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ABSTRACT OF THE DISSERTATION

An Assistant for Requirement-Driven

System Design
by

Kar-Wing Edward Lor
Doctor of Philosophy in Computer Science
University of California, Los Angeles, 1988
Professor Daniel M. Berry, Chair

This research introduces partial automation to a requirement-driven design
process. System design is a creative activity which requires a lot of human
Judgement. Yet it is possible for the machine to assist in the process. An interactive
tool is built to assist, but not replace, the human designer in designing a system based

on the requirements.

System requirements in the language described in this dissertation consist of
two different views of the system. They are the functional requirement view,
represented by a data flow model, and the operational concept view, represented by a
stimulus/response model. The design process starts after these two system views are

validated and found compatible with each other.

SARA (System ARchitects Apprentice) is a method for designing
hardware/software systems. Starting from the requirements, a design is made in the
form of the system’s structural and behavioral models. So far in the design
environment that supports this method, only informal requirements have been

involved, and automation is rarely employed in the design process. The human
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designer is completely responsible for all decisions, details and the correctness of the

products.

A proposed design assistant is intended to bridge this gap between the
requirements and the design. The operational semantics of all constructs in the
requirement models are defined. Based on these operational definitions, the aid
includes automatic generation of design structures in the SARA domain and validation
of the product. The goal of the tool is to ease the task of system design within the
SARA method,

xiv



CHAPTER 1

Introduction

1.1 The Problem

In the system development life cycle, various representations may be used to
indicate a system’s structure and behavior at different development stages. These
representations start with an informal system description and end with the actual
implementation. Figure 1.1 shows the products at four different phases of the
development life cycle. The initial descriptions of the system are usually written in
natural language. It is the requirement analyst’s job to convert them to some semi-
formal or formal requirement/specification models for analysis and validation. It is
then the designer’s responsibility to design the system based on the requirements, and

finally, the implementor’s job to build the actual system.

Can automation be employed in the three transformation phases (the three
arrows) illustrated in Fig. 1.1? Previous work in informal descriptions to requirement
models transformation include the Knowledge-based Software Design Aid [Hara85] at
the University of Illinois, and the Phrasal Analysis and Specification Analysis package
[Gran86] at the University of Southern California. Established projects in converting
requirements/specifications to design include the VLSI Design Automation Assistant
[KowaB85] at Carnegie-Mellon University, and the Advanced Design Automation
System [Gran85] at USC. There have been numerous attempts in transforming a

design into its implementation. A recent dissertation at UCLA revealed how design



Informal
System
Descriptions

\

Requirement
Models

Design
Models
Actual
Implementation

Fig. 1.1: Products from Four Stages of System Development



models can be translated into Ada™ packages [Krel86]).

This research focuses on automating the transformation from the requirement
models to executable design models, in the context of general software/hardware

concurrent systems.

1.2 Background

SARA (System ARchitect’s Apprentice) [Estr78] is a requirement-driven
design method for building concurrent software/hardware systems. The method,
employing both top-down and bottom-up approaches, aims to produce an abstract
model indicating the system’s structure and behavior. With respect to Fig. 1.1, the
SARA method guides a2 human designer to construct the third representation of a

systemn, the design models.

Since the inception of the project, there have been several editions of the
SARA design environment, which is based on the design method. The initial edition
was built on the MIT Multics system in the late 1970’s [Estr86]. In the early 1980’s,
the environment was re-developed on the Apollo™ workstations at UCLA [Krel85],
using a methodical tool-building method. Currently, a new version with more
sophisticated graphics is being installed on the SUN™ workstations at UCLA.
Nevertheless, all editions of the SARA environment provide basic tools for model
construction, simulation, analysis, and performance measurement. The environment
also includes various system support tools, such as a building block library and a

database browser. However, there is room to augment the SARA design method to

™ Ada is a trademark of the U.S. Department of Defense
™ Apollo is a trademark of Apollo Computer, Inc.

™ SUN is a trademark of Sun Micro Systems, Inc.



accommodate the earlier phases in the development life cycle such that automation

may be employed in the design process.

Details of the SARA design method and related research are addressed in a

subsequent chapter.
1.3 Motivations of this Research
1.3.1 Enhance the SARA Design Method

Heavy emphasis in the SARA design method has been put on the design phase
and the design model’s subsequent behavioral simulation and analysis. The
requirements on which the design is based are mostly informal problem descriptions.
So far, natural language, pseudo natural language, and informal algorithmic language
have been used. It would enhance the capability of the SARA design method by
adding a front end which consists of requirement processing, a methodical way of

preparing requirements; design synthesis, automating the design process; and design

validation, checking the validity of the design against the requirements.

Associated with the SARA project, there were two previous investigations in
the area of requirement processing. They include the development of a Requirement
Definition Language [Winc81], and a method for user-oriented requirement analysis
of large system [Burs84]. They are addressed in detail in the chapter on related work.
However, in these investigations, only requirement processing was emphasized. They
were not carried out in the directions of design automation and validation. As a result,
they are not considered satisfactory as basis of a complete requirement-oriented

design method.



1.3.2 Design Automation versus Automatic Programming

A research area analogous to system design automation is automatic program
synthesis. The analogy is drawn from the fact that both areas of work aim to mode! the
process of transforming requirements/specifications into design/implementation.
There has been a lot of research attempting to automate the programming process, but
just a few previous attempts to automate a general hardware/software design process.

Established projects in automatic programming include, but are not limited to:

. the DEDALUS system at SRI [Mann79a], which synthesizes LISP code from

high-level, predicate-calculus like specifications;

. the EXAMPLE system at Stanford University [Shaw75], which synthesizes
LISP code from input/output examples;

. MIT’s Programmer’s Apprentice [Wate82], a knowledge-based program editor
which helps a programmer to construct or modify programs according to some

built-in plans;

. the PECOS system at Stanford University [Bars79}, a knowledge-based system

which constructs program code from algorithmic descriptions;

. the Glitter system at USC’s Information Science Institute [Fick85], which
automates the Transformational Implementation (TI) model [Balz81]. Tl is a
system transforming formal program specifications into implementations.

All of the above mentioned systems try to model the process of coding based on some

form of specification, a program’s input/output relation, predicate calculus, an abstract

algorithm, etc. However, none of these methods are able to produce large-scale,

practical software systems due to problem complexities. It is unrealistic to ask a



customer to formally specify a software system in terms of its abstract specifications,
due to the discrepancies between fuzzy ideas of what the customer wants and formal
specifications of system behavior. Moreover, writing formal specifications for a large
system is as difficult as, if not more than, coding. As a result, the research described

in this dissertation does not employ formal, abstract system specifications.

In practice, a requirement analysis phase is mandatory in large system
development. It is appropriate to start the system development from informal problem
statements, and then move to semi-formal requirement specifications, then to design,

and finally, to implementation.
1.4 Research Plan and Expected Contributions

The focus of this research is to automate the requirements to design
transformation as well as validate the design with respect to the requirements. It is
projected that a connection exists between requirements and design, and this
connection may be used in design synthesis and validation. As a result, the tasks of
system design and validation can be made more precise and algorithmic, and thus

built into the SARA environment itself.

The proposed requirement-driven design environment is shown in Fig. 1.2. In
this picture, the box SARA design tools corresponds to the tools currently available in
the SARA environment. They are still the nucleus of the environment, but some
additional pieces can be added to achieve our automation objective. The tools added

include

L. a requirement preparation tool,

a graph-based editor used to construct the requirements in form of various
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requirement models,

2. a requirement validator,
a knowledge-based system that takes multiple views of system requirements

and matches them against each other to ensure completeness and consistency,

3. a rule-based design synthesizer,
another knowledge-based system that takes requirements as input and

produces design models as output, and

4. a design validator,
a tool that checks the design models with respect to the requirement models.
The latter two components are collectively called the Design Assistant, the core of

this research.

Requirement processing is considered a front end of the design method. Given
multiple views of a system, obtained from different parties involved in system
development, the requirement validator checks their compatibilities and looks for
inconsistencies. If any are found, the views are refined by the parties until they are

consistent. The end product is a set of consistent and complete requirements.

Once the requirements produced from the validator are pronounced
satisfactory, automation may play a role in the design process. In particular, a human
designer feeds portions of the requirements to the design synthesizer, which produces
abstract models of the system representing its structure and behavior, If a design is
produced by human, the validator can check its dependency relations with respect to

the requirements.



The major contribution of this research is to provide a better understanding of
the SARA design process. This understanding is possible if some sort of mappings
can be established between the requirement models and the design models. Based on
this mapping, a design assistant is actually built to ease the SARA design process for

the human designer.
1.5 Research Hypotheses
Before carrying out the research, we make the following hypotheses.

The availability of the requirement validator

The requirement validator is an ongoing research project at Hughes Aircraft.
The idea of automatically generating design from requirements originated from this
requirement validation concept. It is hypothesized that this requirement validator is
available, such that complete and consistent requirements are available as the basis of

design synthesis and validation.

The requirement models are expressive enough

The two requirement models used in this research, the data-flow model and the
stimulus/response model, are expressive enough to specify all the relevant information
about the system. Only the information of event precedence and data dependencies

are essential for design synthesis and validation.

Knowledge codified in the knowledge base is correct

In the normal practice of knowledge-based systems, there is no formal method

to verify the correctness of the codified knowledge. For the purpose of this



investigation, we assume the correctness of the design knowledge built into the
system. The only way to check the result of the synthesized product against the

original requirements is to test-run the synthesized design and observe its result.

1.6 Organization of this Dissertation

The next chapter describes various related research projects. Chapter 3
introduces the requirement models. The SARA design method as well as past and
current SARA-related research are described in Chapter 4. In Chapter 5, the front-end
requirement tool, Hughes’ requirement validator, is described in detail. The nucleus
of the research, the design assistant, the design synthesizer and design validator, are
discussed in Chapters 6 and 7, respectively. Chapter 8 concludes with a discussion of

what has been accomplished and a description of some future work in this topic.
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CHAPTER 2
Related Work

In this chapter we review some previous work related to this dissertation. This
work includes wvarious established projects in requirement analysis, system

specification as well as previous attempts in design automation.
2.1 System Requirements and Specifications

Since the mid seventies, preparing system requirements and specifications has
become an integral part of the system development cycle. System
requirements/specifications provide solid bases for system design, implementation,
analysis and verification. The following sub-sections describe several significant

projects in this area.
2.1.1 Problem Statement Language/Problem Statement Analyzer

One of the first projects, as well as one of the most widely used methods, in
requirements analysis originated from the Information System Design Optimization
System (ISDOS) group at the University of Michigan. This research was performed
from mid to late 1970s. The most significant tool developed in this project was the
Problem Statement Analyzer (PSA), which processes requirements written in the
Problem Statement Language (PSL) [Teic77]. PSL is a computer processable
language used to describe a system. It is based on the idea that a system consists of a

collection of objects. Each object has properties, and each of these properties have
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property values. These objects are connected to each other in specified relationships,
in the form of object, is-related-to object,. System attributes described by PSL

statements include:

. system input/output fiow,
. system structure,

. data structure,

. data derivation,

. system size and volume,
. system dynarmics,

. system properties, and

. project management.

PSA is a set of programs that interpret PSL statements, store them into a database, and
produce various documents about the system, including database modification reports,

reference reports, summary reports, and analysis reports.

PSL is adequate to write system descriptions for the sake of documentation.
By not being tied into any particular design method, PSL/PSA can be used for any
method. However, requirements written in PSL have a rigid structure but rather
informal details. This makes PSL statements good enough for analysis and report
generation, as a preparation for the design stage, but not formal enough as basis for
design automation. As we will see, Winchester [Winc81] attacked the problem of
building a bridge between PSL/PSA and the SARA design domain.

12



2.1.2 Structured Analysis

About the same time as the ISDOS project was going on, another requirement
analysis method called Structured Analysis (SA) emerged [Ross77a, Ross77b]. This
method, introduced by Douglas Ross of SoftTech, Inc., was considered as a pictorial
means to communicate ideas. Structured Analysis has two dual aspects, a thing
aspect, called the data decomposition, and the happening aspect, called the activity
decomposition. Tt uses a flow-oriented style, in various levels of abstractions, to
indicate how things and happenings interact. Generally, any problem can be

described precisely through this gradual, top-down decomposition manner.

An SA model consists of a collection of diagrams, which are different levels of
description of a subject. There are forty SA language features, as introduced in
[Ross77b], to be used to draw those diagrams. Each feature have five aspects:
purpose, concept, mechanism, notation, and usage. The fundamental building block
of SA language notation is a black-box construct as shown in Fig. 2.1. Each SA
diagram is a collection of these boxes, connected by arrows. For each box in a

diagram, a lower level diagram may be drawn to reveal more details on that box.

At the beginning, all drawings in structured analysis were done by hand. It
was not until recently that automated tools were developed. These tools include a
graphical editor used to build the SA diagrams, and a tracer used to trace the
decomposition from top level to lower-level diagrams. However, SA charts are used
only to illustrate the static properties of a system. No known tool is available to

analyze and simulate a system specified in SA diagrams.

13
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SA is a sufficient means for defining system requirements. However, like
PSL/PSA, it is not mapped into any design method. Structured analysis itself is not

sufficient to bridge the known gap between requirements and design.
2.1.3 Structured Analysis with Data-Flow Model

Based on Structured Analysis, Tom de Marco of Yourdon, Inc. introduced a
requirement definition method using the data-flow model [Marc79]. It is simply a
refined structured analysis with the data-flow domain replacing the original SA
language features. This method is a progressive logical definition of the two
fundamental elements, function and data, of a system. It particularly describes how
data within a system are transformed and transferred. Data, as well as their
transformers and flow paths, are defined in various levels of refinement. The highest
level diagram gives an overall picture of the system. Each -primitive in the highest-
level diagram is refined in a second level diagram if necessary. Each primitive in the

second level diagrams, in turn, may be further refined in a third level diagram, etc.

There are three basic entities in this method: data-flow diagrams, data
dictionary, and mini-specifications. Data-flow diagrams are used to illustrate
pictorially the transfer of information within the system. The data dictionary is a
collection of definitions of data-flow primitives of one level in terms of primitives of a
lower level. In other words, the data dictionary gives full account of how each
primitive is decomposed at each level. Attached to each process is a description
called its mini-specifications. Written in structured English, a natural language subset
with an algorithmic appearance, this specification describes the behavior of the
process. In particular, it specifies what computations are done on the incoming data to

produce the outgoing data.

15



In the field of software engineering, the data-flow model is considered by
many as a form of design. Compared to the original Structured Analysis, this method
may be considered as a requirement analysis and design method. However, it focuses
on only the thing aspect and ignores the happening aspect of a system. As a result,

control attributes and event ordering within a system cannot be addressed.

Since this approach is one we adopt for requirement specifications, further
details of the data-flow model will be given in Chapter 3, the chapter we introduce the

requirement models.
2.1.4 Stimulus/Response Model

Also in the mid seventies, Computer Science Corporation developed another
method in system specifications and specification verification [Belf76a, Belf76b],
namely the stimulus/response model. The major component in this model is a
directed graph, the System Verification Diagram (SVD) [Fish79, Dona78]. Each node
in the graph, called the Decomposition Element (DE), corresponds to a
system/subsystem. Each decomposition element, in turn, may be decomposed into a
sub-diagram. Associated with each node (DE) are node-initiating stimuli and
expected responses. A stimulus or response may be a message, an action, an enable
signal, a system state, etc. Various logical constructs are used to govern the

dependencies and orderings among the decomposition elements.

The tools of this project include a graph translator and graph simulator, The

translator has three functions:

. syntax analysis — process the individual DEs, analyzing the syntactic

structure of stimuli and responses.
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. verification graph generation — connect the DEs to form a verification

diagram, as well as build a connection matrix of the graph.

. verification graph analysis — perform various analyses on the connection
matrix, including determining the total paths through the system, identifying

the longest and shortest paths, and finding al! global stimuli and responses.

Another tool, the requirement simulator, is used to dynamically analyze the
requirements to ensure compatibility and traceability. It is able to perform analysis on
both the functional and performance characteristics of the system, as well as timing,

functional flow and accuracy.

This specification/verification technique is useful in deriving correct system
requirements. There is also a possible link from this stimulus/response model to the
SARA design method. The shortcoming is its inability to address the thing aspect,
such as data flow, change of data state, and data composition, of a system. A data-
oriented model is suggested to complement the technique and to eliminate this

deficiency.

As it is one of the two models we adopt to represent requirements, further

details of the stimulus/response model can also be found in Chapter 3.
2.1.5 PAISLey

In the early 80’s, Pamela Zave of Bell Laboratories also developed a formal,
operational requirements specification model for embedded systems [Zave82]. A
system is specified as a collection of processes, and the internal computations of the
processes are specified in an applicative language. The specification is executable

such that the requirement analysts can test and dcbug it. It may even be used as a
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small-scale prototype of the system.

The specification language of this model is called PAISLey (Process-oriented,
Applicative, and Interpretable Specification Language). It emphasizes the cyclic
nature of system components. Each process is written as a function which changes a
computation state to a successor state. The language requires type definition of each
function — the domains of its parameters and its return values, as well as the function

body.

The focus of this specification method is its use of functions to specify process
interactions. Three primitives, known as exchange functions, are provided in the
language for this purpose. An exchange function carries out two-way point-to-point
mutually synchronized communication. Each exchange function has a type and a
channel (a user-chosen function name). Only exchange functions with the same

channel can talk to each other. The three kinds of exchanges are:

i a basic exchange that matches any other pending exchange function on its
channel. If no other exchange function is pending, it will wait until one is. If

more than one function are pending, it will choose one nondeterministically,

1. a competitive exchange that behaves like the previous one, except that two
competitive exchanges on the same channel cannot match with each other.

They may in turn compete to match exchanges of some other types,

iii. one that behaves like the previous two except that it will not wait to find a

match.
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The operational nature of PAISLey makes it easy to synthesize the
specifications to eventual code in an applicative language like concurrent LISP.
Besides behavioral requirements, performance requirements can also be specified in

PAISLey.
2.1.6 Event-Based Specifications

In the early 80’s, Bo-Shoe Chen and Raymond Yeh of the University of
Maryland developed an event-based method to formally specify distributed systems
and verify the correctness of their implementation {Chen82, Chen83]. Among events,
the following relations may be specified:

. time ordering,
. concurrency,
. enables, and

. system, environment, and their interface ports

They developed a language called Event-Based Specification Language (EBS)
for system specification. EBS has the flavor of a structured programming language
when specifying a system skeleto;l. A system module, or structure in EBS, as well as
its interface ports with outside, is specified like a procedure declaration with
input/output parameters. Specifications of sub-structures are enclosed textually within
the structure specification. Input/OQutput ports of structures and the network
connecting the ports are declared likewise. The behavior of each lowest-level
structure is specified in predicate calculus, with additional operators defined for time-

ordering, concurrency, and event enables.
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The objective of EBS is to analyze the specified system. This includes
formally verifying system properties like liveness, safety, termination, etc., according
to the given behavioral specifications. Like PSL/PSA and Structured Analysis, this
specification method is not geared towards any system design/implementation

methods.
2.1.7 Computer Assisted Specifications

In 1983, Meir Burstin, jointly with Tel Aviv University and UCLA, developed
a requirement analysis technique which is user-oriented instead of function-oriented.

All requirement checking, composition, etc, are done with respect to the user.

In his approach, he defines the term abstract user, an entity which affects the
system’s requirement. An abstract user of a system can be a person, a group of
persons, an external process, or another system. Starting from a highest-level abstract

user, the requirement analysis process includes:

1. Decompose the root abstract user to sub-abstract users. This decomposition
process stops when a primitive abstract user, at the lowest level, cannot be

further decomposed. The product of this step is an abstract user tree.

2. Interrogate each primitive abstract user for its requirements, in the form of

imperative sentences.

3. Compose the requirements of the primitive abstract users. Also compose the
objects and their data types extracted from each imperative sentence. The
products are two trees — an abstract requirement tree and an abstract data type
tree. Checking is done during the composition, to ensure compatibility among

the three trees. Corrective actions are taken at this time.
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Burstin built an expert system, namely the Computer Assisted Specification (CAS)
system, for this requirement analysis. His system includes a knowledge base with a

collection of composition rules, decomposition rules, precedence rules, etc.

Burstin’s requirement language basically consists of natural language
sentences in imperative form. The requirements indicate what each user wants the
system to perform in an algorithmic form, but it tells nothing about the system’s
structure, nor the relationship, precedence among the users requested operations. This

form of requirement is not suitable for design automation in the SARA domain.
2.2 Design Synthesis Based on Requirements/Specifications

With the availability of requirements and/or specifications, the design process
may proceed. Artificial Intelligence researchers have been trying to model this
requirement-based design process, which is somewhat analogous to the programming
process; the latter process has already been investigated in numerous automatic
programming projects. Within the scope of this dissertation, we will only review

several successful experiments in design automation.
2.2.1 Requirement Definition Language

Around 1980, James Winchester of the SARA project at UCLA proposed
extending the SARA design environment with a set of requirement analysis tools. He
introduced a Requirement Definition Language (RDL) and a Computer Information
Processing System Semantic Model (CIPSSM) {Winc81]. RDL, a language based on
PSL, is used to express the system requirements. RDL statements are then translated

into a CIPSSM, a conceptual version of the system’s structure and behavior.
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The CIPSSM structural model has the following primitives:
. system,

. dataflows, and

. connectors;

while the primitives of the CIPPSM behavioral model are

. functions,
. data-uses, and
. processes.

He also established direct mappings between primitives in the CIPSSM domain and
the SARA domain, both of which just happen to indicate the structure and behavior of
a system. With this mapping, SARA design structures can be directly derived by
translation from a CIPSSM.

Furthermore, Winchester proposed a set of additional tools to the SARA

environment for requirement analysis. The tools include:

1. RDL interpreter
The interpreter allows the analyst to input, edit, and save requirements, in

RDL, of the system. It also translates the RDL statements to a CIPSSM.

2 Query Programs

This tool serves as the interface between the tools and the human analyst.

3. Graphics
This package graphically displays the specified Computer Information
Processing System (CIPS) on the screen.

4, Analysis Checker
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The analyzer is used to check the requirements for: understandability,
consistency, completeness, traceability, testability, realizability, and design

freedom.

5. SARA Interface
This tool creates a SARA model from the CIPSSM, according to the mapping
between the two models. With a SARA model in hand, the system specified
may be simulated, analyzed, and directly implemented with the available
SARA tools.

In Section 3.20 of his dissertation, Winchester gave his thoughts on
requirements and design;

-+. Nearly all methodologies concentrate solely on
either the requirements phase or design phase of
the CIPS development cycle. The narrow
concentration creates an artificial gap in notation
and analysis between the requirement and design
phases, resulting in ad hoc methods to bridge this
artificial gap. A more extensive synthesis of the
requirement definition and design methodologies is
needed, not to bridge the gap but to close or
eliminate it.

In other words, he attempted to merge the requirement and design phase of a CIPS
development cycle. That explains the one-to-one mapping from the CIPSSM to
components in the SARA models. Coupled with another one-to-one mapping from
RDL statements to CIPSSM imposed by the translator, what Winchester proposed was
2 one-to-one mapping between requirements and design. However, requirement
analysis and design are work done by different parties with different objectives.
Requirements should not be written or analyzed with the design in mind. The

Requirement Definition Language was apparently developed according to the SARA
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design domains. Winchester’'s work made requirements and design almost

indistinguishable.

This project is included as work in design automation rather than
requirements/specifications because of its close tie with the SARA design method.
Unlike other design autornation projects, Winchester’s straightforward synthesis

approach contains only a minimal flavor of artificial intelligence.
2.2.2 Knowledge-based Software Design Aid

In 1986, Mitchell Lubars completed his dissertation at the University of
Illinois on a knowledge-based software design aid [Hara85, Luba87]. This aid accepts
system specifications, in restricted natural language, and produces a design in form of

data-flow diagrams. The design aid is composed of three major units:

. the knowledge base, consisting of schematic system design information, a data
dictionary, a data-flow transformation (process in the data-flow literature)

dictionary, and knowledge about various domains of application,

¢ the design refinement unit, which is the inference engine of the system

controlling the design process, and

. the system user interface, which is responsible for all user-system interactions.

The human designer supplies an initial specification to the design aid. The aid
locates schemas in the knowledge base which match the specifications, and creates
appropriate dataflows and transformations. After constructing a top-level data-flow
diagram, the refinement unit may decompose the top-level diagram to sub-diagrams

according to the refinement rules. Additional specifications may be entered to guide
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the refinement process. The end-products of this design aid are data-flow diagrams

with various level of refinement.

This design aid, given natural-language-like specifications, produces a
software system design in the form of data-flow diagrams. Unfortunately, the artifact
does not reveal any control flow of the system. With respect to our research, this aid
fits exactly into the requirement definition phase, to be used by the requirement

analyst to build the data-flow models.
2.2.3 Design Automation Assistant

At Carnegie-Mellon University, there was a design automation project
conducted by T.J. Kowalski and D. E. Thomas in the early 1980’s. The major product
of this research is 2 Design Automation Assistant (DAA) [Kowa83, Kowa85]. The
assistant is actually an expert system that generates VLSI design from ISPS
(Instruction Set Processor Specification) descriptions, a computer description
language [Barb79] also developed at CMU. DAA was implemented as a production
system using the OPS5 [Forg81] knowledge-based system writer.

DAA carries out VLSI design according to built-in design knowledge.
Initially, it partitions the whole design into smaller blocks. Within each partition, it
defines physical atiributes such as clock phases, operators, registers, data paths and
control logic. Generally speaking, the task performed by DAA may be classified into

four subtasks —

. Global Allocation
Define the global, non-changeable, system components such as memories,

registers, database, global constraints, etc.
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. Dataflow Allocation
Define the connections between the physical components. In particular, it
assigns operators to control phases, allocate temporary registers, associate

dataflow operations to registers.

. Module Allocation

Allocate and Deallocate registers and modules in the design.

. Global Improvement
This task includes removing unnecessary components within the system, as

well as merging redundant, sharable, components.

The three major components in DAA are a working memory, a rule memory,
and a rule interpreter. The working memory stores the descriptions of the situations,
or design states. The rule memory is a collection of more than 300 rules that represent
VLSI design knowledge. Each rule is in the form of

IF condition THEN design action
The rule interpreter matches the current situations against the rule antecedents, and
applies the consequences if matched. Rule interpretation is carried out in a forward-
chaining scheme. The use of a rule-based system makes it possible for DAA to

acquire knowledge incrementally,
2.2.4 Advanced Design Automation System

Since the early 1980’s, there has been work in design automation at the
University of Southern California. The most significant tool of this project was an
Advanced Design Automation System (ADAM) [Gran85, Knap86]. ADAM, an

intelligent aid to circuit design, consists of a collection of custom layout tools, a
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natural language interface, a database for design representation, and a knowledge-
based planner. The nucleus of the system is the planning engine which produces a

design plan according to the specifications and design knowledge.

In ADAM, the product of the design process is an object called component,
which represents a complete system or a subsystem. A component has the following
six attributes — a data-ﬂow model, a structural model, a timing model, a physical
model, a set of bindings and synthesis status. The design process in this method
consists of four design subspaces based on four of the above attributes: data-flow
behavior, structure, physical properties, and timing. The four subspaces are related to

each other by interspace bindings.

Major components within the automation system are the knowledge base and
the planner. The knowledge base contains codified knowledge of the design task,
design techniques and design alternatives. Knowledge is built into the system in the
form of semantic-net-like interpenetrating graphs. The planner, called the Design
Planning Engine (DPE), is used to generate design plans with respect to a circuit
specifications and constraints. The planning activity can be divided into two phases:
planning and execution. The execution space consists of a set of operators (design
tasks such as hardware allocators, microprogram generators, etc.) and design state.
The planning space consists of abstract representations of operators, in form of pre-
and post- operation assertions, and states in the execution space. DPE, operated in a
forward-chaining manner, matches the initial design state with one or more pre-
operation assertions, and generate one or more new states. This process stops until a
goal state is reached. The path from the initial state to the goal state forms a design

plan. A design is then actually produced by executing the plan.
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CHAPTER 3
Models for Requirement Specifications

In this chapter, two models for system requirements, the data-flow model and
the stimulus/response model, are introduced. The data-flow model primarily exhibits
the movement of data and the hierarchical structure of the system, but its inability to
carry control flow information is considered a weakness. This deficiency is corrected

by the stimulus/response model in our requirement representation.

3.1 Data-Flow Model

In a multiple-view requirement validation paradigm [Deut87], Tom de
Marco’s data-flow-based Structured Analysis [Marc79] is used to represent the
functional requirement view of a system. This view describes the composition of the
system, the external input/output of the system and internal input/output of sub-
systems, their relationships, etc. This view is most meaningful to the customer, who

requests the development of the system and lays down its desired behavior.

There are three entities in de Marco’s approach: Data-Flow Diagrams, Data
Dictionary, and mini-specifications. Data-Flow diagrams (DFD) are used to indicate
the direction of data movement between components within the system. The data
dictionary is used to define the composition of each component in the system. Natural
language, or pseudo-natural language, is used to write the mini-specifications for
individual data transformation component, describing how data are transformed. We

are particularly interested in the Data-Flow Diagrams and the mini-specifications for
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the functional requirement view.

Data-Flow Diagrams are made up of four primitives,

1. dataflow, a pipeline in which a packet of information flows,

2. process, a transformation of incoming data to outgoing data,

3. datastore, a temporary repository of data, and

4. datasources or datasinks, the net originator or receiver of data, lying outside

the scope of a system.

These four primitives are illustrated in Fig. 3.1. In the literature, dataflows are
represented by named vectors, processes are represented by circles, or bubbles,
datastores are represented by double straight lines, and datasources or datasinks are

represented by boxes.

For a large system, it is unrealistic to specify the entire system in one single
data-flow diagram. It is more appropriate to draw a global picture of the system, and
then apply structured analysis, or‘decomposition, to it. The decomposition stops when
the processes in the diagram are considered primitive enough to describe its precise
data transformation requirements. The very first diagram, before any partitioning, is
called the context diagram, context schema, or the top-level diagram. It gives a global
view of the entire system data flow. The last diagrams, called the bottom-level
diagrams, consist of detailed data-flow primitives. All the diagrams falling between

these two levels are classified as middle-level diagrams.
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data flow datastore

process datasource/datasink

Fig. 3.1: Primitives in the Data-Flow Model
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To understand the refinements of data-flow diagrams, the composition of each
primitive in the diagram has to be defined. The Data Dictionary is simply a collection
of these data compositions. Every primitive has its own entry format in the dictionary.

Each of them are introduced as follows:

DATAFLOW
name — name of the dataflow
composition — the definition, a dataflow may be defined as a collection of sub-

dataflows used in its lower level diagrams.

DATASTORE, DATASOURCE or DATASINK

name — name of the primitive

composition —— a datastore, datasource or datasink can be defined as a collection
of sub-datastores, sub-datasources, or sub-datasinks.

PROCESS

name — process name

number — pracess number, proper identification of a process. The top-level
diagram is considered as level 0, and its n bubbles are identified
by numbers 1 to n. When bubble j is partitioned into m bubbles
in a level I diagram, these new bubbles are assigned numbers j./
to j.m, and so forth.

description — the mini-specification, describing transformation of incoming

data to outgoing data.

Since dataflows, datastores, etc. may be composed of subordinates, it is
necessary to define some compositional operators. A sample dataflow composition
would be like:

Task-Designator IS EQUIVALENT TO: EITHER: Job-Step-Number
OR: %t]z)er-COde

Task-Name

Using an extended context-free grammar, the following notations are used for the

composition operators:
= means IS EQUIVALENT TO.
+ means AND.
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[] means EITHER-OR; i.e. select one of the options enclosed in the brackets.

{} means ITERATIONS OF the component enclosed; the form L{....}U means
iterations from lower bound L to upper bound U.

) means that the enclosed component is OPTIONAL.

The sample datafiow composition above can be rewritten as:

—Desi = Job —Step ~-Number
Task-Designator = [Owner -Code + Task —Name]

In the data-flow model, there is a third entity called the mini-specifications.
Attached to each lowest-level process in the data-flow diagram, it is simply a
paragraph, written in natural language, pseudo-natural language, or an algorithmic
language, stating the data transformation of the process. The role of mini-
specifications in_ requirement validation and design synthesis will be discussed in

subsequent chapters.
3.2 Stimulus/Response Model

A second view of the system, the operations concept view, is represented by
the stimulus/response model [Dona78]. This view describes the processing scenarios
in the system, the relationship among the scenarios, how a scenario is invoked, and
what it produces. This view is extracted from the prospective user of the system by the

requirement analyst.

The major entity in the stimulus/response model is the System Verification
Diagram (SVD). The primary purpose of an SVD is to serve as a tool for verifying

the clarity, consistency, and completeness of system requirements. The SVD was
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initially a means to verify requirement specifications [Cary77]. Now it is used to
describe a system’s operations concept, as well as serve as basis of design automnation

and validation.

An SVD is a directed graph, in which each node corresponds to a
system/subsystem requirement specification. A node, called a Decomposition
Element (DE), is considered as a functional black box which takes external stimuli
and produces responses. Pictorially, a decomposition element is shown in Fig. 3.2.

The definitions of the contents of the decomposition elements are given below:

i STIMULUS -
External system/subsystem entities from any source, manual or automated, that
stimulate the system/subsystem. A stimulus may be an operator

request/command, system message, external file, system state etc.

il NAME -
A descriptive name for the system/subsystem. This block should identify the
process; it should not describe those process components that modify or

constrain the process.

1id. RESPONSE -
All entities produced by the system/subsystem. products of the function. A

response may be a system condition, an action, a message, etc.

iv. LABEL -
Unique numerical identifier assigned to each decomposition element in the
SVD. There is no convention for assigning the identifiers except that they

should follow a numerical sequence within each segment or subdivision of the
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Fig. 3.2: Layout of a Decomposition Element
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system/subsystem SVD.

In this dissertation, we classify the stimuli and responses into several categories.

Stimuli

Physical stimulus
A physical stimulus is simply a tangible or intangible object, let it be a

message string, an initiation signal, a set of data, etc.

Stimulus condition

A stimulus condition is a particular condition imposed on a physical stimulus,

Synchronous stimulus

A synchronous stimulus is an initiation signal at a specified time interval,

State stimulus
A state stimulus is the continuous truth of a condidon on the

system/subsystem.

Disjunctive stimulus
A disjunctive stimulus consists of two or more stimuli of the above types. Only

one of them is enough to stimulate the system/subsystem:.

Stimulus sequence
A sequence of stimuli consists of two or more stimuli, with an ordering of
arrival imposed on them. If stimulus s, is followed by stimulus s, in the

sequence, then s has to arrive ahead of 54 to stimulate the system/subsystem.

We also introduce several terms to be used in subsequent chapters. A stimulus s is a

derivative of stimulus s, if s, is a condition imposed on s,, or 5; contains 55 as a
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sub-stimulus. For example, the stimulus condition
command from keyboard = 'FINISH’
is a derivative from
command from keyboard.
A compound stimulus is one that built on top of another stimulus. For example,
command from keyboard = "FINISH"
is a compound stimulus built on top of
command from keyboard.

A primitive stimulus is antonymous to a compound stimulus.

Responses

1. Physical response

A physical response describes the same type of objects as a physical stimulus.

2. State response

A state response is a cause of changing of system/subsystem state.

3. Action response
An action response is an initiation of an action which will produce a physical

response, or change a system/subsystem state.

4, Alternative response
An alternative response consists of a condition, and two responses. If the
condition is satisfied, it will produce the first response, otherwise the second

response.

5. Response sequence

36



A sequence of responses consists of two or more responses of the above types,

with an ordering of production imposed on them.

Since the system requirements consist of multiple system verification

diagrams, it is possible for a decomposition element to produce a response for, or to

receive a stimulus from, an external SVD. As a result, every stimulus/response has a

parent SVD it belongs to. It is considered an external stimulus/response in any other

SVDs in which it is referenced. An external stimulus/response is distinguished by a

special tag.

Since the SVD is a directed graph connecting all decomposition elements, this

directed graph indicates the logical relations among the DEs, or system/subsystems

requirements. In other words, this graph tells the functional process flow within the

system/subsystem. There are five permissible logical relationships for DEs:

ii.

Exclusive OR (Fig. 3.3)

Decomposition element A is the predecessor of element B, C, and D.
Elements B, C, and D are connected by a common bus (directed arc in the
graph) and are exclusive OR successors of A. This means that, following the
processor associated with the function in element A, only one of either B or C

or D will occur, depending upon the inputs to the elements that follow element
A,

Sequential Inclusive OR (Fig. 3.4)

Elements E, F, and G are sequential inclusive OR successors, meaning that the
input stimulus to element E is checked first to see whether or not it exists. If
the input stimulus to element E does exist, then the functional processing

associated with element E is performed. Regardless of whether element E was
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Fig. 3.3: Logical Relation - Exclusive OR
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Fig. 3.4: Logical Relation - Sequential Inclusive OR
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iii.

iv.

processed, the input stimulus to element F is checked, followed by the input
stimulus to element G. As a result, any combination of elements E, F, and G

may occur.

Sequential Exclusive OR (Fig. 3.5)
Elements H, I, and J represent sequential exclusive OR successors, meaning
that the input stimulus to element H is checked before I and 1 is checked before

J, but that the first match is the only one of the three to occur.

Sequence (Fig. 3.6)
Elements K, L, and M represent a sequence, meaning that K must occur before

L, and that L. must occur before M.

AND (Fig. 3.7)
Elements N and O represent the start of parallel processes, both of which will

occur,

An SVD may be regarded as a rigid form of system requirements. Given a

textual problem description, a requirement analyst usually identifies the major sub-

divisions of the system and starts building the decomposition elements from these.

For each decomposition element, he or she then extracts its stimuli, function, and

responses from the specification text. Finally, he or she logically relates each DE with

other DEs, according to the text, by the permissible logical relation constructs, and the

SVD of a system is completed. This SVD may be systematically checked for

completeness and consistency. It is also an appropriate specification against which the

flow of control in a design may be validated.
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Fig. 3.5: Logical Relation - Sequential Exclusive OR
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Fig. 3.6: Logical Relation - Sequence
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Fig. 3.7: Logical Relation - AND
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3.3 Requirements of an Aircraft Monitor System

To illustrate the use of the two models, we present two views of an aircraft
monitor system as an example. This aircraft monitor is borrowed from a study of
system development methodology [Jack81], published in the United Kingdom. The

natural language description of the system is given as follows:

The system performs various aircraft monitoring and
recording functions.

The aircraft has 4 engines, each fitted with
temperature and pressure SsSensors. These sensors
are to be polled by the system at regular 1 second
intervals. All sensor readings are fed to dials,
one for each sensor. All readings are also tested
to be within a safe working range. After three
consecutive out of range readings a lamp,
corresponding to the sensor, is changed from green
to red, by the system, to warn the crew. Three
consecutive out of range readings are taken to
prevent intermittent transmission failures causing
an alarm sequence. Any sensor which fails to
respond to a poll sequence i1s timed out and treated
as if it had supplied an out of range reading.
Three consecutive time-outs cause the warning lamp
to switch from green to red.

The aircraft is fitted with a number of smoke
detectors. Two types of interrupts can be
generated by the smoke detectors:

a. when smoke is first detected;
b, when smoke is subsequently no longer detected.

On receipt of any smoke detected interrupt the
system switches a smoke warning lamp from green to
red. In order to test the detectors it is possible
for the system to act as 1if smoke had been
detected, i.e. a "smoke" interrupt will be
generated followed by a "no smoke" interrupt. It
is anticipated that this test will be performed as
part of the flight preparation sequence but could
be repeated at any time.



The fuel tank 1is fitted with a sensor to
provide information on the quantity of fuel
remaining. This sensor 1s polled, by the system at
1 second intervals. The readings are passed on to
a dial. The system switches a warning lamp from
green to red when only 10% of the full fuel load
remains in the tank.

The system supports a VDU and keyboard. The
keyboard can be used to request that the VDU
display new sensor data (e.g. latest readings or a
recent history of readings}) or certain values
calculated from the data (e.g. rate of change of
pressure, rate of fuel consumption). In addition,
any out of limit readings from the sensors, smoke
interrupts, etc., which cause warning lamps to be
illuminated will also cause messages to be flashed
on the VDU, The warning messages take precedence
over regquested displays and will persist until
acknowledged wvia the keyboard. When all messages
have been acknowledged the last requested display
will be displayed. The keyboard can also be used to
request the smocke detectors to simulate smoke
detection.

All sensor readings (temperature, pressure,
smoke detection, fuel) are recorded on a magnetic
medium for subsequent analysis, together with all
keyboard requests and acknowledgements. All such
readings are tagged with the time at which the
interrupt was received by the systemn.

Sample data-flow diagrams and system verification diagrams of this example will be

illustrated in this section.

In the description, we identify at least seven datasources or datasinks lying

outside the context of the monitor. They are the engines, smoke detectors, fuel tank,

VDU, keyboard, lamp, and the magnetic medium for recording. We make the

following decisions while constructing the functional requirements:

Since there are operations defined for the VDU and the recorder, we decide to

make them processes instead of datasinks or datasources.
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2. There is a mention of time stamps at certain instances, a clock is needed.

3. There is no mention of a starting signal, but a start button is needed for system
startup, especially for the synchronous processes.

As a result, the level-0 data-flow diagram of this system consists of: a monitor, engine

sensors, smoke detectors, a fuel tank, a VDU, a keyboard, a warning device, a

recorder, a clock, and a start button. Fig. 3.8 illustrates the relationship among these

components.

Since the monitor is the focus of this system, we decide to refine it first. The

following decisions are made:

1. According to the text, there are two types of monitoring, synchronous
monitoring of the engine and fuel tank, and asynchronous monitoring of the
smoke detectors. We decompose the monitor process into two sub-processes:

synchronous monitors and asynchronous monitors.

2. After the initiation signal, all peripheral devices are to be turned on. Some,
such as the VDU and the recorder, are going to receive initial data. A driver
process is needed to invoke these devices.

A level 1 data-flow diagram showing these ideas is illustrated in Fig. 3.9. Two level 2

data-flow diagrams, refinements of the synchronous monitors and asynchronous

monitor, are shown in Fig. 3.10, and Fig. 3.11, respectively. Furthermore, other
primitives in the highest-level diagram may also be refined. For example, since there
are four engines, the datasource engine-sensors in the diagrams is defined as sub-
datasources:

engine —sensors = engine —sensor 1 + engine —sensor 2 +

engine —sensor 3 + engine —sensor 4
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and the dataflow sensor-reading is defined as:
sensor—readings = sensor—reading 1 + sensor —reading 2 +
sensor —reading 3 + sensor —reading 4
The complete set of data-flow diagrams describing the data movement within the

system can be found in Appendix B.

Now we focus on the other requirement model, the stimulus/response model,
which describes event precedence. We will take the fuel monitor as an example.

From the original requirement text, fuel monitoring is mentioned in the following

paragraphs:

- The fuel tank is fitted with a sensor to
provide information on the quantity of fuel
remaining. This sensor 1is polled, by the
system at 1 second intervals. The readings
are passed on to a dial. The system switches a
warning lamp from green to red when only 10%
of the full fuel lcad remains in the tank.

- Any out of 1limit readings from the sensors,
smoke interrupts, etc., which cause warning
lamps to be illuminated, will also cause
messages to be flashed on the VDU.

- All sensor readings (temperature, pressure,
smoke detection, fuel) are recorded on a
magnetic medium. All such readings are tagged
with the time at which the interrupt was
received by the system.

Based on these paragraphs, the operation concepts of the engine monitor can be
derived. We find a need for three decomposition elements: Fuel reading request, Bad
fuel readings, and Good Fuel readings. A system verification diagram illustrating
these concepts is given in Fig. 3.12. The complete set of system verification diagrams

describing the system operations concept can also be found in Appendix B.
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3.4 Internal Representations of Requirements

The object-oriented programming paradigm is employed in the actual
implementation of the requirement tools. In other words, the requirement diagrams
are constructed as objects. In this section, the internal representations of requirements

are presented.

As every requirement element is implemented as an object, there is a class
definition for each of them. For example, the definition of the data-flow diagram

class, in our implementation language T, is given as follows:

(define (MakeDFD)
(let ( ... )

{object nil

((processes self) ...)
{(dataStores self} ...)
({SinkSources self) ...)

{ (DataFlows self) ...)
{((lowest-level? self) ...)
{ (context-diagram? self) ...)
{ (add-object self v) ...)
((del-object self v) ...)
{ (parent self) o)
{(set-level self v) ...)
((print self port) ...)
((DFD? self) "#t))))

The terms processes, lowest-level?, add-object, etc., are operations
for the class. An instance of the object is created by a call to MakeDFD. For

instance, the highest level data-flow diagram in Fig. 3.8 is an object with the following

attributes:

. processes — monitor, VDU, and recorder,

. datastores — none;

. SinkSources — smoke detectors, start button, keyboard, engine sensors, fuel
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tank, clock, and warning devices,

. lowest-level? — false;

. context-diagram? — true;
. parent — none;

. DFD? — true.

Elements in the data-flow diagram, such as processes, datastores, and SinkSources, are

implemented as objects themselves.
3.5 Expressiveness of the Requirement Models

In this research, the requirement models are not so expressive that all
properties about a system can be described. The system properties that can be
specified in these two models are event precedence and data dependencies. However,
only these two facets of behavioral requirements are essential in the synthesis and

validation of a design in the SARA domain.

There are systern properties that cannot be described in the two requirement
models used. They include resource requirements, performance requirements, as well
as certain liveness and safety properties associated with concurrent systems, such as
guaranteed termination, deadlock-free, etc. A more expressive and formal
specification method is needed if such properties are desired. However, just for
synthesis and validation of SARA design models, the data-flow model and

stimulus/response model are adequate.
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CHAPTER 4
SARA/IDEAS — A Computer-Based System Design Method

System ARchitect’s Apprentice (SARA) is a requirement-driven top-down and
bottom-up design method for concurrent digital systems [Estr86]. SARA supports the
design process of complex concurrent digital systems. Both hardware and software
design are supported. The environment supporting this design method provides
separate tools for the structural and the behavioral modeling of systems. The history

of SARA is given in [Estr78].

As the SARA design method evolved, coupled with the addition of new design
tools, the need of a methodical approach for tool-building arose. IDEAS (Intelligent
Design Environm;nt for Analyzable Systems), the second generation of SARA, was
initiated in the early 80’s to meet this objective. In particular, IDEAS provides a
method of building and integrating new tools into the SARA environment, as well as

specifying a uniform graphic user interface for all the tools.

This chapter first introduces the SARA design method and then describes, in
separate sﬁctions, a design in the SARA domain in its various facets. Concurrent
reader and writer processes communicating through a shared buffer are employed as a
running example to clarify the design procedure. We also discuss some related
research within SARA that enhances the design method. Finally, IDEAS, the tool-

building method employed to construct SARA tools, is addressed.
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4.1 Design Procedure

This section describes the SARA design procedure as depicted in Figure 4.1.
The design process is initialized by insisting that the designer partition the universe of
design discourse into a system module, and an environment module in which the
system will operate. This first step may seem rather mechanical, but its omission is
the cause of many faulty designs. The environment module is made explicit so that
the designer is forced to focus attention on what assumptions are being made about
the conditions under which specified behavior will be expected. In the context of
those assumptions are documented, the designer turns his or her attention to
specifying requirements to be met by the system module. The environment module
also provides encapsulation for modeling a test environment for the system being

developed.

Neither the environment assumptions nor the system requirements were
previously supported by a formal language and a corresponding language analyzer.
Although Winchester [Winc81] proposed a SARA requirements definition language

and a requirements analysis technique, it has not been implemented as a SARA tool.

The next step in initialization is the development of a high-level behavioral
description of the system module. Behavior is described in three different domains,
the control flow, the data flow, and the interpretation domains. Each is supported by a

language and language analyzer. Collectively, they are supported by a simulator.

Both top-down partitioning and bottom-up composition are supported. If the
system being designed is simple it may be described immediately in the three
languages already mentioned.
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Designers are rarely faced with the task of starting from scratch. Complex
systems are composed of many subsystems and it may be possible to re-use what
another designer has already provided. A power supply is an obvious example of a

re-usable subsystem.

If, for example, the system being defined is a variant on a well established
product line, it may be possible to search an existing library of previously designed
and tested modules. These building block or their models can be collected to form a
composition. If the product line consists of special-purpose digital controllers, the
building block library might contain descriptions of TTL DIP chips that typically

comprise major portions of the product line.

However, a system is likely to require the design of some new subsystem or
component. If the new subsystem is large, divide-and-conquer is employed. The
systemn module is partitioned into smaller, more manageable modules. Initialization is
repeated for each new module thus identified. Each new module becomes a system

that exists within a containing environment.

Regardless of the tactic taken, partitioning or composing, the resultant design
is tested using the many tools in the SARA environment. These tools are generally
one of two types, analyzers or simulators. The results of analysis or simulation are
checked against the requirements. If requirements are met, then the designer may turn
attention to another module. If requirements are not met, a new partition or

composition is attempted in a search for satisfaction of requirements.

In the following sections, each major step in the methodology will be

discussed in greater detail using the reader-writer example.
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4.2 Requirements Definition

The SARA methodology is requirement-driven, yet it has no supported
requirements definition language nor language analyzer. Winchester [Winc81] has
proposed such a language and has defined a set of analysis techniques, tools, and

procedures that fill this requirements definition subsystem gap.

The Requirements Definition Language, RDL, is used to separately specify the
functional, process, and attribute requirements that comprise the semantic model of
the computer system being specified. The semantic model is composed of six
primitives that describe the structural and behavioral components of the system.
Winchester describes a correspondence between these six primitives and those of the
extant SARA system. Given this cozresponc'lcncc, it is possible to generate SARA
models from RDL and to apply SARA analytical and simulation tools in the

verification of the specification.

In lieu of an RDL specification, the next two sections describe the environment
assumptions and the first definition of the system module for the simple input/output

buffer example.
4.2.1 Environment Assumptions

The environment will contain two processes: sender and receiver. The

sender process behaves as follows:
. It sends messages to the buffer system through the write procedure.

. It sends only one message at a time and, after sending one message, can

proceed only after write finishes.
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. After the last message is sent, sender terminates.
The receiver process behaves as follows:
. It requests messages from the buffer system through the read procedure.

. It reads one message at a time and, after requesting a message, can proceed

only after read finishes.
. After the last message is read, receiver terminates.
4.2.2 System Module
The requirements of the buffer system is given as follows:

with SARA INTERFACE; use SARA INTERFACE;
package buffer package is
type message slot is private;
type buffer is array(l..MAX) of message slot;
procedure write(m : in message_slot);
_function read returns message slot;
procedure init;
end buffer package;
A buffer is, then, a sequence of MAX message_slots. Procedure init initializes the
buffer to be empty. Calls to procedures read and write can occur concurrently. If
write is called when the buffer is full, the caller will be inhibited until there is an
empty slot in the buffer. If read is called when the buffer is empty, the call will be
inhibited until some message is written onto the buffer. The system needs to manage

the buffer in such a way to ensure that;
. Messages are delivered in the same order as they are received.

. No message is destroyed (written over) before being read.
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. No message is read twice.
4.3 Structural Modeling

The structure of a system is expressed in terms of the Structural Model (SM).
The SM has three primitives: modules, sockets and interconnections. Modules can be
connected with other modules by an interconnection connecting two sockets, one
socket in one module and one socket in the other module. Thus, sockets are

communication ports for modules.

The interconnection is not directed, it models just a communication line and
does not reveal which way the information flows. An interconnection always
connects two and only two sockets. Furthermore, a socket can have only two
interconnections attached to it: one going out and one coming in. Hierarchical

decomposition is achieved by refining a module into submodules.

There is a top level module called universe which has no sockets.
Hierarchical decomposition is achieved by refining a module into submodules. This
process can be repeated until the system has been de;:omposcd into small enough
modules, whose behavior can be directly mapped to an existing behavioral model
stored in the Building Block Library or whose behavior is simple enough to be

understood and expressed using the behavioral primitives.

In our example, we would decompose our universe module into the buffer
system and its environment. The environment and the buffer system would
communicate through the write and read operations. Figure 4.2 shows the Structural

Model for the Buffer System.
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The environment module has two sockets: ew (for environment write) and er
(for environment read). These sockets are connected through interconnections write

and read respectively to sockets bw and br in the buffer module.

The environment module or the buffer module could be partitioned further

into submodules if needed.
4.4 Behavioral Modeling

In SARA, the behavior of the system is modeled using the Graph Model of
Behavior (GMB) [Razo80]. The GMB offers the designer three different but related
modeling domains, control, data, and interpretation. The designer focuses on one of
these domains at a time. After developing independent systems descriptions in each

domain, the designer insures that they are consistent with each other.
4.4.1 The Control Domain

The control flow model describes concurrency, synchronization and
precedence relations in a graph using an underlying theoretical model similar to Petri

Nets [Pete81].

The control domain of the GMB is a directed hypergraph, i.e., a graph in
which the edges may have multiple sources andfor multiple destinations. Control
nodes (the vertices) represent events and control arcs represent precedence

constraints, or a partial ordering, among the events,

Each node has an inpur logic expression, which is a boolean expression on the
input arcs, that expresses the condition under which that node can be initiated. An

OR, >, or + in the input logic means any of the operand arcs can initiate the node. An
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AND in the input logic means that all operand arcs must pass control before that node

can be initiated.

Each node has an output logic expression, a boolean expression on the output
arcs, which shows where control is passed upon termination of that node. An OR here
implies control is passed to one or more, but not all, of the designated arcs. An AND

implies control is passed to all of the designated arcs.

Both input and output logic expressions can be arbitrary functions using the
four logical operators. Control flow in the control graph is represented by the passing
of tokens through control arcs. When a node is initiated, it consumes the tokens which
enable it. The input logic of a node determine:s which token(s) is(are) consumed. The

token consumption semantics of these logical operators are defined as follows:

1. OR logic

A token on one of the initiating arcs (the arcs that have tokens) is consumed.

2, + logic

For each initiating arc, a token is consumed.

3. > logic

A token is consumed on the first initiating arc in the logical expression.

4. AND logic

All input arcs are initiating, one token from each arc is consumed.
Upon node termination, tokens are created and placed on output arcs according to the
node’s output logic expression. The semantics of a control graph are dictated by an
underlying machine known as the token machine which performs state-to-state

transformations on the graph, starting from an initial token distribution and
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terminating if and when no further transformations are possible.

Continuing with our buffer system, we define a control graph for each of the

modules defined in the SM. Fig 4.3 shows each control graph can be drawn on its

corresponding SM module.

The following tables describe the function of the major components in the

control graph:

Control Nodes

INIT Initiation process, initiates sender.

TERM Termination process.

SEND Sender process, sends message to the buffer and receives
acknowledgment.

REC1 Receiver process 1, requests message.

REC2 Receiver process 2, actually receives message from the buffer and
informs REC1.

RECM Receives message from the environment, acknowledges, and performs
the write operation.

REQ Receives request, performs the read operation, and sends it to the

Control Arcs
S
aokw

aokr

environment.
Arc to initiate the system.

Semaphore, indicates the number of empty slots in the buffer.

Semaphore, indicates the number of messages in the buffer.
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4.4.2 The Data Domain

The data domain of the GMB is a bipartite directed graph, i.e., a graph in
which there are two kinds of nodes, datasets, represented as rectangles, and data
processors, represented as hexagons, and in which arcs, called dara arcs, are used to
connect datasets with data processors. Thus, every data arc goes from a data
processor to a dataset or vice versa. This graph represents the data flow of the system

by defining its data paths.

There are three primitives in the data domain. Data processors are data
transformers which can read from and/or write to datasets. Datasets model static
collections of data. Data arcs define the read and write accesses of a data processor to

a dataset; various read/write accesses include:

. non-destructive read (R),
. simple write (W),
. destructive read (DR),

. first-come-first-serve read (FCFSR) — the dequeue operation,

. first-come-first-serve write (FCFSW) — the enqueue operation,

. last-come-first-serve read (LCFSR) — the stack pop operation, and
. last-come-first-serve write (LCFSW) — the stack push operation.

Continuing with the buffer example, we draw the data graph over the SM in
Fig. 4.4 and show the mapping existing between the data graph and the control graph.
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The following table describes the function of the various data processors and

datasets in the data graph:

Data Processors

CHK

RDI

RDO

REC

SEN

Datasets
INPUT
OUTPUT

MESIN,
MESOUT

BUFFER

Mapped to control node TERM, processor which checks the message
received against the initial messages to determine that they are the
same and in the same order before termination.

Mapped to SEND in the control graph. It reads messages from INPUT
into MESIN, one at a time.

Mapped 1o REC2 in the control graph. It reads messages from
MESOUT, and deposits them into OUTPUT, one at a time.

Mapped to RECM in the control graph. It receives messages from the
environment and deposits them into dataset BUFFER.

Mapped to REQ in the control graph. It reads messages from
BUFFER and passes them back to the environment.

Initial sequence of messages.

Messages read from BUFFER, to be checked against INPUT.

Message slots, interfaced with submodule buffer.

The actual buffer in the system.

4.4.3 The Interpretation Domain

The Interpretation Domain defines the transformations of data performed by

the data processors. Many interpretation languages can be used for this domain. The

original SARA system used PLIP (an extension of PL/1) as its interpretation language.

The current system, being implemented in T [Slad87], a statically-scoped LISP, uses

T as the interpretation language. The main requirement for the language used is that it
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supports dynamic linking of interpretation code to the underlying simulator [Razo79],

which will invoke this code.

The interpretation language must support some SARA-oriented operations
such that the interpretation domain can communicate with primitives outside the data

processor. The set of operations supported by the language includes:

delay the termination of the data processor by specified time units,

. place tokens on specified output arcs if the current control node has an OR
output logic,

. input a value from a data arc,

. output a value to a data arc, with optional delay units, and

. return one or more input arcs that trigger the current control node if the node

has an OR, >, or + input logic.
4.4.4 Connections Among The Three Domains

The three domains are related by a designer-specified explicit mapping among
their primitives. Each control node in the control domain is, optionally, mapped to a
data processor in the data domain (multiple nodes in one graph may share a processor
at the risk of contention.) Each data processor, in turn, is also associated with a piece
of code in the interpretation domain. Upon firing of a control node, the corresponding
data processor is activated, which initiates the execution of the interpretation code

associated to the processor.
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4.5 Building Block Library

In order to support bottom-up design, it is necessary to have a collection of
previously designed and tested models, appropriate for the design domain, stored in a
design database. The SARA design database is called the Building Block Library by
Drobman [Drob80]. His work concentrates on hardware building blocks but the

procedure is also applicable to software modules.

€

The primary hypothesis of Drobman’s work is that ‘‘a set of models of
hardware and software building blocks can be created and utilized as primitive
elements in a computer-aided design system and methodology such that the
composition of requirements-satisfying, partially correct, microprocessor-based digital
systems is dramatically enhanced.”” He demonstrated satisfaction of the hypothesis
by defining building block descriptions of the Am2901 bit-sliced microprocessor, the
Am29775 PROM, and other similarly complex devices, and then used those building

blocks to design a 16-bit microprogrammable microprocessor.

Drobman’s building blocks are prefabricated simulation models of physical
building blocks. The simulation models are defined in the previously mentioned
SARA languages, the Structure Model Language and the Graph Model of Behavior
Languages.

Other SARA researchers have studied the requirements and organization of a

design database [Land83, Land87, Mars83].
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4.6 Socket Attribute Modeling

During research on the Building Block Library and the SARA simulation
tools, it was felt that many of the errors detected during simulation could have been
found much earlier by analysis of some as-of-yet undefined static description of the
building blocks. This observation spawned Sampaio’s research into the Socket
Attribute Model (SAM) [Samp81], and Penedo’s research into the Module
Interconnect Description (MID) [Pene81]. While both dealt with a description of a
building block at its interfaces, sockets or interconnects, SAM concentrated on

hardware building blocks and MID concentrated on software building blocks.

Sampaio provided a language to describe the behavioral attributes of a
hardware module’s sockets, for example, electrical characteristics (fan-in, fan-out),
timing (set-up and hold times), bandwidth, and perhaps physical characteristics. With
these descriptions attached to a module’s sockets it is possible to detect
inconsistencies occurring during composition of two or more modules. The detection
of socket mismatch errors occurs at the time the socket connection is attempted, not

later during an expensive and time consuming simulation that may not detect the error

at all.
4.7 Module Interconnect Description

Penedo attacked the same problem as Sampaio, but on the software front. She
described software modules as they appear at their interfaces. Most type-checking
compilers detect some of the errors that Penedo is after, for example, procedures
called with the wrong number or type of arguments. The product of her research was
the Module Interconnect Description (MID) [Pene79, Pene81]. Berry later showed
that Ada package specifications meet the needs of Penedo’s MID [Berr84]. Kreli
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[Krel86] continued this line of reasoning by researching the suitability of Ada as the

language for the interpretation domain of the GMB.
4.8 Extensibility and User Interface

The initial SARA system implementation at MIT was not constructed in an ad
hoc manner. From the beginning, the implementors knew that no matter how
complete their tool kit was, there would be inevitable pressure to add new tools. They
therefore established a procedure for constructing a new tool and for eventually
integrating it with the existing tool kit. This procedure is described in [Vern78]. To
insure consistency between existing and newly defined tools, Fenchel [Fenc80]
defined a user interface construction tool that promotes sharing of grammatical
constructs between tools. By following the procedure and by using the user interface
construction tool, the end product is self-describing offering syntactic and semantic
help to the end user. Fenchel’s tool [Fenc78, Fenc82] is summarized in the following

paragraphs.

Each tool initially is partitioned into user interface dependent and independent
parts. The user interface independent part is partitioned into a collection of PL/1
routines that comprise the tool’s functionality. The syntax of the user interface
dependent part is described in an SLR(1) grammar. Upon recognition of certain

syntax rules, a user interface independent routine is called.

Once the tool is fully constructed the user interface independent routines are
merged with those of any pre-existing tools. The tool’s syntax specification is added

as a subdialogue to the tool system’s grammar.
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The underlying support tools use the grammar to provide integral help to the
end user. This insures that the user gets help information that is in agreement with the
implementation. It also alleviates the burden of providing help from the tool

implementor.
4.9 The IDEAS Tool Building Method

Upon the growth in the SARA tool set, a methodical, as well as systematic,
way of tool specifications, constructions, and integration is needed. To meet this
objective, IDEAS, an interface specification system, was used to construct the SARA
tool set. The IDEAS method consists of four phases of tool descriptions, semantic,
syntax, logical device and physical device. This research problem was investigated by

Duane Worley in his dissertation [Worl86b). -

The semantic description phase of the tool specification helps to produce the
tool’s semantics from its initial conceptualizations. The entity-relation model is used
to define the objects manipulated by the tool, as well as the relations among various
objects. Semantic definitions in the form of Entity-Relation Diagrams (ERD) are fed
to a semantic compiler. The main products of the compiler are class definitions and

operation specifications for the objects.

The syntactic description phase allows the tool developer to specify a uniform
human-machine interface across the whole environment. The major tool is a syntax
compiler, which takes tool specifications and produces Augmented Transition
Networks (ATN). Specification of each command consists of command syntax, in an
augmented LL(1) grammar, and command semantic actions. To invoke a tool to be

used, an ATN interpreter is initiated to interpret the Augmented Transition Networks.
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The two device descriptions, logical and physical, link the syntactic
descriptions to the actual device on which the tool is built. The logical device
description maps the tool specification’s syntactic entities to abstract device entities.
This description is device-independent, since a tool installed on difference devices
employs the same logical mapping. On the other hand, a physical device description
is need to assign each logical device entity to an actual physical device entity. Such a
mapping is device-dependent — one is needed for every device on which the tool is

installed.

Employing this tool-building method, a prototype SARA design environment
was developed on the Apollo workstations. An improved version has also been built

on the SUN workstations.
4.10 Summary and Conclusions

The SARA tools comprise a powerful, interactive, modeling environment. As
such, the tool set is representative of Computer-Aided Design of Computer Systems
(CADOCS) systems in existence today. The SARA/IDEAS system now being
constructed incorporates all of the functionality of the previous SARA system. In
addition, graphical interaction is incorporated. An even greater decoupling of
interaction tasks and operational software, a more comprehensive and formal
specification technique, and greater integration of design tools with the design data

base, have all been achieved.

Specification and construction of SARA tools provides an excellent testbed for

the tool-building method mentioned in Worley’s dissertation.
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CHAPTER 5
Requirement Validation

In this chapter, we describe an approach to validate requirements. In our
requirement-driven design method, we assume that the requirements are satisfactory
from this crucial first step. Requirements consist of different views of a system
obtained from the various parties involved in the development. The requirements are
considered as satisfactory if the different views of the system are consistent. The

satisfactory requirements are to be used as the basis of the design phase.

The requirement validation approach in our method is borrowed from an
outside institution, Hughes Aircraft, at which a project on requirement validation
[Deut85a] is in progress. The project is led by chief scientist Michael Deutsch of the
Space & Communications Group. It is Deutsch’s belief [Deut87] that

Any successful system modeling process must
incorporate the views of the end user, customer,
and designer. There 1is no single view model that

can satisfy the differing needs of these three
parties.

As a starter, we introduce this multiple-view validation paradigm. Then we

describe the validation process in detail. In particular, the validation activities, as well

as the validation knowledge, which is codified into a knowledge base, are presented.
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5.1 Multiple-View Validation Paradigm

Based on his belief in requirements, Deutsch establishes a multiple-view
validation paradigm. At the beginning, the requirement analyst obtains three different
system views from three parties: the functional requirement view from the customer,
the operations concept view from the user, and the design view from the designer.

The goal of validation is to ensure compatibility among the three views.
In Deutsch’s method, he uses three different models to represents the views:

. a functional requirement view represented by the data-flow model [Marc79].
The particular components of interest in the data-flow model are the data-flow

diagrams and mini-specifications of the data transformers.

. an operations concept view represented by the system verification diagrams
[Dona78] of the stimulus/response model. These diagrams are derived from
the original description of the system at the users’ perspective. Each
decomposition element in the diagrams corresponds to an operational scenario

in abbreviated form.

. a design view represented by top-down hierarchical diagrams. This is the

designer’s perspective of the system structure.
5.2 Validation Activities

Since these system perceptions are from separate parties, Deutsch believes that
it is inevitable to have inconsistencies among the views, and for each to have its flaws.
However, the resolution of these inconsistencies helps eliminate flaws in all of them.

This requirement validation paradigm is best illustrated in the data-flow diagram in
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Fig. 5.1. The focus of the method are the two validate processes in the diagram. The

flow of this multiple-view validation is given as follows:
1. create the functional requirement view (data-flow diagrams);

2. create the operations concept view (system verification diagrams) in parallel

with the functional requirement view;

3. create the design view (top-down hierarchical diagrams), slightly behind the

first two views;
4. validate the functional requirements with the operations concept;
5. refine the two views if discrepancies arise;
6. if no discrepancies between the first two views, validate the design view with

the operations concept;
7. if discrepancies arise, refine the two views, otherwise the validation is done.
5.2.1 Functional Requirement vs Operations Concept

The first validation step consists of matching the functional requirement view
against the operations concept view. The initial step of this matching is to associate
each data-flow process with a comparable decomposition element. Then the validator
has to ensure that the stimuli and responses in each DE be mentioned in the associated

process’s mini-specifications.

The validation is carried out by a knowledge-based system consisting of a set
of validation rules. The informal representations of some selected rules at this

validation stage, extracted from [Deut85a], are presented below. In the rules, the term
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Fig. 5.1: Requirement Validation Paradigm
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requirement refers to the mini-specification in the data-flow model; scenario is a

synonym of decomposition element.
Validation Rules

1.1 Each requirement must be singly correlated with a scenario except when

multiple scenarios involve the same stimulus with different existing states.

1.2 Ttis best that each scenario correlate with 2-8 requirements, but in any case, it

must correlate with at least 1 requirement.

1.3 The stimulus and response of the scenario must both be identifiable in the

requirements.
5.2.2 Operations Concept vs Design View

Upon completion of the first validation step, the functional requirements end
up being compatible with the operations concept. The refined operations concept is

used to represent both views in the second validation stage, against the design view.

In Deutsch’s method, the design’s view is obtained from the designer revealing
the physical composition of the system. This view is represented by top-down
hierarchical diagrams, or trees. The top-most node of the tree represents the system

module, and its children represent the sub-modules within the module.

The major validation activity at this stage consists of identifying a meandering
sequence of nodes on the tree to satisfy the operations concept. In other words, it tries
to map such a path, if it exists, to each decomposition element in the system
verification diagram. Possible discovered flaws at this stage include a missing

stimulus or response in the tree, the presence of disconnected stimuli or responses, and
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modules in the hierarchy with no apparent correspondence to the operations concept,

etc.

As in step one, this second validation step is done by the same knowledge-

based system. The natural language representations of selected rules for this stage are

given below. In the rules, the term module refers to a node in the tree; the term thread

scenario refers to its meandering sequence of nodes on a tree, as illustrated in Fig. 5.2.

2.1

22

23

24

2.5

2.6

Validation Rules
Each design module must correlate with at least 1 scenario.
Each terminal module must be singly correlated with a scenario.

Each step in a thread scenario should correlate optimally with a single design

module, but it is acceptable to correlate with 2 or more modules.

Each scenario should correlate with 1-5 new design modules, but it can be
more if the modules are members of the same subtree under a single

transaction center.,

Each scenario should correlate optimally as a vertical path through the design

hierarchy, but is acceptable to correlate within the same subtree.

The stimulus and response of the scenario must both be identifiable in the

design and be on a continuous path.
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Fig. 5.2: Sample Thread Scenario
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5.2.3 Interpretations of the Rules

The goal of validation is to make sure the requirements are satisfactory. The
term satisfactory includes virtues such as complete, understandable, testable, and
maintainable. The validation rules previously mentioned are derived to ensure these

virtues.

According to Deutsch, rules (1.1), (1.2), (1.3), (2.1), (2.3), and (2.6) are used to
check the completeness of the requirements; rules (1.2), (1.3), (2.2), and (2.5) are used
for understandability; rules (1.1), (1.3), (2.2), (2.3), (2.4), and (2.5) for testability; and
rules (1.1), (1.2), (1.3), (2.1), (2.3), and (2.4) for maintainability.

To check the completeness of the requirements, first a completeness goal is
made up. This goal is then fed to a backward deduction system to see whether it can

be deduced from the facts of the three views. For example, the completeness goal has

to confirm that:

1. each requirement correlates with a scenario,

2. each scenario correlates with some requirements and design,

3. each step in a thread scenario correlates with a design module, and

4. each stimulus and response of a scenario is present in the requirement and
design.

This validation method tries to catch flaws among the three views. Possible

flaws include the following situations:

1. a requirement correlating with three other scenarios and violating the
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exception stated in Rule (1.1),

2. a scenario step correlating with more than 2 design modules but violates Rule
(2.3), and
3. the mapping of a thread into the design structure not denotable as a continuous

path, a violation of Rule (2.6).
Upon the detection of discrepancies, the three parties are asked to refine the

requirements in such a way that the flaws disappear.
5.3 Relation to Design Synthesis

After the necessary refinements are carried out in the validation stage, it is
hypothesized that the three system views will be complete and consistent with respect
to each other. Even though we find the system design view in this paradigm
inadequate as a design representation, this validation is certainly a useful front end to
our SARA design method.

Comparing to other requirement analysis techniques previously mentioned,
Deutsch’s method puts the emphasis on the design phase and its correspondence with
the requirement phase. On the other hand, it does not try to enforce a one-to-one
match between design primitives and requirement primitives. In addition, this method
addresses only the structural aspect — the top-down hierarchy, and not the behavioral
aspects — of a design. Since the functional requirements and operations concept can
be related to the SARA behavioral model, these two views form a good basis for the

generation of the system behavior.
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The functional requirements and operations concept will be used as input to
the design assistant. A designer may select portion of the two views and feed them
into the design generator to synthesize SARA structural and behavioral models of the
system. For any human-produced design of the system, the designer may also choose
appropriate behavioral models and match them against the two views to ensure

behavioral compatibility.
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CHAPTER 6

Rule-Based Design Synthesis

The core of this dissertation is rule-based design synthesis. Given two views
of system requirements, the design assistant helps to produce three facets of the
system: structural domain, behavioral control domain, and behavioral data domain. In
this chapter, we introduce the synthesis approach we take, and each aspect of the
automatic synthesis process. We also address the role of a human designer in a

typical design session.
6.1 The Approach of Synthesis

The design synthesis process is regulated by a collection of design rules, the
representation of the knowledge used by SARA-method-based designers. When the
synthesizer was initially built, the choice of a rule-based approach was weighed
against straight algorithmic approach. The former approach was selected because of

the following reasons:

L. Incremental enhancement of design knowledge
The current state of synthesis is by no means completely automatic. At certain
occasions, the design assistant queries the human designer for information
concerning the system being designed. This is because either the assistant is
unable to deduce system attributes not mentioned in the requirement, or
alternatives of a correct design exist. There is always room to include

additional rules or facts to deduce this information automatically to minimize
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human interactions. Domain specific knowledge can also be added to the

knowledge base to improve the conciseness of a design.

2. The possibility of tracing the synthesis process
Given just a synthesized product, the human designer may question why
particular primitives are generated, as well as their correlations to the
requirements. With a rule-based system, it is feasible for him or her to see
what rules are actually fired to generate a particular primitive and the
reasoning behind it.

A rule in this system is in the form of

<antecedent> <consequence>
where the <antecedent> checks whether a requirement satisfies certain conditions and

the <consequence> represents the design actions to take place in that case.

The human designer picks a portion of the requirements to start the synthesis.
The portion selected constitutes a primary goal, in the form of
synthesize design from <selected requirements>,
to be fed to a rule interpreter. The interpreter, employing a forward-chaining scheme,
will then try the rules on the primary goal. Upon satisfaction of the antecedent, the

consequence taken is either
¢ a sequence of actions which create primitives in the SARA domain,

. breaking up of the primary goal into subgoals, each of which is responsible for
synthesizing design objects from a sub-component of the originally selected

component, or

. a combination of both
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The control strategy of the synthesis process is a little bit different from a
conventional deduction system. The strategy itself is built into the rules, as indicated
by how a goal is broken into subgoals. For structural model synthesis, the traversal of
the graph-based requirements is breadth-first. All objects in one level of a graph are
traversed before the subgraphs of that level. On the other hand, syntheses of the
control and data domains are depth-first. A control node sequence is generated for

one decomposition element, as well as its stimuli and responses, before another.

A special approach employed in this system is human involvement in the rule
selection. In situations where multiple applicable rules exist for a requirement
primitive, the human designer indicates which rule to use. This gives the human
designer an opportunity to select a design of his or her preference. The reasoning

behind this is addressed in Section 6.6.3.

The design synthesis operation is simply a rule application process, governed

by a rule interpreter. The algorithm of the rule interpreter is given as follows:

Synthesize-design (req)

if design primitives have not been created for req yet
then
[for rule R among all rules associated with the req primitive
Apply-Rule (req, R);
If rule application is successful, then return;

endfor;
endif.

where the routine Apply-Rule is defined as follows:
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Apply-Rule (req, rule)

Evaluate the antecedent of rule by binding req to the rule’s bound variable;
If the evaluation returns true
then

If multiple consequences exist

then

query the human designer to select the preferred consequence

endif;

apply the consequence of rule;
else

return false;

endif.
As indicated in the algorithm, the rule interpreter takes a requirement object as input,

tries the synthesis rules associated with that object, and produces one or more design

objects as output.

6.2 Structural Model Synthesis

To build the structural model of a system, the essence is to partition the system
into subsystems, as well as to bridge the subsystems if necessary. The requirements,
in various levels of data-flow diagrams, provide the bases to carry out these two tasks.
This synthesis process is a fairly straightforward translation from the requirement
model to the SARA design model.

6.2.1 Knowledge of System Partitioning

In this section we discuss how to transform various levels of data-flow
diagrams into a hierarchy of modules in the structural domain. This transformation
process is straightforward, in the sense that one set of primitives can be directly
mapped to another set of primitives, but special care is also needed to ensure that all

structural model restrictions are followed.
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When building the SARA structural model, there are some standard steps to
begin with regardless of the application. These standard procedures are incorporated

into the partitioning process:
. The global module is called the universe.

. The universe is partitioned into two standard sub-modules, environment and
system. Module system represents the core component to be designed;
module environment encloses the surroundings of the core, and acts as a
driver of the core component by providing external stimuli and receiving

external responses.

. Module system and module environment communicate with each other via
onhe or more interconnections.

The partition process will then be undertaken according to specific knowledge in

building a structural model from a data-fiow diagram partitioning, Selected

knowledge will be described below, informally as well as in form of rule

representation. Each rule is associated with a unique rule identifier.

. For the top level data-flow diagram, the standard setup described above is
created. The synthesizer then generates structural model primitives for each
element in the data-flow diagram.

Rule DFD.M.1
Antecedent: DFD is a top-level diagram
Consequence: Create module UNIVERSE, as well as UNIVERSE’s sub-modules
ENVIRONMENT and SYSTEM;
subgoal: synthesize SM objects for datasinks/datasources of DFD;
subgoal: synthesize SM objects for processes of DFD;
subgoal: synthesize SM objects for datastores of DFD;
subgoal: synthesize SM objects for dataflows of DFD;
subgoal: synthesize SM objects for process refinements of DFD.

. In a diagram with both refined processes and primitive processes, the primitive
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objects will be transformed to data domain objects instead of SM objects. An
auxiliary module is created to contain the data domain objects to be
synthesized.
DFD.M.3
Antecedent: DFD has two sets of processes — refined and primitive
Consequence:  subgoal: synthesize SM objects for the refined processes of DFD;
subgoal: synthesize SM objects for datastores of DFD;
group the primitive processes together and put them into a newly created
auxiliary module;

subgoal: synthesize SM abjects for dataflows of DFD;
subgoal: synthesize SM objects for process refinements of DFD.

Do not synthesize any SM object for a lowest level diagram (one which does
not have any further refinement).
DFD.M.5
Antecedent: DFD is a lowest-level diagram
Consequence: Do not synthesize anything.
If a process has no refinement, it should be transformed to data domain
primitives later. No SM object is synthesized for it.
Proc.M.1
Antecedent: process has no refinement
Consequence:  do not synthesize anything
If a process, appearing in the top-level diagram, is refined to another data-flow
diagram, it is transformed to a module placed in the standard module system.
Proc.M .4
Antecedent: process is refined and belongs to top-level diagram
Consequence:  create a module for process; )
place module created inside module SYSTEM,
If a process p, appearing in a middle level diagram, is refined, a module
corresponding to p is created, and placed in the module representing the p’s

parent process.

Proc.M.5
Antecedent: process has refinement
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Consequence: Let PAR.PROCESS be the parent of process
Create a module for process;
Place module created inside associate module of PAR.PROCESS.

. By definition, a datasink or datasource lies outside the context of the system.
As a result, a module, placed inside the environment module, is synthesized
from a datasink/datasource.

SS.M.1
Antecedent: any datasink/datasource S8
Consequence:  create a module for §S;
place module created inside global module ENVIRONMENT,

The above rules only represent part of the knowledge in the SM partitioning. They are

selected because they will be needed in the sample synthesis to be described. The

remaining knowledge in the structural model synthesis, codified in synthesis rules, is

given in Appendix C. The appendix also shows how a rule is internally represented.

Most of the SM partitioning knowledge is fairly clear cut. In other words, if a
requirement object satisfies a condition, pre-defined design objects are generated.
However, there are also situations in which alternatives of a design exist. For
example, based on the top-level diagram in Fig. 3.8, there are two approaches to start
the system partitioning. Process.monitor certainly belongs to the module system.
However, processes recorder and VDU may or may not be considered as part of the
system, depending on how the designer defines the scope of an aircraft monitor.

There are two approaches to build the overall structural model from that top-level

diagram,

The first approach —
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Create modules universe, sub-modules environment and system. then
synthesize SM objects for datasinks/datasources, processes, datastores, where the
objects generated will be placed into environment or system appropriately. In the
aircraft monitor example, the monitor, VDU, and recorder are placed in the system
module if the human designer considers them the system. Modules representing all
the datasinks/datasources are placed in the environment. Synthesis rule DFD.M.1 is

one representing this approach.
The second approach —

Create modules universe, sub-modules environment and system; single out
the process to be considered as the system by a special marking; then synthesize SM
objects for datasinks/datasources, processes, datastores, where the objects generated
will be placed into environment or system, according to the marking. In the aircraft
monitor example, suppose the monitor alone is considered as rhe system, then
modules synthesized from all other processes, datasinks, and datasources will be
placed in the environment. The rule representing this synthesis is given as follows:
Rule DFD.M.2
Antecedent: DFD is a top-level diagram
Consequence:  Create module UNIVERSE, as well as UNIVERSE’s sub-modules ENVIRONMENT

and SYSTEM,

Single-out a process in the diagram to represent the system by a special marking,

distinguished from the markings on other processes;

subgoal: synthesize datasinks/datasources of DFD;

subgoal: synthesize processes of DFD;

subgoal: synthesize datastores of DFD;

subgoal: synthesize dataflows of DFD;

subgoal: synthesize refinements of refined processes of DFD.
When encountering such a situation, the synthesizer lets the human designer choose
which alternative to take. It prompts the human designer with an explanatory message
about the alternatives and requests the human to select one. He or she thus explicitly

selects the path in the search tree.
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6.2.2 Knowledge of Component Connection

Dataflows in the data-flow model ‘indicate data-dependency relations among
System components. In the high-level data-flow diagrams, processes, representing
non-primitive system components, or sub-systems, are transformed to SM modules. A
dataflow connecting two processes implies the need of a communication channel
between the two SM modules. The interconnection in the structural domain just

serves this purpose.

Superficially, an interconnection in the structural domain is sufficient to
represent a dataflow. However, there are many different attributes associated with a
dataflow, as well as its connected components, that a dataflow cannot be mapped into
an interconnection one-to-one. We discuss several selected cases in transforming

dataflows, of various properties, into one or more interconnections.

. A singly-connected dataflow df with only the source or destination end
connected, represents a refinement from a higher level dataflow ANCES. An
interconnection IC has already been synthesized for ANCES, connecting two
modules My and M,. The lone connected process of df is already transformed
to a sub-module M in, say, M;. For df, an interconnection should be

synthesized connecting one end of IC to M.

However, it is also possible that the socket where IC meets M; has
already been occupied by another interconnection, representing a sibling of df,
within M. By SM restrictions, a socket can be connected to only one
interconnection at the outside and one at the inside. In this situation, a
duplicate of IC, as well as all its upwards and downwards propagations, are

needed.
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This knowledge is represented by two rules:

DFE.M.1
Antecedent:

Consequence.:

DE.M.2
Antecedent:

Consequence:

df is singly-connected to an already synthesized object (process or datastore)
OBYJ, df’s parent has an associated interconnection IC, df has a sibling df,
and the associated interconnection of dfy is connected to IC.
Let ANCES be a two-sided ancestor of df
Let IC be the associate interconnection of ANCES
duplicate an interconnection IC1 for IC;
connect one end of IC1 to OBJ’s associate module;
propagate IC1 according to IC at the other end.

df is singly connected to an already synthesized object (process or datastore)
OBJ, df’s parent has already been synthesized to an interconnection IC, df is
not the only child of its parent, and IC has not been a connection for one of
df’s siblings
Let ANCES be a two-sided ancestor of df
Let IC be the associate interconnection of ANCES
connect onée end of IC 1o OBJ's associate module.

A dataflow df is connected to a datasink/datasource at one side, and to a

process at the other side, an interconnection is created to connect environment

and system. Additional interconnections may be needed to connect

environment to its sub-module, as well as system to its sub-module.

DF.M.4
Antecedent:

Consequence:

df belongs to top-level diagram, df is connected to a datasink, datasource or
an out-of-context process on one side, and df°s other side is an object
associated to a child of module SYSTEM

create an interconnection to connect the modules ENVIRONMENT and
SYSTEM;

df’s other side must be connected to a process, create an interconnection 1o
connect the process’ associate module (a child of SYSTEM) and SYSTEM;
Create an interconnection to connect the associate module of
datasink/datasource (a child of ENVIRONMENT) and ENVIRONMENT.

For a doubly-connected df, one with both the source and destination ends

connected, with at least one connected end have refinement; an

interconnection is synthesized to connect the associated modules.

DF.M.5
Antecedent:
Consequence:

df is doubly-connected, and at least one side has refinements
Create an interconnection 1o connect the associate modules of both sides.
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The SM synthesis knowledge presented in this section is only part of what is in
the knowledge base. The remaining knowledge, represented in synthesis rules, are

given in Appendix C.
6.2.3 Sample Structural Model Synthesis

In this section, we present a sample structural domain synthesis to demonstrate
the process. Input to the rule interpretation is the top-level data-flow diagram, coupled
with one or more lower-level diagrams as process refinements. Qutput at this stage is

a complete structural model of the system.

In the sample synthesis, the internal data-flow-diagram object corresponding to
Fig. 3.8, which represents the global picture of the aircraft monitor system, is fed to
the rule interpreter. At the very beginning, given a choice of rules DFD.M.1 and
DFD.M.2, the human designer decided to consider the recorder and VDU part of the
system, and choose DFD.M.1. A trace of the rules successfully applied, and some

explanations in the first few rules, are given as follows:

1. rule DFD.M.1 (p. 90) for the top-level data-flow diagram in Fig. 3.8
Fig. 3.8 satisfies the antecedent of rule DFD.M.1, the first rule in the set of
rules for data-flow diagram. Three modules, UNIVERSE, ENVIRONMENT,
and SYSTEM, are created. Subgoals formed from the remaining data-flow

primitives are then fed to the rule interpreter.

2. rule S8.M.1 (p. 92) for the datasource Smoke detectors
The datasource Smoke detectors is the first to be transformed because it just
happens to be at the front of the list of datasink/datasource in the data-flow-

diagram object. Rule SS.M.1 is the one applied as it is the sole rule in the set
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for datasink/datasource. In other words, synthesizing SM objects from
datasink/datasource is just a straight transformation, resulting in an SM
module SmokeDetectors placed within the ENVIRONMENT. In the
consequence of this rule, there is no subgoal involved. As a result, the next
rule application stems from a subgoal resulting from the application of

DFD.M.1 to the top-level diagram.

rule SS.M.1 (p. 92) for the datasink Warning device
This rule application stems from the second subgoal from the application of
DFD.M.1 to the top-level data-flow diagram, since the previous rule

application, rule §S.M.1 on the Smoke detectors, produces no further subgoal.
rule §§.M.1 (p. 92) for the datasource clock

rule SS.M.1 (p. 92) for the datasource Fuel tank

rule §8.M.1 (p. 92) for the datasource Engine sensors

rule SS.M.1 (p. 92) for the’datasource Start button

rule Proc.M.4 (p. 91) for the process Recorder
After exhausting of all subgoals corresponding to the datasources/datasinks in
the top-level diagram, the subgoals corresponding the processes are
transformed. The fourth rule in the rule set for processes is applied because its
antecedent,

process is refined and belongs to top-level diagram
is satisfied. The product is an SM module Recorder within the SYSTEM
module.
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10.
11.
12.
13.
14,
15.
16.
17.
18.
19.
20.
21.
22,
23.
24,
25.
26.
27.
28.
29,
30.
31.
32.
33.
34.

rule Proc.M.4 (p. 91) for the process VDU

rule Proc.M.4 (p. 91) for the process Monitor

rule DF.M.4 (p. 95) for the dataflow Smoke interrupts
rule DF.M.4 (p. 95) for the dataflow Warning signals
rule DE.M.5 (p. 95) for the dataflow Recorded data
rule DE.M.5 (p. 95) for the dataflow System omput
rule DF.M.4 (p. 95) for the dataflow time

rule DE.M.4 (p. 95) for the dataflow Fuel readings
rule DF.M.4 (p. 95) for the dataflow Sensor readings
rule DE.M.4 (p. 95) for the dataflow Start signal

rule DF.M.4 (p. 95) for the dataflow User input

rule DFD.M.5 (p. 91) for the refined VDU in Fig. B.1
rule DFD.M.5 (p. 91) for the refined recorder in Fig. B.2
rule DFD.M.3 (p. 91) for the refined monitor in Fig. 3.9
rule Proc.M.5 (p. 91) for the process Syn Monitors
rule Proc.M.1 (p. 91) for the process Asyn Monitor
rule Proc.M.1 (p. 91) for the process Monitor Driver
rule DE.M.2 (p. 95) for the dataflow Warning Signall
rule DE.M.1 (p. 95) for the dataflow Warning Signai2
rule DF.M.1 (p. 95) for the dataflow Warning Signal3
rule DF.M.2 (p. 95) for the dataflow Recorded Datal
rule DE.M.1 (p. 95) for the dataflow Recorded Data2
rule DE.M.1 (p. 95) for the dataflow Recorded Data3
rule DE.M.2 (p. 95) for the dataflow System Outputl
rule DE.M.1 (p. 95) for the dataflow System QOutput2
rule DE.M.1 (p. 95) for the dataflow System Output3
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35.  rule DE.M.2 (p. 95) for the dataflow rime

36.  rule DE.M.2 (p. 95) for the dataflow Sensor Readings

37.  rule DE.M.2 (p. 95) for the dataflow Fuel Readings

38.  rule DE.M.2 (p. 95) for the dataflow Smoke Interrupts

39.  rule DE.M.2 (p. 95) for the dataflow Starr Signal

40. rule DE.M.2 (p. 95) for the dataflow User Input

41.  rule DE.M.5 (p. 95) for the dataflow Syn Control Signals

42.  rule DE.M.2 (p. 95) for the dataflow Asyn Control Signals

43. rule DFD.M.35 (p. 91) for the refined monitor driver in Fig. B.3

44. rule DFD.M.5 (p. 91) for the refined Syn Monitor in Fig. 3.10

45. rule DFD.M.35 (p. 91) for the refined Asyn Monitor in Fig. 3.11.

After firing these 45 rules, the structure of the aircraft monitor system is created.
Dlustrated in four figures, Fig. 6.1 shows the global picture of the system, i.e. the
universe, with sub-modules environment, and system. Fig. 6.2 shows further
decomposition of the environment module, whose seven sub-modules represent the
datasinks and datasources in the system. The system module, consists of a monitor, a
recorder, and a VDU, is illustrated in Fig. 6.3. Finally, Fig. 6.4 shows the structure
of monitor, consists of a synchronous monitor, an asynchronous monitor, and a

monitor driver.

In the design synthesis, the name of a synthesized primitive is identical to the
original regnirement primitive, or is an abbreviation of it. However, random
identifiers are generated for certain primitives, like sockets in the structural model
synthesis. In the sample product shown in the figures, descriptive names are given to

the sockets just for the sake of comprehension.
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Fig. 6.1: Structural Model of UNIVERSE
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102



l SysQutputt .
M1 2 SOt Syn.Mon
J RecordedData |
MR1 SRi1
I WarningSignal.1 I
MW1 swWi
| . |
M.sr SensorReadings S sr
| FuelReadings L
M.fr g S.fr
' time1 l
Mtm1 S.tm
[ S.cs|—
WarningSignal.3 l I
NW3 ControlSig1

R ded
ecordedData3 NRG

W3
[ ]
SysOutput3
MO3 NC3 | N.cs1

MR3
| . |
M.ss prmmmartSig02l TN ss [Ncs2
M'K_ KBlnput 'TIK_
Al A ControlSig2
[MTm3 Timed N.tm Mon.Driver
A.cs
Asyn.Mon

monitor
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Like the requirement elements, structural model elements are also
implemented as objects There are class definitions for module, socket, and
interconnection. The definition of module, in our implementation language T, is

given as follows:

{define (MakeModule)
(let ( ... )
(object nil

((name self) ...)

({parent self) ...)

( (modules self) ...)

{(sockets self) ...)

((interconnections self) ...)

({(gmb self) ...)

(((setter name) self wval) ...}
({(setter parent) self val) ...)
((setter modules) self wval) ...)
({setter sockets) self wval}) ...)
((setter interconnections) self val) ...)
{ (setter gmbk) self wval) ...)
{{traverse self) ... )

{(print self port) ...)
{ (module? self) t))))

(
(
(
(
{

The terms name, traverse, module?, etc., are operations defined for the class.
Operations such as name, parent, modules, etc., are also settable. An instance
of the object is created by a call to MakeModule. For instance, UNIVERSE, the
module created, is an object instance with the following attributes:
. name — "UNIVERSE";
. parent — none;
. modules — ENVIRONMENT and SYSTEM,
. sockets — none;
. interconnections —

WarningSignall, = WarningSignal2, = WarningSignal3,  SensorReading,

FuelReading, timel, time2, time3, Smokelnterrupts, StariSignal, and KBInpur,
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. gmb — none;
. Module? — rrue.
Elements within the modules, like sub-modules, and interconnections are also objects

themselves.

The major function of the synthesizer, after applying the rules, is to create such

design objects.
6.3 Control Domain Synthesis

After defining a system’s structure, the behavior of the system may be defined.
In this section, we describe the control domain synthesis from the stimulus/response
model of the requirements. In particular, knowledge of synthesizing control node
sequences according to various kinds of stimuli/fresponses, relations, and
decomposition elements are described. However, the control domain itself cannot
model the semantics of all elements in the stimulus/response model. Fortunately,

additions of data domain primitives and interpretation code help solve the problem.

Building the control domain according to the system verification diagram
requires in-depth knowledge of the GMB control domain, semantics of the constructs
in the stimulus/response model, as well as the connection between the two models,

An expert designer must be able to perform the four tasks below:

. transform the event dependency information, i.e. the relationships among the

DEs, into control node sequences,

. generate control node sequences from various stimuli and responses of a DE,

and connect them to the sequences generated above,
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. derive a correct token distribution on the control graph to represent the initial

state of the graph, and finally,
. generate primitives to handle exceptions not mentioned in the requirements.

The first two tasks above constitute the nucleus of the SARA design process.
The most crucial step is to establish the formal definitions for various requirement
constructs. Using the SARA behavioral model, the semantics of the conceptual and
informal requirements are formally defined. These definitions are considered
operational, in the sense that the actual semantics are governed by an underlying token
machine; the GMB token machine is analogous to the hypothetical machine used in
another operational semantics model — the Vienna Definition Language [Wegn72]
interpreter. In this section, the operational definitions, or behavioral models, of all
requirement constructs are given. The control domain synthesis rules are written
according to these definitions. Optimization is also built into the rules to make the

SARA control graphs created more concise.

The other two design sub-tasks, deriving initial token distributions and
handling exception conditions, are not considered as significant. Fairly trivial to a
human designer but probably not to a machine assistant, they are handled in an ad hoc
manner. It requires additional knowledge of the particular application domain as well
as natural language understanding to derive the initial token distributions. For
example, when generating the node sequence for the state of a recording device, a
token should be placed on an appropriate arc to indicate its initial status — idle or not
idle. However, the assistant does not know the initial status of such a system entity if
it cannot be deduced from the requirements. Only common sense tells us that a device

for data recording is usually idle when it is initially turned on. It is beyond the scope
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of this design assistant to deduce such common sense. A compromise is for the
human designer to provide such trivial information — in the form of initial token
distribution — when necessary. Another gap left by the assistant is ignoring
exception conditions not mentioned in the requirements. The assistant may create
headless control arcs which should be led to exception handling processes. A
reasonable practice is to leave it to the human designer to create GMB primitives and

define interpretations to handle the exceptions.

In the next three sections, we present the formal definitions of the three major
aspects of the stimulus/response model, various types of stimuli/responses, logical
relationships among decomposition elements, and transportation of stimuli/responses

to external contexts (other system verification diagrams).
6.3.1 Modeling of Stimulus/Response

In the requirements, various stimuli and responses are associated with a
decomposition element. Each stimulus or response represents only an informal
concept — what invokes the sub-system or what the sub-system produces. To create
GMB objects according to the requirements, the semantics of these informal concepts
have to be formally defined. The control domain synthesis rules subsequently written
are based on the operational definitions of these requirement constructs. In this

section, all stimuli and responses are formally defined.
STIMULI

1. Physical Stimulus —
A physical stimulus is a tangible or intangible object which can be a set of

data, an invocation signal, a toggle, a message, etc. At first thought, a control
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Fig. 6.5: GMB Primitives to Model a Simple Physical Stimulus
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Fig. 6.6: GMB Primitives to Model Cumulative Physical Stimulus
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Fig. 6.7: Control Node Sequence to Model Non-cumulative Physical Stimulus
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As aresult, when DE A produces an object to stimulate DE B, the nature of the
physical stimulus has to be taken into account. To define this scenario
operationally, it takes more than a control arc connecting the two

corresponding control nodes.

State Stimulus —

The state stimulus, representing the continuous truth of a condition in the
system, is modeled by a control node sequence. If a DE has the state as its
stimulus, a control arc from the node sequence should be ready to consistently
invoke the control node representing the DE. In other words, event-invoking-
arc corresponding to the state should ALWAYS have one token on it. With
less than one token, it cannot invoke the event when it should. With more than
one token, it may invoke an event when it is not supposed to. The node
sequence modeling the state should also be able to switch from a state to its
complement state upon arrival of a state-switching signal. A node sequence
which semantically models a state stimulus is illustrated in Fig. 6.8. In the
node sequence, the node dummy serves as a synchronous driver. It invokes
state.node, the main node of the sequence, at every time unit to ensure steady
deposit of one token on the arc state or notstate. A case analysis of the

interpretation of state.node is given as follows:

. In the case state-switching-arc state.signal is among the triggering
arcs, a token is deposited on state, and the status state is recorded in

the interpretation domain.

. In the case state-switching-arc notstate.signal is among the triggering

arcs (switch to not-state), a token is deposited on notstate, and the

112
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Fig. 6.8: GMB Primitives to Model State Stimulus
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status not-state is recorded in the interpretation domain.

. In the other cases, a token is- deposited on state or notstate according
to the state status recorded.

This model works only for a binary state stimulus, but it is trivial to enhance

the node sequence to model a stimulus of more than two states, For each

additional state, simply create an additional multi-head arc, like state,

originating from the state.node.

Synchronous Stimulus —

In the control node sequence modeling a synchronous stimulus, the event-
invoking-arc should be able to activate an event periodically. In other words,
that arc should lrave a token on it at certain time units and no token on it any
other time. A node sequence modeling this scenario is iflustrated in Fig. 6.9.
In the figure, arc A4 is the event-invoking-arc. A token appears on it only at
time units X, 2k, 3k, ..., where k& is the interval specified in the stimulus.
However, the token on A4 may not be consumed at time nk, if the other stimuli
of the DE are not available. In that case, the node INTV_C will confiscate the
token right away to ensure an empty arc at the interval between nk+1 and

(n+1)%-1 units, inclusive.

Stimulus Condition —

To model a stimulus condition, a node sequence as in fig. 6.10 is used. Arc Al
is the event-invoking-arc, while arc Escape.Arc serves as the escape arc,
receiving the token from DEC.NODE if the condition is not met, The

interpretation code of DEC.NODE is simply in the form of
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to DE's associated node

Fig. 6.9: Control Node Sequence to Model Synchronous Stimulus
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Al Escape.Arc

to DE's associated node

Fig. 6.10: Control Node Sequence to Model Stimulus Condition
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if conditicon imposed on stimulus is met
then deposit token on Al
else deposit token on Escape.Arc
endif
Disjunctive Stimulus —
A disjunctive stimulus has multiple alternatives, each of which is a stimulus
itself. The arrival of only one of them is adequate to stimulate the DE. To
define this concept, we use a single-head, multiple-tail control arc, with each
tail representing a stimulus, heading towards the DE-associated node. In Fig.

6.11, we show how one control domain primitive is used to model this

stimulus.

Stimulus Sequence —

A stimulus sequence implies an ordering of stimulus arrivals. Stimuli that not
arrived in this order cannot stimulate the DE. The control node sequénce in
Fig. 6.12 exactly models this scenario. If any stimulus in the sequence arrives
out of order, the corresponding escape arc will receive the token. The escape.

arc is there such that the stimulus sequence is unable to invoke the sub-system.

RESPONSES

Physical Response —
To model this response, a single control arc originating from the DE’s

associated node is used.

Alternative Response —
An alternative response has the following format:
<condition> <then leg> <else leg>

where the then leg and the else leg are responses themselves. Two node
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Fig. 6.11: Control Arcs to Model a Disjunctive Stimulus
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Fig. 6.12: Control Node Sequence to Model a Stimulus Sequence
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sequences are used to model the two legs of responses, and a sequence for this
compound response is built on top of them, as shown in Fig. 6.13. The
interpretation code of the node TSTNODE has the form of
if condition is met
then deposit token on Al
else deposit token on A2
endif
State Response —
A state switching response is simply modeled by a single control arc. For

example, the response that changes a system state, as modeled in Fig. 6.8 is

simply represented by the arc state.signal or notstate.signal.

Action Response —

An action response has one of the following three consequences:

L Produces no particular consequence
If an action produces no particular consequence, this action itself may
be used as stimulus for another event. This response is modeled by a

single control arc.

i. Produces a physical response
If an action eventually produces a physical response, this action is

simply modeled by the node sequence for physical response.

iii. Change a state
If the completion of an action leads to the truth of a system stare, it
means in the duration of the action, that stare is still false, or — state is
true. To model this scenario, two control arcs are used to model

responses state and —state. A node sequence is then built on top of
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Fig. 6.13: Control Node Sequence to Model Alternative Response
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them. Fig. 6.14 shows how a state-switching action is modeled. The
node action.init will deposit a token on A3, causing a system state to
be false. The node action.done, after being invoked by a certain
action-completion signal, will put a token on A4 and will cause the

system state to be true.

S, Response Sequence —
Like a stimulus sequence, a response sequence also implies an ordering of the
response productions. The auxiliary node sequence in Fig. 6.15 indicates the

order of the responses’ availabilities.

Before synthesizing any control node sequence for a stimulus or response, the
assistant also has to consider model optimizations, i.e. whether a node sequence
already exists. If it does, there is no reason to create a replica. Only an additional arc
connection is required between the associated node of the DE and the existing node
sequence. With that in mind, rules to synthesize node sequence for stimulus/response
are based on the eleven models mentioned above, as well as on the synthesis status of
the current element. The knowledge to handle already existed node sequence for

stimulus/response includes:

. A DE with corresponding control node DE.node, produces a response r, while
a node sequence NS has already been synthesized for r (r appears as response
in another DE.) There exists a control arc in NS corresponding to response r.
Add DE.node to the tailset of that arc. This multi-tail arc indicates that the

response is produced by more than one DEs.

. A DE with corresponding control node DE.node, produces a response r, while

a node sequence NS has already been synthesized for r’s corresponding
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Fig. 6.14: Control Node Sequence to Model State-Switching Action
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Fig. 6.15: Control Node Sequence to Model a2 Response Sequence
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stimulus s (s appears as stimulus for another DE.) There exists a tailless
control arc in NS, corresponding to the arrival of r. Make DE.node the origin
of that arc. The control domain primitives corresponding to r and s are now

officially connected.

. A DE with corresponding control node DE.node, has s as a stimulus, and a
node sequence NS has already been synthesized for s (s appears as a stimulus
for another DE.) Suppose the event-invoking-arc in the node sequence is A.

The synthesis requires duplicating only A:

—_ creating an arc identical to A with the same attributes but the name and

headset, and

— in the input/output logic of any node within NS, replacing A by the
conjunction of A and its duplicate.

The duplicate is then made to head towards DE.node.

. A DE with corresponding control node DE.node, has s as a stimulus, and a
node sequence NS; has already been synthesized for s’s corresponding
response r (r appears as a response for another DE.) There exists a headless
control arc A in NS; corresponding to r. Synthesize a node sequence NS; and
connect A to it. Now the control domain primitives corresponding to r and s

are officially connected.
According to the operational models of these six stimuli and five responses,

the synthesis rules to create GMB objects from requirement objects are derived.

Optimization is also taken into account when writing these rules, so that redundant
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control node sequences are avoided in design synthesis. To conclude this section, we
give several sample synthesis rules for stimuli and responses. These rules will be

needed in the sample synthesis presented later.

Rule stim.7
Antecedent: stim is a synchronous stimulus and no control node sequence is synthesized for stim
yet
Consequence:  Let PARENTNODE be the node of the DE o which this stimulus belongs
Create a control node sequence as in Fig. 6.9;
Connect arc STIM_C to PARENTNODE;
Assign interpretation domain for node STIM_A —
($delay time interval specified in this stimulus)
Assign interpretation domain for node STIM_B —

($delay 0)
resp.1
Antecedent: resp is a physical response, and a control arc is already synthesized for resp, or

resp’s corresponding stimulus
Consequence:  Let PARENTNODE be the node of the DE 1o which this response belongs,
Add PARENTNODE to the tailset of the control arc synthesized for resp;

resp.2
Antecedent: resp is a physical response, and no control arc is synthesized for resp yet
Consequence:  Let PARENTNODE be the node of the DE to which this response belongs,
Create a no-head control arc originating from PARENTNODE.
Subgoal: synthesize resp according to the External Response Rules.

6.3.2 Modeling of Event Dependency

In the stimulus/response model, each decomposition element represents a
system/subsystem, invoked by its stimuli to produce responses. When synthesizing
control domain primitives from a decomposition element, normally one control node
is sufficient for one DE. However, if logical relations are taken into account, it is
possible to use one control node to represent multiple decomposition elements, or
multiple control nodes to represent one decomposition element. It depends on the

relation and the stimulus involved.

126



The modeling is straightforward if it is a SEQUENCE relation, say, originating
from DE DE; and heading to DE DE;. A control node corresponding to DE; is
created, connected to the node corresponding to DE; by a control arc. Based on this
modeling, the rules used to synthesize control domain objects from a SEQUENCE

relation and its single destination are given as follows:

Rule Rel.1
Antecedent: Rel is SEQUENCE and Rel is associated with a stimulus
Consequence:  Subgoal: synthesize destination Decomposition Element of Rel

DE.1

Antecedent: any DE

Consequence:  Create a control node for DE;
Subgoal: synthesize stimulus of DE;
Subgoal: synthesize response of DE;
Subgoal: synthesize output relations of DE;

For multi-destination relations — AND, EXCLUSIVE-OR, SEQUENTIAL.--
EXCLUSIVE-OR, or SEQUENTIAL-INCLUSIVE-OR, more possibilities arise. It
depends on number of stimuli in the destination DEs, and the form of the common
stimulus — the stimulus associated with the relation. There are four classifications of

the common stimulus:

1. Every DE has only a single stimulus, a derivative of the common stimulus or

the common stimulus itself.

2, The stimuli in all DEs corresponding to the common stimulus are identical,

and at least one DE has multiple stimuli.

3. The common stimulus is a state stimulus, and at least one DE has multiple
stimuli.
4, At least one DE has multiple stimuli, and the common stimuli in all DEs: are
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not necessarily identical.
In fact, case (4) is the most general case, which results in a larger node sequence being
synthesized. Special cases (1), (2) and (3), which will be synthesized to more concise

node sequences, are checked first before the general case.

The GMB control domain alone is not adequate to model the requirement
constructs. In other words, a control node sequence alone is not able to define the
semantics of relations like SEQUENTIAL-EXCLUSIVE-OR and SEQUENTIAL-
INCLUSIVE-OR. Fortunately, T, the currently used interpretation domain language,
has language features such as COND, IF-THEN-ELSE, which has semantics similar to
the two relations mentioned. As a result, modeling of these relations is forced down

to the interpretation domain’s level, instead of being left at the control domain’s level.

The supplement interpretation code generated is not always executable.
Occasionally, pseudo code instead of T code is used to express the interpretation

algorithmically. For example, a statement like

(if condition on the common stimulus in DE; is met
.)
may be put in the interpretation. This is because the GMB generated by the assistant
is not complete. Certain design details, e.g. data type representation for a stimulus, are
to be determined by the human designer. (Such information is also widely regarded as
implementation detail; it is considered as design detail here because the design will
eventually be simulated.) As a result, the assistant is unable to synthesize executable

code which relies heavily on such design details.
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Based on the above mentioned concepts, operational definitions of the multi-
destination relations are derived. A multi-destination relation means, conceptually,
upon arrival of the common stimulus, one or more decomposition elements within the
group will be activated. The relation itself and the condition of the stimulus
determine which one(s) is(are) actually invoked. To model this scenario with the
control domatn, the basic idea is to construct a control node DEi.node for each
decomposition element DE;, each of which consists of some response-producing
actions. On top of the set of control nodes generated, there is one or more decision
nodes examining the stimulus and determining which DEi.node to activate. There are
four types of relations and four types of common stimuli. Before we discuss the
modeling of each situation, we first introduce a convention used in the illustrations.
Some nodes have bold arcs heading into them or originating from them. Each bold arc
actually represents a collection of ordinary control arcs, each of which corresponds to

a stimulus or response. This convention is best illustrated in Fig. 6.16.

SINGLE STIMULUS

In each DE among the destination DEs, there is only one single stimulus,
which is either the common stimulus itself or a derivative of the common stimulus.
Not depending on anything else, the common stimulus itself is sufficient to determine
whether a DE is to be invoked. The operational definitions of this scenario for the

four logical relations are given as follows:

1. AND
The common stimulus is supposed to stimulate all destination DEs. The
control node sequence to model this concept is illustrated in Fig. 6.17. The

token corresponding to the common stimulus will be multiplied to invoke all
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DEl.sum3

DEij.stim

DEi.resp

DEi.res i
92 DE|.1'espk

DEi.res
p3

Fig. 6.16: Convention for a Group of Arcs Representing Stimuli/Responses
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STIMARC

DE1.node DE2.node DEn.node

DE1.resp DE2.resp DEn.resp

Fig. 6.17: AND Relation with Single Stimulus
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control nodes corresponding to the destination DEs.

2. EXCLUSIVE-OR
The common stimulus will invoke, non-deterministically, only one of the
destination DEs. To model this concept, a control node sequence as shown in
Fig. 6.18 is used. A decision node, DEC.NODE, is employed to determined
which node associated with DE will be invoked. The interpretation code of

DEC.NODE will select one non-deterministically.

3, SEQUENTIAL-EXCLUSIVE-OR
This scenario is similar to the one in EXCLUSIVE-OR, except the DE to be
invoked is determined explicitly. To obtain this behavior, determinism is

encoded into the interpretation domain of DEC.NODE.

4, SEQUENTIAL-INCLUSIVE-OR
In this relation, as many destination DEs will be invoked as possible. The
control node sequence to model this concept is illustrated in Fig. 6.15. The
interpretation code of DEC.NODE will check on all invocation conditions and

deposit tokens to invoke as many nodes as possible.

IDENTICAL COMMON STIMULUS

In each DE among the destination DEs, there must be a stimulus associated
with the logical relation, namely the common stimulus, The common stimuli in all
DEs can be identical, as illustrated in an example in Fig. 6.20, in which the common
stimulus is the 3 second interval, which is identical across all destination DEs. The

semantics of this scenario is described according to the four types of logical relations:
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STIMAARC

DE1.node DE2.node DEn.node

DE1.resp DE2.resp DEn.resp

Fig. 6.18: XOR Relation with Single Stimulus
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STIMARC

DE1.node DE2.node DEn.node

DET1.resp  [DE2.resp DEn.resp

Fig. 6.19: SEQ-INCL-OR Relation with Single Stimulus
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* 3 second | L1003 |* display
* 3 second | L1001 record interval longitude
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flight altitude | tape mode display | on VDU
co-
ordinate

v

* 3 second | L1002 |* record

interval flight
velocity
record on tape
valocity

Fig. 6.20: A Multi-Destination Relation with Identical Common Stimulus
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AND

This relation indicates a replica of the common stimulus, such that each DE
can receive one copy. However, whether a DE will be invoked depends on
whether the other stimuli of that DE are available. The control node sequence

modeling this behavior is illustrated in Fig. 6.21.

EXCLUSIVE-OR

This relation indicates that only one of the decomposition elements will be
stimulated by the stimulus. To model this behavior, the control node sequence
in Fig. 6.22 is used. A DE with all its invocation conditions met will be
invoked. If more than one DEs has its invocation conditions met, all of them
will compete for the token on arc com.stim. The eventual winner will be non-

deterministically selected by the token machine.

SEQUENTIAL-EXCLUSIVE-OR

This relation is similar to EXCLUSIVE-OR, with the non-determinism
removed. The priority of DE to be invoked by the common stimulus is
explicitly stated in the relation. A control node sequence as in Fig. 6.23 is
used to model this behavior. In this model, DEC.NODE, a decision node,
with the help of the priority input operator >, is needed to decide which node,

each of which associated with a DE, to invoke.

SEQUENTIAL-INCLUSIVE-OR

In this relation, any number of DEs may be invoked, as long as their
invocation conditions are satisfied. To model this scenario, the node sequence
in Fig. 6.24 is used. In this model DEC.NODE, the decision node is to be

invoked by as many sets of stimuli as possible. It then decides which nodes,
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STIMARC

DE1.stim
DEn.stim

DE2.stim
DE1.resp

DEn.resp

DE2.resp

Fig. 6.21: AND Relation with Identical Common Stimulus
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COM.STIM

DE1.stim

DEn.stim

DE2.stim

DE1.resp

DE2.resp

Fig. 6.22: XOR Relation with Identical Common Stimulus
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DE1.sti
stim DEZ2.stim

DEn.stim
COM.STIM

COM.STIM and
{ DE1.stim » DE2.stim »
>»DEn.stim }

DE1.node
DEn.node
DE2.node

DE1.resp

DE2.resp DEn.resp

Fig. 6.23: SEQ-XOR Relation with Identical Common Stimulus
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DE1.stim

DEZ2.stim

DEn.stim
COM.STIM

COM.STIM and
( DE1.stim + DE2.stim +
+ DEn.stim)

DE1.node
DEn.node
DE2.node
DE1.resp
DE2.resp DEn.resp

Fig. 6.24: SEQ-INCL-OR Relation with Identical Common Stimulus
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corresponding to the DEs which have the input stimuli available, to invoke.

STATE COMMON STIMULUS

In all destination DEs, the stimulus that ties them together is a system state, or
its complement. An example of this scenario is illustrated in the SVD of the recorder
module (Fig. 6.25), where the state common stimulus is recording in progress, or its
complement recording not in progress. The semantics of this scenario is described

according to the four types of logical relations:

1. AND
The truth of a certain system state is going to invoke all destination DEs. To
model this concept, a control node sequence as in Fig. 6.26 is employed. A
control node sequence is needed to model the state stimulus. When state
becomes true, the node STATE.node will deposit tokens on the arcs heading

to the nodes associated with the destination DEs.

2. EXCLUSIVE-OR
The truth of a system state is going to invoke one of the destination DEs.
Again, which one to be invoked is non-deterministic. The operational
definition of this construct is illustrated by the control node sequence in Fig.
6.27. Upon the arrival of a token on the STATE arc, the nodes corresponding
to the DEs will compete for it. The token machine will choose the winner

non-deterrninistically.

3 SEQUENTIAL-EXCLUSIVE-OR
The truth of a system state is going to invoke one of the destination DEs

deterministically. The control node sequence to define the semantics of this
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\4

record
message
on device

* racording L3002 * recorder - recording 13003 d
In progress buffer has not in
* recording | request msg progress | normal
request | buffered * recording | recording|
request proceed
* recording L3004 [+ recorder
not in buffer has
progress buffered no msg
* recorder | request
buffer has| proceed
msg

Fig. 6.25: A Sample Multi-Destination Relation with a State Common Stimulus
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STATEnN DEn.stim

STATE.2
and

STATE.1

DEn.resp

DE2.stim

DE1.stim

DE1.

DE2.resp

DE1.resp

Fig. 6.26: AND Relation with State Common Stimulus
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DE1.stim

DEn.stim

DEZ2.stim

DE1.resp
DEn.resp

DEZ.resp

Fig. 6:27: XOR Relation with State Common Stimulus
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construct is presented in Fig. 6.28. When the system state becomes true, the

decision node, DEC.NODE, decides which DE-associated node to invoke.

4, SEQUENTIAL-INCLUSIVE-OR
The truth of a system state is going to invoke as many destination DEs as
possible. To define the semantics of this construct, the control node sequence
in Fig. 6.29 is used. When the system state becomes true, the decision node is
going to check the other stimuli for each destination DE, and invoke all the

nodes whose invocation conditions are met.

GENERAL COMMON STIMULUS

Aside from the three specific cases to the common stimulus described above,
there is a general case that takes care of the common stimulus which is none of the
above. The operational definitions of this general common stimulus, under the four

logical relations, are described as follows:

1. AND
In this case, the common stimulus tries to invoke all destination DEs. This
scenario is modeled by the node sequence in Fig. 6.21. Upon arrival of a token
at STIM.ARC, the token multiplying node, MULT.NODE, will produce

multiple tokens for all nodes corresponding to the destination DEs.

2. EXCLUSIVE-OR
The commeon stimulus tries to invoke one of the destination DEs. The control
node sequence to define this concept is illustrated in Fig. 6.30. In the graph,
two levels of testing are needed to determine which DE-associated node to be

invoked. For a non-deterministically selected DE (selected in
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DE1.st
stim DE2.stim

DEn.stim

STATE and
( DEt1.stim » DE2.stim »
>DEn.stim )

DE1.node
DEn.node
DE2.node
DE1.resp
DE2.resp DEn.resp

Fig. 6.28: SEQ-XOR Relation with State Common Stimulus

146



DE1.stim
/ DE2.stim

DEn.stim

STATE and

{ DE1.stim + DE2.stim +
+ DEn.stim)

DE1.node
DEn.node
DEZ2.node
DE1.resp
DE2.resp DEn.resp

Fig. 6.29: SEQ-INCL-OR Relation with State Common Stimulus
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Fig. 6.30: XOR Relation with General Common Stimulus
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SELECT.NODE), first the imposed condition, if any, on the common
stimulus is checked. If it is met, and all other stimuli of that DE are also
available (checked by DEi.dec), then the node DEi.node is invoked. If not,
then the stimuli of other selected DEs (again, selected in SELECT.NODE)
will be tried.

3 SEQUENTIAL-EXCLUSIVE-OR
This scenario is similar to the one in EXCLUSIVE-OR, except
SELECT.NODE deterministically selects a DE to check its stimuli.

4. SEQUENTIAL-INCLUSIVE-OR
The common stimulus tries to invoke as many destination DEs as possible,
depending on whether the other stimuli of each DE are available, as well as if
any condition imposed on the common stimulus is satisfied. The control node
sequence to model this concept is the one described in Fig. 6.24. In the
interpretation code of DEC.NODE, it will deposit token on all the arcs leading
to the DE-associated nodes if necessary.
Aside from these sixteen cases of component dependencies, a special case is also
made for the AND relation with the common stimulus being a synchronous stimulus,
In this situation, the token-multiplying approach does not work because it will result
in tokens pifing-up. Time-critical tokens should appear only at a specific instance and
disappear at all other instances. The node sequence to model this special scenario is
shown in Fig. 6.31. In this graph, node INTV_A generates a token synchronously for
each DE-associated node. However, if the token is not consumed at that moment,

node INTV_C will confiscate it.
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and
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node
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DE1. node
node
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Fig. 6.31: AND Relation with Synchronous Stimulus
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Based on the operational definitions of these seventeen logical constructs,
seventeen control domain synthesis rules are derived. A sample rule to synthesize

GMB objects for multiple destinations of a logical construct is given as follows:

GroupDE.16
Antecedent; DEs are destination of an EXCLUSIVE-OR relation, and each DE has only a single

stimulus
Consequence:  Create a node DEC.NODE;
Subgoal: synthesize the common stimulus with respect to DEC.NODE;
For DE; among DEs = [DE,, DE,, ...., DE, },
Create a control node DEi.node, if necessary, for DE;;
Connecting DEC.NODE and DEi.node with an arc Ai;
Assign interpretation code for DEi.node —
response-producing code for DE;
Create a no-head arc Escape.Arc originating from DEC.NODE;
Assign output logic to DEC.NODE;
assign interpretation code for node DEC.NODE —
(iterate ND-select
{((STIM-SET stimuli in (DE,, DE,, ..., DE }})
{(cond ({null? STIM-SET) {$cutput arc Escape.Arc))
{(else
{let ((Si randomly select a
stimulus from STIM-SET))
(if condition on Si is met
{$output_arc Ai)
{ND-select STIM-SET))
)
)
)
}
For DE,; among DFEs,
Subgoal: synthesize control arcs originating from node DEi.node for DE;’s
responses;
Subgoal: synthesize control domain primitives for DE; s output relations;
Result control node sequence for the current group is shown in Fig, 6.18.

This is also where the personal preference of the human designer determines
the design. As a matter of fact, the nodes DEL.node, DE2.node, .... and DEn.node
may not be needed if the designer wants to enclose the response-producing actions
within the decision node. This is a trade-off between conciseness in the control

domain and conciseness in the interpretation domain. One approach results in a

higher degree at the decision node, as well as longer interpretation code, while the
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other ends up with more control domain primitives. This is where alternative rules

may be added, for the human to select a design to his or her taste.
6.3.3 Modeling of External Stimulus/Response

Besides ordinary stimuli and responses, stimuli produced from an external
subsystem and responses to be consumed by an external subsystem, have to be
considered too. In Section 6.3.1, all the stimulus/response mentioned are assumed to
be local — produced and consumed within the same context, or system verification

diagram. For external stimuli and responses, additional formal definitions are needed.

This modeling brings the structural model back into the picture. In every
module containing the GMB, there exist one or more sockets as the component’s
gateways to the outside world. Now the modeling of external stimulus/response has to
reference these sockets again. Let N be a node synthesized for the DE, modeling of

external stimulus/response is fairly trivial:

. If a stimulus comes from an external diagram, an event-invoking-arc,

representing that stimulus; is used to connect a desired socket and N,

. If a response goes to an external diagram, a control arc, representing the

response, is used to connect N and a desired socket.

Synthesis rules are derived according to this external stimulus/response
modeling. This process requires human interaction. The socket to be connected
cannot be deduced from the system verification diagram itself, since this facet of the
requirements does not carry information in subsystem connections. Instead of pulling
in the various level of data-flow diagrams to derive the desired socket, we decide to

leave this selection to the human designer. At each instance control domain
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primitives are generated for an external stimulus/response, the assistant will display a

prompt including all available sockets in the current module, as well as where each

socket leads to. The human is then expected to pick the socket desired. Some sample

rules are presented as follows:

stim. 1
Antecedent:

Consequence:

x.resp.2

Antecedent:

Consequence:

x.resp.3

Antecedent:

Consequence:

stim is an external stimulus :

Let PARENTNODE be the node of the DE to which this stimulus belongs
Prompt human designer for the socket § corresponding to this external stimulus:
Create a control arc connecting § and PARENTNODE.

resp is an external response and resp is not a compound response

Let RESP.ARC be the arc synthesized for resp
Prompt human designer for the socket S corresponding to this external response;
Include $ in the headset of RESP.ARC.

resp is not an external response
Do not synthesize anything,

6.3.4 Sample Synthesis

In this section, we present a small-scaled sample synthesis of GMB objects

from the requirements. The example is the fuel monitor sub-system. The requirement

used is the system verification diagram in Fig. 3.12. After that diagram is fed into the

synthesizer, the following sequence of rules are fired.

1. rule Rel.1 for the sequence relation leading to decomposition element F UEL
READING REQUEST.

2. rule DE.1 for the decomposition element FUEL, READING REQUEST.,

3. rule stim.7 for the stimulus / second interval in FUEL READING REQUEST.

4, rule stim.1 for the external stimulus System in operation in FUEL READING
REQUEST.
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10.

11.

12.

13.

14.

15.

16.

rule resp.2 for the response Fuel Reading to be checked in FUEL READING
REQUEST.

rule x.resp.3 for the response Fuel Reading to be checked in FUEL READING
REQUEST.

rule Rel.2 for the XOR relation from decomposition element FUEL READING
REQUEST.

rule GroupDE.16 for the decomposition elements BAD FUEL READINGS, and
GOOD FUEL READINGS.

rule resp.2 for the external response Fuel warning "on” in BAD FUEL
READINGS.

rule x.resp.2 for the external response Fuel warning "on" in BAD FUEL
READINGS.

rule resp.2 for the external response Fuel Message to be Flashed in BAD
FUEL READINGS.

nule x.resp.2 for the external response Fuel! Message to be Flashed in BAD
FUEL READINGS.

rule resp.2 for the external response Fuel Recordings in BAD FUEL
READINGS.

rule x.resp.2 for the external response Fuel Recordings in BAD FUEL
READINGS.

rule resp.l for the external response Fuel Recordings in GOOD FUEL
READINGS.

rule x.resp.2 for the external response Fuel Recordings in GOOD FUEL
READINGS.

During this synthesis process, the human designer is queried to pick the appropriate

sockets connecting the control arcs to the outside modules. The result of this

synthesis is a control graph skeleton illustrated in Fig. 6.32. The figure also includes

several data domain objects, namely data processors, to hold the interpretation code

generated for the control nodes. The interpretation code synthesized for the node N1,
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Fig. 6.32: Control Graph Skeleton Synthesized for Fuel Monitor
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which helps to regulate the control flow of this fuel reading process, is given as
follows:
{(iterate ND-select
((STIM-SET {low fuel reading},
{normal Ffuel reading}))
(cond ({(null? STIM-SET) ($output arc Escape.Arc))
(else
(let ((Si randomly select and remove a
stimulus from STIM-SET))
(if condition on Si is met
($output arc Ai)
(ND-select STIM-SET))))))
Obviously the code generated is only partial-code. The human designer, given this
code skeleton, has to replace the pseudo code with actual T code to make it

executable.

6.4 Data Domain Synthesis

Compared to control domain synthesis, data domain synthesis is much more
trivial. The semantics of the primitives in the data-flow model, unlike those of the
stimulus/response model, are pretty well-defined. In other words, data domain
modeling may be obtained directly from the data-flow diagrams. There exist implicit
mappings between elements in the data-flow model and primitives in the data domain,
and thus results in a straightforward transformation process for all data-flow model

elements but the dataflows.

The knowledge used in constructing the SARA data domain consists of two
aspects: direct translation between the majority of primitives, and how data
dependencies among system entities are synthesized to data domain primitives. In

this section, the two issues will be addressed in details.
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6.4.1 Implicit Mappings between Requirement and Design Models

By definition, certain elements in the data-flow model serve the same functions

as corresponding primitives in the SARA data domain. To synthesize data domain

primitives from those elements in the data-flow model, a direct translation is possible.

The following table gives the descriptions of selected primitives in the two models:

data-flow Model Primitives

process —
a transformer of data, as described in its
mini-specification

datastore —
a temporary repository of data, with no
actual value defined

datasource or datasink —
net originator or receiver of data, with
no actual value defined

SARA Data Domain Primitives

data processor —

a data  transformation  object,
computation as described in the
processor’s associated interpretation

dataset —
a passive collection of data, with actual
values stored

dataset —
a passive collection of data, with actual
values stored

As observed, each pair of primitives have similar functions. Thus a direct translation

between the two models is possible, save some minor exceptions:

. When creating a data processor for a process, a control node-data processor

mapping has to be established, as part of the GMB properties. However, if the

control node desired has already been mapped to an existing data processor,

the creation of a new data processor is redundant. The process in question has

already had a data processor synthesized for it.

. Only primitive elements in the data-flow mode! are candidates for this data

domain synthesis. If an element is non-primitive, i.e. has refinements, it

should be a candidate of structural model synthesis instead of data domain

synthesis.
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. When generating datasets for datastores, initial values are required in order to
simulate the GMB. Since a datastore represents a temporary storage of data,
its associated dataset should initially be empty. Nil is used as initial value for
datasets of this kind, since it is the generic vacuous value of T, the language in

which the SARA system was written.

* Datasets synthesized for datasinks — net receivers of data — should also be

empty inidally. They are treated the same way as datasets above.

. Datasource — the net originator of data — should contain sample data to be
computed by the system. When generating dataset for a datasource, the
synthesizer is not able to figure out these initial data values to be computed. It
is the human designer’s job to prepare these test data and assign them to the

datasets created.

With the modeling of these data-flow primitives, data domain synthesis rules

are derived. Sample synthesis rules are given as follows:

Proc.D.4

Antecedent: process is primitive

Consequence: ~ Multiple data processors already exist for process, ask human designer to
associate the data processors with process;

DS.D.2
Antecedent: datastore is primitive
Consequence:  Create a dataset for datastore, with initial value nil;

58.D.3
Antecedent: datasink SS appears in top-level diagram and SS is primitive
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Consequence:  Create a dataset DSET for 88, with initial value nil;
For each dataflow DF connected 1o SS
Let SOCS be the set of sockets associated to DF in module
ENVIRONMENT,
Connect DSET to cach socket in SOCS with a data arc, with arc type
W,
endfor.

6.4.2 Knowledge of Data Dependencies

The major function of SARA data domain is to model data dependencies
among the primitive system units. A system unit A is data-dependent on system unit
B if B provides data to A. In the lower level diagrams of the requirements, the
dataflows indicate exactly these relations. However, unlike process and datastore, a
single dataflow cannot directly be mapped to a single data arc. Dataflows with
different properties should be formally modeled by different data domain primitives.
Formal definitions of various types of dataflow, as well as their representations in

form of synthesis rules, are given as follows:

. A dataflow connecting two primitive processes cannot be modeled by a single
data arc, because the data graph is bipartite — a data arc cannot connect two
data processors. As an alternative, an intermediate dataset is needed to serve
as a buffer between the two processors.

DED.7

Antecedent: df connects two processes, both of which are primitive

Consequence:  Let P1 be the source process and P2 be the destination process of df,
Create an intermediate dataset DS;
Create a data arc of type R 10 connect P1’s associated data processor and
DS;
Create a data arc of type W to connect DS and P2’s associated data
processor;

. For a dataflow connecting a primitive process and a primitive datastore, it can
be modeled by a single data arc connecting the corresponding data processor

and dataset.
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DF.D.8
Antecedent: df connects a primitive process and a primitive datastore
Consequence:  Let DS be the associated dataset of the datastore, DP be the associated data
processor of the process,
Create a data arc of type W to connect DP and DS;

DE.D.9
Antecedent: df connects a primitive datastore and a primitive process
Consequence:  Let DS be the associated dataset of the datastore, DP be the associated data
processor of the process,
Create a data arc of type R to connect DP and DS;

For a dataflow connecting no primitive objects, it should be modeled at the
structural model’s level. The assistant should synthesize an interconnection
instead of a data arc for it.

DE.D.6

Antecedent: df connects to two objects, both of which have refinements
Consequence:  do not synthesize anything

DF.D.11
Antecedent. df is singly connected, and the source object has a refinement
Consequence:  do not synthesize anything.

DF.D.12

Antecedent: df is singly connected, and the destination object has a refinement
Consequence:  do not synthesize anything.

As mentioned in the structural model synthesis, a refined object in the data-
flow diagram is modeled by a module. For a dataflow connecting a refined
object and a primitive object, an interconnection already exists for its sake.
There also exists a socket on the current module (the auxiliary module created
in Rule DFD.M.3) associated with this dataflow. A data arc is used to connect
the socket and the corresponding data domain primitive of the primitive object.
DFE.D.2

Antecedent: df connects a refined object and a primitive process

Consequence:  Lel SOC be the socket on the auxiliary module associated with df, DP be

data processor associated with the process,
Create a data arc (0 connect SOC and DP, with arc type R.
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DFE.D.3
Antecedent:
Consequence:

DE.D.4
Antecedent:
Consequence:

DE.D.5
Antecedent:
Consequence;

df connects a primitive process and a refined object
Let SOC be the socket on the auxiliary module associated with df, DP be
data processor associated with the process,

Create a data arc to connect SOC and DP, with arc type W.

df connects a refined object and a primitive datastore
Let SOC be the socket on the auxiliary module associated with df, DS be
data processor associated with the datastore,

Create a data arc to connect SOC and DS, with arc type W.

df connects a primitive datastore and a refined object
Let SOC be the socket on the auxiliary module associated with df, DS be
data processor associated with the datastore,

Create a data arc to connect SOC and DS, with arc type R.

Singly connected dataflow means data are transferred into or out of the current

context. This scenario is modeled by a data arc connecting an associated

socket and a data domain primitive.

DFE.D.13
Antecedent:

Consequence:

DF.D.14
Antecedent:

df has no destination, the source is a primitive process, and the primitive
process was synthesized to a single data processor
Let DP be the data processor associated with the primitive process
For each socket SOC among the sockets in the current module associated
with df
Case
SOC’s other side is connected to a data processor —
create an intermediate dataset DS, connect DP to DS with an
arc of type W, connect DS and SOC with an arc of type R;
SOC’s other side is connected to a dataset —
connect DP 1o SOC with an arc of type W,
SOC’s other side is not connected to anything —
connect DP to SOC with an arc of type W;
endcase;
endfor.

df has no destination, the source is a primitive process, and the primitive
process is synthesized to a single data processor
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Antecedent: df has no destination, the source is a primitive process, and the primitive
process is synthesized (o a single data processor
Consequence;  Let DP be the data processor associated with the primitive process
For each socket SOC among the sockets in the current module associated
with df
Case
SOC’s other side is connected to a data processor —
create an intermediate dataset DS, connect DP to DS with an
arc of type W, connect DS and SOC with an arc of type R;
SOC’s other side is connected to a dataset —
connect DP to SOC with an arc of type W;
SOC’s other side is not connected to anything —
create an intermediate dataset DS, connect DP to DS with an
arc of type W, connect DS and SOC with an arc of type R;

endcase;
endfor.
DFE.D.15
Antecedent: df has no destination, the source is a primitive process, and the primitive

process was synthesized to multiple data processors
Consequence;  Among the data processors associated with the primitive process — the
source of df, request the human designer to pick a subset of data processors.
For cach DP among the subset picked
For each socket SOC among the sockets in the current module associated
with df
Case
SOC’s other side is connected to a data processor —
create an intermediate dataset DS, connect DP to DS with an
arc of type W, connect DS and SOC with an arc of type R;
S0C’s other side is connected to a dataset —
connect DP to SOC with an arc of type W;
SOC’s other side is not connected to anything —
connect DP to SOC with an arc of type W;

endcase;
endfor;
endfor.
DF.D.16
Antecedent: df has no destination, the source is a primitive process, and the primitive

process was synthesized to multiple data processors
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Consequence:

DF.D.17
Antecedent:

Consequence:

DF.D.18
Antecedent:

Among the data processors associated with the primitive process — the
source of df, request the human designer to pick a subset of data processors.
For each DP among the subset picked
For each socket SOC among the sockets in the current module associated
with df
Case
SOC’s other side is connected to a data processor —
¢reale an intermediate dataset DS, connect DP to DS with an
arc of type W, connect DS and SOC with an arc of type R;
SOC’s other side is connected to a dataset —
connect DP to SOC with an arc of type W;
SOC’s other side is not connected 10 anything —
create an intermediate dataset DS, connect DP o0 DS with an
arc of type W, connect DS and SOC with an arc of type R;
endcase;
endfor;
endfor.

df has no source the destination is a primitive process, and the primitive
process was synthesized to a single data processor
Let DP be the data processor associated with the primitive process
For each socket SOC among the sockets in the current module associated
with df -
Case
SOC’s other side is connected to a data processor —
create an intermediate dataset DS, connect DP to DS with an
arc of type R, connect DS and SOC with an arc of type W,
SOC’s other side is connected to a dataset —
connect DP to SOC with an arc of type R;
SOC’s other side is not connected to anything —
connect DP to SOC with an arc of type R;
endcase;
endfor.

df has no source, the destination is a primitive process, and the primitive
process was synthesized to a single data processor
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Consequence:

DF.D.19
Antecedent:

Consequence:

DE.D.20
Antecedent:

Let DP be the data processor associated with the primitive process
For each socket SOC among the sockets in the current module associated
with df :

Case
SOC's other side is connected to a data processor —

create an intermediate dataset DS, connect DP to DS with an
arc of type R, connect DS and SOC with an arc of type W
SOC’s other side is connected to a dataset —
connect DP to SOC with an arc of type R;
SOC's other side is not connected to anything —
create an intermediate dataset DS, connect DP to DS with an
arc of type R, connect DS and SOC with an arc of type W;

endcase;
endfor

df has no source the destination is a primitive process, and the primitive

process was synthesized to a single data processor
Let DP be the data processor associated with the primitive process
For each socket SOC among the sockets in the current module associated

with df

Case
SOC’s other side is connected to a data processor —

create an intermediate dataset DS, connect DP to DS with an
arc of type R, connect DS and SOC with an arc of type W,

SOC’s other side is connected to a dataset —
connect DP to SOC with an arc of type R;

SOC'’s other side is not connected to anything —
connect DP to SOC with an arc of type R;

endcase;
endfor.

df has no source, the destination is a primitive process, and the primitive
process was synthesized to a single data processor
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Consequence:  Among the data processors associated with the primitive process — the
source of df, request the human designer to pick a subset of data processors.
For each DP among the subset picked

For each socket SOC among the sockets in the current module associated
with df
Case
SOC’s other side is connected to a data processor —
create an intermediate dataset DS, connect DP to DS with an
arc of type R, connect DS and SOC with an arc of type W;
S0OC’s other side is connected to a dataset —
connect DP to SOC with an arc of type R;
SOC’s other side is not connected to anything —
create an intermediate dataset DS, connect DP to DS with an
arc of type R, connect DS and SOC with an arc of type W;

endcase;
endfor;
endfor.
DE.D.21
Antecedent: df has no destination and the source is a primitive datastore

Consequence:  Let DS be the dataset associated with the primitive datastore
For each socket SOC among the sockets in the current module associated

with df
connect DS to SOC with an arc of type R;
endfor.
DF.D.22
Antecedent. df has no source and the destination is a primitive datastore

Consequence:  Let DS be the dataset associated with the primitive datastore
For each socket SOC among the sockets in the current module associated
with df
connect DS to SOC with an arc of type W;
endfor.

Each pair of rules above, DF.D.13 and DF.D.14, DE.D.15 and DFE.D.16,

DF.D.17 and DE.D.18, DF.D.19 and DE.D.20, and DF.D.21 and DF.D.22,

have identical antecedents. This is because whenever two data processors
from two different GMBs are connected, via an interconnection, an
intermediate dataset is still needed between them. However, this artificial
dataset may be created in either data graph, without affecting the correctness

of the GMB. The choice of placing the dataset in either GMB is left to the
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human designer. As a result, in each situation, the human designer is asked to

choose which one of the two rules he or she prefers.

. A primitive dataflow may represent a plain event invocation signal with no
actual data involved. No data domain element is needed to model it. This
type of data dependency should be modeled in the control domain.

DFE.D.1

Antecedent: df represents a simple on/off signal
Consequence:  do not synthesize anything

6.4.3 Sample Synthesis

In this section, we show the creation of the Fuel monitor data graph skeleton to
illustrate the process of data domain synthesis. The sample requirement used is a
lowest-level data-flow diagram in Fig. 3.10. From that diagram, we show only the
data domain synthesis of the fuel monitor, so only the Fuel Monitor process is fed to
the rule interpreter. As shown in Fig. 6.32, three data processors have already been
created in the data graph of the Fuel Monitor. A trace of the rules applied is given as

follows:

1. rule Proc.D.4 for the process Fuel Monitor.

When asked to associate the existing data processors to Fuel Monitor, the
human designer associates all three data processors, N1.dp, GFR.dp, and
BFR.dp, to the process.

rule DF.D.19 for the dataflow time.

rule DFE.D. 19 for the dataflow Control Signals.

rule DF.D.19 for the dataflow Fuel Readings.

A T

rule DE.D.15 for the dataflow Recorded Data.
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6. rule DF.D.15 for the datafiow VDU Outpur,
7. rule DF.D.1 for the dataflow Warning Signal.
The data graph skeleton generated is shown in Fig. 6.33.

6.5 The Interpretation Domain

Among the three domains in the graph model of behavior, the human designer
has to put the most effort in coding the interpretation domain, since the design
assistant cannot offer as much help in this facet. In this section, we will discuss what

the design assistant can and cannot do in this aspect of the design.

As previously mentioned, the control domain itself is not able to model some
of the constructs in the requirements. Data domain and interpretation domain have to
be brought into the picture to model the required behavior. In those mstances the
assistant generates decision- -making interpretation code for certain decision-making
control nodes. The code generated essentially helps determining the control flow of
the system. Within the interpretation generated, there exists pseudo code, describing,
in natural language, the computation needed. It is left to the human designer 1o

transform this pseudo code into executable T code.

A task the design assistant cannot assume is automatic code synthesis. In the
pseudo code synthesized by the assistant, there is an often-used statement
response-producing code for a DE
Further elaboration of such a statement in each event is available in the data-flow
model. Each primitive process has an attribute called the mini-specification
describing the transformation of incoming data to outgoing data. Currently, the
assistant is not able to synthesize code automatically from this specification, becayse

of its algorithmic but very informal appearance. To construct program code from it, a
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Fig. 6.33: Data Graph Skeleton Synthesized for Fuel Monitor
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full-scaled knowledge-based program constructor such as PECOS [Bars79] is needed.
However, the focus of this dissertation is a method for higher-level design synthesis
rather than lower-level implementation (code) synthesis. We decide to leave this
coding of the data computation, fairly manageable from a human’s perspective, to the

human designer.
6.6 Characteristics of the Synthesis Rules

The problems to be addressed in this section are generality of the synthesis
rules and handling of conflicts. In building a knowledge base, several properties have
to be ensured. When applying the rules on the requirement objects, we have to make
sure that there is at least one applicable rule for any object, or group of objects. The
contention of this synthesis method is that if the rules are complete, for any system
expressed in the two requirement models, there is at least one corresponding SARA
design model. More generally speaking, a design can always be generated from the
requirements. In the case of multiple applicable rules in the form of identical
antecedents, human selection is required to resolve the conflict. In other words, the
assistant may offer alternatives but only one design model will actually be

synthesized.
6.6.1 Completeness of the Rule Sets

The key property of the synthesizer is acceptance of any requirement input,
provided it conforms with the syntax in the requirement models. To show the
synthesizer is general enough, it is necessary to illustrate of the syntactic

completeness of the existing sets of rules, as given in Appendix C.
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A set of synthesis rules is complete if it exhaustively covers all cases in the
requirements syntactically. We deal only with syntactic completeness of the rules,
which implies semantic completeness of the rules if event precedence and dara
dependencies of a system are all we want to specify in the requirements. As stated in
Section 3.5, there are certain system properties that cannot be specified in these

requirement models, but they are not needed in the context of SM and GMB synthesis.

There are altogether five sets of rules in the structural model synthesis, one for
each data-flow model primitive; seven sets in the control domain synthesis; and five
sets in the data domain synthesis. A completeness proof is to illustrate in each rule
set, the list of antecedents are thorough enough to cover any requirement object,
resulting in design synthesis actions. The completeness of each rule set is addressed as

follows.
6.6.1.1 Completeness of Structural Model Synthesis Rules

There are five sets of rules, handling the five data-flow model primitives, in
this synthesis. The objective is to illustrate that each primitive has at least one
applicable rule. In other words, the disjunction of all the rules is a tautology. Each set

is addressed as follows:

1. Data-Flow Diagram Rules

The antecedents of the rules are:
. DFD is a highest-level diagram,
. DFD has two sets of processes — refined and primitive

. DFD has 1 process, and the process has refinement,
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. DFD is a lowest-level diagram,

. DFD is a middle-level diagram, with multiple process, and all of them
have refinements.
Since a data-flow diagram can be only a highest-level, middle-level, or
lowest-level diagram. The first and the fourth antecedents cover two-thirds of
the possibilities. The only other possibility left is a middle-level diagram. If
such a diagram has one or more refined processes exclusively, it is covered in
either the third rule and the fifth rule. If it has a combination of both refined
and primitive processes, it is covered in the second rule. If it has only

primitive processes, then it should be considered a lowest-level diagram.

Process Rules
The completeness of this set is guaranteed by the antecedents of Proc.M.1 and

Proc.M.5, which are that
. the process has no refinement, and

. the process has a refinement,

respectively.

Datastore Rules
As for the Process Rules, the completeness of this set is guaranteed by the

antecedents of DS.M.1 and DS.M.3, which are that

. the datastore has no refinement, and
. the datastore has a refinement,
respectively.
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4. Datasource/Datasink Rules
There is only one rule in the set, with the antecedent being
any datasink/datasource SS.

As a result, this set is trivially complete.

5. Dataflow Rules
The last rule in this set, DF.M.6, the antecedent of which is
any dataflow,
acts as a safety valve. Again, this set is trivially complete. If the dataflow
does not meet the specific conditions in the first five rules, no interconnection

will be synthesized.
6.6.1.2 Completeness of Control Domain Synthesis Rules

There are seven sets of rules in the control domain synthesis, handling each
primitive, or grouping of primitives in the stimulus/response model. They are

enumerated as follows:

1. System Verification Diagram Rules
Completeness of this set is trivially ensured by the antecedent of the lone rule,

any SVYD.

2. Single Decomposition Element Rules
This set is designed to take care of the destination of a sequence relation.

Since there is only one possible case, a single DE, the set is trivially complete.

3. Output Relation Rules

The antecedents of the two rules in this set are
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. Rel is SEQUENCE, and

. Rel is a multi-destination relation — AND, EXCLUSIVE-OR,
SEQUENTIAL-EXCLUSIVE-OR, or SEQUENTIAL-INCLUSIVE-
OR,

which covers all possible relations in the stimulus/response model.

Group Decomposition Element Rules

The antecedents of the seventeen rules in this set are given as follows:

i GroupDE. 1
DEs are the destination of a SEQUENTIAL-INCLUSIVE-OR relation,

which is associated with a state stimulus.

ii. GroupDE.2
DEs are the destination of a SEQUENTIAL-INCLUSIVE-OR relation,

and the stimuli in all DEs corresponding to the relation are identical.

ii. GroupDE.3
DEs are the destination of a SEQUENTIAL-INCLUSIVE-OR relation,

and the stimuli in all DEs corresponding to the relation are not

identical.

iv, GroupDE.4
DEs are the destination of a SEQUENTIAL-EXCLUSIVE-OR

relation, which is associated with a state stimulus.

V. GroupDE.S
DEs are the destination of a SEQUENTIAL-EXCLUSIVE-OR
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vil,

viii,

ix.

xil.

relation, and the stimuli in all DEs corresponding to the relation are

identical,

GroupDE.6
DEs are the destination of a SEQUENTIAL-EXCLUSWE-OR

relation, and the stimuli in all DEs corresponding to the relation are not

identical.

GroupDE.7
DEs are the destination of an EXCLUSIVE-OR relation, which is

associated with a state stimulus,

GroupDE.8
DEs are the destination of an EXCLUSIVE-OR relation, and the

stimuli of all DEs corresponding to the relation are identical.

GroupDE.9
DEs are the destination of an EXCLUSIVE-OR relation, and the

stimuli of all DEs corresponding to the relation are not identical.

GroupDE. 10

DEs are the destination of an AND relation, which is associated with a

state stimulus.

GroupDE.11

DEs are the destination of an AND relation, which is associated with a

synchronous stimulus.

GroupDE. 12
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Xiii.

Xiv.

XV,

XVi.

xvil,

DEs are the destination of an AND relation, and the stimuli of all DEs

corresponding to the relation are identical.

GroupDE.13 DEs are the destination of an AND relation, and the

stimuli of all DEs corresponding to the relation are not identical.

GroupDE. 14
DEs are the destination of a SEQUENTIAL-INCLUSIVE-OR relation,

and each DE has only a single stimulus.

GroupDE.15
DEs are the destination of a SEQUENTIAL-EXCLUSIVE-OR

relation, and each DE has only a single stimulus.

GroupDE. 16
DEs are the destination of an EXCLUSIVE-OR relation, and each DE

has only a single stimulus.

GroupDE. 17

DEs are the destination of an AND relation, and each DE has only a

single stimulus.

The rules are grouped into four sub-groups, with each sub-group covering all

four multi-destination relations, AND, EXCLUSIVE-OR, SEQUENTIAL-

EXCLUSIVE-OR, and SEQUENTIAL-INCLUSIVE-OR. The classifications

of the four groups are, single stimulus in each destination DE, covered in rules

GroupDE. 14 through GroupDE.17, and multiple stimuli, covered in the rest of

the rules. Further classifications of destination DEs with multiple stimuli are

governed by the form of the common stimulus (the stimulus associated with
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the relation), either the common stimulus appears in all destination DEs in

identical form (rules GroupDE.2, GroupDE.5, GroupDE.8, and GroupDE.12),

is a state or its complement (rules GroupDE.1, GroupDE.4, GroupDE.7, and

GroupDE.10), or is none of the above (rules GroupDE.3, GroupDE.6,

GroupDE.9, and GroupDE.13). An exceptional case is also made for the
synchronous stimulus with the AND relation (rule GroupDE.11). As a result,
these seventeen rules cover all the possibilities in the relations’ multiple

destinations.

Stimulus Rules

Altogether there are seventeen rules in this set, covering the six possible
stimuli. For the rules of most stimuli, the synthesis status is also taken into
account. Besides creating a control node sequence from scratch, the
synthesizer also has to consider cases where node sequences representing that
stimulus already exist. An analysis of the completeness of the stimulus rules is

enumerated as follows:

Physical Stimuli

. stim is a physical stimulus, and control domain primitives are already

synthesized for stim (rule stim.2).

. stim is a physical stimulus, and a control arc is synthesized for the

corresponding response only (rules stim.3 and stim.4).

* stim is a physical stimulus, and nothing has been synthesized for stim

yet. (rule stim.5 and stim.6).

These three cases cover all possible status of a physical stimulus during the
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synthesis process.

Synchronous Stimuli

. stim is a synchronous stimulus, and no control node sequence is

synthesized for stim yet (rule stim.7);

. stim is a synchronous stimulus, and a control node sequence is already
synthesized for stim (rule stim.§).

Since a synchronous stimulus is not a response produced by any DE, there are

only two possible synthesis status involved. These two cases are covered in

rules stim.7 and stim.8.

Stimulus Condition

. stim is a stimulus condition, and nothing is synthesized for stim yet.

. stim is a stimulus condition, and a control arc is already synthesized

for stim’s corresponding response.

. stim is a stimulus condition, and a control node sequence is already
synthesized for stim.
Like the physical stimulus, the synthesis status is taken into account when

deriving the rules for stimulus condition. Three rules are needed to cover all

three cases.
State Stimuli

. stim is a state stimulus, and no control node sequence is synthesized

for stim yet.
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. stim is a state stimulus, and a control arc has already been synthesized

for stim’s corresponding response.

. stim is a state stimulus, a control node sequence (Fig. 6.8) is already
synthesized for stim, and arc STATE is not yet connected to a node

representing another DE.

. stim is a state stimulus, a control node sequence (Fig. 6.8) is already
synthesized for stim, and arc STATE Is already connected to a node
representing another DE.

Again, the synthesis status is taken into account for the state stimulus synthesis

rules. The status covered are nothing synthesized yet, control arc synthesized

only for the corresponding response, and node Sequence already synthesized
for the stimulus. However, the latter case has two possibilities. As illustrated

in Fig. 6.8, the arc STATE or NOTSTATE may or may not be connected to a

node representing a DE. Since this status affects the synthesis action, this

latter case is partitioned into two sub-cases. Thus altogether four rules are

required,

Disjunctive Stimuli

. stim is a disjunctive stimulus, and nothing is synthesized for stim yet;

. stim is a disjunctive stimulus, and a control arc is synthesized for stim;
A disjunctive stimulus is a compound stimulus, consists of multiple sub-
stimuli. Two rules are sufficient because only the synthesis status of the
compound is considered. Each of the sub-stimuli is covered by its own rule

set.
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Sdmulus Sequence

. stim is a stimulus sequence, and nothing is synthesized for stim yet;
. stim is a stimulus sequence, and a control node sequence is synthesized
for stim;

Like the disjunctive stimulus, only the synthesis status of the compound

stimulus is considered, resulting in two rules.

External Stimuli

The above mentioned stimuli are al! considered local stimuli, produced and
consumed in the same system verification diagram. One synthesis rule is also

required to take care of stimulus produced from another context.

Response Rules

Like the set of stimulus rules, the response rules are written based on the five
possible responses, as well as their synthesis status, in the stimulus/response
model. The completeness of this rule set is based on coverage of all five
responses and the possible synthesis status. Antecedents of all the rules are

enumerated as follows:

Physical Response

. resp is & physical response, and a control arc is already synthesized for

resp or resp’s corresponding stimulus.

. resp is a physical response, and no control arc has been synthesized for
resp yet.

For a physical response, the synthesis action is based on whether control
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domain primitives have been synthesized for the response or not. They are

covered by the two above antecedents.

Alternative Response

. resp is an alternative response, and no node sequence has been
synthesized for resp yet.

. resp is an alternative response, and a node sequence is already
synthesized for resp.

Like a physical response, control domain synthesis of an alternative response
also depends on its synthesis status. The two antecedents above cover the only

two possible situations.

State Response

. resp is a state response, and nothing has been synthesized for the state

yet.

. resp is a state response, and node sequence (Fig. 6.8), has already been

synthesized for the state or the complement of state.

. resp is a state response, and no node sequence has been synthesized for
the state yet, but a headless arc has been synthesized for resp.

There are three rules for state response synthesis, covering the status nothing

synthesized yet, an arc has been created for the state response, as well as a

node sequence has been created for the state stimulus. The latter case is

needed to perform a trivial synthesis action. These three cases cover all

possible synthesis status.
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Action Response

. resp is an action which has no specified consequence, and a control arc

has already been synthesized for resp.

. resp is an action which has no specified consequence, and no control

arc has been synthesized for resp yet.

. resp is an action which produces a physical response, and a control arc

has already been synthesized for the physical response.

. resp is an action which produces a physical response, and no control

arc has been synthesized for the physical responses yet.

. resp is an action which changes a state, and nothing has been

synthesized for state or —state yet.

. resp is an action which changes a state, and headless arcs have been

synthesized for both responses state or — state.

. resp is an action which changes a state, and a node sequence has
already been synthesized for state or — state.

An action response may result in no specific consequence, produce a physical

response, or switch a state. In each case, the rules are derived with the status

of synthesis taken into account, resulting in the seven antecedents above.

Response Sequence

. resp is a response sequence, and no node sequence has been

synthesized for resp yet.
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. resp is a response sequence, and a node sequence has already been
synthesized for resp.
Again, control domain synthesis of a response sequence depends on the

synthesis status, resulting in the above two antecedents.

7. External Response Rules

. resp is an external response, and resp is a compound response.
. resp is an external response, and resp is not a compound response.
. resp is not an external response

The three antecedents cover all possible external responses, external or not and

if external, compound or not.

6.6.1.3 Completeness of Data Domain Synthesis Rules

In the data domain synthesis, there are five different sets of rules for the same

five data-flow model primitives. They are enumerated as follows:

1. Data-Flow Diagram Rules

The antecedents of the rules are:

. DFD is a lowest-level diagram.

. DFD is a highest-level diagram.

. DFD has two sets of processes, refined and primitive.

. DFD has no primitive process.

The first two rules cover the highest-level and lowest-level diagrams. The last

182



two rules take care of the middle-level diagrams. They cover all the cases
because the third rule tests for a diagram with at least one primitive process,
and the fourth rule tests for a diagram with no primitive process at all. As a

result, all three levels of data-flow diagrams are covered.
Process Rules
. process has a refinement.

. process is primitive.

These two rules cover all possible processes.
Datastore Rules
. datastore has a refinement.

. datastore is primitive.

Like the set of Process Rules, these two rules cover all possible datastores.
Datasource/Datasink Rules
. datasource SS appears in highest-level diagram, and SS is primitive.

. datasource SS does not appear in highest-level diagram, and SS is

primitive.
. datasink SS appears in highest-level diagram, and 88 is primitive.

. datasink SS does not appear in highest-level diagram, and SS is

primitive.
. datasink/datasource SS is not primitive
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The first four rules cover all possible primitive datasources or datasinks, while

the last rule takes care of the non-primitive ones.

DataFlow Rules

. df represents a simple on/off signal (rule DF.D.1);

. df connects a refined object and a primitive process (rule DE.D.2);

. df connects a primitive process and a refined object (rule DF.D.3);

. df connects a refined object and a primitive datastore (rule DF.D.4);

. df connects a primitive datastore and a refined object (rule DF.D.5);

. df connects to two objects, both of which have refinements (rule
DF.D.6);

. df connects two processes, both of which are primitive (rule DE.D.7);

. df connects a primitive process and a primitive datastore (rule DE.D.8);

» df connects a primitive datastore and a primitive process (rule DF.D.9);

. df is doubly connected, and one side is a datasink/datasource (rule
DF.D.10y;

. df is singly connected, and the source object has a refinement (rule
DE.D.11);

. df is singly connected, and the destination object has a refinement (rule
DFE.D.12);
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df has no destination, the source is a primitive process, and the
primitive process was transformed to a single data processor (rules

DF.D.13 and DE.D. 14);

df has no destination, the source is a primitive process, and the
primitive process was transformed to multiple data processors (rules

DE.D.15 and DE.D.16);

df has no source, the destination is a primitive process, and the
primitive process was transformed to a single data processor (rules

DF.D.17 and DFE.D.18);

df has no source, the destination is a primitive process, and the
primitive process was transformed to multiple data processors (rules

DF.D.19 and DF.D.20);

df has no destination, and the source is a primitive datastore (rules

DF.D.21);

df has no source, and the destination is a primitive datastore (rule

DE.D.22).

In the data-flow model, there can be only certain objects a dataffow can

connect. Each object can be cither a refined object (process, datastore,

datasink or datastore), a primitive datastore, a primitive process, or a

datasource/datasink. A dataflow can also be singly-connected or doubly-

connected. A special case is first made for the dataflow which does not

represent tangible data but signals (rule DF.D.1). Completeness in this set is

illustrated in the following two tables. Each of them shows the possible
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combinations and the rules covering the cases.

Doubly Connected Dataflows

Source Object Destination Object rule
datasource refined or primitive process | DF.D.10
refined or primitive process datasink DE.D.10
refined object refined object DE.D.6
primitive datastore refined process DE.D.5
refined process primitive datastore DFE.D.4
primitive process refined object DE.D.3
refined object primitive process DED.2
primitive process primitive process DE.D.7
primitive datastore primitive process DE.D.9
primitive process primitive datastore DFE.D.§

A hypothesis imposed on the synthesis is the syntactic correctness of the
requirements. Since it assumes that the data-flow diagram fed to the
synthesizer follows all the restrictions in the data-flow model, these synthesis
rules handle only the valid combinations of the dataflows. A dataflow instance
connecting a datastore to another datastore is not allowed in the model; we just
assume no such input will be given to the synthesizer.

Singly Connected Dataftows

Source Object Destination Object rule

refined object — DE.D.11
— refined object DF.D.12
DF.D.13,
primitive process — DF.D.14,
DF.D.15, and
DFE.D.16
DE.D.17,
— primitive process DF.D.18,
DF.D.19, and
DF.D.20
primitive datastore — DF.D.21
— primitive datastore DE.D.22

In the case of dataflow singly connecting a primitive process, there are sub-
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cases handling whether the primitive process has been transformed to single
data processor and multiple data processors. In each sub-case, a design
alternative is also available, making altogether eight rules to cover all

possibilities.

In this section, we show that each synthesis rule set corresponding to a
requirement primitive is complete. This confirms the belief that the synthesizer is

general enough to handle any system requirements expressed in the requirement

models.
6.6.2 An Incomplete Deduction System

Although each set of synthesis rules is proved to be complete, the entire design
synthesizer cannot be considered a complete deduction system. This incompleteness
results in a semi-automatic synthesis process. Human interaction is needed because
there is simply information that the synthesizer cannot deduce. In other words, the
synthesizer is not intelligent enough to emulate a human designer; it can only serve as

an assistant,

To make this synthesizer a complete deduction system, additional rule sets
must be added to the system. A gigantic set of rules for natural language
understanding can eliminate a lot of man-machine interaction, because the assistant
simply does not understand the actual semantics of some requirement entities, which
may be trivial to a human. Rule sets for specific problem domains may also be added
to the system to generate a more concise design for a specific domain, instead of the

current very general design for multiple domains.
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The current synthesizer cannot completely replace a human designer in
producing a SARA design model. However, it serves the purpose of assisting him or
her in the mechanical part of the SARA design process. In Chapter 8, we discuss how
the intelligence of the assistant may be enhanced, to make it less dependent on the

human.
6.6.3 Conflicts Within the Rule Set

Conflicts exist in certain rule sets as there are rules with identical antecedents.
They are intentionally put into the system to provide a choice when modeling
alternatives exist. In situations having multiple applicable rules to a particular
instance of a primitive, the human designer selects the rule to be used. In normal
practice of expert systems, built-in heuristics may be employed to make such a
decision. We decide that it is the responsibility of the human designer to select an

alternative of his or her preference, each of which satisfies the requirements.

Whenever a conflict arises, it is resolved in the rule interpreter. Specifically, in
the routine Apply-Rule (Section 6.1), whenever a requirement object is satisfied by a
certain antecedent which falls iri this category (identical antecedent, but multiple
consequents), the routine will prompt the human designer about the alternatives. The
human designer then inputs his or her selection of the consequent. In other words, the

human designer governs the expansion of the search tree.

In the section of Future Research in Chapter 8, we discuss what heuristics may

be built into the system to automate the selection of design alternatives.
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6.7 Role of Human Designer

In this section, we summarize various human-machine interactions during an
assistant-assisted design session. The design assistant is never meant to replace the
human. Instead, its goal is to design a skeleton of the system under the direction of a
human. The human designer assumes three responsibilities in this design session. To
start the synthesis, he or she selects the appropriate diagrams in the requirements for
the assistant to synthesize a design. During the synthesis, he or she interactively
provides information to the assistant, regarding the system being designed, as well as
guides the assistant to design according to his or her preference. Finally, after the

assistant has finished, he or she bridges the gaps left in the design.

The human designer, being the driver in the design process, tells the assistant
what to synthesize. In the three stages of synthesis, the human designer makes three

kinds of selections:

1. Structural model synthesis —
The human designer invokes the structural model synthesis by providing the

top-level data-flow diagram to the assistant.

2. Control domain synthesis —
The human designer selects a system verification diagram and a module within
the structural model. The assistant then synthesizes a control graph for the

module, based on the selected system verification diagram.

3. Data domain synthesis —
The human designer selects a data-flow diagram and a module within the

structural model. The assistant then synthesize data domain primitives in the
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data graph of the module, based on the selected data-flow diagram.
The assistant only follows orders to synthesize the behavioral model of a module
based on a requirement diagram. It is the human designer’s responsibility to select the

proper module for each diagram.

While the assistant is at work, it occasionally queries the human designer in
order to know how to proceed. Information provided interactively by the human is

summarized as follows:
. enter the choice when one or more alternatives exist,

. pick an appropriate socket to be associated with an external stimulus or

response during the control domain synthesis,

. enter the initial token distribution on a control node sequence synthesized for a
state,

. provide initial values for datasets synthesized from datasources,

. select one or more existing data processors when synthesizing data domain

primitives for a process; this is possible since data processor(s) might have

already been created for that purpose during the control domain synthesis.

After a design skeleton is created by the assistant, the human designer has to
fill out the gaps in the GMB to make the design complete. Possible gaps to be filled

include:

. in the interpretation domain generated, replacing the pseudo code with
executable T code; in particular, the transformation of stimuli into responses is

coded according to the mini-specification associated with a process;

190



. creating control node sequences for exception conditions; each escape arc

generated in the control domain needs a node sequence of this kind;

. for every arc with no head or no tail, connecting the head or tail to appropriate
nodes or sockets; if no such node or socket exists, then some sort of node

sequence is needed to act as the token producer or consumer.
6.8 Validation of the Model Synthesized

The only means to check whether the synthesis product operates as expected is
to simulate the model using the GMB simulator. Because the requirements used in
this research are conceptual and informal, it is impossible to perform a complete,
formal verification of the product. However, with the availability of the GMB
simulator, it is possible to test run the model to see whether it appears to satisfy the

requirements.

The product generated by this synthesis process represents a core of the
design, in the form of a structural model, a behavioral control model, and a behavioral
data model. However, the control and data graphs synthesized are only skeletons.
There are minor holes to be filled by the human designer, as discussed in the previous
section. Given the data-flow diagrams and system verification diagrams of five major
components in the aircraft monitor from Chapter 3 and Appendix B, the synthesizer
produced the structural model of the entire system, as well as the behavioral models of
these five components. The structural model was already shown earlier in this
chapter. In Appendix D, we present the five behavioral models generated. Given a

human-fabricated environment, the design is ready for simulation.
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To validate the design, the designer has to feed it to the simulator and observe
the simulation results. In Appendix E, we trace a sample simulation which includes
several hazardous conditions the aircraft monitor is supposed to handle. The
simulation trace consists of a list of node initiation/termination sequence, as well as
dataset values at selected instances of the run. It is up to the human designer to
interpret the simulation results and to determine whether they agree with the

requirements.
6.9 Conclusion

In this chapter, we describe the details to model a requirement-based design
process. A design assistant, based on this modeling, is capable of designing three
facets of a system. It offers substantial help to the human designer during a design

session.

Only part of the knowledge in the three phases of design synthesis is discussed
in this chapter. The complete set of synthesis knowledge is actually codified in 117
synthesis rules, presented in Appendix C. The knowledge base is complete, since
every situation has an applicable rule, but it contains intentional conflicts, as certain
rules have identical antecedents. These types of rules are deliberately put into the
knowledge base to allow design alternatives. Rules with identical antecedent are

grouped together and explicitly stated in the appendix.

Based on the requirements of the aircraft monitor example, the assistant
produces a sample design in the form of structural model, control domain and data
domain. In Appendix D, we present sample synthesis of the behavioral models of the
five major components within the aircraft monitor system. These five modules form

the core of the complete model to be simulated.
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CHAPTER 7

Design Validation

Beside design synthesis, the design assistant also carries out design validation,
This serves as quality control of a design entirely produced by a human. The validator
checks the dependency relations within the design with respect to the requirements.
Since both the requirement models and the design models are graph-based, validation

is essentially matching of the dependency relations between the two graphs.

The goal of validation is only to ensure that a major property, dependencies
among primitive system units, is properly achieved in the design. It deviates from the
conventional verification approach, the Hoare-style comrectness proof [Hoar69]. This
is because the requirement specifications, the correctness base of the design, are in the
form of graph-based models as well as natural language descriptions instead of Hoare
style axiomatic assertions. It is thus impossible to prove the correctness of a design in

the sense of axiomatic correctness.

Discrepancies found by the validator usually reveal mistakes in the design.
During the design process, the design may deviate from the requirements for
performance reasons, modularity reasons, resource constraints, or simply because the
requirements were ignored. These behavioral deviations result in discrepancies being
caught. It is the human designer’s job to comrect the design to eliminate the

discrepancies.
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In this chapter, we first address the correctness issues — our criteria of a GMB
faithful to the requirements. We will then introduce the approaches to check the
design according to these criteria, as well as the validation of a sample design from
the UK report {Jack81]. Other topics of discussions include the time complexities of
the validation algorithms, plus the role of the human designer in the validation

process.
7.1 Criteria of a Correct Design

The only property in the design to be validated is component dependency,
which is the essential information carried by the GMB’s control and data domains.
Four facets of the system are involved in this process — the control and data domains
of the behavioral models, as well as the operation concepts and functional

requirements.

Given these four domains, the design is faithful to the requirements if it meets

the following three criteria:
. Every system/subsystem in the requirement should be addressed in the design.
. The design implements the necessary dependencies stated in the requirement

. The design sufficiently implements the dependencies stated in the requirement
The meaning of dependency is two-folded. We call a component A depends on a
component B if B invokes A (event dependency), or B produces data that will

subsequently be used by A (data dependency).

Based on these three goals, a graph-matching approach is employed to catch a

design not agreeing with the requirements.
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7.2 Validation Algorithms

Validation consists of three phases, mapping the components between
requirements and design, establishing the dependency relations in both the
requirements and the design, and finally, matching the relations that have been built.
We will describe these three processes in detail, and present a sample validation of a

design produced by a second party.

In the UK report, the origin of the aircraft monitor system example, the authors
built sample structural models and graph models of behavior for various subsystems
of the aircraft monitor. Understandably, these GMBs are vastly different from those
generated by our design synthesizer. We pick the GMB of the smoke monitor from
the report and validate it with respect to our requirements. The system verification
diagram and data-flow diagram of interest are shown in Fig. 7.1 and Fig. 3.11,
respectively; while the control graph and data graph, extracted from the UK report,

are illustrated in Fig. 7.2 and Fig. 7.3, respectively.
7.2.1 Component Mapping

As stated in the correctness criteria, every system component in the
requirement should be addressed in the design. This criterion should be the very first
one met. Since every decomposition element is assumed to be associated with a
control node of identical name, those that do not have matching control nodes will be
listed. The human designer is then required to pair each of the listed decomposition
elements with a control node, or a list of control nodes. The latter case would be
where the human designer to have partitioned the task within a component into
multiple nodes. Failure to have done so means that gaps already existed between

design and requirements.
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Fig. 7.1: Systemn Verification Diagram of Smoke Monitor
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In our example, the mapping established for the components in the system

verification diagram is given in the following table.

decomposition elements control nodes
smoke handler M4
no-smoke handler M4

An algorithm for component mapping simply means locating a control node,
or requesting the user to pick one, for every DE. The decomposition element —

control node mapping is essential to the other two validation steps.
7.2.2 Building Component Dependency Relations

After the mapping is established in the previous section, the validator is ready
to match the component dependencies in the design against that of the requirements.
The second phase of validation is mainly construction of these relations in the form of
their reflexive transitive closures (RTC), from the graph-Based requirements and

design.

A reflexive transitive closure can represent both direct or indirect component
dependencies. Indirect dependency relations are significant because in the GMB
control graph and data graph, control nodes/processors associated to system units may
not be connected to each other. For instance, component A provides a stimulus for
component B but their corresponding control nodes may not be directly connected,
because of possible auxiliary nodes created for the stimulus, as illustrated in the
previous chapter. If only direct event dependency is considered, the validator may not
discover the fact that node B indeed depends on node A. For this reason, indirect
dependencies, indicated in a transitive closure graph, also has to be taken into
consideration. A reflexive transitive closure is chosen over a non-reflexive one to take

care of self-invoked system units.
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The constructions of reflexive transitive closures require establishing the event
and data dependency relations stated in the requirement, then the event and data
dependency relations implemented in the design. Prior to that, we assume the

availability of the following:

. the system verification diagram (SVD),
. the data-flow diagram (DFD),
. the control graph (CG),

. the data graph (DG),

. the decomposition elements — control nodes mapping (DE-CN), as established

in the previous section,

. the implicit decomposition elements — processes association (DE-P) between
the two facets of requirements, as required in the requirement validation

method introduced (Section 5.2.1), and

. the control nodes — data processors mapping (CN-DP), as required in the
GMB definition.

A high level abstraction of this procedure is given in Fig. 7.4.

Just before creating the reflexive transitive closures, four directed graphs
representing either event or data dependency must be created. These four directed
graphs, in which each vertex corresponds to either a decomposition element, process,
control node, or data processor, teveal the direct dependency relation among the

system components. Each of them is described as follows:

200



Create event dependency graph Ggyp for SVD;
Build reflexive transitive closure Ggyp~ from Ggyp and the domain of mapping
DE-CN;
Create data dependency graph Gpgp for DFD;
Build reflexive transitive closure Gpyp' from Gpgp and the range of mapping DE-P;
Form a graph Greq'(V, E), with V = the vertex set of Ggvp ", E = {};
For each event EV in the SVD and its corresponding process P in the DFD
Create incoming edges for EV in G,-,q' according to the union of the predecessor
set of EV in Ggyp® and the predecessor set of P in Gpgp " ;
Create outgoing edges for EV in qu' according to the union of the successor set
of EV in Ggvp~ and the successor set of P in Gpgp ",
endfor;
Create event dependency graph Geg for CG;
Build reflexive transitive closure Geg' from Geg and the node set Nset, the range of
mapping DE-CN
Create data dependency graph Gpg for DG;
Build reflexive ransitive closure Gpg' from Gpg and the corresponding data
processors of nodes in Nset;
Form a no-edge graph Gaesign (V. E), with V = the range in DE-CN mapping, E =
{;
For each node N in the DE-CN mapping and its associated data processor DP in the
DG
Create incoming edges for N in Gd.s,g,,' according to the union of the predecessor
set of N in Geg' and the predecessor set of DP in Gpg”;
Create outgoing edges for N in Gdeslgn‘ according to the union of the successor set
of Nin Geg' and the successor set of DP in Gpg '
endfor;
query the human designer to establish a mapping between external stimulilresponses
and socket.

Fig. 7.4: Algorithm for Building Event Dependency Relations
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Event Dependency Graph of the SVD

This is a directed graph in which an edge connects any two vertices if the DE
of the source vertex produces a response to stimulate the DE of the destination
vertex. The event dependency graph derived from the sample system

verification diagram of the smoke monitor (Fig. 7.1) is illustrated in Fig. 7.5.

Data Dependency Graph of the DFD

This is another directed graph derived directly from the data-flow diagram. To
make it consistent with the definition of a directed graph, a dummy node is
created at the end of any singly-connected dataflow. In Fig. 7.6, we show the
data dependency graph derived from the data-flow diagram of our smoke

monitor (Fig. 3.11).

Event Dependency Graph of the CG

In this directed graph, two vertices are connected by an edge if their two
corresponding control nodes/sockets are connected by a control arc. For self-
looping control arc, a dummy vertex is used to show this self dependency, as
demonstrated in Fig. 7.7. The dummy vertex is needed to keep the graph
bipartite. Based on the control graph in Fig. 7.2, the event dependency graph

of the smoke monitor is constructed, as shown in Fig, 7.8,

Data Dependency Graph of the DG

This dependency graph reveals who provides data for whom. Let DP, and
DPg be two distinct data processors in DG, and V4 and Vp be their two
associated vertices in the directed graph. Vertices V4 and Vp are connected by
an edge if there exists a dataset between DP, and DPp, which DP,4 has write

access and DPp has read access. If one of the objects is a socket instead of a
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Fig. 7.7: Vertex Sequence for a Self-looping Control Arc
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Fig. 7.8: Event Dependency Graph of Smoke Monitor Control Graph
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data processor, there will be an edge connecting the corresponding vertices, no
matter whether there is a dataset between the objects. In Fig. 7.9, we illustrate

the data dependency graph constructed for the data graph of the smoke

monitor (Fig. 7.3).

The terms predecessor set and successor set, appearing in various part in Fig.

7.4, are also defined as follows:

Definitions:
A predecessor set for a component C is the set of components that C directly or
indirectly depends on. Given the reflexive transitive closure of a graph, a
predecessor set of a vertex V, which represents a component, consists of the start-

vertices of all incoming edges of V.

A successor set for a component C is the set of components which directly or
indirectly depend on C. Given the reflexive transitive closure of a graph, a
successor set of a vertex V, which represents a component, consists of the end-

vertices of all outgoing edges of V.

Given the event dependency and data dependency graphs, it is straightforward
to construct the reflexive transitive closure. In addition, the validator is interested
only in the closures of some of the vertices — the ones that appear in the DE-CN
mapping. That is the reason two parameters are need in the RTC construction
procedure — the graph and the vertices of interest. A breadth-first-search algorithm is

given in Fig. 7.10.

In the smoke monitor example, the reflexive transitive closure representing the

requirements is illustrated in Fig. 7.11, while the one for the design is given in Fig.
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Reflexive-Transitive-Closure (G, VSet), where G is a graph and VSet is a set of
vertices —
Create a graph G1 with the same vertex set as VSet;
For each vertex VI in VSet
Use breadth first search to find the shortest distances from VI to all other nodes in
G:
For any vertex V2 in VSet that has a finite, positive distance from V1
create an edge connecting corresponding vertices VI and V2 in G1
endfor
endfor;
return G1 as the reflexive transitive closure.

where the breadth-first-search algorithm is defined as follows:

Breadth-First-Search (S, G), where S is a starting vertex and G is a graph —
Mark all vertices in G unlabeled;
Label S with 0 and place S into a vertice set CURRENT _SET;
DIST is initialize to 0;
Do
increment DIST and initialize a vertice set ADJACENT SET to { };
For each vertex V in CURRENT SET
For each outgoing edge E of V
If the end-vertex V' of E is unlabeled, label of V' = 0, or label of V' > DIST
Then
label V' with DIST and put V' into ADJACENT SET
endif
endfor
endfor
Assign ADJACENT SET to CURRENT _SET;
Until ADJACENT SET is empty;
Label any unlabeled vertices in G with - and return G.

Fig. 7.10: Algorithm for Building Reflexive Transitive Closure
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7.12.
7.2.3 Matching Component Dependency Relations

After establishing the reflexive transitive closures for both the requirements
and design, the actual design validation may begin. The two issues to be checked are
whether the design necessarily and sufficiently implements the component
dependency relations stated in the requirements. This is basically a matching problem

of the two reflexive transitive closures.

The design implements the necessary component dependency of the
requirements if every dependency stated in requirement is taken care of in the design.
For every decomposition element and its associated control node, their predecessor

sets must match, so must their successor sets. The validation algorithm is given as:

For each (DE, N) pair in the DE-CN mappings
compute the set difference between the predecessor set of DE in G,.eq' and
the predecessor set of N in Gd,,s.gn', with the help of the mapping;
If the set difference is not empty
Then
There exist components that DE depends on, but the control graph does
not address that; output the discrepancies;
endif;
compute the set difference between the successor set of DE in G,,q' and
the successor set of N in Gdesign' , with the help of the mapping;
If the set difference is not empty
Then
There exist components that depends on DE, but the control graph does
not address that; output the discrepancies;
endif;
endfor;

Had discrepancies been detected, the validator would display the list of system
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Fig. 7.12: Reflexive Transitive Closure of Smoke Monitor GMB
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components incorrectly design.

On the other hand, the design is a sufficient implementation, in terms of
component dependency, of the requirement if every dependency relation in the design
is stated in the requirements. For every control node in the mapping, its predecessor
set and successor set must match the respective sets of the corresponding
decomposition element. This validation algorithm, analogous to the previous one, is

given as:

For each (DE, N) pair in the DE-CN mapping
compute the set difference between the predecessor set of N in Gdesign'
and the predecessor set of DE in Greq', with the help of the mapping;
If the set difference is not empty
Then
There exist components that N depends on, but this dependency is not
stated in the requirements; output the discrepancies;
endif;
compute the set difference between the successor set of N in Gdeslgn' and
the successor set of DE in Gr,q', with the help of the mapping;
If the set difference is not empiy
Then
There exist components which depends on N, but this dependency is not
stated in the requirements; output the discrepancies;
endif;
endfor;

If there are discrepancies, the validator would list the culprit nodes.
7.2.4 Sample Validation

In this section, the result of validating the sample GMB of the smoke monitor
is presented. First the mapping of between requirement an design primitives is shown

in the following table:
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requirement primitives design primitives

smoke handler M4
no-smoke handler M4
time ™
smoke interrupts E4
VDU MV
recorder MR
warning device E9

The discrepancies caught are listed as below:

1. M4 depends on MS, but this dependency is not stated in the requirement.
2. MS depends on M4, but this dependency is not stated in the requirement.
3. M4 depends on MV, but this dependency is not stated in the requirement.
4. M4 depends on MR, but this dependency is not stated in the requirement.

As observed, these messages reveal a few incdnsistencies between the
requirements and design in external component dependencies. They may be major
design mistake, originating from different component dependency relation at the
system structure level; they may also be the intention of the designer who created the

original GMB. It is the human designer’s responsibility to interpret them.
7.2.5 Time Complexity of the Graph Matching Algorithms

All three stages of design validation are implemented by algorithms of
polynomial time. The actual time complexity of validaton depends on a lot of

parameters. We divide the discussion into three phases.

Component Mapping
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Let n" be the number of decomposition elements in a system verification
diagram, n” be the number control nodes in a control graph. The mapping is
constructed by a linear search for each of n” decomposition elements in a list of n”

control nodes, resulting in a time complexity of O (n” * n”)

Building Component Dependency Relations

This phase consists of building the event and data dependency graphs, and
subsequently the reflexive transitive closures. Time complexities at this phases
depends on many parameters, because of different sizes of the SVD, DFD, CG, and
DG.

In building the event dependency graphs and data dependency graphs, the time
required depends mainly on the number of connections in the four original graphs.
Let 5 be the total number of stimuli in SVD; r be the total number of responses in
SVD; a; be the total number of dataflows in DFD; a, be the total number of
connections in CG, where an arc with k4 heads and r tails is considered to be 4 * ¢
connections; and a3 be the total number of connections in DG, while a data arc with
heads and 1 tails is considered to be i * 7 connections. The complexity of building the

following graphs are given as follows:
. Ggyp —O(s + 1),

. Gprp — O(ay),

. Geg —O(aj), and

. Gpg — O(a3).
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After these four graphs are prepared, the validator is ready to build the
reflexive transitive closures. During the construction of reflexive transitive closure for
a direct graph of 7 nodes, each node is visited once to construct its successor set. To
form a successor set for a node N, breadth first search is used to calculate the shortest
distance from N to every node. The breadth first search approach is known to have a
complexity of O(E} [Even79], where E, the number of edges in the graph, is bounded
by n?. In other words, the breadth first search algorithm has a complexity of O (n?),

giving the reflexive transitive closure algorithm a complexity of O (n>).

To determine the complexities of building the reflexive transitive closure from

the event dependency relations, the following parameters are introduced:

n1 — the total number of vertices in Ggyp; this number is bounded by the sum of s

and r;

n, — the total number of vertices in Gpgp; assume there are dummy processes at
the unconnected ends of all singly-connected dataflows, this number is the

total number of real and dummy processes in DFD;

n3 — the total number of vertices in G¢g; this number is the sum of the number of

control nodes and the number of sockets in a CG;

ns — the total number of vertices in Gpg; this is the sum of the number of data
processors and the number of sockets in DG;
In each case, the complexity of construction is bounded by the cube of the number of

vertices in the graph.
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Finally, we have to consider building the final reflexive transitive closures,
G,eq' and Gdﬁlgn' for -the requirement and design, respectively. These two graphs
are respectively built in the two For loops in the algorithm in Fig. 7.4. Let n” be the
number of pairs in the mapping DE-CN, each union in the first For loop is bounded
by ni*n,, making the complexity of building G,.eq' in the order of n"*n,*n,.

Similarly, building Gdes;gn' requires a complexity of O (n"*n3*ny).

In summary, the time required to build the two reflexive transitive closures is
bounded by the highest complexity among the time required to build the individual
graphs. Thus establishing the component dependency relations requires time in the
order of

max(n13, n23, n33, ng3, n*ni1*ny, n"*n3*ny)

Component Dependency Matching

The complexity of matching reflexive transitive closures is comparable to that
of reflexive transitive closure construction. Assume G,.,q' has n, vertices, and
Gdﬁmn' has n4 vertices. In doing the matching under either criterion, there will be n’
pairs of element to match. In each matching, the computation of the set difference is
bounded by O (n,*n,), giving a complexity of O (n'*n,*n;) for the whole matching

process.
7.3 Role of Human Designer

Compared to the design synthesis phase, the human designer takes a smaller
role in the validation phase. Minimal human input is needed during validation.
However, once validation is over, it is solely the human designer’s responsibility to

interpret any discrepancies uncovered.
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Only in two circumstances is the human designer involved in a validation
session. As a starter, he or she determines what to validate by picking the
corresponding graphs in the requirements and design. Later when the component
mapping is established, the validator may query the human designer to associate

requirement primitives to design primitives.

Upon completion of the validation, it is the human’s job to interpret the output.
The validator may point out inconsistencies such as certain component dependencies
in the requirement which are not addressed in the design, or vice versa. These

inconsistencies usually indicate errors during the design process.
7.4 Conclusion

In this chapter, we discuss the second task assumed by the design assistant.
This validator is not meant to be an extension to the design synthesizer previously
mentioned, but as a critic of any design produced by the human designer. We
demonstrate its functionality by validating a graph model of behavioral produced by a
second party. However, with limited intelligence, the assistant is able only to locate
potential problems, it is the job of the supervisor, the human designer, to interpret the

validation results and fix the problems.
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CHAPTER §

Conclusion

In this dissertation, we introduce a design assistant that aids the human
designer in a requirement-driven design method. In this chapter, we first introduce a
prototype design assistant implemented on top of the existing SARA design
environment. We then summarize the contributions and limitations of this design

assistant. Ideas for future research topics related to this dissertation are also

discussed.
8.1 A Prototype Implementation

A prototype design assistant was developed to support the claims in this
dissertation. It was implemented on the Apollo workstations at UCLA, on top of a
prototypical SARA/IDEAS design environment [Krel85]. Using the object-oriented

programming paradigm, this prototype consists of primitive tools that

. create the system verification diagrams and data-flow diagrams, in the form of

objects in the requirement models;

. synthesize SARA’s structural and behavioral models, in the form of objects in

the SARA domain, from the two requirement models; and

. given human produced SARA behavioral models, validate them against the
system verification diagrams and data-flow diagrams.

Like the original SARA design tools, the design assistant was coded in T. The goal of
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the implementation is to illustrate this concept of automatic design synthesis and

validation, as well as to test the synthesis rules.
8.2 Contributions and Limitations

This research introduces possible automation to the first steps of the SARA
design method. The assistant has its limitations as it cannot completely emulate what
a human designer does. If it is just viewed as an on-line aid, it provides quite decent

assistance to the designer,

The tasks of producing a design in the SARA domain consists of four facets.
The design assistant is able to automate production in three of them, deriving a
structural model from various level of refinements in the data-flow diagrams,
transforming various system verification diagrams into control domain skeletons, and
transforming low level data-flow diagrams into data domain skeletons. The only
aspect the assistant is not able to help is writing interpretation code from natural

language process specifications. Nevertheless, these three facets constitute the core of

the SARA design process.

In addition to design synthesis, the assistant can also validate a major property,
component dependency, in the design with respect to the requirements. Given the
SARA behavioral models produced by the human designer, the validator can
determine whether the component dependency relations implemented in the design
match that of the requirements. The human designer is going to correct the design

according to any discrepancies found.

In retrospect, this attempt of automation also helps us to understand the design

process better. During the construction of the design synthesis knowledge base, we
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are able to identify which part of the synthesis process is mechanical, and which part
requires common sense and human judgement. As illustrated in the current state of

the art of GMB construction, more intelligence may be employed in the process:

. At certain instances during the design process, there may exist more than one
design which suit the requirements. The selection of a particular one may be
based on external constraints, the human designer’s personal style, or even

arbitrariness.

. In constructing the graph model of behavior, a human designer makes use of
his natural-language understanding of the requirements, as well as a lot of

domain-oriented knowledge he possesses.

The current design assistant fails to make the above mentioned decisions on its
own. That is why it can serve only as an assistant. Not until much more judgement
about system design as well as knowledge on all potential systems to be designed are
codified into the knowledge base can this assistant be on its own. In other words, the
assistant’s knowledge base is always subject to expansion until all universal

knowledge about hardware/software system design is included. This, of course, will

never happen.
8.3 Topics for Future Research

In an attempt to bridge requirement specifications to SARA design model, this

dissertation has uncovered some new problems for future research in that area.
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8.3.1 Enhance the Assistant’s Intelligence

As discussed in the previous section, the design assistant has its limitations.
These shortcomings are caused by lacks of natural language understanding, domain-
dependent knowledge, and the ability to judge. To tackle these problems includes

building a vocabulary dictionary and employing heuristics in searching.

Many design details may be determined from a vocabulary dictionary. In
SARA’s behavioral model, design details such as data types and initial values must be
defined to make the model simulatable, or executable. A human designer may
provide these details according to his or her system-related vocabulary power. For
example, the type of a clock should be a triple (hour, minute, second), the type of
sensor reading should be floating point number, etc. The assistant is not able to figure
these out because it has no natural language understanding, particularly domain-
specific vocabulary power. This problem can be minimized by installing a dictionary,
consists of words commonly used in the problem domain. Each entry in the
dictionary may include information such as types, common initial values, valid range,
etc. The availability of this dictionary may eliminate substantial human-machine

interactions during the synthesis process.

Another type of in-session query stems from the availability of design
alternatives. In situation in which alternatives exist for a design, the human designer
makes his decision based on some extemal constraints, personal preference, or even
arbitrariness. The latter two may not be built in, but at least heuristics may be used to
make a selection based on external constraints. For example, as mentioned at the end
of Section 6.3.1, there are situations when more than one control node sequence can

model a group of decomposition elements. One alternative is more modular and the
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other consists of fewer control primitives. A possible heuristic is to examine the

crowdedness of the current control graph, and select the node sequence accordingly.
8.3.2 Automate Incremental Simulation of GMB

In the current SARA design method, models of the complete system must be
built before any simulation of the models can proceed. In other words, local
simulation (simulation of a single modﬁle) is possible only if an environment
surrounding that module, or subsystem, is made up. The major service of the

environment is to act as a driver to the simulated module.

When a human designer must fabricate such an environment, he or she may
base it on a subsystem’s surrounding dataflows, its external stimuli/responses, the
functionality of the module to be tested, as well as any other completed and tested

modules.

To automate such an incremental simulation process, the existing synthesis
knowledge in the design assistant may be helpful. Based on the current synthesis
rules, a set of enhanced rules may be put into the knowledge base to regulate this
process. Specifically, the following tasks are candidates for automation in incremental

simulation;

. Based on the data definitions in the data-flow model dictionary, create a set of
dataset values for simulation runs. These fabricated dataset values should

include the boundary cases, exception cases, and normal cases, to make sure

all facets of the design will be tested.

. For the GMB being tested, somehow somebody has to invoke it. It is logical

for the environment to act as the activator of the tested module. The
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knowledge base should include synthesis rules that create such invoking
control node sequences in the environment. The tested module may be
activated synchronously by a clock pulse, asynchronously by external

conditions or system states, etc.

’ Conversely, the environment module could also serve as the receiver of
external responses produced by the tested module. Datasets could be
synthesized to collect such output; while control primitives could be

synthesized to receive signals for module termination.
8.3.3 Axiomatic Verification of GMB

One shortcoming of the design validator is its inability to do full verification of
the executable behavioral models, which, in a sense, may be considered as a
prototypical implementation of the system. As mentioned in chapter 7, this problem
originates from the form of requirement specifications we use. We can do complete
verification on the behavioral models if and only if more formal system specifications,

such as Hoare-style input/output assertions for modules, are available.

There has been work in axiomatic verification on concurrent programs
[Hoar74, Owic76]. Axioms and inference rules were invented for various concurrent
programming constructs like

with r when B do S,

cobegin §,// ... /1S, coend, and

monitor, etc.
to support proofs of concurrent programs. Analogously, a GMB control graph may be
viewed as a concurrent program at a more abstract level, as certain GMB control

domain primitives can even be translated to concurrent program constructs [Krel86].
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As stated in the conclusion of Vernon’s dissertation [Vern82], there is a need
for a more precise formal definition of all the GMB modeling primitives. Currently,
semantics of GMB control primitives only exists in operational form, as defined by a
token machine within the GMB simulator. Axiomatic definitions of the GMB control
primitives may just meet that objective, as well as provide a solid ground of complete
design verifications. Vadim Shapiro wrote a master’s thesis in axiomatic verification
of GMB [Shap83], but only dealt with a subset of GMB modeling primitives and a
restricted form, single-entry and single-exit, of GMB control graph. A more complete
proof system is needed to cover all GMB features and verify multiple-entry multiple-

exit control graph.
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APPENDIX A
GMB primitives

TYPE GRAPHICAL
A named control node represents a step in a process being
modeled. A controlled data processor (see below) may be S
associated with a node to provide interpretation of the
process. <

Example: A node N1 has a single entry arc S and a single exit
arc X.

A named directed control arc represents non-volatile
precedence relations between sets of nodes. If there is more
than one source or destination node the arc is called complex;
otherwise it is called simple. An enabling token is placed on
an arc either as a starting state or upon termination of any of
its source nodes. When a node is initiated, its enabling
tokens are absorbed.

Example: A2 and X are simple control arcs. Al is a complex
control arc whose source set is nodes N1, N2 and
N4 and whose destination set is N5. S is an
incoming complex control arc whose destination set
is N1, N2 and N3. If there were an initial token on
S, the token machine mechanism would non-
deterministically enable N1 or N2 or N3 and the
token would be absorbed.
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GMB Primitives (cont.)

TYPE

GRAPHICAL

Input Conmtrol Logic

A logical relation among the input arcs to a node specifies the
precedence conditions that must be satisfied by token states
for the node to be initiated. Tokens from the initiating arcs
which satisfy the input relation are absorbed by the token
machine. For OR logic, a token is absorbed
nondeterministically from one of the initiating arcs; for >
logic, a token is absorbed from the first initiating arc in the
logic; for + logic, tokens are absorbed, one from each, from
all initiating arcs; and for AND logic, tokens are absorbed
from all arcs in the logic.

Example: If enabling tokens exist on either Al or A2 and on
either A3 or A4 then N1 can be initiated,

Output Control Logic

A logical relation among the output arcs specifies which arcs
have tokens placed upon them when a control node is
terminated. When an OR output relation holds, a data
processor interpretation must decide which one or more arcs
receive tokens. When an AND relation holds, all output arcs
receive tokens.

Example: When N1 terminates, its associated controlled data
processor will have decided whether tokens are to
be placed on B1 and B2 or B3 and B4.

(Al or AZ) and (A3 or Ad)
Al A2 A3 Ad

Bl B2 B3 B4
(B1 and B2) or (B3 and B4)
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GMB Primitives {cont.)

TYPE

GRAPHiCAL

A named comtrolled data processor represents a data
transformation object which is activated when an associated
control node is initiated. An interpretation of the data
transformation and other parameters such as time delay or
resource requirements can be associated with the data
Processor.

Example: Processor P1 is initiated whenever either N1 or N2
is initiated. When processor P1 terminates it causes
token to be placed on output arcs of the control
node which initiated it. The control graph carries
the burden of guaranteeing that N1 and N2 are
enabled in a desired sequence. Otherwise they will
be activated in a non-deterministic order and the
simulator will show possible contention.

A named data set represents a passive collection of data.

Any T data structure may be associated with a dataset.
D1
A named data grc statically binds data processors and
datasets. A data processor has read or write access to a data
. . D3
set if the arrow points to or from the data processor
respectively. DA3
. 1N\ DAL
Example: Processor P1 is initiated by control node N1. Pl (N1) | D1
reads data from datasets D2 and D3 and writes their
sum into dataset D1. DA2
D2
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APPENDIX B

Requirements of An Aircraft Monitor

In this appendix, we present the remaining diagrams of the aircraft monitor
system requirements. Selected data-flow diagrams and system verification diagrams

have already been shown in preceding chapters.

The top-level diagram of the aircraft monitor was given in Fig. 3.8. From that
diagram, the system has three processes to be refined. The refinement of process
monitor was shown in Fig. 3.9. The refinements of process VDU and recorder are
illustrated in Figures B.1 and B.2, respectively. From the first level refinement of the
monitor, there are three additional processes, monitor driver, synchronous monitors
and asynchronous monitors, to be refined. We have already shown the level-2 data-
flow diagrams of the synchronous monitors and the asynchronous monitor in Figures
3.10 and 3.11, respectively. The refinement diagram of the monitor driver is

illustrated in Figures B.3.

Based on our requirement validation method, each primitive data-flow
diagram! is associated with a system verification diagram, stating the operations
concept of the component. In Fig. 3.12, we already showed the system verification
diagram of half of the synchronous monitors, the fuel monitor. The remaining part of
that monitor, the engine monitor is illustrated in Fig. B.4. We also presented the

system verification diagrams of the asynchronous monitor and the recorder in Figures

1. A primitive data-flow diagram is one with at least one primitive process.
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output request

output
process

output data

\4
Display Device

Fig. B.1: Refined Data Flow Diagram of VDU
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recording
request

recording
process

recorded data

v

Mass Storage Device

Fig. B.2: Refined Data Flow Diagram of Recorder

231



user
command

time
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shell
init
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out
utput recorded
data synchronous

init signal

Fig. B.3: Refined Data Flow Diagram of Monitor Driver
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Fig. B.4: System Verification Diagram of Engine Monitor
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7.1 and 6.25, respectively. In all, there are two additional system verification

diagrams for the following two system components:

. a driver within the monitor (Fig. B.5), which is responsible for initializing and

terminating the system, as well as interpreting user commands.

. the VDU (Fig. B.6), and

These requirements form the basis of design synthesis and validation.
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Fig. B.5: System Verification Diagram of Monitor Driver
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L1004 L1006
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Fig. B.5 (continue)
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L2002

* display message

requesst X
* VDU in display display

mode process
L2001

* flash message * VDU not in
request Hash display mode

process

Fig. B.6: System Verification Diagram of VDU
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APPENDIX C

Synthesis Rules

In the design synthesis knowledge base, there are three sets of synthesis rules
to regulate the creation of a design skeleton, in the form of a structural model, a
behavioral control domain and a behavioral data domain. Within each set of rules, the
rules for the same requirement primitive are grouped together. During the synthesis of

a particular primitive, only the rules corresponding to that primitive are tried.

Some of the rules were introduced in Chapter 6, to supplement the discussion
of design synthesis. In this appendix, we list the complete set of rules that synthesize

the three facets of a system.

C.1 Structural Model Synthesis Rules

Before listing the rules, we define the terminology used in the rules:

1, Parent

A is a parent of B if B is an object inside the refinement of A.

2, Associated module
M becomes the associated module of a data-flow object, i.e. a process, a
datastore, a datasource or datasink, after M was already synthesized for that

object.

3. Associated interconnection
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IC becomes the associated interconnection of a dataflow DF, after IC was

previously synthesized for DF.

4, A connected interconection
IC, is a connected interconnection to IC5, and vice versa, if both of them are

connected to the same socket, on the opposite sides of a module boundary.

5. Duplicate an interconnection
Let interconnection /C connect two sockets S, and S,. Create two new sockets
§1”and §,’ on the parent modules of S; and S5, respectively, and create a new

interconnection, with a slight name variation from IC, connecting S;” and §,".

6. Sibling Interconnections
Two interconnections are siblings if they belong to the same parent module,

and both of them bridge the same two modules.

7. Terminal Module

A terminal module is a module without any sub-module.

8. Propagate interconnection
Let IC; and IC, be two sibling interconnections. /C; has a connected
interconnection at one side, but /C, does not. Propagating IC, according to
IC is duplicating IC’s connected interconnection at the connected side, all

the way down to a terminal module.
Data-Flow Diagram Rules

DFD.M.1
Antecedent:  DFD is a highest-level diagram
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Consegquence:

DFD.M.2
Antecedent:
Consequence:

Create module UNJVERSE, as well as UNIVERSE’s sub-modules ENVIRONMENT and
SYSTEM,

subgoal: synthesize SM objects for datasinks/datasources of DFD;

subgoal: synthesize SM objects for processes of DFD;

subgoal: synthesize SM objects for datastores of DFD;

subgoal: synthesize SM objects for dataflows of DFD;

subgoal: synthesize SM objects for sub-diagrams in DFD.

DFD is a highest-level diagram

Create module UNIVERSE, as well as UNIVERSE's sub-modules ENVIRONMENT and
SYSTEM;

Single-out a process in the diagram to represent the system by a special marking,
distinguished from the markings on other processes;

subgoal: synthesize SM objects for datasinks/datasources of DFD;

subgoal: synthesize SM objects for processes of DFD;

subgoal: synthesize SM objects for datastores of DFD;

subgoal: synthesize SM objects for dataflows of DFD;

subgoal: synthesize SM objects for sub-diagrams in DFD.

Note: Application of DFD.M.1 or DFD.M.2, with identical antecedents, is to be
determined by human designer.

DFD.M.3
Antecedent:
Consequence:

DFD.M4
Antecedent.
Consequence:

DFD.M.5
Antecedent:
Consequence:

DFDM.6

DFD has two sets of processes — refined and primitive

subgoal: synthesize SM objects for the refined processes of DFD;

subgoal: synthesize SM objects for datastores of DFD;

group the primitive processes together and put them into a newly created auxiliary
module;

subgoal: synthesize SM objects for dataflows of DFD;

subgoal: synthesize SM objects for process refinements of DFD.

DFD has 1 process and the process has refinement

Do not synthesize any module for DFD’s lone process;

subgoal: synthesize SM objects for datastores of DFD;

subgoal: synthesize SM objects for dataflows of DFD;

subgoal: synthesize SM objects for the sub-diagram of DFD’s lone process;

DFD is a lowest-level diagram
Do not synthesize anything.
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Antecedent: DFD is a middle-level diagram, with multiple processes, and all of them have
refinements
Consequence: subgoal: synthesize SM objects for processes of DFD;
subgoal: synthesize SM objects for datastores of DFD;
subgoal: synthesize SM objects for dataflows of DFD;
subgoal: synthesize SM objects for sub-diagrams in DFD,

Process Rules

Proc.M.1
Antecedent.  process has no refinement
Consequence: do not synthesize anything

Proc.M.2

Antecedent:  process, appearing in highest-level diagram, is the lone process to represent the system
(identified by a special marking)
Consequence: associate process with SYSTEM.

Proc.M.3

Antecedent:  process, appearing in highest-level diagram, is considered out of system highest-level
diagram (identified by a marking)

Conseguence: create a module for process;
place module created inside module ENVIRONMENT.

Proc.M.4
Antecedent:  process belongs to highest-level diagram
Conseguence: create a module for process;

place module created inside module SYSTEM,

Proc.M.5
Antecedent:  process has refinement
Consequence: Let PAR.PROCESS be the parent of process
Create a module for process;
place module created inside associate module of PAR.PROCESS.

Datastore Rules

DS.M.1
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Antecedent:  datastore has no refinement
Consequence: do not synthesize anything
DS.M.2
Antecedent:  datastore belongs to highest-level diagram
Consequence: create a module for datastore;
place module created inside global module SYSTEM.
DS M.3
Antecedent;  datastore has refinement
Consequence: Let PAR.DS be the parent of datastore
Create a module for datastore;
place module created inside associate module of PAR.DS.
Datasource/Datasink Rules
SS.M.1
Antecedent:  any datasink/datasource §8
Consequence: create a module for §S;
place module created inside global module ENVIRONMENT.,
Dataflow Rules
DFM.1
Antecedent:  df is singly-connected connecting to an already synthesized object (process or
daastore) OBJ, df’s parent has an associated interconnection IC, df has a sibling df,
and the associated intercoanection of df, is connected to IC.
Consequence: Let ANCES be a doubly-connected ancestor of df
Let IC be the associate interconnegtion of ANCES
duplicate an interconnection IC1 for IC;
connect on¢ end of IC1 to OBJ’s associate module;
propagate IC1 according to IC at the other end.
DF.M.2
Antecedent:  df is singly-connected connecting to an already synthesized object (process or

datastore) OBJ, df’s parent has already been synthesized to an interconnection IC, df is
not the only child of its parent, and IC has not been a connection for one of df’s
siblings
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Consequence:

DF.M.3
Antecedent:

Consequence:

DFE.M.4
Antecedent:

Consequence:

DE.M.5
Antecedent:

Consequence:

DF M.6
Antecedent:

Consequence:

Let ANCES be a doubly-connected ancestor of df
Let IC be the associate interconnection of ANCES
connect one end of IC to OBJ’s associate module:;

df belongs 10 highest-level diagram, df is connected to a datasink, datasource, or out-
of-highest-level diagram process on one side, and df’s other side is an object associated
to the module SYSTEM

Create an interconnection to connect the modules ENVIRONMENT and SYSTEM;
Create an interconnection to connect the datasink/datasource’s associate module (a
child of ENVIRONMENT) and ENVIRONMENT.

df belongs to highest-level diagram, df is connected to a datasink, datasource or an
out-of-highest-level diagram process on one side, and df's other side is an object
associated to a child of module SYSTEM

create an interconnection to connect the modules ENVIRONMENT and SYSTEM;

df’s other side must be connected to a process, create an interconnection to connect the
process’ associate modale (a child of SYSTEM) and SYSTEM:;

Create an interconnection t0 connect the associate module of datasink/datasource (a
child of ENVIRONMENT) and ENVIRONMENT,

df is doubly-connected, and at least one side have refinements
Create an interconnection 1o connect the associate modules of both sides.

any df
do not synthesize anything.

In the implementation of the design asssistant, these rules are internally

represented as lists. A set of rules is implemented as a list of lists. Each rule

representation consists of a keyword implies, a predicate (the antecedent), and a block

(the consequence). For example, the internal representation of rule DFD.M.1 is

shown as follows:
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{implies
(lambda (dfd) (context-diagram? dfd))
(lambda (dfd)
{sm.syn-context dfd)
(subgoals (sinksources dfd))
{(subgoals (processes dfd))
{subgoals {(datastores dfd))
{subgoals (dataflows dfd))
{subgoals (map refinement (refined-process dfd)})))
The bound variable within the lambda bodies is bounded to the requirement object
when the rule is tried. In this rule, context-diagram? is a predicate coded in T,
testing the requiremnent object, while sm.syn-context is a routine creating the
modules UNIVERSE, ENVIRONMENT, and SYSTEM. Subgoals is a routine
among the rule interpretation core, invoking the rule interpreter (the routine
Synthesize-design in Section 6.1) for each requirement object parameter to generate

design objects of its own.
C.2 Control Domain Synthesis Rules

As in the previous section, we introduce the terminology before listing the

rules:

1. Initial relation
In every system verification diagram, there is at least one relation which does
not have a source. These relations, mostly corresponds to external stimuli, are
the entry points of the context.

2. Stimulus’s corresponding response
For a decomposition element, each of its stimuli has at least one corresponding
response, produced by some other decomposition elements.

3. Relation’s corresponding stimulus
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Associated with each relation, particularly a multi-destination relation, there is
usually an associated stimulus/response stimulating one or more of the

destination decomposition elements,

Common stimulus
Among the stimuli in each decomposition element of a multi-destination

relation, the one related to the relation is termed as the common stimulus.

Duplicate a control arc
For a control arc A connecting a headset of nodes and a tailset of nodes, create

another control arc A’ connecting the same headset or tailset, but not both.

Create a control node if necessary
In all consequence actions of the GroupDE rules, the synthesizer has to create
a control node for each decomposition element. However, this creation is not

necessary if a control node already exists for a decomposition element.

System Verification Diagram Rules

SVD.1

Antecedent:  any SVD

Consequence: Subgoal: synthesize control domain objects for initial relations of SVD
Single Decomposition Element Rules

DE.1

Antecedent:  any DE

Consequence: Create a control node for DE;

Subgoal: synthesize control domain objects for stimuli of DE;
Subgoal: synthesize control domain objecis for responses of DE;
Subgoal: synthesize control domain objects for output relations of DE;
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Group Decomposition Element Rules

GroupDE.1
Antecedent:  DEs are destination of a SEQUENTIAL-INCLUSIVE-OR relation, which is associated
with a state stimulus
Consequence: Create a node DEC.NODE;
Subgoal: synthesize a node sequence for state stimulus if necessary; let STATE be the
arc representing the stimulus;
Make arc STATE point to DEC.NODE;
For DE; among DEs = {DE,, DE,, ..., DE, },
Create a node DEi.node, if necessary, for DE;;
Create an arc Ai connecting DEC.NODE and DEi.node:
Subgoal: synthesize control arcs heading to DECNODE for DE;’s remaining
stirmuli;
Assign interpretation code for DEi.node —
response-producing code for DE;
Assign input and output logic to DEC.NODE;
Assign interpretation code for node DEC.NODE —
(let ({OutArcs “()))
(if ($trigger) includes DEl.stim
(push OutArcs Al))
(if (3trigger) includes DE2,stim
{push OutArcs A2))
{(if ($trigger) includes DEn.stim
(push OutArcs An))
(Soutput_arec (cond {((null? OutArcs) Escape.Arc)
({null? (cdr OutArcs})
(car QutArcs))
{(else (cona "AND OQutArcs)))))
For DE; among DEs,
Subgoal: synthesize control arcs originating from node DEinode for DE;’s
Tesponses;
Subgoal: synthesize control domain primitives for DE; s output relations;
Result control node sequence for the current group is shown in Fig. 6.29.
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GroupDE.2
Antecedent:  DEs are destination of a SEQUENTIAL-INCLUSIVE-CR relation, and the stimuli in

all DEs corresponding 10 the relation are identicat
Consequence: Create a node DEC.NODE;
Subgoal: synthesize a node sequence for the common stimulus if necessary, let
COM.STIM be the arc representing the stimulus;
Make arc COM.STIM point to DEC.NODE;
For DE; among DEs = {DE,, DE,, ...., DE, ],
Create a node DEi.node, if necessary, for DE;;
Create an arc Ai connecting DEC.NODE and DEi.node;
Subgoal: synthesize control arcs heading to DECNODE for DE;’s remaining
stimuli;
Assign interpretation code for DEi.node —
response~producing code for DE;
Assign input and output logic to DEC.NODE;
Assign interpretation code for node DEC.NODE —
{(let ((OutArcs ’(}))
(if (Strigger} includes DE1l.stim
(push OutArcs Al))
(if (Strigger) includes DEZ.stim
(push OutArcs A2))
(1f ($trigger) includes DEn.stim
{push OutArcs An))
($output_arc {cond ({null? OutArcs) Escapae.Ar¢)
{({null? (cdr OutArcs))
(car QutArcs))
{else (cons ‘AND QutArca))}))
For DE; among DEs,
Subgoal: synthesize control arcs originating from node DEinode for DE;'s
responses;
Subgoal: synthesize control domain primitives for DE; s output relations;
Result control node sequence for the current group is shown in Fig. 6.24.
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GroupDE.3
Antecedent:  DEs are destination of a SEQUENTIAL-INCLUSIVE-OR relation, and the stimuli in

all DEs corresponding to the relation are not identical
Consequence: Create a node DEC.NODE;
Subgoal: synthesize a node sequence for the common stimulus if necessary, let
COM.STIM be the arc representing the stimulus;
Make arc COM.STIM point to DEC.NODE;
For DE; among DEs = (DE,, DE,, ..., DE, },
Create a node DEi.node, if necessary, for DE;;
Create an arc Ai connecting DEC.NODE and DEi.node;
Subgoal: synthesize control arcs heading to DEC.NODE for DE,’s remaining
stimuli;
Assign inferpretation code for DEi.node —
response-producing code for DE;
Assign input and output logic to DEC.NODE:;
Assign interpretation code for node DEC.NODE —
(let ((Cutarcs 7 ()))
(if condition on common stimulus in DE; is
met and ($trigger) includes DEl.stim
{(push OutArcs Al))
(if condition on common stimulus in DE, is
met and (Strigger) includes DE2.stim
(push QutArcs A2))
(if condition on common stimulus in DE, is
met and ($trigger) includes DEn.stim
(push OutArcs An))
(Soutput_arc (cond ({(null? OutArcs) Eacape.Arc)
({null? (cdr QutArcs))
{(car QutArcs))
(else (cons *AND OutArcs)))))
For DE,; among DEs,
Subgoal: synthesize control arcs originating from node DEi.node for DE;’s
responses;
Subgoal: synthesize control domain primitives for DE; s output relations;
Result control node sequence for the current group is shown in Fig. 6.24.
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GroupDE 4
Antecedent: DEs are destination of a SEQUENTIAL-EXCLUSIVE-OR relation, which is

associated with a state stimuolas
Consequence: Create a control node DEC.NODE;
Subgoal: synthesize a node sequence for state stimulus if necessary, let STATE be the
arc representing the stimulus;
Make arc STATE point to DEC.NODE;
For DE; among DEs = {DE;, DE,, ...., DE, },
Create a node DEi.node if necessary, and an arc Ai connecting DEC.NODE and
DEi.node;
Subgoal: synthesize control arcs heading to DEC.NODE, for DE;’s remaining
stimuli;
Assign interpretation code for DEi.node —
response-producing code for DE;
Assign input and output logic to DEC.NODE;
Assign interpretation ¢ode for node DEC.NODE —
(let ((QutArcs f()))
(cond (($§trigger) includes DEl.stim
(foutput_arc Al))
({ftrigger) includes DEZ.stim
{Soutput_arc A2))

((Strigger) includes DEn.stim
(Soutput_arc An))
M

For DE; among DEs,

Subgoal: synthesize control arcs originating from node DEinode for DE's

responses;

Subgoal: synthesize control domain primitives for DE; s output relations;
Result control node sequence for the current group is shown in Fig, 6.28.
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GroupDE.5
Antecedent:  DEs are destination of a SEQUENTIAL-EXCLUSIVE-OR relation, and the stimuli in

all DEs corresponding to the relation are identical
Consequence: Create a conirol node DEC.NODE;
Subgoal: synthesize a node sequence for the common stimulus if necessary, let
COM.STIM be the arc representing the stimulus;
Make arc COM.STIM point to DEC.NODE;
For DE; among DEs = {DE,, DE,, ....,, DE, },
Create a node DEi.node if necessary, and an arc Ai connecting DECNODE and
DEi.node;
Subgoal: synthesize control arcs heading to DEC.NODE, for DE;’s remaining
stimuli;
Assign interpretation code for DEi.node —
response-producing code for DE;
Assign input and output logic to DECNODE;
Assign interpretation code for node DEC.NODE —
{let ({OutArcs " ()})
{cond (($trigger) includes DEIl.stim
($output_arc Al))
{(($trigger) includes DE2.stim
($output_arc A2))

(($trigger} includes DEn.stim
(Soutput_arc An))
})

For DE; among DEs,

Subgoal: synthesize control arcs originating from node DEi.node for DE;’s

responses;

Subgoal: synthesize control domain primitives for DE; s output relations;
Result control node sequence for the current group is shown in Fig. 6.23.
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GroupDE.6
Antecedent:  DEs are destination of a SEQUENTIAL-EXCLUSIVE-OR relation, and the stimuli in

all DEs corresponding to the relation are not identical
Consequence: Create a node SELECT.NODE;

Subgoal: synthesize the common stimulus with respect to SELECT.NODE;

For DE; among DEs = {DE,, DE,, ..., DE, },
Create a node DEi.dec, and an arc Ai connecting SELECT.NODE and DEi.dec;
Create a node DEi.node if necessary;
Connect DEi.dec and DEi.node with an arc Bi:
Subgoal: synthesize control arcs heading to DEi.dec for DE;’s remaining stimuli;
Assign interpretation code for DEi.dec —
(if (eq? (Strigger) Ad)

{block
(3output_arc redo)
{$delay 0})

(Soutput_arc Bi)
)
Assign interpretation code for DEi.dec —
response-producing code for DE;;

Assign input and output logic to nodes SELECT.NODE, DEl.dec, DE2.dec, ...,
DEn.dec, DEl.node, DE2.node, ..., DEn.node;
Assign interpretation code for node DEC.NODE —
(iterate D-select

({STIM-SET relation’s corresponding stimuli

in (DE;, DE;, ..., DE 1)
{cond ((null? STIM-SET) (Soutput_arc Escape.Arc))
(else
(let ({81 {(car STIM-SET}))
(if condition on Si is met
(Soutput_arc Ai)
(D-select STIM-SET))))))

For DE; among DEs,

Subgoal: synthesize control arcs originating from node DEinode for DE;’s

TeSponses;

Subgoal: synthesize control domain primitives for DE; 's output relations;
Result control node sequence for the current group is shown in Fig. 6.30.
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GroupDE.7
Antecedent:

Consequence:

GroupDE.§
Antecedent:

Consequence:

DEs are destination of an EXCLUSIVE-OR relation, which is associated with a state
stimulus
Subgoal: synthesize a node sequence for state stimulus if necessary;
For DE; among DEs = [DE,, DE,, ..., DE, },
Create a node DEi.node, if necessary, for DE;;
Subgoal: synthesize control arcs heading to DEi.node, for DE;"s remaining stimuli;
Assign interpretation code for DEi.node —
response-producing code for DE;;
Make arc STATE point to multiple heads {DE1.node, DE2.node, ..., DEn.node};
For DE; among DEs,
Subgoal: synthesize control arcs originating from node DEinode for DE;’s
responses;
Subgoal: synthesize control domain primitives for DE;’s output relations;
Resuit control node sequence for the current group is shown in Fig. 6.27.

DEs are destination of an EXCLUSIVE-OR relation, and the stimuli in all DEs
corresponding to the relation are identical
Subgoal: synthesize a node sequence for the common stimulus if necessary, let
COM.STIM be the arc representing the stimulus;
For DE; among DEs = {DE,, DE,, ....,DE, ],
Create a node DEi.node, if necessary, for DE;;
Subgoal: synthesize control arcs heading to DEi.node, for DE; s remaining stimuli;
Assign interpretation code for DEi.node —
response—producing code for DE;;
Make arc COM.STATE point to multiple heads {DE1.node, DE2.node, ..., DEn.node);
For DE; among DEs,
Subgoal: synthesize control arcs originating from node DEinode for DE,’s
responses;
Subgoal: synthesize control domain primitives for DE;’s output relations;
Result control node sequence for the current group is shown in Fig. 6,22,
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GroupDE.9
Antecedent:

Consequence;

DEs are destination of an EXCLUSIVE-OR relation, and the stimuli in all DEs
corresponding to the relation are not identical
Create a node SELECT.NODE;
Subgoal: synthesize the common stimulus with respect to SELECT NODE;
For DE; among DEs = {DE,, DE,, ....,, DE, },
Create a node DEi.dec, and an arc Ai connecting SELECT.NODE and DFEi.dec;
Create a node DEi.node if necessary;
Connect DEi.dec and DEi.node with an arc Bi;
Subgoal: synthesize control arcs heading to DEi.dec for DE;'s remaining stimuli;
Assign interpretation code for DEi.dec —
(if (eq? (Strigger) Adi)
(block
($output_arc redo)
(Sdelay 0))
{(Soutput_arc Bi)
)
Assign interpretation code for DEi.dec -~
response-producing code for DE;;
Assign input and output logic to nodes SELECT.NODE, DEl.dec, DE2.dec, ..
DEn.dec, DEl.node, DE2.node, ..., DEn.node;
Assign interpretation code for node DEC.NODE —
(iterate ND-select
((STIM-SET relation’s corresponding stimuli
in (DE,, DE;, ..., DE,}))
(cond ((null? STIM-~SET) ($Soutput_arc Escape.Arc))
{else
{(let ((Si randomly select and remove
a stimulus from STIM-SET))
{(if condition on Si is met
{Soutput_arc Ai)
{(ND-select STIM-SET))))))
For DE; among DEs,
Subgoal: synthesize control arcs originating from node DEinode for DE,;’s
TESpOnSes;
Subgoal: synthesize control domain primitives for DE; s output relations;
Result control node sequence for the current group is shown in Fig. 6.30.
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GroupDE. 10
Antecedent:

Consequence:

GroupDE,11
Antecedent:

Consequence:

GroupDE.12
Antecedent:

Consequence:

DE:s are destination of an AND relation, which is associated with a state stimulus
Subgoal: synthesize a node sequence for state stimulus if necessary;
For DE; among DEs = {DE,, DE,, ....,DE, ),
Create a control node DEi.node, if necessary, for DE;;
Create an arc STATE.i connecting STATE.stim, a node synthesized from state
stimulus, to DEi.node;
Subgoal: synthesize control arcs heading to DEi.node for DE;’s remaining stimuli;
Assign interpretation code for DEi.node—
response-producing code for DE;;
For DE,; among DEs,
Subgoal: synthesize control arcs originating from node DEinode for DE,'s
responses;
Subgoal: synthesize control domain primitives for DE;’s output relations;
Resuit control node sequence for the current group is shown in Fig. 6.26.

DEs are destination of an AND relation, which is associated with a synchronous
stimulus
Subgoal: synthesize a node sequence for the synchronous stimulus if necessary:
For DE; among DEs = {DE,, DE,, ....,DE, ]},
Create a control node DEi.node, if necessary, for DE;;
Create an arc SYNC.i connecting INTV_A to (DEi.node, INTV_C}:
Subgoal: synthesize control arcs heading to DEi.node for DE;’s remaining stimuli;
assign interpretation code for DEi.node—
response-producing code for DE;;
For DE; among DEs,
Subgoal: synthesize control arcs originating from node DEinode for DE,’s
Tesponses;
Subgoal: synthesize control domain primitives for DE;’s output relations:
Result control node sequence for the current group is shown in Fig. 6.31.

DEs are destination of an AND relation, and the stimuli in all DEs corresponding to the
relation are identical
Create a control node MULT.NODE and add it to the headset of STIM.ARC, the
corresponding arc of the common stimulus;
For DE; among DEs = [DE;, DE,, ...., DE,},
Create a node DEinode, if necessary, for DE; and an arc Ai connecting
MULT.NODE and DEi.node;
Subgoal: synthesize control arcs heading to DEi.node for DE;’s remaining stimuli;
Assign interpretation code for DEi.node —
response-producing code for DE;
For DE; among DEs,
Subgoal: synthesize control arcs originating from node DEinode for DE,'s
TespPOnSes;
Subgoal: synthesize control domain primitives for DE;’s output relations;
Result control node sequence for the current group is shown in Fig. 6.21,
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GroupDE.13
Antecedent:

Consequence:

DEs are destination of an AND relation, and the stimuli in all DEs corresponding to the
relation are not identical
Create a control node MULT NODE;
Subgoal: synthesize the common stimulus with respect to MULT.NODE;
For DE; among DEs = {DE,, DE,, ....,DE, },
Create a node DEinode, if necessary, for DE; and an arc Ai connecting
MULT.NODE and DEi.node;
Subgoal: synthesize control arcs heading to DEi.node for DE;’s remaining stimuli;
Assign interpretation code for DEi.node ~—
(if condition on stimulus is met
response-producing code for DE;)
For DE; among DEs,
Subgoal: synthesize control arcs originating from node DEinode for DE;’s
responses;
Subgoal: synthesize control domain primitives for DE; s output relations;
Result control node sequence for the current group is shown in Fig. 6.21;
Issue 2 warning that the requirements may be incorrect, since some DEs may not get
activated in this case.
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GroupDE. 14
Antecedent:  DEs are destination of a SEQUENTIAL-INCLUSIVE-OR relation, and each DE has

only a single stimulus :
Consequence: Create anode DEC.NODE;
Subgoal: synthesize the common stimulus with respect to DEC NODE;
For DE; among DEs = {DE,, DE,, ...., DE, ],
Create a control node DEi.node, if necessary, for DE;;
Connecting DEC.NODE and DEi.nade with an arc Ai;
Assign interpretation code for DEi.node —
response-producing code for DE;
Create a no-head arc Escape.Arc originating from DEC.NODE;
Assign output logic to DEC.NODE;
assign interpretation code for node DEC.NODE —
(let {(OutArcs "()})
{if condition on stimulus of DE, is met
(push CutArcs Al})
(if condition on stimulus of DE; is met
(push OutArcs A2))
{if condition on stimulus of DE, is met
{push OutArcs An))
($output_arc (cond ((null? OutArcs) Escape.Arc)
) ({null? (cdr OutArcs))
{car QutArcs))
(else (cons ‘AND CutlArcsa))))
)
For DE; among DEs,
Subgoal: synthesize control arcs originating from node DEinode for DE;’s
resSponses;
Subgoal: synthesize control domain primitives for DE;’s output relations;
Result control node sequence for the current group is shown in Fig. 6.19,
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GroupDE.15
Antecedent:  DEs are destination of a SEQUENTIAL-EXCLUSIVE-OR relation, and each DE has
only a single stimulus
Consequence: Create a node DEC.NCDE;
Subgoal: synthesize the common stimulus with respect to DEC.NODE;
For DE; among DEs = {DE,, DE,, ...., DE, },
Create a control node DEi.node, if necessary, for DE;;
Connecting DEC.NODE and DEi.node with an arc Ai;
Assign interpretation code for DEi.node —
response-producing code for DE;
Create a no-head arc Escape.Arc originating from DEC.NODE;
Assign output logic to DEC.NODE;
assign interpretation code for node DEC.NODE —
(cond (condition on stimulus of DE, is met
($output_arc Al))
(condition on stimulus of DE; is met
(Soutput_arc A2))
{condition on stimulus of DE, is met
(Socutput_arc An))
{else (Soutput_arc Escape.Azrc))
)
For DE; among DEs,
Subgoal: synthesize control arcs originating from node DEi.node for DE;'s
IeSpPOnSses;
Subgoal: synthesize control domain primitives for DE;’s output relations;
Result control node sequence for the current group is shown in Fig. 6.18.
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GroupDE.16
Antecedent:  DEs are destination of an EXCLUSIVE-OR relation, and each DE has only a single

stimulus
Consequence: Create a node DEC.NODE;

Subgoal: synthesize the common stimulus with respect to DEC.NODE:

For DE; among DEs = {DE,, DE,, ....,, DE, },
Create a control node DEi.node, if necessary, for DE;;
Connecting DEC,NODE and DEi.node with an arc Ai;
Assign interpretation code for DEi.node —
response-producing code for DE;

Create a no-head arc Escape.Arc originating from DEC.NODE;

Assign output logic to DECNODE;

assign interpretation code for node DEC.NODE —

(iterate ND-select

{(STIM-SET stimuli in (DE;, DE;, ..., DE }))
{cond {{(null? STIM-SET) ($output_arc Escape.Arc))
{else

{let ((Si randomly select a
stimulus from STIM-SET))
{if condition on Si is met
(Soutput_arc Ad)
(ND-select STIM-SET))))})
For DE; among DEs,
Subgoal: synthesize control arcs originating from node DEi.node for DE;'s
Tesponses;
Subgoal: synthesize control domain primitives for DE; s output relations;
Result control node sequence for the current group is shown in Fig. 6.18,

GroupDE.17
Antecedent:  DEs are destination of an AND relation, and each DE has only a single stimulus

Consequence: Create a node MULT.NODE;
Subgoal: synthesize the common stimulus with respect to MULT.NODE;
For DE; among DEs = {DE,, DE,, ...., DE, ],
Create a control node DEi.node, if necessary, for DE;;
Create a control arc Ai, connecting MULT.NODE to DEi.node;
Assign interpretation code for DEi.node —
{if condition on stimulus is met
response-producing code for DE;)
Assign output logic to MULT NODE;
For DE; among DEs,
Subgoal: synthesize control arcs originating from node DEinode for DE;’s
responses;
Subgoal: synthesize control domain primitives for DE;"s output relations;
Result control node sequence for the current group is shown in Fig. 6.17.

Output Relation Rules
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Rel.l
Antecedent:

Consequence:

Rel.2
Antecedent:

Consequence:

stim. 1
Antecedent:

Consequence:

stim.2
Antecedent:

Consequence:

stim.3
Antecedent:

Consequence:

stim.4
Antecedent:

Consequence:

Rel is SEQUENCE
Subgoal: synthesize control domain objects for destination DE of Rel

Rel is a multi-destination relation — AND, EXCLUSIVE-OR, SEQUENTIAL-
EXCLUSIVE-OR, or SEQUENTIAL-INCLUSIVE-OR
Subgoal: synthesize control domain objects for destination DEs of Rel

Stimulus Rules

stim is an external stimulus

Let PARENTNODE be the node of the DE where this stimulus belongs to
Prompt human designer for the socket S corresponding to this external stimulus;
Create a control arc connecting S and PARENTNODE.

stim is a physical stimulus and control domain primitives are already synthesized for
stim
Let PARENTNODE be the node of the DE where this stimulus belongs to, PHY.ARC
be the control arc synthesized for the corresponding response
Duplicate PHY.ARC and instead of its own headset, make it point to
PARENTNODE.

stim is a physical stimulus and a control arc is synthesized for the comesponding
response only (a no-head arc)
Let PARENTNODE be the node of the DE where this stimulus belongs to, PHY . ARC
be the control arc synthesized for the corresponding response

Connect PHY .ARC’s head to PARENTNODE,

stim is a physical stimulus and a control arc is synthesized for the comesponding
response only (a no-head arc)
Let N1 be the node corresponding to the DE invoked by this stimulus, N2 be the node
corresponding to the DE producing this response, PHY.ARC be the control arc
synthesized for the corresponding response
Create a control node sequence as illustrated in Fig. 6.7, let arc Al in the figure be
PHY.ARC; Connect the head of arc A2 (in the figure) to N1.

Note: Application of stim.3 or stim.4, with identical antecedents, is to be determined
by human designer.
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stim.5

Antecedent:  stim is a physical stimulus and nothing has been synthesized for stim yet

Consequence: Let PARENTNODE be the node of the DE where this stimulus belongs to
Create a no-tail control arc heading into PARENTNODE.,

stim.6
Antecedent:  stim is a physical stimulus and nothing has been synthesized for stim yet
Consequence: Let PARENTNODE be the node of the DE where this stimulus belongs to
Create a node sequence as in Fig. 6.7, and connect arc A2 to PARENTNODE,
Assign interpretation domain for node N —
{cond (Al is in (Strigger) or
’{and A2 A4) is in ($trigger)
{Soutput_arc ' {and A2 A3)))
{Ad only in ($trigger)
{$output_arc AS5)))

Note: Application of stim.5 or stim.6, with identical antecedents, is to be determined
by human designer.

stim.7
Antecedent:  stim is a synchronous stimulus and no control node sequence is synthesized for stim
yet
Consequence: Let PARENTNODE be the node of the DE where this stimulus belongs to
Create a control node sequence as in Fig. 6.9;
Connect arc STIM_C to PARENTNODE;
Assign interpretation domain for node STIM_A —
($delay time interval specified in this stimulus)
Assign interpretation domain for node STIM_B —

(Sdelay 0)
stim.8
Antecedent:  stim is a synchronous simulus and a control node sequence is already synthesized for
stim

Consequence: Let PARENTNODE be the node of the DE where this stimulus belongs to, Fig. 6.9 be
the controt node sequence already synthesized
Create an arc Ad.1 which connects INTV_1A and {INTV_1C, PARENTNODE};
In the output logic of INTV_1A and interpretation code of INTV_1A, replace A4
by A4 and A4.1;
In the input logic of INTV_1C, replace Ad by Ad + Ad.1.

stim.9
Antecedent:  stim is a stimulus condition and no control arc is synthesized for stim yet
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Consequence: Let PARENTNODE be the node of the DE where this stimulus belongs to, and
PRIM.STIM be the primitive stimulus of stim
Create a control node sequence as in Fig. 6.10;
If PRIMLSTIM is not yet synthesized, synthesized a new arc for it;
Connect the corresponding arc of PRIM.STIM to DEC.NODE in the graph;
Assign interpretation domain for DEC.NODE —
(if condition on stimulus is satisfied
{$output_arc A) (Soutput_arc Escape.Axc))

stim.10
Antecedent:  stim is a stimulus condition and a control arc is already synthesized for stim's
corresponding response
Consequence: Let PARENTNODE be the node of the DE where this stimulus belongs to,
Connect the head of already synthesized control arc to PARENTNODE.

stim.}1
Antecedent:  stim is a stimulus condition and a control node sequence is already synthesized for
stim
Consequence: Let PARENTNODE be the node of the DE where this stimulus belongs to, the nodes in
Fig. 6.10 be the already synthesized node sequence
Add a new arc Al on the node sequence, connecting the node DEC.NODE and
PARENTNQDE,
In the output logic and the interpretation code of DECNODE, replace A by A and
Al.
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stim.12

Antecedent;  stim is a state stimulus and no control node sequence is synthesized for stim yet
Conseguence: Let PARENTNODE be the node of the DE where this stimulus belongs 10
Create a control node sequence as in Fig, 6.8;
Connect arc STATE to PARENTNODE;
Query the human designer for the initial state, place a token on arc STATE or
NOTSTATE, and record the initial state into the interpretation code;
Assign interpretation domain for node STATE.NODE —
{cond
{ (STRIGGER} include STATE.SIGNAL
(Soutput_arc (and STATE A2))
record status ’state’)
{ (STRIGGER) include NOTSTATE.SIGNAL
{$output_arc {(and NOTSTATE A2))
record status ‘—state’)
(else
{let ({Current.Status from status recorded))
(cond (Current.Status = ‘state’
($output_arc (and STATE A2))
{Current,Status = ‘-state’
(Soutput_arc {(and NOTSTATE A2))))))
Assign interpretation domain for node N1 —
(8delay 0)
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stim.13
Antecedent:

Consequence.

stim, 14
Antecedent:

Consequence.

stim.15
Antecedent:

Consequence:

stim,16
Antecedent:

stim is a state stimulus and a control arc has already been synthesized for stim’s
corresponding response
Let PARENTNODE be the node of the DE where stim belongs to, ARC be the arc
synthesized for stim’s comesponding response
Create a control node sequence and data domain primitives as in Fig. 6.8, let ARC
be the arc STATE.SIGNAL;
Connect arc STATE to PARENTNODE;
Query the human designer for the initial state, place a token on arc STATE or
NOTSTATE, and record the initial state into the interpretation code;
Assign interpretation domain for node STATENODE —
{cond
{ (STRIGGER) include STATE.SIGNAL
{$output_arc {and STATE A2))
record status ‘state’)
{ (STRIGGER) include NROTSTATE.SIGNAL
($output_arc (and NOTSTATE A2))
record status ’‘—state’)
{else
(let ((Current.Status from status recorded))
{cond (Current.Status = ’state’
(Soutput_arc {(and STATE A2))
{Current.Status = ’-state’
(Soutput_arc (and NOTSTATE A2))))))
Assign interpretation domain for node N1 —
($delay 0)

stim is a state stimulus, a control node sequence, as in Fig, 6.8, is already synthesized
for stim, and arc STATE is not yet connected to a node representing an event
Let PARENTNODE be the node of the DE where this stimulus belongs to, Fig. 6.8 be
the already synthesized node sequence
Fork arc STATE to PARENTNODE, make it an arc with multiple heads —
{STATE.NODE, PARENTNODE].

stim is a state stimulus, a control node sequence, as in Fig. 6.8, is already synthesized
for stim, and arc STATE is already connected to a node representing an event
Let PARENTNODE be the node of the DE where this stimulus belongs to, Fig. 6.8 be
the already synthesized node sequence
Add an arc STATE1, connecting STATENODE and {STATE.NODE,
PARENTNODE};
In the input logic, output logic, and interpretation code of STATE.NODE, replace
STATE with STATE and STATEL,

stim is a disjunctive stimulus, and nothing has been synthesized for stim yet
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Consequence:

stim.17
Antecedent:

Consequence.

stim.18
Antecedent:

Consequence:

stim.19
Antecedent.

Consequence:

resp.1
Antecedent:

Consequence:

resp.2
Antecedent:

Consequence:

Let PARENTNODE be the node of the DE where this stimiilus belongs to
For each stimulus STM within the disjunction
Subgoal: synthesize a no-head control arc for STM;
endfor;
Merge all headless control arcs together to form one arc, as in Fig. 6.11, and point
the arc to PARENTNODE.

stim is a disjunctive stimulus and a control arc has already been synthesized for stim
Let PARENTNODE be the node of the DE where this stimulus belongs to, and A be
the already synthesized arc in Fig. 6.11

Include PARENTNODE (o the headset of A.

stim is a stimulus sequence, and nothing has been synthesized for stim yet
Let PARENTNODE be the node of the DE where this stimulus belongs to
Create a control node sequence as in Fig. 6.12;
Connect arc Ak in the sequence to PARENTNODE,

stim is a stimulus sequence, and a control node sequence is already synthesized for
stim
Let PARENTNODE be the node of the DE where this stimulus belongs to, and the
primitives in Fig. 6.12 be the already synthesized node sequence

Create an arc Ak.1 connecting node Nk and PARENTNODE;

In the output logic of node NK, replace Ak by Ak and Ak.1.

Response Rules

resp is a physical response, and a control arc is already synthesized for resp, or resp’s
corresponding stimulus
Let PARENTNODE be the node of the DE where this response belongs to,

Add PARENTNODE (o the tailset of the control arc synthesized for resp;

resp is a physical response, and no control arc is synthesized for resp yet
Let PARENTNODE be the node of the DE where this response belongs to,
Create a no-head control arc originating from PARENTNODE,
Subgoal: synthesize control domain objects for resp according to External Response
Rules.
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resp.3
Antecedent:

Consequence:

resp.4
Antecedent:
Consequence:

resp.3
Antecedent:
Consequence:

resp.6
Antecedent;

Consequence:

resp.7
Antecedent:

Consequence:

resp.8
Antecedent:

Consequence:

resp is an alternative response, and no node sequence is synthesized for resp yet
Let PARENTNODE be the node of the DE where this response belongs to,
Subgoal: synthesize control domain objects for the then leg of resp;
Subgoal: synthesize control domain objects for the else leg of resp;
Create a control node sequence as in Fig, 6.13;
Assign interpretation domain for node TSTNODE —
(if condition is satisfied
{$output_arc Al)
{$output_arc AZ))

resp is an alternative response and a node sequence is already synthesized for resp
Let PARENTNODE be the node of the DE where this response belongs to, Fig. 6.13 be
the already synthesized sequence

Add PARENTNODE to the tailset of AQ.

- resp is a state response and nothing has been synthesized for the state yet

Let PARENTNODE be the node of the DE where this response belongs to

Create a no-head arc originating from PARENTNODE
Subgoal: synthesize control domain objects for resp according to External Response
Rules. .

resp is a state response, and node sequence, as in Fig. 6.8, has already been synthesized
for the state, or the complement of state
Let PARENTNODE be the node of the DE where this response belongs to, RESP.ARC
be the state-changing stimulus arc heading into node STATE

Add PARENTNODE to the tailset of RESP.ARC

resp is a state response, and no node sequence has been synthesized for the state yet,
but a headless arc has been synthesized for resp
Let PARENTNODE be the node of the DE where this response belongs to, RESP.ARC
be the headless state-changing stimulus arc

Add PARENTNODE ot the tailset of RESP.ARC.

resp is an action which has no specified consequence, and a control arc is already
synthesized for resp
Let PARENTNODE be the node of the DE where this response belongs to, RESP.ARC
be the arc already synthesized

Add PARENTNODE to the tailset of RESP.ARC;
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resp.9
Antecedent:

Consequence:

resp.10
Antecedent:

Conseguence:

resp.11
Antecedent:

Consequence:

resp.12
Antecedent:

Consequence:

resp.13
Antecedent:

Consequence:

resp.14
Antecedent:

resp is an action which has no specified consequence, and no control arc is synthesized
for resp yet '
Let PARENTNODE be the node of the DE where this response belongs to,

Creale a no-head control arc originating from PARENTNODE.
Subgoal: synthesize control domain objects for resp according to External Response
Rules.

resp is an action which produces a physical response and a control arc is already
synthesized for the physical response
Let PARENTNODE be the node of the DE where this response belongs to, RESP.ARC
be the arc already synthesized for the physical response

Add PARENTNODE (o the tailset of RESP.ARC;

resp is an action which produces a physical response and no control arc is synthesized
for the physical responses yet
Let PARENTNODE be the node of the DE where this response belongs to,
Subgoal: synthesize control domain objects for the physical response of resp with
respect to PARENTNODE.

resp is an action which changes a state, and nothing has been synthesized for state or
—slate yet
Let PARENTNODE be the node of the DE where this response belongs to,
Subgoal: synthesize control domain objects for the during state as a response if
necessary;
Subgoal: synthesize control domain objects for the done state as a response if
necessary;
Construct a node sequence as in Fig. 6.14, with the two arcs created from the two
subgoals above connecting t0 ACTION.INIT and ACTION.DONE, respectively;

resp is an action which changes a state, and headless arcs have been synthesized for
both responses state or —state
Let PARENTNODE be the node of the DE where this response belongs to, A4 be the
arc corresponding to state, A3 be the arc corresponding to —state
Construct a node sequence as in Fig, 6.14, with ACTION.INIT added to the tailset
of A3, and ACTION.DONE added to the tailset of A4,

resp is an action which changes a state, and a node sequence has already been
synthesized for state or —state
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Consequence:

resp.15
Antecedent:

Consequence:

resp.16
Antecedent:

Consequence:

x.resp.1
Antecedent:

Consequence:

x.resp.2
Antecedent;

Consequence:

xresp.3
Antecedent:

Consequence:

Let PARENTNODE be the node of the DE where this response belongs to, and Fig, 6.8
be the node sequence already synthesized
Construct a node sequence as in Fig. 6.14, with ACTION.INIT added to the tailset
of NOTSTIM, and ACTION.DONE added to the tailset of STIM.

resp is a response sequence, and no node sequence has been synthesized for resp yet
Let PARENTNODE be the node of the DE where this response belongs to
For response RSP, in the sequence of responses
Create auxiliary node Ni and connect it with the previous auxiliary node, as in
Fig. 6.15;
Subgoal: Synthesize control node sequence for RSP; with respect to Ni;
endfor.

resp is a response sequence, and a node sequence has already been synthesized for
resp
Let PARENTNODE be the node of the DE where this response belongs to, and the
node sequence in Fig, 6.15 be the one already synthesized .
Add PARENTNODE to the tailset of arc A0 in the control node sequence in Fig,
6.15.

-

External Response Rules

resp is an external response and resp is a compound response
Do not synthesize anything.

resp is an external response and resp is not a compound response

Let RESP.ARC be the arc synthesized for resp
Prompt human designer for the socket S corresponding to this extemal response;
Include S to the headset of RESP.ARC.

resp is not an external response
Do not synthesize anything.
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C.3 Data Domain Synthesis Rules

Before we list the rules for data domain synthesis, a few terms used in the rules

are introduced:

1. Object
An object in the data-flow diagram is either a process, a datastore, a datasink

or a datasource.

2. The other side of a socket
Let socket S; be a socket on a terminal module. Socket S, is the other side of
§; if S; also belongs to a terminal module, and S; and S, are connected by

ONne Or more interconnections.

3. Module for Primitive Processes
A data-flow diagram dfd may have both refined and primitive processes. Let
Masq be the associated module of dfd. After synthesizing sub-modules from afl
the refined processes of dfd and placing them in Mygy, an auxiliary module is
created for the sake of the primitive processes. This module is named PP
module. The GMB data domain primitives synthesized from the primitive

processes will be placed in the PP module.

Data-Flow Diagram Rules

DFD.D.1
Antecedent:  DFD is a lowest level diagram
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Consequence: subgoal: synthesize data domain primitives for processes of DFD;
subgoal: synthesize data domain primitives for datastores of DFD;
subgoal: synthesize data domain primitives for dataflows of DFD;

DFD.D.2
Antecedent:  DFD is a highest-leve] diagram
Consequence: subgoal: synthesize data domain primitives within module ENVIRONMENT for
datasinks/datasources of DFD
subgoal: synthesize data domain objects for processes of DFD;
subgoal: synthesize data domain objects for datastores of DFD:
subgoal: synthesize data domain objects for dataflows of DFD;

DFD.D.3

Antecedent:  DFD has two sets of processes — refined and primitive

Consequence: Within the PP module
subgoal: synthesize data domain objects for processes of DFD:
subgoal: synthesize data domain objects for datastores of DFD;
subgoal: synthesize data domain objects for dataflows of DFD;

DFD.D 4
Antecedent:  DFD has no primitive process
Consequence: do not synthesize anything

Process rules

Proc.D.1
Antecedent:  process has refinement
Consequence: do not synthesize anything

Proc.D.2

Antecedent;  process is primitive

Consequence: Create one or more data processors for process;
Establish mapping between the data processor(s) and one or more control nodes in the
control graph.

Proc.D.3
Antecedent:  process is primitive
Consequence: A data processor DP already exists for process, associate DP with process;

Proc.D.4
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Antecedent:  process is primitive
Consequence: Multiple data processors already exist for process, associate the data processors with
process;

Note: Application of Proc.D.2, Proc.D.3, or Proc.D.4, with identical antecedents, is to
be determined by human designer.

Datastores Rules

DS.D.1
Antecedent:  datastore has refinement
Conseguence: do not synthesize anything

DS.D.2
Antecedent:  datastore is primitive
Consequence: Creale a dataset for datastore, with initial value nil;

Datasources/datasinks Rules

S$8.D.1
Antecedent:  datasource SS appears in highest-level diagram and S8S is primitive
Consequence: Create a dataset DSET for §S;

For each dataflow DF connected to §S

Let SOCS be the set of sockets associated to DF in module ENVIRONMENT,
Connect DSET to each socket in SOCS with a data arc, with arc type R;
endfor;
prompt for DSET’s initial value.

88.D.2
Antecedent:  datasource SS does not appear in highest-level diagram and 8§ is primitive
Consequence: Create a dataset DSET for SS;
For each dataflow DF connected to 8§
Let SOCS be the set of sockets associated to DF in the current module
Connect DSET to the desired socket(s), as picked by the human designer, in
SOCS with a data arc, with arc type R;
endfor;
prompt for DSET"s initial value.

S8.D.3
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Antecedent:

Consequence:

S8D4
Antecedent:

Consequence:

SS.D.5
Antecedent:

Consequence:

DE.D.1
Antecedent:

Consequence:

DE.D.2
Antecedent:

Consequence:

DF.D.3
Antecedent:

Consequence:

DE.D.4
Antecedent:

datasink S8 appears in highest-level diagram and S8 is primitive
Create a dataset DSET for S8, with initial value nil;
For each dataflow DF connected to 88
Let SOCS be the set of sockets associated 1o DF in module ENVIRONMENT,
Connect DSET to each socket in SOCS with a data arc, with arc type W;
endfor.

datasink S8 does not appear in highest-level diagram and S8 is primitive
Create a dataset DSET for S8, with initial value nil;
For ¢ach dataflow DF connected to 8§
Let SOCS be the set of sockets associated to DF in the current module
Connect DSET to the desired socket(s), as picked by the human designer, in
SOCS with a data arc, with arc type W,
endfor.

datasink/datasource 88 is not primitive
For each datasink/datasource SUB_SS in the refinement of SS,
subgoal: synthesize data domain primitives for SUB_SS;

Dataflow Rules

df represents a simple on/off signal
do not synthesize anything

df connects a refined object and a primitive process
Let SOC be the socket on the PP module associated with df, DP be data processor
associated with the process,

Create a data arc 10 connect SOC and DP, with arc type R.

df connects a primitive process and a refined object
Let SOC be the socket on the PP module associated with df, DP be data processor
associated with the process,

Create a data arc to connect SOC and DP, with arc type W.

df connects a refined object and a primitive datastore
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Consequence:

DF.D.5
Antecedent:

Consequence:

DED.6
Antecedent:

Consequence:

DF.D.7
Antecedent:

Consequence:

DFE.D.8
Antecedent:

Consequence:

DE.D.9
Antecedent:

Consequence:

DE.D.10
Antecedent:

Consequence:

DE.D.11
Antecedent:

Consequence:

DE.D.12

Let SOC be the socket on the PP module associated with df, DS be data processor
associated with the datastore,
Create a data arc to connect SOC and DS, with arc type W,

df connects a primitive datastore and a refined object
Let SOC be the socket on the PP module associated with df, DS be data processor
associated with the datastore,

Create a data arc to connect SOC and DS, with arc type R.

df connects to two objects, both of which have refinements
do not synthesize anything

df connects two processes, both of which are primitive

Let P1 be the source process and P2 be the destination process of df,
Create an intermediate dataset DS;
Create a data arc of type R to connect P1°s associated data processor and DS;
Create a data arc of type W to connect DS and P2’s associated data processor;

df connects a primitive process and a primitive datastore
Let DS be the associated dataset of the datastore, DP be the associated data processor
of the process,

Create a data arc of type W to connect DP and DS;

df connects a primitive datastore and a primitive process
Let DS be the associated dataset of the datastore, DP be the associated data processor
of the process,

Create a data arc of type R to connect DP and DS;

df is doubly connected, one side is a datasink/datasource
do not synthesize anything,

df is singly connected, the source object has refinement
do not synthesize anything.
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Antecedent:  df is singly connected, the destination object has refinement
Consequence: do not synthesize anything.

DF.D.13
Antecedent:  df has no destination, the source is a primitive process, and the primitive process was
transformed to a single data processor
Consequence: Let DP be the data processor associated with the primitive process
For each socket SOC among the sockets in the current module associated with df
Case
SOC’s other side is connected to a data processor —
create an intermediate dataset DS, connect DP to DS with an arc of type
W, connect DS and SOC with an arc of type R;
SOC’s other side is connected to a dataset —
connect DP to SOC with an arc of type W
SOC’s other side is not connected to anything —
connect DP to SOC with an arc of type W
endcase;
endfor.

DFD.14
Antecedent:  df has no destination, the source is a primilive process, and the primitive process was
transformed to a single data processor
Consequence: Let DP be the data processor associated with the primitive process
For each socket SOC among the sockets in the current module associated with df
Case
SOC'’s other side is connected to a data processor —
create an intermediate dataset DS, connect DP to DS with an arc of type
W, connect DS and SOC with an arc of type R;
SOC’s other side is connected to a dataset —
connect DP to SOC with an arc of type W;
SOC’s other side is not connected to anything —
create an intermediate dataset DS, connect DP to DS with an arc of type
W, connect DS and SOC with an arc of type R;
endcase;
endfor.

Note: Application of DFD.D.13 or DFD.D.14, with identical antecedents, is to be
determined by human designer.

DE.D.15

Antecedent:  df has no destination, the source is a primitive process, and the primitive process was
transformed to multiple data processors
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Consequence: Among the data processors associated with the process, request the human designer to
pick a subset which are associated with df, for each DP picked
For each socket SOC among the sockets in the current module associated with df
Case
S0C’s other side is connected to a data processor —
create an intermediate dataset DS, connect DP to DS with an arc of type
W, connect DS and SOC with an arc of type R;
SOC’s other side is connected to a dataset —
connect DP to SOC with an arc of type W;
S0C’s other side is not connected (o anything —
connect DP to SOC with an arc of type W,
endcase
endfor
endfor

DF.D.16
Antecedent:  df has no destination, the source is a primitive process, and the primitive process was
transformed to multiple data processors
Consequence: Among the data processors associated with the process, request the human designer to
pick a subset which are associated with df, for each DP picked
For each socket SOC among the sockets in the current module associated with df
Case
SOC’s other side is connected to a data processor —
create an intermediate dataset DS, connect DP to DS with an arc of type
W, connect DS and SOC with an arc of type R;
SOC'’s other side is connected to a dataset —
connect DP to SOC with an arc of type W;
SOC’s other side is not connected to anything —
create an intermediate dataset DS, connect DP to DS with an arc of type
W, connect DS and SOC with an arc of type R;
endcase;
endfor;
endfor,

Note: Application of DFD.D.15 or DFD.D.16, with identical antecedents, is to be
determined by human designer.

DE.D.17
Antecedent:  df has no source, the destination is a primitive process, and the primitive process was
transformed to a single data processor
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Consequence: Let DP be the data processor associated with the primitive process
For each socket SOC among the sockets in the current module associated with df
Case
SOC’s other side is connected to a data processor —
create an intermediate dataset DS, connect DP to DS with an arc of type
R, connect DS and SOC with an arc of type W;
SOC’s other side is connected to a dataset —
connect DP to SOC with an arc of type R;
SOC'’s other side is not connected to anything —
connect DP to SOC with an arc of type R;
endcase;
endfor.

DF.D.18
Antecedent:  df has no source, the destination is a primitive process, and the primitive process was
transformed to a single data processor
Consequence: Let DP be the data processor associated with the primitive process
For each socket SOC among the sockets in the current module associated with df
Case
SOC’s other side is connected to a data processor —
create an intermediate dataset DS, connect DP to DS with an arc of type
R, connect DS and SOC with an arc of type W;
SOC’s other side is connected to a dataset —
connect DP to SOC with an arc of type R;
SOC's other side is not connected to anything —
create an intermediate dataset DS, connect DP to DS with an arc of type
R, connect DS and SOC with an arc of type W;
endcase;
endfor,

Note: Application of DFD.D.17 or DFD.D.18, with identical antecedents, is to be
determined by human designer.

DF.D.19
Antecedent:  df has no source, the destination is a primitive process, and the primitive process was
transformed to multiple data processors
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Consequence: Among the data processors associated with the process, request the human designer to
pick a subset which are associated with df, for each DP picked
For each socket SOC among the sockets in the current module associated with df
Case
SOC’s other side is connected to a data processor —
create an intermediate dataset DS, connect DP to DS with an arc of type
R, connect DS and SOC with an arc of type W;
SOC'’s other side is connected to a dataset ——
connect DP to SOC with an arc of type R;
SOC’s other side is not connected to anything —
connect DP to SOC with an arc of type R;
endcase
endfor
endfor

DF.D.20
Antecedent:  df has no source, the destination is a primitive process, and the primitive process was
transformed to multiple data processors
Consequence: Among the data processors associated with the process, request the human designer to
pick a subset which are associated with df, for each DP picked
For each socket SOC among the sockets in the current module associated with df
Case
SOC’s other side is connected to a data processor —
create an intermediate dataset DS, connect DP to DS with an arc of type
R, connect DS and SOC with an arc of type W,
SOC’s other side is connected to a dataset —
connect DP to SOC with an arc of type R;
SOC’s other side is not connected to anything —
create an intermediate dataset DS, connect DP to DS with an arc of type
R, connect DS and SOC with an arc of type W,
endcase;
endfor;
endfor.

Note: Application of DFD.D.19 or DFD.D.20, with identical antecedents, is to be
determined by human designer.

DE.D.21
Antecedent:  df has no destination and the source is a primitive datastore
Consequence: Let DS be the dataset associated with the primitive datastore
For each socket SOC among the sockets in the current module associated with df
connect DS to SOC with an arc of type R;
endfor.

DF.D.22
Antecedent:  df has no source and the destination is a primitive datastore
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Consequence: Let DS be the dataset associated with the primitive datastore
For each socket SOC among the sockets in the current module associated with df
connect DS to SOC with an arc of type W;
endfor.
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APPENDIX D
Sample Design Synthesis

In this appendix, we present the GMBs synthesized for the five major
components of the aircraft monitor system. From the aircraft monitor example, the
structural model that is synthesized has already been shown in Chapter 6. With the
structural model available, the human designer selects a certain module and asks the
assistant to synthesize its behavioral model. The module selected has its behavioral
requirements, in the form of system verification diagram and low-level data-flow
diagram, available. The components we pick to demonstrate the behavioral synthesis
process are the monitor driver, synchronous monitors, asyﬁchronous monitor, VDU,

and recorder,

The requirements we use as the bases of synthesis are the system verification
diagrams in Figures 3.12, 6.25, 7.1, B.4, B.5, and B.6. and the data-flow diagrams in
Figures 3.8, 3.9, 3.10, 3.11, B.1, B.2, and B.3. The procedure of generating the

behavioral model of a system component consists of:
1. The human designer picks a module in the structural model.

2. He or she then feeds the appropriate SVD to the rule interpreter to synthesize

the control domain.

3. After a control graph skeleton, and possibly, data domain objects, are

generated, he or she feeds the corresponding data-flow diagram to the rule
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interpreter to synthesize the data domain.

4, After the two domains, as well as a partial interpretation domain, are
synthesized, the designer takes care of the disconnections, if any, left in the
GMB by the design assistant.

In the subsequent sections, we present the five major system components synthesized

by the design assistant. In each case, we also indicate what the human has to do to

make the control/data domains ready for simulation.
D.1 Synthesis of Monitor Driver

Monitor Driver is one of the key components in the aircraft monitor system. Its
functions include initializing the system upon receipt of a start signal, and serving as

an interface between the human and machine during the flight.

To synthesize the behavioral models, the system verification diagram used is
the one in Fig. B.5. The sequence of rule applications is shown as follows:
1. rule SVD.1 for the System Verification Diagram for Monitor Driver (Fig. B.S).

2. rule Rel.2 for the sequential-XOR relation leading to decomposition elements
Stop Flashing, Ignore Command, and Provide Command.

3. rule GroupDE.6 for the decomposition elements Stop Flashing, Ignore
Command, and Provide Command,

4. rule stim. 1 for the common stimulus Input from keyboard.

5. rule stim.1 for the stimulus VDU not in display mode in Stop Flashing.

6. - rule stim.12 for the stimulus System in operation in Stop Flashing.

7 rule resp.5 for the external response VDU in display mode in Stop Flashing.
8. rule x.resp.2 for the external response VDU in display mode in Stop Flashing.

9. rule resp.2 for the external response Warning Device off in Stop Flashing.

279



10.
11
12.
13.
14,
15.
16.
17.

18.

19.
20.

21.

22.

23.

24.

25.

26.

27.

28.

rule x.resp.2 for the external response Warning Device off in Stop Flashing.
rule resp.2 for the external response Command Recording in Stop Flashing.
rule x.resp.2 for the external response Command Recording in Stop Flashing.
rule stim.1 for the stimulus VDU nof in display mode in Ignore Command.
rule stim.15 for the stimulus System in operation in Ignore Command.

rule stim.1 for the stimulus VDU in display mode in Provide Command.

rule stim.15 for the stimulus Systerm in operation in Provide Command.

rule resp.2 for the response Command to be interpreted in Provide Command.

rule xresp.3 for the response Command to pe interpreted in Provide
Command.

rule resp.5 for the response Command Recording in Provide Command.
rule x.resp.2 for the response Command Recording in Provide Command.

rule Rel2 for the sequcntial-XOR relation from decomposition element
Provide Command.

rule GroupDE.13 for the decomposition elements Display Data, Smoke Test,
and Shutdown.

rule stim.3 for the common stimulus command to be interpreted.

rule resp.2 for the external response Message to vDU for display in Display
Data.

rule x.resp.2 for the external response Message to VDU for display in Display
Data.

rule resp.15 for the response sequence Faked "smoke" interrupt; faked "no-
smoke” interrupt in SMOKE TEST.

rule resp.2 for the external response Faked "smoke” interrupt in SMOKE
TEST.

rule xresp.3 for the external response Faked "smoke” interrupt in SMOKE
TEST.
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29,

30.

31.
32.
33,
34,
35.
36.
37.
38.
39.
40.
41.
42.
43,
44,
45.

46.

rule resp.2 for the external response Faked "no-smoke” interrupt in SMOKE
TEST.

rule x.resp.3 for the external response Faked “no-smoke" interrupt in SMOKE
TEST.

rule resp.1 for the response Message to VDU for display in SHUTDOWN.
rule resp.6 for the response System not in operation in SHUTDOWN.

rule x.resp.3 for the response System not in operation in SHUTDOWN.
rule Rel.1 for the sequence relation leading to decomposition element Init.
rule DE.1 for the decomposition element Init.

rule stim.1 for the external stimulus Start signal.

rule resp.9 for the external response Clear VDU screen in INIT.

rule x.resp.2 for the external response Clear VDU screen in INIT.

rule resp.9 for the external response Initialize recorder buffer in INIT.
rule x.resp.2 for the external response /nitialize recorder buffer in INIT.
rule resp.9 for the external response Record header in INIT.

rule x.resp.2 for the external response Record header in INIT.

rule resp.2 for the external response Synchronous init signal in INIT.

rule x.resp.2 for the external response Synchronous init signal in INIT.
rule resp.6 for the response System in operation in INIT.

rule x.resp.3 for the external response System in operation in INIT.

After 46 rule applications, the synthesis product is shown in Fig. D.1. Like the

structural model, the graph model of behavior is implemented as an object. Likewise,

the control graph is also an object within the GMB. The class definition of a control

graph is given as follows:
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Fig. D.1: Control Graph Skeleton Synthesized for Monitor Driver
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Fig. D.1 (continue)
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(define (MakeControlGraph)
(let ( ... )
{object nil :

((parent self) ...)

((controlncdes self) ...)

({controlarcs self) ...)

((gmb self) ...)

(((setter gmb) self val}) ...)

((add-object self x) ...)

((del-object self x) ...)

((print self port) ...)

((traverse self) ...}

((ControlGraph? self) t))))
The specific control graph object in Fig. D.1, result of the synthesis, consists of
attributes such as parent — the module MON.DRIVER; controlnodes — a
list of fifteen control nodes: IFK.dec, SF.dec, SF, IC.dec, IC, PC.dec, PC, N2, SD,
DD, ST, N3, Init, State.SIO, and N1; and controlarcs — a list of thirty-five
control arcs: IFK.1, VIDM, Not.VIDM, Not.VIDM.1, ss.1, A1, A2, A3, A4, AS, A6,
A7, A8, A9, A10, All, All.1, A11.2, Al12, Al13, Al4, Al5, Al6, Al7, Al8, Al9,
A20, A21, A22, A23, A24, A25, A26, A27, and A28. The control nodes and control
arcs are objects themselves. Again, the main activity of the control domain synthesis

is to create and connect these objects.

As soon as the control graph is ready, the data graph skeleton is synthesized.

The data-flow diagram fed to the rule interpreter is the one in Fig. B.3, resulting in a
rule application sequence as follows:

1. rule DFD.D.1 for the data-flow diagram of Monitor Driver (Fig. B.3).

2. rule Proc.D.2 for the process init process.

3. rule Proc.D .4 for the process command shell.

4. rule DF.D.1 for the dataflow start signal.

5. rule DE.D.19 for the dataflow user command.

6. rule DFE.D.19 for the dataflow time.
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7. rule DF.D.15 for the dataflow recorded data.

8. rule DFE.D.13 for the dataflow recorded data.

9. rule DF.D.135 for the dataflow VDU outpur.

10.  rule DF.D.13 for the dataflow VDU output.

11. rule DF.D.1 for the dataflow faked smoke interrupts.
12.  rule DE.D.1 for the dataflow synchronous init signal.
13.  rule DE.D.1 for the dataflow warning signals.

The result data graph is illustrated in Fig. D.2. The class definition of a data graph is

given as follows:

(define (MakeDataGraph)
(let ( ... )

{obdect nil
{{parent self) ...)
{{dataprocs self) ...)
{{dataarcs self) .e)
{ (datasets self) ...)
((gmb self) ...)
( (add-object self x} ...)
{(del-object self x) ...)
{(Traverse self) ...)
({(print self port) ...)
( (datagraph? self) t))))

Like the control graph, the data graph object in Fig. D.2 consists of ten data
processors — IFK.dec.dp, Nl.dp, N2.dp, ST.dp, State.SIO.dp, PC.dp, SF.dp,
SD.dp, Init.dp, and DD.dp; and four data arcs — DA1, DA2, DA3, and DA4; all of

which are objects themselves.

After creating skeletons for both the control and data domains of the monitor

driver, the human designer fills in the following disconnections:

. Establish the appropriate external connections. Control Arcs A28 and A27
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represent the responses faked "smoke” interrupt and faked “no-smoke”
interrupt, respectively. These two response are generated for an external
component, namely the smoke monitor. As the assistant failed to connect
them to the appropriate sockets, the human designer should connect the heads

of these two arcs to the socket N.cs2, a gateway to the smoke monitor module.

Create a control node, if necessary, to connect to the no-head escape arc AlS.
This control node should be a process that deals with the exception situation in
which the input command is neither "CANCEL", "SMOKE-TEST",
"DISPLAY" nor "FINISH". The above exception is not mentioned in the
requirements at all. On the other hand, it is not uncommon to ignore exception
conditions at the design stage. The human designer may just leave the escape

arc headless.

Merge control arcs A27 and A28, since both serve the same purpose,

invocation of the recorder initialization process.

The state system in operation is necessary to activate two processes in the
module Syn.Mon. As a result, A11.3 and All.4, two additional arcs

connecting State.SIO and N.csl, are created

Data processor PC.dp has to obtain the user command input from the

keyboard. The processor is thus added to the processor set of data arc DAL.

The data processors that fetch the input command from the keyboard have to
pass the command to the other data processors. As a result, an intermediate
dataset is need between PC.dp, N2.dp, and DD.dp. The former writes to this

dataset in order that the latter two be able to read from it.
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. A data arc is created to connect DD.dp and NR3, as the process for displaying

data has to retrieve data from the recording device.

. A data arc is created to connect ST.dp, which generates the faked smoke
interrupts, and N.cs2. This is because the smoke-test process has to notify the
smoke monitor its identification.

The complete control graph and data graph, after these modifications by the human

designer, are shown in Fig. D.3 and Fig. D.4, respectively.

In addition to patching the control graph and the data graph, the human
designer is also expected to code the interpretation domain if necessary. Sample
interpretation code written in T, taken from the interpretation domain of the shut-

down process SD.dp, is given as follows:
($output ’DA5 "*** End of Flight **x")
D.2 Synthesis of Synchronous Monitors

The synchronous monitors perform two monitorings, watching the fuel tank
and the engines at specific time intervals. First the module Syn.Mon is picked from
the structural model. The system verification diagrams used to create control graph
skeletons are the ones in Fig. 3.12, and Fig. B.4, with the trace of rules being applied

given as follows:

L. rule SVD.1 for the System Verification Diagram for Synchronous Monitor
(Figures 3.12 and B.4).

2. rule Rel.1 for the sequence relation leading to decomposition element FUEL
READING REQUEST.

3. rule DE.1 for the decomposition element FUEL READING REQUEST.

4. rule stim.7 for the stimulus I second interval in FUEL READING REQUEST.
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10.

11.

12

13.

14,

15.

16.

17.

18.

19.
- 20.

rule stim.1 for the external stimulus System in operation in FUEL READING
REQUEST.

rule resp.2 for the response Fuel Reading to be checked in FUEL READING
REQUEST.

rule x.resp.3 for the response Fuel Reading to be checked in FUEL READING
REQUEST.

rule Rel.2 for the XOR relation from decomposition element FUEL READING
REQUEST.

rule GroupDE. 16 for the decomposition elements BAD FUEL READINGS, and
GOOD FUEL READINGS.

rule resp.2 for the external response Fue! warning "on" in BAD FUEL
READINGS.

rule x.resp.2 for the external response Fuel warning "on" in BAD FUEL
READINGS.

rule resp.2 for the external response Fuel Message to be Flashed in BAD
FUEL READINGS.

rule x.resp.2 for the external response Fuel Message to be Flashed in BAD
FUEL READINGS.

rule resp.2 for the external response Fuel Recordings in BAD FUEL
READINGS. )

rule x.resp.2 for the external response Fuel Recordings in BAD FUEL
READINGS.

rule resp.l for the external response Fuel Recordings in GOOD FUEL
READINGS.

rule x.resp.2 for the external response Fuel Recordings in GOOD FUEL
READINGS.

rule Rel.l for the sequence relation leading to decomposition element
ENGINE READING REQUEST.

rule DE.1 for the decomposition element ENGINE READING REQUEST.

rule stim.8 for the stimulus ! second interval in ENGINE READING
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21.

22,

23.

24,

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

REQUEST.

rule stim.1 for the external stimulus System in operation in ENGINE
READING REQUEST.

rule resp.2 for the response temperature to be checked in ENGINE READING
REQUEST.

rule resp.2 for the response pressure to be checked in ENGINE READING
REQUEST.

rule Rel2 for the XOR relation from decomposition element ENGINE
READING REQUEST,

rule GroupDE.16 for the decomposition elements BAD TEMPERATURE
READINGS, and GOOD TEMPERATURE READINGS.

rule resp.2 for the external response Engine warning “on” in BAD
TEMPERATURE READINGS.

rule x.resp.2 for the external response Engine warning "on” in BAD
TEMPERATURE READINGS.

rule resp.2 for the external response Bad temperature readings to be flashed in
BAD TEMPERATURE READINGS.

rule x.resp.2 for the external response Bad temperature readings to be flashed
in BAD TEMPERATURE READINGS.

rule resp.2 for the external response Temperature Recordings in BAD
TEMPERATURE READINGS.

rule x.resp.2 for the external response Temperature Recordings in BAD
TEMPERATURE READINGS.

rule resp.l1 for the external response Temperature Recordings in GOOD
TEMPERATURE READINGS.

rule x.resp.2 for the external response Temperature Recordings in GOOD
TEMPERATURE READINGS.

rule Rel.2 for the other XOR relation from decomposition element ENGINE
READING REQUEST.

rule GroupDE.16 for the decomposition elements BAD PRESSURE
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36.

37.

38.

39.

40.

41.

42,

43.

READINGS, and GOOD PRESSURE READINGS.

rule resp.1 for the external response Engine warning "on” in BAD PRESSURE
READINGS.

rule x.resp.2 for the external response Engine warning "on" in BAD
PRESSURE READINGS.

rule resp.2 for the external response Bad pressure readings to be flashed in
BAD PRESSURE READINGS.

rule x.resp.2 for the external response Bad pressure readings to be flashed in
BAD PRESSURE READINGS.

rule resp.2 for the external response Pressure Recordings in BAD PRESSURE
READINGS.

rule x.resp.2 for the external response Pressure Recordings in BAD
PRESSURE READINGS.

rule resp.l for the external response Pressure Recordings in GOOD
PRESSURE READINGS.

rule x.resp.2 for the external response Pressure Recordings in GOOD
PRESSURE READINGS.

The control graph created is shown in Fig. D.5. To synthesized the data graph, the

data-flow diagram in Fig. 3.10 is input to the rule interpreter. The data graph

synthesized is as shown in Fig. D.6., after the following rules are successfully applied:

1.

P N A kW

rule DFD.D.1 for the data-flow diagram of Synchronous Monitor (Fig. 3.10).
rule Proc.D.4 for the process fuel monitor.

rule Proc.D.4 for the process engine monitor.

rule DF.D. 19 for the dataflow time.

rule DF.D.19 for the dataflow time.

rule DF.D.1 for the dataflow Control signals.

rule DE.D.1 for the dataflow Control signals.

rule DFE.D. 19 for the dataflow Engine temp. readings.
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10.
11.
12.
13.
14,
15.
16.

rule DF.D.19 for the dataflow Engine pressure readings.
rule DE.D.19 for the dataflow Fuel readings.

rule DF.D.135 for the dataflow Fuel Recordings.

rule DF.D.13 for the dataflow Engine Recordings.

rule DF.D.135 for the dataflow VDU output.

rule DF.D.15 for the dataflow VDU output.

rule DF.D.1 for the dataflow Warning Signal.

rule DE.D.1 for the dataflow Warning Signal.

The synthesized control graph skeleton is fairly complete. The only action

taken by the human is to connect the tail of arc Al to socket S.cs. The start signal of

the entire system is supposed to invoke the node sequence for synchronous stimulus.

The resulting control graph is illustrated in Fig. D.7.

In the data graph, the synthesized skeleton needs a few patches since the data-

flow diagram is not detailed enough.

An intermediate buffer, Fuel.Buf, is needed to pass the retrieved fuel reading
from Fuel.Mon to the trio N1.dp, GFR.dp, and BFR.dp. Similar buffers are
needed from Eng.Mon to the trio N2.dp, GTR.dp, and BTR.dp for the engine
temperature readings, as well as from Eng.Mon to the trio N3.dp, GPR.dp,
and BPR.dp for the engine pressure readings. Datasets Temp.Buf and
Pres.Buf are created for this purpose.

Two datasets Temp.Count and Pres.Count are used to keep track of the
number of successive bad readings so far, for the temperature and pressure

respectively.
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3. In the interpretation code of data processors N2.dp, four engine temperatures
are checked. The processor GTR.dp or BTR.dp is then invoked accordingly.
If one or more engines have out-of-range temperatures, N2.dp has to notify
BTR.dp which ones; this information is passed via another intermediate
dataset Good.Temp. Dataset Good.Pres is also created between N3.dp and

BPR.dp for the same reason.

4. Data arc DA7 transmits data to be recorded from the temperature monitors and
pressure monitors to the socket SR1. Since these two sets of recorded data are
exclusive, it is better to separate the readings transmission. As a result, A new

data arc DA7.1 is created to transmit the pressure readings.

5. Data arcs DA3 and DA4 are used to transmit the temperature and pressure
readings, respectively. However, the human designer decides to group the two
sets of data together, and split them into four, one for each engine sensor. Asa
result, DA4 is removed, but three additional arcs DA3.1, DA3.2, and DA3.3
are created. Each of the four arcs is used to transmit a pair of (temperature,

pressure) readings from a sensor.
The adjusted data graph of the synchronous monitor is illustrated in Fig. D.8.
D.3 Synthesis of Asynchronous Monitor

The asynchronous monitor serves only one purpose, to detect smoke from the
compartments. Upon receipt of a smoke interrupt, the emergency conditions will be

turned on. These will stay on until the receipt of a no-smoke interrupt.
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in Fig.

10.

11.

12.

13.

14.
15.

16.

The system verification diagram used to generate the control domain is the one

7.1. A trace of control domain synthesis rules used is given as follows:

rule SVD.1 for the System Verification Diagram for Asynchronous Monitor
(Fig. 7.1).

rule Rel.1 for the sequence relation leading to decomposition element SMOKE
HANDLER.

rule stim.16 for the stimulus “smoke” interrupt OR faked "smoke" interrupt in
SMOKE HANDLER.

rule stim.] for the stimulus “smoke” interrupt in SMOKE HANDLER,
rule stim. 1 for the stimulus faked "smoke” interrupt in SMOKE HANDLER.

rule resp.2 for the external response Smoke warning "on" in SMOKE
HANDLER.

rule x.resp.2 for the external response Smoke warning "on” in SMOKE
HANDLER.

rule resp.2 for the external response Smoke Message to be Flashed in SMOKE
HANDLER.

rule x.resp.2 for the external response Smoke Message to be Flashed in
SMOKE HANDLER.

rule resp.2 for the external response Smoke Recording in SMOKE HANDLER.

rule x.resp.2 for the external response Smoke Recording in SMOKE
HANDLER.

rule Rel.1 for the sequence relation leading to decomposition element NO-
SMOKE HANDLER.

rule stim.16 for the stimulus "no-smoke” interrupt OR faked "no-smoke”
interrupt in NO-SMOKE HANDLER.

rule stim. 1 for the stimulus "no-smoke"” interrupt in NO-SMOKE HANDLER.

rule stim.1 for the stimulus faked “no-smoke” interrupt in NO-SMOKE
HANDLER.

rule resp.2 for the external response Smoke warning "off’ in NO-SMOKE
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17.

18.

19.

HANDLER.

rule x.resp.2 for the external response Smoke warning "off’ in NO-SMOKE
HANDLER,

rule resp.2 for the external response Smoke Message to be Flashed in NO-
SMOKE HANDLER.

rule resp.2 for the external response Smoke Recording in NO-SMOKE
HANDLER.

The data-flow diagram used is illustrated in Fig. 3.11. The trace of data domain

synthesis rules applied is given as follows:

1.

2.

6.

7.

rule DFD.D.1 for the data-flow diagram of Smoke Monitor (Fig. 3.11).
rule Proc.D.2 for the process smoke monitor.

rule DFE.D.19 for the dataflow rime.

rule DF.D.1 for the dataflow smoke/no-smoke interrupts.

rule DE.D.1 for the dataflow Warning Signal.

rule DE.D.13 for the dataflow VDU output.

rule DFE.D.135 for the dataflow smoke Recordings.

At the completion of synthesis, the control graph skeleton and data graph skeleton are

shown in Figures D.9 and D. 10, respectively.

In this module, the synthesized control graph happens to be complete. The

only adjustment necessary is in the data graph. Where a dataset is needed to hold the

identification of the compartment in which the smoke is discovered. This information

is needed when the detection of smoke is recorded on mass storage and displayed on

the screen. The adjusted data graph is shown in Fig. D.11.
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D.4 Synthesis of VDU

The Video Display Unit (VDU) is a device used to show the flight status. It

will be operated in two modes, display and flash. The former is the normal operating

mode, while the latter is reserved for hazardous conditions.

To synthesize the control graph, the system verification diagram in Fig. B.6 is

used. After applying the following synthesis rules, a control graph skeleton, as shown

in Fig. D.12, is generated.

1.

2.

9.

10.

rule SVD.1 for the System Verification Diagram for VDU (Fig. B.6).

rule Rel.1 for the sequence relation leading to decomposition element FLASH
PROCESS.

rule DE.1 for the decomposition element FLASH PROCESS.
rule stim.5 for the stimulus flash message request in FLASH PROCESS.
rule resp.5 for the response VDU nor in display mode in FLASH PROCESS.

rule x.resp.3 for the external response VDU not in display mode in FLASH
PROCESS.

rule Rel.l1 for the sequence relation leading to decomposition element
DISPLAY PROCESS.

rule DE.1 for the decomposition element DISPLAY PROCESS.
rule stim.5 for the stimulus display message request in DISPLAY PROCESS.
rule stim. 12 for the stimulus VDU in display mode in DISPLAY PROCESS.

When the control graph is ready, the data-flow diagram in Fig. B.1 is employed to

synthesize the data graph. The data graph created is given in Fig. D.13, after applying

the following rules:

1.

2.

rule DFD.D.1 for the data-flow diagram of VDU (Fig. B.1).

rule Proc.D.2 for the process output process.

306



Vo3

VDU

Fig. D.12: Control Graph Skeleton Synthesized for VDU

307



| vDUoutput but.3
y DAG

DA3 DA4
voz -_D-I VDUoutput.buf.2 I——_>

DA1
VO3 —b{ VDUoutput.buf.1 Davice

state.
VIDM.dp

Fig. D.13: Data Graph Skeleton Synthesized for VDU

308



3. rule DS.D.2 for the datastore display device.
4. rule DF.D.18 for the dataflow output request:.

5. rule DF.D.8 for the dataflow outpur data.

In the control graph, there are three tailless control arcs, Al, A3, and A6,
pointing to the nodes Flash, Display, and State.VIDM, respectively. These three arcs
receive tokens from the external context. The human designer must connect them to

the appropriate sockets.

1. Four control arcs are needed to connect the sockets and the node Flash, since
there are four independent hazardous occasions, discovery of smoke, bad fuel
reading, bad temperature reading, and bad pressure reading, in which messages
have to be ﬂasiled on the VDU. As a result, three additional control arcs,
Al.l, Al.2, and AL.3, are created by the human designer. The first two, along
with Al, connect the socket VO1 to Flash, while the last one connects VO2 to

Flash.

2. The human designer is also expected to associate the tail of A3 with VO3 as
well as create an additional arc to connect VO3 and Display. Socket VO3 is
the gateway to the module MON.DRIVER, which is the only component that
displays messages on the VDU.

3. In the module, there is a node sequence for the state stimulus VDU in display
mode. The cause of VDU not in display mode comes from the node Flash,
while the cause to return the VDU back to display mode comes externally
from the monitor driver. As a result, the tail of A6, the state switch arc for

State.VDIM, is connected to socket VO3.
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4, Several processes in the monitor driver operate according to the system state
VDU in display mode, or its complement. As a result, additional arcs
connecting the state node sequence and socket VO3 are created.

The resulting control graph is shown in Fig. D.14.

In the data graph skeleton, a minor patch is needed. A second intermediate
dataset is created between socket VO1 and the processor QutputProcess, such that
one dataset contains the fuel messages and the other contains the engine messages.

The complete data graph is illustrated in Fig. D.15.
D.5 Synthesis of Recorder

The recording activities, as specified in the requirements, depend on two
parameters, whether the recorder itself is idle or not, and whether the recorder buffer
is empty or not. As a result, node sequences for system states recording in progress

or not and recorder buffer is empty or not are essential in the recorder module.

The system verification diagram used in this synthesis process is shown in Fig.
6.25, while the data-flow diagram is shown in Fig. B.2. The synthesized control graph
is illustrated in Fig. D.16, after applying the following rules:
1. rule SVD.1 for the System Verification Diagram for recorder (Fig. 6.25).

2. rule Rel.2 for the sequential-XOR relation leading to decomposition elements
REQUEST BUFFERED, BUFFERED REQUEST PROCEED, and NORMAL
RECORDING PROCEED.,

3. mule GroupDE.4 for the decomposition elements REQUEST BUFFERED,
BUFFERED REQUEST PROCEED, and NORMAL RECORDING PROCEED.

4. rule stim.12 for the stimulus recording in progress.

5. rule stim. 14 for the stimulus recording not in progress.
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10.

11.

12,

13.

rule stim.5 for the stimulus recording request in REQUEST BUFFERED,

rule stim.12 for the stimulus buﬂ‘ér has message in BUFFERED REQUEST
PROCEED.

rule stim.2 for the stimulus recording request in NORMAL RECORDING
PROCEED.

rule resp.6 for the response buffer has message in REQUEST BUFFERED.
rule x.resp.3 for the response buffer has message in REQUEST BUFFERED.

rule resp.6 for the response buffer has no message in BUFFERED REQUEST
PROCEED.

rule x.resp.3 for the response buffer has no message in BUFFERED REQUEST
PROCEED.

rule resp.14 for the response record message on device in NORMAL
RECORDING PROCEED.

Likewise, the following data domain synthesis rules are applied to create a data graph

skeleton, as shown in Fig. D.17.

1.

2.

rule DFD.D.1 for the data-flow diagram of recorder (Fig. B.2).
rule Proc.D.4 for the process recording process.

rule DS.D.2 for the datastore mass storage device.

rule DF.D.20 for the dataflow recording request.

rule DFE.D.8 for the dataflow recorded data.

In the control graph skeleton, the human designer has to do a few patches. A

control node init is created for the sake of recorder initialization. Arc A10 represents

external recording requests. After examining the other sides of the three sockets, the

human designer observes the need for these primitives:

Three arcs connecting RR1 and N1.
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. One arc connecting RR2 and N1.
. One arc connecting RR3 and N1,

. Another arc connecting RR3 and init, indicating a request of recorder
initialization from the init process in the driver.

The human designer also removes the tailless arc A19, because there is no actual

process indicating the completion of recording. As a result, a fixed delay is put into

the interpretation code of RMT.A to signal termination of recording. The complete

control graph is illustrated in Fig. D.18.
There are also some patches needed for the data graph:

. Altogether three intermediate datasets are needed between socket RR1 and
Recording.Process, so two additional datasets, Recorded.Msg.1.1 and
Recorded.Msg.1.2, are created between them.

. A data processor init.dp, corresponding to control node init, is created to hold

the interpretation of the initialization actions.

. There is also the need of a buffer to store the messages when the
record.process cannot put the messages into the device immediately. A

dataset Recorder.Buf is created.

. There is dataflow between the data processors N1.dp and record.process. An

intermediate dataset Temp.DS is created for this purpose.

. A data arc is created between device and RR3. This is because the other side

of RR3, the monitor driver, has to access the recording device to display the
flight data history.
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The adjusted data graph is shown in Fig. D.19.
D.6 The Environment

So far, we have not discussed the behavior of the environment, which is
supposed to provide stimuli for, and receive response from, the system. In this
example, majority of the responses are to be directed to the VDU and recorder, which
are considered part of the system. The only response heading towards the
environment are the warning signals during hazardous conditions. The modules of

interest in the environment (Fig. 6.2) are enumerated as follows:

1. WarningDevice —
The primitive of interest in this module are three datasets, representing the
three individual waming devices, for smoke, fuel problems, and engine
problems. These three datasets are named Smoke.Warning, Fuel.Warning,
and Eng.Warning. When a token is passed to the sole control node, N1, in
this module, the appropriate warning device will be turned -"on" or "off",
depending on the source of the token.

2. EngineSensors
The data graph of this module consists of four datasets, representing passive
sensor readings to be monitored. The datasets are named Sensorl, Sensor2,

Sensor3, and Sensord.

3. FuelTank
The data graph of this module consists of a single dataset, Tanks, representing
a sequence of fuel tank readings.

4, SmokeDetector
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Fig. D.19: Complete Data Graph for Recorder
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The control graph of this module consists of two nodes, one generates a
"smoke" interrupt at a certain time, and the other one generates a "no-smoke"
interrupt after a certain delay. The timing of these interrupts are made up by

the human designer for the sake of simulation.

5. Clock
The lone primitive of interest in this module is the dataset TIMER, which

holds the current time.

6. KeyBoard
A sequence of user commands is fabricated in the Keyboard module. The
data domain primitive of interest in this module is the dataset S.INPUT, a
buffer holding a faked user command if existed. This dataset is accessed by
the data processor IFK.dec in MON.DRIVER.

It is human designer’s responsibility to make up data in the environment in order to

simulate the model.
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APPENDIX E

Simulation of the Aircraft Monitor GMB

In this appendix, we present a simulation transcript of the behavioral model of
the aircraft monitor system. The purpose of this trace is to illustrate that the
behavioral models synthesized by the design assistant indeed follow the requirements.
Without a more formal approach to prove the correctness of the synthesis product, this

simulation run is the best approach available.

The input to the simulator is an object representing the module UNIVERSE
(Fig. 6.1), which consists of a hierarchy of sub-modules. Each of the childless sub-
modules contains a GMB object, which in turn consists of a control graph object and a
data graph object. These graph objects, as illustrated in Appendix D, are what the

design synthesizer produces.

This run is only a ten-second simulation of the aircraft monitor, but it is
sufficient to test the various conditions mentioned in the requirements. The features
we test and their supposed behavior as mentioned in the requirements are enumerated

as follows:

. A "smoke-test" at the very beginning:
The requirement states:

In order to test the detectors it is possible for
the system to act as if smoke had been detected,
i.e. a ‘smoke’ interrupt will be generated followed
by a ‘no-smoke’ interrupt. It is anticipated that
this test will be performed as part of the fiight
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preparation sequence but could be repeated at any
time,

This test invokes the node /UNIVERSE/SYSTEM/MONITOR/-
ASYN.MON/SMOKE, which in turn set the dataset /UNIVERSE/-
ENVIRONMENT/WARNINGDEVICE/SMOKE.WARNING to “on'.
Right away, 2 ‘no-smoke’ signal is made up and the node /UNIVERSE/-
SYSTEM/MONITOR/ASYN.MON/NO-SMOKE is invoked. Dataset
/UNIVERSE/ENVIRONMENT/WARNINGDEVICE/-
SMOKE.WARNING is then turned off.

Three out of range temperature readings on engine #2:
The requirement states:

The aircraft has 4 engines, each fitted with
temperature and pressure sensors. These sensors are
to be polled by the system at regular 1 second
intervals. All sensor readings are fed to dials, one
for each sensor. All readings are also tested to be
within a safe working range. After three
consecutive out of range readings a lamp,
corresponding to the sensor, is changed from green
to red, by the system, to warn the crew. .... Any
sensor which fails to respond to a poll sequence is
timed out and treated as if it had supplied an out
of range reading. Three consecutive time-outs cause
the warning lamp to switch from green to red.

After 401 time units of the simulation, three bad temperature readings (one
out-of-range and two time-outs) are detected. As the count in dataset
/UNIVERSE/SYSTEM/MONITOR/SYN.MON/TEMP.COUNT  reaches
three, the node /UNIVERSE/SYSTEM/MONITOR/SYN.MON/BTR, which
represents a process that deals with bad temperatures, is invoked. It turns on
the warning device /UNIVERSE/ENVIRONMENT/WARNINGDEVICE/-
ENG.WARNING and also flashes a message on the VDU. As a result, the
control node /UNIVERSE/SYSTEM/VDU/FLASH is invoked. On the other
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hand, two bad pressure readings are also recorded from Engine #4, at the 401
and 501" units. However, since the count in /UNIVERSE/SYSTEM/-
MONITOR/SYN.MON/PRES.COUNT never reaches three, these two bad
readings are simply ignored, and the node /UNIVERSE/SYSTEM/-
MONITOR/SYN.MON/BTR never gets invoked.

Smoke detection at compartment #1:

The requirement states:

The aircraft 1is fitted with a number of smoke
detectors. Two types of interrupts can be generated
by the smoke detectors:

a. when smcke is first detected:

b. when smoke is subsequently no longer detected.
On receipt of any smoke detected interrupt the
system switches a smcke warning lamp from green to
red.

While out-of-range temperatures are being discovered, smoke is also detected
in compartment #1. Again, this hazardous condition initiates the node
/UNIVERSE/SYSTEM/MONITOR/ASYN.MON/SMOKE. After one and a
half seconds, when smoke is no longer detected, the node /UNIVERSE/-

SYSTEM/MONITOR/ASYN.MON/NO-SMOKE is invoked.

Out of range fuel reading
The requirement states:

The fuel tank is fitted with a sensor to provide
information on the quantity of fuel remaining. This
sensor 1s polled, by the system at 1 second
intervals. The readings are passed on to a dial.
The system switches a warning lamp from green to red
when only 10% of the full fuel load remains in the
tank.

Also after 4.2 seconds, the fuel tank capacity drops below the desired level.
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This condition will invoke the node /UNIVERSE/SYSTEM/MONITOR/-
SYN.MON/BFR, which, in turn, switches the dataset /UNIVERSE/-
ENVIRONMENT/WARNINGDEVICE/FUEL.WARNING to "on" and
flashes a message on the VDU. This out of range reading will persist for two

seconds.

Process the "DISPLAY" command

The requirement states:

The system supports a VDU and keyboard. The keyboard
can be wused to regquest that the VDU display new
sensor data (e.g. latest readings or a recent
history of readings) or certain wvalues calculated
from the data (e.g. rate of change of pressure, rate
of fuel consumption).

Execution of the "DISPLAY temperature 7" command means retrieving the
previous seven set of temperature readings from the recording device and
displaying them on the screen. This is indicated by the invocation of the node
/UNIVERSE/SYSTEM/MONITOR/MON.DRIVER/DD as well as the final
content of the dataset /UNIVERSE/SYSTEM/VDU/DEVICE, which includes

a history of engine temperature readings.

In this test run, various debugging features in the GMB simulator are used to prepare

the transcript. We put a simulation trace on selected control nodes and datasets. If a

control node is traced, each initiation and termination will be displayed in the

transcript. If a dataset is traced, each change of value will be displayed in the

transcript. We also put a breakpoint on the arc /UNIVERSE/SYSTEM/MONITOR/-

MON.DRIVER/AS9, the output arc of the shutdown process. The simulation will be

stopped as soon as a token is deposited on this arc. Upon this break, we put a node

termination breakpoint at the node /UNIVERSE/SYSTEM/RECORDER/RMT.A.

Once this break is encountered, we display all the datasets in the recorder and VDU to
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show all the happenings in this test run, Simulation is then aborted since we have

accomplished our goal, to demonstrate that the design indeed follows the

requirements.

Before we present the simulation transcript, some implementation conventions

and environmental assumptions are given:

1.

Time-outs for engine sensor reading is represented by the T value ( ), or

nil.
A warning lamp is turned to green if it is set to the value T, and red if nil.

Two datasets, /UNIVERSE/SYSTEM/MONITOR/SYN.MON/-
TEMP.COUNT and fUNIVERSE/SYSTEMfMONITOR/SYN.MON/-
PRES.COUNT are used to keep track of the current number of illegal
readings. The actual values of these two datasets are two lists. For example,
the i* number of the list in TEMP.COUNT indicates the number of

successive out-of-range temperature reading from the i** en gine.
Each simulation time unit is 0.01 second,
The absolute starting time of the simulation is at 13:59:58.

The data domain of the smoke detector is fabricated such that a ‘smoke’
interrupt is generated at the 440™ unit, while a ‘no-smoke’ interrupt is

generated 150 time units thereafter.

Since it is not stated in the requirements, we simply make up the range of valid
engine temperature to be 170 to 400, the range of valid engine pressures to be
70 to 90.

325



10.

11.

The datasets corresponding to the engine sensors are implemented as list of
number pairs. Each pair represents the temperature and pressure readings
from an engine at a specific second. The first number represents the

temperature while the second number indicates the pressure.

The datasets corresponding to the recording device and the display device are
implemented as lists. As a result, messages sent to these two devices will

simply be appended to the lists.

The minimum fuel level, as stated in the requirements, is 0.1 of the tank

capacity.

The rcquiremepts state that a human user may request a display of flight data
calculation, in addition to flight data history, on the VDU. Currently, in the
interpretation code of /UNIVERSE/SYSTEM/MONITOR/MON.DRIVER/-
DD.DP, the display of only flight data history is implemented. This restriction
does not affect the control flow of the system when simulating the model. It is
also straightforward to add a flight data calculation capability to the model,
simply by enhancing the interpretation code of DD.DP.

The simulation transcript is given as follows. In the transcript, the GMB simulation

commands entered are given in bold, following the prompt ">". Comments on the

simulation start with ";;;".

;:; St

art of transcript

> { display the initial states of salected datasets }

** DataSet /UNIVERSE/ENVIRCNMENT/ENGINESENSORS/SENSOR4 ->

{(330
(330
(330
(330
(330

TTy (330 77y (330 77y (330 77) (330 77y (330 77y (330 ™M)
Ty (330 77) (330 77y (330 77y (330 77) (330 77y (330 77
77y (330 77) (330 77) (330 77} (330 77) (330 77) {3306 77)
TTYy (330 77) (330 77) (330 77y (330 77) ({330 77y (330 77)
T7y (330 77y (330 77) (330 77y (330 77 {330 77y (330 ™D
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(330 77) (330 77) (330 77) (330 77) (330 77) (330 77) (330 77)
{330 77) (330 77) (330 70) (330 60) (330 60) (330 77) (330 77}
(330 77))

** DataSet /UNIVERSE/ENVIRONMENT/ENGINESENSORS/SENSOR3 ->

((280 88) (280 88) (280 88) (280 88) (280 88) (280 B8) (280 88)
{280 B88) (280 88) (280 88) (280 88) (280 88) (280 88) (280 88)
(280 88) (280 88) (280 88B) (280 88) (280 88) (280 88) (280 88)
{280 88) (280 88) (280 B88B) (280 88) (280 88) (280 88) (280 88)
{280 88) (280 88) (280 88) (280 88) (280 88) (280 88) (280 88)
{280 88) (280 88) (280 88) (280 88) (280 88) (280 88) (280 B88)
{280 88) (280 88) (280 8B) (280 88) (280 B8) (280 88) (280 88)
{280 88))

** DataSet /UNIVERSE/ENVIRONMENT/ENGINESENSORS/SENSOQRZ =->

{(280 77) (280 77) (280 77) (280 77) (280 77) (280 77) (280 77)
{280 77) (280 77) (280 77) (280 77) (280 77y (280 77y (280 77)
{280 77) (280 77) (280 77) (280 77y (280 77}y (280 77y (280 717)
(280 77) (280 77) (280 77) (280 77) (280 77) (280 77) (280 77
(280 77) (280 77) (280 77) (280 77y (280 77}y (280 77) (280 77)
(280 77) (280 77) (280 77) (280 77y (280 77y (280 77) (280 77)
(280 77) (280 77) (280 77) (280 77T () 79) ({) 77) (480 79)
(280 79))

** DataSet /UNIVERSE/ENVIRONMENT/ENGINESENSORS/SENSOR1 ->
{{300 77) (300 77) ({300 77) (300 77) (300 77) (300 77) (300 77)
{300 77) (300 77} (300 77) (300 77) (300 77) (300 77) (300 77)
(300 77) (300 77) (300 77) (300 77) (300 77) (300 77) (300 77
{300 77) (300 77) (300 77) (300 77y (300 77) (300 77) (300 77)
{300 77) (300 77) {300 77) (300 77) (300 77) (300 77) (300 77)
{300 77) (300 77) (300 77) (300 77) (300 77) (30C 77) (300 77)
{300 77) (300 77y (300 77) (300 77) (300 77) (300 77) (300 77)
{300 77))

** DataSet /UNIVERSE/ENVIRONMENT/FUELTANKS/TANK ->
(0.1 0.099 0.09%9 0.1 0.1 0,1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
0.10.10.,20.20.10.10.10.10.120.10.10.10.,10.1
0.10.120.10.120.120.10.106.10.10.120.120.10.10.1
6.1 0.1 0.09 0.09 0.1 0.1 0.101)

** DataSet /UNIVERSE/ENVIRONMENT/CLOCK/TIMER -> (13 59 58)
> { start simulation }

@RRARA Dataset /UNIVERSE/ENVIRONMENT/WARNINGDEVICE/SMOKE.WARNING
<== ()
R@REER Dataset /UNIVERSE/ENVIRONMENT/WARNINGDEVICE/ENG.WARNING
RRARAA Dataset /UNIVERSE/ENVIRONMENT/WARNINGDEVICE/FUEL.WARNING
<== ()
@RRRQ Dataset /UNIVERSE/ENVIRONMENT/KEYBOARD/S.INPUT <== "4
@R@ERR Dataset /UNIVERSE/SYSTEM/MONITCR/SYN.MON/PRES.COUNT
<== (0 0 0 0)
RRAER Dataset /UNIVERSE/SYSTEM/MONITOR/SYN.MON/PRES.BUF <== ()
@@RAR Dataset /UNIVERSE/SYSTEM/MONITOR/SYN,MON/TEMP,COUNT
<== (0 0 0 O _
@RRAR Dataset /UNIVERSE/SYSTEM/MONITOR/SYN.MON/TEMP.BUF <== {)
@@@ARA Dataset /UNIVERSE/SYSTEM/MONITOR/SYN.MON/FUEL.BUF <== ()
#@RE@Q@ Dataset /UNIVERSE/SYSTEM/MONITOR/MON,DRIVER/CMD <== ""
@R@@QA Dataset /UNIVERSE/SYSTEM/RECORDER/RECORDER.BUF <== ()
*Tnitiation -~ /UNIVERSE/ENVIRONMENT/KEYBCOARD/FETCH-INPUT at 0 units
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*Initiation - /UNIVERSE/SYSTEM/MONITOR/MON.DRIVER/INIT at 0 units
*Termination - /UNIVERSE/SYSTEM/MONITOR/MON.DRIVER/INIT at 0 units
*Tnitiation - /UNIVERSE/SYSTEM/RECORDER/INIT at 0 units
*Taermination - /UNIVERSE/SYSTEM/RECORDER/INIT at 1 units
*Initiation - /UNIVERSE/SYSTEM/VDU/DISPLAY at 1 units
*Termination - /UNIVERSE/SYSTEM/VDU/DISPLAY at 2 units
*Initiation - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/FRR at 100 units
*Initiation - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/ERR at 100 units
@QRRAE Dataset /UNIVERSE/SYSTEM/MONITOR/SYN.MON/FUEL.BUF <== 0.101
*Permination - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/FRR at 101 units
@REEE Dataset /UNIVERSE/SYSTEM/MONITOR/SYN.MON/TEMP.BUF

== (300 280 280 330)
BRRAEQ Dataset /UNIVERSE/SYSTEM/MONITOR/SYN.MON/PRES.BUF

== (77 79 98 77)
*Termination - /UNIVERSE/SYSTEM/MONITOR/SYN.MOMN/ERR at 101 units
*Initiation - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/NZ at 101 units
*Initiation - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/N1l at 101 units
*Initiation - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/N3 at 101 units
*Termination - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/N1 at 101 units
*Initiation - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/GFR at 101 units
AREREAR Dataset /UNIVERSE/SYSTEM/MONITOR/SYN.,MON/TEMP .CQUNT

== (0 0 0 Q)
*Termination - /UNIVERSE/SYSTEM/MONITOR/SYN.MCON/N2 at 102 units
@RERAR Dataset /UNIVERSE/SYSTEM/MONITOR/SYN.MON/PRES.COUNT

<== (0 0 1 0)
*Termination - /UNIVERSE/SYSTEM/MONITOR/SYN,MON/N3 at 102 units
*Termination - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/GFR at 102 units
*Initiation - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/GTR at 102 units
*Initiation - /UNIVERSE/SYSTEM/RECORDER/N1 at 102 units
*Initiation -~ /UNIVERSE/SYSTEM/MONITOR/SYN.MON/GPR at 102 units
*Termination - /UNIVERSE/SYSTEM/MONITCR/SYN.MON/GTR at 103 units
*Termination - /UNIVERSE/SYSTEM/RECORDER/N1 at 103 units
*Termination - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/GPR at 103 units
*Initiation - /UNIVERSE/SYSTEM/RECORDER/N1 at 103 units
*Initiation - /UNIVERSE/SYSTEM/RECORDER/NORMAL.REC at 103 units
*Termination ~ /UNIVERSE/SYSTEM/RECORDER/N1 at 104 units
*Termination - /UNIVERSE/SYSTEM/RECORDER/NORMAL.REC at 104 units
*Initiation - /UNIVERSE/SYSTEM/RECORDER/NORMAL.REC at 104 units
*Initiation - /UNIVERSE/SYSTEM/RECORDER/RMT.I at 104 units
*Termination - /UNIVERSE/SYSTEM/RECORDER/NORMAL.REC at 105 units
*Termination - /UNIVERSE/SYSTEM/RECORDER/RMT.I at 105 units
*Initiation - /UNIVERSE/SYSTEM/RECCRDER/RMT.A at 105 units
*Initiation - /UNIVERSE/SYSTEM/RECORDER/RMT.I at 105 units
*Termination - /UNIVERSE/SYSTEM/RECORDER/RMT.I at 106 units
@@QRRAQ Dataset /UNIVERSE/ENVIRONMENT/KEYBCARD/S.INPUT <== "smoke-test"
*Termination - /UNIVERSE/ENVIRONMENT/KEYBOARD/FETCH-INPUT at 120 units
*Initiation - /UNIVERSE/SYSTEM/MONITOR/MON.DRIVER/IFK.DEC at 120 units
*Initiation -~ /UNIVERSE/ENVIRONMENT/KEYBOARD/FETCH-INPUT at 120 units
*Termination - /UNIVERSE/SYSTEM/MONITOR/MON.DRIVER/IFK.DEC at 121 units
*Tnitiation - /UNIVERSE/SYSTEM/MONITOR/MON.DRIVER/IC.DEC at 121 units
*Termination - /UNIVERSE/SYSTEM/MONITOR/MON.DRIVER/IC.DEC at 121 units
*Initiation - /UNIVERSE/SYSTEM/MONITOR/MON.DRIVER/IFK.DEC at 121 units
*Termination - /UNIVERSE/SYSTEM/MONITOR/MCN.DRIVER/IFK.DEC at 122 units
*Tnitiation - /UNIVERSE/SYSTEM/MONITOR/MON.DRIVER/PC.DEC at 122 units
*Termination - /UNIVERSE/SYSTEM/MONITOR/MON.DRIVER/PC.DEC at 122 units
*Tnitiation - /UNIVERSE/SYSTEM/MONITOR/MON.DRIVER/PC at 122 units
@RERQA Dataset /UNIVERSE/SYSTEM/MONITOR/MON.DRIVER/CMD <== "smoke-test"
*Tarmination - /UNIVERSE/SYSTEM/MONITOR/MON.DRIVER/PC at 123 units
*Initiation - /UNIVERSE/SYSTEM/RECORDER/N1 at 123 units
*Initiation - /UNIVERSE/SYSTEM/MCONITOR/MON.DRIVER/N2 at 123 units
*Terminaticn - /UNIVERSE/SYSTEM/RECORDER/N1 at 124 units
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*Termination - /UNIVERSE/SYSTEM/MONITOR/MON.DRIVER/N2 at 124 units
*Initiation - /UNIVERSE/SYSTEM/MONITOR/MON.DRIVER/ST at 124 units
*Initiation - /UNIVERSE/SYSTEM/RECORDER/RE(Q.BUFFERED at 124 units
*Termination - /UNIVERSE/SYSTEM/RECORDER/RMT.A at 125 units
*Termination - /UNIVERSE/SYSTEM/MONITOR/MON.DRIVER/ST at 125 units
@ERRE Dataset /UNIVERSE/SYSTEM/RECORDER/RECCORDER.BUF

== ({"Command —- smoke-test at 13:59:59"})
*Termination - /UNIVERSE/SYSTEM/RECORDER/REQ.BUFFERED at 125 units
*Initiation - /UNIVERSE/SYSTEM/MONITOR/ASYN.MON/SMOKE at 125 units
*Initiation - /UNIVERSE/SYSTEM/MONITQOR/MON.DRIVER/N3 at 125 units
*Initiation - /UNIVERSE/SYSTEM/RECORDER/RMT.A at 125 units
*Termination - /UNIVERSE/SYSTEM/MONITOR/ASYN.MON/SMOKE at 126 units
*Initiation - /UNIVERSE/SYSTEM/VDU/FLASH at 126 units
*Initiation - /UNIVERSE/SYSTEM/RECORDER/N1 at 126 units
BREE{E Dataset /UNIVERSE/ENVIRONMENT/WARNINGDEVICE/SMOKE,WARNING <== #T
*Termination - /UNIVERSE/SYSTEM/VDU/FLASH at 127 units
*Termination - /UNIVERSE/SYSTEM/RECORDER/N1 at 127 units
*Initiation - /UNIVERSE/SYSTEM/RECORDER/BUF.REQ.PROCEED at 127 units
RRREAR Dataset /UNIVERSE/SYSTEM/RECORDER/RECORDER.BUF <== ()
*Initiation - /UNIVERSE/SYSTEM/RECORDER/N1 at 127 units
*Termination - /UNIVERSE/SYSTEM/RECORDER/BUF.REQ.PROCEED at 128 units
*Termination - /UNIVERSE/SYSTEM/RECORDER/N1 at 128 units
*Initiation - /UNIVERSE/SYSTEM/RECORDER/RMT.I at 128 units
*Initiation - /UNIVERSE/SYSTEM/RECORDER/BUF.REQ.PROCEED at 128 units
@RREQR Dataset /UNIVERSE/SYSTEM/RECORDER/RECORDER.BUF <== ()
*Initjiation - /UNIVERSE/SYSTEM/RECORDER/N1 at 128 units
*Termination - /UNIVERSE/SYSTEM/RECORDER/RMT.I at 129 units
*Termination - /UNIVERSE/SYSTEM/RECORDER/BUF.REQ.PROCEED at 129 units
*Termination - /UNIVERSE/SYSTEM/RECORDER/N1 at 129 units
*Initiation - /UNIVERSE/SYSTEM/RECORDER/N1 at 129 units
*Initiation - /UMIVERSE/SYSTEM/RECORDER/BUF.REQ.PROCEED at 129 units
@RRAQ@ Dataset /UNIVERSE/SYSTEM/RECORDER/RECORDER.BUF <== ()
*Initiation - /UNIVERSE/SYSTEM/RECORDER/RMT.T at 129 units
*Termination - /UNIVERSE/SYSTEM/RECORDER/N1 at 130 units
*Termination - /UNIVERSE/SYSTEM/RECORDER/BUF.REQ.PROCEED at 130 units
*Termination - /UNIVERSE/SYSTEM/RECORDER/RMT.I at 130 units
*Initiation - /UNIVERSE/SYSTEM/RECORDER/NORMAL,REC at 130 units
*Initiation - /UNIVERSE/SYSTEM/RECORDER/RMT.I at 130 units
*Termination - /UNIVERSE/SYSTEM/RECORDER/NORMAL.REC at 131 units
*Termination - /UNIVERSE/SYSTEM/RECORDER/RMT.I at 131 units
*Initiation - /UNIVERSE/SYSTEM/RECORDER/RMT.I at 131 units
*Termination - /UNIVERSE/SYSTEM/RECORDER/RMT.I at 132 units
*Termination - /UNIVERSE/SYSTEM/RECORDER/RMT.A at 145 units
*Initiation - /UNIVERSE/SYSTEM/RECORDER/RMT.A at 145 units
*Termination - /UNIVERSE/SYSTEM/RECORDER/RMT.A at 165 units
*Initiation - /UNIVERSE/SYSTEM/RECORDER/RMT.A at 165 units
*Termination - /UNIVERSE/SYSTEM/MONITOR/MOM.DRIVER/N3 at 175 units
*Initiation - /UNIVERSE/SYSTEM/MONITOR/ASYN.MON/NO-SMOKE at 175 units
*Termination - /UNIVERSE/SYSTEM/MONITOR/ASYN.MON/NO-SMOKE at 176 uni-s
*Initiation - /UNIVERSE/SYSTEM/VDU/FLASH at 176 units
*Initiation - /UNIVERSE/SYSTEM/RECORDER/N1 at 176 units
@ARER Dataset /UNIVERSE/ENVIRONMENT/WARNINGDEVICE/SMOKE.WARNING

<== {(}
*Termination - /UNIVERSE/SYSTEM/VDU/FLASH at 177 units
*Termination - /UNIVERSE/SYSTEM/RECORDER/N1 at 177 units
*Initiation - /UNIVERSE/SYSTEM/RECORDER/NORMAL.REC at 177 units
*Termination - /UNIVERSE/SYSTEM/RECORDER/NORMAL.REC at 178 units
*Initiation - /UNIVERSE/SYSTEM/RECORDER/RMT.I at 178 units
*Termination - /UNIVERSE/SYSTEM/RECORDER/RMT.I at 17% units
*Termination - /UNIVERSE/SYSTEM/RECORDER/RMT.A at 185 units
*Initiation - /UNIVERSE/SYSTEM/RECORDER/RMT.A at 185 units
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*Initiation - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/FRR at 200 units
*Initiation - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/ERR at 200 units
A@RQAE Dataset /UNIVERSE/SYSTEM/MONITOR/SYN.MON/FUEL.BUF <== 0.1
*Termination - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/FRR at 201 units
AEREQR Dataset /UNIVERSE/SYSTEM/MONITOR/SYN.MON/TEMP .BUF

== (300 480 280 330)
@RRE@ Dataset /UNIVERSE/SYSTEM/MONITOR/SYN.MON/PRES.BUF

== (77 79 88 77)
*Termination - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/ERR at 201 units
*Initiation ~ /UNIVERSE/SYSTEM/MONITOR/SYN.MON/N2 at 201 units
*Initiation - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/N1 at 201 units
*Initiation - /UNIVERSE/SYSTEM/MONITOR/SYN.MCN/N3 at 201 units
*Termination - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/N1 at 201 units
*Initiation - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/GFR at 201 units
RAERRE Dataset /UNIVERSE/SYSTEM/MONITOR/SYN.MON/TEMP.COUNT

== (010 0)
*Termination - /UNIVERSE/SYSTEM/MONITOR/SYN ,MON/N2 at 202 units
@RRERR Dataset /UNIVERSE/SYSTEM/MONITOR/SYN.MON/PRES.COUNT

== {0 0 0 0)
*Termination - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/N3 at 202 units
*Termination - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/GFR at 202 units
*Initiation - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/GPR at 202 units
*Initiation - /UNIVERSE/SYSTEM/RECORDER/N1 at 202 units
*Initiation - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/GTR at 202 units
*Termination - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/GPR at 203 units
*Termination - /UNIVERSE/SYSTEM/RECORDER/N1 at 203 units
*Termination - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/GTR at 203 units
*Initiation - /UNIVERSE/SYSTEM/RECORDER/N1 at 203 units
*Initiation - /UNIVERSE/SYSTEM/RECORDER/NORMAL.REC at 203 units
*Termination - /UNIVERSE/SYSTEM/RECORDER/N1 at 204 units
*Termination - /UNIVERSE/SYSTEM/RECORDER/NORMAL.REC at 204 units
*Initiation - /UNIVERSE/SYSTEM/RECORDER/RMT.I at 204 units
*Initiation - /UNIVERSE/SYSTEM/RECORDER/NORMAL.REC at 204 units
*Termination - /UNIVERSE/SYSTEM/RECORDER/RMT.A at 205 units
*Termination - /UNIVERSE/SYSTEM/RECORDER/RMT.I at 205 units
*Termination - /UNIVERSE/SYSTEM/RECORDER/NORMAL.REC at 205 units
*Initiation - /UNIVERSE/SYSTEM/RECORDER/RMT.I at 205 units
*Initiation - /UNIVERSE/SYSTEM/RECORDER/RMT.A at 205 units
*Termination - /UNIVERSE/SYSTEM/RECORDER/RMT.I at 206 units
*Termination - /UNIVERSE/SYSTEM/RECORDER/RMT.A at 225 units
*Initiation - /UNIVERSE/SYSTEM/RECORDER/RMT.A at 225 units
@Q@RA Dataset /UNIVERSE/ENVIRONMENT/KEYBOARD/S.INPUT <== "cancel"
*Termination - /UNIVERSE/ENVIRONMENT/KEYBQARD/FETCH-INPUT at 240 units
*Initiation - /UNIVERSE/ENVIRONMENT/KEYBOARD/FETCH-INPUT at 240 units
*Initiation - /UNIVERSE/SYSTEM/MONITOR/MON.DRIVER/IFK.DEC at 240 units
*Termination - /UNIVERSE/SYSTEM/MONITOR/MON.DRIVER/IFK.DEC at 241 units
*Initiation - /UNIVERSE/SYSTEM/MONITOR/MON.DRIVER/SF.DEC at 241 units
*Tarmination - /UNIVERSE/SYSTEM/MCNITOR/MON.DRIVER/SF.DEC at 241 units
*Initiation - /UNIVERSE/SYSTEM/MONITOR/MON.DRIVER/SF at 241 units
*Termination - /UNIVERSE/SYSTEM/MONITOR/MON.DRIVER/SF at 242 units
*Tnitiation -~ /UNIVERSE/SYSTEM/RECORDER/N1 at 242 units
*Tarmination - JUNIVERSE/SYSTEM/RECORDER/N1 at 243 units
AREER Dataset /UNIVERSE/ENVIRONMENT/WARNINGDEVICE/FUEL,WARNING

= ()
@RAERR Dataset /UNIVERSE/ENVIRONMENT/WARNINGDEVICE/ENG,WARNING

== ()
*Initiation - /UNIVERSE/SYSTEM/RECORDER/NORMAL.REC at 243 units
*Termination - /UNIVERSE/SYSTEM/RECCRDER/NORMAL.REC at 244 units
*Initiation - /UNIVERSE/SYSTEM/RECORDER/RMT.I at 244 units
*Termination - /UNIVERSE/SYSTEM/RECORDER/RMT.A at 245 units
*Termination - /UNIVERSE/SYSTEM/RECORDER/RMT.I at 245 units
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*Initiation - /UNIVERSE/SYSTEM/RECCORDER/RMT.A at 245 units
*Termination - /UNIVERSE/SYSTEM/RECORDER/RMT.A at 265 units
*Initiation - /UNIVERSE/SYSTEM/RECORDER/RMT.A at 265 units
*Termination - /UNIVERSE/SYSTEM/RECORDER/RMT.A at 285 units
*Initiation - /UNIVERSE/SYSTEM/RECORDER/RMT.A at 285 units
*Tnitiation - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/ERR at 300 units
*Initiation ~ /UNIVERSE/SYSTEM/MONITOR/SYN.MON/FRR at 300 units
@RREAE Dataset /UNIVERSE/SYSTEM/MONITOR/SYN.MON/TEMP .BUF

== (300 () 280 330)
RARRQ@ Dataset /UNIVERSE/SYSTEM/MONITOR/SYN.MON/PRES.BUF

== (77 77 88 77)
*Termination - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/ERR at 301 units
R@ERA@ Dataset /UNIVERSE/SYSTEM/MONITOR/SYN.MON/FUEL.BUF <== 0.1
*Termination - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/FRR at 301 units
*Initiation - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/N1 at 301 units
*Initiation - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/N3 at 301 units
*Initiation - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/N2 at 301 units
*Termination - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/N1 at 301 units
*Initiation - /UNIVERSE/SYSTEM/MONITCR/SYN.MCN/GFR at 301 units
@ERRR Dataset /UNIVERSE/SYSTEM/MONITOR/SYN.MON/PRES.COUNT

== (0 0 0 0)
*Termination - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/N3 at 302 units
@@RAA@ Dataset /UNIVERSE/SYSTEM/MONITOR/SYN.MON/TEMP , COUNT

== (0 2 0 0)
*Termination - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/N2 at 302 units
*Termination - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/GFR at 302 units
*Tnitiation - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/GTR at 302 units
*Initiation - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/GPR at 302 units
*Tnitiation - /UNIVERSE/SYSTEM/RECCRDER/N1 at 302 units
*Tarmination - /UNIVERSE/SYSTEM/MONITQOR/SYN.MON/GTR at 303 units
*Taermination - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/GPR at 303 units
*Termination - /UNIVERSE/SYSTEM/RECORDER/N1 at 303 units
*Initiation - /UNIVERSE/SYSTEM/RECCRDER/NORMAL.REC at 303 units
*Initiation - /UNIVERSE/SYSTEM/RECORDER/N1 at 303 units
*Tarmination - /UNIVERSE/SYSTEM/RECORDER/NORMAL.REC at 304 units
*Termination - /UNIVERSE/SYSTEM/RECORDER/N1 at 304 units
*Initiation - /UNIVERSE/SYSTEM/RECORDER/NORMAL.REC at 304 units
*Initiation - /UNIVERSE/SYSTEM/RECORDER/RMT,I at 304 units
*Tarmination - /UNIVERSE/SYSTEM/RECORDER/RMT.A at 305 units
*Tarmination - /UNIVERSE/SYSTEM/RECORDER/NCRMAL_REC at 305 units
*Termination - /UNIVERSE/SYSTEM/RECCRDER/RMT.I at 305 units
*Tnitiation - /UNIVERSE/SYSTEM/RECORDER/RMT.A at 305 units
*Tnitiation - /UNIVERSE/SYSTEM/RECORDER/RMT.I at 305 units
*Termination - /UNIVERSE/SYSTEM/RECCRDER/RMT.I at 306 units
*Termination - /UNIVERSE/SYSTEM/RECORDER/RMT.A at 325 units
*Initiation - /UNIVERSE/SYSTEM/RECORDER/RMT.A at 325 units
*Paermination - /UNIVERSE/SYSTEM/RECCRDER/RMT.A at 345 units
@@ARA Dataset /UNIVERSE/ENVIRONMENT/KEYBOARD/S.INPUT <== "
*Termination - /UNIVERSE/ENVIRONMENT/KEYBOARD/FETCH-INPUT at 360

units

*Initiation - /UNIVERSE/ENVIRONMENT/KEYBOARD/FETCH-INPUT at 360 units

*Initiation - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/FRR at 400 units
*Initiation - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/ERR at 400 units
@AEER Dataset /UNIVERSE/SYSTEM/MONITOR/SYN,MON/FUEL.BUF <== 0.09
*Termination - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/FRR at 401 units
@ERA@E@ Dataset /UNIVERSE/SYSTEM/MONITOR/SYN.MON/TEMP.BUF

== (300 ()} 280 330)
@RERA Dataset /UNIVERSE/SYSTEM/MONITOR/SYN.MON/PRES.BUF

== (77 79 88 60)
*Termination - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/ERR at 401 units
*Tnitiation - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/N1 at 401 units
kInitiation - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/N3 at 401 units
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*Initiation - /UNIVERSE/SYSTEM/MCONITCR/SYN.MON/N2 at 401 units
*Termination - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/N1 at 401 units
*Initiation - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/BFR at 401 units
@RRRR Dataset /UNIVERSE/SYSTEM/MONITOR/SYN.MON/PRES.COUNT

== (0 0 0 1)
*Termination - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/N3 at 402 units
@@QAR Dataset /UNIVERSE/SYSTEM/MONITOR/SYN.MON/TEMP.COUNT

m= (0 3 0 Q)
*Termination - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/N2 at 402 units
*Termination - JUNIVERSE/SYSTEM/MONITOR/SYN.MON/BFR at 402 units
*Tnitiation - /UNIVERSE/SYSTEM/RECORDER/N1 at 402 units
*Initiation - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/BTR at 402 units
*Initiation - /UNIVERSE/SYSTEM/VDU/FLASH at 402 units
*Initiation - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/GPR at 402 units
*Termination - /UNIVERSE/SYSTEM/RECORDER/N1 at 403 units
*Termination - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/BTR at 403 units
*Termination - /UNIVERSE/SYSTEM/VDU/FLASH at 403 units
@@REQ@ Dataset /UNIVERSE/ENVIRONMENT/WARNINGDEVICE/FUEL.WARNING <== #T
*Termination - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/GPR at 403 units
*Tnitiation - /UNIVERSE/SYSTEM/RECORDER/N1 at 403 units
*Tnitiation - /UNIVERSE/SYSTEM/VDU/FLASH at 403 units
*Initiation - /UNIVERSE/SYSTEM/RECORDER/NORMAL.REC at 403 units
*Termination - /UNIVERSE/SYSTEM/RECORDER/N1 at 404 units
*Termination - /UNIVERSE/SYSTEM/VDU/FLASH at 404 units
BRRRR Dataset /UNIVERSE/ENVIRONMENT/WARNINGDEVICE/ENG.WARNING <== #T
*Termination - /UNIVERSE/SYSTEM/RECORDER/NORMAL.REC at 404 units
*Initiation - /UNIVERSE/SYSTEM/RECORDER/NORMAL.REC at 404 units
*Initiation - /UNIVERSE/SYSTEM/RECORDER/RMT.I at 404 units
*Termination - /UNIVERSE/SYSTEM/RECORDER/NORMAL.REC at 405 units
*Taermination - /UNIVERSE/SYSTEM/RECORDER/RMT.I at 405 units
*Initiation - /UNIVERSE/SYSTEM/RECORDER/RMT.A at 405 units
*Initiation - /UNIVERSE/SYSTEM/RECORDER/RMT.I at 405 units
*Termination - /UNIVERSE/SYSTEM/RECORDER/RMT.I at 406 units
*Termination - /UNIVERSE/SYSTEM/RECORDER/RMT.A at 425 units
*Initiation -~ /UNIVERSE/SYSTEM/RECORDER/RMT.A at 425 units
*Initiation - /UNIVERSE/SYSTEM/MONITOR/ASYN.MON/SMOKE at 440 units
*Termination - /UNIVERSE/SYSTEM/MONITOR/ASYN.MON/SMOKE at 441 units
*Initiation - /UNIVERSE/SYSTEM/RECORDER/N1 at 441 units
*Initiation - /UNIVERSE/SYSTEM/VDU/FLASH at 441 units
@REE@ Dataset /UNIVERSE/ENVIRONMENT/WARNINGDEVICE/SMOKE.WARNING <== #T
*Termination - /UNIVERSE/SYSTEM/RECORDER/N1 at 442 units
*Termination - /UNIVERSE/SYSTEM/VDU/FLASH at 442 units
*Initiation - /UNIVERSE/SYSTEM/RECORDER/NORMAL.REC at 442 units
*Termination - /UNIVERSE/SYSTEM/RECORDER/NORMAL.REC at 443 units
*Initiation - /UNIVERSE/SYSTEM/RECORDER/RMT.I at 443 units
*Termination - /UNIVERSE/SYSTEM/RECORDER/RMT.I at 444 units
*Termination - /UNIVERSE/SYSTEM/RECORDER/RMT.A at 445 units
*Initiation - /UNIVERSE/SYSTEM/RECORDER/RMT.A at 445 units
*Terminaticon - /UNIVERSE/SYSTEM/RECORDER/RMT.2 at 465 units
AGEER Dataset /UNIVERSE/ENVIRONMENT/KEYBOARD/S,INPUT <=« ""
*Termination - /UNIVERSE/ENVIRONMENT/KEYBOARD/FETCH-INPUT at 480 units
*Initiation - /UNIVERSE/ENVIRONMENT/KEYBOARD/FETCH-INPUT at 480 units
*Initiation - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/ERR at 500 units
*Initiation - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/FRR at 500 units
Q@QRAQR Dataset /UNIVERSE/SYSTEM/MONITOR/SYN.MON/TEMP B BUF

<== (300 280 280 330)
@R@QR@ Dataset /UNIVERSE/SYSTEM/MONITOR/SYN.MON/PRES.BUF

== (77 77 88 60)
*Termination - /UNIVERSE/SYSTEM/MONITCR/SYN.MON/ERR at 501 units
#@QA@Q Dataset /UNIVERSE/SYSTEM/MONITOR/SYN.MON/FUEL.BUF <== 0.09
*Termination - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/FRR at 501 units
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*Initiation - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/N3 at S01 units
*Initiation - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/N2 at 501 units
*Initiation -~ /UNIVERSE/SYSTEM/MONITOR/SYN.MON/N1 at 501 units
*Termination - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/N1 at 501 units
*Tnitiation - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/BFR at 501 units
REREE Dataset /UNIVERSE/SYSTEM/MONITOR/SYN.MON/PRES.COUNT

= (0 0 0 2)
*Termination - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/N3 at 502 units
@QRERA Dataset /UNIVERSE/SYSTEM/MONITOR/SYN.MON/TEMP.COUNT

== (0 0 0 Q)
*Termination - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/N2 at 502 units
*Terminaticen - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/BFR at 502 units
*Initiation - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/GPR at 502 units
*Initiation ~ /UNIVERSE/SYSTEM/VDU/FLASH at 502 units
*Tnitiation - /UNIVERSE/SYSTEM/RECORDER/N1 at S02 units
*Tnitiation - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/GTR at 502 units
*Termination - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/GPR at 503 units
*Termination - /UNIVERSE/SYSTEM/VDU/FLASH at 503 units
@REER Dataset /UNIVERSE/ENVIRONMENT/WARNINGDEVICE/FUEL.WARNING <== #T
*Termination - /UNIVERSE/SYSTEM/RECORDER/N1 at 503 units
*Termination - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/GTR at 503 units
*Initiation - /UNIVERSE/SYSTEM/RECORDER/NORMAL.REC at 503 units
*Initiation - /UNIVERSE/SYSTEM/RECORDER/N1 at 503 units
*Termination - /UNIVERSE/SYSTEM/RECORDER/NORMAL.REC at 504 units
*Termination - /UNIVERSE/SYSTEM/RECORDER/N1 at 504 units
*Initiation - /UNIVERSE/SYSTEM/RECORDER/RMT.I at 504 units
*Initiation - /UNIVERSE/SYSTEM/RECORDER/NORMAL.REC at 504 units
*Termination - /UNIVERSE/SYSTEM/RECORDER/RMT.I at 505 units
*Termination - /UNIVERSE/SYSTEM/RECORDER/NORMAL.REC at 505 units
*Initiation - /UNIVERSE/SYSTEM/RECCRDER/RMT.I at 505 units
*Initiation - /UNIVERSE/SYSTEM/RECORDER/RMT.A at 505 units
*Termination - /UNIVERSE/SYSTEM/RECORDER/RMT.I at 506 units
*Termination -~ /UNIVERSE/SYSTEM/RECORDER/RMT.A at 525 units
*Tnitiation - /UNIVERSE/SYSTEM/RECORDER/RMT.A at 525 units
*Termination — /UNIVERSE/SYSTEM/RECORDER/RMT.A at 545 units
*Initiation - /UNIVERSE/SYSTEM/MONITOR/ASYN.MON/NO-SMOKE at 590 units
*Termination - /UNIVERSE/SYSTEM/MONITOR/ASYN.MON/NO-SMOKE at 591 units
*Initiation - /UNIVERSE/SYSTEM/VDU/FLASH at 591 units
*Initiation - /UNIVERSE/SYSTEM/RECORDER/N1 at 591 units
*Termination - /UNIVERSE/SYSTEM/VDU/FLASH at 592 units
*Termination - /UNIVERSE/SYSTEM/RECORDER/N1 at 592 units
@RRER Dataset /UNIVERSE/ENVIRONMENT/WARNINGDEVICE/SMOKE.WARNING

<m== (}
*Initiation - /UNIVERSE/SYSTEM/RECORDER/NORMAL.REC at 592 units
*Tarmination - /UNIVERSE/SYSTEM/RECORDER/NORMAL.REC at 593 units
*Initiation - /UNIVERSE/SYSTEM/RECORDER/RMT.I at 593 units
*Termination - /UNIVERSE/SYSTEM/RECORDER/RMT.I at 594 units
*ITnitiation - /UNIVERSE/SYSTEM/RECORDER/RMT.A at 594 units
@ARRR Dataset /UNIVERSE/ENVIRONMENT/KEYBOARD/S.INPUT <== ""
*Termination - /UNIVERSE/ENVIRCNMENT/KEYBOARD/FETCH-INPUT at 600 units
*Initiation - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/ERR at 600 units
*Tnitiation - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/FRR at 600 units
*Tnitiation - /UNIVERSE/ENVIRONMENT/KEYBOARD/FETCH-INPUT at 600 units
@QERR Dataset /UNIVERSE/SYSTEM/MONITOR/SYN.MON/TEMP.BUF

== (300 280 280 330)
@@ERQR Dataset /UNIVERSE/SYSTEM/MONITOR/SYN,MON/PRES,BUF

== (77 77 88 70)
*Permination - /UNIVERSE/SYSTEM/MCNITOR/SYN.MON/ERR at 601 units
@@GRA Dataset /UNIVERSE/SYSTEM/MONITOR/SYN.MON/FUEL.BUF <== 0.1
*Tarmination - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/FRR at 601 units
*Initiation - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/N1 at 601 units
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*Initiation - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/N2 at 601 units
*Initiation - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/N3 at 601 units
*Tarmination - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/N1 at 601 units
*Initiation - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/GFR at 601 units
QREAA Dataset /UNIVERSE/SYSTEM/MONITCR/SYN.MON/TEMP.COUNT
== (0 0 0 O)
*Termination -~ /UNIVERSE/SYSTEM/MONITOR/SYN.MON/N2 at 602 units
@QRER Dataset /UNIVERSE/SYSTEM/MONITOR/SYN.MON/PRES.COUNT
= (0 0 0 0)
*Termination - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/N3 at 602 units
*Termination - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/GFR at 602 units
*Initiation - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/GTR at 602 units
*Initiation - /UNIVERSE/SYSTEM/MONITCR/SYN.MON/GPR at 602 units
*Initiation - /UNIVERSE/SYSTEM/RECORDER/N1 at 602 units
*Termination - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/GTR at 603 units
*Termination - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/GPR at 603 units
*Termination - /UNIVERSE/SYSTEM/RECORDER/N1 at 603 units
*Initiation - /UNIVERSE/SYSTEM/RECORDER/N1 at 603 units
*Initiation - /UNIVERSE/SYSTEM/RECORDER/REQ.BUFFERED at 603 units
*Termination - /UNIVERSE/SYSTEM/RECORDER/N1 at 604 units
BREER Dataset /UNIVERSE/SYSTEM/RECORDER/RECORDER.BUF
== {("Fuel Tank: Fuel Reading 0.1 at 14:0:4™))
*Termination - /UNIVERSE/SYSTEM/RECORDER/REQ.BUFFERED at 604 units
*Initiation - /UNIVERSE/SYSTEM/RECORDER/REQ.BUFFERED at 604 units
BRREAE Dataset /UNIVERSE/SYSTEM/RECORDER/RECORDER.BUF
== {("Engine #4: Pressure Reading 70 at 14:0:4"
"Engine #3: Pressure Reading 88 at 14:0:4"
"Engine #2: Pressure Reading 77 at 14:0:4"
"Engine #l: Pressure Reading 77 at 14:0:4"
"Engine #4: Temperature Reading 330 at 14:0:4"
"Engine #3: Temperature Reading 280 at 14:0:4"
"Engine #2:; Temperature Reading 280 at 14:0:4"
"Engine #1: Temperature Reading 300 at 14:0:4™)
("Fuel Tank: Fuel Reading 0.1 at 14:0:4™))
*Termination - /UNIVERSE/SYSTEM/RECORDER/REQ.BUFFERED at 605 units
*Termination - /UNIVERSE/SYSTEM/RECORDER/RMT.A at 614 units
*Initiation - /UNIVERSE/SYSTEM/RECORDER/N1 at 615 units
*Termination - /UNIVERSE/SYSTEM/RECORDER/N1 at 616 units
*Initiation - /UNIVERSE/SYSTEM/RECORDER/N1 at 616 units
*Initiation - /UNIVERSE/SYSTEM/RECORDER/BUF.REQ.PROCEED at 616 units
@@QAEQ@ Dataset /UNIVERSE/SYSTEM/RECORDER/RECORDER.BUF <== ()
*Termination - /UNIVERSE/SYSTEM/RECORDER/N1 at 617 units
*Termination - /UNIVERSE/SYSTEM/RECCRDER/BUF.REQ.PROCEED at 617 units
*Initiation - /UNIVERSE/SYSTEM/RECQRDER/BUF .REQ.PRQCEED at 617 units
@RAEQ@ Dataset /UNIVERSE/SYSTEM/RECORDER/RECORDER.BUF <== ()
*Initiation - /UNIVERSE/SYSTEM/RECORDER/N1 at 617 units
*Initiation - /UNIVERSE/SYSTEM/RECORDER/RMT.I at 617 units
*Termination - /UNIVERSE/SYSTEM/RECORDER/BUF.REQ.PROCEED at 618 units
*Termination - /UNIVERSE/SYSTEM/RECORDER/N1 at 618 units
*Termination - /UNIVERSE/SYSTEM/RECORDER/RMT.I at 618 units
*Initiation - /UNIVERSE/SYSTEM/RECORDER/RMT.I at 618 units
*Initiation -~ /UNIVERSE/SYSTEM/RECORDER/BUF,REQ.PROCEED at 618 units
B@REE Dataset /UNIVERSE/SYSTEM/RECORDER/RECORDER.BUF <== ()
*Tnitiation - /UNIVERSE/SYSTEM/RECORDER/RMT.A at 618 units
*Termination - /UNIVERSE/SYSTEM/RECORDER/RMT.I at 619 units
*Termination - /UNIVERSE/SYSTEM/RECORDER/BUF.REQ.PROCEED at 61% units
*Tnitiation - /UNIVERSE/SYSTEM/RECORDER/RMT.I at 619 units
*Paermination - /UNIVERSE/SYSTEM/RECORDER/RMT.I at 620 units
*Termination - /UNIVERSE/SYSTEM/RECORDER/RMT.A at 638 units
*Tnitiation - /UNIVERSE/SYSTEM/RECORDER/RMT.A at 638 units
*Termination - /UNIVERSE/SYSTEM/RECCRDER/RMT.A at 658 units
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*Initiation - /UNIVERSE/SYSTEM/RECORDER/RMT.A at 658 units
*Termination - /UNIVERSE/SYSTEM/RECORDER/RMT.A at 78 units
*Initiation - /UNIVERSE/SYSTEM/MONITCOR/SYN.MON/ERR at 700 units
*Initiation - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/FRR at 700 units
A@RRE Dataset /UNIVERSE/SYSTEM/MONITOR/SYN.MON/TEMP K BUF

== (300 280 280 330)
@@REQ Dataset /UNIVERSE/SYSTEM/MONITOR/SYN.MON/PRES.BUF

== (77 77 88 77)
*Termination - /UNIVERSE/SYSTEM/MONITCR/SYN.MON/ERR at 701 units
@ERRR Dataset /UNIVERSE/SYSTEM/MONITOR/SYN.MON/FUEL,BUF <== (.1
*Termination - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/FRR at 701 units
*Initiation - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/N3 at 701 units
*Initiation - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/N1 at 701 units
*Initiation - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/N2 at 701 units
*Termination - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/N1 at 701 units
*Initiation - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/GFR at 701 units
BREEA@ Dataset /UNIVERSE/SYSTEM/MONITOR/SYN.MON/PRES.CQUNT

= (0 00O
*Termination -~ /UNIVERSE/SYSTEM/MONITOR/SYN.MON/N3 at 702 units
QERER Dataset /UNIVERSE/SYSTEM/MONITOR/SYN.MON/TEMP L COUNT

= (0 0 0 O
*Termination - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/N2 at 702 units
*Termination - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/GFR at 702 units
*Initiation - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/GPR at 702 units
*Initiation - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/GTR at 702 units
*Injitiation - /UNIVERSE/SYSTEM/RECORDER/N1 at 702 units
*Termination - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/GPR at 703 units
*Termination - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/GTR at 703 units
*Termination - /UNIVERSE/SYSTEM/RECORDER/N1 at 703 units
*Initiation - /UNIVERSE/SYSTEM/RECORDER/NORMAL.REC at 703 units
*Initiation - /UNIVERSE/SYSTEM/RECORDER/N1 at 703 units
*Termination - /UNIVERSE/SYSTEM/RECORDER/NORMAL .REC at 704 units
*Termination - /UNIVERSE/SYSTEM/RECORDER/N1 at 704 units
*Initiation - /UNIVERSE/SYSTEM/RECORDER/RMT.I at 704 units
*Initiation - /UNIVERSE/SYSTEM/RECORDER/NORMAL.REC at 704 units
*Termination - /UNIVERSE/SYSTEM/RECORDER/RMT.I at 705 units
*Tarmination - /UNIVERSE/SYSTEM/RECORDER/NORMAL.REC at 705 units
*Initiation - /UNIVERSE/SYSTEM/RECORDER/RMT.A at 705 units
*Initiation - /UNIVERSE/SYSTEM/RECORDER/RMT.I at 705 units
*Termination =~ /UNIVERSE/SYSTEM/RECORDER/RMT.I at 706 units
@EERA@ Dataset /UNIVERSE/ENVIRONMENT/KEYBOARD/S.INPUT <== "cancel”
*Termination - /UNIVERSE/ENVIRONMENT/KEYBOARD/FETCH-INPUT at 720 units
*Initiation - /UNIVERSE/ENVIRCNMENT/KEYBOARD/FETCH-INPUT at 720 units
*Tnitiation - /UNIVERSE/SYSTEM/MONITOR/MON.DRIVER/IFK.DEC at 720 units
*Termination - /UNIVERSE/SYSTEM/MONITQOR/MON.DRIVER/IFK.DEC at 721 units
*Initiation - /UNIVERSE/SYSTEM/MONITOR/MON.DRIVER/SF.DEC at 721 units
*Termination - /UNIVERSE/SYSTEM/MONITOR/MON.DRIVER/SF.DEC at 721 units
*Initiation - /UNIVERSE/SYSTEM/MONITOR/MON.DRIVER/SF at 721 units
*Termination - /UNIVERSE/SYSTEM/MONITOR/MCN.DRIVER/SF at 722 units
*Initiation - /UNIVERSE/SYSTEM/RECORDER/N1 at 722 units
A@REA@ Dataset /UNIVERSE/ENVIRONMENT/WARNINGDEVICE/FUEL.WARNING

<== {})
@@@EA@ Dataset /UNIVERSE/ENVIRONMENT/WARNINGDEVICE/ENG.WARNING

== {)
*Termination - /UNIVERSE/SYSTEM/RECORDER/N1 at 723 units
*Initiation - /UNIVERSE/SYSTEM/RECORDER/REQ.BUFFERED at 723 units
R@E@RA@ Dataset /UNIVERSE/SYSTEM/RECORDER/RECORDER.BUF

== (("Command -- CANCEL at 14:0:5"))
*Parmination - /UNIVERSE/SYSTEM/RECORDER/REQ.BUFFERED at 724 units
*Termination - /UNIVERSE/SYSTEM/RECORDER/RMT.A at 725 units
*Tnitiation - /UNIVERSE/SYSTEM/RECCRDER/RMT.A at 725 units
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*Initiation - /UNIVERSE/SYSTEM/RECORDER/N1 at 726 units
*Termination - /UNIVERSE/SYSTEM/RECORDER/N1 at 727 units
*Initiation ~ /UNIVERSE/SYSTEM/RECORDER/N1 at 727 units
*Initiation - /UNIVERSE/SYSTEM/RECORDER/BUF.REQ.PROCEED at 727 units
@@ERA@ Dataset /UNIVERSE/SYSTEM/RECORDER/RECORDER.BUF <== {)
*Termination — /UNIVERSE/SYSTEM/RECORDER/N1 at 728 units
*Termination - /UNIVERSE/SYSTEM/RECORDER/BUF.REQ.PROCEED at 728 units
*Initiation - /UNIVERSE/SYSTEM/RECORDER/N1 at 728 units
*Initiation - /UNIVERSE/SYSTEM/RECCRDER/BUF.REQ.PROCEED at 728 units
@EEEQ Dataset /UNIVERSE/SYSTEM/RECORDER/RECORDER.BUF <== ()
*Initiation - /UNIVERSE/SYSTEM/RECORDER/RMT.I at 728 units
*Termination - /UNIVERSE/SYSTEM/RECORDER/N1 at 729 units
*Termination - /UNIVERSE/SYSTEM/RECORDER/BUF.REQ.PROCEED at 729 units
*Termination - /UNIVERSE/SYSTEM/RECORDER/RMT.I at 729 units
*Initiation - /UNIVERSE/SYSTEM/RECORDER/BUF.REQ.PROCEED at 729 units
AQRARR Dataset /UNIVERSE/SYSTEM/RECORDER/RECORDER.BUF <== ()
*Initiation - /UNIVERSE/SYSTEM/RECORDER/RMT.I at 729 units
*Termination - /UNIVERSE/SYSTEM/RECORDER/BUF.REQ.PROCEED at 730 units
*Termination - /UNIVERSE/SYSTEM/RECORDER/RMT.I at 730 units
*Initiation - /UNIVERSE/SYSTEM/RECORDER/RMT.I at 730 units
*Termination - /UNIVERSE/SYSTEM/RECORDER/RMT.I at 731 units
*Termination - /UNIVERSE/SYSTEM/RECORDER/RMT.A at 745 units
*Initiation - /UNIVERSE/SYSTEM/RECORDER/RMT.,A at 745 units
*Termination - /UNIVERSE/SYSTEM/RECORDER/RMT.A at 765 units
*Initiation - /UNIVERSE/SYSTEM/RECORDER/RMT.A at 765 units
*Termination -~ /UNIVERSE/SYSTEM/RECORDER/RMT.A at 785 units
*Initiation - /UNIVERSE/SYSTEM/RECORDER/RMT.A at 785 units
*Initiation - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/FRR at 800 units
*Initiation - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/ERR at 800 units
@@RRA Dataset /UNIVERSE/SYSTEM/MONITOR/SYN.MON/FUEL.BUF <== (.1
*Termination - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/FRR at 801 units
@@RRA Dataset /UNIVERSE/SYSTEM/MONITOR/SYN.MON/TEMP . BUF

== (300 280 280 330)
@QARRA Dataset /UNIVERSE/SYSTEM/MONITOR/SYN.MON/PRES.BUF

== (77 77 88 7T}
*Termination - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/ERR at 801 units
*Initiation - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/N3 at 801 units
*Initiation - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/N1l at 801 units
*Initiation - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/N2 at 801 units
*Termination - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/N1 at 801 units
*Initiation - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/GFR at 801 units
@ERRA@ Dataset /UNIVERSE/SYSTEM/MONITOR/SYN.MON/PRES.COUNT

<== (0 0 0 0)

*Termination - /UNIVERSE/SYSTEM/MONITOR/SYN.MCN/N3 at 802 units
@@RAQ Dataset /UNIVERSE/SYSTEM/MONITOR/SYN.MON/TEMP.COUNT

== (0 00 O)
*Termination - /UNIVERSE/SYSTEM/MONITOR/SYN.MCON/N2 at 802 units
*Termination - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/GFR at 802 units
*Initiation - /UNIVERSE/SYSTEM/RECORDER/N1 at 802 units
*Initiation - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/GPR at 802 units
*Initiation - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/GTR at 802 units
*Termination - /UNIVERSE/SYSTEM/RECCRDER/N1 at 803 units
*Termination - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/GPR at 803 units
*Termination - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/GTR at 803 units
*Initiation - /UNIVERSE/SYSTEM/RECORDER/N1l at 803 units
*Initiation - /UNIVERSE/SYSTEM/RECORDER/NCRMAL.REC at 803 units
*Termination - /UNIVERSE/SYSTEM/RECORDER/N1 at 804 units
*Termination - /UNIVERSE/SYSTEM/RECORDER/NORMAL.REC at 804 units
*Initiation - /UNIVERSE/SYSTEM/RECORDER/NORMAL.REC at 804 units
*Tnitiation - /UNIVERSE/SYSTEM/RECORDER/RMT.I at 804 units
*Termination - /UNIVERSE/SYSTEM/RECORDER/RMT.A at 805 units
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*Termination - /UNIVERSE/SYSTEM/RECORDER/NORMAL.REC at 805 units
*Termination - /UNIVERSE/SYSTEM/RECORDER/RMT.I at 805 units
*Initiation - /UNIVERSE/SYSTEM/RECORDER/RMT.I at 805 units
*Initiation - /UNIVERSE/SYSTEM/RECORDER/RMT.A at 805 units
*Termination - /UNIVERSE/SYSTEM/RECORDER/RMT.I at 806 units
*Termination - /UNIVERSE/SYSTEM/RECORDER/RMT.A at 825 units
*Initiation - /UNIVERSE/SYSTEM/RECORDER/RMT.A at 825 units
@@REQR Dataset /UNIVERSE/ENVIRONMENT/KEYBOARD/S.INPUT <== "
*Termination - /UNIVERSE/ENVIRONMENT/KEYBOARD/FETCH-INPUT at 840 units
*Initiation - /UNIVERSE/ENVIRONMENT/KEYBOARD/FETCH-INPUT at 840 units
*Terminaticn - /UNIVERSE/SYSTEM/RECQORDER/RMT.A at 845 units
*Initiation - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/FRR at 900 units
*Initiation - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/ERR at 900 units
#@RRQ@ Dataset /UNIVERSE/SYSTEM/MONITOR/SYN.MON/FUEL.BUF <== (.1
*Termination - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/FRR at 901 units
QRERE@ Dataset /UNIVERSE/SYSTEM/MONITOR/SYN.MON/TEMP.BUF
<== (300 280 280 330)
@@QAE Dataset /UNIVERSE/SYSTEM/MONITOR/SYN.MON/PRES,BUF
== (77 77 88 77)
*Termination - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/ERR at %01 units
*Initiation - /UNIVERSE/SYSTEM/MONITOR/SYN,MON/N3 at 901 units
*Initiation -~ /UNIVERSE/SYSTEM/MONITOR/SYN.MON/N2 at 901 units
*Initiation - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/N1 at 901 units
*Termination - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/N1 at 901 units
*Initiation - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/GFR at %01 units
@ERAEQA Dataset /UNIVERSE/SYSTEM/MONITOR/SYN.MON/PRES.COUNT
<== (0 0 0 0)
*Termination - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/N3 at 902 units
@QRER Dataset /UNIVERSE/SYSTEM/MONITOR/SYN.MON/TEMP .COUNT
== (0 0 0 Q)
*Termination - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/N2 at 902 units
*Termination - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/GFR at 902 units
*Initiation - /UNIVERSE/SYSTEM/MONITCR/SYN.MON/GPR at 902 units
*Initiation - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/GTR at 902 units
*Initiation - /UNIVERSE/SYSTEM/RECORDER/N1 at 902 units
*Termination - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/GPR at 903 units
*Termination - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/GTR at 903 units
*Termination - /UNIVERSE/SYSTEM/RECORDER/N1 at 903 units
*Initiation - /UNIVERSE/SYSTEM/RECORDER/N1 at 903 units
*Initiation - /UNIVERSE/SYSTEM/RECORDER/NORMAL.REC at 903 units
*Termination - /UNIVERSE/SYSTEM/RECORDER/Nl at 904 units
*Termination - /UNIVERSE/SYSTEM/RECORDER/NORMAL.REC at 904 units
*Initiation - /UNIVERSE/SYSTEM/RECORDER/NORMAL.REC at 904 units
*Initiation - /UNIVERSE/SYSTEM/RECORDER/RMT.I at 904 units
*Termination - /UNIVERSE/SYSTEM/RECORDER/NORMAL.REC at 905 units
*Termination - /UNIVERSE/SYSTEM/RECORDER/RMT.I at 805 units
*Initiation - /UNIVERSE/SYSTEM/RECORDER/RMT.A at 905 units
*Initiation - /UNIVERSE/SYSTEM/RECORDER/RMT.I at 905 units
*Termination - /UNIVERSE/SYSTEM/RECORDER/RMT.I at 906 units
*Termination - /UNIVERSE/SYSTEM/RECORDER/RMT.A at 925 units
*Initiation - /UNIVERSE/SYSTEM/RECORDER/RMT.A at 925 units
*Termination - /UNIVERSE/SYSTEM/RECORDER/RMT.2 at 945 units
@REAR Dataset /UNIVERSE/ENVIRONMENT/KEYBOARD/S.INPUT
<== "display temperature 7"
*Termination - /UNIVERSE/ENVIRONMENT/KEYRBOARD/FETCH-INPUT at 960 units
*Initiation - /UNIVERSE/SYSTEM/MONITOR/MON.DRIVER/IFK.DEC at 960 units
*Initiation - /UNIVERSE/ENVIRONMENT/KEYBOARD/FETCH-INPUT at 960 units
*Termination - /UNIVERSE/SYSTEM/MONITOR/MON.DRIVER/IFK.DEC at 961 units
*Initiation - /UNIVERSE/SYSTEM/MONITOR/MON.DRIVER/IC.DEC at 961 units
*Termination - /UNIVERSE/SYSTEM/MONITOR/MON.DRIVER/IC.DEC at 961 units
*Initiation - /UNIVERSE/SYSTEM/MONITOR/MON.DRIVER/IFK.DEC at 961 units
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*Termination - /UNIVERSE/SYSTEM/MONITOR/MON.DRIVER/IFK.DEC at 962 units
*Initiation - /UNIVERSE/SYSTEM/MONITOR/MON.DRIVER/PC.DEC at 962 units
*Termination - /UNIVERSE/SYSTEM/MONITOR/MON.DRIVER/PC.DEC at 962 units
*Initiation - /UNIVERSE/SYSTEM/MONITOR/MON,.DRIVER/PC at 962 units
@A@EE Dataset /UNIVERSE/SYSTEM/MONITOR/MON.DRIVER/CMD
<== "display temperature 7"

*Termination - /UNIVERSE/SYSTEM/MONITOR/MON.DRIVER/PC at 963 units
*Initiation - /UNIVERSE/SYSTEM/RECORDER/N1 at 963 units
*Initiation - /UNIVERSE/SYSTEM/MONITOR/MON.DRIVER/NZ at 963 units
*Termination - /UNIVERSE/SYSTEM/RECORDER/N1 at 964 units
*Termination - /UNIVERSE/SYSTEM/MONITCR/MCN.DRIVER/NZ at 964 units
*Initiation - /UNIVERSE/SYSTEM/MONITOR/MON.DRIVER/DD at 964 units
*Initiation ~ /UNIVERSE/SYSTEM/RECORDER/NORMAL.REC at 964 units
*Termination - /UNIVERSE/SYSTEM/MONITOR/MON.DRIVER/DD at 965 units
*Termination - /UNIVERSE/SYSTEM/RECORDER/NORMAL.REC at 965 units
*Initiation - /UNIVERSE/SYSTEM/RECCORDER/RMT.I at 965 units
*Initiation - /UNIVERSE/SYSTEM/VDU/DISPLAY at 965 units
*Termination - /UNIVERSE/SYSTEM/RECORDER/RMT.I at 966 units
*Termination - /UNIVERSE/SYSTEM/VDU/DISPLAY at 966 units
*Initiation - /UNIVERSE/SYSTEM/RECORDER/RMT.A at 966 units
*Termination - /UNIVERSE/SYSTEM/RECORDER/RMT.A at 986 units
*Initiation - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/ERR at 1000 units
*Initiation - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/FRR at 1000 units
@RRAEQ Dataset /UNIVERSE/SYSTEM/MONITOR/SYN.MON/TEMP,BUF

== (300 280 280 330)
RERARE Dataset /UNIVERSE/SYSTEM/MONITOR/SYN.MON/PRES.BUF

== (77 77 B8 77
*Termination - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/ERR at 1001 units
@RRQAQR Dataset /UNIVERSE/SYSTEM/MONITOR/SYN.MON/FUEL.BUF <== 0.1

*Termination -~ /UNIVERSE/SYSTEM/MONITOR/SYN.MON/FRR at 1001 units
*Initiation - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/N3 at 1001 units
*Initiation - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/NZ at 1001 units
*Initiation - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/N1 at 1001 units
*Termination - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/N1 at 1001 units
*Initiation - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/GFR at 1001 units
@GRAEA Dataset /UNIVERSE/SYSTEM/MONITOR/SYN.MON/PRES.COUNT

== (0 0 0 0)
*Termination - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/N3 at 1002 units
BRRQRA Dataset /UNIVERSE/SYSTEM/MONITOR/SYN.MON/TEMP.COUNT

== (0 0 0 0)
*Termination - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/N2 at 1002 units
*Termination - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/GFR at 1002 units
*Initiation - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/GPR at 1002 units
*Initiation - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/GTR at 1002 units
*Initiation - /UNIVERSE/SYSTEM/RECORDER/N1 at 1002 units
*Termination - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/GPR at 1003 units
*Termination - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/GTR at 1003 units
*Termination - /UNIVERSE/SYSTEM/RECORDER/N1 at 1003 units
*Initiation - /UNIVERSE/SYSTEM/RECORDER/NORMAL.REC at 1903 units
*Initiation - /UNIVERSE/SYSTEM/RECCRDER/N1 at 1003 units
*Termination - /UNIVERSE/SYSTEM/RECORDER/NORMAL.REC at 1004 units
*Termination - /UNIVERSE/SYSTEM/RECCRDER/N1 at 1004 units
*Initiation - /UNIVERSE/SYSTEM/RECQORDER/NORMAL.REC at 1004 units
*Tnitiation - /UNIVERSE/SYSTEM/RECORDER/RMT.I at 1004 units
*Taermination - /UNIVERSE/SYSTEM/RECORDER/NORMAL.REC at 1005 units
*Termination - /UNIVERSE/SYSTEM/RECORDER/RMT.I at 1005 units
*Initiation - /UNIVERSE/SYSTEM/RECORDER/RMT.I at 1005 units
*Initiation - /UNIVERSE/SYSTEM/RECCRDER/RMT.A at 1005 units
*Tarmination - /UNIVERSE/SYSTEM/RECORDER/RMT.I at 1006 units
*Termination - /UNIVERSE/SYSTEM/RECORDER/RMT.A at 1025 units
*Initiation - /UNIVERSE/SYSTEM/RECORDER/RMT.A at 1025 units
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*Termination - /UNIVERSE/SYSTEM/RECORDER/RMT.A at 1045 units
RRRERA Dataset /UNIVERSE/ENVIRONMENT/KEYBOARD/S.INPUT <== "7
*Termination - /UNIVERSE/ENVIRCNMENT/KEYBOARD/FETCH-INPUT at 1080 units
*Initiation - /UNIVERSE/ENVIRONMENT/KEYBCARD/FETCH-INPUT at 1080 units
*Initiation - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/ERR at 1100 units
*Initiation - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/FRR at 1100 units
@EQR@ Dataset /UNIVERSE/SYSTEM/MONITOR/SYN.MON/TEMP,BUF

<== (300 280 280 330)
REREA Dataset /UNIVERSE/SYSTEM/MONITOR/SYN.MON/PRES.BUF

== (77 77 &8 77

*Termination ~ /UNIVERSE/SYSTEM/MONITOR/SYN.MON/ERR at 1101 units
@@RRE Dataset /UNIVERSE/SYSTEM/MONITOR/SYN.MON/FUEL.BUF <== (.1
*Termination - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/FRR at 1101 units
*Initiation - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/N2 at 1101 units
*Initiation - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/N3 at 1101 units
*Initiation - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/N1 at 1101 units
*Termination - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/N1 at 1101 units
*Initiation - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/GFR at 1101 units
@QEE@Q@ Dataset /UNIVERSE/SYSTEM/MONITOR/SYN.MON/TEMP K COUNT

== (0 0 0 0}
*Termination - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/N2 at 1102 units
@ERAQ Pataset /UNIVERSE/SYSTEM/MONITOR/SYN.MON/PRES.COUNT

<== (0 0 0 0)
*Termination - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/N3 at 1102 units
*Termination - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/GFR at 1102 units
*Initiation - /UNIVERSE/SYSTEM/MCONITOR/SYN.MON/GTR at 1102 units
*Initiation - /UNIVERSE/SYSTEM/RECORDER/N1 at 1102 units
*Initiation - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/GPR at 1102 units
*Termination - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/GTR at 1103 units
*Termination - /UNIVERSE/SYSTEM/RECORDER/N1 at 1103 units
*Termination - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/GPR at 1103 units
*Initiation - /UNIVERSE/SYSTEM/RECORDER/NORMAL.REC at 1103 units
*Initiation - /UNIVERSE/SYSTEM/RECORDER/N]1 at 1103 units
*Termination - /UNIVERSE/SYSTEM/RECORDER/NORMAL.REC at 1104 units
*Termination - /UNIVERSE/SYSTEM/RECORDER/N]1 at 1104 units
*Initiation - /UNIVERSE/SYSTEM/RECORDER/RMT.I at 1104 units
*Initiation - /UNIVERSE/SYSTEM/RECORDER/NORMAL.REC at 1104 units
*Termination - /UNIVERSE/SYSTEM/RECORDER/RMT.I at 1105 units
*Termination - /UNIVERSE/SYSTEM/RECORDER/NORMAL.REC at 1105 units
*Initiation - /UNIVERSE/SYSTEM/RECORDER/RMT.I at 1105 units
*Tnitiation - /UNIVERSE/SYSTEM/RECORDER/RMT.A at 1105 units
*Termination - /UNIVERSE/SYSTEM/RECORDER/RMT.I at 1106 units
*Termination - /UNIVERSE/SYSTEM/RECORDER/RMT.2 at 1125 units
*Initiation - /UNIVERSE/SYSTEM/RECORDER/RMT.A at 1125 units
*Termination - /UNIVERSE/SYSTEM/RECORDER/RMT.A at 1145 units
AQR@EE Dataset /UNIVERSE/ENVIRONMENT/KEYBOARD/S.INPUT <== "finish"
*Termination - /UNIVERSE/ENVIRONMENT/KEYBOARD/FETCH-INPUT at 1200 uniz=
*Initiation - /UNIVERSE/SYSTEM/MONITOR/MON.DRIVER/IFK.DEC at 1200 un:i«=
*Initiation - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/ERR at 1200 units
*Initiation = /UNIVERSE/SYSTEM/MONITOR/SYN.MON/FRR at 1200 units
*Initiation -~ /UNIVERSE/ENVIRONMENT/KEYBOARD/FETCH-INPUT at 1200 un:its
*Termination -~ /UNIVERSE/SYSTEM/MONITOR/MON.DRIVER/IFK.DEC at

1201 units

@@REQ Dataset /UNIVERSE/SYSTEM/MONITOR/SYN.MON/TEMP.BUF

== (300 280 280 330)
BERRA Dataset /UNIVERSE/SYSTEM/MONITOR/SYN.MON/PRES.BUF

== (77 77 88 77)
*Termination - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/ERR at 1201 units
@REE@ Dataset /UNIVERSE/SYSTEM/MONITOR/SYN.MON/FUEL.BUF <== 0.1
*Termination - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/FRR at 1201 units
*Initiation - /UNIVERSE/SYSTEM/MONITOR/MON.DRIVER/IC.DEC at 1201 un:-s
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*Initiation - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/N2 at 1201 units
*Initiation -~ /UNIVERSE/SYSTEM/MONITOR/SYN.MON/N1 at 1201 units
*Initiation - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/N3 at 1201 units
*Termination - /UNIVERSE/SYSTEM/MONITOR/MON.DRIVER/IC.DEC at
1201 units
*Termination - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/N1 at 1201 units
*Initiation - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/GFR at 1201 units
*Initiation - /UNIVERSE/SYSTEM/MONITOR/MON.DRIVER/IFK.DEC at
1201 units
@@RRE Dataset /UNIVERSE/SYSTEM/MONITOR/SYN,MON/TEMP.COUNT
<== (0 0 0 O)
*Termination - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/N2 at 1202 units
@@RAE Dataset /UNIVERSE/SYSTEM/MONITOR/SYN.MON/PRES.COUNT
== (0 0 0 0)
*Termination - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/N3 at 1202 units
*Termination - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/GFR at 1202 units
*Termination /UNIVERSE/SYSTEM/MONITOR/MON.DRIVER/IFK.DEC at
1202 units
*Initiation - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/GTR at 1202 units
*Initiation - /UNIVERSE/SYSTEM/MONITOR/MON.DRIVER/PC.DEC at 1202 units
*Initiation - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/GPR at 1202 units
*Initiation - /UNIVERSE/SYSTEM/RECORDER/N1 at 1202 units
*Termination - /UNIVERSE/SYSTEM/MONITOR/MON.DRIVER/PC.DEC at 1202 units
*Initjiation - /UNIVERSE/SYSTEM/MONITOR/MON.DRIVER/PC at 1202 units
*Termination - /UNIVERSE/SYSTEM/MONITOR/SYN,.MON/GTR at 1203 units
*Termination - /UNIVERSE/SYSTEM/MONITOR/SYN.MON/GPR at 1203 units
*Termination - /UNIVERSE/SYSTEM/RECCRDER/N1 at 1203 units
@RQAEE@ Dataset /UNIVERSE/SYSTEM/MONITOR/MON.DRIVER/CMD <== "finish"
*Termination - /UNIVERSE/SYSTEM/MONITOR/MON.DRIVER/PC at 1203 units
*Initiation - /UNIVERSE/SYSTEM/MONITOR/MON.DRIVER/N2 at 1203 units
*Initiation - /UNIVERSE/SYSTEM/RECORDER/NORMAL .REC at 1203 units
*Initiation - /UNIVERSE/SYSTEM/RECORDER/N1 at 1203 units
*Termination - /UNIVERSE/SYSTEM/MONITOR/MON.DRIVER/N2 at 1204 units
*Termination - /UNIVERSE/SYSTEM/RECORDER/NORMAL.REC at 1204 units
*Termination - /UNIVERSE/SYSTEM/RECORDER/N1 at 1204 units
*Initiation - /UNIVERSE/SYSTEM/RECORDER/NORMAL.REC at 1204 units
*Initiation - /UNIVERSE/SYSTEM/MONITOR/MON.DRIVER/SD at 1204 units
*Initiation - /UNIVERSE/SYSTEM/RECORDER/RMT.I at 1204 units
*Termination - /UNIVERSE/SYSTEM/RECORDER/NORMAL.REC at 1205 units
*Termination - /UNIVERSE/SYSTEM/MONITOR/MON.DRIVER/SD at 1205 units
*Termination - /UNIVERSE/SYSTEM/RECORDER/RMT.I at 1205 units

<<< Arc break on /UNIVERSE/SYSTEM/MONITOR/MON.DRIVER/AS at 1205 units
> { put a node termination break at /UNIVERSE/SYSTEM/RECORDER/RMT.A }
<<< End Breakpoint

*Initiation - /UNIVERSE/SYSTEM/VDU/DISPLAY at 1205 units

*Initiation - /UNIVERSE/SYSTEM/RECORDER/RMT.A at 1205 units
*Initiation - /UNIVERSE/SYSTEM/RECORDER/RMT.I at 1205 units
*Termination - /UNIVERSE/SYSTEM/VDU/DISPLAY at 1206 units
*Termination - /UNIVERSE/SYSTEM/RECORDER/RMT.I at 1206 units
*Termination - /UNIVERSE/SYSTEM/RECORDER/RMT.A at 1225 units

<<< Node termination break on /UNIVERSE/SYSTEM/RECORDER/RMT.A at
1225 units

> { display the final states of recorder and VDU }

<<< End Breakpoint
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** DataSet /UNIVERSE/SYSTEM/VDU/DEVICE ->
("**x* End of Flight **xn
"Engine #4: Temperature Reading 330 at 14:0:1v
"Engine #3: Temperature Reading 280 at 14:0:1"
"Engine #2: Temperature Reading () at 14:0:1"
"Engine #1: Temperature Reading 300 at 14:0:1"
"Engine #4: Temperature Reading 330 at 14:0:2"
"Engine #3: Temperature Reading 280 at 14:0:2"
"Engine #2: Temperature Reading () at 14:0:2,
***x Temperature ocut of range 3 consecutive times **xxw
"Engine #1: Temperature Reading 300 at 14:0:2"
"Engine #4: Temperature Reading 330 at 14:0:3"
"Engine #3: Temperature Reading 280 at 14:0:3"
"Engine #2: Temperature Reading 280 at 14:0:3"
"Engine #1: Temperature Reading 300 at 14:0:3"
"Engine #4: Temperature Reading 330 at 14:0:4"
"Engine #3: Temperature Reading 280 at 14:0:4"
"Engine #2: Temperature Reading 280 at 14:0:4"
"Engine #1: Temperature Reading 300 at 14:0:4"
"Engine #4: Temperature Reading 330 at 14:0:5"
"Engine #3: Temperature Reading 280 at 14:0:5"
"Engine #2: Temperature Reading 280 at 14:0:5"
"Engine #1: Temperature Reading 300 at 14:0:5"
"Engine #4: Temperature Reading 330 at 14:0:6"
"Engine #3: Temperature Reading 280 at 14:0:6"
"Engine #2: Temperature Reading 280 at 14:0:6"
"Engine #1: Temparature Reading 300 at 14:0:6"
"Engine #4: Temperature Reading 330 at 14:0:7"
"Engine #3: Temperature Reading 280 at 14:0:7"
"Engine #2: Temperature Reading 280 at 14:0:7"
"Engine #1: Temperature Reading 300 at 14:0:7"
"<Escape chars to stop flashing>"
"x*x* SMOKE DISAPPEARS AT COMPARTMENT **x*x 1"
"Oout of Range Fuel Reading 0.093"
"Out of Range Fuel Reading 0.09"
Tx%* SMOKE EXISTS AT COMPARTMENT #*** 1v
"<Escape chars to flash>"
"Engine #1: Temperature Reading 300 at 14:0:2"
"Engine #2: Temperature Reading () at 14:0:2,
*** Temperature out of range 3 consecutive times ***v
"Engine #3: Temperature Reading 280 at 14:0:2"
"Engine #4: Temperature Reading 330 at 14:0:2"
"out of Range Fuel Reading 0.0%"
"<Escape chars to stop flashing>"
"xxkx SMOKE TEST ENDS #*** w
"<Escape chars to flash>"
"x*** SMOKE TEST BEGINS ***x o
"“L*** Beginning of Flight #**=*n)

** DataSet /UNIVERSE/SYSTEM/RECORDER/DEVICE ->
("Engine #1: Temperature Reading 300 at 14:0:10"
"Engine #2: Temperature Reading 280 at 14:0:10"
"Engine #3: Temperature Reading 280 at 14:0:10"
"Engine #4: Temperature Reading 330 at 14:0:10"
"Engine #1: Pressure Reading 77 at 14:0:10"
"Engine #2: Pressure Reading 77 at 14:0:10"
"Engine #3: Pressure Reading 88 at 14:0:10"
"Engine #4: Pressure Reading 77 at 14:0:10"
"Command -- finish at 14:0:10"

"Fuel Tank: Fuel Reading 0.1 at 14:0:10"
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"Engine #1: Temperature Reading
"Engine #2: Temperature Reading
"Engine #3: Temperature Reading
"Engine #4: Temperature Reading
"Engine #1: Pressure Reading 77
"Engine #2: Pressure Reading 77
"Engine #3: Pressure Reading 88
"Engine #4: Pressure Reading 77
"Fuel Tank: Fuel Reading 0.1 at
"Engine #1: Temperature Reading
"Engine #2: Temperature Reading
"Engine #3: Temperature Reading
"Engine #4: Temperature Reading
"Engine #1: Pressure Reading 77
"Engine #2: Pressure Reading 77
"Engine #3: Pressure Reading 88
"Engine #4: Pressure Reading 77
"Fuel Tank: Fuel Reading 0.1 at
"Command -- display temperature
"Engine #1: Temperature Reading
"Engine #2: Temperature Reading
"Eng%ne #3: Temperature Read@ng
Tgng+ne :g: gemperatu;e ggadlgg
“"Engine : Pressure Reading

"Engine #2: Pressure Reading 77
"Engine #3: Pressure Reading 88
"Engine #4: Pressure Reading 77
"Fuel Tank: Fuel Reading 0.1 at
"Engine #1: Temperature Reading
"Engine #2: Temperature Reading
"Engine #3: Temperature Reading
"Engine #4: Temperature Reading
"Engine #1: Pressure Reading 77
"Engine #2: Pressure Reading 77
"Engine #3: Pressure Reading 88
"Engine #4: Pressure Reading 77
"Fuel Tank: Fuel Reading 0.1 at
"Command -- CANCEL at 14:0:5"

"Engine #1: Temperature Reading
"Engine #2: Temperature Reading
"Engine #3: Temperature Reading
"Engine #4: Temperature Reading
"Engine #1: Pressure Reading 77
"Engine #2: Pressure Reading 77
"Engine #3: Pressure Reading 88
"Engine #4: Pressure Reading 77
"Fuel Tank: Fuel Reading 0.1 at
"Engine #1: Temperature Reading
"Engine #2: Temperature Reading
"Engine #3: Temperature Reading
"Engine #4: Temperature Reading
"Engine #1: Pressure Reading 77
"Engine #2: Pressure Reading 77
"Engine #3: Pressure Reading 88
"Engine #4: Pressure Reading 70
"Fuel Tank: Fuel Reading 0.1 at

"no-smcke interrupt from Smoke Detector 1

300 at 14:0:9"
280 at 14:0:9"
280 at 14:0:9"
330 at 14:0:9"
at 14:0:9"

at 14:0:9"

at 14:0:9"

at 14:0:9"
14:0:9"

300 at 14:0:8"
280 at 14:0:8"
280 at 14:0:8"
330 at 14:0:8"
at 14:0:8"

at 14:0:8"

at 14:0:8"

at 14:0:8"
14:0:8"

7 at 14:0:7"
300 at 14:0:7"
280 at 14:0:7"
280 at 14:0:7"
330 at 14:0:7"
at 14:0:7"

at 14:0:7"

at 14:0:7"

at 14:0:7"
14:0:7"
300 at
280 at

14:0:6"
14:0:6"
280 at 14:0:6"
330 at 14:0:6™
at 14:0:6"

at 14:0:6"

at 14:0:6"

at 14:0:6"
14:0:6"

300
280

at 14:0:5"
at 14:0:5"
280 at 14:0:5"
330 at 14:0:5"
at 14:0:5"

at 14:0:5"

at 14:0:5"

at 14:0:5"
14:0:5"

300 at 14:0:4"
280 at 14:0:4™
280 at 14:0:4v
330 at 14:0:4"
at 14:0:4"

at 14:0:4"

at 14:0:4"

at 14:0:4"
14:0:4"

at 14:0:3"7

"Engine #1: Temperature
"Engine #2: Temperature
"Engine #3: Temperature
"Engine #4: Temperature

Reading 300
Reading 280
Reading 280
Reading 330
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at 1l4:
at 14:
at 1l4:
at 14:

0:3"
0:3»
0:3"
0:3»



Reading 77 at
Reading 77 at
"Engine #3: Pressure Reading 88 at 14
"Engine #4: Pressure Reading 60 at 14:0:3"

"Fuel Reading 0.09 at 14:0:3, ***Fuel out of range ***"
"smoke interrupt from Smoke Detector 1 at 14:0:2"
"Engine #1: Temperature Reading 300 at 14:0:2"

"Engine #2: Temperature Reading () at 14:0:2,

*** Temperature out of range 3 consecutive times ***x©
"Engine #3: Temperature Reading 280 at 14:0:2"

"Engine #4: Temperature Reading 330 at 14:0:2"

"Engine #1: Pressure Reading 77 at 14:0:2"

"Engine #2: Pressure Reading 79 at 14:0:2"

"Engine #3: Pressure Reading 88 at 14:0:2"

"Engine #4: Pressure Reading 60 at 14:0:2"

"Fuel Reading 0.09 at 14:0:2, ***Fuel out of range *=**"

14
14

Q03"
:0: 3"
:0: 3"

Pressure
Pressure

"Engine #1:
"Engine #2:

"Engine #1: Temperature Readlng 300 at 14:0:1"7
"Engine #2: Temperature Reading () at 14:0:1"
"Engine #3: Temperature Reading 280 at 14:0:1"
"Engine #4: Temperature Reading 330 at 14:0:1"
"Engine #1: Pressure Reading 77 at 14:0:1"
"Engine #2: Pressure Reading 77 at 14:0:1"
"Engine #3: Pressure Reading 88 at 14:0:1"
"Engine #4: Pressure Reading 77 at 14:0:1"

"Fuel Tank: Fuel Reading 0.1 at 14:0:1"

"Command -- CANCEL at 14:0:0"

"Engine #1: Temperature Reading 300 at 14:0:0"
"Engine #2: Temperature Reading 480 at 14:0:0"
"Engine #3: Temperature Reading 280 at 14:0:0"
"Engine #4: Temperature Reading 330 at 14:0:0"
"Engine #1: Pressure Reading 77 at 14:0:0"
"Engine #2: Pressure Reading 79 at 14:0:0"
"Engine #3: Pressure Reading 88 at 14:0:0"
"Engine #4: Pressure Reading 77 at 14:0:0"

"Fuel Tank: Fuel Reading 0.1 at 14:0:0"

"Smoke test ends at 13:59:59"

"Smoke test begins at 13:59:59"

"Command —-- smoke-test at 13:59:59"

"Engine #1: Temperature Reading 300 at 13:59:59”
"Engine #2: Temperature Reading 280 at 13:59:59"
"Engine #3: Temperature Reading 280 at 13:59:59"
"Engine #4: Temperature Reading 330 at 13:5%:59"
"Engine #l: Pressure Reading 77 at 13:59:59"
"Engine #2: Pressure Reading 79 at 13:59:59"
"Engine #3: Pressure Reading 98 at 13:59:59"
"Engine #4: Pressure Reading 77 at 13:59:59"
"Fuel Tank: Fuel Reading 0.101 at 13:59:59"

"x** Beginning of Recording ***")
> { abort simulation here }
<<< End Breakpoint

End of transcript file
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APPENDIX F

List of Acronyms

This appendix lists, in alphabetical order, all acronyms used in the dissertation.
CG Control Graph (of GMB)
DE Decomposition Element (in Stimulus/Response Model)
DFD Data-Flow Diagram
DG Data Graph (of GMB)
GMB Graph Model of Behavior

IDEAS Intelligent Design Environment for Analyzable Systems

PSA Problem Statement Analyzer

PSL Problem Statement Language
RTC Reflexive Transitive Closure

SA Structured Analysis

SARA System Architect’s Apprentice

SM Structural Model

SVD System Verification Diagram

VDU Video Display Unit (from aircraft monitor example)
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