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ABSTRACT

This paper examines state dependent servers and their use in product form queueing net-
works. State dependence in servers has been extensively investigated in the analysis of queueing
systems. It is well known that several types of servers with service rates depending on the state
of the queue are relatively simple to analyze in queueing networks. When the service rate
depends on state attributes such as total number of customers in the queue then the service center
has properties that allow it to be included in product form queueing networks. In this paper we
will extend these known results by showing that it is possible to include more general forms of
state dependence in service centers that can be used in product form queueing networks, These
results are used to derive queneing models that can be included in product form queueing net-
works. Applications of these new queueing models are are illustrated in the analysis of real
computing systems. Most importantly, we provide a general method for categorizing a service
center as usable in a product form network. The method is based on verifying purely structural
properties of a queueing system’s Markov process by checking relationships between state
dependent arrival and service mechanisms. Such a method is attractive because it is simple to
verify and does not require solution of equilibrium state probabilities. Application of the method
to several types of service centers is demonstrated.

Work supported by NSF-CNPQ Joint Resecarch Project, "Performance Models for Distributed Systems and
Networks,” NSF INT 85-14377.



1 Introduction

A queueing network is a collection of service centers connected so that customers are
forwarded from one center to another according to certain routing rules [Lav83]. A product
Jorm queueing network (PFQN) is one in which the equilibrium joint state probabilities of the
network may be written as the product of the equilibrium marginal state probabilities of each
service center of the network [BCM75]. These individual service centers, even when networked
together, behave as independent centers. If the network consists of N service centers then the
equilibrium probability of the network being in a state S is

P(§=581,52,..., W) =C P (S1)P2(S2) - - Pn(Sw)

where S, is the state of service center n, and the state space of the network is the cross product of
the individual servers’ state spaces. The normalizing constant C is to make the individual proba-
bilities sum to unity, given certain population constraints. The marginal state probabilities
P,(S,) are equal to the state probabilities of the isolated server, assuming the same traffic inten-
sities.

Product form queueing networks are relatively simple to analyze. Attributes of the
overall network may be evaluated by evaluating the network’s individual nodes. Significant
effort has gone into identifying and characterizing service centers that have properties allowing
them to be included in preduct form queueing networks. We shall refer to a service center as a
product form service center (PFSC) if it can be added to any PFQN and the resulting network
will itself remain product form. PFSCs are the building blocks of PFQNs. Ideally we would like
to say that if a service center has certain easily verifiable structural properties then it is a PFSC.
This is one of our goals with respect to state dependence.

A state dependent server is one whose service rate is influenced by the state of of its
queue. State dependence is valuable in evaluating real queueing systems. For example, a server
may become more efficient as its queue occupancy increases. The dependence of service rate on
queue state is modeled by means of a capacity function which specifies what fraction of the
server’s capacity is dedicated to satisfying a customer’s service demand. Previous work has
focussed on capacity functions that vary according to the number of customers in the queue
[BCM75]. This paper addresses the incorporation of more general forms of state dependence
into service centers of product form queueing networks. In particular, it is desired to explore
forms of state dependence that allow more than just the number of customers in the queue. It is
very natural to describe the state of a queueing system as the list of customers in the queue, pos-
sibly ordered by their times of arrival to the system. We will take this approach in our investiga-
tion by considering capacity functions that vary with the "natural” state of the queue. It is then
interesting to ask what form such a capacity function must have in a PFSC. It will also be seen
that state dependence provides a very general framework for specifying a center’s service discip-
line,



We begin in Section 2 by reviewing relevant results that are related to the use of state
dependent servers in product form queueing networks. A description of the mathematical model
under study is given in Section 3. Section 4 provides the paper’s major theoretical results. This
section introduces the use of the path and four-cycle properties into the analysis of queueing sys-
tems. Queueing systems possessing these properties are shown to be PFSCs. The results of Sec-
tion 3 are used to extend the class of known PFSCs to include virtually any kind of last-come-
first-served preemptive resume (I.LCFSPR) center, and a modified form of the M/M/K center, the
so called heterogeneous multiple servers (HMS) center. Section 5 will discuss applications of
the results to modeling real systems. The paper is concluded in Section 6.

2 Background

The product form property, in its most basic form, was first articulated by Jackson
[Jac57], who discovered that an open network of M/M/m qucue:s1 using the first-come-first-
served (FCFS) discipline has the product form property. The class of product form networks
was expanded by Gordon and Newell [GoN67] to include closed networks in which the popula-
tion of customers remains constant. The work of {BCM75] was a major step toward unifying
previous work and significantly extending the types of service centers that are PFSCs. This
milestone paper introduced into product form queueing networks the use of multiple customer
classes, mixed customer populations, new service disciplines, nonexponential service demands,
and state dependent servers.” The work of {Mun72, CHT77, Noe79, ChM83] further advances
the theory by presenting powerful models of servers and providing abstract criteria for deciding
when service centers are PFSCs.

Previous research has sought to characterize PFSCs in terms of observable properties that
these centers may have when viewed as isolated systems. Most generally, Muntz [Mun72] has
pointed out the importance of the departure process of the isolated service center. If a center has
the property that the departure process of each customer class is Poisson when the class’ arrival
process is Poisson, it is said to have the M = M (Markov implies Markov) property. Local bal-
ance, station balance [CHT77], and the balanced property [ChM83] are defined in terms of the
specific state description of the isolated center. It is also important to mention reversibility,
since reversibility of the underlying process of a center with a Poisson arrival stream may be
used to establish that the center has the M = M property [Rei57, Kel79]. All of these properties
lead to PFSCs.

'That is not to say that the arrival process to a networked service center is Poisson — this is in fact known not 10 be
the case [Bur56]. We suggest that the isolated center’s arrival process is Markovian because this configuration
produces the same state probabilities as the networked center.

*Also known as load dependent servers, especially when the service rate is a function of the number in the queue.



The so called Baskett-Chandy-Muntz-Palacios (BCMP) queueing networks form an im-
portant subclass of the product form networks [BCM75]. BCMP queueing networks consist of
four types of service centers:

1. First-come-first-served (FCFS) single-class centers with exponentially distributed service
demands

2. Processor sharing (PS) multi-class centers with arbitrarily distributed service demands

3. Infinite servers (IS) multi-class centers with arbitrarily distributed service demands

4. Last-come-first-served preemptive resume (LCFSPR) multi-class servers with arbitrarily

distributed service demands

This list has been expanded to include other types of servers, e.g. service in random order
(SIRO) single-class centers with exponentially distributed service demands [Spi79). All of these
service center types have the M = M property.

It is well known that if servers in a BCMP network have state dependent capacity func-
tions, the network will still be product form. The service rate may be a function of the total
number of customers in the queue, the number of customers belonging to the class of the custo-
mer in service, or a combination of both. More formally, it has been shown [BCM75, Mun§3]
that if the capacity dedicated to serving customers of class r is given ag®

frln, n)= & (n,) hin} 1)

where the number of customers in the queue is n, n, of which are from class r, then the server
has the M = M property. '

State dependent servers have proven very useful in the analysis of queueing networks via
decomposition [CHW75a, CHW75b]. A complex subnetwork may be replaced by a simpler
flow equivalent service center (FESC) and the resulting network will yield performance metrics
that are identical to the original network. This technique has been exceptionally fruitful in the
areas of parametric and approximate analysis of the network. Efficient algorithms for solving
closed queueing networks with state dependent centers have been studied by [Sau81, MiM86].

*It is assumed that identical shares of the server’s capacity are given to all class r customers being served.



3 System Model and Definitions

A queueing network consists of service centers that process customers’ demands and
then pass the customer on to another service center according to probabilistic routing rules.
There are several classes of customers in the queue and they may be treated differently with
respect to service demands and routing behavior. The customer classes are numbered
1,2,..., R. Customers may also undergo class changes according to probabilistic transition
rules. The routing and class change rules may be integrated into a probability matrix (p,; ;)
whose entries specify the probability that a customer of class r departing service center { will be-
come a customer of class s at service center j. Customers may originate from outside the net-
work and may also depart the network. Likewise, it is possible for a customer to remain per-
manently in the network by endlessly circulating through various service centers. For a formal
description of queueing networks the reader may refer to [BCM75].

When discussing an isolated service center we assume that class r customers arrive in a
Poisson stream of intensity A,. Each class r customer has a service requirement that is indepen-
dently chosen from an exponential distribution of mean 1/J.,. Upon satisfaction of its service re-
quirement the customer departs from the center.

The mathematical model of a service center is closely related to that proposed in
[CHT77]. A service center is assumed to have a server and a queue. The queue is a buffer of
unbounded size that holds customers. At any point in time the queue is described by the list of
customer types corresponding to the order in which they are queued (which may or may not be
the order in which they arrived). We describe the state of the queue as a string over the alphabet
of symbols £={1, 2,..., R}, i.e. the string x1x, - - - x, with x; € T describes the state of a
queue containing n customers where a customer of class x; is at the head of the queue and one
of class x, is at the tail of the queue, as illustrated in Figure 1. This may be referred to as the na-
tural state of the queue. The set Z* consisting of all such strings is the service center’s natural
state space. Customers arrive to the queue and are assigned a position according to an arrival
function. A class r customer arriving to a queue in state x ;x5 - - * X,, assumes position i with pro-
bability a,(x1x9 ** * x,, i) producing new state xy - - - x;_1rx; - * * X,. Of course we require the
probabilities to sum to unity:

n+l

Y a(xixg Xy i)=1
i=1

Once a customer has joined the queue it may not change its relative position in the queue.

The arrival function describes the manner in which customers queue up for service. The
capacity function describes how service is delivered to customers in the queue. In general, ser-
vice may be allocated to several customers simultaneously and the relative capacity of the server
may change whenever the state changes. The server will deliver service to the ith customer at
the rate of b(x x5 - - * x,, i) when the queue is in state x,x; - - - x,, i.e. if no change of state oc-
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Figure 1. Service center in state xx4 - - * X;,.

X1 X9 [ Xp :



curs within Az time units, the ith customer will have its remaining service requirement reduced
by b(x1x3 * *  xp, i) At time units. Thus the server is modeled as a resource of potentially unlim-
ited capacity with the capability of discriminating among customers on the basis of class and
queue position. '

The arrival function specifies the queueing discipline (i.e. the way customers line up),
whereas the capacity function specifies the actual service discipline (i.e. the way customer get
serviced). Many interesting queueing systems can be derived by jointly specifying the capacity
and arrival functions, including all of the well known BCMP service centers. The practical utili-
ty of these functions has been illustrated in [CHT77].

The natural state space and queueing function may be used to further refine the service
center model. We are often interested in centers where customers are queued in the order of
their arrival times. Such systems will be said to use time ordered queueing of arrivals (TOQA).
They have an arrival function of the form

. {1 ifi =n+1

a,(X1Xy " Xn, §) = .
0 otherwise
for each state x;x; ' -x, and class r, ie. all arrivals join the tail of the queue. A state
X1Xg * - x, expressed in TOQA represents a queue in which x, arrived before x4 which arrived
before x3, etc. Even with TOQA it is not always possible to unambiguously identify customers.
For example, the state (11221211) could undergo a transition to state (1122121). It is clear that
one of the last two class 1 customers have left the queue, but we can not tell which one. By as-
sociating a sequence number with the class symbol, it is possible to uniquely identify every cus-
tomer in the queue. In this approach, called time ordered queueing of arrivals with customer
identification (TOQACI), the state of the queue is written {x1, mXx4, m3) - - - {x,, m,) where
x;€Z and m; is a positive integer. The rules are that an arrival is placed at the tail of the queue
with the next highest sequence number and departing customers are merely removed from the
queue. Thus the arrival of a class 7 customer to the queue in state (x,, m}x,, ma) -+ + {x,, M)
would produce state {x1, miXxy, my) - - - {x,, m,Xr, m,+1) and the departure of a customer
would simply result in the deletion of the customer from the list. It is clear that
mi <mgy < -+ <m, when sequence numbers are managed according to these rules. We can
now tell, for instance, that a transition from state ({1,2)1,3X2,5X2,6)) to state
({1, 2)(1, 3X2, 6)) occurred when the third customer (the class 2 customer with sequence number
5) departed.,

To summarize, we will consider service centers with R classes of customers. Class r cus-
tomers arrive to the isolated center on average every 1/A, time units according to a Poisson rule
and require an average amount of total service of 1/, units chosen from an exponential distri-
bution. The system is normally described by the natural state reflecting the queue’s occupancy.
The queueing and service disciplines are specified by means of arrival and capacity functions
a.(-, -) and b(:, -) which map elements of the natural state space onto nonnegative real numbers.



By restricting the arrival function to always place an arriving customer at the tail of the queue,
we can narrow down to TOQA systems. TOQA centers with sequence numbers to uniquely
identify customers yield a class of service centers known as TOQACI systems. The stochastic
process of principal interest is the evolution of the natural state of the system over time. This
process is a homogeneous Markov process and is called the natural Markov process of the iso-
lated service center. The natural Markov process will be denoted by the family of random vari-
ables indexed over time, viz. Q= {S(¢):t 20}, where S(t) is the natural state of the service
center at time ¢,

4 Using State Dependent Servers in Product Form Networks

Given the framework presented in Section 3, it is reasonable to ask for a characterization
of these service centers with respect to their inclusion in PFQNSs. It is well known that a reversi-
ble Markov process can be identified by purely structural characteristics of its states and transi-
tion rates, e.g. Kolmogorov’s criteria [Kel79]. Similarly, it is possible to identify certain service
centers as PFSCs by simple inspection of their structural properties. We will consider various
service centers, based on their queneing disciplines.

4.1  Non-TOQA PFSCs

Here we study systems that queue customers without necessarily arranging them in order
of arrival. In these centers a wide range of state dependent service disciplines are possible. The
form of the service function will, in general, be related to the arrival function.

When studying a service center, we are typically interested in its underlying Markov pro-
cess. The stochastic process consisting of the center’s natural state over time is a homogeneous
Markov process. If the service center is well behaved the natural Markov process will, in gen-
eral, be stationary.

LetX; 5X; 55X, bea path4 in a Markov state graph from state X to state X,
via states X7, X3, ..., X,,_1. The value of the path is defined as
m-1R(X; = Xi )
o1 R&Xi1 = X))

where R(X — Y) represents the transition rate from state X to state Y. The value of the path is
computed by dividing the product of all forward arc labels by the product of all backward arc la-
bels. A center is said to have the path property when its Markov state graph is such that given
any state XXy * - * X, the values of all paths of length n from & to x1x, * - - x,, are identical. We

“If a path in a state graph includes a hop from state X to state Y it is assumed that there must be a nonzero transition
rate on the arcs connecting the two states.



denote this unique value by V(x1x7 - - - X,). In a center with the four-cycle property the value of
any cycle of the state graph containing four states is 1.

It is straightforward to vérify whether a state graph has the path or four-cycle property.
In a service center with arrival and capacity functions a,(-, -) and b(:, -) there is a simple expres-
sion for the transition rate between any two states. There are essentially two cases to distinguish
forRX —=Y):

1. If X = Ur*V where’ U is a string of 7 symbols, the last of which is not 7, and V does not
begin with the symbol r, then the transition rate from X to ¥ = Ur¥*1v is
I+k+1

RX —-Y=X ¥ aX, i)
i=l+]
This type of transition is caused by class r arrivals to positions I+1, [+2,..., I+k+1 of

the queue when it is in state X. An arrival of a class r customer to any of these positions
moves the queue into state Y.

2. Similarly, if X is as above and ¥ = Ur*~1V, then the transition rate from X to ¥ is

1+k
RX —>Y)=y, ¥ bX,i)
i=l+1
This type of transition results from the departure of a class r customer in queue positions
I+1, 142, ..., I+k while the queue is in state X. A departure from any of these positions
moves the queue into state Y,

All other transition rates are zero. This is because the only nontrivial state transitions in a ser-
vice center consist of unit jumps — customer departures and arrivals. An example of a fragment
of a service center’s labeled state graph with R =2 is illustrated in Figure 2.

Having labeled the arcs of the state graph, it is possible to check for the path or four-
cycle property directly. In the case of the path property one begins with the root state & and
traverses the graph in a breadth-first manner. Path values at level n of the graph (i.e. states
corresponding to a queue occupancy of n customers) are computed in terms of values of paths
terminating at level n—1. Likewise, the four-cycle property means every configuration of four
adjacent states, as shown in Figure 3, will have the relation

R(X1X2 * " XifXiy1 " * " XjSXj41 " Xp D> X1X2 " " XilXig) * " " Xn)

R(X1X2 " XifXipy ** " Xp = X1 X " XilKjs) * " XjSXjgy *° " Xp)

We use ¥ 1o represent a string of k occurrences of the symbol 7.
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Figure 2, Fragment of the natural state graph of a service center with two customer classes.
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F1X2 " XiFXigy t Xy, X1X2 " " XjSXj4l * " Xn
(0571 Cag
Baz Bas

X1X2 " XiFXigy T XjSXj4y C 0 Xp

O SRM X2 " Xy S X1 X2 XXy * %)
013 =R (x1x5 -“x,.,—)xlxg'--xjsxjﬂ R A
04 =RQr1Xy ** XifXiyy ** Xy > X1X3 - X7y CTUXiSXjy1 ttt Xp)
O34 =R Q01X **  XiSXjyy ** " Xy D XXy Xrhiy U XSXjep ttt Xp)

Bar =R(r1x2  xirxpyy - X, XXt Xp)
Pa1 =R (xyxy - xjsxjuy - - X XX Xp)

Baa =R (xixa - Xirxipy + XjSjuy -+ Xp = X125 - Xy - 2)
Bas =R (x1xa  2irXiyy * XjsShjaq +* Xy S X 1xp - - "XjSXj41 X))

Figure 3. Diamond configuration for checking the four-cycle property.

11



R(X1X **  XilXiy) ** Xg = X1X3 " " Xn)

R(x1X7 *** Xn > X1X2* " XiTXjy1 """ Xn)

_ RyXxg » Xl Xjq = * " Xj8Xjyy * " Xp =P X1X2 " * " XjSXj4l R

R(x1x2 .. -xjsxj+1 ‘e .xu __)xlxz . .xirxi+1 N 'XJS.IJ.H .. .xn)

R(x1x2 “‘XjSXj.,.l Xy DX 1X ---x,,)

R(xixg "Xy X1 X3 "+ XjSXjyy """ Xp)

assuming { < f and r #s. This entails examining every diamond shaped configuration of states
and verifying the multiplicative relationship between the labels on the diamond’s eight arcs.
Other configurations, like the butterfly shape shown in Figure 4, reduce to the diamond pattern,
as suggested by the figure.

The reason for wanting to know whether the center has the path or four-cycle property is
that all such service centers are PFSCs. This is formally demonstrated in the next theorem and
its corollary.

Theorem 1. Let Q={5(t):¢ =0} be the natural Markov process of a service center.
Suppose that the service center has a natural state graph such that if X and Y are any two states,
then R(X — Y) and R (Y — X) are both positive or are both zero. The following assertions are
equivalent:

1. The center’s natural Markov process  is reversible.

2. The center’s natural state graph has the path property.

Moreover, if any of the above conditions holds, then the center is a PFSC with state probability
distribution given by

2
P(X)=P(@) V(X) @
for any state X S

Proof. To see that (1) = (2) we apply Kolmogorov’s criteria [Kel79], which state that a
stationary Markov process is reversible if and only if its transition rates satisfy

RX| =X))RXq—X3) RXp,_y X)) RX = Xy)

=RX| 2 Xp)RXp 5 Xp1) - RX3 29X9)R(Xy = Xy)

for any sequence of states X1, X3,..., X;,. Let X,, be a state containing n customers and let

*Assume that V (&) = 1.
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RX —Y) RA>V) RW—-W) R(W-SX) _

R(Y 5X) R(VoY) RWSV) RX SW)

RZ—>Y) RAHV) RWW) RWo2Z) _
R(Y 5Z) R(V>Y) RW—oV) RZoW)

1

1

RX>Y) R =Z) RZ-SW) RW-oX) =1

“R(Y=X) RZ—Y) RW=Z) RX W)

Figure 4. Reduction of the butterfly configuration
to the diamond configuration. If all diamond
shaped four-cycles have value 1, then any four-
cycle will have value 1.
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BoX, 22X, oX,and Y, 5Y, 5 5 Y¥,; =X, be any two n-hop paths
from the root state to X,,. Considering the cycle formed by traversing the first path from & to X,
and then backtracking from X, to & along the second path, we obtain from Kolmogorov’s cri-
teria

R@->X1)REX; 5X3) " RXp1 2 Xp)
XRX, =Y, )R(Ypy 5Y,2) - R(¥Y, 2 O)
=R@->Y)DRX1 oY) R¥ug = X,)
XRXp 2 X, 1)RXp—) 2 Xp3) - RX; - D)
After division and rearrangement of terms we obtain

RE@—->X)RE; 5X3) - RXp = X,)
RX; >@YRMX;5X1) R(X, —>X,_1)

_R@-SYDR¥ 5Yy) R(Y, g »X,)
TR, -SDRY,5Y)RE, > Y,_1)

Thus any two paths of length n from & to X,, have the same value. Therefore the center’s state
graph has the path property.

Next the converse (2) =» (1) is proved. Suppose that a center’s state graph has the path
property. Let X, Xo,...,X, be a sequence of states. If any transition rate equals zero, say
R(X; — X;,1) =0, then the reverse rate must also be zero, i.e. R (X;,; — X;) = 0. Itis then clear
that Kolmogorov’s criteria hold for this sequence. Assume then that R (X; — X;,;) #0 and
R X4y — X;) # 0 for all i (modulo n). If state X; has one less customer than state X;,; then X; is
on a path from the root state to X;,; and by the path property

RX; - X;41)
RXiy1 = X))

VXin)= V(X;)

Similarly if state X; has one more customer than state X;; then

V) = RXi X)) VXisr)
TR - X))

In either case V(X)) R(X; = Xj41) =V (Xi41) R (X;4) — X;) for all i, Muldplying these equa-
tions over all values of i (modulo n) we get

T V&) RX: = Xi1) = [TV Xisr) R Kiny = X5)

i=1. i=l

All the V (X;) cancel and we are left with

14



n n
[TRX: 2> Xin)) =TI R Xy o X))
i=1 i=1
which is Kolmogorov’s criteria. Since any sequence of states satisfies Kolmogorov’s criteria the
natural Markov process €2 is reversible.

We now demonstrate that Equation (2) is a solution for the equilibrium state probability
distribution of . The proof is by induction on the size of X. The basis case of X = is trivial.
Assume that the form holds for all states of occupancy less that » and that state X has »n custo-
mers. Let Y be a state of occupancy n — 1 that has a nonzero transition rate to state X. Since Q
is reversible we know [Kel79, HeS82] that

3)
PX)RX->Y)=PYH)R(Y =X)
Using the induction hypothesis we write

(4)
PM)=P@) V)

Substituting Equation (4) back into Equation (3) yields

_RF 5X)
PX)= RX ST P@)yvVI)

=P (@) VX)
which is Equation (2).

That the center is a PFSC follows from its reversibility in a manner that parallels the ar-
guments of [Rei57].7 One demonstrates the M = M property of a multiclass center by showing
that each «class has a Poisson departure stream [Mun72, Mun83]. Let
QR = {SR(2) : SR(1) = S(1 — 1)} be the reversed process of 2. Since the process €2 starts at ) we
choose T to be a sufficiently large quantity to ensure that the process has reached steady state.
The intuitive idea is that since Q and QF are statistically indistinguishable, successive jumps in
the population of class r customers are similarly distributed. These jumps in QF correspond to
departures from the center, while in Q they are simply arrivals. From this we conclude that the
departure process has the Poisson distribution.

Define x(X, r) to be the number of times the symbol r occurs in string X. Let ¢ be a point
in time and fix T. Lett; =t + (i/k)T for any positive integer k and 1 €i <k, and define

E, ={[S(to), (1) ..., SW)):

"Reich concentrated strictly on single-class, Markovian service centers.
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K[S (o), r]1 < k[S(11), r12%[S(t2), P12 -+~
e 2K (e-1), r1 < XIS (), r 1}
EF = (IS®(to), SR(t1), ..., SR
kISR to), r1 < xISR(11), r]2x[SR(0), r12 -

o 2 kSR, 71 < kISR, r Y
Note that

ER={IS(t-1t0), ST —tgey)s ..., S(T—1t0)]
KISCE—t), r]>k[S(t—521), r1<x[S(t—142), rls -

cLKk[S(t-t), r]1>x[ST-tg), rl}

The event E, may be interpreted as saying that a class r arrival occurred in (¢, #,] and in
(tx_1, 1), and event ER says that a class r departure occurred in (T—1#, T—f_;] and in
(t—11, T—1g]. In the limit as k — oo, E, approximates the event of a class r arrival at time ¢
and one at time 1 + T with no intervening class r arrivals in the interval (¢, £ + T). Similarly EX
tends to approximate the event of a class r customer’s departure at T— ¢ — 7T and one at T — ¢ with
no class r departures in the time interval (t—¢ -7, T—1).

Since the arrival process is Poisson we know that the probability density of E, ap-
proaches A, e ™ as ke By the reversibility of Q we also know that
[S(ta), S(t1)s ..., St)) and [SR(tg), $SR(21). ..., SR(1)] have identical distributions. Thus
the probability density of EX approaches A, e T as k — . Since rand T were arbitrarily
chosen, we conclude that the distribution of elapsed time between any two consecutive class r
departures is exponential. If the interdeparture times are independent, exponentially distributed
random variables, then the departure process is Poisson. Hence the center has the M = M pro-
perty and is a PFSC. M

The following corollary to Theorem 1 represents the special application of Kolmogorov’s
criteria to queueing systems. Kolmogorov’s criteria, when applied to an arbitrary Markov pro-
cess, require any cycle to have value 1. Because transitions are restricted to arrivals and depar-
tures, conventional queueing systems have Markov processes with special attributes that allow
us to equate reversibility to a much simplified version of Kolmogorov's criteria, viz. the four-
cycle property. Checking only four-cycles is vastly easier than checking all cycles. A service
center’s arrival and capacity functions specify transition rates between adjacent states. It is a
simple matter to verify that an arbitrary diamond pattern, as shown in Figure 3, has value 1. If
the arrival and capacity functions can be defined so that the four-cycle property holds, then the
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service center can be showntobe M = M.

Corollary 1. Let Q={S(t) : ¢t 20} be the natural Markov process of a service center.
Assume that the service center has positive arrival and capacity functions, i.e. &,(X, i) >0 and
b(X, i) > 0foreach r, X, and i. The following are equivalent:

1. The center’s natural Markov process L is reversible.

2. The center’s natural state graph has the four-cycle property.

Proof. First we show that (1) = (2). Choose any four adjacent states X, ¥, Z, and W
connected in a cycle by arcs labeled with positive transition rates. Applying Kolmogorov’s cri-
teria to the four-cycle X - Y > Z -5 W — X we get

RX->Y)RY ->ZREZ ->W)R(W-X)

=RX ->WRW SZDH)RZ->Y)RTY »X)

Since the transition rates on the right hand side are all positive, we may divide by the right hand
side and obtain 1 as the value of the four-cycle. Thus all four-cycles have value 1 and the center
has the four-cycle property.

Next we show that (2) = (1). We will show that the state graph must have the path pro-
perty. The proof is by induction on the number of customers in a state. For the basis case it is
clear that all states containing exactly one customer have the path property since there is only
one path to the root state. Assume that, given any state with fewer than n customers, there is a
unique value for every minimal length path from the root state to the given state. Consider the
state

X=X1X3"" "X

and any two n-hop paths from the null state to it. Suppose that the penultimate states of each
path are

Y=x1X2 " Xi—1Xi41 " Xn
which is X minus the customer in position i of the queue, and
Z =SX1X2 - '.Ij_lxj+1 trr Xp

which is X minus the customer in position j of the queue. Assume that i £ . Since the armival
and capacity functions are positive everywhere the state

T WSXixg X1 Xis 0 Xj1 X1t X

has positive transition rates to and from both ¥ and Z. Now the four-cycle X - Y — Z — W has
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value 1. We may then write
R(W-Y) v RY =>X) RW—2Z) N R(Z—-X)
R¥Y—-W) RX-Y) RZ-W) RX-2Z) _
State W, containing fewer than n customers, has a unique value V(W) by the induction hy-
pothesis. Furthermore, applying the induction hypothesis to states ¥ and Z we may write

&)

_RW-Y)
Vy)= RO =W ) V(W) (6)
and
_RW-S2Z)
V()= RZSW V(W) )
Combining Equations (5) through (7) we obtain
R{Y - X) _R(Z-X)
RX-Y) vin = R(X 5 2) A2

The left hand side of this last equation is the value of the first path from the root state to X while
the right hand side is the value of the second path. Hence any two paths from the root state to X
must have identical values. Thus the natural Markov process Q has the path property and by
Theorem 1 it must be reversible. M

As an illustration of the power of the four-cycle property we consider a service center
consisting of K servers. The servers are numbered from 1 to X and server k has capacity p,. Let
K=1{1,2,..., K} be the set of servers. When a customer arrives to the center it chooses a
server randomly from the pool of idle servers. If no server is idle, the customer joins the end of
the queue and waits until all preceding customers have gone into service before it can be served.
This model differs from the classical M/M/K model in that it admits a heterogeneous set of
servers that may have differing operating characteristics, expressed primarily through their dis-
tinct capacities. This type of service center will be called the heterogeneous multiple servers

(HMS) center.

Suppose that all customer classes have the same exponendal service requirement. We
may assume that the mean service requirement has been normalized to 1 by suitably scaling the
capacities Wy, Ha, ..., Hg. If we let § ¢ K be the set of busy servers and » be the number of
customers waiting for service at a given point in time, then (S, n) provides a description of the
state of the HMS center. The state of the center over time is a stationary Markov process.

We apply the four-cycle result to the HMS center to show that is is a PFSC.
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Corollary 2. Any HMS service center with identical service requirements for all classes
is a PESC. Its equilibrium state probability distribution is

P(S, n)= P @, 0) LH A } [ﬁ} ®)

KE-D--K-1SI+D |ics | |1

R K
where A=Y A, andpu= Y L.
r=1 k=1

Proof. The transition rates of the center’s Markov process are specified as follows:

1. Ifke S ckK, then

A

RIS, 0) > S ik}, 0 =257

2. Ifk e S cK, then
R[S, O) > (S={k), )] =1,

3. Ifn=0,1,...then
RIK,n)=>K, n+1)]=A

4, Ifn=1,2,...then
RIK,n)> K, n-D]=pn

All other transition rates are 0. Refer to Figure 5 for a representation of the HMS center’s Mar-
kov state graph.

All four-cycles in the state graph are of the form (S, 0) — (SU{k}, 0) = (SuU{k, I}, 0)
= Sul},0)—= (S, 0O)where S cK, &k, [ ¢ S, and k # /. The value of this four-cycle is

y K-181-1 « K- 15|
Hk'———l “’"—x

The arguments in the proof of Theorem 1 and Corollary 1 are readily adapted to the new
state description of the HMS center. Thus the center is a PFSC. The expression of Equation (8)
is the unique value of any path from the empty state (&, 0) to state (S, n). W

S O U I S
K—ISU W | {K=1SI~1

which has value 1.
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Figure 5. Fragments of the HMS state graph. (a)

States for which S <K and i, j ¢ S. (b) States for
which n 2 0.
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42  TOQAPFSCs

We now restrict our attention to service centers in which arriving customers always join
the tail of the queue. We still allow the capacity function to be chosen in a way that reflects the
manner in which service is allocated to custorners by the server.

The last theorem has one immediate corollary that proves valuable in the analysis of
PFQNs. In a LCFSPR service center allocation of the server’s capacity may be extremely sensi-
tive to the center’s queue state. In fact, from a PFQN point of view, the form of the capacity
function is irrelevant, except for the way that it affects the state probability distribution. That is,
a LCFSPR center is a PFSC regardless of the form taken by its capacity function!

Corollary 3. In a LCFSPR TOQA service center the capacity function b(-, -) may take
any form and the center will be a PFSC.

Proof. We start by pointing out that a LCFSPR TOQA center is defined to have arrival
and capacity functions that obey the following constraints:

. 1 ifi=n+l
(XX " Xn, 1) = 0 otherwise

for each r € Z, and b(x X7 -~ - X,, i) =0 for 1 <i < n. We allow b(x,x, -** x,, n) to assume
any positive value, which results in a capacity function that is completely state dependent. It
may be seen that the arrival and capacity functions specified above result in a tree-structured
state graph, as shown in Figure 6. Thus there is only one nontrivial path from the root state to
any given state, i.e. the graph has the path property. From Theorem 1 the center is a PFSC with
state probability distribution given as

Px1xz  xp) =P(@Q) Vx1x2 -+ Xp)

n li
=P T1

M bxixa o xg, 0)

It is natural to ask what forms the capacity function may take on in a TOQA PFSC. It
will be seen shortly that the capacity function for a particular customer may depend on the total
number of customers in the queue, the number of customers in the customer’s class, and the
customer’s queue position relative to other members of its class.
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Wb, D M2 b(2, 1)
11 1'2

K2 5(12,2)  ; b(21, 2)
o ll

i b1, 2) M2 B(22, 2)

Figure 6. Natural state graph for the TOQA
LCFSPR center with fully state dependent capacity
function (for two classes).
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First we must establish the following lemma. Recall that we have already defined
K(X, r) to be the number of times that the symbol r occurs in the string X,

Lemma 1. Let X;=x1x3--+x; and ¥; =y;y; **y; where x;, y; € Z. Suppose that
KX,, r)=x(¥,, r)forallr=1,2,..., R, ie. both X,, and ¥, contain the same number of cus-
tomers of each class. If f (-, -) is a function from pairs of nonnegative integers to nonnegative
reals, then foreachr e

3 A6, 7), kXKis P = 3 KT, 7, X (¥, 1)) ©)
i=1 j=1
x=r y=r

Proof. We observe that the left hand side of Equation (9) is equal to

K(X,, r)
2 SIKXn, ), k] (10)
k=1
and the right hand side is equal to
®(¥,, r)
2 fIe(¥p, r), 1] (1D
I=1

Since k(X,,, r) =k(Y,, r), Expressions (10) and (11) are equal, whence follows Equation (9). &

The next theorem generalizes the classical BCMP state dependent form given in Equa-
tion (1),

Proposition 1. Let g:(:, ),g2(, ), ...,8r(: *) and A{:) be functions mapping nonnega-
tive integers to nonnegative reals. If the capacity function of a TOQA service center has the fol-
lowing form then the center has the M = M property:

b(Xy, 1) = 82 [¥(Xy, x:), X(Xi, x;)] h(n) (12)

where X; =xx5 - x;fori=1,2,...,n

Proof. We begin by defining the macrostate
(M1, nay...,ng)=n={XeZ*: kX, r)=n,, r=1,2,..., R}

to contain all natural states with ny class 1 customers, n, class 2 customers, etc. If we lete,
represent the unit basis vector consisting of a 1 in the rth dimension and Os everywhere else and
P s (X —Y) be the conditional probability of being in state ¥ within Az time units, given that the
system is now in state X, then we may express the probability of transitioning from macrostate 7
to W—"¢ as the conditional sum of the probabilities of transitioning from all microstates
comprising 7 to microstates containing one less customer of class r;
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P (Xz)

Py@—=7-€)= 3, i PpuXpn = X1X2 " Xic1Xig1 * " Xn)

(13)
X,le?i=1 P (H))
xXi=r
We know that for the natural Markov process (14)
PuXp —=x1X2 X Xip = X)) S RX,, = X1 X9 * - Xj_1Xiy " X)) AI + O(AL)
We substitute Equation (14) back into Equation (13). This yields
n P(X,)
Py@-T-8)= 3 ¥ R, > X1X2"  XisXis1 ** Xa) A +0(aD)] —=  (15)
X,er i=1 P(n

Xi=r

Dividing Equation (15) by At and taking the limit as At approaches 0 gives the rate of transition
from 7o 7 — ¢,

P X,
R(_)'—)?’?_?)— ) Z RXy 2 x1X2 " X1 Xiq1 * " Xn) &)
X,eri=1 P(E))

x=r

The quantity inside the summations is the transition rate due to a class r departure, conditioned
on being in microstate X,,. We apply Equation (12) and further simplify Equation (15) to

3 5 b0 Dy L B S g ks Py KK PV () et
ny 8) Hy = &Ky, 1), KA, 7 n)
X, i=1 P@) X,e? i=1 P ()
PX,)
=h()p, 3 Z & [x(X,, r), x(X;, r)]
X, E? m
By Lemma 1 the last summation
n x(X,, r}
3 elxX,, r), xX;, Nl= Y, g kX, r), k]
i=1 k=1

xX;=r

has identical values for all states X,, € 7. We denote this value by g,(n,) since it depends only
on x(X,, r) =n,. Thus

RE—R-2)=g) kW ty —— T P(X,)
(?) X, en

=gr(n,) h(n) u,

since the summation evaluates to P (). For transitions that result from arrivals it is also easy to
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see that

R@—R43) =),

The process ¥ = {R() : t 20} is a Markov process. One will notice from Equation (13)
that the probability of being in a particular next state is influenced only by the current state and
in no way depends on prior history. When the system comes into state 77 a state change occurs as
the result of an arrival or a service completion. These arrival and service mechanisms clearly
depend only on the current state of the system. It is as though, upon entering state 7, arrival and
departure timers are set for each of the R customer classes, and the first timer to expire fires the
appropriate transition.

We will show that ¥ is also reversible. From reversibility we will then derive the M =
M property. To show that ¥ is reversible we verify the following proposed solution for the ser-
vice center:

P (@) = P (D) {ﬁ ﬁ (16)

2.0 ] M5

With respect to the process W a typical global balance equation for the service center is

R R
P X & +P@) T gn,) hn) iy
r=1 r=1

R R
=X PE+E) g+ Dh(r+ D+ X PE-EN,
r=1 r=1
and Equation (16) clearly satisfies this set of equations. The only pairs of macrostates with non-
trivial transition rates are pairs of the form7and 7 ~2,. It is straightforward to check that in ¥

we have

17)
A, PR =€) =g,(n,) h(n) i, P ()

by substituting the expression for the equilibrium state probabilities provided in Equation (16).
All communicating state pairs in ‘¥ are of the form 7’ and ¥ —, — other pairs have trivial transi-
tion rates between them. Equation (17) holds for all feasible 7 and r, which is a necessary and
sufficient condition for the reversibility of ‘¥ [Kel79, HeS82].

Since the process ¥ is reversible, the departure process of each class must be Poisson, as
discussed in the proof of Theorem 1. Hence the center is a PFSC. W
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The capacity function
b (Xn, 1) = gy, [¥(Xn, X;), XXy, X)) h(n)
may be rewritten as
b Xy, i) = gx (nx,, n;) h(n)

where n; designates the ith customer’s position among all customers of its class. If we view the
center as having a separate queue for each class then Proposition 1 states that the jth customer in
queue r is served with rate g.(n,, i) A{(n). Thus the capacity allocated to this customer depends
on the total number of customers in the center, the number of customers in its class, and the posi-
tion it holds in its class queue. For example, a variant of processor sharing might allocate
u, ;/n x 100 percent of the server to the ith customer of the rth queue rather than the customary
1/n x 100 percent. It is assumed that

n,
E Up =Ny
=

which ensures that the one server is completely shared by all # customers, though not necessarily
with the same fairness policy of standard processor sharing.

4.3 Nonexponential PFSCs

Up to now we have only considered service centers with exponentially distributed service
requirements. Next we examine LCFSPR centers with the exponentiality constraint relaxed.

Corollary 2 is somewhat surprising in that it demonstrates that LCFSPR service centers
are extremely robust. One may choose any capacity function for an LCFSPR service center with
exponential service requirements and the center will always be M = M. Even more surprising,
then, is the fact that Corollary 2 remains true even if the service requirement of each class has an
arbitrary distribution.

We start by modifying the service center model presented in Section 3 to include Coxian
(or branching Erlang) distributions [Cox55] for each class. A Coxian distribution has a rational
Laplace transform and may be represented by a generalized method of stages with branching, as
shown in Figure 7. Each class r will have parameters [, 1, W, 2,...,}t, g corresponding to
each of the K, stages of exponential service. At stage k the class r customer proceeds to stage
k + 1 with probability p, ; and leaves service with probability g, ;. We assume that p,, k, =0and
¢-x. = 1. The Coxian distribution can approximate any distribution with a Laplace transform by
fitting a rational function to the given transform. The rational function may then be inverted to
yield the approximate distribution.
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Figure 7. Coxian distribution. Each circle represents an exponential stage of service.
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The natural state description may also be generalized. We take as the state of the queue
(1, k1)(xa, ko) * -+ (x,, k,) where k; is the stage of service that the ith customer is in and x; is
its class.

Lemma 2. If p; +¢;=1for 1 <i < K and gx = 1, then

q1+q2P1+q3p2p1+ - +qxPka Pk—2 P11 =1 (18)

Proof. The proof is by induction on K. The basis case of K =1 is obvious. Assume the
proposition is true for K — 1. Letpq, pa, ..., pxk-1 and g1, g2, ..., gx be sequences satisfy-
ing the conditions of the lemma. Writing

q1+92Pp1+q43p2Pr+ " +qg1 PK2 Pk-3 " P1+4k Pk-1 Px2 - pr (19)

we notice that the last two terms of the series reduce to

4Kk 1PKk-2PKk-3 " "P1+qxPxk-1PKk—2"""P1=Pk2Pk-3 ' 'D1

because px_1 +gx-1 = 1 and gg = 1. Now we may rewrite the expression of Equation (19) as

q1+qa2py1+q3pap1+ - +pxaPrk3 P

which we know is equal to 1 by the induction hypothesis. Thus Equation (19) evaluates to 1 and
the lemma is proved. &

Theorem 2. Assume that a (TOQA) service center uses the LCFSPR queueing discip-
line. Suppose that the Laplace transform of each class’s service requirement is a rational func-
tion. Let the capacity function of the service center be arbitrarily dependent upon the extended
natural state of the queue (including the customer’s class and stage of service). The center is a
PFSC with probability state distribution given by

oy,

Poiyz - ym)=P@ ]

- 20
i=1 b(y1y2 " ¥i l)uy.- (20

where we define G,y = A, py 1 Dr. 2 * * * Prx-1 for each class r and stage k.

Proof. We show that Equation (20) satisfies both the global balance equations and the M
=> M condition. Lety; =(x;, k;) fori =1, 2,..., n. Now define the following quantities:

R
A=P(y1y2: " Yn) E lr

r=1

B=Py1y2 ¥ bQ1y2 " Yn. 1) Iy,
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R
C=3 ¥ Plyiyz -yl N0 1y2 - Yulr ), n+11Gr g Mrg
r=1 k=1

D=Ply1ys Yn-1Gn kn=D10y1¥2 - Yu1 (s kn=1), 1] Py k-1 M k1

E=sPy1y2 - Ya-1) 2y

For 1 < k, <K, the balance equations are

A+B=C+D
and for k, = 1 the balance equations are
A+B=C+E

The relationships B =D and B = E may be verified by substituting the expression for P (*) of
Equation (20) into B, D, and E. To see that A = C we start with

K,

2Pz yalr, By yalrn K)o n + 111G W
k=1

s P@) L i/
= . cr, q-",
151 .I;Il bOwy2 Y DRy, |

P(@) H GJ’. Kr
= Or ik qr,
,-I;Ilb()’ln'“)’i’i)uy,. ok Ark

The summation of this last equation may be simplified to
A [r1 + G 2Pr 1+ + 4rK. Prk-1PrE-2 " Pr1)

By Lemma 2 this reduces to &,. Thus A = C and the balance equations hold: A +B =C +D
when 1<k, <K, and A +B =C +FE when k, =1. This establishes that Equation (20) is the
expression for the equilibrium state probability distribution.

We may adapt Muntz’s [Mun72, Mun83] characterization of an M = M LCFSPR ex-
ponential service center to nonexponential service requirements:
K

2 Pwya-yaln BBy iye oy K)o n+ 116, s Mk =P 1y2 - Y0 A (21
k=1

for each class r € Z. We substitute Equation (20) into the left hand side of Equation (21) to ob-
tain
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n Gy

Kr of k
k=1

t

o1 DO1y2 Y D iy, } bly1yz - yalr k), n+ 1] Ky
Xbly1yy  yalr, k), n+1] Gr.k Brk

Oy,

Kr
Y 4rkCrk

k=1

= P@T
[( );I;Il b1yz2 Y DMy,

=Pyi1y2" Y }-r

The last equality, which is the right hand side of Equation (21), follows from Lemma 2. Hence
the M = M condition holds for each class » and the centeris a PFSC. B

Notice that the capacity function of Theorem 2 is even more general than that of Corol-
lary 3. For the nonexponential case the capacity function depends not only on the arrangement
of customers in the queue but also on the stage of service that each customer has achieved. This
may be interpreted as saying that the capacity function is completely dependent upon the queue
state, in the sense that the state of the queue may in general be specified by means of the tech-
nique of supplementary variables [Kle75]. The state is taken to be the list of customers in the
queue and the amount of service each one has already received [CHT77].

4.4 TOQACI PFSCs

Returning our attention to service centers with exponential service requirements, we con-
sider the use of the TOQACI state description. A TOQACI center may be viewed as temporally
ordering customers and providing the capability of distinguishing individual customers from
each other. Given a state description of such fine granularity, it is interesting to attempt a char-
acterization of TOQACI PFSCs. We focus on reversible TOQACI centers. The following pro-
position formalizes the notion that if one kept strict accounting of customer identities in a queue-
ing system then, for the center to appear the same when time is reversed, a customer would have
to depart from the same queue position to which it arrived, viz. the tail of the queue.

Proposition 2. The only reversible TOQACI service center is the LCFSPR center.

Proof. 1t was seen in Corollary 2 that any TOQA LCFSPR center is reversible. Adding
sequence numbers for customer identification does not affect the reversibility. The state graph
clearly retains its tree shape. Now suppose that a TOQACI center is reversible. The only state
changes that result from arrivals are of the form (x;, m¥x2, mo)---(x,, m,) —
Gep, myXxg, ma) - -+ (X, myXr, m,+1). It is clear that for reversibility to hold the only allow-
able state changes resulting from departures must be of the form (xy, m)Xxo, m2) -+ - {x,, m,)
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= {x1, mi¥xq, ma) - {xu_1, mu_1). These transitions are due to the departure of the custo-
mer at the tail of the queue. Since they are the only kinds of departure transitions allowed the
center is LCFSPR. H

5 Applications

The results of the previous section, while of theoretical interest, also have relevance to
practical modeling activities. Some of these application areas are discussed below.

5.1  LCFSPR PFSCs

LCFSPR models do not predominate in the study of computer systems. Of the four types
of BCMP service centers, LCFSPR is probably the type least used in practice. Nonetheless, this
discipline is used in actual systems, e.g. for processor scheduling in some interactive systems
[SaC81] and for approximating systems with high dispatch frequency of priority tasks [LZG84].

LCFSPR may also be used to approximate heavily loaded carrier-sense-multiple-access
with collision detection (CSMA/CD) channels, such as the Ethernet or IEEE 802.3 media access
protocol for local networks. As delays on heavily loaded CSMA/CD channels can be significant,
it is important to be able to incorporate the impact of these delays on jobs that execute across the
network., The binary exponential backoff algorithm used for contention resolution increases the
likelihood that a packet that has just arrived will sense the channel idle and initiate transmission,
whereas previously arrived packets that were involved in collisions will have rescheduled
transmission for a later time. Thus the youngest packet on the channel can often sneak through
before older packets that have been queued for a while. This produces a last-come-first-served
effect. Certainly the service rate for a recently arrived packet is affected by the channel state, i.e.
by all packets queued and waiting for their backoff timers to reset. These effects could be empir-
ically captured and abstractly represented by the capacity function for a LCFSPR center.

The heavily loaded Ethernet model is shown in Figure 8. The N stations are all connect-
ed to the channel which is represented by the LCESPR center. Customers are processed at a sta-
tion and then routed to the next station after experiencing a channel access delay at the LCFSPR
center. Such a cycle may repeat until the customer leaves the network.

Distributed real time computing systems often dedicate processors to the servicing of
externally generated asynchronous events. An event arrives to the processor and immediately
generates an interrupt that causes the current context to be saved and pushed onto the stack. The
preempting event is then processed and eventually dispatched to an appropriate processor,
whereupon the preempted, suspended task is resumed. LCEFSPR scheduling is necessary to
minimize interrupt latency and may in some situations actually reduce context switching over-
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Figure 8. Modeling a heavily loaded CSMA/CD
channel as an LCFSPR state dependent service

center, There are N stations connected to a com-
mon channel.
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head. Modeling this kind of device is a straightforward application of the LCFSPR service
center.

Each of these systems has peculiarities that give rise to state sensitive service rates.
Corollary 3 and its generalization, Theorem 3, provide guarantees that we can model such sys-
tems as PFSCs, regardless of their service requirement distributions or state dependencies. The
power of Theorem 3 leads to the informal observation that any real queueing system using the
LCFSPR discipline can be modeled as a PFSC and thus easily incorporated in a product form
queueing model. Of course it is necessary to assume that the system’s arrival and service statis-
tics obey the usual independence conditions. This generality of service characteristics (capacity
and distribution) makes LCFSPR PFSCs unique among all known service center types.

5.2  HMSPFSCs

Corollary 3 broadens our repertoire of tools for analyzing queueing networks. The HMS
service center introduced there provides a useful technique for modeling heterogeneous comput-
er systems. This extends the modeling capabilities of tractable queueing networks into new
domains.

In a distributed computing system based on the client-server paradigm, a particular job
may remotely invoke specific functions at specially designated server machines [Spe82]. It is
often desirable to support a service at several different machines. When a function is invoked
the client machine locates an available server by broadcasting a service request. Any server
machine that is available may respond with a service reply indicating to the client that it is im-
mediately ready to process the client’s function. The client will choose the first responding
server and dispatch its function to it. Allowing the client to request the service and discover an
available server before dispatch, rather than always sending the request to a particular server,
means that the service may be provided by a pool of servers, which results in better availability,
network transparency, and device independent software. The client may also receive service
sooner if it delays dispatching its function invocation until it knows there is a free server. This is
similar to the motivation for using a common queue in a bank rather than individual queues at
each teller’s window. The delays and processing required by the service requests and replies are
negligible compared to the function processing time.

It is problematic to model this type of system with standard BCMP service centers.
There seems to be no easy way to model the global queue that has access to a number of
different (heterogeneous) servers. Nor is it obvious how to cause a customer to be routed to a
server only if the server is not busy. The HMS center, however, models this type of system very
accurately. The server pool corresponds to the K servers of the HMS center. The queue of the
HMS center is assumed to be located at the client machine. The choice of which server the
client will use is generally nondeterministic. Variable delays in processing the service request,
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formulating the service reply, and accessing the communications media tend to randomize the
selection of where to dispatch the function. Thus it is quite acceptable to assume that a customer
who arrives to an HMS center is randomly assigned to a free server.

The queueing network model of client-server interaction is shown in Figure 9. Jobs ar-
rive to the client from an external source (which may be other service centers of a larger net-
work). They are processed by the client until remote processing by a server is needed (note that
there may be many server pools), whereupon the job is dispatched to the HMS, processed, and
returned to the client. This cycle continues until the job completes and exits the client center.
The probability of requiring remote service after completion of a job step is p;, remote fOr €ach job
class r. The completion probability is simply its complement p, joca1-

6 Conclusion

This paper has examined several aspects of the role of state dependence in specifying ser-
vice centers. By appropriately choosing a state dependent capacity function, new queueing dis-
ciplines may be constructed. It has been shown that there are structural properties of a center’s
Markov state graph that yield easily analyzed PFSCs. The four-cycle and path properties are
powerful tools for discovering new and useful PFSCs. Two new PFSCs, the totally state depen-
dent, nonexponential LCFSPR service center, and the HMS service center, have been identified
by means of the techniques of Theorem 1 and its corollaries.

The significance of the path and four-cycle properties is that they may be used to charac-
terize PFSCs without appeal to the center’s state probability distribution. Other criteria for pro-
duct form, e.g. the M = M condition [Mun72, Mun83], local and station balance [CHT77], all
employ the center’s state probabilities in their formulations. Even the balanced property of
[ChM83] is defined in terms of a nonintuitive characteristic function that must be derived or
known a priori. Solving for the state probabilities of a system or class of systems is often a for-
midable task. The path and four-cycle properties may be verified without knowing a center’s
state probabilities. All that is required is to check that simple arithmetic relationships hold
among certain transition rates. Since the properties are closely related to reversibility, it is clear
that they are less general than other PFSC characterizations. For instance, Muntz [Mun72]
points out that reversibility is stronger than the M = M property. Nevertheless, the path and
four-cycle properties hold for many known systems, including all of the BCMP PFSCs,’ even
those with state dependent service rates given by Equation (1). This is evidence of the wide ap-
plicability of the technique. It has also been used to discover new PESCs. Even though the
results were primarily presented in terms of the natural Markov process, it may be noted that
they apply to queueing systems with different state descriptions, as in Corollary 2 and Theorem
4.

*Providing they have exponential service requirements.
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Figure 9. Model of a client-server system using an HMS service center.
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Other aspects of state dependent servers may be profitably investigated. In particular, it
may be worthwhile to examine the use of the techniques of this paper for constructing FESCs
used in decomposition methods for the approximate analysis of queueing networks that violate
product form. State dependent LCFSPR centers, HMS centers, and composite queues satisfying
the hypotheses of Proposition 2 are candidate FESCs for modeling aggregate subnetworks. The
appropriateness of such FESCs should be studied in the context of approximate analysis of
queueing networks.
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