @ [t| @ 1, 2]]}}
PERM2 : «<<2 4 3 1> <permuted 4 get things>> ==»> <4 things get permuted-
Now we are using tail-recursion to accomplish the same task. In constructing the
seemingly "more space-efficient” function PERM2, we were presumptuous in assuming that the

underlying FP implementation allocates space and executes FP forms in a certain way, and
regardless of how close to the truth our assumptions may have been, these are the very kinds of

considerations Backus is trying to free us from in the first place.

in programming in FP we must give up many familiar and useful concepts, such as
variable names, a state, side-effects, etc. But we gain many pleasant properties in return for
our "sacrifice": conciseness, more easily provable correctness, better parallelism, and freedom
from details. If during FP programming we worry about efficiency and implementation issues,
the efficiency of our code will become implementation-dependent, and our minds will be
shackled by the very details from which we escaped when we sought refuge from the "Von
Neumann bottieneck" in the first place.

If we are to enjoy the full benefits of a functional programming system, we must delegate
most of the efficiency and implementation issues 1o the underlying (optimizing) compilers. One
of the main benefits of FP is that it has very clean semantics, yielding relatively painless
correctness proofs, and it is amenable to simple and powerful algebraic manipulations and
transformations. Such algebraic transformations could be used to automatically
convert/compile an FP program into a version which would take advantage of the inherent
parallelism or other special features of the architecture we happen to be executing on.

In summary, | am pot arguing that efficiency considerations are not important; | am
simply arguing that it is more the responsibility of the machines to catch up with functional

paradigms of thinking and not the burden of functional programming to accommodate archaic
architectures. The situation is dramatized in the following diagram:

c£4R ﬁﬁ

Functional Programming

CCCLEEY

Hardware Support

2.2. List Reversal

Suppose we wanted to reverse a list. What first comes to mind is a recursive definition
for the reversal operation, namely that the reversal of a list is equal to the last element
jollowed by the reversal of the rest of the list. In FP this could be expressed as follows:

{REV1 (null -> id; apndl @ [last,REV1 @ tir])}
For example:
REV1 @ iota : 13 ==> <«13121110987654321>

In trying to determine whether any parallelism is inherent in list reversal, we try to apply the
highly-parallel "tree-insert” FP operator, as in the following:

{REVZ2 | [2,1]}
REV2 @ iota : 13 == <<<13 <12 115> <10 <9 8>3> <<7 <6 5>> <<d 3> <2 1>>>>

We observe that this simple function is a/most what we want, except for the exira levels of list
depth, so we revise our definition as follows:

{REV3 | (concat @ [(atom @ 2 > [2] ; 2) , (atom @ 1 -> [1] ; 1)] }}
REV3 @ iota : 13 ==> <1312111098765432 1>

Now we have obtained a highly parallel, yet simple and concisely-expressed function to reverse
a list. | consider this to be functional programming at its best.

2.3. Membership in a List

Suppose we needed a function that given an element and a list, would determine whether
that element appears in that list. Our first attempt is the following:

{MEMB ! or @ &= @ distl}
MEMB :<13 <364 13 98 -45 13 73>> ==> T

The idea here is to distribute the search key over the entire list and “or" together the results of
all the comparisons of these pairs. Now suppose we know ahead of time that our list was sorted.
Using the classical binary-search technique, we could speed up the computation to "require” at
most O(log N) time by recursively searching half-lists, as follows:

BSul@3->=@ 1.1 @ 2)];
(<= @ [1.1@rotr@2] -> BS @ {1,2]; BS @ [1,3])) @ apndl @ [1,split @ 2]}

Note that although this "optimization" appears to reduce the evaluation time, this may not really
happen in reality. For example, a close examination of the code for BS would reveal that we
have assumed that the operation "split" operates in constant time. If indeed split is implemented
in such a way as to require time linear in the size of its argument, BS may in fact run slower
than its seemingly “less efficient” counterpart MEMB.

This example again illustrates our previous argument that FP programmers should not try
1o "second-guess” the implementation, because they may loose. It is conceivable that in the
future intelligent compilers could algebraically manipulate such expressions and, for example,
replace a linear search with a binary search whenever it finds a monotonicity property to be
preserved. So again, | claim that such "optimizations" should be left to the compilers.

Of course one must draw the line somewhere. Given that the problem of whether two
programs are equivalent or not is undecidable, in the general case it is not possible to perform
these optimizations automatically. Yet even undecidability results do not mean that special
classes of instances could not be handled automatically, as well as efficiently. For example, it is
probably too much to hope that a compiler would recognize an O(N5)-time max-flow algorithm
and replace it with an equivalent but more efficient O(N3) time algorithm; on the other hand it
is not far-fetched to expect that an intelligent compiler could determine that a certain piece of
code behaves like a look-up table and consequently implement it as a hash-table rather than a
list, yielding better efficiency.

2.4. Fibonacci Numbers

The Fibonacci numbers are defined as the sequence of integers beginning with two 1's with
each subsequent integer being the sum of the previous two. This recursive definition
immediately yields an FP program:

{F (<=@[id,%2] -> %1; +@[F @ D,F @ D @ D))} # returns the ith Fibonacci number

{D -@[id,%1]} # decrements by 1

{FIB &F @ iota} # returns the first n Fibonacci #'s
FIB : 18 ==> <1 1235 8 13 2134 55 89 144 233 377 610 987 1597
2584>

Although this program is both elegant and concise, it is quite "inefficient”, because any
conventional implementation of it would force the re-computation of the function on many of the
same arguments. We can alleviate this flaw as follows:

{FIB2 tir @ tIr @ FF @ Jiota , [%1,%1]]}
{FEF(nul @ 1 > 2 ; FF @ [ti@1 , apndr @ {2, + @ [last@2 , last@tir@2]]]}}

Now successive Fibonacci numbers are appended to a growing list, where the last two elements
are used directly to compute the next Fibonacci humber. This optimization is essentially an
algorithmic one and reduces the "execution” time from exponential-time to polynomial-time. a
considerable savings. ! believe such programmer-affected optimization to be quite valid, and
also one which FP programmers should endeavor to concern themselves with. Later in this
paper, we describe a method of achieving considerable running-time improvement while
preserving the functional appearance of functions such as the Fibonacci numbers function; this
is accomplished via the idea of value-caching. In other words, sometimes we can "have the cake
and eat it tog,” functionally speaking.

2.5. Sorting

Sorting a list entails rearranging its elements in such a way as to preserve some
monotonicity property with respect to successive elements. For simplicity, we assume that our
elements are integers and that the monotone property we wish to sort with respect to is the

normal arithmetic "less-than" or "<*. Our first sorting algorithm is fashioned after the
classical gelection-sort:

{SS (null -> 1 ; apndl @ [1, SS @ SUB] @ [MIN,id])}
{SUB concat @ &(= -> [] ; [2]) @ distl}
[MIN | (< -> 1 ;2)}

MIN: <3509 213 -7 1> ==
SUB:<13<213ab5wi1d>> =><2abw>
SS:<47510811 7> ==><01457911>

The function MIN determines the least element in a given list, while the function SUB returns a
new list without any occurrences of a given element. Sorting is accomplished by finding the
least element, putting it first, followed by the sorted list of the remaining elements.

Next we try another method for sorting, which is similar to our selection-sort
algorithm. To sort a list, we keep rotating it until the first element is least. We then continue
this process on the tail of the list, until the entire list is sorted. We call this algorithm
rotation-sort:

{RS (null -> [J; (= @[1,MIN] > apnd! @ [1, RS @ 1ll; RS @ rotr))}
{MIN'| (< > 1:2)}

RS:<5313-2-1313099 213> ==><13-2035 13 13 99 213>

As an interesting aside, our list is now allowed to have duplicates and such duplicate
elements are not eliminated from the list. Although our rotation-sort algorithm is specified
very concisely, it does not exhibit much parallelism and would require "quadratic” time to run
in any conventional implementation. Another method of sorting entails swapping adjacent pairs
of elements until the list becomes monotonic. We call this scheme odd-even-sort:

{SORT (while UNORD {apndl @ [1,.SWAP @ tl} @ SWAP))}
{UNORD |or @ &> @ trans @ [tir,tl]}

{SWAP concat @ &FLIP @ pair}

{FLIP (null @ tl -> id; (> -> [2,1]; id}}}

UNORD : <-525 9> ==>F
FLIP : <13 2> =e> <2 13>
SWAP : <76 1301233220 13> ==> <1376 01222330 13>

SORT : <76 1312 220132130> ==><-1200 13 13 22 76 213>

The idea here is to look at the pair of elements 1 and 2, 3 and 4, etc, and swap each pair in-
place if they are out of order. During the second pass, we similarly treat the pairs 2 and 3, 4
and 5, etc. We keep repeating this two-phased pass over the data until the list becomes sorted.
Note the high degree of inherent parallelism here, since all the pairs may be examined/swapped
in parallel,

A common method for sorting with a good average-time behavior is quicksort. The
quicksort algorithm selects a pivot element and splits the input into two sublists, one consisting
of elements less than {or equal-to) the pivot, and the other list consisting of elements greater-
than the pivot element. Each of these two sublists is similarly sorted in a recursive fashion,
and the final result then consists of the first list, followed by the pivot element, followed by the
second list. The FP implementation of guicksort follows:

{QS (<= @ [length,%1] -> id; concat @ [QS @ L, [1], QS @ R])}
{Leconcat@ & (> -> tl;) @ distl @ [1,tl]}
{R concat @ & (<=-> tI; [}) @ distl @ [1.tl]}

L:<739-41327> m=m <3 -4>
R:<739-413 27> ==> <9 13 27>
QS : <76 13 -12 22013552130 > ==> <1200 13 13 22 55 76 213>

Again, we note the conciseness and elegance of the FP specification. Moreover, it is well-known
that quicksort has an O(NlogN) average-time behavior (although the normal worst-case
behavior is still quadratic). Later in this paper we describe how the FP definition of quicksort
can be made even more concise using macros.

2.6. Prime Numbers

A prime number is a positive integer with exactly two distinct divisors: itself and 1. We
would like to specify a functional program which given an integer N, returns a complete list of
primes between 2 and N, inclusively. Here is our first pass at this problem:

{PRIMES concat @ &(PRIME -> [id] ; [) @ !l @ iota}
{PRIME |and @ &(not @ = @ [%0,id]) @ &mod @ distl @ [id i@iota@-@I[id,%1]]}

PRIMES : 20 ==><235711 1317 19>

The idea here is to process all the integers betwsen 2 and N, trying to determine which ones
have no factors other than themselves and 1. All integers satisfying this property are primes
and are therefore returned as a list. The function PRIME is a predicate which tests a single
integer for primality, while the function PRIMES maps PRIME onto an entire list of candidates
for primes.

We note however, that to test for primality, we need only iry 1o divide by factors no
greater than the square root of our candidate integer, since if our integer is divisible by a factor
which is greater than the square root, the result of the division is less than the square root and
so we would have tried that integer earlier. Furthermore, other than the integer 2, only odd
integers need be considered for primality, and only odd integers (up to the square-root of the
candidate) need be considered as factors, since an even integer can not divide an odd one. These
"optimizations” are reflected in a new version of our prime number generator:

{PRIMES apnd! @ [%2, concat @ &PRIME -> [id] ; [) @ ODDS]}

{PRIME |and @ &(not @ = @ [%0,id]) @ &mod @ dist! @ [id,0DDS @ SQRT]}

{SQRT 1 @ (while (< @ ['@[id.id]@1, 2]) [+@[1,%1],2]) @ [%1.id]}

{ODDS apndl@[%2,&(+@[*@[id,%2],%1])
@iota@-@[+@[/@[id.%2],.mod@]id,%2]],%1]1}

PRIMES : 50 ==> <2357 1113 17 19 23 29 31 37 41 43 47>

Note that while this scheme is “faster” than the previous one, the code is beginning to look
rather ugly. In fact, further speedup is possible since when checking for the primality of a
candidate integer, we need only to consider other primes (up to the square-root of the
candidate) as possible factors. The lesson here again is that the more "efficient” a functional
program is, the messier it tends to become.

in the case of prime numbers, for example, | think that only the first "optimization (the
one about going only up to the square root) is of the type with which the functional
programmers need concern themselves, because it is "algorithmic” in nature, and relies on a
non-trivial number-theoretic fact; it so happens that it is also the only one which increases the
“efficiency” of our functional program by a non-constant factor.

We give another algorithm for prime generation, the sieve of Erastostenes:

{SIEVE concat @ &MEMB -> [|;[1]) @ distr @
[id,concat @ &&* @ &distl @ distr @ [id,id]] @ | @ iota}
{MEMB lor @ &= @ distl}

SIEVE : 18 ==><2357 1113 17>

The idea here is to list all the integers and erase all factors of 2, all factors of 3, and so on.
Everything which remains after this process of elimination is by necessity a prime. Actually,
in this implementation we do the opposite: we form all possible products and then consider as
prime all the "missing" integers. Again we see an example of the trade-off between concise
specification and computational "efficiency”.

-3. FP vs. APL

There are some notable similarities between APL and FP is quite similar in spirit and
syntax to APL. Some functions and operators in FP are taken directly from APL; for example,

the FP iota function is equivalent to the APL iota function ("1"). Similarly, the FP operator

"right-insert* ("I") is equivalent to the APL operator "reduce” ("/"). The difference with
respect to these operators is that in FP one can compose any number of operators together in a
concise and semanticaly clean manner, while in APL only a pre-defined limited set of types of
compositions are allowed.

Both in FP and APL complex operations may be defined very concisely, often giving rise to
"one-line" programs. Yet unlike FP, the semantics of APL are very complex, being muddied by
state, local and global variables, parameter passing, operator overloading, goto statements, and
the existence of several hundreds of different functions and operators. | have seen one-line APL
programs which take the better part of an hour to understand; a possible moral here is that
"absolute power corrupts absolutely.” While it is true that some pieces of FP code may also
seem rather dense, the situation in FP is still much better than in the notorious APL "one-
liners."

4. FP vs. LISP

FP is also similar in many respects to LISP. Both languages rely heavily on lists as their
primary data structures, and both languages provide a rich set of list-manipulation primitives.
On the other hand, LISP functions are more defined than their FP counterparts; for example in
FP tl : «» is undefined, while in LISP (CDR NIL) is still NIL. Given that FP functions are
bottom-preserving, it is often the case that an FP function would return "?" on a boundary or
pathological datum, while the LISP equivalent would still return the "right” answer.

Here is an example of when it is preferable to have functions which are more defined on
"boundary conditions”. Given an atom x and a list of atoms y, we would like to return the set of
all atoms in y which directly follow occurrences of x in y. The obvious way of specifying this in

FP elegantly is:
{F concat @ &(= @ [2,1@1) -> [2@1] ; [) @ distr @ [trans @ [trf) @ 2, 1]}

F:<x3<m34563 3x3>> ==> <4 3 x>
F:<y <> ==> ?

The problem here of course is that our function is not defined for the pathological case
when the second argument is the emptly list, while it would be preferable to define the answer in
that case to be the empty list. We could modify our original function to check for that boundary
condition as a special case, but if the FP functions tl and tir were originally designed to return
the empty list when called upon the empty list, our function F would not have the problem
mentioned here. For example, if tl, tir, and trans were redefined thus:

{TL (= @ [length , %0] -> [] ; t)}
{TLR (=@ [length , %0] -> [] ; tIr)}
{TRANS (jand @ &null -> [] ; trans)}

F could now use these "more defined" specification to work correctly in all cases, including the
boundary conditions:

{F concat @ &(= @ [2,1@1] > [2@1] ; [) @ distr @ [TRANS @ [TLRTL] @ 2, 1]}

F : <y <x>> a=> <>
F:<y o> ==> <>

The point we wish to stress is that had some of the primilive functions been just a tittle
more “defined", the programmer would not have had to worry about these boundary conditions,
and freeing the programmer from such details is clearly a goal of the functional-thinking
paradigm.

5. Macros in FP

FP currently does not allow the use of macros. This is, however, an ariificial restriction
since macros can be specified and used in a way that will not alter the original semantics of FP
whatsoever. FP macros specify simple "static" substitution rules that would "expand” certain
pieces of FP code. In other words, a macro-expansion preprocessor would be invoked before
execution ever commences.

To accommodate macros, the original FP syntax would be extended as follows:

macro-definition ==> '#define' name '(' argument-names ')’ macro-body
name ==> letter (letler | digit | "}’
argument-names ==> name (', name)'
macro-body ==> (function-form | name)'
function-form ==> simple-function | composition | construction
| conditional | constant | insertion | alpha
| while | '(" function-form '} | macro-expansion
macro-expansion ==> name '(' arguments ‘)’
arguments ==> string { ', string)”
string ==> (letter | number | special-character)

It is understood that a macro expansion form and the corresponding macro-definition must
agree on the number of arguments. it is further observed that arguments 10 macros may include
arbitrary strings, not just FP objects, as long as a valid FP form is obtained when macro-
expansion is terminated. Moreover, macro-expansion is a recursive process, where macros
may refer to other macros, as long as termination of the macro-expansion process is
guaranteed.

As an example, the macro #define add1(x) + @ [x,%1] would expand the form addi(k)
into the form + @ [k,%1]. As a second example of using macros, our previous definition of
quicksort could be specified more concisely as:

#define S(X) concat @ &(X -> tl; [I) @ distl @ [1.]
{QS (<= @ [length,%1] -> id; concat @ [QS @ S(>=), [1], QS @ S{<)]}}

The above form, after the macro-expansion into “pure” FP, will become:

{QS (<= @ [length,%1] -> id; concat @ [QS @
concat @ &(>= -> tI; [I) @ distl @ [1.1]]), [1], QS @
concat @ &(< -> tl; [J} @ disti @ [1,t]])}

Note that in this example, we can not achieve the same effect by simply defining a new
function, because the argument we really need to pass is a functor itself, not a value. In
general, macros will increase the readability of FP code by making the FP representation of a
function more concise, whenever certain pieces of code are identical or at least very similar. A
macro can then be used to "factor out” that common piece of code, so that it does not have to be
specified or expressed more than once; in particular, macros would allow the definition of an
APPLY template, similar in spirit to the LISP apply function, something that is impossible to
implement in "pure” FP.

5.1. The Implementation of Macros

We emphasize that the usage of macros as defined here does not extend nor change the
original semantics of FP in any way. In fact, an implementation of this idea might consist of a
macro-expansion pre-processor which would take as input a specification in macro-enhanced
FP (that is, an FP program with some macros} and output an equivalent "pure” FP program
after properly doing the requisite macro expansion and substitution. The result wouid then be
fed into the original FP processor.

For example, to implement a macro pre-processor for Berkeley FP, one could extend the
original FP syntax to accommodate macros as described above, and construct a UNIX lex{1) and
yacc(1) specification to iexically analyze and parse the new syntax. The associated production
rules would perform the required macro expansion, producing as output an equivalent FP
program in the original "pure” syntax. The function "yyparse" can then be used as a "filter" to
FP.

An easier alternative to using heavy-artillery such as yacc(1) and lex(1) consists of the
following scheme: since many existing languages already have rather fancy macro-
preprocessors, why not "fool" such a tool into doing our FP macro-processing work for us? For
example, the standard UNIX C compiler has such a macro-preprocessor, and in fact it may be
invoked without the actual C compilation. So an implementation of this scheme would consist of
the following two steps:

1) Run the file containing "macro-enhanced" FP program through the C macro

10

preprocessor and coliect the resulting "pure” FP output in a file. This is accomplished
by specifying the -E flag: ¢c -E_macro-prog.fp > pure.fp

2) Run the resulting file as usual through the normal FP system: fp < pure.fp

| have already tested this scheme with several examples, including the quicksort example
stated above, and it worked flawlessly. In fact, it one combines the above two steps into one
UNIX command aliased to an appropriate name, the entire macro-expansion process would be
transparent to the user. Of course, if the format of our proposed FP macros deviates at all from
that of C, this trivial scheme would fail and we would be forced to revert back to our direct-
translation scheme using lex(1) and yacc(1}.

Macros could also be used to "modify” the syntax of FP by providing alternate ways of
expressing FP constructs; such extensions to FP in no way alter the original semantics of FP
but simply provide some “syntactic sugar" to ease the programming task.

6. The Need for ldioms

| found that during FP programming, many constructs repeat themselves. For example,
the function 1o decrement a counter, 1o sort, etc. Such common and repeatedly used functions
can and should be provided for in the implementation of an FP-like language. Indeed such
functions can be easily specified within FP itself, thereby not adding to the original set of
"primitives”, but instead be provided as a library of functions or macros.

| claim that it would be very convenient to define certain idioms within FP. Note that this
convenience is not in conflict with the fact that such idioms may be easily specified using other
FP forms. For example, the original definition of FP still contains the idiom "length”, even
though "length” may easily be defined as a recursive application of 1l, or perhaps even more
cleverly as:

{length | + @ &%1}
Perlis and Rugaber have already devised such a set of idioms for APL [Perlis and Rugaber].

| believe that a similar set should be identified and defined for FP. In particular, | recommend
the following list of possible idioms as a starting-point for the further development of this idea:

Removal of duplicates from a list - given a key x and a list y, return a new list z which is a copy
of y except that all elements equal to x have been removed.

- i - given a list, return the list sorted
according to a specified (or default) comparison predicate. Since the said predicate is an
argument to our "sorl" routine, an implementation using macros would probably be best here.

Generalized "iota" - given A, B, and C, return a sequence of all multiples of C, beginning with A
and no larger than B.

Vector element uniqueness - given a sequence of objects, return "true” if there exists a repeated
element in this sequence, or "false” otherwise.

Is X a permutation of Y? - given two sequences x and y, determine whether x is a permutation of
y. This may be accomplished by sorting both into some “canonical order” and then comparing.

11

Minimum/maximum_element - find the minimum (or maximum) element in a given sequence,
using a specified min (or max) function, or else use a default comparison function.

Membership in a vector/set - test whether a given element x is a member of vector/set y.

Union of vectors/sets - given two vectors/sets x and y, return a vector/set of elements which
are either in x or in y, without duplicates.

|ntersection of vectors/sets - given two vectors/sets x and y, return a vector/set of elements
which are both in x and in y, without duplicates.

Subiraction of vectors/sets - given two vectors/sets x and y, return a vector/set of elements
which are in x but not in y, without duplicates.

Subset of a vector/set - given two veclors/sets x and y, determine whether each element of x is
also an element of y.

Transitive closure - given a sequence of pairs or objects, return the transitive-closure of this
set, interpreting the pairs as a specification of a binary relation.

Math functions - square root, exponentiation, factorials, binomial coefficients, successor,
predecessor, etc.

Flatten a list - return a list of all atoms in a given list, disregarding the origina! level (or
nesting-depth) of each.

7. Improved Efficiency Through Value-Cashing

We have observed that there exists a sharp trade-off in certain computations between
conciseness-of-expression and “computational efficiency." For example, in the case of
generating Fibonacci numbers, the elegant version of the algorithm appears as foliows:

{F (<=@Iid,%2] -> %1; +@|F @ D,F @ D @ D))} # returns the il Fibonacci number
{D - @l[id,%1]} # decrements by 1

We also observed earlier that alternative ways of specifying the Fibonacci function yield more
complex and difficult to read specifications. So the question now is how efficiently can the
current specification be used to compute the il Fibonacci number on a conventional
architecture, and whether the situation can be improved. We settle the former part of the

question first, and argue that a conventional implementation would require exponential time to
compute the current Fibonacci numbers specification.

It is well-known that the Nib Fibonacci number is given by the expression:
Fp = [0" - (1-0)"] 7 (2¢ - 1) where ¢ = (1 + V5)/2
The constant ¢ = 1.618033989 is also known as the golden ratio, and when N approaches

infinity, the term (1-¢)N approaches zero and therefore F, approaches ¢" /(2¢ - 1) but since

12

¢ is a constant, we have F, = 8(¢") or that F, grows exponentially. Since a conventional
implementation can not be expected to solve such recurrence relations in closed-form, it must
use recursion to compute F,. But the problem is that F will be recomputed many times at the
same values, and since the value of F,, must be obtained from the lowest levels of the recursion
via ropeated additions of the constant 1, the total number of additions will be equal to the value
of F,, or proportional to ¢". It follows that a naive computation of the Fibonacci sequence from
the recursive specification will require exponential time.

Of course, in order to remain within polynomial-time, we could explicitly remember old
values, but this is contrary to the spirit of the functional paradigm. We would like to combine
the elegance of the concise recursive specification with the "efficiency” of the "optimized"
version.

A hybrid can actually be achieved through what | call yalue-caching. The idea is to save
argument/value pairs for certain difficult-to-compute functions, so that those values could be
looked up in the future instead of having to be recomputed. We define a new FP operator @$
(read compose-cache) to have the exact same semantics as the familiar FP operator @, except
that after the composition is computed, the result is stored away in such a way that next time
the same composition needs to be performed, the result is already known and can be used
immediately without any recomputation or further delay. Clearly, the new composition
operation so defined has the exact same semantics as the normal composition operator, and
moreover, this entire scheme remains transparent to the programmer.

Because in FP there are no side-effects, composing a function f with an argument g will
yield the exact same result at any stage of the computation, and that is why old results will
always be valid in the future. This scheme can be implemented using hash-tables to store the
value/result pairs for each function we would like to thus speed up. When a function is "called”
upon an “argument”, the argument is looked up in the hash-table associaled with that function,
and if a result is found it is returned immediately. 1f not, the result is computed from scratch,
and then it is saved in the hash-table using the argument as a key, whereupon the result is
passed on to the rest of the computation.

Of course not all functions should be so treated, only those that are non-trivial to compute.
For example, using this scheme, our Fibonacci function would now appear as follows:

[F (<=@][id,%2] -> %1; +@[F @%$ D,F @$ D @ D])} # returns the ith Fibonacci num
{D - @[id,%1]} # decrements by 1

Notice that we have not lost any of the conciseness or elegance apparent in our original
specification. And assuming the cache/lookup process takes near-constant time, the Fibonacci
function now will run in near-lingar time on any conventional implementation so enhanced, an
exponential improvement!

This scheme will work for arbitrary functional languages, not just FP. Moreover, the @$
operator need not be used manually by the programmer, but simply be invoked automatically by
the implementation whenever it is determined that doing so is likely to improve the efficiency.
Some possible criteria for automatically performing value-caching are when considerable time
has been spent inside some particular function that has relatively short input and output, when
a particular function is being called a very large number of times on only a small set of
different values, and when a function (or a set of functions} is highly recursive.

All of these situations can be dstected automatically by the implementation, so it is

13

possible to automate the idea of speed-up by value-caching. Sometimes, however, it may be the
case that the programmer can better determine where caching should and should not be
performed, so it may be desirable to give the programmer a "manual-override" capability with
respect to value-caching. | propose two new variations on the composition operator, and a
slightly modified behavior of the old composition operator:

@$ - value-caching is always performed.
@"$ - value-caching is never performed.
@ - architecture automatically decides when cashing shouid be performed.

Tao-‘h abmt L >

F o waT Cu‘ X
A VS

==
(-_,"c) L LA
(i s TS TN
N ﬁ:t-r‘

a3 e

Einstein discovers that time is actually money.

Other instances where value-caching will yield considerable increase in execution
efficiency are applications where computations have a geometric meaning in Euclidean D-space.
For example, Conway's game of "life", where a cellufar automata in the 2-dimensional plane is
simulated and where the "next-generation" rule is a function of the local neighborhood
surrounding the cell. A straight-forward recursive computation to determine the state of a
given cell would run in lime exponential in the magnitude of the generation to be computed,
where the base corresponds to the size of the neighborhood around cells. On the other hand, the
same algorithm running in a value-caching environment would run in polynomial time.

Generally speaking, whenever a dynamic-programming algorithm of some kind is used,
new values are dependent on certain old values (with respect to some set of indices), an
therefore an ordinary functional solution would likely to give rise to an inefficient execution.
But if value-caching is used in the implementation, the execution time of the exact same

algorithm is likely to improve drastically.

Recently it has come to my attention that the idea of caching values in order to avoid
recomputations is also discussed in [Keller and Sleep]. They discuss several ways of storing
and using old values in order to improve execution efficiency, and also address the problem of
"purging” or keeping the cache size from growing without bounds during a computation. They
also give as example another application area where value-caching would greatly speed up the
execution time, namely in the finite-element method.

8. Conclusion

Through a series of examples | have investigated programming style and practical
considerations in FP. | have demonstrated that it is often the case in FP that concise functions
become verbose and complicated when certain "efficiency optimizations” are attempted. | have
also argued that certain so-called "optimizations” may really not be optimizations at all, and
should not be undertaken by an FP programmer.

| have briefly discussed the similarities between FP and APL and LISP, and argued that
certain FP functions should be "more defined" and that there is a need for some additional FP
"orimitive” functions or macros. | described a scheme where macros can be implemented in a
clean way, leaving the original semantics of FP intact. | have argued that FP would benefit from
a library of idioms, or commonly-used constructs upon which the programmer can draw.

It is possible via novel architectures and intelligent compilers to support efficient FP-
like languages, where many optimizations can take place automatically, leaving the programmer
free to see much of the high-level picture without drowning in the details. | introduced one such
possible optimization, value-caching, and showed that it can reduce the egxecution time of
certain computations by as much as an exponential amount.

9. Acknowledgments

| would like to thank Professor Milos Ercegovac for introducing me to FP, and for the
numerous illuminating discussions which inspired this paper. Warm thanks go to Professor
Sheila Greibach for encouraging me to polish up this paper and submit it to the quarterly; she
made numerous thoughtful comments, and also helped in unsplitting my infinitives... @

10. Bibliography

Alkalaj, L., A Uniprocessor Implementation of FP Functional Language, MS Thesis, UCLA
Computer Science Department TR CSD-860064, April 1986.

Alkalaj,L., Ercegovac, M., and Lang, T., A Dynamic Memory Management Policy for FP, 1987

Hawali International Conference on Systems Science.

Arabe, J., Compiler Congiderations and Run-Time Storage Management for a Functional
Programming Svstem, Ph.D. Dissertation, UCLA Computer Science Department, CSD TR 86004,
August 1986,

Backus, J., C2 i iberated :) A iona :
its Algebra of Programs, Communications of the ACM, Vol 21, No. 8, August, 1978, pp. 613-
641.

15

Baden, S., Berkeley FP User's Manual, Rev. 4.1, September 29, 1987, 33 pages.

Keller, R., Sleep, R.,

i istri , Proceedings of the 1981 ACM
Conference on Functional Programming Languages and Computer Architectures, October, 1981,
pp. 131-140.

Meshkinpour, F.,
Description Language, M.S. Thesis, UCLA Computer Science Department, Technical Report No.
CSD-840046, November 1984.

Meshkinpour, F., and Ercegovac, M., A Functional Language for Description and Design of Diqital
Systems:Sequential Constructs, IEEE Proc. of the 22nd ACM/IEEE Design Automation Conference,
1985, pp.238-244,

Patel, D., and Ercegovac, M., igh- -
presented at the Symposium Electronics and Communications in the 80's, Indian Institute of
Technology, Bombay, February 1983.

Patel, D., Schlag, M., and Ercegovac, M., yFP: An Environment for the Multi-Level

ificati i i , Proc. 1985 ACM Conference on
Functional Programming Languages and Architectures, Nancy, France, Springer-Verlag Lecture
Notes 201, 1985.

Perlis, A., Rugaber, S., The APL Idiom List, Research Report #87, Yale University.

Pungsornruk, S., A Threaded FP Interpreter/Compiler, M.S. Thesis, UCLA Computer Science
Department TR CSD-860061, March 1986.

Sausville, M., Gathering Performance Statistics on Hardware Specified in FP, UCLA Computer
Science Department Internal Report, March 20, 1986.

Schlag, M., Layout from a Topological Description, Ph.D. Dissertation, UCLA Computer Science
Department, Summer 1886.

Schlag, M., Extracting Geometry from FP Expressions for VLSI Lavout, UCLA Computer Science
Report CSD-840043, October 1984,

Vegdahl, S., A survey of Proposed Architectures for the Execution of Functional Languages, IEEE
Transactions on Computers, Vol ¢-33, No. 12, December, 1984, pp. 1050-1071.

Worley, J., A_Functional Style Description of Digital Systems, M.S. Thesis, UCLA Computer
Science Department, Technical Report CSD-860054, February 1986.
10. Appendix: A Brief Overview of FP

In order to keep this paper self-contained, we briefly review the syntax and semantics of
FP; for a more detailed description of FP, see [Baden].

The notation "X ==> Y" is used to denote that when the form X is evaluated it yields the
value Y; this is simply a notational convenience. FP objects consist of numbers, strings, atoms,

16

and lists; examples are %213, "hi there”, FOO, <I am <a list>>, and <>. An integer constant must
be preceded by a percent sign, to distinguish it from the primitive selector functions. We use
the form "F : x" to denote the result of the function F applied to the argument x; for example, + :
<%2 %3> ==> 5. The unique error atom {or “bottom”) is denoted as "?". in what follows, the
formal FP specifications are also explained informally for clarity.

K : x ==> if X=<Xq, X2, ... , Xp> and 1<k<n then xi else ?

For every integer K there exists a primitive selector function K that returns the Kb
element of a list. For example:

3 : <fi fy foo fum> ==> foo.

Other selector primitives:
pick : x ==> if X=<y,<Xq, X2, ... , Xs>> and 1<y<n then xy else ?
last : x ==> if x=<> then <> else if x=<Xq, Xa, ... , Xn> and 1<n then x,, else ?
first : x ==> if x=<> then <> else if x=<Xq, X2, ... , Xx> and 1<n then x; else ?
Hl : x ==> if Xx=<y> then <> else if x=<Xq, Xp, ... , Xy> and 2<n then <xp, X3, ... , X,> else ?
tlr : x ==> if (x=<>) or (x=<y>) then <> else if x=<xq, Xp, ... , Xp> and 2<n
then <xq, Xs, ... , X.1> ©lse ?

pick selects the yﬂ-'L element out of a given list, last selects the last element, first selects the
first elememt, tl chops the first element off and returns the rest (like the LISP cdr function),
and tIr chops the last element off and returns the rest. Examples are:

pick : <2 <ab c>> ==> D

last : <wxy z> ==> Z

first : <<12><345><6789%> ==> <i2>

il : <who are you> ==> <are you»
tir : <fi fy fo fum> ==> <fi fy fo>

Si { and list-manipula imitives:

distl : x ==> if x=<y,<>> then <>

else if x=<y,<xy, X, ... , Xp>> and 1<n then <<y, X >,<y,Xg>, ... , <y, Xp>> else ?
distr : x ==> if x=<<>,y> then <>
else if x=<<X{, X2, ... , Xp>¥> and 1<n then <<xq,y>, <Xp,y>, ... , <Xp,y>> else ?
apndil : x ==> if x=<y,<>> then <y>
else if x=<y,<Xy, Xp, ... , Xp>> and 1<n then <y xq, X2, ..., X> else 7
apndr : x ==> if x=<<>,y> then <y>
else if x=<<Xy, Xp, ... , Xy>,¥y> and 1<n then <xq, xa, ..., X,,y> else ?
trans : x ==> if X=<<X{, X2, .. , Xn><Y15 ¥2, oo s ¥Yn>1eeni<Zq, 22, ooy Zp>> @Nd 15N
then <<Xq, Y1, -+ » Z{>e0s<Xpy, Yyoeee » Zn>> €150 ?
reverse : x ==> if x=<> then <> else if x=<xq, X3, ..., Xo> and 1=n
then <xp, Xn.1, - ,» Xy> €lse ?
rotl : x ==> if x=<> then <> else if x=<y> then <y> else if x=<xy, Xy, ..., Xu> and 1<n
then <xs, X3, ... , X, Xy> else ?

17

rotr : x ==> if x=<> then <> else if x=<y> then <y> else if x=<xy, X, ... , Xp> and 1sn

then <xp, Xy, Xo, .. , Xn.2, Xp.1> €lse ?
concat : X ==> if x=<<Xq, X9, ... , Xn> <Y1+ ¥2, - » Ym>1en<Zq, Z, .., 2>> A@nd 1Sn,m,...|
then <xq, X, . s Xp,¥1s Y25 v s YmseennsniZqs 225 -0, 2> €lSE 7
pair : x ==> if X=<xq, X, ..., s> @nd 1<n is even then <<xq, Xp>, ... , <Xp_1,Xn>>
else if x=<<X{, X2, ..., Xn> and n is odd then <<x4, Xp>, ... , <xy>> else ?
split : x ==> if x=<y> then <<y>,<>> else if x=<xq, Xp, ... , X7> @nd 1=n
then <<xq, X2, ... Xfigor(n/2)> <Xfloor(n/2)+1+ - Xn>> €lse ?

distl (distr) pairs from the left (the right) the first (second)} argument with each element of
the second (first) argument, apndl (apndr) appends the first (second) element to the end of
the list given by the second (first) argument, trans treats the argument lists as the rows of a
matrix and transposes this matrix, reverse reverses a list, rotl (rotr) does a left (right}
circular shift on a list, concat concatenates two lists, pair pairs up the elements in a list, and
split divides a list into nearly equal halves. Examples follow:

distl : <u <rm 2>> ==> <<UMm><u2>>

distr : <<i u voo> doo> ==» <<idoo> <Udog> <voo doo>>
apndr : <<hi di> ho> ==> <hidiho>

apndl : <r <2d 2>> ==> <r2d2>

trans : <«<1 2 3> <abc>> ==> <<la><2b><3C>

reverse : <to be or not to be> ==> <be to not or be to>

rotl : <10 20 30 40> ==» <20 30 40 10>

rotr : <<1 2> <3 4> <x y z>> ==> <<X¥2><12><34>>
concat : <<x> <y Z> <u g t>> ==> <XyzuqQqt>

pair : <romeo juliet samson delila> ==> <<romeo juliet> <samson delila>>
split : <hairl hair2 h3 h4 hb5> ==> <<hairl hair2 h3> <h4 hb>>

Predicates:

atom : x ==> if x is an atom then T else if x = ? then F else ?
null : x ==> if x =<> then T else if x # ? then F else ?
length : x ==> if x=<> then 0 else if x=<xq, X5, ... , X5> then n else ?

atom tests whether the argument is an atom, null tests whether it is the empty list, and
length returns the length of a list. Examples follow:

atom : firefox ==> T
null : <not empty at all> ==> F
length : <tell how long <am I>> => 4

Arithmetic and logical operations:
+ : X ==> if x=<a,b> and a and b are numbers then a+b else ?
(and similarly for -, *,/, <, », <, 2, =, #)
xor : x ==> if x=<a,b> and a and b are boolean then xor{a,b)else ?
(and similarly for and, or, not, nand, and notr)
These operators compute the standard arithmetic and logical functions. Examples fellow:

+ <2 3> ==» 5

18

=<4 13> ==> -9
* <13 11> ==> 143
[:<81 3> ==> 27
< <100 999> ==> T
=:<k k> ==> T

Functional | bi I fitional:

f1@f2:X==>f1 :(fz:X)

[exprq, expra, ..., €Xpry] : X ==> <@Xpry : X, expro : X, ... , 6Xpry : X>
& expr : x ==> if x = <> then <> else if x=<xq, X5, ..., Xp> @and 1=n
then <expr : Xq, @Xpr : X, ... , @Xpr : x> else ?
Lexpr : x ==> if X = <y> then <y> else if x=<xq, Xp, ... , Xp> and 2<n
then expr : <xq, | @xpr : <xo, ..., Xy>> else ?
\ expr : X ==> if X = <y> then <y> else if x=<xq, Xo, ... , X,> and 2<n
then expr : <\ expr : <Xq, ... , Xn.1>, Xp> else ?
| expr : x ==> if x = <y> then <y> else if x=<xq, Xg, ... , Xo> and 2<n
then expr : < | @xXpr @ <Xy, ... , Xfoor(n/2)>s | €XPF : <Xfigor(ns2)>> €lse ?

(C-»A;B) :x==>ifC:x2<>thenA:xelseifC:x=<>thenB :xelse ?

@ denotes functional composition and is by far the most common FP operator. Square brackets
([and]) denote list construction. The functor & maps the given function onto each element of
the argument list. I, \, and | invoke several kinds of parallel tree evaluation, while the
construct {(C -» A;B) is the FP conditional operator: if C evaluates to true, A is evaluated and
returned, otherwise B is evaluated and returned. Examples follow:

*@tlr:<3 2 1> ==> B

[+@]2,2],1,2] : <b 1> ==> <2b 1>

& atom : <yes <no> <<maybe>>> ==> <T F F>
1*:<123456> ==> 720
|id:<123456> ==> «<<<l 2> 3> <<d 5> 65>
(atom =»> %1 ; %-1) : oxygen ==> 1

19

