SET CONTAINMENT INFERENCE AND SYLLOGISMS

Paolo Atzeni March 1988
D. Stott Parker CSD-880022

Set Containment Inference and Syllogisms T

Paolo Atzeni
TASI-CNR, Viale Manzoni 30, 00185 Roma, ITALY

D. Stott Parker
UCLA Computer Science Dept., Los Angeles, CA, USA 90024-1596

ABSTRACT

Type hierarchies and type inclusion (isq) inference are now standard in many
knowledge representation schemes. In this paper, we show how to determine
consistency and inference for collections of statements of the form

mammal isa vertebrate.

These containment statements relate the contents of two sets (or types). The work
here is new in permitting statements with negative information: disjointness of sets, or
non-inclusion of sets. For example, we permit the following statements also:

mammal isa non(reptile)
non(vertebrate) isa non(mammal)
not(reptile isa amphibian)

Binary containment inference is the problem of determining the consequences of
positive constraints P and negative constraints not(P} on sets, where positive
constraints have the form P: X < Y. Negations of these constraints therefore have
the form not(P); X M non(Y) # J, so positive constraints assert containment
relations among sets, and negative constraints assert that two sets have a non-empty
intersection.

We show binary containment inference is solved by rules essentially equivalent to
Aristotle’s Syllogisms. Necessary and sufficient conditions for consistency, as well as
sound and complete sets of inference rules, are presented for binary containment. The
sets of inference rules are compact, and lead to polynomial-time inference algorithms,
so permitting negative constraints does not result in intractability for this problem.

t Revision of UCLA Computer Science Department Technical Report CSD-860012, December 1986.
Revised July 1987. To appear, Theoretical Computer Science.

Appendix I: NP-Completeness of the Set Containment Problem .

CONTENTS

Introduction

Syllogisms .

. Terminology

3.1 The Set Contamment Problem

3.2 Containment Inference .

3.3 Triviality in Containment Schemes
3.4 Unsatisfiable Containment Schemes .

Set Containment Inference
4.1 Inference Rules .
4.2 Assignment Extension Algonthm

5. Positive Binary Containment
6.
7
8

General Binary Containment

. Syllogisms«

. Concluding Remarks

Appendix II: Completeness Results for Binary Containment .

Acknowledgement

References .

1. Introduction

Before plunging into a formal presentation, let us explain why set containment
inference is interesting. We are concerned with exploring inference properties of
collections of statements like X isa Y, where X and Y are rypes. For example, we can
assert

mammal isa vertebrate
reptile isa vertebrate.

Intuitively, types represent sets of individuals, and isa represents containment among
sets. Statements of this kind form an interesting class of constraints for real
knowledge representation problems, since it permits declaration of containment
relationships among types. ‘Taxonomic’ knowledge of this kind is (apparently) basic
to human intelligence.

This paper departs from previous work by permitting negation in two ways:

« First, we let X and Y represent complements of types. For example, we permit
statements of the form

mammal isa non(reptile)

where non(reptile) represents the complement of the type reptile. This statement
asserts that mammals are disjoint from reptiles.

« Second, we allow negative statements to be made. For example, we permit
statements like

not(reptile isa amphibian)

which asserts that a reptile is not a type of amphibian, or equivalently, that reptile
must intersect with non(amphibian). In other words, some non-amphibian reptiles
exist.

For example, with these containment statements we can express the following facts
about computer components:

heat_sensitive_device isa component

axial_lead_device isa component
resistor isa axial_lead_device
resistor isa non(hear_sensitive_device)
half_watrt_resistor isa resistor
diode isa heat_sensitive_device
diode isa axial_lead_device
microprocessor isa heat_sensitive_device
microprocessor isa non(axial_lead_device)
not(hear_sensitive_device isq non(axial_lead_device))
not{ axial_lead_device isa non(hkeat_sensitive_device)).

The last two staternents say the same thing; namely, that the heat_sensitive_device and
axial_lead_device types intersect. For example, diodes are in their intersection.

However, neither of these two types is contained in the other, since there are subtypes
(resistors and microprocessors) that are contained in one but not the other.

We are interested in developing inference systems for type containment statements.
The examples above are assertions that we would like to be able to store in a
knowledge base and derive inferences from. For example, we would like to be able to
ask

Is half_watt_resistor a heat_sensitive_device ?

and have a system correctly infer that the answer is NO. In general we wish to be
able to make queries of the forms

X isa Y?
not(X isa Y)?

We call this problem the Binary Containment Inference Problem, a special case of a
general containment inference problem permitting inclusion statements (and their
negations) involving more than two types. It is a limited fragment of set theory of
practical use.

An initial purpose of this paper was to investigate how negation affects inference in
specific knowledge domains. In [3] we discussed a restricted positive version of the
binary containment inference problem. Generally, of course, permitting negation
causes inference to become computationally intractable; combinatorial explosions arise
as soon as a negation operator is introduced. We were pleased to discover that, for the
binary containment problem, negation does not result in intractability. Thus binary
containment assertions are at the same time expressive, yet not general enough a
fragment of set theory to cause complexity problems. O(r®) time, where n is the
number of types, is easily sufficient to resolve binary containment queries.

The emphasis of this paper is on developing effective systems of inference rules for the
binary containment problem. We consider first degeneracy properties (inconsistency,
unsatisfiability, triviality) then identify sets of rules for specific subproblems.

Syllogisms turn out to be essentially the rules we need here. There are 24 valid
syllogisms. These rules have been used for millenia, and were actually held as
synonymous with the word logic until the mid-nineteenth century after the work of
George Boole. While syllogisms were discarded eventually as being ‘less general’
than boolean logic, they clearly fit here naturally.

A great deal of related work has appeared in different fields, from cognitive science
[8] to database theory [1,5,9,15] to knowledge representation [2,4,11,12,13,14]. It
is probable that all results in this paper have been discovered by other researchers at
one time or another, in one form or another. After all, syllogisms and binary
containment inference have been studied over centuries. However we are not aware of
a reference covering the results here. Of the references just mentioned, the OMEGA
system of Attardi and Simi [2] is the most similar in approach, and in fact produces
some of the isa inference rules given here, but does not restrict itself to the binary
containment problem or even to first-order logic. We were motivated by studying

existing knowledge representation systems, which uniformly lacked ability to perform
binary containment inference.

We could focus exclusively on logic when studying containment inference, by
expressing the problem in monadic predicate logic and then applying, say, resolution
proof techniques. The approach of this paper is broader, developing several formal
systems to handle containment inference problems. This approach has certain benefits.
First, it clarifies the model theory of the binary set containment problem, the problem’s
relationship to syllogisms, and identifies degenerate cases of constraints precisely.
Second, it shows how the twenty-four Aristotelian syllogisms can be compressed into a
few rules. Third, it sets the foundation for fast inference algorithms. Finally, it
permits generalization to formal systems handling more complex types of ‘syllogisms’.
For example, DeMorgan studied six different kinds of syllogisms [6], including
‘numerical’ syllogisms such as

100 Y’s exist
70 X’s are ¥'s
40 Z’s are Y's

at least 10 X’s are Z’s.

The paper shows how syllogisms correspond to a subset of modern logic that is useful
in knowledge representation. The connection between sets, logic, syllogisms, and
human intelligence is fascinating, and deserves further investigation.

This paper is organized as follows. In Section 2, we review work on syllogisms and
discuss notational conventions to be used in the paper. Section 3 presents terminology
and inference rules used in set containment inference, and investigates degenerate
containment schemes. Groundwork for subsequent results showing how models of
non-degenerate containment schemes can be constructed is presented in Section 4.
Sections 5 and 6 then show that these rules are sound and complete, and finally
Section 7 relates these results to syllogisms.

2. Syllogisms

Aristotle apparently defined a syllogism to be any valid inference [6], but concentrated
on inferences that can be made from four kinds of propositions:

Every Sis P

No Sis P (i.e., Every § is not P)
Some S is P

Some § is not P

A syllogism is composed of three propositions involving three fypes S, M, and P,
representing respectively its ‘Subject’, ‘Middle’, and ‘Predicate’. For example, the
following is a syllogism:

Major premise: every Pis M
Minor premise: some S is not M

Conclusion: some S is not P

Since the conclusion always involves the subject and predicate, while the premises use
the middle type M in 4 nontrivial ways (called ‘figures’ by Aristotle, although he
developed only the first 3 figures shown below), there are a total of 4x4x4x4 =256
possible syllogisms, of which 24 are valid. These 24 are listed below, divided into the
four figures:

Sil: every § s P if every M s P and every § is M.

S$12: some § is P if every M is P and every § is M.oo»
S13: some S is P i every M is P and some § is M.
S14; every S isnot P if every M ismot P and every S is M.
$15: some S isnot P i every M isnot P and every S is M. *
S16: some § ismot P if every M ispot P and some § s M.
S2t: every S isnot P if every P isnot M and every § @ is M.
522: some § isnot P if every P isnot M and every § is M.»
S523: some § isnot P f every P isnmot M and seme § i M.
S24: every § isnot P if every P s M and every S isnot M
§25; some § ismot P f every P s M and every S isnmot M. *
§26;: some § isnot P every P s M and some § isnot M.
§31: some § i P if every M s P and every M is 5.
§32: some S i P it every M is P and some M is §.

S$33: some § is P i some M s P and every M is S.

§34: some S§ isnot P if every M isnot P and every M is S. »
§35: some § isnot P i every M isnot P and some M is 5.

S$36: some S isnot P i some M isnot P and every M is S.

S41: every S isnot P if every P is M and every M isnot §.

S42: some S ismot P if every P is M and every M isnot 5.

$43: some § isnot P if every P ismot M and every M is S.

$44: some § isnot P If every P ismot M and some M s S.

§45. some § is Pif every P s M and every M is 5. =
S46: some S is P if some P s M and every M is S.

These 24 syllogisms are all valid under the assumption that the sets denoted by the
types S, M, and P are nonempty. If this assumption does not hold, the 9 entries above
marked with stars (*) are invalid. In other words, although we would normally assume

that whenever
every X is ¥
then also
some X is Y,
this inference is invalid when the set denoted by the type X is empty.

The structure of the syllogisms has fascinated philosophers and mathematicians for
millenia. At this point the reader may be asking questions such as:

e Is the set of 24 rules (or 15, eliminating starred ones) complete?
e Is there a more compact presentation of these rules?
e Can the rules be used in an efficient inference system?

We answer these questions later in the paper.

Some readers will have noticed that syllogisms involve containment propositions.
Specifically, if X and Y are types denoting sets, and non(Y) is a type denoting the set
complement of ¥ with respect to some (unspecified) universe:

every XisY = XY

some XisY = XnNnY=zQ@
notevery XisY = Xnnnon()=J
not some XisY = X g non(Y)

This collection of syllogistic propositions is thus equivalent to the binary propositions
one can make up with the standard set predicates < and M=, In an effort to follow
[3], as well as simplify notation (n=@ is tedious to write), we define the following
two predicates and use them for the remainder of the paper:

Definition

(X isa Y) if the set denoted by X is a subset of the set denoted by Y.

Definition
(X int Y) if the set denoted by X intersects the set denoted by Y. The intersection
must be nonempty.
Remark
XintY = not(X isa_ non(Y)).

3. Terminology
3.1 The Set Containment Problem

Our goal in this section is to set up a framework for expressing containment problems.
We differentiate between the scheme of a containment problem, and its interpretations
(and models). The scheme specifies the structure of the problem, while interpretations
of the scheme give specific instances of objects in the types in the scheme.

Definition

A type scheme T/U is a collection of zype symbols {U, Ty, ..., T,). The type
symbol U is a special symbol and is called the universe of the type scheme.

Each type symbol T; will denote a subset of U. The universe symbol U is needed in
order to define what we mean by complements non(7;) of types:

Definition

A type term X of a type scheme T/U is either
1. a type symbol T; or U.
2. non(Y), where Y is a type term of T/U.

Definition

An assignment I of a type scheme T/U is a map associating to each type term X a
possibly empty subset of a finite domain D, subject to the following restrictions:

1. {(U) = D

2. 1X) ¢ D

3. I(non(non(X))) = I(X)
4. ImonX)) n IX) = &.

An interpretation I is an assignment that satisfies the following additional
restriction, where ‘-’ represents set difference:
5. I(X) = IU) -~ I(non(X)).

In other words, with an interpretation the type term non(X) denotes the complement
under U of the set denoted by X.

From condition 3 in the definition of assignments, it follows that for every type term
X,

IX) = Imon(non(X))) = I(mon(non(non{non(X))))) =

Therefore, it is possible to consider equivalence classes of type terms under this
identity.

Definition

A 1ype descriptor of the type scheme T/U = (UTy,T,} is an equivalence class

{X, non(non(X})), non(non(non(non(X)))), - -}

where X is a type term of the form S or non(S), and S is a type symbol in T/U. It
is designated by any element of the class, but usually by X.

The type scheme T/U therefore has the type descriptors
U, non(U), T}, non(T,) , ..., T,, non(T)).

Definition

A type descriptor X is trivial in interpretation [if I(X) = &.
The trivial interpretation I assigns I(X) = & for every type descriptor X. That is,
an interpretation is trivial if and only if its associated domain is empty.

Definition
A positive constraint, ot isa constraint, P has the form
P: Xjn - NnX, isa Y/U - UY,
where each X;, 1 <j <p, and each Y, 1 £k < g, is a type descriptor,

The constraint is satisfied by the interpretation [if

Xpn - nIX) © XU - VIE.

Definition

A negative consiraint, or intersection constraint, has the form not(P), where P is a
positive constraint, It is satisfied iff P is not.

Note that the positive constraint P above is satisfied by the interpretation 7 iff
ImonX) v -+ VimonXy) v Y)Yy - VIY) = KU)
or, equivalently,
IX)n - NIX) N Imon(Yy)) N - -+ Ni(non(Y)) = %]
so the negative constraint not(P) is equivalent to
IXpn - nIX) nimon(Y) n -+ - nilnon(Yy) = 2]

In other words, positive constraints make assertions about inclusions among types,
while negative constraints make assertions about intersections among types.

Definition

A containment constraint is a positive constraint or negative constraint.
Definition

A containment scheme is a pair S = (T/U,C) where U is a universe symbol, T/U is
a type scheme {U, Ty, ..., T,}), and C is a set of containment constraints on type
descriptors in T/U.

Definition

A model of a containment scheme (T/U,C) is an interpretation [of T/U that
satisfies all constraints in C.

Containment constraints can be ‘degenerate’. Consider the three constraints below:

1. X isa non(X).
2. non(X) isa X.
3. not(X isa X).

The first constraint is satisfied only when X denotes &. Similarly, the second is
satisfied only when non(X) denotes &, so X denotes the same set as U. The first two
constraints together can be satisfied only when both X and U denote ©. In other
words, the first two constraints together imply that there can be only one model: the
trivial one.

The third constraint is the negation of (X isa X), which is true of every interpretation
for X. Thus, any scheme with the third constraint can satisfy no interpretation, and
will have no model.

Definition

A containment scheme is unsatisfiable if it has no model; otherwise it is satisfiable.

Now consider the following general problem:
Set Containment Problem

Input: a containment scheme (T7U,C), where C is a collection {Clj=1,m} of
containment constraints on the type descriptors of T/U.

Question: Is the containment scheme satisfiable? That is, is there an interpretation
for T/U that satisfies each constraint C; in C?

Not surprisingly, the set containment problem is NP-complete in general. This is
shown in Appendix I. However, in the special case where all constraints are positive,
the set containment problem is always satisfiable. Specifically, the trivial interpretation
(in which I(U) = @) is always a model satisfying C.

In this paper we are interested only in the special case p = ¢ = 1, where all constraints
are binary. This restricted version is called the Binary Set Containment Problem. In
this case negative constraints specify binary, non-empty intersections. Therefore, as
we noted in Section 2, we can express them as intersection constraints: not(X isa ¥)

- 10 -

becomes (X int non(Y)). In the remainder of the paper we first consider the special
case where all binary constraints are positive, then study the general binary
containment problem.

Example

Consider the containment scheme
S = ({pacifist, quaker, republican}/U, C)
where the constraint set C is:

republican isa non(pacifist)
republican int quaker
quaker isa pacifist.

The binary set containment problem for this scheme is to determine whether it is
satisfiable or not. It turns out this scheme is unsatisfiable.

3.2 Containment Inference

We recall some terminology concerning inference rules. The reader unfamiliar with
this material may wish to consult texts in database theory, such as [10] and [16]. We
remind the reader that classes of constraints studied in database theory do not involve
negation, for the most part. That is, collections of data dependencies (functional
dependencies, inclusion dependencies, etc.) do not imply that a specific data
dependency does nor hold, but only that one does hold. These systems are always
satisfiable. Unsatisfiability can occur with containment, as we have already seen.
Therefore, the inference problem here is somewhat different than in these texts.

Implication and inference are important concepts in dealing with constraints of the
general kind proposed here. If we are given a set of constraints, we are frequently
interested in deducing whether other constraints must alse hold.

A constraint ¢ is implied by a set of constraints C on a scheme § if it holds in all
models of S. Given C and c, the inference problem is to tell whether C implies c.
Algorithms for the solution of the inference problem (called inference algorithms) have
correctness proofs that are usually based on sound and complete sets of inference
rules.

Definition
C k cif C implies ¢ (that is, ¢ must hold in every model of C).

If C is unsatisfiable, then C has no models, and the definition of becomes vacuous.
Thus if C is unsatisfiable, then C [¢ for every constraint c.

S 11 -

Set Containment Inference Problem
Input: a containment scheme (T/U,C), and a constraint c.
Question: Is it true that C E ¢?

This problem can be reduced to the complement of the Set Containment Problem
mentioned earlier simply by determining unsatisfiability of the scheme with constraints
C v {not (c)}.

Theorem 1
CEc iff Cu {not (c)} is unsatisfiable.

Proof

If C k= ¢ then every model of C satisfies ¢, and so does not satisfy not(c). Hence
C v {not (¢)} has no model.

Conversely, suppose C U {not (¢)} is unsatisfiable. If C is unsatisfiable, then
C kE ¢ holds trivially. If C is satisfiable, then none of its models will satisfy not(c),
implying that all models satisfy ¢. Again, C Fc¢. D

3.3 Triviality in Containment Schemes

We can show that a type X is trivial in every model of a scheme if, and only if, the
scheme implies X isa non(X). Moreover, a satisfiable scheme has only the trivial
model if, and only if, for some type descriptor X we can infer both X isa non(X) and
non(X) isa X.

Theorem 2,
A type descriptor X is trivial in every model of C iff C F (X isa non(X)).

Proof

If C E (X isa non{X)), then (X isa non(X)) is satisfied in every model of C. Thus
X is trivial in every model. Conversely, if X is trivial in every model of C then
(X isa non(X)) is satisfied in every model, and so C F (X isa non(X)). O

A corollary of Theorem 2 is that a pair of constraints

X isa non(X)
non{X) isa X

must be implied by any scheme with only the trivial model. (U, and consequently
both X and non(X), must denote &.)

3.4 Unsatisfiable Containment Schemes

We showed earlier that containment constraints can actually be unsatisfiable, giving as
an example not(X isa X). In fact, this constraint is not only sufficient for

12 -

unsatisfiability, it is also necessary:

Theorem 3.
A containment scheme (T/U,C) is unsatisfiable iff for some X, C k (X inf non(X)).

Proof

The constraint (X int non(X)) has no model for any X. Therefore if the scheme is
satisfiable, we cannot have C E (X int non(X)) for any X. Conversely, if the
scheme is unsatisfiable then the definition of | becomes vacuous and C implies
every constraint, so C | (X int non(X)) for some X. O

- 13 -

4. Set Containment Inference
4.1 Inference Rules
Definition

An inference rule R, written R. A |- a, is a rule asserting that the constraint ¢ holds
whenever the set of constraints A holds.

We define the following inference rules, where X, ¥, and Z represent arbitrary type
descriptors:

INTO. XimtYFXint U

INTI. XintY}lXint X.

INT2. XimYFYintX.

INT3. XimY,YisaZ} Xint Z.
INCO. Xintnon(X) Y isa Z.
INCI1. XintnonX) F Y int Z.
ISAQ. b X isa U.

ISAL. F X isa X.

ISA2. XisaY,YisaZ{ X isa Z.
ISA3. X isa Y F non(Y) isa non(X).

TRIVO. XisanonX)| Xisat.

Definition

A substitution 9 is a map from type descriptors to type descriptors. If @ is a
constraint, a6 is the constraint with type descriptors mapped to their corresponding
images under 8. Analogously A0 is the set of images obtained with 6 of the
constraints in A.

Definition

A constraint ¢ can be derived in one step from a set of constraints C if there is a
rule R. A} a, a subset C’ of C, and a substitution 8 such that C* = A6 and

¢ = ab.
Definition

A derivation of ¢ from C is a sequence of constraints ¢y, . . . ,¢, such that ¢ = ¢,
and for each i between 1 and n, ¢; can be derived from Cu {¢;115j= i}in
one step. The inference rules listed above are used in derivations in this paper,
except where explicitly stated otherwise.

Definition

C | ¢ if ¢cisin C, or there is a derivation of ¢ from C.

- 14 -

Theorem 4.
The rules above are sound. That is, if C |- ¢, then also C [¢.
Proof

Omitted. O

It is important to have inference rules that are also complete, i.e., that allow the
derivation of all the constraints ¢ such that C | ¢. Thus, a set of rules is sound and
complete when |- is equivalent to . We show later that the rules above are complete.

Definition

A scheme (T/U,C) is inconsistent if there is a constraint ¢ such that
Ckc and C | not(c).

Otherwise the scheme is consistent.

Example

The constraint set C considered earlier

republican isa non(pacifist)
republican int quaker
quaker isa pacifist

can be shown to be inconsistent with the appropriate inference rules. The inference
rule INT3 gives the derivation

republican int quaker, quaker isa pacifist |- republican int pacifist.
However
republican int pacifist
is equivalent to
not(republican isa non(pacifist)),
contradicting the first constraint in C.

Clearly, an inconsistent scheme is also unsatisfiable. We will see later that the
converse also holds.

4.2 Assignment Extension Algorithm

We give first an algorithm useful in proofs later. It takes as input a containment
scheme (T/U,C), an assignment /, and a constant ¢ (which / may or may not include in
its image, and so may not be in D), and produces an assignment I’ which uses ¢.

At various points the algorithm tests whether C |- ¢, given some C and c. The
Assignment Extension Algorithm therefore requires an algorithm for deciding
implication using the rules. We will show later that efficient algorithms in fact exist,

- 15 -

but for now we require only some algorithm. Since the number of constraints
derivable from a given set of constraints C is finite, brute force repeated application of
rules will suffice here.

Assignment Extension Algorithm

Input:

e a containment scheme (T/U,C), such that C [+ (U isa non(U)),
e an assignment / from type descriptors of T/U to subsets of D,
¢ a symbol ¢ which may or may not be in D.

Qutput:
e an assignment I’ from type descriptors of 7/U to subsets of D U {t}.

The algorithm constructs I” from 7 as follows:

1. Preserve any previous use of 1.
For all X with t already in /(X), set
r'x) = IX) v {1} = IX)
I'(non(X)) = I(mon(X))

Note ¢ cannot be in both /(X) and I(non(X)), for then / would not be an
assignment.

2. Make assignments for trivial types and their complemenis.
For all X (including non(l)) with [I(X) currently undefined and
C | (X isa non(1)), set

I'X) = IX)

I'(non(X)) Imon(X)) U ({1}
We cannot find X at this point such that both X and non(X) are trivial, since
these would imply C b (U isa non(l)).

3. Propagate t through isa constrainls.
For alt X with ¢ in /’(X) at this point, for all Z with I'(Z) undefined such that
C | XisaZ, set

') 2y v {1}
I'(non(2)) I(non(Z))

4. Add t to some type permitting the addition.
If there is no X such that F'(X) is undefined, then halt: I is the completed
assignment.

Otherwise select a ‘minimal’ X such that I'(X) is undefined. We say X is
minimal if there is no nontrivial ¥ such that both C | (YisaX) and
C # (XisaY). Such an X must exist, since otherwise Step 3 would have
already yielded a definition for I'(X). Then set

-16 -

reo Xy v {1}
F(nonX)) = I(non(X)),
and go to Step 3. Step 3 will then propagate definition of /” for supertypes of X.

Clearly this procedure always terminates. Moreover, when it terminates I” is a valid
assignment, defined for all type descriptors X of T/U. In particular for every X, the
algorithm assigns ¢ to either /'(X) or I'(non(X)), since each step assigns ¢ to either one
or the other, and I'(X) is defined exactly once.

The algorithm is not deterministic for some inputs, however. If for example we have a
set of constraints including (x isa z) and (y isa non(z)), and begin the algorithm with a
symbol ¢ and an assignment [such that r e I(x) and f € I(y), then Step 3 of the
algorithm can assign ¢ to either I'(z) or I'(non(z)), depending on order of propagation.

The problem in this example is that C | (x isa non(y)), or equivalently
C - not(x int y), but te (I(x) NI(y)). We can avoid this problem by restricting
ourselves to assignments that respect intersections among types:

Definition

Given a containment scheme (T/U,C), an assignment [respects intersections of C if
VintWye C implies IV)NIW) = &, and CF VisaW) implies
IV) n Inon(W)) = &.

Lemma 1.

Let C B (U isa non(l))), I be an assignment that respects intersections of C, and [” be
the result of applying the Assignment Extension Algorithm to / and symbol ¢. Then I
respects intersections of C, and if C }- (V isa W), then I'(V) N {1} ¢ I'W) n {1}

Proof

For every type descriptor X, the algorithm guarantees that I'(X) 2 I(X). Thus if
Vit Wyisin Cthen IV) " I(W) # D, so ' NTW) # &.

Also if CF (VisaW), then I(V) nInon(W)) = O, so either t& I(V) or
t € I(non(W)). We obtain three cases:

-17 -

te I(V), t& I(non(W))

Here I’(V) is defined to include ¢ in Step 1, and there are three possibilities
for W: First, if t € I(W), then I'(W) is defined to include ¢ in Step 1. Second,
if non(W) is trivial, then Step 2 assigns ¢ to I'(W). Otherwise, I'(W) is
undefined when the algorithm reaches Step 3 for the first time, and 7 is
propagated into I'(W) since C |- (Visa W). Thus in each possibility r'w)
includes ¢ as well, and we are done.

t& I(V), t € Inmon(W))
Here Step 1 assigns ¢ to I'(non(W)), and (similar to the previous case) since
C |- (non(W) isa non(V)) the algorithm also assigns ¢ to I'(non(W)).

& I(V), t& I(non(W))

Also we can assume ¢ € I(non(V)), r ¢ I(W), that V is nontrivial, and that
t e I'(V) at completion of the algorithm, since otherwise the lemma is
vacuously satisfied in Step 1. In this case the algorithm completes Steps 1
and 2 with both F(V) and I'(W) undefined. Now either Step 3 or Step 4
assign t to I'(W), or somehow they assign ¢ to I'(non(W)). This second
possibility cannot arise without violating either that r € I'(V) at completion
of the algorithm, or that V is nontrivial.

In each case we have shown that I'(V) N I'(non(W)) = &, so [’ respects
intersections of C, and also that (V) ~ {t) © I'W) n {r}. O

Theorem 5.

Let (T/U,C) be a containment scheme such that C }¢ (U isa non(L))), and let [be an
assignment with domain D that respects intersections of C. Then the result I* of
accumulative application of the algorithm to /; and the elements of D is a model of C.

Proof

1.

I* is an interpretation. I is an assignment, and we know that when the
algorithm is applied to an assignment / and an element 7, producing the
assignment I, then ¢ belongs to I'(X) w I'(non(X)), for every type descriptor
X. Since the algorithm is applied to all elements of D, an induction
argument shows that r € I*(X) U I*(non(X)), for every ¢ in D and every type
descriptor X.

I* satisfies all intersections in C: If (Vint W) e C since by hypothesis
I(V) N Ij(W) # @, it follows by induction that /*(V) N I*(W) = ©.

I* satisfies the isa constraints in C: this follows from Lemma 1, again by
induction on the cardinality of D, since [, respects intersections of C, and
every assignment produced by the algorithm also respects intersections of C.
Thus if (V isa W) € C then I*(V) N *mon(W)) = & and I*(V) c I*(W).

- 18 -

Example

We show how the Assignment Extension Algorithm can be used accumulatively as
proposed in Theorem 5 to produce a sequence of assignments culminating in a model.

Consider the type scheme § = ({v,w,x,y}/U,C), where C is the set of constraints

v isa x
v isa non(y)
X int Yy

w int non(x)

Noting that this scheme is not inconsistent, define the assignment I as follows: for
each type descriptor X in {non(U),v,non(v),w,non(w),x,non(x),y,non(y)} set

LX) = {(X¥} | CF XinD},
and put
Ly = {xy} | ¢+ &Ximn} = {{xy), (wnon(x) }.

This set of two elements is the domain D. The model constructed for § evolves as
follows, under two applications of the algorithm:

v non(y} w non(w) x non{x) ¥ non(y) u non({)
2 fZ‘ {{w.non{x}}} @ [{=xy}} {{wnon()}} {{xy}} Q {{ziy}{wnon(x)}} @
2 {({zy}{wnon(x)}} | {{wnon(x}}} 2 {{zy}} [{wmon(x)}} {{=o}) 4 {{xy}.{w.non(z)}} @
2 ({xyLiwnonn)]} | {{wmon(a}} {(xy}} [{{x2]] {{wnon(x)}} {{xyi} 2 {{xy},(wnon{x)]} =
@ ({zyl{wnon(x)]} | {[wnon(x)]} {{zy)} | {{xy)} {{wbon@)}) | {{xy}.{w.non(x}] 2 {{z.y}.(w.non(x)}} @

The first sequence is I, an assignment satisfying all intersection constraints implied by
C.

The second sequence shows the assignment created at Step 3 of the Assignment
Extension Algorithm with ¢t = ({xjy}. We have used the facts that
C | (non(x) isa non(v)) and C |- (y isa non(v)).

The third sequence shows the final extension of J; created by the Assignment
Extension Algorithm for ¢ = {x,y}. (Note this is only one possible extension; the type
descriptor non(w) was selected in Step 4 of the algorithm.)

The fourth sequence shows the subsequent assignment obtained from the Assignment
Extension Algorithm for # = {w,non(x)}. (The type descriptor y was selected in Step 4
of the algorithm.) This sequence can be verified to be a model /* of S.

-19 -

Theorem 6.
A containment scheme (T/U,C) is unsatisfiable iff it is inconsistent.

Proof
The if part follows from soundness of the rules.

With respect to the only if part, we show that if a scheme is consistent, then it is
satisfiable. Let (T7U,C) be consistent. If C contains no intersection constraints,
then the trivial interpretation is a model for the scheme, and it is therefore
satisfiable. Otherwise, we claim that (U isa non(l))) is not derivable from C: if it
were derivable, then for any (X int) in C we derive:

(U isa non(U))

XimtY)

(X int X) (from 2, by INT1)

(X isa U) (by ISAQ)

(X isa non(l)) (from 4, 1, by ISA2)
(X int non(1)) (from 3, 5, by INT3)
(non(l) int X) (from 6, by INT2)
(non(l) int U) (from 7, 4, by INT3).

This contradicts our supposed consistency. Therefore the Assignment Extension
Algorithm can be applied to the scheme. Consider the following assignment:

L = (XY} | CF X int 1) }.

The assignment respects the intersection constraints of C: If (Vint W) e C, then
explicitly Io(V) nIgW) # &. Also, if CF (VisaW) then necessarily
Ii(V) o Iyinon(W)) = &; otherwise we would also have (V int non(W)) € C, and
from these two constraints we can derive via ISA3, INT3 that C } (V int non(V)),
so C is inconsistent.

NS AW

Therefore, by Theorem 5, accumulative application of the algorithm to I, produces
a model. Hence the scheme is satisfiable. O

- 20 -

5. Positive Binary Containment

Let us now devote our attention to the containment problem. Consider first the
important special case of the set containment inference problem where all constraints
are of the form

X isaY
with X and Y type descriptors denoting subsets of U.

In [3], a similar problem was studied and solved. A complete set of inference rules is
presented for two containment predicates, isa and dis. The proposition (X isa) states
that the type X denotes a subset of the type Y, while the proposition (X dis Y} states
that X and Y denote disjoint sets. In [3] it is shown that, for arbitrary types X, ¥, Z,
the following rules for isa and dis are sound and complete:

Il. X isa X.

12, XisaY,YisaZ}- X isaZ
Ml. XdisY,ZisaX|FZdisY.
M2. XdisXFXisaY.

DI. XdisX|XdisY.

We can use set complementation to simplify these rules. Since, for example,

XdisY = Xisanon(Y)

|

we can replace the five rules above with

I1. |- X isa X.
12. XisaY,YisaZ} XisaZ.
DI. XisanonX) FX isaY.

provided we let X, ¥, Z be arbitrary type descriptors. In the statements X isa Y, X dis
Y of [3], X is required to be a type symbol (not a type descriptor). Without this
requirement the 5 rules above are incomplete. For example, the rule

XisaY | non(Y) isa non(X)
is not inferrable from the five rules, but is sound.
Consider, then, the following set of rules:

ISAQ. - X isa U.

ISAL. X isa X.

ISA2. XisaY,YisaZF X isaZ
ISA3. X isa Y | non(Y) isa non(X).

TRIVO. Xisanon(X) | X isaY.

Theorem 7.
The set of rules ISAQ-3,TRIVO is sound and complete for positive binary containment
inference. That is, if C contains only positive constraints and |- represents derivability

using these rules, then

221 -

CFXisaY) ffCk X isal).

Proof

With respect to completeness, for each containment scheme S = (T 1U,C), we show
that isa constraints not derivable from C by the rules cannot be implied by C.
Suppose that ¢ = (X isa Y) is a constraint implied by C, but not derivable from the
rules. We construct a counterexample model / satisfying C but violating c.

First note that ¢ cannot be of the forms (X isa U) or (X isa X), since ISAO and
ISA1 preclude these. Also since (X isa ¥) is not derivable from the rules, then
(X isa non(U)) and (X isa non(X)) are not either, for otherwise (X isa ¥) would be
derivable with TRIVO. Finally C B (U isa non(U)), since TRIVO applications
would yield (X isa Y) otherwise.

We construct an assignment [, with domain {z}, as follows:

Iy = {1}
Iy(non(V)) = &
IyX) = {1}
Iy(non(X)) = &
Io(Y) = @

Iy(non(Y)) = {1}
INZ) =& for every Z different from X,Y,U
Iy(non(Z)) = for every Z different from X,Y,U.

I, is an assignment, since it satisfies the definition given in Section 3. Since
C ¥ (U isa non{U)), Theorem 5 then shows how to construct a model /* of C,
since C contains no intersection constraints, and /; respects intersections of C.
Also, I* will not satisfy (X isa Y), since the algorithm used to construct it preserves
any previous use of ¢, and so /*(X) = I*(non(Y)) = {t} and I*(Y) = <. O

6. General Binary Containment

22 -

Recall the set containment rules introduced earlier:

INTO.
INTI.
INT2.
INTS3.

INCO.
INCI.
ISAOQ.
ISAL.
ISA2.
ISA3.

TRIVO.

Theorem 8.

The rules INTO-3,INCO-1,ISA0-3,TRIVQ are sound and complete for general binary

containment inference. That is, if C is set of binary constraints, ¢ is a binary

XimmYEFXim U
XimmYFXintX.
XimYpPYimX.

XimY, YisaZFFXintZ.
X int non(X) Y isa Z.
XintnonX) Y int Z.
FXisaU.

I- X isa X.
XisaY,YisaZ}l X isa Z.
X isa Y }+ non(Y) isa non(X).
XisanonX) X isaY.

constraint, and |- represents derivability using these rules, then

Proof

Because the rules are sound, if C |- ¢ then C E c¢. We must show that if C |+ ¢

then C E c.

Suppose that C #+ ¢. Then C is consistent, since otherwise the inconsistency rules
INC1,INC2 would derive ¢. Now consider ¢’ = C u [not{c)}. By Lemma 2 (in
Appendix II), since C is consistent and C }¢ ¢, then C’ is also consistent.
Therefore by Theorem 6, C’ is satisfiable; but any mode! of C’ satisfies C and does

Chc iff Ckec.

not satisfy ¢, and so C ¥ ¢. O

The rule INTO is redundant. This is shown by the derivation

1, XintY)
2. (YisaU) (byISAQ)

3. X intU) (from 1, 2, by INT3).

However, we keep INTO here for

Corollary 1.

The rules INT0-2,INCO-1 are sound and complete for binary containment inference

with only intersection constraints.

the following reason:

223 -

7. Syllogisms

We show in this section that the 24 syllogisms listed earlier are essentially the rules
we need for general set containment inference. However, although these 24 rules are
elegant, they are also somewhat verbose. We show that we can reduce the syllogism
rules to a set of 5 simple rules (involving really only two basic syllogisms, S11 and
S13). We then show that these 5 rules correspond directly to the sound and complete
inference rules discussed before.

Let X, Y, Z represent arbitrary type descriptors. Consider the following rules:

R1: every Xis Z if everyYisZ and every X is Y,
R2: some Xis Z if everyYisZ and some X is Y.
R3: some X is X.

R4: some X isY if some Y is X.

R5: every X is non(Y) if every Y is non(X).

R1 and R2 are syllogisms mentioned earlier. Rule R3 is equivalent to the assumption
that types are nonempty; this is actually necessary only where the existential quantifier
“*some’” implies actual existence of some object, as it often does in natural language.
(Recall that nine of the twenty-four syllogisms require types to be nonempty.) R4 and
RS state that both intersection and disjointness of types are symmetric relations.

Theorem 9.
All valid syllogisms follow from the rules R1-R3.

Proof

A simple case analysis shows this, and is instructive about the structure of the 24
syllogisms. Let Sij(M/non(M)) denote the ij-th syllogism with type descriptor M
replaced by non(M), etc. We simply list the rules and the ‘variable substitutions’
needed to derive each syllogism.

S11: Rl $21: 811(Pmon(P)) & R5 | $31: 513 & R3 & R4 | S41: S11(non(S)/P.P/S) & RS
$12: R1 & R3 522: 521 & R3 §32: 513 & R4 842: 541 & R3

S513: R2 523: S13(Pmon{P)) & RS | 533: §32(P/5.5/F) $43: R5 & 8§34

S14: S11(P/non(P)) | $24: S21(M/non(M)) $34: 831(P/non{P)) S44: R5 & 835

$15: S12(P/mon(P}) | S25: $22(M/non(M)) §35: 832(P/non{P)} 545: S12(5/P,P/S) & R3

516: S13(P/non(P)) | 526: S23(M/non(M)) 536: §33(P/non(P)) S46: S13(S/P.P/5)

a

Consider the following non-triviality assumptions:

INT1I. X #non(U) X intX.
ISAQ. X isaU.
ISAl. FXisaX.

These assumptions subsume the compressed syllogism rule R3.

Corollary 2.
Under the non-triviality assumptions above, the compressed syllogism rules
R4,R2,R1,R5 are equivalent to the following rules:

-24 -

INT2. XimYFYimnX.

INT3. XimY,YisaZ|-X int Z.
ISA2. XisaY,YisaZ|-X isaZ.
ISA3. X isa Y} non(Y) isa non(X).

Thus in any satisfiable containment scheme, for which the inconsistency rules INCO,
INC1 are inapplicable, we may use interchangeably the syllogisms or the rules listed in
the Corollary.

- 25 -

8. Concluding Remarks

This paper generalizes the results in [3] to consider negation in various ways. The
results are encouraging, in that only a few rules are needed for complete binary
containment inference. As long as we are interested only in binary properties of
containment among sets, this gives us a complete inference system for set theory.

Perhaps the first work to be done is in developing algorithms using the inference
systems presented here. Algorithms are beyond the scope of what we wished to
present, but all of the systems of rules developed in this paper can be incorporated in
inference systems that run in polynomial time. A simple upper bound is O(n*) where
n is the number of types. Improved bounds will follow where more is known about
the type structure. For instance, few real type hierarchies seem to be very deep. Even
the standard biological taxonomy of living creatures is only about 10 levels deep.

When we begin to consider more complex forms of knowledge about types, such as
sentences like

(amphibian ™ non(zailed)) < (frog © toad)

the containment problem becomes NP-complete, and the inference problem co-NP-
complete. Still, it would be interesting to extend the binary rules in this paper for the
more general inference problem.

Other directions for further research lie in exploring graphical representations of the
constraints, as in [3], and in providing efficient algorithms for containment problems.
Also, there are a variety of ways to generalize the problems discussed here that the
reader has no doubt already considered. These include investigating alternative types
of ‘syllogisms’, restricting values of U in interpretations (for example, specifying /(L)
in advance), and so forth. The general area of containment inference is a new area in
which many problems wait to be studied.

226 -

Appendix I: NP-Completeness of the Set Containment Problem

NP-completeness of the Set Containment Problem can be shown by reducing the well-
known SAT problem [7] directly to it.

To show the problem is in NP, notice that a set containment scheme (T/U,C) has a
model if and only if it has a model over a domain D with cardinality at most N, the
number of intersection constraints in C. (Given a model / having domain D with
cardinality greater than N,,, a model I’ restricting / to a subdomain of cardinality N,
can be constructed by repeatedly discarding members of D that are not solely used to
satisfy some intersection constraint.) Thus we can solve the satisfiability problem for
set containment schemes by nondeterministically guessing an interpretation I having
domain of size N,,, then checking that I satisfies the scheme.

To make the reduction from SAT to set containment, suppose we ar¢ given a
propositional formula in conjunctive form,

f=D AN AD,
on variables V,, . . . ,V,. Each disjunct D; is given by
D; = (LyV -~ Vi),
where each L;; is either some variable V or its complement — V.

We construct a corresponding set containment scheme S = (T/U,C) by putting T/U =
{U,V,,...,V,]}, and defining

C={UimUYuw{Cll1<i<m}
as follows.

For each literal L; 1<i<m,1<j<r;, in the disjuncts D; = (LyV -~V L),
define

K;

{w if L =V,
j =

non(Vy ifL;=-V,
and let C; be the constraint
Ci: Kqu - VK) = U
for 1 <7 <m. Since any constraint
non(X;)) U -+ vnonX,)V Y, v --- vuY, = U
is equivalent to
N - nX, isa v - VY,

C consists of the positive constraints C;, 1<i<m, and the negative constraint
U int U. This defines S.

-27 -

We claim that S is satisfiable if and only if the original formula f is satisfiable. If fis
satisfiable, then there is a truth assignment truth satsfying f. Letting I(U) = {7} (a
singleton set),

{t} if zruth(V) = true
IV = 72, if truth(V)) = false

for 1 € k < n. This interpretation can be seen to satisfy all the constraints in C since
the corresponding truth assignment satisfies f, and U int U is satisfied iff I(U) is
nonempty.

Conversely, if § has a model, then as shown above since it has one intersection
constraint it must have a model I that assigns () = {t}, a domain of cardinality one.
Reversing the argument above, we find / induces a truth assignment satisfying f.

.28 -

Appendix IT: Completeness Results for Binary Containment

We prove several technical lemmas underlying completeness of the inference rules
presented in this paper. These lemmas are also useful for developing inference
algorithms.

Lemma 2.
If C is consistent and C # ¢, then C° = C U {not(c)) is also consistent.

Proof

Assume, by way of contradiction, that C” is inconsistent. Then for every Z the
constraint (Z int non(Z)) is derivable from C’. Let (V inr non(V)) be a constraint
derivable from C” whose derivation does not contain any other constraint of the form
(Z int non(Z)). So, this derivation does not use the rules INCO, INC1.

By Lemma 4 below, there are type descriptors W;,W, such that C” |- (W, int W,) using
INT1 or INT2, C" |- (W; isa V), and C" |- (W, isa non(V)).

We consider two cases:

1. ¢c=XintY), not(c) = (X isa non(Y)).
In this case, since (W, int W,) cannot match not(c), it must be the case that
CF (W, it W;). Now, by Lemma 3 below, there exist Zg,Z, where
Zy=W,, Z,=V, such that for each i, (Z_jisaZ) € C° or
(non(Z) isanon(Z;_;)) € C’. Similarly there exist Z%,....Z", where
Zy=W, Z,=non(V), such that for each j, (Z'p,isaZ’) e C' or
(non(Z’)) isa non(Z’j_l)) e C.

Since C is consistent, C B (V int non(V)), and so it is impossible to derive
both (W) isa V) and (W, isa non(V)) from C. So, at least one of the sequences
of isa constraints above must include (X isa non(Y)) or (Y isa non(X)) or both.

There are now several cases to consider. We show every case yields the
conclusion CF (X intY), contradicting our hypothesis that C F ¢. For
simplicity we state first two rules of inference derivable from the existing rules
that can be used repeatedly in the different cases:

Rulel, W,intW,, W isaX, WyisaY + XimY.
Rule2. XimtX, non(Y)isaY }+ XimY.

i. One sequence contains (X isa non(Y)) or (Y isa non(X)) alone.
We can assume that (X is@ non(Y)) appears in the first sequence, and
appears only once. This causes no loss of generality, since the proof for
(Y isa non(X)) is identical if we interchange X and Y, and the proof for the
second sequence is identical if we interchange V and non(V), and W; and
W,. So the following are derivable from C:

ii.

iii.

v.

V1.

-29.-

1. W, int W,
2. WyisaX 2a. non(Y) isa V
3. W, isa non(V)

From 2a and 3 we derive (W, isa Y) by ISA3 and ISA2, and from this and
1, 2, we derive (X int ¥) by Rulel.

One sequence contains both (X isa non(Y)) and (¥ isa non(X)).

Without loss of generality, we can assume that each constraint appears
only once and that (X isa non(Y)) precedes (Y isa non(X)). In this case,
the following constraints are derivable from C:

1. Wit W,
2. WyisaX 2a. non() isa¥Y 2b. non(X) isaV
3. W, isa non(V)

From 2b and 3 derive (W, isa X) by ISA3 and ISA2, and from this and 1,
2, we derive (X int X) by Rulel. Then Rule2 yields (X int ¥).

Both sequences contain a single constraint, say (X isa non(Y)).
In this case the following constraints are derivable from C:

1. Wl int W2
2. WyisaX 2a. non(Y) isaV
3. WyisaX 3a, non(Y) isa non(V)

From 1,2,3 we derive (X int X) by Rulel. From 2a and 3a we derive
(non(Y) isa Y) by ISA3 and ISA2. Then Rule2 yields (X int Y).

Both sequences contain a single constraint, one with (X isq non(Y)), and
the other with (¥ isa non(X)).
We may assume the following constraints are derivable from C:

1. Wl int W2
2. WyisaX 2a. non(Y) isaV
3. WaisaY 3a. non(X) isa non(V)

From 1,2,3 we derive (X int Y) using Rulel.

One sequence contains (X isa non(Y)), . . . (Y isa non(X)), and the other
contains (X isqa non(Y)).
We may assume the following constraints are derivable from C:

1. Wyint W,
2. WyisaX 2a. non(Y) isaY 2b. non(X) isaV
3. WyisaX 3a. non(Y) isa non(V)

From 1,2,3 we derive (X int X) by Rulel. From this and 2a Rule2 yields
(X int Y).

One sequence contains (X isa non(Y)), . . . (Y isa non(X)), and the other
contains (Y isa non(X)).

-130 -

We may assume the following constraints are derivable from C:

1. W, int W,
2. WiisaX 2a. non(Y)isaY 2b. non(X) isa V
3. Woisat 3a. non(X) isa non(V)

From 1,2,3 we derive (X int Y) by Rulel.

vii. Both sequences contain (X isa non(Y)), . . . (Y isa non(X)).
We may assume the following constraints are derivable from C:
1. Wl int W2

2. WyisaX 2a. non(N isaY 2b. non(X) isa V
3. WoisaX 3a. non(Y)isaY 3b. non(X) isa non(V)

From 1,2,3 we derive (X int X) by Rulel. From this and 2a Rule2 yields
X int Y).

viii. One sequence contains (X isa non(Y)), . . . (Y isa non(X)), and the other
contains (Y isa non(X)), . . . ,(X isa non(Y)).
We may assume the following constraints are derivable from C:

1. Wl int W2
2, WyisaX 2a. non()isa¥Y 2b. nonX) isaV
3. WyisatY 3a. non(X) isaX 3b. non(Y) isa non(V)

From 1,2,3 we infer (X int ¥) by Rulel.
c=XisaY), not(c) = (X int non(Y)).
Here C'| (W;intW,) wusing INT1 and INT2, and C' | (WyisaV),
C’ | (W, isa non(V)). Now, since C’ contains exactly the same isa constraints
as C, C} (WyisaV), C |- (W isa non(V)), so by ISA3 and ISA2 we obtain

C | (W, isa non(W,)). Therefore (W, int W) is not in C, since C is consistent.
So, (X int non(Y)) |- (W, int W,) using INT1 and INT2. This gives four cases:

i. W =X, W, =non().
ii. Wy;=non), W,=X.
iii. Wi=X,W,=X,
iv. W =non(Y), W, = non(Y).

In cases i and ii, C F (W, isa non(W,)) yields C | (X isa Y), contradicting the
hypothesis that C K ¢.

In cases iii and iv, C | (W isa non(W,)) yields respectively C |- (X isz non(X))
and C |- (non(Y) isa Y), from either of which TRIVO derives C |- (X isa), and
again contradiction.

- 131 -

Lemma 3.
IfXz2Y, CH (UisaY), and C i (X isa non(l)), then (X isa Y) is derivable from C
without using INCO or INC1 if and only if there exist type descriptors Zy, . . . ,Z, such

that X =2Z,, Y =2Z,, and for each i between 1 and n either (Z;; isa Z;) is in C or
(non(Z)) isa non(Z_,)) is in C.

Proof

If the derivation of (X isa ¥) from C does not use INCQ, INC1, it can be reduced
to a derivation that does not involve intersection constraints, since the only way to
derive isa constraints from them is by means of INCO.

So, we have a derivation that uses rules ISAQ-3. We show that this derivation can
be transformed into a derivation that has no applications of ISAO or ISA1, and has
all applications of ISA3 before applications of ISA2. Every step using ISA1 can
be eliminated, since no constraint of the form (Z isa Z) can give any effective
contribution to the derivation. With respect to ISAQ, since C ¥ (UisaY) and
C # (X isa non(l)), no constraint of the form (Z isa U) can be used in a non-
redundant derivation, Therefore any steps using ISAO can be eliminated. Then,
any constraint derived by means of ISA3 to the result of an application of ISA2
can be obtained by applying ISA3 first and ISA2 to the results of the applications
of ISA3: any derivation

1. VisaZ

2. ZisaW

3, VisaW (from 1, 2, by ISA2)

4. non{(W) isa non(V) (from 3, by ISA3)

can be replaced by the derivation

1. VisaZ

2. ZisaW

3. non(Z) isa non(V) (from 1, by ISA3)

4. non{W) isa non(Z) (from 2, by ISA3)

5. non(W) isa non(V) (from 4, 5, by ISA2).

This means that any derivation of isa can be transformed to a derivation using rule
ISA3 to the constraints in C and then ISA2 as many times as needed. Then, an
induction on the number of applications of ISA2 completes the proof. [J

Lemma 4.

(X int Y) is derivable from C without using INCO or INCI if and only if there exist
type descriptors W,W, such that (W int W) is either in C or is derivable from C
using only INT1 and INT2, and (W, isa X) and (W, isa Y) are derivable from C
without using INCO or INC1.

Proof

-3 .

Given a derivation of (X int ¥) as in the hypotheses, it is possible to transform it
into a derivation that presents all the steps deriving isa constraints first, then all the
steps deriving intersection constraints, since no isa constraint is derived from
intersection constraints.

Now if this derivation is nonredundant, in each of the steps generating intersection
constraints one intersection constraint is used and one generated. Therefore, since
each derived constraint (except the last one, X int ¥) must be used in a subsequent
step, the whole sequence uses only one intersection constraint in C. Let this
constraint be (Vy int V,). Now by induction on the total number of intersection
constraints appearing in the derivation, we prove the following claim:

Claim Let (X int Y) be any intersection constraint derived from a set C of isa
constraints and (V; int V). Then C |- (V;isa X) with i=l or 2, and C |- (V;isa Y)
with j=1 or 2.

Basis X =V, Y =V,

Trivial,

Induction (X int) follows in the derivation from (Z, int Z,) and possibly an isa
constraint, and C | (V;isaZy), CF (V;isa Zy). We distinguish various cases,
according to the last rule used in deriving (X int ¥).

1. INTO: X=2,, Y=U.
(V} isa Y) derives from ISAQ, and (V; isa X) is the same as (V; isa Z)).

2. INTL: X=Y=242,.
(V; isa X) and (V; isa Y) are both the same as (V; isa Z;).

3. INT2: X=2,, Y =2,
(V;isa X) and (Vj isaY) are the same as (Vj isaZ,) and (V;isa Z,),
respectively.

4, INT3: X =Z;, and (Z; int Y) is derived from (Z, int Z,) and (Z, isa Y).
(V; isa X) is the same as (V; isa Z,), and (Vj isa Y) follows from (Vj isa Z,)
and (Z, isa Y).

The lemma follows directly from this claim. Put W; =V, W, = V. Then
(V| int V) |- (Wy int W) using only INT1 and INT2, and also C |- (W) isa X) and
CF W, isaY).

a

=33 -

Acknowledgement

Richard Huntsinger, Karen Lever, and Tom Verma gave the paper a careful reading
and suggested many improvements in the presentation. The anonymous referees made
a number of important suggestions, improving both the organization and clarity of the

paper.

- 34 -

References

1.

10.

11.

12.

13.

14.

15.

16.

Arisawa, H. and T. Miura, On the Properties of Extended Inclusion Inference,
Proc. 12th Intnl. Conf. on Very Large Data Bases, Kyoto, September 1986,
449-456.

Attardi, G. and M. Simi, Consistency and Completeness of OMEGA, a Logic for
Knowledge Representation, Proc. 7th IJCAI, Vancouver, August 1981, 504-510.

Atzeni, P. and D. Stott Parker, Formal Properties of Net-based Knowledge
Representation Schemes, Proc. 2nd Conference on Data Engineering, Los
Angeles, CA, February 1986.

Cerro, L.F. del and E. Orlowska, DAL — A Logic for Data Analysis, Theoretical
Computer Science 36, 1985, 251-264.

Cosmadakis, S.S. and P.C. Kanellakis, Two Applications of Equational Theories
to Database Theory, Proc. Conf. on Rewriting Techniques and Applications, New
York, 1985, 107-123.

Gardner, M., Logic Machines and Diagrams, University of Chicago Press, 1982.

Garey, M.R. and D.S. Johnson, Computers and Intractability: A Guide to the
Theory of NP-Completeness, W.H. Freeman and Co., San Francisco, 1979.

Johnson-Laird, P.N. and B.B. Bara, Syllogistic Inference, Cognition 16, 1984,
1-61.

Kanellakis, P.C., S.S. Cosmadakis, and M.Y. Vardi, Unary Inclusion
Dependencies have Polynomial Time Inference Problems, Proc. 15th ACM
Symp. on Theory of Computing, Boston, April 1983, 264-277.

Maier, D., The Theory of Relational Data Bases, Computer Science Press,
Rockville, MD, 1983.

Papalaskaris, M.A. and L.K. Schubert, Parts Inference: Closed and Semi-closed
Partitioning Graphs, Proc. 7th IJCAI, Vancouver, August 1981, 304-309.

Pawlak, Z., Rough Sets, International J. Computer & Information Sciences 11,
1982, 341-356.

Schubert, LK., Problems with Parts, Proc. 6th IJCAI, Tokyo, August 1979,
778-784,

Schubert, L.K., M.A. Papalaskaris, and J. Taugher, Determining Type, Part,
Color, and Time Relationships, /[EEE Computer, October 1983, 53-60.

Spyratos, N., The Partition Model: A Deductive Database Model, Report No.
286, INRIA, April 1984, to appear in ACM TODS, March 1987.

Ullman, J.D., Principles of Data Base Systems, 2nd Ed., Computer Science
Press, Rockville, MD, 1984.

