THE TANGRAM STREAM QUERY PROCESSING SYSTEM

D. Stott Parker March 1988
Richard R. Muntz CSD-880025
Lewis Chau

The Tangram Stream Query Processing System

D. Stott Parker
Richard R. Muntz
Lewis Chau

Department of Computer Science
University of California
Los Angeles, CA 90024-1596

ABSTRACT

Tangram is an environment for modeling. It supports development and
management of models, simulation of models, analysis of simulation output and
analysis of models in general. Its current focus is on computer system perfor-
mance modeling.

Modeling applications routinely generate large quantities of simulation data, and
analysis of this data requires a system that differs in significant ways from exist-
ing database systems. The data often takes the form of time series, and therefore
query processing requires both stream processing techniques and heavy numeri-
cal computations (e.g., basic statistical and time series analysis) beyond ordinary
aggregates.

One of the driving concepts behind Tangram has therefore been the combination
of large-scale data access and data reduction with a powerful programming
environment. The Tangram environment is based on Prolog, extending it with a
number of features, including process management, distributed database access,
and generalized stream processing.

This paper describes the Tangram Stream Processor (TSP), the part of the
Tangram environment performing query processing on large streams of data.
The paradigm of transducers on streams is used throughout this system, provid-
ing a ‘database-flow’ (database dataflow) computation capability.

This work done under the Tangram project, supporied by DARPA contract F29601 -87-C-0072.

The Tangram Stream Query Processing System

D, Stott Parker
Richard R. Muntz
Lewis Chau

Department of Computer Science
University of California
Los Angeles, CA 90024-1596

1. Introduction

The relational data model is founded on set theory: all relations are viewed as sets of tuples.
Many developments have encouraged generalization of this model to one of ordered sets. For
example, ordered data can be processed much more efficiently than unordered data can be. In
fact, many standard query evaluation techniques are described in terms of operators (actors,
filters, mappings) acting on ordered sequences of tuples. Moreover, temporal query processing
seems to necessitate some kind of ordering if important kinds of queries are to be efficiently
answerable. Also, non-first-normal-form data frequently requires some kind of list structuring,
essentially implementing ordered sets. Finally, of course, the order of the tuples in relations is
important in presentation of the relations to users.

In many important situations, then, it is advantageous to generalize the set foundation of the rela-
tional data model to an ordered set model. We call ordered sets streams. Stream-oriented pro-
cessing is certainly not a new subject, although it has only recently come into its own right as a
programming paradigm.

In this paper we describe the Tangram query processing system, the Tangram Stream Processor
(TSP). It is an extensible system based on a functional sublanguage of Prolog that provides a
programmable stream processing capability with a number of interesting characteristics.

1.1. The Tangram Modeling Environment

Tangram is an environment under development at UCLA for modeling. It is implemented as an
extension of Prolog that includes integration with the Unix environment and database managers,
and provides distributed processing constructs. The main goal of Tangram is to provide a high-
powered interactive modeling environment. It therefore incorporates the following capabilities:

Model Management

Just as DBMS are managers of data, Tangram is a manager of models. Model management
includes the storage and retrieval of ‘data dictionary’ knowledge about available models,
workloads (load generators, benchmarks), experiments, experiment output, and tools.
Where multiple models are used to describe a single system from different viewpoints or
levels of abstraction, model management also provides information on how these models
relate, how they can be solved by existing modeling tools, and so forth.

Measurement Data Management

Modeling experiments generate enormous quantities of data. Tangram is concerned with
capturing data from different tools, translating it to a common format, storing it, and sup-
porting arbitrary queries with parallel processing. This presents research challenges in that
the data is frequently both structured and has a temporal flavor not supported by current
DBMS. Also, current DBMS do not support ‘exploration’ of the data in the way that
exploratory data analysis systems do, like the S system of AT&T [9]. It is important to be
able to support exploration of a model, encouraging a modeler to expand his intuition of its
behavior. The modeler should be able to view his model actually ‘running’ with various
kinds of graphical displays, for example. Parallelism is important to make interactive real-
time modeling possible.
Advanced Modeling Tools

Current modeling tools typically force the modeler into expressing his model in a limited
framework, and investigating the model’s behavior with a limited set of query facilities.
These tools are also frequently not extensible, i.e., do not permit addition of new features.
Tangram is directed at tools permitting declarative specification of ‘deep’ models — involv-
ing complex structuring of knowledge and complex querying of the model behavior. An
object-oriented environment for developing these tools will be used, supporting knowledge
base management and arbitrary query. The environment will be extensible in permitting
the addition of new object classes for models, new families of models, and so forth.
Currently a prototype has been built giving a methodology for designing and implementing
Markov modeling tools for analytic, statistical, simulation as well as expert-system-like
‘conceptual’ modeling of computer systems [12].

Tangram is implemented primarily in C and Prolog (currently SICStus Prolog). Prolog is an
excellent starting point for this development for at least two reasons:

(1) Prolog is unarguably the best existing candidate for a database/knowledge base language.
It integrates relational database functionality with complex structures in data, and its logical
foundations provide many features (unification and pattern matching, logical derivation and
intensional query processing, backtracking and search, and more generally declarativeness)
important in modeling. It naturally supports increases in structure of models and ‘expert
system’ techniques for interpretation of these models.

(2) Prolog is flexible. It is an outstanding vehicle for rapid prototyping, and permits access to
systems that perform computationally intensive tasks better than it.

To be effective, however, an environment based on Prolog must offer the following features:

Industrial Strength

Increases in the quantity of modeling data and in the complexity of interpretation opera-
tions necessitate heavy computation. Parallelism is needed to deal with the increased
volume of information. Interactive display of model behavior is essential for effective
modeling. An environment like Tangram incorporating these techniques will be suecessful
only if it provides ‘industrial strength’ performance. Important performance factors come
through optimization, advanced data management technology, support at the operating sys-
tems level, and hardware parallelism.

Integration

A modeling environment must combine different systems of different types effectively and
efficiently. Tools and testbeds for developing models that have taken man-centuries to
develop should be accessible conveniently from a workstation. Prolog is excellent for
representing and making inferences how these tools and testbeds should be accessed, but
efficient access prohibits the use of ‘glue job'* connections between them and Prolog.
Database systems, for example, require stream access rather than the tuple-at-a-time access
adopted by existing Prolog-DBMS connections. Integration comes through modularization,
general ability to connect with diverse programs, general knowledge representation of pro-
gram functions, and support for translation tools.

Support for Evolution and Multiple Models

There are many ways to represent the same information. As models are refined over time
they become more detailed, and focus on specific aspects of systems. Also, different
models using different abstractions are necessary for representing complex systems, to keep
focus and to reduce data processing requirements. Qualitative reasoning about a system,
for example, is done on an abstracted model of the system.

Both evolution of models and different views of complex systems require different kinds of
models, and hence different languages or paradigms for capturing different aspects of the
real world. Bobrow, for example, has criticized Prolog on the grounds that there are many
programming paradigms other than logic programming, and existing Prolog environments
should, but do not yet, support them [14]. For modeling in particular, this criticism is of the
essence. Paradigms can be low-level in nature, such as with parallel/distributed processing,
object-oriented programming, or constraint satisfaction. They can also be more high-level
or ‘semantic’ in nature, such as with extended queueing networks.

Tangram provides multiple paradigms as sublanguages which can be compiled to Prolog, or to
some other fast low-level implementation. This paper describes the functional/stream paradigm
of Tangram. It is an extension of Log(F), developed by Sanjai Narain at UCLA [35, 36].

1.2. Stream Processing

Concurrent, object-oriented, functional, and logic programming paradigms all intersect elegantly
in the abstraction of streams. Many stream processing systems have been proposed in the past
few years. For example, many parallel logic programming systems have been developed essen-
tially as stream processing systems. Typically, these systems fall into one of several camps:

(1)

)
(3)

They resemble PARLOG [16] and the other ‘committed choice’ parallel programming sys-
tems (Concurrent Prolog, GHC, etc.).

They introduce ‘parallel and’ or ‘parallel or’ operators into ordinary Prolog [28].

They are extended Prolog systems that introduce streams by adding functional program-
ming constructs [19, 23,27, 33,45]. The thrust of this introduction is to make Prolog more
like either Lisp or Smalltalk or both.

* terminology borrowed from Mike Stonebraker.

-4-

TSP has drawn on the designs of a number of previous systems which have included stream con-
cepts. These include FAD [5], various dataflow database systems [6,7,8,13,20], and LDL
[10,46]. '

After some experience with the tuple-at-a-time and whole-query-at-a-time Prolog/DBMS inter-
faces that have been developed to date, we feel a better way to integrate Prolog and databases is
through streams. Only minor extensions to Prolog are sufficient to provide fairly efficient stream
processing [37]. A stream interface offers an effective medium between these two alternatives,
uniformly integrating bulk operations at the DBMS end with incremental evaluation at the Pro-
log end. Prolog stream processing avoids backtracking through a database, using efficient itera-
tive (tail recursive) processing instead. It is a natural approach for applications like analysis of
modeling data.

1.3. Streams and Temporal Query Processing

One area where streams are very important for query processing is for temporal data, data with
explicit or implicit time ordering. The analysis of streams has been done for many years as
“‘time series analysis™. Recently, the subject of time in databases has gotten increasing atten-
tion as more applications requiring temporal reasoning have been uncovered [3,4,11, 15,17},
and many interesting systems handling temporal queries in novel ways have been developed
[2, 18,24, 25,26,29,39,42,44].

Previous research has concentrated either on database processing, or on representational issues
and generality of modeling. Two important database systems include:

(1) TQuel [42], a relational query language with embedded time primitives, is an extension of
Quel, both syntactically and semantically. TQuel is essentially a relational query language,
resting on the relational model.

(2) The Time Sequence approach of Shoshani [39, 40] characterizes properties of temporal data
and temporal operators without restriction to the relational model. Data are organized into
Time Sequence Collections (TSCs), which can take both relational and stream-like
representations. Five basic operators provide an algebra working on TSCs.

These systems emphasize performance and complete handling of a well-defined set of query
operators. Other researchers in temporal query processing have worked on more complex
modeling, combining work on temporal logic and existing representational systems to define
new approaches. Sadri [38] reviews three general recent approaches to temporal reasoning:

(1) The *“‘event calculus’’ of Kowalski [24] is an approach for reasoning about events and time
within a logic programming framework.

(2) Allen’s approach [3,4] is similar to the event calculus, defining a set of binary predicates
giving basic relationships among time intervals (whether they overlap, one precedes the
other, etc.).

(3) Lee, Coelho and Cotta [26] present a temporal system for representing and reasoning about
time-dependent information and events, specifically for business database applications.

In these approaches it is peculiar that stream processing has not been emphasized more heavily
for temporal query processing, as well as for basic relational query processing. Tangram’s
streamn processing approach permits it to handle queries definable under each of the systems
listed here.

1.4. The Tangram Stream Processor

Below we describe the Tangram Stream Processor (TSP), a system founded on the abstraction of
stream transducers. A transducer is a mapping from some number of input streams to one or
more output streams. Thus, a transducer may be viewed as an automaton. However, a trans-
ducer can take parameters, and as such need not have only a finite number of states. Thus, it is
better to view transducers as mappings instead.

Transducers are the basic building blocks of TSP, and are maintained in an (extensible) library.
Since arbitrary transducers are permitted, the expressive power of TSP is equivalent to that of
any general programming language. Consequently, the stream-based transducer model is more
general than many previous approaches: it is capable of handling traditional database queries and
non-traditional queries that reason about time in event databases.

TSP has several further unique aspects:

(1) TSP permits operation on general stream structures, including for example both lists and
array models of data. It supports definition of and parallel evaluation of operators on these
stream structures, including the operator families of the APL programming language, NIAL
[30], and the Nested Array model of data upon which both are based [31,32]. This
includes the ability to define higher-order operators on streams, such as aggregate opera-
tors (min, max, sum, etc.), APL’s reduction operator, LISP’s maplist, etc. In addition, it
permits us to define many useful statistical operators on streams, as in the S data analysis
system [9].

(2) TSP permits operation on infinite streams. A stream may represent a non-terminating
sequence of values. This is not permitted, for example, by APL.

(3) TSP permits both lazy and eager evaluarion of streams. Lazy evaluation permits efficient
evaluation of some kinds of queries.

(4) TSP transducers are naturally implemented as concurrent processes. These transducers per-
mit easy specification of process boundaries, a feature not enjoyed by some parallel Prolog
systems.

The resulting system may be used for ‘database-flow’ processing, a combination of ‘dataflow’
and database processing, as well as general feature extraction and data reduction operations that
fit in a pipeline structure.

Execution of queries in TSP is quite efficient, in the common situation that the input streams are
sorted properly. In fact, TSP query processing can be considerably more efficient than that in
relational DBMS. For many TSP queries a single scan of the input streams is sufficient, requir-
ing linear time and constant space, while relational DBMS approaches require significantly more
resources. Also, TSP can handle kinds of queries that are not easily handled by relational query
processing systems, including the following:

1. Sliding window queries [39]

2. Event calculus queries [24)]

3. Pattern matching queries (see Section 4 below)
4. Abstracting state information from event data
5. Reasoning about time.

As an example of a query that reasons about time, consider asking about what investment stra-
tegy would have been optimal over a given period of stock market history. This requires innova-
tive accumulation of dividends, interest rates and rules for compounding interest, days which are

-6-

holidays, and many other important details. These ‘hindsight queries’ illustrate the potential of
stream processing in database analysis.

1.5. Organization of this Paper

Section 2 gives the formal definition of TSP, and provides an example library of transducer
operations and their Prolog implementation. We henceforth assume that the reader is familiar
with Prolog. A good introduction to Prolog can be found, for example, in [43].

Section 3 describes the TSP stream transduction mechanism in detail. Section 4 then goes on to
discuss pattern matching against streams, and how it relates to stream transduction. Finally, per-
formance of stream-based temporal query processing system is briefly discussed, along with
reflections on improvements to TSP and avenues for future work.

2. Log(F)

The Tangram Stream Processor rests on Log(F), a combination of Prolog and a functional
language called F*, developed by Sanjai Narain at UCLA [35,36]. Log(F) is the integration
with Prolog of a functional language in which one programs using rewrite rules. This section
reviews the major aspects of Log(F), and describes its advantages for stream processing.

2.1. Overview of F* and Log(F)
F* is a rewrite rule language. In F*, all statements are rules of the form

LHS => RHS

where LHS and RHS are structures (actually Prolog terms) satisfying certain modest restrictions
summarized below,

A single example shows the power and flexibility of F*. Consider the following two rules,
defining how lists may be appended:

appand ([],W) => W,
append ([U|V] W) => [U|append(V,W)].

Like the Prolog rules for appending lists, this concise description provides all that is necessary.

Log(F) is the integration of F* with Prolog. In Log(F), F* rules are compiled to Prolog clauses.
The compilation process is straightforward. For example, the two rules above are translated into
something functionally equivalent to the following Prolog code:

raduce (append (A,B), C) :- reduce(A, []), reduce(B,C).
reduce (append(A,B), C) :— reduce(A, [D|E]), reduce{ [D|append(E,B)],C).

The two F* rules are as concise as, and essentially equivalent to, the Prolog definition

append([],W,W).
lPP.nd([Ulv]lwl [UIL]) H lPPGnd(Vf":L) .

Unlike many rewriting systems, the reduca rules here can operate non-deterministically, just
like their Prolog counterparts. Many ad hoc function- or rewrite rule-based systems have been
proposed to incorporate Prolog’s backtracking, but the simple implementation of F* in Prolog
shown above provides this capability as a natural and immediate feature.

An important feature of F* and Log(F) is the capability for lazy evaluation. With the rules
above, the goal

?- reduce(append([1,2,3],1[4,5,6]1), X).
yields the result

X = [1|append([2,3],[4,5,6]1)].

That is, in one reduce step, only the head of the resulting appended list is computed. The tail,
append([2,3], [4,5,6]), can then be further reduced if this is necessary. Demand-driven
computation like this is referred to as lazy evaluation or delayed evaluation, and is basic to

stream processing [1].
The astute reader will have noticed that, in order for the reduce rules above to work as we are
claiming, we will have to add two definitions:

reduce{ []1, []).
reduce([X|Y], [X|Y]).

In F*, functors like [] and [_|_1 with this property are called constructor symbols. Terms
whose functors are constructor symbols are said to be simplified, they cannot be reduced further.

The main restriction on Log(F) rules LHS => RHS is that LHS must be of the form
f(rl’- .. ’tn)

where n 2 0, and each of the ¢; is either a variable or a term whose functor is a constructor sym-
bol. This restriction guarantees efficient implementation. In order to guarantee soundness and
completeness properties, restrictions on variables are also made: first, no variable may appear
twice in LHS (the ‘linearity’ restriction), and second, every variable in RHS must also appear in
LHS.

There is one more important point about the integration of F* with Prolog. Where F* computa-
tions are naturally lazy because of their implementation with reduction rules, Log(F) permits
some eager computation as well. Essentially, eager computations invoke routines outside F*.
For example, in the Log(F) code

count ([X|S],N} => count (S,N+1).

the subterm N+1 is recognized by the Log(F) compiler as being eager, and the resulting code
produced is equivalent to

reducea (count (A,N) ,2) :- reduce(A, [X|S]), M is N+l1l, reduce(count(S,M),Z).

Programmers may declare their own predicates to be eager. By judicious combination of eager
and lazy computation, programmers obtain programming power not available from Prolog or F*
alone.

It is easy to develop significant programs with compact sets of rewrite rules. For example, the
following is an executable Log(F) program for computing primes via the sieve of Eratosthenes:
primes => sieve(intfrom(2)).
intfrom(N) => [N|intfrom(N+l1l)].
sieve([U|V]) => [Ulsieve(filter(U,V))].
:— eager multiple/2.

multipla(U,A,true) :— 0 is Umod A, !.
multiple(_ , ,falsa).

filter (A, [U|V]) => if(multiple(U,A), f£ilter(A,V), [U[filter(A,V)]).

The intfrom rule generates an infinite stream of integers. The rule for filter uses the eager
Prolog predicate multiple. As an example of execution, if we define the predicate

-9.

reducePrint (X) :- reduce(X, [H|T]), write(H - T), nl, reducePrint (T).
then the goal

?- reducePrint (primes).
produces the following (non-terminating) output:

2 - slieve(filter(2,intfrom(3)))

3 - sieve(filterx(3, filter(2,intfrom{4})))

5 - sieve(filter(5,filtexr (3, filtexr(2,intfrom(6)))))

7 - aleve (filter(7,filter(5,filter(3,filter(2,intfrom(8))))))

For other useful examples of the combination of lazy and eager evaluation, see [34].

2.2, Advantages of Log(F)

Log(F) is a superior formalism for stream processing, and thus for database query processing.
From the examples above it is clear that the rules have a functional flavor. Stream operators are
easily expressed using recursive functional programs. The syntax is convenient, and can be con-
sidered a useful query language in its own right.

Furthermore, Log(F) naturally provides lazy evaluation. Functional programs on lists can pro-
duce terms in an incremental way, and incremental or ‘‘call by need’’ evaluation is an elegant
mechanism for controlling query processing.

It turns out furthermore that Log(F) has a formal foundation that captures important aspects of
stream processing:

(1) Determinate (non-backtracking) code is easily detected through syntactic tests only. This
avoids the overhead of *‘distributed backtracking’ incurred by some parallel logic pro-
gramming systems.

(2) Log(F) takes as a basic assumption that stream values are ground terms, i.e., Prolog terms
without variables. Again this avoids problems encountered by other parallel Prolog sys-
tems which must attempt to provide consistency of bindings to variables used by processes
on opposing ends of streams.

These features of Log(F) make it a nicely-limited sublanguage in which to write high-powered
programs for stream processing and other performance-critical tasks. Special-purpose compilers
can be developed for this sublanguage that produce highly-optimized code.

We must stress strongly that Log(F) is an extension of Prolog. All Log(F) code shown in this
paper actually runs as shown. The issues here are not so much language design issues as in
developing compilers for Log(F) which exploit its restrictions for speed. Where speed is not
critical, the full power of Prolog is available to its users now.

-10 -

3. TSP: Stream Processing

The Tangram Stream Processor (TSP) is an extensible stream processing system based
directly on the Log(F) system described above. A prototype implementation using SICS Prolog
has run for six months, and has gradually evolved to the state described here. This section
discusses the basic functionality of TSP. Later sections describe how stream pattern matching
may be specified neatly.

The syntax of Log(F) is quite compact. Readers not accustomed to Prolog programming may be
daunted by it at first. We hasten to point out that a graphical interface can permit users to
specify queries as compositions of stream transducers once an appropriate library of transducers
is defined, and avoid the details of syntax.

3.1. Transducers

With Prolog and Log(F) in mind, we follow the syntactic convention identifying a stream with a
list of ground terms. For example, the list

[
signal('128.97.28.26’,transmission_failuzc,’Oct 19 08:46:05.823 pST 1987"),

signal (1128.97.28.26', transmission failure, ‘Oct 19 08:46:08.171 PST 1%87'),
signal ('128.%7.28.26', site not_responding, ‘Oct 19 08:46:12.452 PST 1987")
]

can be a stream. This convention is observed by many parallel logic programming systems.

A rransducer is a mapping from one or more input streams to one or more output streams. For
example, a transducer could map the stream above to the stream

[net_failure, net_failure, cpu_crash].

In addition to recognizing specific patterns, a transducer is capable of recording and summariz-
ing properties of any input stream as it is scanned.

Formally, we define a TSP transducer to be any collection of Log(F) rules, relaxing the restric-
tions on variables required by Log(F) for completeness. This definition is easily verified to
cover mappings from streams to streams, aggregate computations, parsers, and a number of other
general kinds of mappings.

In spite of this generality, certain kinds of transducers appear frequently in the context of data-
base query processing. One of the most common, which we call a simple stream transducer,
defines an sequential mapping between input stream items and output stream subsequences.
This kind of transducer can be defined by an initial state and three mappings:

A simple stream transducer T is a 4-tuple

(InitialState, Transduction NewState FinalTransduction),

where:
(1) [InitialState is the state of the transducer when it begins;

-11 -

(2) Transduction maps the current state and current stream input(s) to new stream
output(s). Stream inputs can be ignored. A stream output can be [], specifying that
output stream is not to be changed,;

(3) NewState maps the current state and current stream input(s) to the next state;

(4) FinalTransduction specifies the final output(s) to be written on streams when no input
is left.

Simple stream transducers can be expressed concisely with TSP. For concreteness, assume that
a transducer takes one stream as input, does not ignore its input in any state, and produces one
stream as output. It can then be expressed in TSP as:

TransducerName (Stream) => TransducerName (Stxeam, InitialState) .

TransducerName (11, State) => FinalTransduction(Statae).
TransducerName ([Input | Stream], State) =>
append (

Transduction (Input, State),
TransducerName {stream, NewSiate (Input,State))

The following simple example of a simple stream transducer in TSP converts system signal mes-
sages into single values:

tr(Stream) => tr(Stream,0).

tr([],N) => [total number of cpu_ failures(N)].

tr{[signal(_, transmission faillure,) [S$],N) => [nat_failure|tr{s,N}].
tr{[signal{_, site_not_responding,) [S),N) => [cpu_gfailure|tr(S,N+1)].

Here W is the number of cpu failures encountered so far in the input stream, and defines the state
of the transducer. When the input stream is exhausted, the transducer outputs the final transla-
tion [total number of_cpu_failures(N)]. Meanwhile it translates the input stream into the
output stream item by item. Note that the third rule for tr uses [net_failure|tr(S,N)]
instead of the equivalent append([net_failure], [tr(8,N)]1) since it is more efficient.

Since transducers are mappings, they may be combined into expressions. Stream expressions

can thus be defined inductively:

(1) A stream S is a stream expression.

(2) IfS,,...S, are stream expressions, and f is transducer, then f(Sy,...,S,) is & stream expres-
sion.

Stream expressions determine the algebra of transducers generated by whatever initial library of
transducers we choose.

Transducers overlap with a number of important paradigmatic concepts, including automata,
objects, actors, grammars, parsers, relations, and functions. A query processing system based on
transducers has features of each of these concepts, and should not be labeled as one or the other.

For the rest of this section we show how important queries can be expressed as transducers,
including:

-12-

(1) basic temporal mapping,

(2) aggregate computations, and

(3) measurement data analysis.

The next section continues in showing how pattern matching can be accomplished.

3.2. Basic Temporal Mapping

The discussion above shows how simple stream transducers can be developed in TSP. In princi-
ple, a user need only supply the four items

(InitialState , Transduction NewState FinalTransduction)

to define a simple stream transducer, and in fact compile-time ‘macro expansion’ (or ‘partial
evaluation’) can be used to fill in the simple stream transducer template above with these items.

Let us consider one example in more detail to cement this understanding, and relate it to tem-
poral query processing. In [41], Snodgrass and Gomez use the following temporal database:

position(jane, assistant, 25000, 9/71)
position (tom, assistant, 23000, 9/75)
position(jane, associate, 33000, 12/76).
position(merrie, assistant, 25000, 9/717 Y.
position(jane, full, 44000, 11/80)
pesition(tom, fired, 0, 12/80)
position | marrie, associate, 40000, 12/82)
submitted({ merriae, cacm, 9/78).
submitted(marrie, tods, 5/79).
submitted(jana, cacmn, 11/79% Y.
submitted(merrie, jacm, 8/82).

From this database a cumulative faculty employment history can be derived with a stream trans-
ducer:

facultyHistory(Positions) => facultyHistory{ Positions, []).

facultyHistory([], CurrentFaculty) => CurrentFaculty.
facultyHistory{ [position(F,P,W,D}|S], CurrentFaculty) =>
append (

facultyRecozrd(F,P,W,D,CurrentFaculty)},
facultyHistory (S, reduce{nawFaculty(CurraentFaculty,F,P,W,D)))

).

This transducer is defined by the 4-tuple ([1, facultyRacord, facultyHistory, identi-
tyMapping) where identityMapping is the identity mapping:

identityMapping(X) => X.

To complete the definition of the transducer, we must give the transduction mappings facul-
tyRecord and facultyHistory. These can be defined as follows:

-13-

facultyRecord(F,P,W,D, []1) => [].
facultyRecord(F,P,W,D, [faculty(OldF,0ldP,0ldw,0ldD,) |Faculty]) =>
if(OldF==F,
{faculty(F,01ldpr, 0ldw,0l1dD,D)],
facultyRecord(F,P,W,D, Faculty)

newFaculty([], ¥,P,W,D) => [faculty(F,P ,W,D,_)].
nawFaculty([faculty{(Fl,P1,Wl1,Dl,) |Faculty], F,P,W,D) =>
if{ Fi==F,
[faculty(F,P,W,D,_) [Faculty],
[faculty(F1,P1,W1l,Dl,) | newFaculty(Faculty,F,P,W,D)]
).

The output stream obtained by reducing facultyHistory(tuples(position,d)) is as fol-
lows:

faculty (jana, assistant, 25000, 9/71, 12/76).
faculty(jana, assoclate, 33000, 12/7e€, 11/80).
faculty(tom, assistant, 23000, 9/75, 12/80).
faculty(marrie, assistant, 25000, 9/71, 12/82).
faculty(jane, full, 44000, 11/80, _).
faculty(tom, fired, 0, 12/80,).

).

faculty(marrie, associata, 40000, 12/82,

Here tuples(poaition, 4) is a term that yields a stream of the tuples from the 4-column rela-
tion position.

3.3. Database Query Processing
It is easy to express simple database queries with TSP. Standard relational algebra operators all
can be used as transducers. TSP defines the relational selection transducer

select (Stream, Templata, Condition)

which selects from Stream all items that match Template and, in addition, satisfy Condition.
It is a stream analogue of £indall in Prolog systems,

TSP provides evaluation of stream expressions through Log(F) reduction:

raduce (Expression, Stream)
reduce_eagerly(Expression, Stream)

where Expression is a stream expression that is to be reduced to stzeam. These differ in that
reduce performs lazy reduction, yielding only one member of the stream at a time, while
reduce_eagerly cagerly evaluates the stream expression, not halting until the output stream is
complete,

Consider the query: ‘‘Find the papers Jane wrote while she was an associate professor.”’ This
query involves a relational join and selection. The TSP goal

-14 -

?- reduce_ eageaerly(janeQuery, Papears).
obtains the desired papers if we define two transducers:

JaneQuery => facultyPapers|(
salect (
facultyHistory(tuplas (position, 4)),
£aculty(jane,associate,_,_,_),
true

).

facultypapars([faculty(Nama,_,_,StartDatn,EndDate)|_]) =>
select (
tuples (submitted, 3),
submitted (Name, Journal, Date),
{notLater(StartDate,Date), notlater (Date,EndDate))
).

The join is essentially performed as a nested loops join with two selections, but here the first
selection produces only one tuple.

We can implement any operations on time values that are needed. For example, notLater can
be implemented as a Prolog predicate as follows:

notLater (Monthl/Yearl,Date) :-~ var(Datae).
notLater (Monthl/Yearl, Month2/Year2) :- Yearl =< Year2.
notLater (Monthl/Yearl, Month2/Year2) :- Yaarl = Year2, Monthl =< Month2.

Variables are used to indicate both indefinite and perpetual dates.

Other queries can be composed using relational operators. The table below lists the conven-
tional database transducers on streams defined in the TSP library. Having presorted input
streams is one of the more important assumptions for many stream processing operations, and
therefore, these ransducers are implicitly preceded by a sort operation that guarantees the terms
in the input streams are in the appropriate order for processing. While there exists an implied
order on the terms in a stream, the operators union, join, intersect, and difference follow the
same basic definitions as in a relational query language.

-15-

Expression Result

sort (8) The reordering of terms in $ in increasing order, using the
standard Prolog term lexicographic order.

keysort (8) The reordering of terms in s in increasing order by key.
Terms are required to be of the form x - T where Kis a
key value used in performing the sort.

union (81, 52) Stream union of 81, s2.

intersact (81, §2) Stream intersection of s1, s2.

difference (S1,52) Stream difference of s1, s2.

select (S, T,C)

project (Cols, S)

join (81, 52)

tuples (R, A)

clauses (P, A)
file terms (F)

The substream of terms in s that match (unify with) the
template T, and in addition satisfy the logical condition
c.

Cols is a list of the column indices [iy, .
the projection is to be made.

{merge-)join of s1, s2. The streams are assumed to be
keysorted, so their items are of the form Keyvalue -
Tarm.

Yields the stream of all tuples in R, a relation with a
columns.

The stream of clauses in », a predicate of arity aA.

The stream of terms stored in the file 7.

. »ip] on which

3.4. Aggregate Computations

Aggregate operators can be of several kinds. Aggregate reductions, which apply an associative
operator cumulatively among elements of a stream, are very easy to define:

count (S) => count(S,0).
count {[],N) => N,
count ([_|S],N) => count(S,N+1).

sum(S) => sum(S,0).
sum{[],T) => T.
sum({[X]|8],T) => sum(S,X+T).

avg([]) => 0.
avg([XI8]) => sum([X|8]) / count([X|8]).

Aggregate operators may also act as stream transducers, placing partial aggregates in the output
stream as each input item is tallied. Snodgrass and Gomez define many interesting stream aggre-
gation operators for TQuel [41]. Here we investigate the operators for forming counts. The
input stream may be taken as containing items of one of two forms:

insert (Identifier, Value, Time)
delete (Identifier, Value, Time).

-16 -

With these forms, the operators perform the following operations:

Operator Function

count total number of non-deleted identifiers and values
countC total number of inserted identifiers and values
countU total number of unique identifiers and values
countuC total number of unique values

For streams that have been transformed to this structure, the count aggregation operators can be
conveniently defined with TSP: We first define some constructor symbols: insert (I, v,T),
deleta(I,V,T), count, countC, countlU, and countuc. We define the TQuel stream count
aggregation operators:

tquel_count (Type, S) => tquel count (Typa, S, [01).
tquel count (Type, [], [Count|List]) => [Count].
tquel count (Type, [Input|S8], [Count|List]) =>
[Count | tquel count (Type,S, newCounter (Type, Input, [Count |List]))].

newCounter(C, insert(I,V,T), State) => insert(C,I,V,T,State).
nawCounter (C, delete(I,V,T), Stata) => delete(C,I,V,T,State).

insert(count, I,v,T, [Count|List]) => [Count+l | [(I,V)|List] J.

deleta(count, I,V,T, [Count|List]) => [Count-1 | Aiff(List, [(I,V)])].
insert{ countC, I,V,T, [Count]) => [Count+l].

dalete{ countC, I,V,T, [Count]) => ([Count].

insert(countv, I,V,T, [_iList]) => lengthList{ inserxtCount([(I,V)],List)).
delete({ county, I,V,T, [_|List]) => lengthlList{ deleteCount({(I,V)],6 List)).
insert{ countUC, I,V,T, [_|List]) => lengthlist(insertCount ([V], List)).
delete({ countUC, I,V,T, [_|List]) => lengthList(deleteCount ([V],List)).

lengthList (L) => [reduce(listlength{L)) | reduce(L)].

listLength([]) => 0.
listLength({X|L]) => 1 + listLength(L).

insertCount (X, []) => [(X,1)].
insartCount (X, [(¥,N) L)) => if{ ¥ == X,
[(X,N+1) |L},
[(¥,N) | insertCount (X, L)]
Y.
delaetaeCount (X, [{¥,N} |L]} => 1£f{ ¥ = X,
if{ N==1, L, [(X,N-1)]|L]),
[({¥Y,N)} |daleteCount (X, L)]

diff([],¥) => X,
diff({[X|L),Y) => if(X=¥Y, L, [X|diff(L,Y)]).

This definition is instructive; from it one sees immediately what countc is fast and easy to

-17-

compute, requiring only the current count for its state, while countU is quite expensive to com-
pute, potentially needing to store the entire input stream in its state.

Finally, another class of predefined TSP stream operators perform pair-wise operations on two
streams of numbers. For example, the following stream addition succeeds:

?— raduce_ eagerly([1,3,5,7] + [2,4,6,8], [3,7,11,15]).

In general op(si1,s2) performs the element-wise numerical op (max, min, +, -, etc.) of
the streams s1, s2.

3.5. Stream Processing of Measurement Data

One emphasis of TSP for Tangram is to support data analysis. Let us now explore several exam-
ples applying stream processing to analyze measurement data.

Suppose that we are executing a distributed algorithm on a set of processors and the implementa-
tion is expected to yield balanced utilization of the processors. Through instrumentation we
have captured a stream of measurement data with the schema util(Time,Utilizations).

Each term in the stream gives the time at which the measurements were taken and a list of the
utilizations observed on each processor. An example instance of such a stream is:

[util(l, [0.5, 0.8, 0.51),

util (2, [0.7, 0.7, 0.7]),
util (3, [0.8, 0.6, 0.6]),
util(4, [0.6, 0.7, 0.5)),
util(5, [0.7, 0.8, 0.81)

]
Let us suppose that this stream is stored in the file expariment2.output.

A useful summary of how well our distributed algorithm actually balanced the processor utiliza-
tions can be determined by finding, for each measurement interval, the variation in processor
utilizations. We can do this by finding the maximum deviation by any processor from the aver-
age processor utilization during that time period. The TSP Query to accomplish this could be

?- reduce eagerly(summary(file terms(’experiment2.output’})).
if we first make the following additional definitions:
summary{[]) => [].
summary ([util (T, 8) |L]) => [dev (T, reduce(maxdeviation($S))) |summary(L)].
maxdaviation(S) => max(deviation(avg(S),8)).
daviation(_, [1)} => [].
daviation (N, [L|Ls]) => [L-N|deviation(N,Ls)].

Here avg and max are aggregate operators, as described earlier.

Now let us consider an application to queueing systems. Suppose we wish to gather statistics on

-18 -

the time customers spend at specific servers. For simplicity, assume that the type of server is
either FCFS or LCFS, and is specified in a binary predicate:

type (servarl) => [fcfa].
typa(sarver2) => [lcfs].

Arrivals and departures of customers to a specific server are captured in a stream whose items
have one of the two formats:

a(Tima)
d{Time)

Transducers can be developed that map this stream to a stream of ‘elapsed time’ values, or to a
stream of ‘service time’ values. The transducers are defined as follows:

fcfs e([],_) => 1].
fcfs_e([a(T) L], State) => fcfs_e(L,append(State, [T])).
fcfa e([d(T) L], [TOIS]) => [T-T0 |fcfs_e(L,S)].

lcts_e([(1,_) => {].
lcfs e([a(T)|L],State) => lcfs e (L, [T|Stata]).
lefs a([4(T) L], [TO|S]) => [T-T0|lcfs a(L,S)].

fcfs s ((1,_) => (1.
fcfs_s({a(T) |L], (N,T0}) => if (N==0, ([fcfs_s(L,(1,T))],
[fcfs_s (L, (N+1,T0))]
).
fcfs_s([d(T) [L], (N,T0)) => [T-TO|fcfs s(L, (N-1,T))].

lcts_s([]1,_) => {].

lcfs s({a(T)IL], []) => lcfs s(L, [(T,0)]).

lcfs_s([a{T) |L], [(TQ,T1)IS]) => lcfs_s(L, [{T,0), (_,T-TO+T1) |S]).
lefs s ([4(T)|L], [(TO,T1), (T2,73)|8]) => [T-TO+Tl|lcfs s(L, [(T,T3)IS])]).
lefs_s([d(T) L], [(T0,T1)]) => [T-TO+T1l|lcfs s(L,{])].

These transducers may appear a little forbidding. We can however make these available in a
simpler and more natural form by introducing ‘higher level’ transducers, much like defining
views in relational databases:

elapsed times(Server,S) => policy elapsed times(type(Server),8S).

sarvice times(Server,$) => policy service timas(type(Server),S).

policy elapsad times([fcfs], S) => fcfs a(S,[]).

policy_elapsed times([lcfs], S) => lcfs_e(S,[]).

policy_service_times([fcfs], S) => fcfs s(S, (0,_)).

policy service_times((lecfs], 8} => lefs s(S,[]).

Interesting statistics (e.g. mean, standard deviation, etc) can then be calculated from this output
stream by applying further aggregate operators. For example, the average elapsed times and
maximum service times at Server 1 can be obtained with:

-19-

avg{ elapsed tlmaes(serverl, flile_terms(’/serverl.trace’)))
max({ servica times(serverl, flle terms(/serverl.trace’)) }.

-20-

4. Pattern Matching against Streams

In the section above we illustrated how Log(F) makes a fine language for expressing transduc-
tions of streams. In this section we show how, when extended slightly, it also makes a fine
language for pattern matching against streams.

4.1. Detecting Patterns With Transducers
It is not difficult to write transducers that detect patterns. For example, the transducer

tl([net failure|S]) => t2(S5).
t2 ([net_fallure|S]) => t2(8).
t2(8) => t3(s).
t3([cpu_failure|S]) => §.

successfully recognizes all streams containing sequences of one or more copies of net_failure
followed by a cpu_failure. In other words, the t1 transducer implements the regular expres-
sion

{ [nat_failura] +, [cpu_failure])

where ‘+’ is the postfix pattern operator defining the Kleene plus, and ‘,’ defines pattern con-
catentation.

More generally, transducers can implement parsers. Pattern matching of arbitrary computa-
tional power is possible even with deterministic (non-backtracking) transducers if they are not
restricted in the state information they can maintain.

4.2, Specifying Patterns With Functional Grammars

Unfortunately, writing transducers to recognize such patterns is clumsy. The approach taken in
Tangram is to let users specify patterns with grammars, which are compiled into transducers like
the one above. Moreover, users can express their patterns using a library of grammars. For
example, regular expressions and, more generally, path expressions, can be easily defined with
grammar rules something like the following:

(X+) => X,

(X+) => (X, (X+4)).

(X*) => [].

(X*) => (X, (X*)).

(X:;Y) => X,

(X;Y) => ¥,

(X,Y) => append(X,Y).
skipto(X) => X,

skipto(X) => ([_],skipto(X)).

These Log(F) rules behave just like the context free grammar rules they resemble.
In TSP, pattern matching is signalled explicitly with the match transducer, which takes its first

argument a functional grammar term describing the starting symbol(s) of some grammar used
for the match, and as its second argument a Log(F) term that produces a stream. For example,

221 -

match ()
{ [net_failura] +, [cpu_failure] },
tr{file terms(’'net.traffic.87.10.1%"))
)

matches the pattern we just defined to the result of transducing the file
‘net.traffic.87.10.19' into a stream of event types, as done in section 3.1.

The rules for pattern matching are very simple. The entire definition is as follows:

match([],8) => §.
match([X|L], [X|8]) => match{(L,S).

With this definition, we can immediately define grammars using rewrite rules. We call these
resulting rules a functional grammar.

The match transducer can be thought of as applying a grammar to a stream, in an attempt to find
a prefix of the stream that the grammar can generate. There is a certain elegance to this; the
rules of the grammar by themselves act as pattern generators, but when applied with the match
transducer they act like a parser. This acceptance/generation duality is familiar to users of
definite clause grammars, and the ability to use grammars both as acceptors and as generators
has a number of uses. One interesting use is in communications protocol testing [21].

Functional grammars in TSP relax the Log(F) variable restrictions to obtain the full power of
Prolog’s backtracking and unification. That is, they include arguments to rewrite rules which are
used not strictly as inputs, but as grammar outputs. This technique is widely practiced in writing
Definite Clause Grammars (DCGs) [43] in Prolog systems.

4.3. Sample Functional Grammars

Suppose we wish to count the number of times one or more network failures were followed by a
cpu failure. That is, we want to count the occurrences of a specific pattern in the input stream.
We can use the pattern:

number(([net_failure] +, [cpu_failure]), Total)
where we include the following grammar for number:

numbaer (Pattern, Total) => number (Pattern, Total, 0).

nunmber (Pattexrn,Total, Total) => [and _of file].

nunber (Pattern, Total,Count) => skipto{(Pattern), {Countl is Count+1l},
nunber (Pattern, Total, Countl) .

Here the variable Total is used to return output values, and the pattern {Countl is Count+1}
defines Prolog code to be executed immediately without disturbing the input stream. The
numbar transducer counts all occurrences of Pattern that it finds, possibly skipping over parts
of the input stream in its search.

Functional grammars differ from DCGs in several important ways.

-22.

(1) Functional grammars are higher-order, i.e., patterns to be matched can be passed as argu-
ments. For example, in the grammar above Pattern is an argument and can be instan-
tiated as anything.

(2) Pattern matching can proceed lazily.

(3) DCGs are defined by a translation to Prolog that serves as an implementation. Functional
grammars can be compiled into lower-level implementations, possibly not in Prolog. Sim-
ple patterns should execute very quickly against streams. We discuss implementation
below.

Just as it is possible to define aggregate computations with the stream transduction part of TSP,
it is also possible to do aggregate computation in pattern matching, For example:

count (Rasult) => count (Rasult,0).
count (Result,Result) => [end of_ file].
count (Result,Count) => [_], {NewCount is Count+l}, count (Result,NewCount),.

sum(Result) => sum(Result,0).
sum (Result,Rasult) => [end_of filae].
sum(Result,Current) => [Value], {Sum is Current+vValue}, sum(Result, Sum),

avg (Rasult) => avg(Result,0,0).
avg (Rasult,N,S) => [end of fila], {S = 0 -> Rasult is 0 ; Result is S/N}.
avg (Result,N,S8) => [V], {NewS is S+V,NewN is N+l), avg(Rasult, NewN,6 NawS).

These aggregates could be used in larger patterns that match certain values (counts, totals, aver-
ages, etc.) derived from an input stream with grammar parameter values.

In addition to the above, we can do much more sophisticated parsing of the input. We believe
that grammars have an important role to fill in translation among output formats of different
tools. For example, below is part of a grammar which parses version 2.0 PAWS output files.
These files, which normally must be gone through by hand, a time-consuming and error-prone
task, can be translated automatically to a format amenable to stream analysis.

-23-

output (H,NR,Q8) m=>
haader {H},
nodaRasults (NR) ,
quaneingStatistias (Q8).

header (run (NEvents, Batchilunber , BatchDuration, BatchitartTime, CurrentPinel) =>
"NOMBER OF EVEMTS:", numaric (NEventas),
“BATCHE NUMBER:", numeric(BatchNumber),
"BATCH DURATION:", numeric{SatchDuration),
"BATCH STARTED AT:“, numeric(BatchBtartTima),
“CURRENT TIME:", numaric{CurrentTime).

nodeResults ([Node|OtherNcdes]) => nodafiasult (Node), nodaRasults {OtherNodas) .,
nodeResults ({]} => [].

nodeResult (node (Name, Catl,Cat2)) =>
"MODE:", pame (Name), aategory(Catl}, catsgory (Cat2).

aategory (cat (Catagory, ThruputRate, ThruputCount, InputRate, InputCount)) =»
“CAT:", nama(Category), numeric(ThruputRate), numaric(ThruputCount),
"an . pumeric (InputRatae), nuseric(InputCount) .

queuvsingStatistios([QueuelingStat {OtherStats]) =>
queusingStatist 1o (Queveingstat),
quevelingstatist ias {OtherStats) .

queusingstatistica{ []) = [].

queveingstatistic{ stats (Mame,
quauelength (IMasn, Liscondicmant , LVariance, LBt ddav),
queusingtima (TMean, *Secondiomant, TVariance, To tddev)
)
} =>
“QUEUE AT NCDE:", naue (Namae},
“QUEUE-LENGTH", sussaty (IMean, Lfscondéoment , LVariance, LEtddev),
"QUEUEING-TIME", summary(TMean,TSecondioment,TVariance, TStdder).

summary (Mean, S« oondMomant, Variance, Stddev) =>
*SUMMARY",
"MEAN:", numeric(Mean), “2¥D MOMENT:*, numeric(SecondMoment),
"VAR:", numeric({Variance}, "STHDRD DEV:*, numeric(Btddav).

Here we are taking advantage of the fact strings like "NUMBER oF EVENTS:" are represented as
lists in Prolog, and hence the definition of match above is sufficient for this grammar to work.

4.4, Implementation

The main issue of implementation here is finding a way to compile functional grammars and
match into efficient transducers. This subject goes beyond the scope of this paper, but it is
important to notice that a translation like that of DCGs is often possible. For example, the
definition

netcrash => { [net_failure] +, [cpu_failure]).

can be compiled to

.24 -

match (netcrash, S) => t1(8).
tl{[net_failure}s]) => t2(s).
t2([fnet_fallura|S]) => t2(S).
t2(s) => t3(8).
t3({cpu_failura|8]) => 8§,

The point is not so much that functional grammars execute correctly (although they do), but that
they can be compiled to something that runs as a transducer.

Characterizing the efficiency of these transducers is important. Not surprisingly, deterministic
tail-recursive grammar rules which do not construct large structures for their state can be com-
piled to efficient transducers. These grammars are much like classical right linear regular gram-
mars, and like DCGs that are actually written in practice.

_25.-

5. Conclusions

The goal of the Tangram project is to provide a powerful environment for modeling. Probably
the most challenging aspect of this goal is in supporting exploratory data analysis in a way that
has not been accomplished before. Not only is it necessary to support an increase in the quantity
of data that can be effectively analyzed, but also to support analysis of symbolic and structured
data.

This paper has introduced TSP, the Tangram Stream Processor. TSP rests on Log(F), an elegant
rewrite-rule extension of Prolog that provides functional programming and lazy evaluation.
Stream processing is straightforward to implement in functional systems with lazy evaluation.

As illustrated with a sequence of examples, TSP provides a simple yet effective way to integrate
the symbolic processing power of Prolog and the raw data management power of databases
through streams. A stream connection between these two highly evolved systems is a natural
approach for applications like analysis of modeling data.

A great deal of work remains in exploring the performance options in this stream connection. A
major concern is query optimization, i.e., determination of an execution plan for a query that is
computationally more efficient if one exists. When expressed as a problem of optimizing a com-
bination of transducers on streams, the optimization problem has very interesting structure. It
seems likely that program transformation techniques can be applied in both a theoretically chal-
lenging and computationally useful way.

For example, for some transducers it is easy to establish basic algebraic properties (associativity,
commutativity, distributivity) [47] and the less-widely used property of order preservation. If
S1 and S are stably sorted, we say f is order preserving iff

sort(f(S1,82)) = flsort(S),s0rt(S2)).

Order preservation is extremely important because most stream operations require input streams
to be sorted for efficient processing. If we know in advance that some operations are order
preserving, we can eliminate some redundant sort operations. Consider the stream expression

sort((sort(Sl) v sort(S2)) u sort(s$3)).
Since U has the order preservation property, an equivalent expression is
{sort (S1) U sort(82)) u sort(S3}.
The savings will be significant when the input streams are large.

This query can be optimized still further when we know more about the size of the streams. By
associativity and commutativity, we can rearrange the query to perform union operation in
ascending order of the length of the input streams. A well known theorem on optimal merge pat-
terns [22] states that this will be most efficient.

In the past, query languages have been limited to the scope and flexibility foreseen by their
designers. We have now reached a period where applications such as modeling and temporal
data processing demand flexibility and expressiveness above all else. At the same time, it is

-26 -

important that a query language introduce some structure, or paradigm, that helps it maintain
coherence in the user’s mind. Stream processing with transducers is one possible paradigm.
Clearly there is much more work to be done here, but the Tangram Stream Processor is a step in
the direction of extensible, more expressive query processing systems.

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

Abelson, H. and G. Sussman, The Structure and Analysis of Computer Programs, pp. 242-
292, MIT Press, Boston, MA, 1985.

Adiba, M. and N.B. Quang, ‘‘Historical Multimedia Databases,’’ Proc. Twelfth Intnl. Conf.
on Very Large Data Bases, pp. 63-70, Kyoto, Japan, 1986.

Allen, J.F,, ““Maintaining Knowledge about Temporal Intervals,”” CACM, vol. 26, no. 11,
pp. 832-843, November 1983.

Allen, J.F., “Towards a General Theory of Action and Time,”” Artificial Intelligence, vol.
23, pp. 123-154, 1984,

Bancilhon, F., T. Briggs, S. Khoshafian, and P. Valduriez, ‘‘FAD, a Powerful and Simple
Database Language,’’ Proc. Thirteenth Intnl. Conf. on Very Large Data Bases, Brighton,
England, 1987.

Batory, D.S. and T.Y. Leung, ‘‘Implementation Concepts for an Extensible Data Model and
Data Language,’’ Tech. Report TR-86-24, Dept. of Computer Sciences, Univ. of Texas at
Austin, Austin, TX 78712, 1986.

Batory, D.S., “*A Molecular Database Systems Technology,”” Tech. Report TR-87-23,
Dept. of Computer Sciences, Univ. of Texas at Austin, Austin, TX 78712, 1987.

Batory, D.S., T.Y. Leung, and T. Wise, ‘‘Implementation Concepts For an Extensible Data
Model and Data Language,”” ACM Trans. Database Systems, to appear.

Becker, R.A. and J.M. Chambers, S: An Interactive Environment for Data Analysis and
Graphics, Wadsworth, Inc., Belmont, CA, 1984,

Beeri, C,, 8. Nagvi, R. Ramakrishnan, O. Shmueli, and S. Tsur, ‘‘Sets and Negation in a
Logic Database Language (LDL1),”” Proc. Sixth ACM Symp. on Principles of Database
Systems, pp. 21-37, San Diego, March 1987.

Ben-Zvi, J., ““The Time Relational Model,”” Ph.D. Dissertation, UCLA Computer Science
Dept., Los Angeles, CA 90024-1596, 1982.

Berson, §., E. de Souza e Silva, and R.R. Muntz, ‘‘An Object-Oriented Methodology for
the Specification of Markov Models,”” Technical Report CSD-870030, UCLA Computer
Science Dept., Los Angeles, CA 90024-1596, July 1987.

Bic, L. and R.L. Hartmann, ‘‘AGM: A Dataflow Database Machine,’’ Technical Report,
Dept. of Information and Computer Science, Univ. of California at Irvine, February 1987.

Bobrow, D.G., “‘If Prolog is the Answer, What is the Question?,"’ Proc. Intnl. Conf. on
Fifth Generation Computer Systems, pp. 138-145, ICOT, Tokyo, November 1984.

Bolour, A, T.L. Anderson, L.J. Dekeyser, and H.K.T. Wong, ‘‘The Role of Time in Infor-
mation Processing,”” ACM SIGMOD Record, vol. 12, no. 3, pp. 27-50, 1982.

Clark, K. and S. Gregory, ‘‘Notes on the Implementation of PARLOG,”’ J. Logic Program-
ming, vol. 2, no. 1, pp. 17-42, 1985.

17.

18.

19.

20.

21,

22,

23.

24,

25.

26.

27.

28.

29,

30.

3L

32.

33.

34.

227 -

Clifford, J. and D.S. Warren, ‘‘Formal Semantics for Time in Databases,”” ACM Transac-
tions on Database Systems, vol. §, no. 2, pp. 214-254, June 1983,

Dean, T.L. and D.V. McDermott, ‘“Temporal Data Base Management,”’ Artificial Intelli-
gence, vol. 32, pp. 1-55, 1987.

DeGroot, D. and G. Lindstrom, Logic Programming: Functions, Relations, and Equations,
Prentice-Hall, 1986.

Golshani, F., ““The Basis of a Dataflow Model for Query Processing,”” Proc. Eighteenth
HICSS, Honolulu, January 1985.

Gorlick, M.D., C. Kesselman, D. Marotta, and D.S. Parker, ‘‘Mockingbird: A Logical
Methodology for Testing,”’ Technical Report, The Aerospace Corporation, P.Q. Box
92957, Los Angeles, CA 90009-2957, May 1987. To appear, Journal of Logic Program-
ming, 1988.

Horowitz, E. and S. Sahni, Fundamentals of Computer Algorithms, Computer Science
Press, Potomac, MD, 1978.

Kahn, K., *‘A Primitive for the Control of Logic Programs,’”” Proc. Symp. on Logic Pro-
gramming, pp. 242-251, IEEE Computer Society, Atlantic City, 1984,

Kowalski, R.A., ‘‘Database Updates in the Event Calculus,’”” Research Report 86/12,
Department of Computing, Imperial College, London, 1986.

LeDoux, C.H., *“A Knowledge-Based System for Debugging Concurrent Software,”’
Technical Report CSD-860060 (Ph.D. Dissertation), UCLA Computer Science Dept., Los
Angeles, CA 90024-1596, March 1986.

Lee, R.M., H. Coelho, and J.C. Cotta, ‘‘Temporal Inferencing On Administrative Data-
bases,”’ Information Systems, vol. 10, no. 2, pp. 197-206, 1985.

Lindstrom, G. and P. Panangaden, ‘‘Stream-Based Execution of Logic Programs,”’ Proc.
Symp. on Logic Programming, pp. 168-176, IEEE Computer Society, Atlantic City, 1984.
Li, P-Y.P. and A.J. Martin, *‘The Sync Model: A Parallel Execution Method for Logic Pro-
gramming,”’ Proc. Symp. on Logic Programming, pp. 223-234, IEEE Computer Society,
Salt Lake City, 1986.

Lum, V., P. Dadam, R. Erbe, J. Guenauer, P. Pistor, G. Walch, H. Werner, and J. Woodfill,
‘‘Designing DBMS Support for the Temporal Dimension,’” Proc. ACM SIGMOD Confer-
ence on Management of Data, pp. 115-130, June 1984,

McCrosky, C.D., J.J. Glasgow, and M.A. Jenkins, ‘‘Nial: A Candidate Language for Fifth
Generation Computer Systems,’’ Proc. ACM’84 Annual Conference, pp. 157-166, San
Francisco, October 1984.

More, T., “*‘Axioms and Theorems for a Theory of Arrays,”’ IBM J. Res. Develop, vol. 17,
no. 2, pp. 135-175, 1973.

More, T., *‘The Nested Rectangular Array as a Model of Data,”” Proc. APL79, pp. 55-73,
May 1979.

Naish, L., *“All Solutions Predicates in Prolog,”” Proc. Symp. on Logic Programming, pp.
73-77, IEEE Computer Society, Boston, 1985.

Narain, S., ‘A Technique for Doing Lazy Evaluation in Logic,”” J. Logic Programming,
vol. 3, no. 3, pp. 259-276, October 1986.

35.

36.

37.

38.

39.

40.

41.

42,

43,

45.

46.

47.

-28 -

Narain, S., “LOG(F): A New Scheme for Integrating Rewrite Rules, Logic Programming
and Lazy Evaluation,” Technical Report CSD-870027, UCLA Computer Science Dept.,
Los Angeles, CA 90024-1596, 1987.

Narain, S., ““LOG(F): An Optimal Combination of Logic Programming, Rewrite Rules and
Lazy Evaluation,”” Ph.D. Dissertation, UCLA Computer Science Dept., Los Angeles, CA
90024-1596, 1988.

Parker, D.S., T. Page, and R.R. Muntz, ‘‘Improving Clause Access in Prolog,”” Technical
Report, UCLA Computer Science Dept., Los Angeles, CA 90024-1596, January 1988,

Sadri, F., ““Three Recent Approaches to Temporal Reasoning,”’ Research Report 86/23,
Department of Computing, Imperial College, London, Nov. 1986.

Segev, A. and A. Shoshani, ‘‘Logical Modelling of Temporal Data,’”” Tech. Rep. LBL-
22636, Computer Science Research Department, Lawrence Berkeley Laboratory, Mar.
1987.

Shoshani, A. and K. Kawagoe, ‘‘Temporal Data Management,” Proc. Twelfth Intnl. Conf.
on Very Large Databases, pp. 79-88, Kyoto, Japan, August 1986.

Snodgrass, R. and S. Gomez, ‘‘Aggregates in the Temporal Query Language TQuel,”
Tech. Rep. TR86-009, Computer Science Dept., Univ. of North Carolina, Chapel Hill,
March 1986.

Snodgrass, R., ‘‘“The Temporal Query Language TQuel,”” ACM Transactions on Database
Systems, vol. 12, no. 2, pp. 247-298, June 1987.

Sterling, L. and E. Shapiro, The Art of Prolog, MIT Press, Cambridge, MA, 1986.

Studer, R., ‘‘Modeling Time Aspects of Information Systems,”” Proc. Second Intnl. Conf.
on Data Engineering, Los Angeles, CA, 1986.

Subrahmanyam, P.A. and J-H. You, ‘‘Conceptual Basis and Evaluation Strategies for
Integrating Functional and Logic Programming,”” Proc. Symp. on Logic Programming, pp.
144-153, IEEE Computer Society, Atlantic City, 1984.

Tsur, S. and C. Zaniolo, “‘LDL: A Logic-Based Data Language,”” Proc. Twelfth Intnl.
Conf. on Very Large Data Bases, pp. 33-41, Kyoto, Japan, 1986.

Ullman, J.D., Principles of Database Systems, 2nd ed., Computer Science Press, Potomac,
MD, 1982,

