DESIGNING ARRAYS FOR THE FADDEEV ALGORITHM

Jaime H. Moreno March 1988
Tomas Lang CSD-880013

Designing Arrays for the Faddeev Algorithm

Jaime H. Moreno, Tomés Lang *
Computer Science Department
University of California, Los Angeles
3680 Boelter Hall
Los Angeles, Calif. 90024

*J. Moreno has been supported by an IBM Computer Sciences Fellowship. This research has also been
supported in part by the Office of Naval Research, Contract N00014-83-K-0493 “Specifications and Design
Methodologies for High-Speed Fault-Tolerant Algorithms and Structures for VLSI”

Abstract

We present the derivation of arrays for computing the Faddeev algorithm, using a graph-based
methodology. We consider implementations for fixed-size problems as well as for partitioned mode.
Arrays are obtained by performing transformations on the fully—parallel dependence graph of the
algorithm. We derive linear and two-dimensional structures and evaluate the resulting arrays in
terms of number of PEs, throughput, I/O bandwidth, utilization of PEs and overhead due to
partitioning. We also compare our implementations with other schemes previously proposed.

For fixed-size problems, we show that throughput reaches 2/ (3n? — n + 2) in a linear array,
while throughput n~=! or (2n)~! can be obtained with two—dimensional arrays. The utilization of
such arrays tends to 7/9 for large matrices. In the case of partitioned problems, we propose a
two—dimensional scheme that is more efficient and has less overhead than other arrays previously
proposed. We show that throughput of both linear and square arrays tends to (3m)/(7n?), where
m is the number of cells, and utilization tends to optimal. Moreover, we show that in partitioned
implementations with the same number of cells a linear array performs better, is easier to implement
and is better suited for fault-tolerant capabilities than a two—dimensional one.

1 Introduction

The implementation of matrix algorithms as collections of regularly connected processing elements
(arrays of PEs) has been extensively studied lately [1]-[7]. A problem frequently found in designing
such arrays is that of providing capabilities to compute several algorithms in the same structure, so
that an array can be used for different computations. One approach towards solving this problem
consists of building into the array the capability to perform a class of matrix algorithms and
controlling execution of any of the possible algorithms through programmable features in the array.
Processing elements have been designed with such goal in mind [8,9] and systems have been built
offering a variety of matrix computational capabilities [10)-[13].

A different approach to offer flexibility in an array of PEs consists of using a general-purpose
algorithm within a class of problems. Such is the case of the Faddeev algorithm {14], which has
the capability of performing a variety of matrix computations without the need for programmable
features. Some overhead or cost is involved of course, which in this case consists of performing
additional computations. Several arrays to compute the Faddeev algorithm have been discussed
in the literature {15 [18]. Nash and Hansen [15] have proposed a trapezoidal array for fixed-size
problems and an implementation of their scheme has been presented in [16]. The same structure
is used in [17] to compute the Faddeev algorithm for matrices larger than the size of an existing
array (i.e., partitioning the problem so that it fits into an array). The Faddeev algorithm is also
implemented in [18] for both fixed size and variable size problems, and in [19] for partitioned
implementation in a two—dimensional array of transputers.

The arrays to compute the Faddeev algorithm mentioned above have not been derived through
the application of a design methodology (this is also the case with many schemes for other matrix
computations), though methods to derive the structure and interconnection of arrays of PEs for a
given algorithm have been proposed {20]. The existing methods are transformational approaches,
where a high-level specification of a problem is transformed into a form better suited for implemen-
tation. Such mechanisms can be useful to accomplish certain design tasks, but they either restrict
the form of the algorithm (i.e., a recurrence equation), are unable to incorporate parameters of
interest for the implementation, or are too complex to use. Thus, it is not surprising that they
have not been used in the derivation of arrays for the Faddeev algorithm.

In this paper, we present the application to the Faddeev algorithm of the design methodology
proposed in [21]-{23). This is a transformational method, which uses a fully-parallel dependence
graph as the description of the algorithm. The graphical nature of this methodology makes it eas-
ier to use than approaches based on mathematical expressions and the dependence graph doesn’t
restrict the form of the algorithm. We use such methodology to derive linear and two—dimensional
structures for the Faddeev algorithm, which take advantage of different properties in the compu-
tation. We discuss the design of arrays for fixed—-size problems, as well as the computation of the
algorithm for matrices larger than the size of an array (i.e., partitioning the algorithm). We com-
pare the structures obtained in terms of number of PEs, throughput, input bandwidth, utilization
of PEs and overhead due to partitioning.

We show that for matrices of size n by n it is possible to achieve throughput 2/(3n% — n +2)
with O(n) cells organized as linear structures and throughput [#]~" or [2n]~! in two-dimensional
arrays with O(n?) cells. The utilization of such arrays tends to 7/9. One of the two—dimensional
schemes derived here corresponds to the one proposed by Nash and Hansen in [15], though their

paper didn’t include an evaluation of such array in terms of throughput and utilization as it is
possible with our graph-based methodology.

In partitioned mode, we show that for very large matrices the throughput of linear and two—
dimensional arrays tends to (3m)/(7n®) (where m is the total number of PEs) and utilization tends
to 1. The two-dimensional partitioned scheme devised here is more efficient than the one proposed
in [18]. In addition, it doesn’t need the complex loading and un-loading of data required in [17].
Moreover, we show that a linear array is simpler, has slightly better throughput and utilization with
the same number of units than a square array, and exhibits better characteristics for fault-tolerant
implementations than a two—dimensional structure.

2 The Modified Faddeev Algorithm

The matrix version of the Faddeev algorithm evaluates the expression. CX + D subject to the
condition AX = B, where A, B,C, D are given matrices, X is a column vector, and A is of full
rank. The algorithm can be expressed by representing the data as the extended matrix

-C | D

and performing linear combinations on this extended matrix with the objective of transforming
matrix C into a matrix of zeroes. If we represent such linear combinations as W, the operations
performed are (—C + WA) and (D + W B). The annulment of ' requires that W = CA~!, so that
D+WB=D+CA!B. Since X = A"!B, the final result D+ W5 = D+ C X replaces the values
of matrix D in the expression above [15].

Several matrix operations are possible by selecting specific entries for matrices A, B, C and D.
Figure 1 depicts such alternatives, which include matrix multiplication/addition, matrix inversion
and solution of linear systems of equations. Therefore, the Faddeev algorithm allows a degree of
“programmability” by selecting the values of the input data. The cost of such flexibility consists
of the additional operations that need to be performed, because the algorithm operates on four
matrices.

In addition to its capability to perform different matrix operations, the Faddeev algorithm has
other advantages:

¢ The algorithm doesn’t need to compute the elements of W, since it only needs to annul the
elements of C. Such annulment can be done by ordinary Gaussian elimination.

o When solving linear systems of equations, the algorithm doesn’t need the back-substitution
step usually found in triangularization methods. Instead, results are obtained directly at the
end of the annulment of C.

Since Gaussian elimination doesn’t guarantee numerical stability and fails for zero pivot ele-
ments, Nash and Hansen have proposed a modification to the original Fadeev algorithm [15]. Such
modification consists of “adding an orthogonal factorization capability for added numerical stability
and to allow the coefficient matrix to be non-square for over- and under-determined systems of

— CA'B+D

O
O

—» D+CB

B
-G | D

Figure 1: Examples of matrix operations available with the Faddeev algorithm

equations”. Nash and Hansen’s scheme uses Givens rotations to annul matrix €. The utilization
of Givens rotations requires to divide the process of annulling matrix C into the following two-step
procedure [15]:

e Triangularization of matrix A through Givens rotations and application of such rotations to
matrix B. '

e Caussian elimination of the elements of C using the diagonal elements of the rotated matrix
A (i.e., matrix Q) as pivots and application of the same transformations to D.

Figure 2 shows the dependence graph of the modified Faddeev algorithm for 4 by 4 matrices,
after replacing data broadcasting by data pipelining [21,22]. Delay nodes have been added to en-
hance communications regularity between nodes of the graph and to obtain nodes with at most one
external input. Operation nodes correspond to the computation of multiply /add, division, rotation
angle and rotation. For simplicity, we assume that all these nodes have the same computation time.
The validity of such an assumption is highly implementation-dependent, as recent studies about
the design of special-purpose cells suggest [24,25,26].

We can distinguish four sections in Figure 2, namely those used to operate on the four different
matrices. In the top-left section, diagonal elements of matrix 4 are used to compute rotation
angles. Such angles are broadcasted horizontally to the remaining elements of 4 on the same row
and to the elements of B also on the same row. All these elements are rotated according to such
angles. Elements of the resulting triangular matrix Q and the rotated matrix B’ flow towards the
lower sections of the graph. In the lower—left section, diagonal elements of @ are used as pivots to
perform Gaussian elimination on matrix C. Pivots are broadcasted horizontally and used together
with elements of B’ to perform the same transformation on matrix D.

all al2 a1l ald b13 b14
a21 a22 a2l a24 n2

EX a32 233 Jaj4

a4l lad2 hd3 l}u ?‘_
1

aaaaaaaaaaaaaaaaaaaaaaaaaaaaa

-
-

c21t t22 c2 c24

o .—i
s

b ~
s ra
R AT PR MY PRI PP IR SEREY LRSS RNNN SEEE SRRL S LR RS R A Sl b

r
L
cdl c42 cd] ;4

== Rotation angle

B Rotation [[] Muitiadg
Division . Delay

Figure 2: Fully-parallel dependence graph for the Faddeev algorithm with no broadcasting

In the next sections, we use the dependence graph described above to discuss the design of
arrays for the Faddeev algorithm.

3 Arrays for the Faddeev algorithm with fixed—size matrices

In this section, we study the design of arrays of processing elements (PEs) for the Faddeev algorithm
with fixed—size matrices, using the dependence graph in Figure 2 as description of the algorithm. A
pipelined implementation of such graph [21,22] leads to a structure with O(n®) nodes, O(a?} input
bandwidth and complex interconnection, undesirable features for an implementation. We use the
methodology proposed in [21]-{23] to transform the graph and incorporate into it implementation
restrictions.

3.1 Linear arrays for the Faddeev algorithm with fixed—size matrices

Let’s assume that we want to obtain an implementation for the Faddeev algorithm with O(n) cells.
Since the graph in Figure 2 has O(n3) nodes, we have to transform the graph by grouping nodes
such that the transformed graph has O(n) nodes. We have proposed a procedure to reduce the
number of nodes in dependence graphs [23], which collapses sub-paths of a graph into single nodes.
However, such procedure is complicated in this case becaunse it is not possible to group all nodes
with just O(n) subpaths of the same length, neither to find O(n) groups with the same number
of nodes without compromising the communications structure of the graph. These facts lead to
groupings with different number of nodes per group and consequently to implementations with
different computation time per cell and non-optimal utilization. Thus, we must attempt to group
sub—paths in such a way as to minimize the difference in the number of nodes per group.

From the graph we can recognize O(n?) vertical (or horizontal) sub-paths suitable for collapsing.
In addition, there are O{n?) diagonal sub—paths*. We can’t group diagonal sub-paths into single
nodes because this would lead to O(n?) nodes and we are interested in O(n) cells. We have
to look for a grouping which collapses O(n) diagonal sub-paths into a single group. We also
want to minimize the difference in the number of nodes per group without unduly increasing the
communication complexity. Therefore, we choose to group vertical (or horizontal) sub—paths in
such a way as to include each diagonal sub-path in a single group, leading to 2n groups.

The grouping discussed above is shown in Figure 3 for the case of grouping vertical sub~paths.
The graph resulting from such grouping requires that the leftmost node be capable of performing
division and computing rotation angles, the next n — 1 nodes must perform those two operations
plus rotation and multiplication/addition, while the remaining n nodes perform only rotation and
multiplication /addition.

Throughput achievable with the grouping shown in Figure 3 can be obtained directly from
the graph. Such throughput is determined by the largest group (i.e., the group with the largest
number of primitive nodes), because such group has the longest computation time. In this case,
it corresponds to the rightmost group. A cell implementing this group must perform %n(n -1)

*Diagonal sub—paths actually correspond to a third dimension of the graph. For simplicity, we have drawn the
graph in a two-dimensional plane and projected the third dimension onto such diagonal sub-paths

PPy FEEY FFER T

<
™ .- -
] w W “ » ﬂ
ppibiily wiliilr Puis S B
.
: 3
:
2
2
:
. :
. 3
nnd e PR et re) - P
2 g § , 3o 1] g
el = - = = o e e e B e e T i gt R SRS EEE g -
il syl bl ity il bl i Y vl i i <%yl il i byl o
- A [e8 e ¥

] .
g ;] g
— — - - Tlc““lﬁlll‘ l'l.d‘illuuh |||||| |d‘.|nul
W— L _ =B -1 -~ [&~ -} - -]~ — 8 -
Jpit S L[e
b 3 b

b1

b3t

Ny ol
] ﬂl"ﬂ[.“ 4 WIW_._ i W
¥ 3 =1t -1 - & 1 [| 14

T Y SN LR AR R R LR Ml J:....r‘/.r.fll't!ara.u.t_r'a.._....rloti ey e e ee IRERRY EESEY RARLE AR AR AR S P Y R E LR AR AR Ll

N
- - - - - - T T ™
i M
b PO
i M
LI .
[. :
; N
o < -
. 3N T e
3 i A NG L
[& .]
= — po——
-—— = - - I, R
-
N s
- ° m
. :
S @
il 3
% s e
P : e
o - Lm Rt L -
3 - P -
- P R e A s o A~
- - s
td L LS8 o -y
o o e —
- - Endkil) 4 =
- - T 4 prprepren. i 'S | propreppenue———— T =
® — - - v = =)
o, « - ey
el : e R
oy o = P [—— s 48 Wi prapegy—py e Y b

Figure 3: Grouping vertical sub-paths in Faddeev dependence graph

rotations, n? multiply/add operations, and n delays, leading to throughput

-1
Tinear = [%n(n ~ 1) +n?+ n]

2 -1
= —— ops
ol b)
Total computation time for one instance of the algorithm can be expressed as the time to
compute the last (i.e., the rightmost) group, plus the delay before starting the computation of such
group. Thus, total computation time is

1 3 5
tlinear = En(n ~1)+n¥+3n-1= Enz + i 1= %(Bn +5) [ops]

Operations within each group in Figure 3 can be executed in one of the following two orders:

o Schedule nodes of each group by diagonal sub-paths, that is, execute all nodes in a diagonal
sub—path before scheduling another diagonal sub-path. In such a case, delay elements have
to be added to vertical sub—paths in a group in order to synchronize the arrival of data to
nodes. Thus, O(n) delay elements are required per group. Since delay nodes were added to
enhance communications requirements of the graph and with this scheduling all data is local
to cells, delay nodes shown in Figure 2 don’t need to be executed (excepting those delays at
the top of the graph). Consequently, throughput can be increased to 2/(3n? — n + 2). Data
arrival to nodes of this graph is interspersed with null values. The transformed graph for such
scheme, shown in Figure 4, can be directly mapped onto a linear array.

» Schedule nodes of each group by vertical sub—paths, that is, execute all nodes in a vertical
sub-path before scheduling another vertical sub-path. In such a case, intermediate results
used within a group need to be fed back into the node, as shown in Figure 5. Input data
arrives to nodes of this graph at successive intervals. The graph can be mapped directly onto
a linear array.

Cells in the arrays discussed above perform different computations, as inferred from the primitive
nodes composing the groups leading to such cells. This is a consequence of the grouping performed.
because there were no restrictions on the type of nodes composing a group. An alternative approach
considers searching for groups of similar nodes, leading to structures with specialized cells. Since
cells are specialized, they might be simpler than cells in arrays with more general PEs. For the linear
arrays discussed above, it is possible to obtain specialized cells at the cost of data movement. If we
schedule the computation of nodes in each group by vertical sub—paths, the feedback of data into a
node described above can be modified so that data is fed back not to the same node but to the node
to its left (i.e., intermediate data is shifted to the left). This is equivalent to redrawing the graph
in Figure 2 in such a way that all vertical sub—paths with nodes performing division/rotation angle
appear at the left of the graph and are grouped together. With this approach, all computations
of rotation angles and pivots are performed in the leftmost group. The remaining groups need to
perform only rotations and multiply /add operations in Gaussian elimination. The resulting graph.
shown in Figure 6, can be directly mapped onto a linear array.

Linear arrays with higher throughput than what is achievable from the structures described
above can be obtained by grouping fewer nodes per group. Since the dependence graph is composed

7

d44

d43

d42

-+ - ~r - ~t <t
™ o~ — -t o N —
o o o 0 oo
(] o o o) o oM
L o ~— o 3 N v
o o o o o0 o0
o o o o o o
3¢} o — -t oo —
o o o a 0.0 0
-~ ~— ~ -— -— ~— o
~t 30} o ~— v o o O —
o o o © O on o
~t ~ ~t+ ~+ ~+ ~ <+ <
~t ™ o ~— ~t oo —
(3] < [3] [+ © o o o
o™ o o ™ [4p] COMmm
- [0 J — - o —
'3} Q Q 14} T o @
P o o]
o o o o o o o o f‘“‘"‘”’“
<t © o~ — R R b S S
o o 3] (3 o @ LSS
o2elelede
- — ~— ~— ~— — —
- ™ o — ~t Mo —
3] [21 Q © o o «©

Aotation angie, Rotation

Mult./Add

reqgisters

Division,

{n-1)

Rotation angle
Division

(n-1)

registers

Figure 4: Scheduling nodes by diagonal sub-paths

cé41
c31
c21
ct1t
adi
a3t
a21
ail

-
d44
d43 d34
i PP d33 d24
‘T d41 d32 d23 d14
- o 431 d22 | di3 b4
c43 ¢34 d21 d12 h43 b34
c42 ¢33 c24 d11 h42 b33 b24
c32 c23 c14d bd1 b32 b23 b14
c22 K] ad4 b31 b2 b13 -
ci2 adl ad4 b21 bi12 -
a42 a3l az24 b1t - -
adz2 a23 atd - -
az22 a3 - - -
a2 - - -
-
)
\/
Rotation angle @ Rotation angle, Rotation
Division Division, Mult./Add

Figure 5: Scheduling nodes by vertical sub-paths

c41
c31
c21
¢
ad1
a3
az21
ati

c44
¢34
c24
c14
ad4
ad4
a24
atld

d41
d31
d21
di1
b4 1
b31
b21
bi1

d42
d32
d22
di2
d42
d3e
d22
die

d43
d33
d23
dt3
b43
b33
b23
b13

Rotation angle Rotation
Division Mult./Add

Figure 6: Linear graph with specialized nodes and shifting of data

10

of different sections, one alternative consists of separating nodes in the two topmost sections of
the graph from the bottom ones and group them independently. In such a case, we obtain a
linear graph with two nodes in each position. These nodes are simpler than in the previous cases,
because topmost nodes perform only triangularization while bottom nodes only perform Gaussian
elimination. All approaches discussed above for scheduling the nodes within a group are also suitable
for this case. Figure 7 shows the structure of a bi-linear array with shifting of intermediate results,
where each cell needs to perform only one type of computation. Throughput of this array is n=?,
almost twice that of previous examples, since the largest group has n? nodes. Total computation
time for one instance of the algorithm is still 3n(n + 1)[{ops}, because the critical path in the graph

has not been modified with respect to the previous examples.

3.2 Two—dimensional arrays for the Faddeev algorithm with fixed—size ma-
trices

In this section, we use the dependence graph in Figure 2 to illustrate the design of two-dimensional
arrays for the Faddeev algorithm with fixed-size matrices. Since the graph has O(n?) nodes and
we want to obtain O(n?) cells, we need to perform groupings of O(n) nodes per group. Again,
we are concerned with the utilization of the resulting arrays so that we attempt to obtain groups
with the same number of nodes. As in the case of linear arrays, the grouping process is performed
following the procedure proposed in [23]. We use the extended version of such procedure, which
selects groups according to the length of sub-paths in the graph.

There are basically three alternative approaches towards performing grouping of nodes in Fig-
ure 2: group vertical, horizontal or diagonal sub-paths. There are several sub—paths of the same
(maximum) length in each of these cases, so that we can expect to obtain good utilization of the
resulting arrays.

Grouping diagonal sub—paths of the graph: square array

We first perform grouping of diagonal sub-paths of the graph, as shown in Figure 8. Such grouping
leads to the transformed graph shown in Figure 9, which can be directly mapped onto a square
array. In such an array, the lower rightmost n(n + 1) cells are fully utilized while remaining cells
have lower utilization. Cells perform different operations, as inferred from the figure. Results are
obtained from the lower-rightmost n? cells. The transformed graph requires data input in every
node, leading to O(n?) input pads. However, those pads will be under-utilized because only one
data element is transferred through each input for each instance of the algorithm. The input
bandwidth problem can be solved by decoupling data transfer from computation, as proposed for
such case in [21,22].

Since the largest group in the transformed graph is composed of n nodes, this scheme has
throughput

1 -
quuare = E [OpS] !

In a similar manner to the case of the linear array in Figure 6, we can simplify nodes in the
square graph by moving data towards the upper-left corner. In such a case, only nodes in the

11

N N

4 bd4

ﬁ M3 b34

< 42 b33 b24

< bal a2 b23 bld

add B3l a2 b13 -

e b21 d12 : -

< ad2 a3 24 bll - - :

adl a3 a3 ald - - - B

31 an al3 - -))]

a2l al2 - - N ;) i

all - - - -) i)

dd4

“« | o] |

- 42 33 d24

<4 an d32 423 di4

44 31 a2 d13 -

‘_ A3 4 da21 di2 - -

< o2 33 24 du - - -

o4l 32 23 cld - - - B

c31 22 cl3 - - -) i

21 cl2 - - : ; ; .

¢c11 - - - - - ; ’

vdl el vel vl vdl obl vl v
A ™ ™ ™ I

Rotation angle E Rotation «.2} Division EI Muit./Add

Figure 7: Bi-linear array with specialized cells and shifting of data

b14

aild

al3

zi2

a1

g
] K
b3z

rrrrrr

a23

a22

a2l

-
<3
£

- -

T
3 b
[

L

]

]
[} .
' N -r.—.
: -
b b b
N
PN Y Y LT wann PPN STE (TR SERRY INTTY ARRRAEE CEREE CELEES SALE
N
llllll : - d-=} el =4 --F -
_ NI o ol
: - »
1 1. _¢ C— ' 1 K
.
i . _ . _ [
il - . '.— i ! lr_. . L r—. -
-.... Ll - -..] o —.L) > vﬂ.
g i LY R s JR NEE oo . .r.q
P] . g A " . _ 1 3 R
7 > - N t) S ey T v R
[=3 o1] b) e F & - [3 :
<« o T h A 9 .
w of - M e : I"_) : I"_ .)
- o o U BB ey —p—puny e rg > g P Faar ‘u.lsvtilxtll‘ bl E = !—m -
b - 4. U : -] - b - o - - Nuu. |
s |5 B “ [. Caels G4 ; o .
LI5S T - Y A BRLE o .- L
- i ' M SN A : f .
.= S gl N L] AR :] . .
N t e ; : N - Ll - Ll Il
[2 » : " [1
U8 153 49 e b b um RO | m _ %
] ™) NI i R 1 (3]
) = g & H apny pppgas s =< = - = —T
- b - - b - N - -
LNEOE 3% 1 5 | el ~
FEe T >»
: o A B T 1] B i o 18 B o~ [} o
g i ; - .
2 L itk e o g o 2
™ -_—= = D =T Ll —
-
5 e 1% 5 -
= —
bl Mk - ot o
g SN L ge O

.Dela;f

Figure 8: Grouping diagonal sub-paths of the dependence graph

13

decreasing
utilization

maximal

utilization

Figure 9: Square graph for the Faddeev algorithm

14

Rotation angle

Rotation angle,
Rotation

Rotation
Division

Divisian,
Mult/Add
Mult/Add

-

Rotation angle,

Division
maximal } .
utilization{: Rotation,
Muit/Add

\

774 Division

Mutt/Add

TR BRI

>]]] e Y |y

» decreasing
utilization

Figure 10: Specialized cells in the square graph

leftmost vertical sub-path of the graph need to perform complex operations such as division and
computation of rotation angles. This scheme is shown in Figure 10. Intermediate results flow
through the graph and final results can be made available through nodes at the upper-left corner.
Consequently, the region of maximal utilization also moves towards the upper-left section of the
graph.

Grouping vertical or horizontal sub—paths of the graph: trapezoidal arrays

The result from grouping vertical sub—paths of the graph is shown in Figure 11. In this case, we
obtain a graph which can be mapped onto a trapezoidal array. This scheme corresponds to the
structure proposed in [15}. Such array has O(r) input bandwidth. Results low downward through
the rightmost n? cells of the array. Cells are specialized because only the leftmost ones perform
division and computation of rotation angles, while remaining cells perform rotations and multi-
plication /addition. Utilization of this scheme is not maximal, because the number of operations

15

cd1
c31
c21
cli
a4
a3
a21
ai

c43
¢33
c23
ci13
a43
a3l
a2l
a3

d41
d31
d21
di1
b41
b31
b21
b11

d42
daz
d22
d12
b42
b32
b22
bi2

dd4

d43 d34
d33 d24
d23 di14
d13 bdd
b43 Db34
b33 Db24
b23 bt4
b13

Rotation angle

Division

v

-
X
¥

=

Division

v

Rotation

Mult./Add

v

maximal
utiliz.

decreas.
utiliz.

Figure 11: Trapezoidal graph from grouping vertical sub-paths

per group is not constant. Since the cell with longest computation time performs 2n operations.

throughput of this scheme is

The alternative of collapsing horizontal sub—paths of the graph into single nodes leads to the
graph shown in Figure 12. This graph can also be mapped onto a trapezoidal array, with charac-
teristics somehow similar to the previous trapezoidal structure: it also has O(n) input bandwidth,
but results low horizontally through the square section of the array and become available at the
rightmost column of the array. Cells are less specialized than in the previous case, because now
all cells must perform a complex operation such as division or computation of rotation angles, as
shown in the figure. However, fewer cells are needed because diagonal cells in the triangular part
are just delay registers and do not perform any computation. Throughput of this scheme is also

Ttrapez = %

[ops] ™!

[2n]~! because the cell with longest computation time performs 2n operations.

16

b14,b13,b12,b11,a14,a13,a12,a11

b24,b23,b22,b21,a24,a23,a22,a21

b34,633,b32,b31,234,a33,a232,a31

b44,b43,b42,b41,a44,a43,242,341

d14,d13,d12,d11,c14,¢13,¢c12,c11

d24,d23,d22,d21,c24,c23,c22,c21

d34,d33,d32,d31,c34,¢33,¢32,¢31

v v

d44,d43,d42,d41,c44,c43,c42,c41

Rotation angle Division maximal decreas.
Rotations Mult./Add utiliz. utiliz.

Figure 12: Trapezoidal graph from grouping horizontal sub-paths

17

Rotation N e O
anglo E Rotation Division D Mult/Add

Figure 13: Pair of trapezoidal sub—graphs in parallel

In a similar manner to the case of linear structures, we can search for two—dimensional arrays
with higher throughput than what is achievable in the arrays above. While grouping vertical {or
horizontal) sub-paths, we can separate nodes in the different sections of the graph and group them
independently. Such approach leads to pairs of trapezoidal sub-graphs as the ones described above.
Nodes at the same position in these sub—graphs are from the same vertical (or horizontal) sub-path
and since there is a connection along such sub-path, the two sub—graphs have their corresponding
cells interconnected. Figure 13 shows the graph obtained after grouping vertical sub—paths, which
can be mapped directly onto parallel trapezoidal structures. The cell with longest computation
time in such scheme performs n operations, so that throughput is

1 -
Tanie trapez — ; [OpS] !

3.3 Comparison of arrays for Faddeev algorithm with fixed—size matrices

In this section, we compare the characteristics of the different arrays to compute the Faddeev algo-
rithm for fixed—size matrices devised in previous sections. Such comparison is based on information
obtained from the dependence graphs of the algorithm, both the original graph shown in Fig-
ure 2 and the transformed graphs leading to the various arrays. We use the following performance
measures to compare these arrays:

Number of cells
Throughput
Input bandwidth
Utilization

Number of cells and input bandwidth in each array are obtained directly from the transformed
dependence graphs. Throughput is determined by the node with longest computation time in

it

the transformed graphs. Utilization is usually computed as %7’1’_, where n; is the number of

18

nodes with computation time t;, m is the total number of cells, and T is the throughput of the
implementation. The expression 37, nit; corresponds to the total number of nodes in the original
dependence graph so that utilization can be computed by using information obtained from the
graph. In other words, we do not need to obtain the computation time of each cell in an array
but only to compute throughput as indicated above and compute the total number of nodes in the

graph.

To compute the number of nodes in Figure.2, we use the fact that such graph is composed
of many rectangular sub—graphs of decreasing dimensions. Smaller rectangular sub-graphs are
embedded inside larger ones. We ignore delay nodes shown in Figure 2 because those nodes do not
perform useful computation. The number of nodes NV is given by

n—1
N = Y (@n-i@2rn-i-1)
i=0

T3 n

= =N = =

3 3

The expression above is different from the one given by DeGroot et al. in [19], because they
count as operations cycles when a cell is waiting to collect the first two operands before performing
the first operation in a group. Such delay is due to the single-input capacity of cells. Consequently,
their measure of complexity of the algorithm (i.e., 3n3 + n? operations) is greater than the actual
value.

The performance measures listed above are shown in Table 1 for the arrays for fixed-size prob-
lems (the + sign in the entries for trapezoidal structures is due to the difference in number of cells
between both trapezoidal schemes). The table includes a relative measure of complexity of cells: a
“simple” cell corresponds to a cell which doesn’t perform division or computation of rotation angles,
while a “complex” cell performs these two operations. Note that such classification is not rigorous,
because it is not clear whether a cell performing computation of rotation angles is necessarily more
complex than one performing rotations. Such conclusion is highly implementation—-dependent, as
shown in [24,25,26).

From the expressions in Table 1, we infer that utilization of linear and trapezoidal arrays is
better than that of double-linear or square arrays. Among linear arrays, the one with feedback and
shifting of intermediate results, shown in Figure 6, seems more advantageous due to the specialized
but simpler cells. Trapezoidal arrays are attractive because they offer higher throughput than linear
schemes, without degradation in utilization. Furthermore, the scheme with two—planes offers twice
the throughput of the other trapezoidal arrays with the same utilization. Thus, such alternative is
more attractive if one can afford the larger number of PEs and input pads.

4 The partitioning problem in the Faddeev algorithm

In the previous section we devised linear and two—dimensional arrays for the Faddeev algorithm for
fixed—size matrices. However, many applications require processing large matrices for which it is
not feasible to build an array of the required size. Other cases require to solve problems of variable
size using the same array. As a consequence, it becomes necessary to decompose the problem into

19

Array # Cells Throughput | Input Utilization Cells
[1/ops] pads
Linear w/regs 2n 3;-;_1'-172- 2n ﬁ%@- — % all cells complex, (n—1) reg/cell
Linear w/feedback 2n 3;-?;-; 2n g—f"i,—-g—i)— — & | all cells complex
Linear w/shift 2n 3?;’2'471 2n 9—;‘:-5'%-_3—1‘5 — % one complex, n — 1 simple
Double linear 4n n? 4n 7—;‘-;;";-1- — i | two complex, 2(n — 1) simple
Square no shift 4n? nt 2n? %"%‘} — 112 2(3n - 1) complex, 5(5n — 3
simple; 2n delays
Square w/shift 4n? n-! 2nt 3;‘—;;',1 - -173 (2n —1) complex, (2n— 1)? sim-
ple; 2n delays
Trapezoidal 3nt+ 3 [2n]! 2n %‘,1;31; — % | n complex, 322 + 3 simple
Bi-trapezoidal n?in n~1 4n %’ézt-——;; — % 2n complex, 3n? £ n simple

Table 1: Performance measures for arrays for fixed size problems

sub—problems so that sub—problems fit into a target array. This is known as partitioning [27]-
[30]. We first review some structures previously proposed to execute the Faddeev algorithm in
partitioned mode and later present our partitioning method.

4.1 Partitioned structures previously proposed

A structure to compute the Faddeev algorithm in partitioned mode was proposed by Nash et al.
in [17). This structure is based on the one proposed in [15] for fixed-size matrices. It consists of
a square array which is used to process both triangular and rectangular portions of a trapezoidal
model of the algorithm such as the one shown in Figure 11. The scheme partitions matrices A
and B into vertical strips as wide as the size of the array and feeds such strips sequentially to the
array. After both A and B have been processed completely, matrices C and D are partitioned and
processed in the same manner.

Putting Nash et al. procedure in terms of transformations as those described here, they separate
the nodes in the different sections of the dependence graph shown in Figure 2 and group them in-
dependently, leading to a pair of trapezoidal sub—graphs as the one shown in Figure 13. Moreover,
they map each trapezoidal sub—graph independently onto the target square array. As we described
in Section 3.2, the two sub-graphs have their corresponding nodes interconnected. Such intercon-
nections represent intermediate results from processing 4 and B that are needed later to process
C and D. Mapping the trapezoidal sub-graphs independently implies that intermediate results are
left stored inside the array. As a consequence, Nash et al. scheme requires an unloading/loading
step every time a new part of a strip is brought into the array for processing. In addition, a
skewing/de-skewing procedure ‘s used for maximal utilization of the array when computing the
square portions of the algorithm. The authors claim that such overhead is not significant, although
they do not provide figures for such claim.

A different partitioning approach was used by Chuang and He in (30], based on 1/O constraints.

20

They do not use Givens rotations for the annulment of matrix C in the Faddeev algorithm, but use
peighbor pivoting instead (4]. Consequently, the dependence graph for their version of the Faddeev
algorithm is not the one shown in Figure 2. They describe the algorithm using a trapezoidal model
as the graph shown in Figure 11. Different partitioning schemes are proposed, leading to different
structures. The most adequate of those structures consist of a triangular and a square array of the
same width. To use such structure, they partition the trapezoidal model into horizontal strips as
wide as the size of the arrays. The triangular portion of the horizontal strips is executed in the
triangular array, while the remaining of the strips is executed in the square array. Since the size of
the rectangular part of a strip is larger than the triangular part, the square array is used several
times in each horizontal strip while the triangular array is used only once leading to low utilization
of the triangular array. The other partitioning schemes proposed by Chuang and He exhibit similar
characteristics.

Another work on partitioning the Faddeev algorithm was presented by De Groot et al. in [19].
They describe the implementation of a partitioned scheme that corresponds to one of those proposed
by Nash et al. in [17]. It consists of visualizing the algorithm as implemented by a large virtual
array and mapping multiple contiguous cells from the virtual array into each cell of the target
array. Nash et al., who refer to this scheme as “coalescing,” discarded it in spite of its simplicity
because it requires O(n?) memory locations per cell. De Groot et al. implementation uses an array
of transputers with 128K memory per processor, so that memory is not a major limitation. In fact,
their main concern is to increase the processor utilization due to the low communication bandwidth
of their array. Consequently, they pay the cost of increased memory requirements with the ob jective
of reducing communications.

4.2 Partitioning procedure

We have devised an approach towards partitioning based on the dependence graph of algorithms.
We briefly describe here such method and present its application to the design of arrays to compute
the Faddeev algorithm in partitioned mode. We refer the reader to {31] for further details on the
methodology used.

Our approach to partitioning consists of applying the following three-step procedure:

1. Transform the fully-parallel dependence graph to remove properties not suitable for an im-
plementation, such as data broadcasting or non-regular communication pattern. Procedures
for these purposes have been proposed in [21,22,23].

2. Transform the graph obtained in (1) into a new graph, which we call the G-graph, by col-
lapsing groups of nodes into new nodes (G-nodes). The objective of this transformation is to
obtain a graph more suitable for partitioning, in terms of communication requirements. An
example is shown in Figure 14, where sets of consecutive nodes in diagonal sub-paths have
been collapsed into G-nodes. Consequently, the number of nodes in the G-graph is smaller
than the number of nodes in the graph used as input to this transformation.

3. Map G-nodes to a target array with m cells by scheduling sets of m neighbor G-nodes {a
G-set) for concurrent computation, as shown in Figure 15. G-sets scheduled successively are
executed in overlapped (pipelined) manner in the array. The selection of G-sets depends on

21

Figure 14: Collapsing primitive nodes into G-nodes

the structure of the target array. In addition, for good utilization, all nodes in a G-set should
have the same computation time.

We apply now this procedure to design arrays for partitioned execution of the Faddeev algo-
rithm.

4.3 Partitioning the Faddeev algorithm for linear arrays

Let’s assume that we want to partition the Faddeev algorithm for » by n matrices so that it
fits in a linear structure with only m cells, where m < n. The graph in Figure 2 has regular
communications requirements among nodes, so that we do not need to perform step 1 in the
procedure above. To obtain the G-graph as indicated in step 2, we consider here the case of
collapsing each vertical sub-path of the graph in Figure 2 into a G-node (collapsing horizontal
sub-paths is also an alternative). Grouping vertical sub-paths corresponds to the grouping done
in Section 3.2 leading to the trapezoidal graph shown in Figure 11. In this graph, rows of G-nodes
have the same computation time and such time decreases for lower rows of the G-graph.

In the last step of our procedure, we map G-sets from the transformed graph onto a linear array
by selecting G—sets of m G-nodes in horizontal sub-graphs, as shown in Figure 16a. Scheduling
of such G-sets is discussed later. Intermediate results from G-sets are saved in external memories.
Those intermediate results include rotation angles or pivots flowing horizontally, and rotated or
pivoted rows flowing vertically. Such data is available at the boundary of the set, so that saving it
in external memories is straight-forward.

The structure resulting from the approach outlined above is shown in Figure 16b. This array
enjoys maximal utilization because all G-nodes executed concurrently have the same computation
time, except when executing boundary sets in some rows which might not use all cells in the array.

4.4 Partitioning the Faddeev algorithm for two—dimensional arrays

We apply now the partitioning procedure described earlier to obtain two-dimensional arrays for
the Faddeev algorithm. The first two steps of such procedure are the same as for linear arrays, so

22

Lol o[o]) () scheduing A B
S — Q| Y
— = . @ ""l' it - — > /
¥ '
- X E o \ — > \
iEuce Ol ¥||¥ ¥
LursTwlcpfle s uiu
M., e }
% ... Gset ™ é
1 3
~B i 2P 34 i
Two-dimensional
Linear array - a
) PE

1 [sett [set2 [set3 | setd | 1 L setl | set2 | setd | setd |

o | setl | set2 | set3 | setd | o | setl | set2 | set3 | setd

3 [set! [set2 | set3 | setd | 3 {set! | set2 | set3 | setd |
4 | set! T set2 | set3 | setd | 4 | setl | ser2 | set3 | setd |
>t >t
Figure 15: Mapping G—graph into linear and two—dimensional arrays
-+ -+ -+ -+
I—. 1H™ 2 H® mAH
vy vyl vl ¥

Memory

- ..-@ Memory
() (b)

Figure 16: Partitioned linear array for the Faddeev algorithm

23

el
. . >
vy ¥||2
I—» e He 2

L /

Figure 17: Two-dimensional partitioning of the Faddeev algorithm

that we use the G—graph obtained above which is shown in Figure 11.

The last step of our procedure maps the G-graph onto the target array. Mapping the trape-
zoidal G-graph for execution in a two—dimensional structure with m cells requires to simulate a
triangular array and a square array, because those are the major components of the G-graph. Both
requirements can be fulfilled in a square array, with the proper control signals. G-sets are mapped
onto the array as square blocks of ./m by /m nodes, as shown in Figure 17a. Intermediate results
are saved in external memories. Those intermediate results consist of rotation angles or pivots flow-
ing horizontally, and rotated or pivoted rows flowing vertically. The structure resulting from this
approach is shown in Figure 17b. Utilization of this array is not maximal, because the computation
time of G-nodes is not the same for all nodes in a G-set.

From this analysis we infer that there are differences in the amount of data that needs to be
saved in external memories. The linear structure requires to save m + 1 data elements per G-set
while the two-dimensional array requires to save only 2./m.

4.5 Scheduling and I/0 in partitioned Faddeev algorithm

We discuss now the scheduling of G-sets mapped onto linear and two-dimensional arrays. To
illustrate such scheduling, we use the G-graph shown in Figure 13 (this graph can be regarded
as the internal portion of a large-size Faddeev G-graph). G-nodes in horizontal sub-paths have
identical computation time and data flows in pipelined manner. Nodes in Figure 18 have been
tagged with their earliest scheduling time (i.e., at what time they could start execution) relative to
a reference time ;.

Scheduling of G-sets must take into account the dependences among G-sets, due to the pipelined
nature of data flow within the array. A G-set can’t be scheduled for computation until required
data from predecessor G-sets is available. However, computation time of nodes in a G-set is O(n)
while the length of dependences through the array is O(m) because there are only O(m) cells. Since
m < n, data needed to schedule execution of a G—set is available before the G—set in execution
completes. Consequently, scheduling needs to consider only the dependences between G-sets.

Mapping onto a linear array was performed by composing a G-—set with nodes in horizontal

24

G-sets

", ¥ v
t=2n 1 2 3 4 n+1 9| 2n+2] 2043 10 2n+d i | | {
¥ ¥ ¥ ¥ 3 ¥ ¥ ¥ ¥ s A
=201 ([2nr1 |l 202 -0 2n+3 o+ D] an } o[4ns1}a{ani2]-0{4ns3) | _r | { _ |
t=2n-2(] 4n an+1 - an+2 o] 4043 6n 2 6n-1 6 6n+l [‘f i . [? |
ﬁﬁ oo D oot I-I I-'{Tm R o S R
¥ ¥ ¥ ¥ : :
/Gl Pl T) : |
& L] [] L []]]
"“M“'“‘G“““ ™ ® . . ° o ™ .
+ 4

(a) - Scheduling G-graph into linear array

G-Is:u
t=2m-1 2 3 | 2n+2 - 2043 4n+3 dn+d
t =20-2 [(Znel 1] 2002
20 +3 sl
mrmHannH*H*H*H*HLHﬁ
whedingine S o e o e+ s s o
o e

(b) - Scheduling G-graph into two-dimensional array

Figure 18: Scheduling G-graph into linear and two-dimensional array

25

sub-paths, because such nodes have the same computation time. Scheduling of G-sets can be done
by horizontal or vertical sub-paths. For I/O bandwidth reasons discussed below, we choose to
schedule G-sets by vertical sub-paths as depicted in Figure 18a. This figure shows that G-sets
can be scheduled in pipelined mode in a simple manner. Scheduling G-sets for execution in a
two-dimensional array is similar to the linear array discussed above. For I/O bandwidth reasons,
we also choose to schedule G-sets by vertical sub—paths, as illustrated in Figure 18b.

A host feeding input data to the array needs to provide only the elements appearing as input to
the top rows of the G-graph. Intermediate values are saved in and obtained from external memories
attached to the array. Since G-sets comprising nodes at the top of the G-graph are not scheduled
successively, the host needs to fed data to the array at a rate lower than one input per cell per cycle.
Consequently, we can increase utilization of I/O connections by decoupling computation from data
transfer, as proposed in [21,22]. Such approach leads to I/O structures as shown in Figure 19,
where the host feeds data to the array through a chain of registers (the R blocks in the figure).
Each block R consists of a register and a local memory with capacity to store 2n data elements.
Data from the host flows in pipelined mode through the registers and is stored in the memories.
When a G-set from the top of the graph is scheduled for execution, data is read from the memories
into the PEs while new data is transferred from the host.

G-nodes in Figure 19 have been tagged with their scheduling time, as determined above. Since
each node at the top of the G—graph receives 2n data elements from the host, I/O bandwidth is
given by

2nm
BW = ———
Zrkl'.—.l tck
_ 2nm
T (2n+1)n-in(n+1)
_ am
T 3n+1

where 1., is computation time of G-nodes in the k-th row of the G-graph. Under the conditions
described above, linear and two-dimensional arrays have the same /O bandwidth from the host.

4.6 Comparison of arrays for partitioned Faddeev algorithm

We compare now the characteristics of the arrays for the Faddeev algorithm in partitioned mode
presented in previous sub-sections. We use the same performance measures to compare these arrays
as the ones used for fixed-size cases, plus overhead due to partitioning.

Utilization of arrays is computed in the same manner as in fixed-size problems, namely as
number of nodes in the dependence graph divided by m/T, where T is throughput. As stated in
Section 3.3, the number of nodes in the dependence graph is %n:‘ — 5. Throughput is determined by
the computation time of the busiest cell in the array. Such information is obtained from mapping
the G-graph onto the target array. In the following subsections, we present the derivation of the
corresponding expressions for the different arrays.

26

from host
t= 2n-1 (| 2n+t 2n+2 2n+3 n+d

v ¥ ¥ [[
t=2n-2(] 4n 4n+1 4n+2 4n+3 DAl }» |- =)

6n-2 6n-1 6n 6n+1

:s 8n4 BnSHSnZBﬂ]—-.r | mal ﬁ

Il n
22 (2) /O bandwidth in linear array
t.=2n 1 2 from host
t= 2n-1 2 3
w22 (EeTTols)
Y ¥ v | i $ +
n+2]-—b! 2n+3 -q{
[Tl o H 1——1 H_L}+I_L|—-I_L1
S e -
scheduling time @ ' - ~
Lol @ "u ne d L0 BW = (ém)/(3n+)
Snz:: n
7

(b) - 1/O bandwidth in two-dimensional array

Figure 19: I/O bandwidth in partitioning Faddeev algorithm

27

Linear array

When scheduling the G—graph shown in Figure 11 for execution in a linear array with m cells,
the first horizontal sub-path of the graph is mapped in 2n/m sets. Each G-node in this sub—path
consists of 2n operations. The second horizontal sub-path is mapped in [(2n — 1)/m] sets because
the length of the sub-path is shorter, and each G-node consists of 2n — 1 operations. This pattern
repeats for all horizontal sub-paths and the last one is mapped in [(n + 1)/m] sets. Therefore, the
array is used for

:.Z;; [2"; i] (2n - i) = Té [(fn—” - k) r;Z_Ol(Zn o km)]
7:'_1 n m—1)
= 3 (%n- - k) [(212 — km)m - ;ﬂ e]

= Z?: [mzzz——m—(—m_—l)z] z=2—n—k

p=2 4] 2 m
28n3 — 9n?(m - 1)
e~ 5 [ops]
and throughput is
12m -1
Tlinear = 2813 — 9n2(m _ 1) [ops]
Utilization is given by
3 nodes in(7n? - 1)
Utinear = T =
m/ m (12m [28n3 — 9n?(m — 1)])

28n? - ¢
28n? — 9n(m — 1)

Therefore, for large n, utilization tends to 1 and throughput tends to %ﬁ‘;

Square array

In the square array proposed here, G—sets are scheduled as square blocks of \/m by /T nodes.
Therefore, the first /m horizontal sub—paths of the G-graph are mapped to the cells in 2n/ /1 sers.
Computation time of these sets is given by the computation time of nodes in the first horizontal
sub-path, which consist of 2n operations. The next \/m horizontal sub-paths are mapped to the
array in (2n — /m)//m sets, because the length of these sub—paths is shorter than previous ones.
Computing these sets requires 2n — \/m operations. The remaining horizontal sub—paths follow a
similar pattern, so that the array is used for

il

Z("/—)(zn _iy/m) Z(Zn — iy/m)?

=0 l-'-O
p—1
- Ay (2—\/’% _ z.)z

2n

= v 5 e s ()

z-_-vnm-f-l
7 n3
= Im [ops]

where p = n/\/m is the number of rows of \/m by \/m sets of G-nodes needed to cover the entire
G-graph. Throughput is

3m -
Taquare = ?TF [OpS} '
and utilization is given by
u _ Ynodes _ in(7n?-1)
square — -
m/T m ((7n3))
_ nd —n
B n3

Therefore, for large n, utilization tends to 1 and throughput tends to %ﬁ‘g

Nash et al. array

Nash et al. [17] use a square array to map their bi-trapezoidal model. They map each of the trape-
zoidal sub-graphs independently, so that they require certain overhead in unloading/loading and
skewing/de-skewing data. Since such overhead has not been reported quantitatively, we compute
the throughput of their scheme ignoring such overhead. Consequently, this is an upper bound of
what is achievable with their implementation.

Computing how long their array is used can be decomposed into computing how long each of
the trapezoidal sub-graphs uses the array, as follows (where p = n//m):

¢ Triangularizing matrix 4 and transforming matrix B (i.e., executing the first trapezoidal
sub—graph). In such sub-graph there are as many nodes as in the trapezoidal graph mapped
onto the square array discussed above, but the computation time of each node is shorter.
Consequently, execution of these G—sets takes

E2n—i‘/ﬁ(n—i\/ﬁ) _ 5n3+6n;\/7.rﬁ+nm

1=0 v 1T m

¢ Annulling matrix C (i.e., executing the triangular portion of the second trapezoidal sub-
graph). Execution of these G-sets takes

Pl n—iym n3 + nt/m
(A - T

¢ Updating matrix D (i.e., executing the rectangular portion of the second trapezoidal sub-
graph). Such operation takes

1=0

These three terms together with an extra term accounting for overhead in data transfers give
the throughput of this implementation as

6ém

TiNas -1
Nash 14n3 + 9n2\/m + nm + 6m(OVHD) [ops]
Utilization is given by
o _ Y nodes 14n% — 2
Nash = m/T 14n® 4+ 9n2/m + nm + 6m(OVHD)

Consequently, Nash et al. implementation has the same throughput as the square array proposed
above if there is no overhead in data transfers. In practice, such throughput and utilization of the
array are lower. In addition, their scheme exhibits complexity in the control required to perform
those data transfers into and out of the array. I/O bandwidth of Nash et al, scheme is higher than
the square array above, because of the loading/unloading of data.

De Groot et al. partitioned scheme

De Groot et al. [19] evaluate their partitioning scheme and array considering that data communi-
cation is ten times slower than performing a single operation in a cell. This is a consequence of
their implementation, an hypercube with transputers as nodes. In addition, they use completion
time as performance measure. Although completion time is an important parameter for certain
applications, we believe that throughput in an array is more important so we use the latter for our
evaluation.

De Groot’s scheme consists of a trapezoidal structure with (3P? + P)/2 cells, where P is the
dimension of the square and triangular portions of their array. To compare such array with the
ones derived here, we express P in terms of m, that is in terms of the number of cells in our arrays.
Thus (3P? + P)/2 = m leads us to P = 1[/24m + 1 - 1]. The trapezoidal model describing the
algorithm is partitioned into blocks of adjacent nodes and each block is mapped onto a single cell.
Consequently, in the square portion of the trapezoidal model such blocks have (n/P) vertical sub-
paths with (n/P) nodes in each sub—path. Throughput of their implementation is given by the
computation time of the first row of cells in the array, since those cells have the most operations
to compute. Such cells perform 2n + (2n — 1)+ - + (2n — 3 + 1) operations for each of the (n/P)
vertical sub—paths. Thus, computation time of the cells is

n n
leell = -};[2n+(2n—1)++(2n_ﬁ+1)
n/FP
= = (2?1——-{-1)
P
n 2n n
= -_-ﬁ 3 z z=2n—F+;
=n~g+1
ny? 1 3
= 2n (';6 -—5(?) [ops]

30

Replacing the value of P computed above, we obtain

. 36n° B 54n3
cell 12m —VZAmF 141 (12Zm—veam+ 1+ L)(vadm £1- 1)
_ 18n3 o 3 }
12m — v24m £ 1+ 1 V2am 11— 1
36n°
~ [ops]

12m - /24m + 141
so that throughput is

12m - +/24m+ 141

TDeGroot = 3673 [ops]_l
and utilization becomes
UbeGroot = ZHOdES = %n(Tnz _ 1)

N/T m (o)
_ (P -1))(12m - 2am T 1+ 1)
N 108n?m
_ 84n?m—12m+(7Tn? — 1)1 — /24m + 1)
- 108n2m

Therefore, for large n, utilization tends only to 7/9 and throughput tends to %n%-

The results above are summarized in Table 2. We haven’t completed the entries in the table
for Nash et al. array, because the overhead in loading/skewing data has not been reported quan-
titatively. Furthermore, we have not included I/O bandwidth for De Groot et el. scheme, because
of their approach towards data transfer. From this table we infer that, for large n, both our linear
and square arrays tend to the same throughput (i.e., %%’}) and optimal utilization. In addition,
both exhibit the same I/O bandwidth from the host. These linear and square arrays have better
performance measures than the array proposed by De Groot et al. and do not exhibit the overhead
required in the scheme proposed by Nash et al.

In addition to the performance measures described above, a linear array is more advantageous
than a two—dimensional one because:

e it is simpler to implement

e for a finite value of n it has slightly higher utilization than the two-dimensional structure

e it is better suited to incorporate fault-tolerant capabilities (i.e., it’s easier to skip a faulty
cell in a linear array than to reconfigure a two—dimensional structure)

Consequently, we conclude that for partitioned execution of the Faddeev algorithm, a linear
array offers better performance and implementation than a two-dimensional array.

5 Conclusions

We have presented the application of a graph-based methodology to derive arrays for computing
the Faddeev algorithm, for fixed-size and partitioned problems. We have derived linear and two-
dimensional implementations for such algorithm, and we have compared these arrays with other

31

Table 2: Performance measures for partitioned implementations with m cells

Array Throughput I/0 Utilization Overhead
[1/ops] BW
H 12 4m 28n2-1
Linear 28n5—9nm! (m—1) 3n+1 28n% —9n{m—1) -1 none
Square 20 3:T1 7’;3"‘" -1 none
12m—+/2dmi1+1 2 -1)(12m~+/TdmF1+1 2
De Groot L%n:— — (21N Zooymtltl) | o(n?)
—7/9 storage
6m 4m 14n? -2 :
Nash 14n3 4902 /m+nm+6m(ovhd) | 3n+1 +ovhd 14n° $9n% /m+nm+6m (ovhd) loadmg,
skewing

schemes previously proposed in the literature. The evaluation used performance measures such as
number of processing elements (PEs), throughput, I/O bandwidth, utilization of PEs and overhead
due to partitioning.

Our results show that, for fixed-size problems, throughput reaches 2 /(3n? — n + 2} in a linear
array with 2n cells and n — 1 storage locations per cell. Other linear schemes proposed here achieve
throughput 2/(3n%4-n) also with 2n cells but no storage requirements in each cell. Two—dimensional
schemes reach throughput {2n)~! or n~! with 2n and 4n cells respectively. Utilization of all these
arrays tends to 7/9. One of the two-dimensional schemes presented here corresponds to the one
proposed in [15].

For partitioned problems, we mapped the algorithm onto linear and two-dimensional structures.
We derived a two-dimensional scheme that is more efficient and has less overhead than other arrays
previously proposed. We have shown that throughput of our partitioned implementation, both
linear and two-dimensional, tends to (3m)/(7n3), where m is the number of cells. Moreover, we
have shown that both linear and two-dimensional structures have the same I/0O bandwidth from
the host, namely (4m)/(3n + 1) [words/ops).

We have shown that performance measures of partitioned implementations of the Faddeev al-
gorithm are the same for both linear and two-dimensional arrays, but linear schemes are simpler
and better suited to incorporate fault—tolerant properties. Consequently, we concluded that. for
partitioned execution of the Faddeev algorithm, a linear array offers better performance and im-
plementation than a two—dimensional array.

References

1] H. Kung, “Let’s design algorithms for VLSI systems,” in CALTECH Conference on VLSI.
g £
pp. 65-90, 1979.

[2] H. Kung, “Why systolic architectures?,” JEEE Computer, vol, 15, pp. 3746, Jan. 1982.

32

[3] H. Ahmed, J. Delosme, and M. Morf, “Highly concurrent computing structures for matrix
arithmetic and signal processing,” IEEE Computer, vol. 15, pp. 65-82, Jan. 1982,

(4] W. Gentleman and H. Kung, “Matrix triangularization by systolic arrays,” in SPIE Real-Time
Signal Processing IV, pp. 19-26, 1981.

[5) J. Speiser and H. Whitehouse, “A review of signal processing with systolic arrays,” in SPIE
Real-Time Signal Processing VI, pp. 2-6, 1983,

(6] D. Moldovan, “On the design of algorithms for VLSI systolic arrays,” Proceedings of the IEEE,
vol. 71, pp. 113-120, Jan. 1983.

[7] F. Luk, “Architectures for computing eigenvalues and SVD’s,” in SPIE Highly Parallel Signal
Processing Architectures, pp. 24-33, 1986.

[8] A. Fisher, H. Kung, and L. Monjer, “Architecture of the PSC: a programmable systolic chip,”
in 10th Annual Symposium on Computer Architecture, pp. 48-53, 1983,

(9] L. Snyder, “Introduction to the configurable highly parallel machine,” IEEE Computer, vol. 15,
pp. 47-64, Jan. 1982,

[10] J. Symanski, “Implementation of matrix operations on the two-dimensional systolic array
testbed,” in SPIE Real-Time Signal Processing VI, pp. 136-142, 1983.

[11] B. Drake, F. Luk, J. Speiser, and J. Symanski, “SLAPP: a systolic linear algebra parallel
processor,” IEEE Computer, vol. 20, pp. 45-50, July 1987.

[12] M. Annaratone, E. Arnould, T. Gross, H. Kung, M. Lam, O. Menzilcioglu, , and J. Webb,
“The Warp computer: architecture, implementation and performance,” IEEE Transactions on
Computers, vol. C-36, pp. 1523-1538, Dec. 1987.

[13] D. Foulser and R. Schreiber, “The Saxpy Matrix-1: a general purpose systolic compiter,”
IEEE Computer, vol. 20, pp. 35-44, July 1987.

[14] D. Faddeev and V. Faddeeva, Computational Methods of Linear Algebra, pp. 150-158. W H.
Freeman and Co., 1963,

[15] J. Nash and S. Haasen, “Modified Faddeev algorithm for matrix manipulation,” in SPIE Real-
Time Signal Processing VII, pp. 39-46, 1984.

[16] J. Nash, K. Przytula, and S. Hansen, “Systolic/cellular processor for linear algebraic opera-
tions,” in VLSI Signal Processing II, (J. N. S.Y. Kung, R. Owen, ed.), pp. 306-315, IEEE
Press, 1986,

{17] J. Nash, S. Hansen, and K. Przytula, “Systolic partitioned and banded linear algebraic com-
putations,” in SPIE Real-Time Signal Processing IX, pp. 10-16, 1986.

(18] H. Chuang and G. He, “A versatile systolic array for matrix computations,” in 12th Annual
Sympostum on Computer Architecture, pp. 315-322, 1985,

(19] A. DeGroot, E. Johansson, and S. Parker, “Systolic array for efficient execution of the Faddeev
algorithm,” in SPIE Real-Time Signal Processing X, pp. 86-93, 1987.

33

(20] J. Fortes, K. Fu, and B. Wah, “Systematic approaches to the design of algorithmically speci-
fied systolic arrays,” in International Conference on Acoustics, Speech and Signal Processing,
pp. 300-303, 1985,

[21] J. Moreno, “A proposal for the systematic design of arrays for matrix computations,” Technical
Report CSD-870019, Computer Science Department, University of California Los Angeles,
May 1987.

[22] J. Moreno and T. Lang, “Design of special-purpose arrays for matrix computations: prelimi-
nary results,” in SPIE Real-Time Signal Processing X, pp. 53-65, 1987,

(23] J. Moreno and T. Lang, “Reducing the number of cells in arrays for matrix computations,”
Technical Report, Computer Science Department, University of California Los Angeles, March
1988,

[24] M. Ercegovac and T. Lang, “Redundant and on-line CORDIC: application to matrix triangu-
larization and SVD,” Technical Report CS5D-870046, Computer Science Department, Univer-
sity of California Los Angeles, 1987.

[25] M. Ercegovac and T. Lang, “On-line scheme for computing rotation factors,” in 8th Symposium
on Computer Arithmetic, pp. 196-203, 1987.

[26] J. Cavallaro and F. Luk, “CORDIC arithmetic for an SVD processor,” in 8th Symposium on
Computer Arithmetic, pp. 215-222, 1987.

[27] K. Hwang and Y. Cheng, “Partitioned matrix algorithms for VLSI arithmetic systems,” IEEE
Transactions on Computers, vol. C-31, pp. 1215-1224, Dec. 1982.

(28] I. Navarro, J. Llaberia, and M. Valero, “Partitioning: an essential step in mapping algorithms
into systolic array processors,” IEEE Computer, vol. 20, pp. 77-89, July 1987,

{29] D. Moldovan and J. Fortes, “Partitioning and mapping algorithms into fixed size systolic
arrays,” IEEE Transactions on Computers, vol. C-35, pp. 1-12, Jan. 1986.

(30] H. Chuang and G. He, “Design of problem-size independent systolic array systems,” in Inter-
national Conference on Computer Design, pp. 152-157, 1984,

[31] J. Moreno and T. Lang, “Graph-based partitioning of matrix algorithms for systolic arrays.”
Technical Report, Computer Science Department, University of California Los Angeles, March
1988,

34

