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correction include: lack of flexibility in the supported CAD system, separation of the
design interaction from database interaction, separation of knowledge base issues
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CHAPTER 1
Introduction

1.1 Historical Perspective

Data Base Management Systems (DBMS) evolved from File Management
Systems primarily in response to data-processing’s need for the integration of infor-
mation. This evolution resulted in benefits such as reduced data redundancy, sharable
data, enforcement of standards, maintenance of integrity, and avoidance of incon-
sistencies. Today, the use of large integrated data bases in the commercial data pro-

cessing world has been fully established. Computers were also being used in the
‘engineering/scientific community to solve numerical problems. These solutions pro'-
duced large volumes of data which were stored on files. Data reduction techniques
often were applied to reduce this volume and numerous translators were written to
reformat this data for use in other areas. Since the emphasis at this time was on the
development of batch applications, such as the generation of engineering drawings,
logic simulators and component placement techniques, the need for an integrated
database was at first given low priority. However, when cﬁ'ective, efficient interac-
tive O devices became available, many of these same engineers began creating data
interactively within a Computer Aided Design (CAD) environment. Soon the need to

integrate data became apparent [Lori81].

The recognition within the engineering community of a need for some type of
data management support resulted in various types of data management design

implementations. The three approaches, described in the following paragraphs,



represent the first two stages in the evolution of data base system development:
design by default, and design for the introduction of the data base concept (Inmo81].
CAD data base systems have now evolved to the latter two stages: design for perfor-
mance, and design for flexibility. However, since the problems encountered in the
first two stages define the directions taken within the final stages, a brief description

of these approaches is appropriate.

One approach was to provide embellishments to existing file systems. An
illustration of this approach is the CAD data base developed at Raytheon [Ciam76].
The approach taken resulted in a system which provided convenient fast access
(superior to DBMS) to large amounts of data, but lacked essential characteristics of a
DBMS, such as processing based on data values, recovery, access control, and con-
currency control. In fact, this type of system provided for little more than the storage
and retrieval of designs, along with some minimai query facilities. The designers at
Raytheon c?cpericnced frequent restructuring of the file system and increased com-

plexity as new requirements were added.

Another approach was to build a tailored DBMS for each individual CAD
tool. This approach was an expensive undertaking since much software, personnel
and time were needed for this type of development. Often these attempts might take
so long that the CAD system was no longer in use or had changed so much that the
resulting DBMS no longer met the original requirements. RCA [Kore75] began
developing a DBMS for its integrated circuit design system and upon completion
abandoned the system because of new requirements which had arisen. Indeed, small
organizations found the cost factor associated with this approach unduly high.
Another problem encountered with this approach was that as CAD systems became

more numerous the users not only had to learn to use these different systems, but also



had to learn each related DBMS facility.

The third approach taken was to attempt to retrofit commercially available
database systems. Numerous implementations used this approach. The major
difficulty with this approach was found to be the fitting of design data into the data
model supported by the specific DBMS. Other difficulties included the inability to
update structures in the generalized data base management system (GDBMS), the
inability to process more than a record at a time, and the lack of support for the com-
plex relationships found in a CAD environment [Sid180]. These difficulties resulted

in either no data management or the development of ad-hoc systems.

Many insights were gained from the experiences of these attempts at provid-

ing design data management support. The general consensus was that CAD DBMS

support needed:
. more functionality than provided by a file management system;
. a greater degree of integration than provided by tool specific DBMSs;
. features attuned specifically toward the design process and the design
artifact.

In order to effectively meet these requirements three factors needed to be closely

examined:
. the fotal environment into which this system is to be embedded;
. the types of information to be stored and the unique structures needed;
. the manipulations to be performed upon these sguctures.



The following section looks at the state of current research within the CAD
DBMS area. These specific efforts have attemnpted to meet some of those needs previ-

ously cited by addressing particular areas of concern.

1.2 Motivation

The technical community currently exhibits a major interest in the area of
CAD (also CAD/CAM). This growth, however, could cause proliferation of
accidental systems. That is, software/hardware packages might be put together in an
ad-hoc fashion, so as to negate the benefits gained from a CAD system. Proper plan-
ning could utilize the pressure of driving forces to arrive at an integrated system
[Myer82]. A crucial feature of such an integrated design system is the data manage-
ment of the both the design and the design process. The data management problem
associated with a design is recognized by both the academic and industrial comrmuni-
ties as an important area of data base research. Such recognition provides motivation

for this particular research.

1.2.1 Recognition of Problem by Industrial Community

Considerable effort has been expended to develop and implement some type
of DBMS support for specific CAD systems. This on-going effort is supported by
industry, academic institutions and various government agencies such as the Depart-
ment of Defense (DOD) and the National Aeronautics and Space Administration
Agency (NASA). A major concern is the increase of productivity through the appli-
cation of computers to manage engineering data. Since much of engineering data is
generated during the design process, the CAD environment is targeted as an area for
research and development. Companies such as RCA [Kore75], Bell Labs [Frie82],
Mentor Graphics, Inc [Benn82], Boeing [John82], IBM [Hask82], and Mitel [Blai85]



are but a few that have invested considerable resources in order to arrive at an under-
standing of the features needed and the concomitant problems. Some of the areas of
concern are the establishment of requirements for integrated CAD systems {John82],
the acceptance of design aids by a user [Kore75], the support of work from design
development through manufacturing [Madd81], and the need for a flexible and exten-
sible data base system which will support the changing use of the computer in the

CAD/CAM environment [Ulfs81, Tsub81].

1.2.2 Recognition of Problem by Academic Community

Academic researchers have also been investigating such problem areas as: the
appropriateness of existing data models for the representation of design {Gutt82,
Hask82] , extending and modifying existing data models to accommodate the
representation of design [Hayn81] , maintaining the integrity of the design process
[East81a] , defining the concepts of concurrency and transaction processing within a
dcsign.environment [Katz84] , and increasing the scope of data base management
systems to more fully support the design process [Katz85, Brow83]. Data base sys-
tems to support the design process have been designed and developed at such institu-
tions as Carnegie-Mellon [East80], Stanford [Beet82, Brow83], Wisconsin [Chou82],
Berkeley {Gutt82], USC [Afsa85a], and UCLA [Mars83].

Chapter Two of this dissertation contains detailed descriptions of these and
other approaches. Each description presents the salient features of the specific contri-
butions claimed by the particular research effort. Classification of these research
efforts into three major categories provides the organizational structure of Chapter
Two. Using this classification scheme as a basis, some overall limitations with these

approaches are presented.



1.2.3 Statement of Research

The intent of this research was to investigate the problem domain associated
with the design and development of data management support of the computer aided
design process. This investigation has resulted in the identification of particular
features needed and a definition of the problems encountered while attempting to pro-
vide such features. Solutions to these problems have been proposed. First however,
the data management problem needs to be explicitly defined. A closer examination
- of the three factors listed in section 1.1 helps to formulate a definition of this data

management problem.
1.3 Design Management Problem
1.3.1 Introduction

The design management problem is defined within the context of an
integrated CAD system. The development of such an integrated system - one which
interactively provides a structured and consistent data representation combined with
user-friendly human-machine interaction - is at best, difficult. This is not the topic of
this research. However, this research does take place within the confines of such an
integrated system and the development of that system is the topic of a companion
dissertation [Worl86]. In order to provide an appropriate definition, we need to have
an understanding of both the design process and the CAD system into which data
management facilities are to be embedded. Next, we must examine the various types
of information that are to be represented and the ways they can be represented. This
information representation needs to be mapped onto appropriate data structures and

operations for manipulation of those data structures must then be defined.



1.3.2 Design Process Support

A top-down refinement design procedure uses a hierarchical approach
whereby systems are decomposed into subsystems and each of these subsystems is
again decomposed into subsystems, and so on. At any point in the design process a
previously designed subsystem might be usable within the new system design. When
all of the decompositions are so realized, the design process reaches completion.
Thus, the design process is describable as iterative and recursive. Alternative
decompositions may result in different subsystems, giving rise to alternate designs.
The design process may also require different representations to evaluate a design’s
multiple performances [East81b]. During the design process, decisions need to be

made based on both design criteria and other dependencies which must be satisfied.

Although we tend to think of creation of a design as being carried out in a
vacuum, the process, in many instances, is not an individual task. Complex design
problems require many designers working at the same level of design and also at
multiple levels. Coordination of the design efforts becomes a managerial task. Docu-
mentation of the design and its history are essential aids in achieving such coordina-

ton.

The DBMS support needed for such a design environment is considerable. A
design data base system must be able to represent the iterative and recursive nature
of the design. The capability to retrieve completed subsystem designs based on attri-
butes is necessary to support composition in design. The multiple versions of a design
need to be managed by such a system, as well as the different representations. This
gives rise to complications resulting from maintaining relationships among these
various versions and representations. In order to support decision making within the

design process it is apparent that an evolving design knowledge base needs to be



maintained.

Support of the collaborative efforts of a team require that the DBMS provide
for configuration control, access control, and report generation. The ability to cluster
groups of information created by the design process during various phases is also

essential in order to efficiently respond to the designer’s needs.
1.3.3 System Environment Interaction

The design process described above is not isolated. That is, it takes place
within some system’s environment. This environment has been defined to be an
integrated CAD system. An integrated CAD system is one which provides a coilec-
tion of tools to aid in the design process, and a basic subsystem (SYS/KERNEL)
which handles the interaction between the user and the tools. Therefore, the DBMS
embedded in such a system must provide support for both the tools and the

SYS/KERNEL.

A data base system developed for the management of design must reflect the
structure of the CAD system in which it is embedded. This support consists of pro-
viding facilities for defining, creating and maintaining various types of data struc-
tures needed for the proper functioning of the SYS/KERNEL and tools. In an
integrated environment, data structures needed by one tool may also be used in
another. Therefore, maintenance of the integrity and consistency of the data structre

is of paramount importance in achieving an acceptable CAD environment.
1.3.4 Information Representation

A major difference between conventional design and CAD is that in CAD the

design information needs to be represented in a formal way. An information model or



schema is the formalized way of representing such information. The traditional
DBMS solution is that the schema is explicitly stored as an integral part of the data
base itself. A conceptual schema of a design process will necessarily have to be

represented on two levels.

The development of an information model to represent the design process
consists of identification of the design entities, classification of the entities into
classes or types, and identification of relationships between entities and/or classes of
entities. In a CAD environment there will be many types and classes of entities and
relationships between entities will be complex. Unlike entities found in a traditional
database, entity types in this environment can consist of both structured and unstruc-

tured information.
1.3.5 Data Structure Representation

Transformation of the information model into a structure supported by a
DBMS is necessary in' order to realize a data management system. Currently DBMS
software supports three major ways of building data structures: network structure,
hierarchical structure, and relational structure. These basic structures are static, that
is, they are defined and do not change their original structure unless the entire data
base is reorganized. Since the information within a design environment evolves, the
static nature of data base structures appears to constrain representation of the design

process.

Representing the design process within a hierarchical data structure might
seem to be the appropriate choice since we have described this process as being
hierarchical in nature. However, the design process generates a design which consists

of m to n relationships more appropriately modeled by a network data structure.



Using a predefined, fixed data structure is usually inadequate in a design database

since many types of data structures need 1o CO€xist.
1.3.6 Data Structure Operations

In the design environment, a designer is concerned with manipulating the
representations of the design. These manipulations are performed either upon the
entire design or upon individual portions of the design. A design is a complex entity
consisting of multiple entities and relationships and therefore, the data structure
operations need to handle various levels of complex objects. Present day DBMS
operations are defined so as to only perform record at-a-time processing. We refer to
this as atomic processing. The complexity of a design object necessitates a type of
molecular processing so that the designer might manipulate meaningful design enti-

ties.
1.3.7 Summary of Design Probiem

We have seen that CAD systems need something which incorporates both
data management functionality and some form of software development control tech-
niques to support the design process. Such a system needs to be more flexible than
the available data base management systems, so as to represent the design process
and to support the various tools that aid in the design process. Besides providing
flexible data structures, this system must provide practical solutions to the inherent
problem of data redundancy and dependency found in a design environment. The
concept of a design environment and its problem domains will be treated in the fol-

lowing chapters.
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The DBMS system needed is by far more robust and complex than present
day DBMSs. The cost of design and implementation is considerable. In order to
ameliorate this cost factor, integration of existing software into the system is
demanded. The resulting CAD DBMS should become an integral part of the entire

system.

Before proceeding with a presentation of the research hypothesis, we digress
in order to present the following sections briefly defining the basic concepts and ter-
minology associated with a GDBMS. These terms will be referred to frequently
throughout the remainder of this dissertation and the concepts will be used as a basis
for the work presented in the later chapters. The reader who is familiar with the
basics of GDBMS technology may skip these sections.

1.4 Data Base Management Systems
1.4.1 Definition

A GDBMS is defined to be that system which stores and manages information
pertaining to an enterprise. This system consists primarily of data, software, and
users. Hardware also is a part of a GDBMS. The data found in such a system are the
objects of the enterprise that it supports. These data base objects are entities and the
relationships among these entities. The software are those programs and utilities
which are necessary for the proper functioning of the system. The user population is
not just the end user, but the application programs, the application programmer and
the system programmer (sometimes known as the DBA). The hardware of major con-
cern to the system are those devices upon which the data is stored, and the particular

computer which hosts the DBMS.
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1.4.2 Architecture

Figure 1.1 presents a simple three-level architecture of a GDBMS.

User 1 User 2 UserN  [oooeenes External Level
Database Schema |- - ccooveiiiiiiiiiii s Concepma] Level
Database |- ccoooeieiii Physical Level

Figure 1.1 Three Level Database Architecture

Level 1, the external level, is the view of the data base which each end-user has. As

the figure indicates, there can be many different views of the same data base, i.e., a

single data base is capable of supporting diverse usage. Level 3, the physical level, is
the organization of the data on the physical devices. This data can be organized using

many of the available standard storage techniques such as indexed sequential records

or hash tables. Level 2, the conceptual level, serves as the interface between the

other two levels. This level supports the logical mode! of the entire database. The dis-

tinction between storage and conceptual level is important, for it permits the data

base of an enterprise to be designed without regard for the requirements of the com-

puter system. The distinction between the conceptual and external levels is necessary

in order to support the many applications.
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1.4.2.1 Logical Models

Most GDBMSs support one of three traditional data models. A data model is
characterized by a set of constraints for defining data structures and a set of operators
for manipulating the data structures. These data models provide the designer of a
data base a means of developing the data base at the conceptual level. The models
are the hierarchical data model, the network data mode! and the relational data

model.

The hierarchical mode! is a collection of disjoint trees with records as nodes.
The trees are constructed according to connections between records. These connec-
tions form an ordered tree called a hierarchical data tree. Each connection, or link, is
functional in one direction. That is, for every R(j) record occurrence there is exactly
one R(i) record occurrence connected to it if the R(i) record type is the parent record
type of R(j). This restricts relationships between records to be 1:M and not N:M. The
operators which manipulate the data supported by this model are procedural in

nature. That is, the data model must be navigated in order to process any data.

The nerwork data model also consists of record types and links. Formally, a
link defines a connection between two record types. That is, for each record x of type
R() the link identifies a set of records of type R(j) which are connected to x. In the
opposite direction for each record y of type R(j) the link identifies a set of records of
type R(i) connected to y. Links can be 1:1, 1:N or N:-M. This model also requires

navigational type operators for manipulation of data.

The relational data model is one in which data is stored in any number of
two-dimensional relations or tables, each with a fixed number of columns, attributes,

corresponding to a particular data item. Tables can be compared or contrasted to each

13



other using a relational algebra or calculus. A relational algebra consists of the
operators SELECT, PROJECT, and JOIN. These operators allow for the manipuia-

tion of data without requiring the predefinition of access paths.

The relational data model is considered somewhat richer than the other two
models, in that more detail can be introduced in the definition of the structure. Rela-
tional theory of decomposition and normalization provides for analyzing the fine
structure of the data. However, the relational mode! falls short of allowing a direct
and precise representation of complex objects. A number of models have been pro-
posed which retain the implementation independence of the relational model but pro-
vide a richer means of describing the structure of the data. These models collectively
are called semantic data models. One such model, the Relational Model Tasmania
(RM/T) [Codd79] is a direct outgrowth of the relational model. In response to the cri-
ticism that the relational model lacked semantic expressiveness, Codd extended the
relational model to capture more meaning. This extension included the addition of
abstraction capabilities along with relational operators for these capabilities. Chapter

Six will describe this model in greater detail.

1.4.3 Objectives

For the past twenty years data base technology has been evolving and has
reached a point where there is general agreement as to the objectives of a DBMS.
The objectives of such a system are many and have been defined and refined by
numerous committees and individuals. The following list [Snug79] describes the

major objectives of a DBMS.

1. Data independence: allowing data formats to be changed without affecting

existing application programs.
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Data relatability: guaranteeing the automatic propagation of perturbations
made at any level of data representation. Propagation of perturbations is
necessary in situations where redundant copies of names are kept, addi-
tional information is added to a record type, or the system storage is

changed from indexed sequential to hash storage.

Compatibility with the existing data management techniques found in the
enterprise. This is needed, so that the data base system causes little reor-

ganization of procedures which have proven effective within the enterprise.

Comparibility with technological developments so that the system does not

become outdated too quickly.

Structural adaptability: allowing the system to respond to performance
requirernents and changes in the physical and logical structure of a data
base. Such changes may be the result of shifts in query patterns or the

rapid growth of data collection.

Data integrity: preventing the garbling of data values and organizations.
Input errors, hardware failures, software bugs, and shared access all have

potential to invalidate the data integrity.

Data recoverability: providing the capability to restore the data base to

correct contents once an error has been detected.

Data security: provision for selective access controls based upon data sen-
sitivity, requestor right to access, or need to access. This is achieved by
clustering and isolating security responsibility and using a secure operating

system.
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1.4.4 Performance Considerations

Besides meeting the objectives listed in the previous section, certain con-
siderations with respect to performance are regarded when designing or acquiring a
DBMS. Among those considerations are resource utilization, time usage, space
usage, response time for query and update activity, ease of use and application tran-

siency.

Resource utilization is important with regard to the other activities that are
concurrently carried out in the computer environment. Some DBMSs require heavy
usage of the [/O channels, thus causing a probable bottleneck in the enterprises daily

activities.

Time usage is another important factor to consider since the DBMS may need
extensive time devoted to programming, or on the other hand may take considerabie

time when processing the data base.

Space usage varies widely among data base systems. Space usage needs to be
regarded from two aspects: the amount of secondary storage required for the data,

and the amount of primary memory needed to run programs.

The transiency measurement of a system is the rate at which the data base
tends to be disorganized. Data base disorganization is costly in that the database

must be restructured. During such restructuring the data base is not available for use.

Users of the system are most interested in the response time for query and
update activity. This measurement greatly affects the usage, and hence the value, of
such a management system. The final important performance issue is the ease of use

of the system. Systems which are complex are often avoided by the very population
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which they are meant to serve.
1.4.5 Features

DBMSs provide many features to the end-user other than that of the usual
storage and retrieval of data. Some of the more important features found in these sys-
tems are those that provide for performance optimization, concurrent usage, and data

protection.

Facilities are found which enable one to evaluate performance and tune the
data base. These facilities include the ability to capture statistics on the usage of the
system as well as the ability to restructure the physical organization of the entire data

base.

Concurrent usage of a data base system requires the complex facilities to
allow) the use of the data base by more than one application program at the same dme.
It is possible in a shared (multiuser) system for applications which execute con-
currently to interfere with one another in such a way as to produce results that are not
correct. Some sort of concurrency control mechanism is needed in order to avoid

such problems.

Data protection features must address two aspects of security. First, a facility
must be provided which guards against the loss or damage of data in the data base.
Secondly, another facility provides for the protection of the confidentiality of the data

from unauthorized persons.

17



1.4.6 Data Base Software

There are three major categories of software needed to support a GDBMS.

These categories consist of the languages, utilities, and operational routines

Data base languages must include a language which allows for the manipula-
tion of the data. This is referred to as the Data Manipuladon Language (DML). Fre-
quently, a completely different language is used in order to describe the structure of
the data base. This Data Definition Language (DDL) produces what is called the data
base schema. A third language, used primarily by the data base administrator (DBA),
allows the storage structures found on the physical devices to be described. This

language is the Data Strategy Description Language(DSL)

The second category of software includes such standard utilities as dump, edit
and print routines. Utilities commonly associated with operating systems are also
found in this category. These utilities include load routines, garbage-collection rou-

tines, reallocation routines, file-conversion routines, and audit routines.

The last category of software found in a data base environment is the set of
operational routines. Such routines might include but are not limited to concurrency
control routines, access control routines, data validation routines, data update rou-

tines, data access routines, recovery routines, and statistics-collection routines.
1.4.7 Benefits of GDBMS Use

The perceived benefits from use of a GDBMS are centralized control over the
data, ability to modify data without major software impact, and support of a muld-

user environment.
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Centralized control over data affects both the users of the system and the data
found in the system. Application programmers can be relieved from standard data
management tasks and also need not concern themselves with performance aspects of
such a system. Data standards can be enforced easily; data redundancy can be
reduced; data can be shared; data integrity can be maintained; data inconsistency can

be reduced; and data security restrictions can be easily enforced.

Modification of data without major software impact provides the enterprise
with a flexible and somewhat extensible system. As the requirements of the users
change or as new data is acquired, changes can be made so as to accommodate these
changes and at the same time not disrupt current usage. This capability saves undue

costs due to complete redesign efforts.

A multi-user environment, if properly implemented, maximizes the efficiency

of the organization and thus offsets the high costs of acquiring a complex system.
1.4.8 Disadvantages of GDBMS Use
The two major disadvantages in use of 2 GDBMS are cost and compromise.

Cost is assessed both directly and indirectly. Direct costs include the acquisi-
tion price, which can be formidable, and also the person-power costs. Acquisition
prices are dependent on the particular GDBMS and the modifications needed to bring
the data base system into the environment. GDBMSs require many person hours for
application programming, data base maintenance and data base use. The maintenance
alone is mind-boggling since the amount of underlying software is vast and quite
complex. This is not to minmize the cost of maintaining the hardware needed to sup-

port this system.
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Compromise is necessitated when the provided features do not exac:ly fit the
requirements of the enterprise which is acquiring the system. Such compromise
might result in some activities being done manually, thus negating the positive

aspects of using a data base system.
1.4.9 Design of the Data Base

The design of a data base begins by specifying the data base requirements.
This specification involves a determination of what entities are to be stored, what the
relationships between the entities are, how this information structure can be modeled
in terms of the supported data model, what the operations are which are to be per-
formed on the data structure, who the potential users are, and how frequently the

different data management operations will occur.

A design method is employed in the development of a database. A method is
characterized by the design technique it uses and the sequences in which it applies
these techniques. Thus a method is iterative in nature. A method employed most fre-
quently is first to ascertain an initial design. This initial design uses a set of rules to

convert enterprise object sets to data model structures.

A data model conceived to facilitate this initial step in data base design is the
Entity-Relationship Model. This model provides for the specification of an enterprise
schema and is the documentation of the logical parts of the data base. The following

section defines this model in greater detail.
1.4.9.1 Entity-Relationship Model

This section defines the Entity-Relationship Model (ERM) {Chen77] and

associated terms. Chapter Five describes the augments defined in this work, needed
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to support a design environment.

The ERM consists of entities and the relationships among them. An entity is a
thing which can be distinctly identified. A relationship is an association among enti-
ties. If e denotes an entity then E represents the entity sets into which these groups of
entities are placed. There is a predicate associated with each entity set to test whether

an entity belongs to it.

A relationship set is a mathematical relation among n entities, each taken from an

entity set and each tuple of entities representing a relationship.
RT ={e 1,€2.. enl:e laEl. e eE Zyees enEE,

There is also a predicate associated with each relationship set.

The role of an entity is the function that it performs in the relationship. The informa-
tion about an entity or a relationship is expressed by a set of attribute-value pairs. An
attribute can be formally defined as a function which maps from an entity setor a

relationship set into a value set or a Cartesian product of value sets;

f: E;or RT;—)V; or V,‘l > 4 V,'2 X..X an

These values are classified into different value sets. There is a predicate associated
with each value set to test whether a value belongs to it. A value in one value set may
be equivalent to another value in a different value set. Relatonships as well as enti-
ties may have attributes. The concept of a relationship attribute is important in under-
standing the semantics of data and in determining the functional dependencies among

data.
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Identification of an entity is dependent upon an entity key. An entity key is a
group of attributes such that the mapping from the entity set to the corresponding
group of value sets is one-to-one. Relationships are identified by the involved ent-
ties. Thus, the relationship key consists of the keys of the involved entities. In certain
cases, the entities in an entity set can only be identified by the entity(s) that partici-
pate in a relationship with them. Such entities are called weak entities or dependent
entities. Similarly, if any entities in a relationship are identified by other relationships

then the relationship is called a weak relationship.

Several important characteristics about relationships and entities in general

arc:

1. A relationship can be defined on more than two entity sets.

2. A relationship may be defined on only one entity set.

3. There may be more than one relationship set defined on given entity sets.
4, The relationship set mapping may be 1:n, m:n, or 1:1.

Chen also introduced a diagrammatic technique for exhibiting entities and
relationships - the entity-relationship diagram (ERD). The symbols used in this ERD
are a rectangular box, a diamond shaped box, an oval, lines, and text. Figure 1.2 illus-
trates the ERD representation depicting the entity sets WARD and PATIENTS
related via a relationship set labelled OCCUPANCY. Each entity set is represented
by a rectangular box and each relationship set is represented by a diamond shaped
box. Roles can placed on the lines connecting the boxes. In Figure 1.2 the role
attached to the PATIENTS entity set, is assigned and the role attached to WARD,

assigned, are used to indicate further descriptive information about the entity sets
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@_ PATIENTS

Figure 1.2 WARD - PATIENTS ERD

participating in the relationship OCCUPANCY. These lines are also used to indicate
the relationships in which particular entities take place. Figure 1.2 indicates that there
are many PATIENTS (N) associated with one (1) WARD. Anovalis used to
represent attributes defined for the entity or relationship set. The oval with Name
enclosed within it represents a name attribute associated with PATIENTS, and the
oval with #Beds within it represents that the relationship set OCCUPANCY has an

attribute number of beds associated with it.

Chen concluded his definition of the ERM with a discussion of how this
model cbuld easily be mapped to the traditional models: relational, network, and
hierarchical. This ability to map to, in particular, the more formal relational model is
the major reason for the attractiveness in the use of the ERM and its ERD as a prei-

iminary model for database design.
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1.4.10 Development of the Data Base

After arriving at an initial design, the development of the data base begins by
analyzing this design using selected design analysis techniques. Such techniques
would possibly include the estimatation of storage requirements, the estimation of
average transaction response time, and the average length of access paths. Certain cri-
teria, determined by the data base environment, are applied to arrive at this estimate.
Examples of such environmental criteria might be: limited secondary storage, restric-
tions that transactions occur only in an interactive environment, concurrent access of
up to fifty users. As a result of this analysis, the design is amended or the require-

ments are modified.

The development of a database must satisfy other criteria as well. The sup-
porting logical and physical structures must preserve the data correspondence to

avoid data redundancy and anomalies.

The ultimate goal of the database design methodology used during the
development phase is to produce a feasible design structure that satisfies all data

access requirements of the enterprise.

1.4.11 Use in Design Environment

Databases found in a design environment are characterized by models of com-
plex reality. The database system must not only provide primitive access to these
models, but also must provide for the support of the design process which produces
these models. These characteristics highlight the differences between the use of data-
bases in commercial environments and the use in computer-aided design environ-

ments.
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In CAD environments the information evolves with use of the various tools
requiring that the conceptual schema be dynamic in nature. In commercial environ-
ments there are frequent changes to the values found in the database, whereas in CAD
environments the changes are less frequent but involve both values and structures.
We find also that the structures in CAD environments include graphics, as well as
non homogeneous and recursive entities. Unlike commercial environments, the end-
users are familiar with the application environment, but are not likely to have exper-
tise with databases. Yet these end-users are the evolvers of the database. The unique
situation found in CAD environments is that both definition and manipulation of the

database occur simultaneously.

The complexity of a CAD data management facility is such that careful con-
sideration must be given to the design of this facility. Merely incorporating a com-
mercial DBMS into the CAD environment would serve only to add more complexity
to the design process. The special needs addressed in the preceding sections lead us to

propose an approach toward meeting such needs.
1.5 Research Hypothesis

One approach toward meeting the data management needs of a CAD environ-
ment is to design certain design-specific management facilities into the
SYS/KERNEL. The primary hypothesis of this research, then, is that design
knowledge base primitives can be introduced into a CAD system KERNEL such that
it may be more powerfully extended than otherwise. Such a KERNEL would not
only provide for the management of design data, but would also provide the basis for
use of intelligent design tools in capturing design expertise and design histories. The
investigation of this hypothesis and supporting hypotheses will be carried out using

the SARA/IDEAS methodology and system as a testbed. Supporting hypotheses are
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that:

. Extensible data definition facilities can be developed
for use by both design tools and the CAD system
designer;

. Extensible and flexible data structures can be developed
or existing structures modified to provide required data

management support for a design environment;

. An extensible and flexible data model can be developed
to support the acquisition and management of design

knowledge;

. A data intensive tool can be developed to illustrate the

power and flexibility of the data base design;

. Integration of design tools can be achieved through the
use of this KERNEL;

. A design methodology for an integrated design infor-

mation system can be developed.
1.6 Research Goals and Contributions

This research has several goals pertaining to the field of data base manage-
ment support of the design process. These goals encompass the areas of design, data
modeling, knowledge acquisition and representation, programming environments,
and software engineering. The results of this research are intended to perhaps pro-

vide an environment in which the process of design can flourish, thus allowing for
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increased productivity at reduced cost. The quantities, productivity and cost, will not
be directly measured. However, the quality of the environment in which design takes

place will be analyzed.

Specific contributions of this work include:

definition of a data mode! to support the design process;

. development of a data definition facility for defining
design models;
. implementation of a design data base system within the

IDEAS environment;
. implementation of a design tool - the system browser ;

. development of an environment in which research in
the areas of data base technology and artificial intelli-

gence can be carried out;

. integration of existing software tools such as RCS and

Troll into the design data base system.
1.7 Dissertation Overview

The organization of this dissertation is such that the concepts and methods
used in completing the research work are presented to the reader. Chapter One
served as an introduction to this research by defining the design management prob-
lem, describing the fundamental concepts of management systems, and then present-
ing an approach to be used as a solution to the design management problem. Chapter

Two contains a partial summary of the literature research that was carried out.
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Various research and commercial efforts are described and analyzed in this chapter
along with descriptions of numerous programming environments. The selection of a
particular research effort for inclusion in this dissertation was based on the degree

that the work influenced this research effort.

In order to understand the environment in which we are embedding data
management support, Chapter Three characterizes the various types of CAD systems
and then describes two such systems in detail. SARA, System’s ARchitect Appren-
tice is detailed so as to provide a reference for the description of an integrated design
environment, [IDEAS (Integrated Design Environment for Analyzable Systems),
within which this research takes place. A description of the data management facili-
ties designed for this environment is presented in Chapter Four. The architecture of
CADIS (Computer Aided Design Information Systems) is found in the beginning of
that chapter. The concluding sections of Chapter Four describe the four major levels

of the architecture.

The remaining chapters of this dissertation then present the various com-
ponents of CADIS. Chapter Five describes the kemnel of CADIS. The information
model supported by CADIS is defined along with operations to build and manipulate
this model. Chapter Six defines and describes the automnated data definition facility
provided by CADIS. The underlying implementation model is presented in that
chapter. Chapter Seven continues with a presentation of the system level of CADIS.
The introduction of a data intensive tool, a system browser, is defined in Chapter
Eight. This tool calls upon the primitives provided by CADIS so that it may use
objects which have previously been defined for other tools. Chapter Nine concludes
the dissertation with an analysis of the results of the research and a comprehensive

discussion of future research resulting from the efforts of this work.
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CHAPTER 2
Related Approaches

2.1 Introduction

Current approaches for supporting the design process and the management of
design data are surveyed in Section 2.2 - 2.4 of this chapter. These approaches are
classified according to one of three major categories: those approaches which use
commercially available data base systems: those which develop special applicaton
CAD data base systems: and those approaches which integrate data base management
techniques with interactive dialogue functions to provide a wider range of design sup-
port. Within each of these categories further classification can be made as to the
level of design which the CAD system supports. Many CAD systerns primarily con-
sist of one or more design tools operating at a lower level in the design chain (figure
2.1), such as circuit level design or printed circuit board placement and routing,
whereas other systems support the higher levels of design such as requirements

definition or behavior and structure modeling.

Each of the approaches described emphasizes different facets found in data
management facilities. Therefore, the focus of their work is restricted to that area

within data base technology which best provides the support so desired.
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|
ayout analysis

Figure 2.1 The Design Chain

Within data base technology, areas of interest to the various approaches are:

1. appropriate structures for design data

2. appropriate low level access to data

3. support for unstructured data

4, appropriateness of traditional data models to support

design management

5. appropriate langnage to support design data base access

and operations

6. support of a ‘component’ library

7. integration of existing tools through the use of a com-

mon data base

8. provision of version control, concurrency control,
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configuration management

9. maintenance of design integrity throughout the various

design representations

10.  provision of a knowledge base of design procedures

It should be noted in the following descriptions that each approach concems
itself with some subset of the above items. We also point out that some approaches
are entirely hypothetical, while others base their work on synthetic data, and still oth-
ers are actual working implementations existing in either academic or commercial

environments.

In addition to discussing data base systems which support CAD systems, data
base systems which support specific programming environments are described in
Section 2.5. Concepts used to build programming environments are important within
this work in that CAD systems are an environment within which the programmer
(designer) of a design functions. The concepts used in building a programming

environment are those same concepts on which CAD systems are built.
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22 Commercial Data Base Systems
2.2.1 SystemR

Work at IBM Research Labs in San Jose, CA includes the modification of
System R to improve its ability to handle design data [Hask82]. The four major areas
of concern are: the handling of complex design objects, the support of conversational
transactions, the interface between the data base and data structure, and the

management of data items of unlimited length.

The ability to handle complex objects (figure 2.2), which is often found in the
design environment, is enhanced by allowing a designer to declare and specify struc-

tural relationships among semantically related data.

MODULES
MiD MODULENAME
PARTS
PID MID PARTNAME
SIGNALS
SID SIGNALNAME
FUNCTIONS
FID PID FUNCTIONNAME
PINS
FID PIN PINNAME S 10

Figure 2.2 Example Complex Object Schema

Such complex objects might be the representation of a chip with its functions, com-
ponents, pins, etc. Support for attribute types such as identifier, component_of, and

reference allows for the object’s structure to be defined to the system.
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Since design transactions are highly interactive and may span long periods of
time, the concept of a conversational transaction is introduced. Two problems
addressed within this context are that of backout policy and deadlock avoidance pol-
icy. These policies differ radically from those found in a business data processing
environment. In order to handle these design conversational transactions, the capa-

bility to lock a complex object is added to System R.

Modifications also provide an object oriented interface which allow a data
structure to be built from one or more complex objects. System R’s facilities for
managing non-coded data are being modified to enhance performance on updates and
to support items of unlimited length.

These extensions to System R have allowed work to proceed in the manage-
ment of data for a large internal design system. This modified System R could be
used to supi)ort design at all levels within the design chain.

IBM’s development of a capability which allows a designer to handle com-
plex design objects is particularly relevant to the work of this author. We also
identified this area as one of major concern when managing design data and will later

present another approach to developing a capability to handle complex objects.
2.2.2 INGRES

Researchers at Berkeley have been experimenting with implementation of a
CAD application using INGRES, a relational data base management system [Gutt82].
Their work has identified four features which need to be added to INGRES in order to
| more fully support CAD applications. These features include: facilities for the sup-
port of ragged relations; support of transitive closure; access by spatial location; and

the generation of unique identifiers.
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Often in the design process the need for multiple values associated with an
attribute arises and is best represented in relations as repeating fields. Ragged rela-
tions are needed to allow for repeating fields within a relation. The approach to sup-
port ragged relations is to allow for ordered relations and then allow the relations to

be nested.

Transitive closure support is necessary so that the hierarchical nature of
design can be exploited. Transitive closure is applied during the expansion of sub-
cells within a cell. That is, if a description of a cell includes other cells within it, then
the tuple which describes the top cell will contain a reference to each subcell. These
subcells are also described by tuples. Transitive closure assures that all the refer-

ences to other tuples are expanded until no more tple references are found.

Many CAD programs need to retrieve design data according to its spatial
location. Implementation of this capability is achieved through the use of spatial bins
which are an extension of the secondary indexing facility of INGRES. These bins

identify a window in which portions of a design reside.

The usefulness of unique identifiers has been suggested by many within the
data processing environment. The system generation of such identifiers is crucial
within a CAD environment so that the specific applications are not forced to manage
their own identifiers. This automatic generation by the database system would be

handled by supporting a special type - ID.

These enhancements to INGRES, the researchers claim, allow for a data base
management system which would be easy to use and perform at acceptable levels
within a CAD environment. INGRES could be used as data management support at

both high and low levels of design.
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The use of system generated identifiers, as well as the use of a commercially
available relational data base management system is seen to influence the work of

this author.
2.2.3 ADABMS

Systems Architect Apprentice (SARA) is a design system developed at
UCLA. SARA supports both the top-down partitioning and bottom-up composition
procedures for the design of hardware and software digital systems. Since the
SARA/IDEAS system is being used as a test-bed of this research, Chapter Three con-
tains a detailed description of the methodology and system. This section will focus
primarily on the data base aspects of SARA. The current system recently acquired a
library system developed by J. Marshall [Mars83]. This SARA Library system uses a
commercially available data base system, A Data Base Management
System(ADABMS), which is based on the CODASYL model. The major areas of
concern while developing this library support were: storage structures for design
specific models, support for various types of access capability, and the creation and

use of a "building block model".

The storage structure (figure 2.5) chosen is based on a hierarchical schema,

although the data base system used supports a network type model.

The reason for this choice is that this schema more closely represents the recom-
mended organization of the various design models generated by the different SARA
design tools. The schema consists of: an implementation set(B/B set); SL1 set; GMB
set; interpretation set; test set; and driver set. The owner of the implementation set is
the system record and its member is the B/B record type. This B/B record type is the

owner of the other sets found in the schema. Thé B/B record contains information as
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BB

Figure 2.5 SARA Building Block Library Schema
to the specifics of the particular building block, such as, the design’s generic name,
synonyms for the name, the version number, the refinement level, descriptive infor-
mation and classification information. The other record types contain the source or

object code representadon of the respective SARA model.

Access to a building block is through‘ the implementation set. Once the users
have positioned themselves at the implementation set of the building block required ,
then any of the representations (SL1,GMB,etc.) can be retrieved. The unit of access
is at the level of a record, as is found in commercial data base systems. However, a
record in the SARA library is a complete representation of one of the models found in
the SARA system. In order to store a particular design, the user has to first create an

implementation set and use this as a reference point.

The Building Block Library found in SARA is a database, either private or
public, into which designers may place the design representations. During a design
session the designer first opens a database and specifically creates an implementation

set, defining the necessary parameters for this set. In order to use a building block,
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the designer specifies which implementation set to find , rewieves the appropriate

model, and invokes one of the SARA tools.

The SARA Building Block Library does not concern itself with providing
total data management support for the design process. Requirements for the new
SARA/IDEAS system state that there should be support for all aspects of the design
(see Chapter Three ). This more ambitious undertaking is currently being imple-
mented at UCLA. The research begun by Marshall served as a basis of this author’s

work.
2.3 Special Application CAD Data Base Systems
2.3.1 TORNADO

Technical ORiented Network Data Organization (TORNADO) is a data base
management system developed for specific CAD/CAM application systems, in partic-
ular, the Scandinavian CAD project GPM (geometric product models) [Ulfs&1]. The
major areas of concern in TORNADO are: the creation and handling of complex data
structures; the direct handling of many to many relationships; the support of dynamic
length table records and variable length objects; and the development of a CAD sys-

tem which demonstrates very high performance.

TORNADO is a subroutine package which is programmed in standard FOR-
TRAN. The architecture of this package consists of two modules; a data manipulation
module (DMM), ard a storage administration module (SAM). The two modules are
independent of each other to such a degree that other applications can use SAM
independent of the DMM. In fact SAM is the general filesystem EASYBAS. The
DMM has the capability of working on objects which are represented as sequential

EASYBAS records.
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Figure 2.6 TORNADO Object Description

In TORNADO, an object (figure 2.6) is defined to be a logical group of data
items which describe an instance of an object class. This object consists of a header,
which contains the length of each data area within the object, the object class, and
pointers to other objects which participate in the data structure. An object can have
up to nine data areas containing different types. The size of these areas is determined
either when the object is created or by the schema definition. Standard data types are
supported. Direct access to data areas within the object is permitted. Objects may be
combined with other objects to form sets and these sets may be combined with other
sets or objects with little restriction. Object names are stored in a name table to facil-
itate finding an object by name. Object operations consist of creating an object,
finding an object, storing and retrieving an individual data item in an object, connect-

ing an object to a set, and renaming an object.
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A dynamic length table record is a record which contains a table that can be
increased or decreased dynamicaily. The table consists of a number of lines of equal
length. Lines may be appended to the table or deleted from the table. Operations to
support the creation, deletion and retrieval of records are available to the user through

subroutine calls or as interactive commands.

The designers make claim that TORNADO exhibits flexibility as a CAD
DBMS because it does not place any restriction on the complexity of the data struc-
ture that it can handle. No attempt was made to include recovery mechanisms, con-
currency mechanisms or automatic integrity checks, primarily because these features
are time consuming and would result in a much poorer performing system. It is meant

to be a partial tool to handle the interactive design of complex geometrical objects.

The work which most influenced design decisions made by this author was
TORNADO’s complex data structure handling mechanism. Such a mechanism is of

paramount importance for effectively managing design data.

23.2 TPAD

NASA awarded a contract to the Boeing Company to develop Integrated Pro-
grams for Aerospace-Vehicle Design (IPAD) [John82]. The major goals of this work
were to establish requirements for an integrated computer based system for managing
engineering data and to develop software to demonstrate these concepts. The con-
cepts with regard to the data base support were: the ability for user definition of data
sets which represents an engineering task; versioning capability for data sets; long
term archival features; interactive retrieval and update of data sets; project manage-

ment capabilities; and a uniform language.
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The [PAD Information Processor (IPIP) data base management system is
designed to manage the data which evolved over time. This system supports multiple
data models( the network and relational model), multiple levels of schemas, con-
currency and multiple users , and access in a distributed environment. A single Logi-
cal Schema Language(LSL) and Data Manipulation Language(DML) supported both
the relational and network data models and the application programs. Composite
objects called structures were supported to manage geometry and other scientific
data. A structure was defined in the schema to consist of tuples from a tree or network
of relations. This structure was manipulated as an entity through operations. These

entities were meant to be natural occurrences in the application domain.

IPID was in the early stages of development, so versioning, releasing and

archival features were not implemented.
2.4 Integrated Data Base Systems

2.4.1 FLOREAL

Experience with the design and realization of an integrated CAD system,
GERMINAL, resulted in a proposal of a CAD model and a CAD system with data
base. This proposal concerned primarily the design and implementation of the
language FLOREAL, a language which included both data description and data mani-
pulation facilities [Fois81]. The two major topics addressed by FLOREAL were the

representation and the manipulation of information in a CAD oriented data base.

Comparing the uses of data bases for administration purposes with the uses of
data bases in computer aided design, led to the formulation of requirements for a
unique data definition and manipulation language which would support new classes

of data and have the ability to refine classes or redefine them. The data model would



contain both static and dynamic classes of entities, and would provide a set of power-

ful and flexible data structures and building mechanisms.

In FLOREAL four concepts are defined: the type, the object, the relation and
the function.

A type models static objects by defining their characteristics. This type
defines a set of values on which a set of actions operates. A type is defined by a list of
properties where a property is the smallest logical item, characterized by a name and
a value. Several organizations of properties are simple, compound and functional. A
type is a collection containing at least one property. Such structures are: multiple
type, structured type, union type, derived type. The ISA defines a types hierarchy. It
allows one to define a type from another type. Extended types are built on structured
source types and then are structured. Structured types may be constrained. A typeis

considered to be knowledge which the DBMS must be able to access.

The object is a class of elements used in the building phase. It is similar to a
type but it may be modified by the user and is considered to be project information.
Descriptions of the same object several times are referred to as views and are named.
A view is a set of components and a set of relationships among them. An object may

possess global properties.

A relation represents a link between types and/or objects. It is either
knowledge needed by the DBMS or project information according to membership of

the linked entities.

A function represents a mathematical function. It may be either data base

knowledge or project information according to its generality.
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The proposal was that the FLOREAL system be built on an available DBMS
which manages two specific data bases for a design project. The Knowledge Data
Base contained informative type information which may be altered by a user during a
design process. Such information may be standard components, design procedures,
standard function, design domain and ways to use that knowledge. The Project Data
Base contains operational information, which was generated in a continuous way by
the user and related to the designed objects(structural and functional descriptions). A
set of application programs were to implement a particular CAD data model in terms
of the chosen DBMS’s primitives. That model consists of a set of concepts and rules

handled through the langnage FLOREAL.
2.42 WIiSS

The University of Wisconsin has on-going research into the ways of applying
database technology to the management of design data. The major areas of concem
include: the storage of unstructured data, support for muitiple versions and represen-
tations of design data, conversational transactions, automation of the maintenance of
design consistency. and support of design workstations. These concerns have
coalesced into efforts to implement a prototype system which would allow existing

tools to be integrated into a single system.

The Wisconsin research team’s experience with existing database systems
indicated these systems were difficult to modify and not well suited for the types of
applications with which the group intended to experiment. Therefore a most ambi-
tious project was the development of a low level system based on System R’s RSS
[Chou82]. The Wisconsin Storage System(WiSS) provides many of the same facili-
ties as the RSS of System R, but is implemented in the Unix environment. WiSS sup-

ports high performance sequential and indexed access to data stored on disk through a
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relatively low level manipulation language.

One of the major goals of WiSS was to extend data base techniques to uncon-
ventional data. Unconventional data is data such as text and raster images which
often arise in design environments. The approach taken was to build support for
long records that could span physical disk pages. High performance was another
desired goal, and so in order to achieve this goal the WiSS designers felt that the
UNIX file sysiem needed to be circumvented. It has since been used as the basis for
many areas of research, including the development of a prototype system to support

the integration of existing design tools for VLSL

R. Katz [Katz83, Katz82] described the structure of a system which satisfies
the needs of design tools, in particular the needs of VLSI design tools. The com-
ponents of this system, called Engineering Database Management System(EDBMS),

were being developed by various members of the Wisconsin research group.

TOOLS BROWSER ASSEMBLER

TRANSACTION HANDLER

LIBRARIAN RECOVERY VALIDATION

OBIECT SYSTEM

STORAGE COMPONENT

Figure 2.8 EDBMS Architecture
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The EDBMS system architecture (figure 2.8) consisted of: a storage com-
ponent which stores data on disk and guarantees that updates are atomic, an object
system which maps design data into files, a recovery system which insures that
changes to an object can be reconstructed after a crash, a design librarian which con-
trols access to design objects, a design validation subsystem which interprets depen-
dencies among design data to identify those portions affected by a change, and a
design transaction system which ensures that the designers create new consistent ver-
sions. The browser/chip assembler is an interactive interface to the design manage-

ment system.

The storage component of EDBMS is WiSS which was being extended to pro-
vide atomic update. The object component maps the abstract notion of an "object”
into the descriptive data that are stored in storage component files. Design objects are
stored either as a single file or as separate files. If the representation type is not
known to the system, then the data are stored in a separate file referenced within the

design object file, thus acting as a conventional file system.

The recovery system provides for survival in the face of a system crash by
maintaining multiple copies with alternative failure modes. The manager supports
save points. Data and change file buffers are forced to disk by the workstation’s

buffer manager.

The design transaction management system deals with three phases of the
design: the work, validation, and completion phases. When a designer requests a
design the work phase is entered. Mirrored copies are made to provide redundant
copies to be used for recovery. When design work is completed, the transaction enters
the validation phase. During this phase programs check that the modified design data

are self-consistent, and that all relevant constraints have been enforced before a



transaction is allowed to enter completion. During completion a new version is

added.

The browser/chip assembler are the interactive interfaces to the design
management system. The browser allows a designer to navigate through the complex
design structures, making extensive use of graphics to present the data structure and
menus to direct the navigation. The chip assembler is the most data-intensive portion

of the design task. Subsystems are constructed from component compositons.

The efforts by the Wisconsin research group were directed toward providing
design management services to an ensemble of design tools in order to create an
environment in which tools are integrated to form a coherent design system. We con-
sider these efforts to be significant in the quest for the realization an integrated CAD

system.

243 ADAM

Researchers at the University of Southern California(USC) [Afsa85b] are
currently developing an extensible object-oriented framework suitable for modeling
VLSI design environments. The 3 Dimensional Information Space(3DIS) [Afsa83a]
is an information management framework intended for applications that have
dynamic and complex structures, and whose designers, manipulators, and evolvers
are non-database-experts. 3DIS unifies the view and treatment of all kinds of infor- -
mation including the description and classification of data. This model has been
developed for use with the Advanced Design AutoMation (ADAM) system. ADAM
is intended to provide a unified system for VLSI design, starting with functional and

timing specifications and proceeding to circuit layout.
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In 3DIS, databases are collections of interrelated objects, where an object
represents any identifiable piece of information, of arbitrary kind and level of abstrac-
tion. The 3DIS model supports atomic, composite, and type objects. Atomic objects
serve as the symbolic identifiers for atomic constants in the database. These objects
carry their own information content in their objects-ids. Composite objects describe
entities and concepts of application environments. The information content of these
objects can be interpreted meaningfully by the 3DIS database through decomposition
into further objects. Type objects contain the descriptive and classification informa-
tion of a database. Every type object is a structural specification of a group of atornic
or composite objects. The 3DIS model has been extended to accommeodate other

kinds of abstraction primitives such as the definition of recursively defined entities.

The 3DIS model also supports a simple and multi-purpose geometric
representation. This geometric framework graphically organizes both structural and
non-structural database information in a 3-D representation space. Relationships
among objects are modeled by triples that represent specific points in the geometric

space.

Basic relationships among objects are defined through the three fundamental
abstraction mechanisms of classification, aggregation, and generalization.
Classification represents member/type relationships by relating atomic/non-atomic
object to it generic type object. Aggregation represents member-mapping/type rela-
tionships by relating a type object to the mappings that define its members. Generali-
zation represents subtype/supertype relationships by relating a type object to a more

general type object.
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The fundamental structure of the conceptual schema is the component. A
component is described in terms of four models and a set of relationships (bindings)
across the models. The models are the datafiow model, which describe the data
transformation operations performed by the component, the iming and sequencing
model, the structural model and the physical model. All relationships between models
are explicitly represented by means of bindings. There are two types of bindings:
operations bindings, which relate dataflow elements to structural elements and time
ranges, and realization bindings, which relate structural elements to physical ele-

ments.

Claims are made that this approach to providing database support results in

ease of addition of application packages and ease of access by non-database experts.
2.44 GRADAS

The GRADAS system is an approach that concentrates as many functions as
possible in an application-independent system, while attempting to minimize the pro-
gramming work required for implementing a new application [Enca83]. GRADAS
provides not only a dialogue module based on a graphics module, but a database and
a logics module as well. The logics module knows as much about the semantics of
the application as can be specified in"an application-independent way, it may be
regarded as a subsystem which checks the input against a conceptual schema and
contc%t-sensiﬁve semantic restrictions. The major concemn related to the manage-
ment of design data is the storage of graphical and non-graphical data in a uniform
way. The designers of GRADAS felt that this required a complex data base manage-
ment system. This resulted from the conflicting requirements which the DBMS had to
meet in order to manage and store both the objects of the user world on one hand and

the graphical representations on the other. The need for fast response during
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interactive CAD system applications called for simple, preferably sequential storage
structures. This need was emphasized by the large amount of data that is generaily
required to produce a display. CAD systems call for the redundant storage of infor-
mation in forms suited to both the user’s complicated structure, and the graphics
structure. This approach complicates the modification and deletion of objects and
shows all the usual consistency problems of a redundant data representation. An

integration of the conventional data base and the graphics file is desirable.

The following is a description of the DBMS design (CORAS) which the
designers felt provided a solution to the problems stated above. The basic idea is to
give the DBA the possibility of telling the DBMS which pieces of information are
critical with respect to the interactive dialogue process. In addition the DBMS is told
what other information is likely to be needed together with the piece that has just
been retrieved. Thus, time-critical data structures and time-critical references have

been defined.

CORAS has simple entities, list entities, relation entities and set endties.
Each entity can be accessed by one or several names. Each entity can have attributes
that describe it in more detail. Relation,set and list entities may contain entities.
CORAS has functions for the generation, production, manipulation and deletion of
logical system structures on a basic level. The following are modules above the

management of physical storage:

1. The name storage---contains names of entities with reference to the
entity data;

2. The data storage;

3. The relation storage--contains tables expressing the relations between
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entities in the form of triads "relation,emityl,éntityZ".
The entity class is attached to the entity name--ID pair. An entity consists of a struc-
ture, along with four lists. The first list contains the synonyms of the name; the
second list contains user-specific data; the third and fourth lists contain ID-pair refer-

ences to lists and sets.

CORAS offers the user the required data base functions for conventional
application (storage, retrieval, and modification of data). The DBMS deals with pro-
cedures as elements as well as data. This means that primitives are be described in

procedural form. CORAS, therefore, supports two kinds of data retrieval mechan-

1sms:
1. a normal retrieval where entities are retrieved using information that is
stored in the form of data.
2. a retrieval that calls for the application of an expansion procedure.

GRADAS is one of the recent approaches to providing an integrated system
within which all types of design processes can be placed.

24.5 MITEL

Developmeht of an architecture built on a relational data base to support an
engineering design management system for producing printed circuit boards, is a
current project at MITEL [Blai85] Corporation in Canada. The primary goal of this

project is to produce an integrated system which will facilitate process management.

The architecture consists of three layers: the interface level; the system level;
and the database level. Design process constraints are built into the components

found in the system level so that the interface level consisting of the applications
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programs need only be concerned with the design itself. Design process constraints
include; update propagation, versioning, and revisions. The system level provides the
interface routines to the database so that the designer is removed from the tedious
tasks of determining appropriate calls to store the data. The advantages of such an
architecture are: the reduction of errors due to processing; the capability to monitor
the design progress; the increase in the efficiency and reliability of the design system;

and the reduced cost resulting from the use of a commercially available system.
2.5 Programming Environment Systems

Programming support environments (PSE’s) are similar to those environments
associated with CAD systems. Although most CAD systems are primarily concerned
with the design of hardware , both systems are concerned with objects , their relation-
ships and manipulations. Therefore, understanding problems encountered within a
PSE and analyzing approaches taken toward solving such problems is useful when

developing support environments for CAD systems.

Two systems, UNIX and Interlisp, have made substantial contributions in the
area of PSE’s [Wass81] and to the general understanding of tools and features that
must be provided by a PSE. However, their use of a central information repository is
limited. Significant advances of PSE’s might be in the use of such a repository. The
Department of Defense’s publication of the requirements for such a system - ADA
Programming Support Environment (APSE) - has as one of the three principal
features, a database which acts as the central repository for information associated

with each project throughout the project life cycle.
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2.5.1 ADA Environments

The Stoneman document [Defe80] specifies the requirements for an ADA
Programming Support Environment. The purpose of such an environment is to sup-
port the development and maintenance of application software throughout its life
cycle. The other two features of an APSE are the (user and system) interface and the
toolset. The interface includes the control language which presents an interface to
the user as well as system interfaces to the data base and toolset. The toolset includes
tools for program development, maintenance and configuration control supported by
an APSE. One of the layers in the representation of an APSE is the Kemel ADA Pro-
gramming Support Environment (KAPSE), which provides data base, comraunication
and run-time support functions to enable the execution of an ADA program. The pur-
pose of the KAPSE is to provide a virtual support environment for ADA programs.

A major component of this support environment is the KAPSE data base.
The specific KAPSE database requirements are:
1. Each object in the database shall be uniquely identified;

2. There is no restriction on the format of the information stored in an

object;

3. Relationships between objects shall be recorded;

4, Objects shail have attributes:
a. = History attribute
b. Categorization attribute
c. Access attribute;
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5. There shall be an archiving facility;

6. Access shall be provided to both the information content of objects
and attributes and for the traversal of networks formed by relation-

ships;
7. ADA tools can read/write database objects.

These requirements illustrate the expansion of the functionality of a data base
support system. The need for a history attribute portends the use of tools which will
analyze the process of the design of software so that software design might be better
understood. Understanding of the structure of the software design is inferred by
requiring that the data base system be capable of traversing networks formed by rela-

tionships. That is, more semantics are introduced into the data model.
2.5.1.1 KAPSE Database Implementation

'i'he introduction of ADA, and its environment, led to the development of a
Library Manager [Narf84] as the basis for an ADA Programming Support Environ-
ment. One objective of the Library Manager (LM) is to give good support for the
management of separately compiled ADA units. However, the LM can allow for
tools to introduce and retrieve objects and relations between such objects. There is
also support for the controlled sharing of objects between programmers. In order to
realize this type of support the LM is based on binary functional relations, which
form a directed graph. Provisions are made for high level operations for analyzing
relationships. There is also the capability to store and retrieve versions of the

developing ADA software.
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The implementors envision that the programming environment consists of
different tools which take different views of the data base while accepting the basic

data model and the conventions it provides.

This data model consists of a hierarchy of components. Each component con-
sists of attributes and relations. Attributes describe the component , whereas relations
describe the relationships of the component to other components. Attributes can be
user-defined or system defined (consisting of a time_stamp). Relations are named
properties with values that are collections of references to other components. When
there is a need to retrieve information about the structure, operations which perform

closure retrieval are used.
2.5.1.2 Arcadia: A Software Development Environment

The Arcadia project [Tayl86] is a research activity which is exploring issues
in the areas of environment architectures and software development support tools.

This experimental environment is being implemented in Ada.

The environment architecture is intended to reconcile extensibility with the
often conflicting goal of integration. A central premise of this project is that Arcadia
would appear to the user to be an environment for creating and managing numerous
and diverse software objects such as object code, design elements, test data, and

graph representations.

The support tools are made up of very small, modular tool fragments; any
substantial task involves potentially complex interactions between fragments. The
user is shielded from the complexity by allowing the user to describe an object which
can be derived from existing objects, leaving it to the system to determine the correct

application of tool fragments to produce the desired object.
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The objectives and approaches being taken by the Arcadia project are of par-
ticular interest to this research effort, since the main approach to the development of
the SARA/IDEAS system is similar to that used in the development of the Arcadia

system.

2.5.2 Smalltalk Environment

In the early 1970s, at the Xerox Palo Alto Research Center, the Learning
Research Group embarked upon the ambitious Smalltalk project. The proposed pro-
ject had as its goal the design, test, and implementation of abstract notions conceived
within the human mind and represented in computer hardware. The interface was to
be natural and should require a minimum of translation from human thought to the
computer representation of that thought. The Smalltalk project exemplifies object
oriented systems and provides a vocabulary for further discourse. Fortunately,

members of this group have published widely [Gold83, Gold84, Kras83].

Smalltalk-80 is an integrated programming environment. In addition to a pro-
gramming language and an interactive graphics system it provides functions normally
associated with an operating system. These functions include memory management,

a file system, processor scheduling, display handling, and compilation.

The entire Smalltalk system is modeled on a form of object-oriented program-
ming. At the highest level the user’s interaction with the system can be viewed as an
interaction between two super-objects, the User and Smalltalk. Delving deeper into
Smalltalk reveals a multitude of smaller object types that serve a variety of roles. All
datum in Smalltalk are objects. Each object type can be further classified into more
specialized subtypes. It is the communication and interaction berween the various

objects of the system that determine the functionality of Smalltaik.
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The vocabulary of Smalltalk is quite small. The most important concepts are

classes, objects, methods, and messages.

In the Smalltalk programming language, the primary unit of data organization
is the object. Everything in the system is represented and manipulated as an object.
An object is a data structure consisting of local private memory and a set of opera-
tions, called methods, to manipulate information stored in the private memory or per-
form actions based on that information. The only way to access the private memory
of an object is through the methods defined for that object. An object is similar to the
concept of an abstract data type in other programming languages. Other examples of
objects include numbers, character strings, queues, rectangles, file directories, com-

pilers, text editors, and programs.

A class is a description of a set of objects of the same type. The individual

objects described by a class are its instances.

Smalltalk is a world of communicating objects. The methods of an object are
its interface with the other objects in the system. The medium of communication
between objects is the message. Whenever an object A (the sender) wants to get
another object B (the receiver) to do something, A sends B a message which is inter-
preted by B’s message interface. The message initiates execution of one of B’s
methods which calculates a response, and B then returns this response to the sender.

This is the primary way of making things happen in Smalltatk.

Another important concept of object oriented programming in Smalltalk is the
subclass. A subclass is a class of objects possessing all the variables and methods of
some other class, called its superclass, except for certain explicitly stated additions

that extend or override the variables and methods of the superclass.
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A simple analogy to the subclass can be found in traditional dictionary
definitions of English words. For example, a man can be defined as a male adult
human. A father can be defined as a man who has one or more children. The class
father is a subclass of the class man, and the class man is a superclass of the class
father. Notice that father is defined in terms of man but is more specialized. In order
for an object to be a father it must not only be a man but it must also have one or
more children. All fathers are men but not all men are fathers. A subclassis thus a

proper subset of its superclass.

Another idea important to subclasses is inheritance. A subclass is said to
inherit all the attributes of its superclass. A father possesses all the attributes of a
man, with some additional atributes not required of the man class. A Smalltalk sub-
class inherits all the variables and methods of its superclass but it also adds new vari-
ables and methods in its implementation description, or it may override a method of
its superclass with a new definition. Inheritance is transitive. If class B is a super-
class of class C and class A is a superclass of B then by the definition of inheritance

class C inherits the attributes of class A is well as B.

Smalltalk is an interactive programming environment with a graphical inter-
face. Designing a Smalltalk program requires an implementation of each of the
program’s objects including a visualization of that object. To support the desired
graphical interaction, Smalltalk expects a high-resolution graphical display screen

and pointing device such as a mouse.
2.5.3 GEMSTONE

The GEMSTONE [Maie86] database system is the result of a three year

development project at Servio Logic Development Corp. of Beaverton, Oregon. The
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project’s main goal was to merge object oriented language concepts with those con-
cepts of a database system. To achieve this goal an object oriented database language,

OPAL, is provided by the GEMSTONE system.

Further requirements for the GEMSTONE system were: support for an exten-
sible data mode! that captures behavioral semantics; no placement of artificial bounds
on the number and size of data objects; support for all of the database amenities (con-
currency, ransactions, recovery, associative access, authorization); support for an

interactive development environment.

Smalltalk (Section 2.5.3), an object oriented language, provided the answer
for some of these requirements, such as the provision of a powerful user interface
along with many application tools for a development environment. However, it did
not meet the requirements of a database system. The Servio group added the follow-
ing enhancement to Smalltalk: support of a multi user disk based environment; sup-
port for the enforcement of integrity constraints; support for recovering the database
to a consistent state after program, processor or media failures; and virtual memory
implementation for large object spaces. These enhancements resulted in an architec-
ture composed of two basic components: Stone and Gem. These two components
correspond respectively to an object manager and a virtual machine. Stone provides
the secondary storage management, concurrrency control, authorization control, tfan—
saction management and support for associative access. Gem sits atop Stone and ela-

borates the Stone storage model into the full Gemstone model.

As with all computer based systems, the perennial performance efficiency
problem arises in GEMSTONE. To address this issue, the Servio group is attempting
to design more efficient algorithms for search and sorting of the data. Another

approach is to move GEMSTONE into the realm of distributed systems. The future
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research areas include interfacing GEMSTONE to other-languagcs such as LISP and
PASCAL.

2.6 Summary

Sections 2.2 - 2.4 of this chapter have presented many approaches toward
solving the design management problem. We classified these approaches based on
the type of DBMS used within the CAD System. The three categories; commercial
DBMS, special application DBMS, and integrated DBMS, are subclasses of a class
we call the environment. Environment is a super class encompassing the overall data

management facilities found in the CAD environment.

Tool support

Figure 2.9 Views of CAD Systems

Figure 2.9 includes two other categories we formulated during this investigative
phase. One such category, tool support, is the grouping which differentiates between
that which is a design-specific system, one capable of handling tools created to mani-
pulate a specific design, or a design-general system, one which is capable of incor-
porating various types of design tools. Subcategories of the tool support category are:

those systems which support only one tool; those systems which support a well
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defined set of tools and is a complete, closed system; those systems which support

multiple tools and

is an evolving open system (extensible).

Table 2.1 is a detailed summarization of a particular approach’s data base

concems at the environment level. This table is restricted to those environments

specifically involved with CAD system support. Therefore, we have not included in

this table are the programming support environments such as KAPSE and Smalltalk.

Database Research Interest
MCS IET DIM DTS KBDP

TORNADO(81)
FLOREAL(81) X X
IBM(82) X
INGRES(82)
IPAD(82) X X
SARA(83)
WiSS(83) X X X X
GRADAS(83) X
DIS(85) X X
MITEL(86) X X X X

Database Research Areas: Column Key

MCS: managerial control support

IET: integration of existing tools

DIM: design integrity maintenance

DTS: design transaction support

KBDP: knowledge base of design procedures

Table 2.1 Related Approaches: Environment Level
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Database Research Interest

DDS | ADD | UDS | TDM | APS | (L
TORNADO(81) X X X X
FLOREAL(81) X X
IBM(32) X X X X X
INGRES(82) X X X
IPAD(82) X X X
WiSS(83) X X X
SARA(83) X X X
GRADAS(83) X X X
DIS(85) X
MITEL(86) X X X X

Database Research Areas: Column Key

DDS: design data structures

ADD: low level access to design data
UDS: unstructured data support
TDM: use of traditional data models
APS: appropriate language support
CL: component library

.« @ * [ ] * @

Table 2.2 Related Approaches: Implementation Level

The third grouping, or category, is the Implementation level. As indicated at
the beginning of this chapter, subclasses of this class include the use of different data
structures, different ways of access the design data, appropriate use of traditional data
models, appropriate languages to support the design process, and provision of

libraries with appropriate access to be used throughout the design process. Table 2.2



indicates those approaches that were particularly concerned with this level.

Combining the two tables and looking at the chronological sequence, we can
see that there has been an evolution towards concerns around developing an
integrated management support system with increased functionality. This is evi-
denced by the shift from the implementation level to the environment level over the
past ten years. It is also evident from the research efforts that there is an increase in
concern over the usability of a system, that is, the extent to which designers will use

the CAD system.

Although each approach has considerable merit and contributes to the realm
of knowledge about CAD DBMS support, we have found that each has its limitations
which preclude the implementation of a fully supportive system for the design pro-

cess. These limitation are :

1. there is little regard for flexibility - the data manage-
ment system is not concerned about new uses of the
data and does not emphasize a flexible design which
can accommodate inclusion of new tools, which may

view the data is a slightly different way.

2. there is a clear separation of database interactions and
design interactions - most systems require that the end-
user access the database via a separate subsystem, the

data management system.

3. there is no distinction between supporting system
defined policies and implementing system policies - the

data management concerns have not focused on
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defining a nucleus on which to build design manage-

ment facilities.

4, any work concerning design process and knowledge
base support is a separate issue - with the exception of
FLOREAL, the work surveyed is primarily concerned
with support of the design process without regard to
interfacing to knowledge bases which might generate

new and enhanced uses of the system.

We propose an approach in the next chapter which draws on the results of the
previous work and at the same time provides for a flexible, extendible support system
which is tightly integrated into the CAD environment. This support system provides
DBMS functions appropriate within such a CAD environment. We have incorporated
many of the characteristics described in the programming environments section (2.5).
In particular, the object oriented flavor of Smalltalk and GEMSTONE is a prominent

feature of this research work.

We also realize that the tooiset which will be brought into this system is not
static and that the functions of new tools cannot be determined a priori. Therefore,
we must provide as much knowledge about design objects as possible to allow for
new and novel use of these objects. However, at the same time we are careful to pro-
vide an environment which can customize its toolset so that the present user popula-

tion will readily accept such a system.
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CHAPTER 3

Design Environments
3.1 Introduction

The tenﬁ, Computer Aided Design Information Systems (CADIS), infers a
symbiotic relationship between CAD Systems and Information Systems. Providing
appropriate data management support requires that the enterprise, in this case the
CAD System, be well defined. The purpose of this chapter is to provide a solid foun-
dation toward the understanding of CAD Systems. Similarly, the capabilities and
features of the Information System need to be well understood. These capabilities and

fearures were presented in Chapter One.

The first sections of this chapter describe and classify present day CAD Sys-
tems. This classification scheme emphasizes the differences between CAD systems.
The similarities found in the structure and behavior of CAD systems are described
later in this chapter. These similarities spawn a definition of Integrated CAD Systems
and an associated description of the development of such an Integrated CAD System.
Preceding this description is a description of System’s ARchitect Apprentice
(SARA). This is both a design methodology and a set of tools to support the metho-
dology. The Integrated CAD System described in this chapter is built using both the
tools and the methodology of SARA.
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3.2 Computer Aided Design Systems

A high level definition for Computer Aided Design (CAD) is the usage of
computer hardware and software for the design of products that are needed by
society. CAD is viewed to be the integration of computer science methods and
engineering sciences within a computer-based system (CAD system), which provides
a communication subsystem, a data base, and perhaps a program library. A CAD
system ensures many basic functions such as the storage of information, computation

facilities, communication management, and problem solving assistance.
3.2.1 Classifications

Presently CAD systems are used for many different engineering and scientific
tasks. These tasks involve design of both physical and non-physical entities. An
example of a physical entity might be an integrated circuit, whereas, a non-physical
entity is exemplified by the design of a piece of software. Classification of present
day CAD systems is based on the type of tasks performed. The following list briefly

describes six classes of CAD systems.

1. Drafting board systems: systems which lend graphical support in order to
generate drawings [Prei82).

2. Electronic design systems: systems which support the design of electronic
components. These systems may support one or more of the following lev-

els found in the electronic design process [Blai85, Hutc83].

a. specification level
b. functional level
c. logic level



d. layout and placement level

e. physical circuit level
Tools in such systems provide for the generation, the simulation and the
analysis of these descriptions. In fact systems may exist for different tasks

in the design process.

3. Mechanical design systems: systems which provide capabilities to design

mechanical parts [Fisc81].

4. Computer design systems: systems which provide for the generation, simu-
lation, and analysis of computer system models. We will refer to these
systems as CADOCS (Computer Aided Design of Computer Systems) Sys-
tems [Davi83].

5. Architectural design $ystems: systems which provide for the development
of architectural plans, the checking of specifications and the checking of
proper structures [Glas82].

6. Manufacturing systems: systems known as CAD/CAM systems which pro-
vide design generation capabilities for various products, numerical control
operations, process plans and even inspection plans. These systems support

the detailed tasks required to produce a physical design [Hosk81, Madd81].

7. Software design systems: systems which provide for software develop-
ment. Support is given for version control, configuration management,

code analyzers, test generators [Tich82a, Boeh84].

The classification of CAD systems presented in this section is based on the

differences between the tasks performed. However, CAD systems are similar, particu-
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larly in two domains. Such similarity is found in the structure and behavior of these

various CAD systems.
3.2.2 Structure of CAD

Two major environments define the structure of CAD systems, the hardware
environment and the software environment. The hardware environment is character-
ized by: one (or more) input devices; graphic display devices; computer; mass
storage; and output devices. The software environment is characterized by: a host
language (usually FORTRAN); several software tools for access to non-standard
features of the computer installation such as graphics devices; data bases etc.; one or
more software tools which allow for the generation, analysis, and/or simulation of
entities, and languages to drive the tools. This collection more than likely consists of
a multitude of tools which have been synthesized from a collection of separately
developed tools. The i:idividual tools are written in various dialects of FORTRAN,

PASCAL, C, LISP, and assembly code.

3.2.3 Dynamics of CAD

CAD operations can be performed on a batch basis or in an interactive mode.

Today, nearly all CAD systems are interactive.

A batch CAD system requires that the end user submit data and/or programs
which have subroutine calls to various CAD procedures. The system uses this infor-
mation to produce a design in some form, or to perform an analysis on the data or
simulate the model which was input. Long turnaround times characterize these sys-
tems. In fact, it is not uncommon to submit such batch jobs to be run at night or over
the weekend. Results of these jobs are stored in files or returned to the user. If such

results are to be used by another tool, then the end user might have to reformat the
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resultant data and submit this to be used by the other tool.

Interactive systems are usually a collection of tools which allow the user to
more rapidly explore design alternatives. The user of such a system usually is faced
with completely different user interfaces when accessing each individual tool. Some
tools may provide help facilities, but the system itself generally has no integral help
facilities. Additional tools used in this interactive environment are those which are

needed to reformat the data of one tool so that another tool might use it.
3.2.4 Integrated CAD Systems

An integrated CAD system is viewed as a set of tools and a nucleus (kernel)
whose facilities are shared by all the tools. This integrated system is to provide a
user-oriented environment for formulating designs and also to support the develop-
ment of tools to be added to this system. True integration in a CAD system is needed
to feduce the potential complexity that may result from bringing a multitude of tools
under ant umbrella and to enhance the ease of use of such systems so that it will be

accepted and used by all potential users.

A CAD system’s integration is achieved throughout various areas of the sys-
tem; data integration, user interface integration, tool integration, and task integration
are the major areas of concern. Data integration requires that a consistent internal
representation and a consistent storage representation be provided. User interface
integration calls for a common interaction handler and also a common execution
environment. These areas of integration might be regarded as design-space invariant.
That is, they are areas marked for integration which are independent of the design

space (class of CAD system) in which they are embedded.
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The third and fourth areas of integration, tool and task integration, are
design-space specific. Tools are brought into the system which support the entire life
cycle of the design. This life cycle constitutes the integration of various tasks. The

life cycle may include:

a. requirements
structure
c. behavior
d. analysis
e. simulation
f. verification
g ancillary support functions

Extensibility is also required of an integrated CAD system. CAD systems are
continually evolving as new modeling tools are created. Thus, an integrated system
must be able to be modified or augmented as new needs or applications arise or as
new tools are developed. This modification needs to be done easily with little impact

to the system and its users.

We now describe a system which is integrated across the life cycle of the
design. This system employs a unique methodology of design and supports this
methodology through the various tools found in the system. The tools are used as

examples throughout this dissertation while describing the work done.
3.3 SARA/IDEAS - A Computer-Based System Design Methodology

System ARchitect’s Apprentice, SARA, is a requirement-driven top-down and
bottom-up design method for concurrent digital systems {Camp78]. SARA supports

the design process for complex concurrent digital systems. Both hardware and
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software design are supported. The SARA method was earlier supported by an exten-
sive body of software designed at UCLA and implemented in the PL/1 language on
the MULTICS system at MIT. It provided separate tools for the structural and the
behavioral modeling of systems. The history of SARA is given in [Estr78].

The following sections first introduce the SARA design methodology and then
describe, in separate sections, each major tool or subsystem that makes up the SARA
tool system. A lock mechanism to support concurrency control in a multiuse data-
base system is employed as a running example to clarify the design procedure and its

supporting tools.
3.3.1 Design Procedure

This section describes the SARA design procedure as depicted in Figure 3.1.
The design process is initialized by insisting that the designer partition the universe
of design discourse into a system module and an environment module in which the
system will operate. This first step may seem rather mechanical, but its omission is
the cause of many faulty designs. The environment module is made explicit so that
the designer is forced to focus attention on what assumptions are being made about
stimulus and response conditions affecting desired system behavior. Those docu-
mented assumptions constrain the conditions under which designer-specified require-

ments can be expected to be met by the system module.

Neither the environment assumptions nor the system requirements are yet
supported by a formal language and a corresponding language analyzer. Although
Winchester [Winc81] has proposed a SARA requirements definition language and a

requirements analysis technique, it has not been implemented as a SARA tool.
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The next step in initialization is the development of a high-level behavioral
description of the system module. Behavior is described in three different domains:
the control flow, the data flow, and the interpretation domains. Each is supported by

a language and language analyzer. Collectively, they are supported by a simulator.

Both top-down partitioning and bottom-up composition are supported. If the
system being designed is simple it may be described immediately in the three
languages already mentioned.

Designers are rarely faced with the task of starting from scratch. Complex
systems are composed of many subsystems and it may be possible to re-use what
another designer has already provided. A power supply is an obvious example of a

re-usable subsystem.

If, for example, the system being defined is a variant on a well established
product line, it may be possible to search an existing library of previously designed
and tested modules. These building blocks can be collected to form a composition. If
the product line is special-purpose digital controllers, the building block library might
contain descriptions of TTL DIP chips or gate arrays that typically comprise major

portions of the product line.

However, a system is likely to require the design of a some subsystem or
component. If the new subsystem is large, divide-and-conquer is employed. The
system module is partitioned into smaller, more manageable modules. Initialization
is repeated for each new module thus identified. Each new module becomes a system

that exists within a containing environment.

70



Regardless of the tactic taken, partitioning or composing, the resultant design
is tested using the many tools in the SARA complement. These tools are generally
one of two types, analyzers or simulators. The resuits of analysis or simulation are
tested against the requirements. If requirements are met, then the designer may turn
attention to another module. If requirements are not met, a new partition or composi-

tion is attempted in a search for satisfaction of requirements.

In the following sections, each major step in the methodology will be dis-

cussed in greater detail using a lock_mechanism example.
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Figure 3.1 The SARA Methodology
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3.3.2 Requirements Definition

The SARA methodology is requirement-driven, yet it has no supported
requirements definition language nor language analyzer. Winchester (Winc81] has
proposed such a language and has defined a set of analysis techniques, tools, and pro-

cedures that fill this requirements definition subsystem gap.

The Requirements Definition Language, RDL, is used to separately specify
the functional, process, and attribute requirements that comprise the semantic model
of the computer system being specified. The semantic model is composed of six
primitives that describe the structural and behavioral components of the system.
Winchester describes a correspondence between these six primitives and those of the
extant SARA system. Given this correspondence, it is possible to generate SARA
models from RDL and to apply SARA analytical and simulation tools in the

verification of the specification.

In lieu of an RDL specification, the next two sections describe the environ-
ment assumptions and the first definition of the system module for the

lock_mechanism example.
3.3.2.1 Environment Assumptions For A Transaction Lock-Mechanism

The high level assumptions for the environment are that the environment will
define the type of lock required and will manage to issue one request at a time. No

"write" will be permitted during a "read” operation.
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Environment Model

A specific model of the environment contains three processes: requestor,

releasor, and transaction(Figure 3.3). The requestor process behaves

as follows:

. It receives requests from transaction processes for read/write access to a
record.

. It determines the appropriate type of lock to request (exclusive, read-only,
etc.).

. It sends a lock request to the lock_mechanism system through the request
procedure.

. It sends only one request at a time.

The relaeasor process behaves as follows:

. It receives a record to release from the transaction process.

. It sends an update message to the lock_mechanism system release pro-
cedure.

. It does not send an update message for a record that has not been granted to

the transaction.
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The transaction process behaves as follows:

. It processes transactions as they are received.

. As a database record is needed it suspends processing until the record has
been acquired.

. After update of a record it releases the record to the database.

. It signals termination to the environment upon completion of the process

3.3.2.2 System Requirements For A Transaction_Lock Mechanism

The high level system requirements are that the system will determine
whether a request to access a data item can be granted. If access is granted, then a
read operation on the database item is allowed as long as no write operation is simul-
taneously occuring. If access is not granted then the request is placed in a queue until

such time as the database item is available to access.
System Mode!

The system will contain four processes: manager, holder, data-

baseread, and databasaewrite.The manager process behaves as follows:

. It receives requests for locks one at a time.

. It determines if the request can be granted or not.

. It sends the request to the databaseread process, if the request can be
granted.

. It sends the request to the holder process if the request cannot be granted.
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The holder process behaves as follows:

. It maintains queues of transactions on data records.

. It receives messages from the databasewrite process when data records
are released.

. It sends messages to the manager process when a particular previously

queued transaction is able to request a lock.

The databaseread process behaves as follows:

. It receives messages to read a data record.
. It sends the data record to the appropriate transaction.
. It cannot access a data record if the record is simultaneously being updated.

The databasewrite process behaves as follows:

. It receives a data record to write to the database.
. It sends a message to the holder process that the record has been updated.
. Tt cannot update a data record if the record is simultaneously being accessed.

3.3.2.3 Evaluation Criteria For The Transaction_Lock Mechanism

A common form for expressing evaluation criteria is to define the initial con-
trol graph state and data state; conduct an analysis to show that no deadlock or
undesirable cycles will appear; and design a simulation experiment to observe the

system behavior.
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3.3.3 Structure Model

The structure of a system is expressed in terms of the Structure Model, SM.
The SM has three primitives: modules, sockets, and interconnections. Modules can
be connected with other modules by an interconnection connecting two sockets, one
socket in one module and one socket in the other module. Thus, sockets are com-

munication ports for modules.

The interconnection is not directed; it models a communication line but does
not reveal which way the information flows. An interconnection always connects two
and only two sockets. Furthermore, a socket can have only two interconnections
attached to it: one going out and one coming in. Hierarchical decomposition is

achieved by refining a module into submodules.

There is a top level module called universe which has no sockets. Hierarchi-
cal decomposition is achieved by refining a module into submodules. This process
" can be repeated until the system has been decomposed into small enough modules,
whose behavior can be directly mapped to an existing behavioral model stored in the
Building Block Library or whose behavior is simple enough to be understood and

expressed using the behavioral primitives.

In our lock_mechanism system, we would decompose our universe module
into the lock_mechanism system and its environment. The environment and the
lock_mechanism system would communicate through the request, release,

and access operations. Figure 3.2 shows the SM for the lock_mechanism system.
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Figure 3.2 Structure Model of the Lock_Mechanism System

The environment module has three sockets: erg (for environment request) ,
etr (for environment transaction), and erf (for environment release). These sockets
are connected through interconnections request, access, and releasa, respectively,

to sockets Irq ,!tr, and Irl in the lock_mechanism module.

The environment module or the lock_mechanism module could be parti-

tioned further into submodules if needed.
3.3.4 Behavioral Modeling

In SARA, the behavior of the system is modeled using the Graph Model of
Behavior, GMB [Razo77]. The GMB offers the designer three different but related
modeling domains: control, data, and interpretation. The designer focuses on one of
these domains at a time. After developing independent systems descriptions in each

domain, the designer insures that they are consistent with each other.
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3.3.4.1 The Control Domain

The control flow model describes concurrency, synchronization and pre-
cedence relations in a graph using an underlying theoretical model equivalent to

Petri-Nets [Pete81].

The control domain of the GMB is a directed hypergraph, i.e., a graph in
which the edges may have multiple sources and/or multiple destinations. Control
nodes (the vertices) represent events and control arcs represent precedence con-

straints, or a partial ordering, among the events.

Each node has an inpur logic expression, which is a boolean expression on the
input arcs, that expresses the condition under which that node can be initiated. An
OR, “*+”, in the input logic means any of the operand arcs can initiate the node. An
AND, “*”°, in the input logic means that all operand arcs must pass control before

that node can be initiated.

Each node has an output logic expression, a boolean expression on the output
arcs, which shows where control is passed upon termination of that node. An OR
here implies control is passed to one of the designated arcs. An AND implies control

is passed to all of the designated arcs.

Both input and output logic expressions can be arbitrary functions using
ANDs and ORs. Control flow in the control graph is represented by the passing of
tokens through control arcs. When a node is initiated, it consumes the tokens which
enabled it. Upon node termination, tokens are created and placed on output arcs
according to the node’s output logic expression. The semantics of a control graph are
dictated by an underlying machine, known as the wken machine, which performs

state-to-state transformations on the graph, starting from an initial token distribution
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and terminating if and when no further transformations are possible.

Continuing with our lock_mechanism system, we define a control graph for
each of the modules defined in the SM. To show this mapping, each control graph
can be drawn on its corresponding SM module:

erq request Irq
ot l,laccess it
erl reieasq I
environment lock_mechanism
universe

Figure 3.3 GMB Contro} Graph for the Lock_Mechanism System

The following tables describe the function of the various components in the control

graph:

Control Nodes

TRANS Transaction process, initiates requestor or releasor.

REQST Requestor process
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RELSE Releasor process, sends update message to the lock_mechanism

MANG Manager process, receives lock request and sends appropriate
message

HOLD Holder process, manages queues of waiting requests

READ Receives message from the manager, accesses the requested data
record

WRTE Receives update request, performs the update operation, and

sends lock release to the holder process

Control Arcs

S Arc to initiate the system.
Tokens
0 Initial state of tokens.

3.3.4.2 The Data Domain

The data domain of the GMB is a bipartite directed graph, i.e., a graph in
which there are two kinds of nodes (datasets, represented as rectangles and daza pro-
cessors, represented as hexagons) and in which arcs (called dara arcs) are used to
connect datasets with data processors. Thus, every data arc goes from a data proces-
sor to a dataset or viceversa. This graph represents the data flow of the system by
defining its data paths. Datasets model static collections of data. Data Processors are
data transformers which can read from and/or write to datasets. Data arcs define the

read and write accesses of 2 data processor to a dataset.

Continuing with the buffer example, we draw the data graph over the SM and
show the mapping existing between the data graph and the control graph.

The following table describes the function of the various data processors and datasets

in the data graph:
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Figure 3.4: GMB Data Graph for the Lock_Mechanism System

Controlled Processors

REQ Mapped to control node REQST, processor which receives
request for a data record, determines the appropriate lock type
and gives the request to the lock_mechanism

TRAN Mapped to TRANS in the control graph. It executes a transac-
tions, as data records are needed it requests such a record. Execu-
tion is suspended while waiting from the record. After use of the
record, it releases the record by writing it to the DATAREL file.

REL Mapped to RELSE in the control graph. It reads released
records from DATAREL, and compares them against
DATAREC records. If the record has been received by the tran-

saction requesting release then a message is sent to update the
database.
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MAN

D8

HLD

Datasets
DATABS

ACCESS

RELSE
QUEUE |
LOCKREQ
DATAREQ
DATACC ‘

DATAREL

DATAREC
DATARED

Mapped to MANG in the control graph. It receives requests from
the environment or the HLD processor and determines if the
request can be granted or must be held. It places the request in
the dataset ACCESS.

Mapped to READ and WRTE in the control graph. It reads mes-
sages from either DATAREC or ACCESS and writes to
DATABS. It may also write to dataset RELSE.

Mapped to HOLD in the control graph. It reads data requests
from ACCESS and places the request in the appropriate queue.
It reads data releases from the dataset RELSE and removes a

waiting transaction id from the queue and writes to the dataset
QUEUE

Initial database of records

Individual records identifiers paired with transaction identifiers to
be read by the DB processor or the HLD processor

Identifiers of records to be released

Dataset with identifier of transaction waiting to be granted lock
Dataset Wi.th identifier of datarecord, transaction and lock type .
Dataset with with database access request

Dataset with transaction identifier, identifier of datarecord and
datarecord contents

Dataset with identifier of datarecord, identifier of transaction and
new datarecord contents

Dataset with identifier of datarecord and identifier of transaction

Dataset with identifier of datarecord and new datarecord contents

3.3.4.3 The Interpretation Domain

The Interpretation Domain defines the format of the data stored in datasets

and defines the transformations of data performed by the data processors. Many

83



interpretation languages can be used for this domain. The original SARA system
used PLIP (an extension of PL/1) as its interpretation language. The current system,
being implemented in a Lisp dialect, supports a Lisp-like interpretation language, "T"

and is able to call upon any Unix function.
3.3.5 Building Block Library

In order to support bottom-up design, it is necessary to have a collection of
previously designed and tested models, appropriate for the design domain, stored in a
design database. The SARA design database is called the Building Block Library by
Drobman [Drob80]. His work concentrates on hardware building blocks but the pro-

cedure is also applicable to software modules.

The primary hypothesis of Drobman’s work is that
*¢4 set of models of hardware and software building blocks can be created
and utilized as primitive elements in a computer-aided design system and
methodology such that the composition of requirements-satisfying, par-
tially correct, microprocessor-based digital systems is dramatically
enhanced.”
He demonstrated satisfaction of the hypothesis by defining building block descrip-
tions of the Am2901 bit-sliced microprocessor, the Am29775 PROM, and other simi-
larty complex devices, and then using those building blocks to design a 16-bit

microprogrammable microprocessor.

Drobman’s building blocks are prefabricated simulation models of physical
building blocks. The simulation models are defined in the previously mentioned
SARA languages, the Structure Model Language and the Graph Model of Behavior

Languages.
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Other SARA researchers have studied the requirements and organization of a

design library [Land83, Mars83].
3.3.6 Socket Attribute Modeling

During research on the Building Block Library and the SARA simulation
tools, it was felt that many of the errors detected during simulation could have been
found much earlier by analysis of some as-of-yet undefined static description of the
building blocks. This observation spawned Sampaio’s research into the Socket Attri-
bute Model, SAM [Samp79], and Penedo’s research into the Module Interconnect
Description, MID [Pene81]. While both deal with a description of a building block at
its interfaces, sockets or interconnects, SAM concentrates on hardware building

blocks and MID concentrates on software building blocks.

Sampaio provides a language to describe the behavioral attributes of a
hardware module’s sockets, for example, electrical characteristics (fan-in, fan-out),
timing (set-up and hold times), bandwidth, and perhaps physical characteristics.
With these descriptions attached to a module’s sockets it is possible to detect incon-
sistencies occurring during composition of two or more modules. The detection of
socket mismatch errors occurs at the time the socket connection is attempted, not
later during an expensive and time consuming simulation that may not detect the

error at all.
3.3.7 Module Interconnect Description

Penedo attacks the same problem as Sampaio, but on the software front. She
describes software modules as they appear at their interfaces. Most type checking
compilers detect some of the errors that Penedo is after, for example, procedures

called with the wrong number or type of arguments. The product of her research is
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the Module Interconnect Description, MID [Pene81, Pene79]. Berry later shows that
Ada package specifications meet the needs of Penedo’s MID [Berr84). Krell
[Krel86] continues this line of reasoning by researching the suitability of Ada as the

language for the interpretation domain of the GMB.
3.3.8 Extensibility and User Interface

The extant SARA system implementation at MIT was not constructed in an ad
hoc manner. From the beginning, the implementors knew that no matter how com-
plete their tool kit was, there would be inevitable pressure to add new tools. They
therefore established a procedure for constructing a new tool and for eventually
integrating it with the existing tool kit. This procedure is described in [Vern78]. To
insure consistency between existing and newly defined tools, Fenchel {Fenc80)
deﬁﬁed a user interface construction tool that promotes sharing of grammatical con-
structs between tools. By following the procedure and by using the user interface
construction tool, the end product is self-describing, offering syntactic and semantic
help to the end user. Fenchel's tool [Fenc81, Fenc78] is summarized in the following

paragraphs.

Each tool initially is partitioned into user interface dependent and independent
parts. The user interface independent part is partitioned into a collection of PL/1 rou-
tines that comprise the tool’s functionality. The syntax of the user interface depen-
dent part is described in an SLR(1) grammar. Upon recognition of certain syntax

rules, a user interface independent routine is called.

Once the tool is fully constructed the user interface independent routines are
merged with those of any pre-existing tools. The tool’s syntax specification is added

as a subdialogue to the tool system’s grammar.
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The underlying support tools use the grammar to provide integral help to the
end user. This insures that the user gets help information that is in agreement with
the implementation. It also alleviates the burden of providing help from the tool

implementor.
3.3.9 The SARA/IDEAS Environment

The SARA methodology is supported by automated tools in an integrated,
interactive environment. These tools allow the user to create and modify SM and
GMB models. There is also a design data base from which models can be stored and

retrieved.

The GMB Simulator [Razo79] is one of the tools in the SARA environment.
Another tool is the Control Flow Analyzer, used to analyze control graphs for control
flow anomalies such as deadlocks and to assure some control flow properties such as

proper termination.

The SARA methodology and tools described in the preceding sections pro-
vide us with a framework to develop an integrated design environment. This research
included the redesign of some of the basic tools described in these sections. This
development provided us with much insight into the problems and solutions one
might encounter while providing an extensible, integrated system. The resulting
interactive modeling environment is the SARA/IDEAS system. The following sec-

tions describe the building of this interactive, integrated system.

Throughout the remainder of this dissertation the SARA tools, in particular
the Structure Model and the Graph Model of Behavior will be used to provide exam-
ples when presenting the various components of the design environment developed

during this research.
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3.4 Intelligent Design Environment for Analyzable Systems (IDEAS)

IDEAS is an integrated interactive environment currently being developed at
UCLA. It is the second generation of the SARA system and thus is refered to as the
SARA/IDEAS system. The SARA/IDEAS system is intended to run on Apollo, Sun,
Vax, HP, IBM, and MacIntosh workstations and consists of various tools needed by
the class of CADOCS systems. This author and Duane Worley collaborated in the
development of a tool building methodology and run time systemn described in this
section. Worley’s focus was on the user interaction involved in building tools and
using them, whereas the focus of this author is on the database interaction with the

system.

The following list of high level goals represent a portion of those imposed on
the development of the SARA/IDEAS (Intelligent Design Environment for Analyz-
able Systems) system so as to provide for a readily extensible and tightly integrated

CADOCS system which can more effectively support complex design efforts

[Worl86].

1. Support strong partitioning of user interface issues from tool modeling
issues
2. Automaticaily provide a consistent, friendly user interface directly from

the tool’s specification

3. Provide a large body of reusable software that is common to CADOCS
tools, including interaction handler, data base definition and manipulation,

work space, and library of logical and physical device drivers

4. Automatically generate as much code as practical
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These goals follow from observations that tool developers are primarily
interested in the modeling capability and have insufficient appreciation for human
interface issues, database management and amplification achieved through the
integration of tools [Worl86]. An underlying support kemel, which provides user
interaction handlers, graphics and data base management functionality, provides the

means to meet these goals.

The provision of such an interactive integrated CADOCS system is embodied
in a multi-phased method and specification system. The first phase, conceptual by
nature, focuses on the semantics of a particular tool followed by a description of the
syntax of a command language. Subsequent phases in the development of a tool con-
sider the logical devices, and eventually the physical devices, that support the com-
mand language support. This approach provides a clean partiioning between a tool’s

semantics, syntax, and the underlying interaction hardware.

Worley’s methodology is multileveled and object oriented. That is, a new tool
is brought into this environment first by considering its semantic definition. The tool
designer creates a new modeling capability by defining objects, their inter-
relationships and operations performed upon them. This designer must first identfy
the objects that the end user of this tool will manipulate or create. Next, the relation-
ships between these objects must be defined as well as the relationships between
objects belonging to the environment and/or to other tools. Finally the operations

upon the object must be determined.

It is the function of the kernel to provide high level support for these defined
objects as well as to provide environment objects. Environment objects are those
objects which are present across the broad spectrum of CADOQCS tools. A display

screen is such an environment object. Another most important environment object is

89



the CADOCS data base.

The Entity-Relationship Model (ERM) [Chen77] provides a natural mechan-
ism for communicating many of these concepts to both human implementors and sys-
tem facilities. The objects and their inter-relationships, as defined by the tool
developer, are modeled respectively as ERM entity sets and relationship sets. This
model forms the basis of the tool designer’s view of the underlying database struc-

tures.

Augmented
ERD

-Semantic OReO Class
Definition Compiler Definitions

Operation
Specifications

Figure 3.5 Semantic Compiler

Figure 3.5 shows that upon completion of the tool development phase, result-
ing in a Semantic Definition, a semantic compiler (OReO Compiler) produces a set of
semantic Operation Specifications, a set of Class Definitions, and an ERD, aug-
mented to satisfy the needs of a CAD Information System (see Chapter Five ). The
set of semantic Operation Specifications contain a specification for every operation
identified in the operation step. The set of Class Definitions incorporate the informa-

tion extracted from the object and relation specification. They include the necessary
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data structures to represent an object, its attributes, and its relations with other
objects. The ERD is a graph which is derived from the object, attribute and relation
descriptions. This graph (Augmented ERD), along with augments necessary to
represent the design environment, is then processed by a data base compiler to pro-

duce the schema for this particular tool.

A portion of the output from the OReO Compiler, namely Class Definitions
and Operation Specification, is used as a template by the Tool Implementor, who
happens to be human, in order to flesh out the details of the code needed to imple-

ment the operations of the tool ( Operation Implementations).

The remaining output from the OReO Compiler, the Augmented ERD, is used
as input to a Data Base Compiler. The Data Base Compiler (Chapter Six) produces a
data base schema which will provide for the storage and access of the objects and

relationships defined in the concepual definition phase.

The syntactic description phase provides for specification of the human-
machine interaction in terms of a grammar. The tool developer associates each sen-
tence with a semantic operation defined in the previous phase, resulting in a grammar
definition. Upon completion of the syntax definition phase, Figure 3.6 shows the
Operation Specification from the semantic phase and the syntax definition (Grammar
Definition) being input to a syntax (Grammar Compiier) compiler to produce an aug-
mented transition network (ATN Graph) [Wood70] and a Token List. The ATN
Graph is a graphical representation of the language, used to guide the execution of
the command-response language interpreter. The Token List is a collection and
categorization of the terminal symbols which appear in the syntax and will be

resolved in a later phase.
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Figure 3.6 Syntax Compiler

The final two phases concentrate on supporting the low-level aspects of a
tool’s user interface. These two phases deal exclusively with interaction techniques
and devices. The logical device description phase, resulting in a lexical definition,
allows the developer to bind tokens from the previous phase to logical devices.
These tokens consist of input tokens associated with interaction tasks and output
tokens associated with shapes. A logical device definition buffers the developer from
the specifics of physical devices by expressing the more general interface characteris-
tics of logical devices. The physical device description phase focuses attention on the
available physical devices to support interaction. This definition bridges the gap
between the tool concept and the physical devices with which the user comes in

direct contact.

Figure 3.7 shows the output from these two phases, Lexical Definition and
Physical Definition, as being input to the Device Compiler. Other input to the Device
Compiler consists of: the Token List; the set of Interaction Tasks; the set of Device
Drivers; and the set of Shapes. The Token List is the same as described as output
from the Grammar Compiler in Figure 3.6. The Device Drivers are software routines
that implement the logical devices on the physical devices. The Shapes are a body of
routines which draw primitive shapes. The Im;eraction Tasks are a set of software

routines which implement the logical interactions performed by a specific physical
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device, such as locating, picking and selecting. Rather than create new software the
Device Compiler calls on the System Librarian (Figure 3.9) for predefined software
packages of device dirvers, interaction tasks, and shape routines. Output from the

Device Compiler is an I/O Handler responsible for the execution of the tool.

Token
List

Lexical
Definition

Physical
Definition Device /O
Compiler Handler

Interaction
Tasks

Device
Drivers

Shapes

Figure 3.7 Device Compiler

Integration of a new tool into SARA/IDEAS is accomplished in two steps.
Figure 3.8 details the complete set of processes involved in step one; the implementa-
tion of a tool invariant interaction handler and data base management system tailored
by the tool’s specification subsystem. The processes, hexagonal figures in Figure 3.8,
provided by the system to perform this step are the ORe0 Compiler (Figure 3.5), the
Grammar Compiler (Figure 3.6), the Tool Implementor (not separately illustrated),
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the Data Base Compiler (Figure 4.1), and the Device Compiler (Figure 3.7).

These processors, with the exception of the Data Base Compiler, have been
described in the preceding paragraphs. Step two, resulting in an executable system
tailored to a particular hardware environment, uses as inputs to the Integration Facil-
ity (processor), the outputs from the processors used during step one. This Integration
Facility contains subprocessors, one of which is a Data Base Integrator (Chapter Four
and Seven). This Data Base Integrator is responsible for the inclusion of all data base

relevant information within the design database.

All processors found in Figure 3.8, collectively called the SYSGEN environ-
ment, have access to a stand alone processor, the System Librarian. The Librarian
accepts requests (Library Requests) to search various libraries which are input to it
and output source or object level descriptions in response to requests. As indicated in
Figure 3.9, the input to the System Librarian consists of libraries of Logical Devices,
Device Independent Shapes, Device Dependent Routines, description of Data Base
Kernels, and description of various Interaction Kernels. We have previously
described how the Device Compiler calls on the System Librarian in order to access
predefined software routines. The Integration Facility might also call on the System
Librarian to provide a Data Base Kemel and Interaction Kernel to be used as the sup-

port level for the executable CADOCS system.
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Figure 3.8 System Generation Data Flow Diagram
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Figure 3.9 Library Facility

The methodical use of the tool building system, defined by Worley, produces
a procedural interface to the modeling objects appearing in the user interface. Also
defined by Worley is a kernel supporting the user interface management, the user
interface management system. This kernel provides another, though more primitive
procedural interface to objects. The end user of a tool is never aware of this level. A
portion of this kernel includes the operations to support a design database system.
This portion of the kernel, the DB_KERNEL, will be described in detail in Chapter

Five.
3.5 Summary

This chapter first developed the concept of an integrated design system. A
description of such an integrated CAD system, the SARA/IDEAS system, was then
presented. This description included a definition of a tool building methodology
(TBS) and the resultant run time system (SARA/IDEAS). We use these definitions
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and guidelines to formulate an approach to the intelligent data management within
integrated CAD systems. An overview of this approach is presented in the following
chapter. The realization of such a data management facility takes place within the
integrated environment, the SARA/IDEAS system and is described in detail in the

following chapters.
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CHAPTER 4

Computer Aided Design Information Systems

Computer Aided Design Information System (CADIS) is a comprehensive
integral component within the SARA/IDEAS system. CADIS is designed to support
the tool building methodology as well as the run time system resulting from the

integration of these tools.

The chapter begins by first defining CADIS. This definition incorporates the
four major requirements of our design information system. The descriptions of the
major components of CADIS follow this definintion. The concluding sections present
the overall arv.::hitecture of the database system. This architecture, in the
ANSI/SPARC tradition, is multi-leveled. A brief descriptive overview of each level is
then given. Detailed expositions of each level are presented in Chapter Five through

Chapter Eight.
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4.1 Definition

A Computer Aided Design Information System (CADIS) is defined to be a
generalized support system which provides standard data management features found
in commercial DBMSs, and yet is capable of supporting the design process found
within a specific design environment. The design of CADIS is such that integration
across the design tools (Tool Integration - see Section 3.2.4) is supported as well as
integration across the various design phases (Task Integration - Section 3.2.4). The
concept of an extensible CAD system is also supported by CADIS. CADIS is capable
of absorbing new tools whose degree of integration into the system is defined by the
tool designer. Thus, the four primary objectives of CADIS are to support and facili-
tate data integration, tool integration, task integration and extensibility. A secondary,

though important, objective is the economical construction of such a system.

Provision of standard GDBMS features, found in commercial environments,
can be accomplished by extending existing GDBMSs. This approach is attractive
from a practical viewpoint, since it preserves the considerable know-how acquired in
the building of these systems. Also, the vast amount of software which is required for
general purpose operations need not be reinvented. The design of CADIS is based on
the extension of a standard GDBMS (Chapter Six).

Supporting the design process involves not only the support of designs during
invocation of tools, but also support for the building of the tools. Design is an evolu-
tionary process, and likewise the design of a CAD system is an evolutionary process.
Various versions of tools and designs exist during the lifetime of a CAD system.
Software developers make use of some type of version control mechanism and
configuration control manager. Many such systems exist and can be extended for use

in a design system. The development of CADIS includes the use of a standard version



control program (Chapter Seven).

Integration of tools and tasks within a CAD system necessitate an underlying
common view of data. Although some tools may view data as text, such as an editor,
other tools view data as code or even as single valued attributes. These different
views constitute what is variable between CAD tools. This variability is described as
tool dependent. However, the need to interact with long term storage (a database) is
fixed regardless of the CAD tool. These independent portions of a tool require a pol-
icy independent mechanism to support them. These portions are collectively referred
to as the DB_KERNEL (Chapter Five). The DB_KERNEL is provided to the
Integration Facility processor (Figure 3.8) so that the tool dependent portions of the-
CAD tool (specified by the tool implementor) might be integrated with the tool

independent portions to produce an executable system.

An extensible, flexible CAD system requires support from the data manage-
ment system for dynamically modifiable storage structures. Such modification
involves the ability to define new structures and the ability to extend existing struc-
tures. CADIS is an integral part of the tool building system (TBS) as defined in
[Worl86)]. The unifying concept in CADIS is that of an object oriented world.
CADIS itself is viewed as an object as are the constituent tools of the CAD system.
Mechanisms for the definition and manipulation of these objects are provided by
CADIS. As new tools are added to the CAD system, CADIS also evolves. This object
oriented view, coupled with the Worley TBS, allows new tools to be easily integrated

into the existing system,
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4.2 Design and Development

The design and development of CADIS is sectioned into two major tasks: the
design of the database, and the design of the management system which manipulates

the database.

The database design, the schema, consists of two levels: the top level, which
is invariant, and the undérlying level, which is evolving as new tools are introduced.
The unifying structure containing these two levels is an object. That is, the database
is considered to be an object with operations defined on that object, allowing one to
access its internal objects. Two internal objects found in the database are the system
object (invariant level), and the tool object (variant level). Operations are associated
with each of these two sub-objects. Descriptions of the database design employ

definition of the operations and sketches of the structure of the object.

The design of the management system involves design of the various com-
ponents needed to support the tool building system, which we have previously
defined, and the run time system. The design process employs many techniques. This
dissertation describes these components using such techniques as HIPO lists, data

flow graphs, pseudo code, and ADA packages.

HIPO (Hierarchical Input Processing Output) lists [Shoo83] require that the
designer list all inputs to a process, list the processing that takes place and list all
expected outputs of the process. The processes are defined in a hierarchical order
starting with the top level of the system being designed. We use this technique to

detail the Data Base Compiler and the Data Base Integrator in Section 4.3.
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Data flow graphs, defined in detail in Chapter Three, hide the processing that
takes place. They are a graphical means of representing the inputs and outputs of

various processes.

Pseudo code [Rood85] is a structured paragraph form for describing logic
associated with the implementation of procedures and/or functions. Pseudo code
allows a program designer to quickly sketch the broad outline of the design and com-
plete the details later. It is a popular method for detailing the algorithm without
regard to some particular syntax. The processing which is performed within the com-

ponents is defined in detail using pseudo code (Chapter Six).

ADA packages [Berr84] are used for design to perform data abstraction and
detail design before beginning implementation. An ADA compiler allows these pack-
ages to be compiled so that interface inconsistencies can be detected. ADA packages
are used to specifiy the operations performed on objects and relationships for the

Browser tool (Chapter Eight).
4.3 Components

The major components comprising CADIS are: the underlying kemel of the
data management system; the supporting mechanisms to create a database; the tools
of the CAD system with additional mechanisms needed to support the evolution of

designs.
CADIS Kernel

The underlying kernel of CADIS is that software neccessary for the creation
and manipulation of the unified data model. It consists of an interface between the

users’ view and the logical view of the database, as well as another backend interface
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between the logical level and the implementation level. This kernel represents the
invariant aspect of CADIS. Chapter Five of this dissertation defines the kemel, called

the DB_KERNEL.
Support Components

The database definition facility is comprised of two major subsections. A
Data Base Compiler and a Data Base Integrator. The contents of this component vary
only as the underlying physical composition of the CAD system changes. Chapters

Six and Seven develop these facilities in greater detail.

Figure 4.1 is a data flow representation of the data base compiler. This proces-
sor is taken from Figure 3.8, the SARA/IDEAS System Generation illustration. The
HIPO list following Figure 4.1 provides more detail as to the inputs, outputs, and pro-

cessing functions of this component.

Data Base
Declarations
Augmented Data Base
ERD Compiler
Data Base
Manipulations

Figure 4.1 Data Base Compiler

Data Base Compiler HIPO list:

L NAME:
Data Base Compiler (DB_COMPILER) - Part of the SYSGEN
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(Figure 3.8) system component. The DB_COMPILER is the
processor within the Integration Facility (Figure 3.8) which 1s
responsible for the coupling of the tool and the data base

management facilities.

INPUT:

The Augmented ERD (Figure 1.2) consisting of:
. defined entities

a. properties of entities

b. relationships between entities
c. roles entities assume

d. entity origin
Further ERD textual augments (Section 5.5) consisting of:

. constraints on entities:
a. type constraint
b. value constraint
c. structural constraints

d. procedural constraints

. access definition

PROCESSING:

The inputs defined above are sufficiently rich in information so
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that both the logical data base model can be defined as well as
the tool’s physical data base. The following actions need to be

performed:

. raversal of the augmented ERD and ERD textual aug-

ments to identify types of entities, relationships and pro-
perties,
. mapping of entities, relationships and properties into an

extended relational model, the RM/T data model
[Codd79],

. mapping of the RM/T data model into the relations sup-
ported by the underlying relational data base, and

. niapping of the constraints, options list, defined unit and
defined methods into catalogs and procedures supported
by the DB_KERNEL.

The RM/T has been chosen as the logical data model for this
research as a result of a comprehensive review of the extended

relational model indicating that the RM/T provides:

. a natural correspondence with the ERM, the concep-

tual model for SARA/IDEAS system,

. structural representation for both the atomic and

molecular semantics of complex designs;

. high level operators to support storage and retrieval
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of complex units;

. support for system generated id’s, necessary for
management of the complex associations found in

designs.

Iv. OUTPUT:

Data Base Declarations consisting of:
. catalogs defining the RM/T data model,

. catalogs defining the external links to other tools and the
system

Data Base Manipulations consisting of:

.. augments to the data base procedures provided by the
DB_KERNEL - these are in the form of T code, the
implementation language for SARA/IDEAS.

Tool Data Base .
Declaration CADIS Data Base
Declaration
CADIS Data Base Data Base
Declaration Integrator
CADIS_ Data: Base
Tool Data Base Manipulations
Manipulations

Figure 4.2 Data Base Integrator
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Figure 4.2 is a data flow representation of the Data Base Integrator followed
by a HIPO list describing it in more detail. This processor is a sub processor found

within the Integration Facility Processor illustrated in Figure 3.8
Data Base Integrator HIPO list:
L NAME:
Data Base Integrator (DB_INTEGRATOR) - Part of the SYS-
GEN (Chapter Three) system component. The

DB_INTEGRATOR is the processor which is responsible for

integrating the tool database into the existing CADIS database.

II. INPUT:

Tool Data Base Declaration consisting of:

. catalogs defining the RM/T data model
. catalogs defining the external links
Tool Data Base Manipulations consisting of:

. augments to the data base procedures provided by the
DB_KERNEL

CADIS Data Base Declarations consisting of:
. catalogs defining the existing tools’ schema
M. PROCESSING:

The following actions need to be performed:
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. processing of the RM/T catalog information to identify

meta data for use at the system level

. processing of the external catalog definitions to identify
origin of objects
. binding of external object references at system level

Iv. OUTPUT:
The DB_INTEGRATOR produces the following

. CADIS Data Base Declaration - catalogs containing the

system schema

. CADIS Data Base Manipulations - augmented methods

to access the tool schemas
Tools

The tools of the CAD system include not only tools that define and manipu-
late CAD objects, but also for example, allow the user to browse through objects
found in a component library - a librarian. Chapter Eight describes the structure ofa
data intensive tool, a browser. These tools constitute the variant aspect of CADIS. As

new tools are added, the character of CADIS changes.
Additional Components

Additional mechanisms necessary to support the design environment are those
mechanisms which are often found in software development systems. Often these

mechanisms are considered software tools. However, we regard tools to be those
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designed to carry out a specific task directly related to the CAD system’s primary
goal. A mechanism is more general in nature. An example of one such mechanism is
the RCS program [Tich82b]. RCS (Revision Control System) manages software

libraries. It provides the following functions for such management:

. RCS stores and retrieves multiple revisions of program and
other text.

. RCS maintains a complete history of changes.

. RCS manages multiple lines of development.

. RCS can merge multiple lines of development.

. RCS flags coding conflicts.
. RCS provides release and configuration control.

The authors state that this farogram is compatible with existing software and is unob-
trusive so that existing tools can be used as before. This mechanism would be com-
bined with the data management facilities to provide versioning of the database infor-
mation. As such its place is within the underlying system components and not as an

independent tool.
4.4 CADIS Architecture

The CADIS database architecture (figure 4.3) is multilevel. The four levels of
CADIS have the indicated correspondence with the ANSI/SPARC three level archi-

tecture.

109



CADIS ANSI/SPARC

Tool Level  [«coerreiiiiinnnn External Level
System Level |... ~
l .-":::j:hConceptual Level
Kemel Level |-
IDEAS Database |--coccevaeerimeemraaniinen. Phys]_cal Level

Figure 4.3 - CADIS Database Architecture
4.4.1 CADIS Tool Level

The tool level represents the external level of the IDEAS database. There
exist at this level multiple tools, each with their own view of the database. An end-
user (designer) invoking a particular CAD tool, such as the SM Editor, is concerned

primarily with that tool’s conceptual view of the design representations associated

with it. This conceptual view is originally defined by the tool implementor and is

based on the Entity Relationship Data Model (ERM) [Chen77] which has been aug-
mented by this author. Unlike view definition found in traditional data base manage-
ment systems, these tool views are not necessarily defined as a subset of the original

data base schema, but can be defined independently of the data base schema and then
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integrated into the existing model.

CADIS tools include all of the tools described in Section 3.3. Chapter Five
describes in detail two of these tools, the SM Editor and GMB Editor, and their ERM
design representations. Chapter Eight alsc details a tool, the SI Browser, and its

related ERM design representation.
4.4.2 CADIS System Level

We use an Entity-Relationship Diagram (ERD) (Figure 4.4) in order to

describe the semantics of the system level’s position within the CADIS architecture.

SYSTEM

@% OPS ! KERNEL

N N
M  uses
N usedby

Figure 4.4 - ERD of the CADIS Enterprise

The tool developer, while in the process of defining a tool’s objects, relation-
ships, and operations, has a view of CADIS as a system object with constituent enti-
ties - system, kernel, tool. The tool developer’s role is that of creating a new entity of

type TOOL and also creating any new relationships of type REFERS, defining the
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role of the tool in this relationship. Instances of the system level relationship type
REFERS allow a tool to use objects defined in other tools. Another system level
entity of relationship type OPS is created if the tool developer needs to reference any
— of the objects found within the system. Such objects may be a protection object or
configuration object. An instance of the system level entity of relationship type
CONTAINS is created during the process of integrating the tool’s view into CADIS.
The tool developer may also classify tool objects as belonging to particular system-
defined classes, objects. These system generic objects provide the tool developer with

database access operations and update operations.
4.4.3 CADIS Kernel Level

The kemel level of CADIS represents the conceptual level of the IDEAS data-
base. The kernel level supports an underlying extended relational data model
[Codd79] which has been modified so as to accommodate design-specific require-
ments such as the support of version control mechanisms and storage/retrieval of

unstructured data. This data model (RM/T) is described in detail in Chapter Six.

The kernel level supports the semantics of the ERM through basic operations
defined on that model - selection, deletion, update and insertion. Most information
retrieval and storage requests can be considered as a combination of the following

basic types of operations found in the kernel:

Selection
1. Selection of a subset of values from a value set.
2. Selection of a subset of entities from an entity set.
3. Selection of a subset of relationships from a

112



relationship set.
4, Selection of a subset of attributes from an attribute set.
Deletion

Deletion only involves deletion of an entity or a relationship. The consequence of
deletion is that all properties are deleted. The separation of properties from value sets
however, allows for the deletion of properties without affecting similar properties
found in other entities. Another consequence of entity deletion is that dependent enti-

ties will be deleted as well as relatdonships involving the deleted entity.
Update

Updating only changes the value of attributes of entities or relationships.
Insertion

Insertion requires only three operations:

1. Insertion of an entity into an entity set.
2. Insertion of a relationship into a relationship set.
3. Insertion of properties of an entity or relationship.

Chapter Five defines the set of operations necessary to define and manipulate the aug-

mented ERM, using these basic operations.

The partitioning of the ANSI/SPARC conceptual level into two distinct levels
(system-kernel) is necessary in order to achieve the objectives of providing for an
extensible system, ease of use of the CAD system, and ease in developing new tools.

The schema associated with the kernel level is less dynamic than that of the system
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kernel. It too is modified as new tools are brought into IDEAS. However, the
modification involves basically the addition of new relational tables. The tool-
independent functions necessary to support the kernel view are integrated into the
SYS/KERNEL which provides the CAD system with a nucleus of common functions

necessary for the development and integration of CAD tools.
4.4.4 CADIS IDEAS Database

The physical data base used for this research is built by the PLAIN Data Base
Handler [Kers81]. However, the design of the SARA/IDEAS system is such thata
designer of a tool could pick another database (assuming it existed in the Kemnel
Library). The final binding of the tools’ database activities does not occur until the
run time system is generated. The PLAIN data base handler’s interface language is
Troll. For this reason, we refer to the data base management system as Troll. The pri-
mary reason for Troll being chosen over some other system, such as INGRES, is that
Troll is a compact relational database handler available under the UNIX operating
system. In fact, the goals underlying the development of Troll are primarily compact-

ness and procedurality.

Troll was designed to be small; as such it provides a minimum set of facilities
and few of the "extras" present in other systems. For example, the output of Troll is
very straightforward and as such no policy has been predefined which dictates the
format of such output. In this regard Troll meets the requirement of the kernel con-

cept by providing cnly the mechanisms but not the policy.

Troll was also designed to carry out steps one at a time in a user specified
order. That is, no query optimization has been determined. This is a beneficial feature

when extending Troll to operate on models other than the relational model. Again,
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the use of Troll with various implementation models enables experimentation with

other ways of representing data.

Troll was designed to provide information about system performance espe-
cially the time required to carry out certain operations and I/O activity. This facili-
tates experimentation with database design and selection of organizations that per-

form well for the desired set of operations.

Troll was designed to accommodate a variety of interfaces to a shared data-
base. This strategy yields great flexibility in providing the most suitable interface for

different user classes and different applications.

Disadvantages found while using Troll might lead system developers to later
choose another underlying data base management system. Three disadvantages
encountered during this research endeavor were: a lack of support for concurrent
usage of the database; lack of an indexing capability needed to improve response
time to frequently accessed information, and an insufficent and inconsistent recovery

procedure.
4.5 Summary

This chapter has defined an information system for support of the design pro-
cess (CADIS). Unlike other efforts at developing such a system, the data manage-
ment facilities are tightly integrated into the design process. That is, there are facili-
ties to manage the evolving system as well as an evolving design. The methodology
presented by [Worl86] provides a means by which the CAD system developer is able
to specify the database structure and operations while designing a tool for use with

the CAD system. CADIS is designed to be an integral part of this process.
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CHAPTER 5
The Kernel Level

The nucleus of CADIS, the DB_KERNEL, consists of mechanisms necessary
for the management of the design database. These mechanisms are considered the
tasks of the DB_KERNEL. The DB_KERNEL'’s primary task is support of the user’s
conceptual model. This conceptual model is based on the Entity-Relationship Model
(Chapter One). Although the ERM is a substantial and powerful design tool which
can aid in the database design process, the complexity of design objects and the itera-
tive, recursive nature of the design process necessitates augmenting the model. These
augmentations, we claim, increase the semantic expressiveness of the ERM for use in
a design environment; provide a flexible means for describing the semantics; and
allow the tool developer to specify pertinent database access requirements. The focus
of this chapter is on developing a definition for each of five classes of augmentation
needed to support a design environment. The resultant ERM and its graphical
representation, the Entity-Relationship Diagram (ERD) is then used by a tool

designer for expressing the structure and semantics of any particular CAD tool.

This chapter begins by defining the objectives of the DB_KERNEL. Descrip-
tions, using the basic ERD, of the tools needed in the SARA/IDEAS system are
presented. These descriptions reveal weaknesses and serve as examples when
defining the five classes of augmentations. The concluding sections of this chapter
complete the DB_KERNEL design with a presentation of salient features of the aug-

mented ERM’s definition and manipulation operations.
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5.1 DB_KERNEL

The primary hypothesis of this research is that a flexible and hence, more
powerful data base management system can be developed to serve as a component of
the kernel of a CAD environment. The development of such a system is based upon
the separation of mechanism from policy. This separation provides the framework for
flexibility within a data base management system. Since we have found many simi-
larities between the design of such a system and the design of operating systems,
many guidelines have come from the operating systems field. Separation of policy
from mechanism is a widely supported principle in operating system design, as indi-
cated by the following quotation from Peterson and Silberschatz [Pete83]

One very important principle is the separation of policy from mechan-

ism. ...

The separation of policy and mechanism is very important for
flexibility. Policies are likely to change from place to place or time to

time. In the worst case, each change in policy would require a change

in the underlying mechanism. A general mechanism would be more

desirable. A change in policy would then only require redefining cer-

tain parameters of the system.

Policy decisions are important for all resource allocation and
scheduling problems. Whenever it is necessary to decide whether or

not to allocate a resource, a policy decision is being made.

Likewise, we find that policy decisions can affect the design of a data base manage-
ment system. These decisions are handled by the data base administrator (DBA), who
also is responsible for the implementation details. A separation of policy issues from
mechanism issues however, is never clearly defined by designers of data management
systems. Since we can point out specific areas within these management systems
which are similar to those found in operating systems, it is reasonable to suggest that

such a separation of policy from mechanism is necessary for the development of a

flexible management system.
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'I'he-philosophy underlying the design of CADIS clearly delineates between
mechanism and policy. The resultant architecture of CADIS supports this separation.
Although policy features can be implemented within CADIS, we emphasize that the
DB_KERNEL provides only the mechanisms. The SYSTEM level provides the capa-
bility to implement policy decisions. A description of thé SYSTEM level is provided

in Chapter Seven.
5.2 DB_KERNEL Objectives

The DB_KERNEL provides the mechanisms needed to support data manage-
ment in a design environment. Major objectives have been established for the

DB_KERNEL and serve as high level requirements of this kernel. These objectives

are:

. to provide operations to create a representation of the user model in the
tool database.

. to provide operations to store the user representation so that tool seman-
tic information can be contained in the database

. to provide operations on instances of the user model

. to allow for the automation of data definition so as to ease the burden of
the tool designer

. to provide access to system objects which the tool developer can use to

ease the burden of tool design and integration

The first two objectives can be met by requiring that the DB_KERNEL contain data

definition facilities for defining storage structures capable of representing the seman-
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tics associated with the design. These semantics, represented by an augmented ERM
structure, plus additional semantics, such as are found in explicit constraint
specifications, need to be supported by the DB_KERNEL. Section 5.4 defines this
augmented structure, whereas section 5.5 defines the operations needed to build this
augmented structure. The third objective is met by defining operations on the ERM
such as insert, retrieve, modify entities and/or relationships. The last two objectives
are expanded upon in Chapter Six (automation of data definition) and Chapter Seven

(system objects) of this dissertation.

The following section (5.3) digresses in order to describe the graphical
representation of the ERM. This graphical component of the ERM, the ERD, is used
in section 5.4 to describe, in terms of objects and relationships, two of the

SARA/IDEAS tools; the SM Editor and GMB Editor.
5.3 Entity-Relationship Diagram

Recall from Chapter One that the Entity-Relationship Model, as originally
defined by Chen, [Chen77] provides the analyst with three main semantic concepts:
entities, relationships and attributes. Designers of database systems make use of the

ERM by describing the enterprise in terms of

. entities, which are distinct objects within a user enterprise;
. relationships, which are meaningful interactions between the objects;
. attributes, which describe the entities and relationships

This section defines the basic ERD so that we can use this as a base to build
an augmented structure. The augmented ERD will provide a non database designer

with the capability of generating a database schema for use in the storage and
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manipulation of objects produced by the tool being developed.

DESIGNERS

o>~

DESIGNS

Figure 5.1 Example ERD
Basic ERD

Entities and relationships can be represented diagrammatically by an Entity-
Relationship Diagram (ERD). Figure 5.1 illustrates an ERD that depicts two entity
sets labelled DESIGNERS and DESIGNS and an m to n relationship between them
labelled WORK. The semantics associated with this ERD indicates that many entities
in the set labelled DESIGNERS work on many entities in the set labelled DESIGNS
and also that a particular designer working on a particular design belongs to a named
entity labelled WORK. The ERD allows a designer to also represent 1:1, 1:N rela-

tionships as indicated by the numbers associated with the arcs.
ERD Constraint Specifications

Figure 5.2 and 5.3 illustrate the provisions found in the original ERD for the
representation of existence and identification dependency constraints. An existence-

dependency is a constraint requiring that an instance of an entity type depend upon
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the existence of another specific entity. Figure 5.2 indicates that the entity type
SOCKETS is existent-dependent upon the entity type MODULES via the relationship
MODSOC. An identification constraint, on the other hand, merely serves to restrict
the primary key of an entity to the concatenation of the parent’s key and the child
key. This is semantically equivalent to saying that the identification dependent entity
is not able to be identified through its own unique key, but requires a combination of
keys in order to be uniquely identified. Figure 5.3 indicates that the entity type
INTERCONN can only be uniquely identified through the entity type MODULES
which it is related to in the relationship set MODINT. An entity which is existent-
dependent is not necessarily identification dependent upon another entity. Both the
existence and identification dependencies are defined only in the case of a 1:n map-

ping.

MODULES MODULES

Figure 5.2 Existence Dependency Figure 5.3 Identification Dependency
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An existence-dependency is graphically noted by

. a double box around the dependent entity, and
. an E in the relationship through which this dependency holds, and
. a 1:n mapping.

All three conditions must hold in order to express such an existence-

dependency.

ERD Recursion Representation

The ERD also allows a user to represent recursive relationships. This capabil-
ity is especially important in the design domain since the design process itself is
recursive in nature. That is, a design is a refinement of a design which may be a
refinement of yet another design. Figure 5.4 illustrates the ERD representation of a
recursive relationship. Roles, which define a subset of entities taking part in the rela-

tionship, are indicated on the lines connecting the entity set to the relationship.

1 PARENT

MODULE < HAS

N CHILDREN

Figure 5.4 Example ERD
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5.4 SARA/IDEAS Tools
54.1 SM Editor Description

The Structural Model is one of the original SARA tools (Chapter Three).

When faced with the prospects of moving SARA from MIT to UCLA, the SARA
research group decided upon a complete redesign of the tool. Following the Worley
methodology, [Worl86] as defined in Chapter Three, the designers of the SM Editor
[Cai85] designated three primitives as objects; modules, sockets, and interconnec-
tions. Appendix A contains the T {S1ad87] implementation of this tool in terms of
these primitives, The SM Editor is the SARA/IDEAS tool which provides for the
construction of a Structure Model. This model is relatively simple. There are only a
few constraints placed on the objects. The explicit semantics of the SM (Chapter

Three) are the following:

1. There is a top level module Universe which has no sockets and

only contains other modules;

2. Modules themselves can contain other modules;

3. Modules have sockets which provide ports to the environment

outside the module;

4, Modules connect with other modules via an interconnection;
5. An interconnection is not directed and can connect only two
sockets;
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6. A socket can have at most one outside interconnect and one
inside interconnect; (A more recent version removes this con-
straint. For purposes of this chapter we will retain this con-
straint and then demonstrate the effect the change has on the

model in chapter Seven.)

Implicit semantics of the SM are:

1. A module can not exist if there is no universe;

2. If a socket is removed, the corresponding interconnections are
deleted thus modifying the information regarding the other

affected sockets;

3. If an interconnection is disconnected from one socket it is

disconnected from its other socket;

4, Interconnections cannot exist if not attached to two sockets;

5. Identification of a module is through a fully qualified path
name, the concatenation of the names of all of the module’s

ancestor’s names;

6. If a module is deleted then all of its sockets and hence the
corresponding interconnections are deleted. This also can

affect other sockets.

The corresponding ERD for the Structure Model Tool (Figure 5.5) shows four

objects, their relationships to each other and also the semantic constraints on the

objects and relationships. The following list points out the semantics expressed in the
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Figure 5.5 ERD for the Structure Model Tool

The ERD entity labelled UNIVERSE represents an object
which participates in a relationship labelled ISCOMPOF
with the entity labelled MODULE. The tool designer has a
need to represent the condition that the Universe is com-
posed of modules. In order to indicate this condition she/he
has chosen the label ISCOMPOF as a symbol representing

the condition is composed of. The remaining portions of
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the editor ERD representations will consistently use this
label to indicate composition. References to the objects
modaules, sockets, and interconnections will use the ERD

labels MODULE, SOCKET, and INTERCONN.

MODULE is existent dependent on the UNIVERSE, This
constraint is indicated by the placement of "E” in their rela-
tionship ISCOMPOF, the double box surrounding

MODULE, and the 1:N relationship mapping.

A MODULE is shown as participating in the recursive rela-
tionship HAS, and takes on either the role of parent or
child. The 1:N mapping and the presence of an E/ID in the
relationship indicates that the child can only be uniquely
identified via its parent and that the child can not exist in

the database without a parent.

SOCKETS are indicated as being existent dependent on
their parent MODULE. INTERCONN also have this con-

straint.

SOCKETS can have at most one outside interconnect and
one inside interconnect associated with them (indicated by
the mapping 1). SOCKETS and INTERCONN participate

in a 3 - nary relationship LINK.

MODULE, INTERCONN, and SOCKETS each have the

property name defined for them.
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Figure 5.5 represents an initial attempt at describing the semantics of the SM Editor

using the basic ERD. Some of the limitations with this representation are:

. The composition of MODULE, SOCKETS, and INTERCONN
creating the aggregate object UNIVERSE is not represented
explicitly. Although the relationship between MODULE and
UNIVERSE is clearly marked as being ISCOMPOF, there is
no means of easily representing the fact that SOCKETS and
INTERCONN are also included. Connecting SOCKETS and
INTERCONN directly to the relationship ISCOMPOF only
serves to complicate the representation, because the question
would arise as to the status of their relationships MODSOC,

MODINT, and LINK with the object UNIVERSE.

. There is no means of representing the constraint that prohibits
the existence of an INTERCONN if it is not connected to a
SOCKET. The placement of an "E" within the relationship
LINK would be ambiguous since there is no means, using the
basic ERM, of indicating the direction of a 1:1 existence

dependency.

. The constraint which limits the uniqueness of names to sibling
MODULE(S); MODULE(S) at the same level in the hierarchy,
is not able to be unambiguously expressed. The existence
dependency notation in the relationship HAS, indicating that a
child MODULE is uniquely identified via its parent’s identifier
does not express this constraint. If the designer designates that

the property of MODULE, name, is a unique identifier, then an
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inconsistency is introduced in the model. That is, the represen-
tation expresses that a MODULE’S name is unique as well as

its uniqueness being dependent upon another MODULE.

. There is no means of expressing that retrieval of a MODULE
should include its SOCKETS and INTERCONN as well. In
the basic ERM, entities and relationships are the most likely
candidates to serve as the unit of retrieval. Most ERM-based
systems access these units. However, the designer needs to be
able to express the desire that a more complex structure is to be

considered as the unit of access.
Augments to the basic ERM are required in order to overcome such limitations.

5.4.2 GMB Editor Description

Recall that the Graph Model of Behavior (GMB) describes both the data flow
and the control flow of a hardware/software system. The GMB tool developer con-
ceptualizes the model as comprised of the gmb object, which contains a control-graph
object, and a data-graph object. These objects also contain other objects such as
nodes, control arcs, data arcs, data sets, processors and interpretation code. Control
arcs are associated with the sockets defined in the SM Editor tool(see 5.4.1). Appen-
dix B contains a listing the T code description of this tool’s objects. It is apparent,
from the amount of code needed to describe the GMB, that the model of the GMB is
of greater complexity than that found in the SM Editor. The following list represents

the complete description of the GMB object:

1. GMB is an object (Figure 5.6)
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GMB

1 ISCOE’IPOF 1

l conTorps ” sMMoDS

Fig. 5.7 Fig. 5.5 Fig. 5.11 Fig. 5.8

Figure 5.6 ERD for the GMB Tool
It consists of (ISCOMPOF) the following attributes and

objects:

a. name: an attribute identifying the GMB Object;

b. CONTGRPH (Control Graph): an object which con-

tains the control flow information;

c. SMMODS (Sm Modules): a set of objects defining the

module objects mapped to the gmb object;

d. CGMAPS (Control Graph-Data Graph mapping): a set

of objects defining the mapping of control nodes to data
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Processors,

€. DATAGRPH (Data Graph): an object which contains

the data processing information;

CONTGRPH
1
ISCOMPOF
E
N N
ARCS NODE
Fig. 5.9 Fig.5.9 &5.11

Figure 5.7 Control Graph ERD

A CONTGRPH (Control Graph) is an object (Figure 5.7):

It consists of (ISCOMPOF) the following objects:

a. ARCS (control arcs): a set of control arc objects associ-

ating control nodes;

b. NODE (control nodes): a set of control node objects;

A DATAGRPH (Data Graph) is an object (Figure 5.8)
It consists of (ISCOMPOF) the following objects:

a. PROCESSOR (data processors): a set of data processor
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Figs 5.10 & 5.11 Figs 5.10 Figs 5.10

Figure 5.8 Data Graph ERD

objects;

b. DATAARCS (data arcs): a set of data arc objects asso-

ciating data sets and data processors;

c. DATASET (data sets): a set of data set objects;

4, A NODE (Control Node) is an object (Figure 5.9)

It consists of the following attributes:

a. que (queue): an attribute specifying the queuing distri-
bution;

b. name: an attribute identifying a unique instance of a
node;
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Figure 5.9 Control Nodes and Control Arcs
c. cap (capacity): an attribute specifying the number of

concurrent initiations of the node;

d. cust (customer): an attribute specifying the current

number of tokens in the queue;

€. bpts (breakpoint): an attribute specifying if this node is

a breakpoint or not.

132



The Control Node enters into the following relationships (Figure 5.9):

a.

INPUT (input arcs): the relationship entity describing the set of

control arcs which enter the control node;

OUTPUT (output arcs): the relationship entity describing the

set of control arcs which exit the control node.

The property LOGIC is defined for both the relationship set
INPUT and the relationship set OUTPUT. This property

represents the logic expression (Section 3.3.4) associated with

the relationship between a control node and its input/output

arcs.

ARCS (Control Arc) is an object (Figure 5.9)

It consists of the following attributes:

tokens: an attribute specifying the number of current input

tokens;

name: an aitribute identifying the specific instance of an arc;

bpts (breakpoints): an attribute specifying if placement of a

token causes a break in simulation;

que: an attribute specifying quening information;

itokens: an attribute specifying the number of initial input

tokens;

The Control Arc enters into the following relationships (Figure 5.9):
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a. HEAD (headset): the relationship entity describing the set of

control nodes at the head of the arc;

b. TAIL (tailset): the relationship entity describing the set of con-

trol nodes at the tail of the arc.

6. A DATASET (Data Set) is an object (Figure 5.10)

It consist of the following attributes:

a. NAME: an attribute identifying the object;
b. VAL: an attribute specifying the current value of the dataset.
c. IVAL: an attribute specifying its initial value;

The Data Set enters into the following relationships (Figure 5.10):

a. DARCS: the relationship specifying the set of data arcs which

are mapped to this set;

7. DATAARCS (Data Arc) is an object (Figure 5.10):

It consists of the following attribute:
a. NAME: an attribute identifying the object;
The Data Arc enters into the following relationships (Figure 5.10):

a. DSETS: the relationship specifying the set of datasets the arc is

mapped to;

b. DPROCS: the relationship specifying the set of data processors
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Figure 5.10 Data Sets, Data Arcs and Data Processors

the arc is mapped to;

8. A PROCESSOR (Data Processor) is an object (Figure 5.10):

It consists of the following attributes:

a. NAME: an attribute identifying the object;
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b. FILEID: an attribute specifying the file identifier of the

interpretation code.

The Data Processor enters into the following relationship (Figure

5.10):

a. DARCS: the relationship specifying the set of data arcs the

processor is mapped to.

NODE PROCESSOR

Fig. 5.7 Fig. 5.8

Figure 5.11 Control Node - Data Processor Mapping

Additionally, a relationship MAPPING (Figure 5.11) is defined
between the NODE of Figure 5.7 and the PROCESSOR of Figure 5.8. The

explicit semantics of this relationship are:

. A Control Node is mapped to zero or one Data Processor (Figure
5.11);
. A Data Processor is mapped to a set of Control Nodes (Figure 5.11);
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Additional explicit semantics associated with the GMB, not found in

the graphical representations of Figures 5.6 - 5.11 are:

The input/output logic expression attributed to the relationship set
LOGIC needs to reference the arcs according to their position in the
relationship. For example, 1 * 2 + 3, is the logic expression for the
AND of the first and second arc in the relationship ORed with the third

arc,

Data Arcs are directed. The source of a Data Arc can be a Data Pro-
cessor with its destination a Data Set and/or Socket. The source can

also be a Data Set with its destination a Data Processor and/or Socket.

Implied semantics of the GMB which need to be represented are:

If the set of control nodes a data processor is mapped to becomes
empty, the data processor is deleted. This will cause deletion of the
arcs into and out of the affected data processor and hence modification
of the data sets and sockets which are the source or destination of

those deleted arcs.

Figures 5.6 - 5.11 represent an initial attempt at describing the semantics of

the GMB editor using the ERM. Some of the limitations with this representation are:

Again the composition of objects creating such aggregate objects as the
GMB, the Control Graph, the Data Graph, the Control Graph-Data Graph
Mapping, is represented using the cumbersome technique which requires
that the designer define a separate relationship, ISCOMPOF, for each

instance needing to express composition and/or decomposition.
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There is no means in the ERM for representing an existence dependency
on a set of entities. The basic ERM is not able to represent the constraint
that a single (1) entity is dependent upon a set (N) of entities. This con-
straint must be handled explicitly through additional programming state-
ments. In the GMB model we note that this limitation occurs in Figure
5.11 since the PROCESSOR (the 1 entity) object needs to be dependent
upon the N entity, NODE, according to the implicit semantics of the GMB

editor tool.

There is no provision in the ERM for representing the order of the entities
participating in a relationship. Therefore, we are unable to represent that a
subset of entities must be ordered in some way. This limitation is needed
to express the complete semantics of the relationships INPUT and OUT-

PUT (Figure 5.9).

There is no provision which supports primitive types other than integer,
real, boolean, string, and character. The property FILEID (Figure 5.10)
refers to a body of interpretation code. The designers place in this attribute
a file identifier. However, this knowledge is restricted to the domain of the
tool and is not known outside of this domain, thus limiting the semantic

expressiveness of the model.

There is no provision for the representation of directed relationships. The
basic ERM assumes that relationships are bidirectional, when in fact, there
are many instances when the direction needs to be restricted to one way.
Direction is implied in the representation of existence dependencies and
identification dependencies. For example in Figure 5.6, the ISCOMPOF

implies the direction goes from top to bottom. In the basic model, the
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burden of implementing a unidirectional relationship is placed on the
developer of the tool. We find in Figure 5.10, we are not able to represent
the directionality of the Data Arcs which are associated with the Data Pro-

cessors and Data Sets.

The following sections describe in detail the ERD augments needed so as to

overcome the limitations presented in 5.4.1 and 5.4.2.
5.5 Augments to the ERD

We have previously stated that the goals of the tool developer are to provide,
via some model, a complete description of the objects which the tool will create,
modify and/or use (Chapter Three). This description is enriched if it includes all pos-
sible constraints that may be placed on the objects and their relationships during the
design session. Constraint specification is one of the means by which the semantic
understanding of the tool can be enhanced. Therefore, we have augmented the ERD
by enlarging the constraint representation capability which the basic model supports.
A tool developer also needs to be able to represent the various processes which a par-
ticular tool employs. We have seen that the design process makes use of both the pro-
cess of composition and decomposition of objects, as well as the process of
classification. Abstraction is a concept which allows for the representation of compo-
sition and decomposition of objects and/or relationships and the classification of the
same objects and/or relationships. We have incorporated within the augmented ERD
these abstraction capabilities as well. While developing a tool, the designer, although
not a data base expert, has some perception of the level of granularity necessary for
the retrieval and storage of the objects and relationships being defined. That is, the
tool might need to have an object along with associated objects retrieved as a unit.

Thus, we have provided to the tool developer the ability to specify some aspects
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related to storage parameters via ERD objects and relationship representation.

The following three subsections describe in greater detail the concepts of con-

straint specification, abstraction representation, and storage specification.

CONSTRAINTS

Constraints are considered to be three dimensional. That is, a constraint can

be classified as to whether it is:

1. a static constraint or dynamic constraint
2. an explicit or implicit constraint
3. a structural constraint or value constraint.

A static constraint is one which defines the allowable values an attribute may
have at any time during its existence, whereas a dynamic constraint specifies restric-

tions only during transitions of database states.

Explicit constraints are those constraints specified within the ERD such as:
an instantiation of type SOCKETS may not exist unless it is related to an instantiation
of type MODULE. Implicit constraints, however, are constraints implied by the
semantics of the diagram. The basic ERD has very few implicit constraints associated
with its structure. One possible implicit constraint would be the requirement that

entity set membership be specified via a predicate.

Value constraints are those constraints specified with domains or relation-
ships, such as requiring a domain to be a subset of the integers, or a relationship to be
a 1 to n mapping class. Structural constraints are constraints on the interrelationships

of entities. One such constraint found within the ERD is the explicit constraint
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requiring an instance of one member of an entity set be identified via an instance of

member in another entity set (Identification dependency).

The basic ERD supports minimal constraint specification within these three
dimensions. The augmented ERD expands the constraint specification capability of
the tool designer by providing additional abstractions and constraint capabilities built

into the model.

ABSTRACTIONS

Abstraction is one means of structuring and visualizing information. Itis
basically the ability to hide detail and concentrate on the general, properties of a set
of objects. Abstraction is used in two ways: generalization and aggregation. General-
ization enhances understanding by allowing classification of objects, whereas aggre-
gation is the abstraction by which an object is constructed from its constituent
objects. We have seen (section 5.4.1 and 5.4.2) that these abstractions are useful con-
cepts employed within a design environment. The augmented ERD provides for the

representation of generic and aggregate objects.
STORAGE SPECIFICATION

Storage specification capabilities are not found at all in the basic ERD. How-
ever, in the design environment it is necessary to allow at least the tool designer to
designate the unit of access, whether it is an entire object or only a part of an objects.
The designer may also need to indicate that certain parts of the design are to be con-
sidered a unit, even though the part may consist of multiple objects; and/or cluster a
group of objects, so that they are stored in a common area for faster retrieval. The
ability to represent such a clustering can be represented within the augmented ERD.

Access paths are also indicated via the introduction of restrictions on relationship
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directions. Similarly, the capability to designate subsets of objects within the aug-
mented ERD allows the designer to implicitly define indices, which provide faster
access to groups of information. Other storage considerations would be the responsi-
bility of a data base expert who would later fine tune the database after repeated use
of the CAD tool. The flexibility found in the CADIS design is such that it supports
intervention by a data base expert after the specification of the tool and generation of

the tool’s database.
AUGMENT CLASSES
We have augmented the ERD in order to meet the high level requirements:

1. to provide semantic capability more closely related to the

design domain;
2. to provide a flexible means of tool specification;
3. to allow the model to be closer to the implementation level.

Augmentation of the ERD which is necessary to meet these requirements for

support of a design environment is grouped into five (5) types:

. Augmentation to support the abstraction primitive generalization. Support
for the generalization primitive increases the semantic expressiveness of
the ERM by providing the designer with the means to represent the
classification and categorization of objects and/or relationships. Through
the use of generic objects, the designer can reference predefined objects
and relationships which contain complex database operations. This pro-
vides the designer with an alternate way of defining database access func-

tions and the integrity constraints which need to be associated with the
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tool’s objects and relationships.

Augmentation to support the abstraction primitive aggregation. Support
for the aggregation primitive also increases the semantic expressiveness of
the ERM by providing the designer with the means to model such common
design notions as composition and decomposition. Flexibility in the use of
the model is introduced by providing the designer with simple alternatives
for expressing such relationships as ISCOMPOF or ISPARTOF or CON-
TAINS. Designation of such aggregate objects indicates these entities as
those which are to be physically clustered within the database, so that they

may be more efficiendy retrieved as a unit.

Augmentation to support expanded role concept for objects. The expanded
role concept provides the designer with a means of expressing the seman-
tics associated with a subset of entities, without having to define a com-
pletely new subclass for a given entity. Identification of these subsets of
objects results in the specification of an index to be built using the key pro-
perties of the role sets. Specification of an index can be used to increase

the efficiency of access to these sets.

Augmentation to support detailed and expanded specification of properties
associated with design. Expanded support of properties provides the
designer with alternate ways of representing text and code. These built in
types provide input/output operations for use in a manner similar to the
input/output operations of primitive types such as integers. Support for the
type reference provides the designer with an alternate means of represent-
ing referential relationships between objects. This supports an easy way of

establishing hierarchical relationships, so often found in designs. [Gutt82]
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Support for these new types of properties has been previously proposed
and implemented by designers of CAD data base systems [Gutt82, Hask82]
and is included in the ERD augments in order to have the full complement

of primitive design types.

. Augmentation to expand implicit constraint specification, via the mapping
representation, in order to represent more completely the semantics of
design. The expansion of the mapping representation allows design specific
phenomena such as order and direction of relationships to be easily
modeled. Also, classification of mappings into one of three categories, can
be expressed so as to enhance the constraint specification facility by allow-
ing for dependencies on subsets of object types. Through use of the
expanded constraint augmentation, the designer is able to designate access
paths when defining the direction of a relationships and specify additional

operational constraints by defining the ordering of relationship participants.
55.1 TypeI Augment - Generalization

We have augmented the basic ERD to provide for the graphical representation
of the abstraction primitive, generalization. Generalization is the abstraction concept
whereby a set of similar objects is regarded as a single generic object. This abstrac-
tion is considered to be an important dimension for forming larger meaningful units,
and thus represents a powerful tool for use within the design process. Providing the
designer with the capability to generalize, means that classification of objects and
relations as subtypes of some previously defined type of object or relation can be per-
mitted. We have previously noted that classification occurs throughout the design
process. An example of such an occurrence would be placing a developed

SARA/IDEAS model into either the class of hardware or the class of software
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designs. Within each of these classifications, this model might be classified either as a
sequential system or concurrent system. Drobman {Drob80] makes use of the process
of classification in building a taxonomy of hardware and software design building
blocks. A second characteristic associated with generalization is inheritance. Subc-
lasses inherit properties and operations defined for superclasses. Using generalization
in this way allows the designer to define subsets of entities which can then inherit the
operations previously defined for some other entity. The SARA/IDEAS tool designer,
therefore, can use one of two methods when employing the abstraction primitive gen-

eralization.
Method 1

The first method is one in which the the designer defines an entity, say entity
“A", using conventional ERD notation. Later another entity can be defined and
designated as a subtype of entity "A". This is achieved by enclosing the name of the
supertype entity A in parentheses. Use of the generalization primitive guarantees that
properties and operations defined for the super entity are inherited by the subtype
entity, and thus, do not need to be redefined. The system automatically produces a
relationship type "ISA" for each subtype - supertype declaration. This relationship is
used by the system as an access path when searching for instances of a particular

entity type.
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Method II

The second method, using this primitive, involves the classification of user
defined entities and relationships into predefined entity and relationship types sup-
ported by the system. That is, certain generic types are already defined at the system
level and may be referenced for use at the tool level. In the SARA/IDEAS system we
permit the developer of an ERD to classify entities or relationships as to their type of
instantiarion and to their type of access. The System provides these generic objects
instantiation and access. The properties and serantic constraints associated with
these super objects are inherited by the descendents in the hierarchy tree. Providing
the supertype access relieves the tool developer of the task of specifying object
operations for storage and retrieval. The supertype instantiation provides the database
with linking information used during database integration, as well as semantic con-

straints concerning modification of instances of the objects.

INSTANCE

@ EXTERNAL
DG

Figure 5.12 Generalization Hierarchy Tree

Figure 5.12 illustrates the subclasses of the predefined object INSTANCE (instantia-
tion object). The leaves of the tree are user defined entities which form a relationship

ISA with the node above. For example, NODES ISA INTERNAL object and as such
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inherits properties and operations defined for INTERNAL. A detailed description of

these specific system generic objects is given in Chapter Seven.

The SM MODULE shown in Figure 5.13 illustrates the way in which the
designer classifies this entity as to its access type and instantiation type. The subclass
Complex provides an access mechanism which retrieves the MODULE entity , as
well as its SOCKETS and INTERCONN. The subclass Internal provides system
defined update policies for the entity MODULE. Chapter Seven describes these
classes in detail. The remaining entities and relationships found in Figures 5.5-5.10
can be classsified using the same type of notation. In order to eliminate unnecessary
repetition in classifying each entity and relationship, the system defines default

values.

Figure 5.5

(ACCESS Complex)
(INSTANCE Internal)

NAME MODULE

Figure 5.5

Figure 5.13 Augmented ERD from Figure5.5

Support for the generalization abstraction capability allows the system to pro-
vide the generic objects for use by the tool designer. Without this augment the tool
designer would not only be forced to repeat numerous sets of attributes and opera-
tions for each object defined, but would also be required to provide access operations

for each object. This redundancy could only serve to obscure the semantics of the
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tool description.
5.5.2 Type Il Augment - Aggregation

We have found it is necessary to augment the ERD so as to allow for the
graphical representation of the abstraction primitive aggregation. An aggregation is
an abstraction which allows a relationship between entities to be thought of as a
higher named object. This relationship is either explicitly defined or implicitly
defined. Implicitly defined relationships are those relationships which aggregate (col-
lect or unite into a sum) various entity sets. These implicit relationships are com-
monly referred to as Is_Part_Of or Is_Composed_Of. For example, a wheel

IS_COMPOSED_OF a rim, lug nuts, and a tire.

Figure 5.14 Aggregate Object - DESIGN

The aggregate object DESIGN (Figure 5.14) is composed of the objects GMB

and SM. The dotted box labeled DESIGN is the graphical means of representing such
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an aggregate in the ERD. We refer to this graphical notation as the dotted aggregate.
This higher level object may then participate in relationships, and have properties
associated with it. In the SARA/IDEAS system a DESIGN might have attributes of a
name, designer(s), date of last modification. This type object can then be used to pro-
vide catalog information to be associated with a design for use by a Library Browser
tool. Figure 5.14 the SM object and the GMB object are related via a relationship
defined as SOCARC. This relationship is an entity also found in the object DESIGN.

Figure 5.15 Augmented ERD for Figures 5.6-5.8

The refinement process found in design environments (top-down design

methodology) necessitates the presence of this capability for representing aggrega-
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tion. A designei' is primarily concerned with the composition of some object. This
composition is an object which is created from other predefined objects which might
be considered building blocks. These building blocks are often used in a muititude of
designs. That is, they can participate in relationships with other designs. The com-
posed object must be able to have properties associated with it and must be able to
participate as an entity in other relationships. Supporting the concept of aggregation

provides the tool builder with the ability to compose.

Another use of the aggregate primitive is to be able to more clearly represent
simple composition. Figure 5.15 is a redrawing of Figure 5.6, 5.7, 5.8 and 5.11. This
model clearly represents the aggregate objects GMB, Control Graph, Data Graph, and
Control Graph-Data Graph Mapping and their relationships to each other. The dotted
aggregate notation provides a clearer representations of these aggregate objects. Fig-

ure 5.15 is a considerable improvement over the original ERDs.

Declaration of an aggregate object, using the dotted aggregate notation, asso-
ciates the object with its constituents via both the system defined relationship types
ISCOMPOF and ISPARTOF. In Figure 5.16 we see that the objects; modules, sock-
ets, and interconnections, are part of the SM_design, as well as the relationships has,
modsoc, modint, and link. Furthermore, this aggregation primitive is used by the
DB_COMPILER to cluster objects and relationships which are part of the same
object. The SARA/IDEAS system permits the designer to use either the dotted aggre-

gate notation or to use the system defined relationships in order to model aggregation.
Without support for the aggregation primitive, the tool designer would have to

define aggregate relationships for each composition in the design. This definition

would need to include access emthods for each such relationship. Having the system
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Figure 5.16 Is_Part_Of Relationship
provide the types relieves the tool builder of having to determine database access
paths. Again, this redundancy of relationship types would add to the complexity of

the tool description and obscure the semantics of the tool.
5.5.3 Type III Augment - Roles

The ERD augment expanding the role concept, provides the tool developer
with the capability of specifying properties and/or constraints for subsets of entities.
Subsets of entity types are defined in the basic ERD via the roles attached to the map-
pings from entity sets to relationship sets. We see this role specification being used
primarily in describing subsets of entities which take part in recursive relationships.
However, subsets of different entity types may participate in non-recursive relation-
ships. In both instances the basic ERM does not elaborate upon these subsets any

further.

We have seen a need for not only defining subsets of entity types, but also
associating properties and constraints with these subsets. Such a capability needs to

be available to the tool developer for use in a design enviornment.

As an example, if a tool developer defined an entity of type NAILS and an entity of

type SCREWS, there would be defined for these types such obvious properties as
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(hame) NALLS SCREWS »(hame)

@ DOOR

Figure 5.17 Role Augmentation
size, name, etc. Furthermore, if a relationship type BUILD were defined which asso-
ciated these entities with another entity of type DOOR, then a property of each
instance of NAILS and SCREWS would be the position where it is used when build-
ing a door. However, this property is not needed for NAILS and SCREWS which do
not participate in this relationship but might be associated with DOORS in another
relationship, say ISCOMPOF. The entities, nails and screws, do not need a property
of posi (position) for purposes of describing solely the composition of the door. The
role fastener, as illustrated in Figure 5.17, defines the subset of instances of type
NAILS and type SCREWS associated with the DOOR entity and also has this pro-

perty - position attached to it.
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Additionally, we see that constraints need to be defined for only a subset of a
type of entity. This need has arisen in the design of the SM_Editor tool. Figure 5.18
illustrates the use of such a role constraint specification. Existence constraints can be
placed on roles as is indicated for the role of Inside INTERCONN or Outside INTER-
CONN. Recall that a semantic constraint associated with INTERCONN was that they
could not exist unless connected to a SOCKET. This constraint is able to be
represented by placing the Existence dependency on the roles. Placement of the
existence dependency within the relationship LINK is ambiguous, in that the relation-
ships are 1:1:1, and the original ERM defines dependency only for 1:n relationships.
This role constraint specifies that an INTERCONN can not exist unless it participates

in a LINK relationship with a SOCKET.

(mme Y| INTERCONN m@ I sockers -

Figure 5.18 Augemented ERD for Figure 5.5

Besides providing a means for defining subsets of entity types, another effect
of this type of augmentation is to provide an alternate way of conceptualizing an
object. Figure 5.5 showed that a MODULE took on the roles of child or parent. An
equivalent way of designing the SM ERD would be to create an entity called CHIL-
DREN as a subtype of entity MODULE and then attach constraints and properties
and relationships. However, the fact that CHILDREN is a subtype of MODULE
might be obscured to the designer due to the fact that before participating in any rela-
tionship all of the properties of both are identical. The support for roles increases the

ways in which equivalent concepts may be modelled. Hence, this augmentation
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increases the flexibility of use of the model.
5.5.4 Type IV Augment - Properties

The ERD is augmented to expand the representation of value-sets to include
the types: text, code and references. These additional types are needed to fully sup-

port the design process.

The basic ERD provides the mechanisms to represent attribute value pairs.
These pairs are the defined properties of entities, relationships and roles. Values are
classified into different value-sets (domains) and the attributes are mapped into these
value sets. This mapping allows the designer to associate an attribute with a single
value or multiple values. An attribute can also map into the Cartesian product of
value-sets to produce a form of a multiattributed attribute. As an example, NAME
can map into the value-sets FIRST-NAME and LAST-NAME. Value-sets may be
represented sets of the primitive types of integer, character, real, boolean or string.

The augmented ERD allows value-sets to also include text, code, and reference.
TEXT

There are many times in a design environment when the need arises to associ-
ate text with objects of a model. One example would be the documentation of 2
design. This documentation is considered a property of that object and needs to be
accessed as an information bearing part of that object. The operations associated with
this type of value-set would be the reading and writing to a file of this ASCII code.
Another example would be the association of descriptive text with a relationship or
object. The SARA/IDEAS Browser (Chapter Eight) defines the property of type rext
for each tool object. This description is displayed to the end user, in textual form,

whenever the tool is accessed.
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CODE

Code is another type supported by the augmented ERD. A distinction is made
between the types text and code so that meaningful operations can be defined to
operate on type code. In the present implementation of the SARA/IDEAS system the
objects GMB and SM each store an ASCII representation of the T code necessary to
regenerate the designed model. When the designer retrieves this T code the tool
merely loads the file into the T system. This causes execution of the T code
represented in the file. We might consider the contents, since it is in ASCII format,
to be an example of a property defined for the objects GMB and SM of type text.
However, this property is defined as type code and as such is loaded for execution
and not read as an ASCII text file. The interpretation code assoctated with the GMB

is accessed by the Simulator tool this way also.
REFERENCE

Type reference provides the designer with a second mechanism which can be
employed to refer to other objects. Recall that the designer can define associations
between objects and thereby reference other objects through use of this association.
Instances of a defined relationship refer will enable the user of the model to ascertain
all of the objects which refer to and are referred to. Indirectly then, the instances of
the objects which do not take part in the relationship can be determined. Unless con-
straints have been placed in the relationship, deletion and insertion of objects can
occur so that some instances of the relationship are deleted as one of the participants
is deleted. However, the use of a property of type reference will guarantee that an
object will not be deleted if it is referenced to by a property. If some instances of the
object having this property do not reference another object then the value of the

value-set is null,
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As previously stated, the enhancement of the primitive type support provides
CADIS with a full set of types found in a design environment. Without this augment,
the tool developer would not have the necessary mechanisms to handle design

specific primitive types.
5.5.5 Type V Augment - Relationships

The original ERD allows a designer to specify the mapping class (1:1, L'm,
m:1, m:n) for a particular relationship set and also to specify the additional constraint
as to whether the relationship type is weak or regular. The mapping class of a rela-
tionship specifies the number of allowable appearances of an entity in the relationship
set. A weak relationship is a relationship in which the existence of an entity (A) in
one entity set depends upon the the existence of a specific entity (B) in the other
entity set. Augmentation of the ERD provides for additional classes of relationships

to be defined and additional integrity constraints to be placed on these relationships.
Relationship Classes

Relationships in the augmented ERD can be graphically classified with
respect to their completeness. This classification scheme was found to be necessary in
work done by [Sche79] on abstraction capabilities. [Sche79] defined the classes of

completeness to be: partial, total or complete.

Partial: If the entities (A), of an entity set are not required to be represented in
a relationship type which relates members of that entity set to another entity set (B),
then the relationship is said to be partial with respect to the first entity (B). This class
is the standard regular relationship type defined by Chen and represented by a dia-

mond in the ERD.
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Total: A total relatiénship is a relationship in which @il instances of an entity
type (A), must participate in the relationship. The graphical representation of a total
relationship is the inclusion of a dot on the edge of the relationship connected with
the total entity set. This class may appear to be similar to a weak relationship type, in
that a weak relationship type is indeed a total relationship with respect to one of the
entities. However, not all total relationship types are weak. For example, if an
instance of an entity is deleted in a total relationship this does not automatically
deleted the members of the other entity set which were related to it. First, a search for

other appropriate members are made and a reconnection might be made.

NODES MAPPING PROCESSORS

Figure 5.19 Complete Relationship Class

Complete: If each entity in a set is required to be related to all entities in the
other set to which it can be related, then the relationship is complete. The graphical
notation is an arrow added to the line on the side of the relationship which is required
to match all the other entities (Figure 5.19). A complete relationship provides the
designer with the capability of expressing the situation in which an entity is depen-
dent on a subset of entities. Figure 5.19 is example of the mapping of a data processor
to a set of control nodes. The semantics are that the data processor is deleted only

when the set is empty.
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Provision for the classification of relationships into one of these three
categories, allows the tool developer to specify that system defined data base asser-
tions be activated upon modification of the objects participating in these relation-

ships.
Directed Relationships

Direction of a relationship is implied when a dependent entity is designated.
The dependency goes in one direction, from the independent endity to the dependent
entity. However, there is a need to express direction other than that which is natur-
ally implied through structural constraints. Graphically, this is simply a matter of
adding arrows to the end points of the lines in an ERD. The need for a directed rela-
tionship occurs when a designer needs to restrict the symmetry of the semantics of a
relationships. An example of symmetry implied in a relationship CONTAIN is that
in one direction A CONTAINS B and in the other direction B IS CONTAINED IN A.
There are instances in the design environment when this bidirectional relationship
quality makes no sense. Modeling of time would be an example of this instance.
Direction semantically guarantees that an order to access of the relationship is main-

tained within the data base.
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Ordered Relationships

Often, the need arises in the design environment for an ordered relationship.
The entities in an entity set which are mapped via a relationship instance to another
entity constitute an ordered set. Such an ordering is illustrated in the mapping of
input arcs to control nodes. The atribute LOGIC is represented as boolean expres-
sions of integers such as 1*2+3. This expression refers to the first arc, the second arc
and the third arc participating in the relationship INPUT. The relationship can be
ordered by key value in ascending or descending order, or by insertion into the rela-
tionship; first, second, third, etc. Without this capability, the tool designer would need
to create special purpose application programs which would sort and/or keep track of
the order of insertion of the obejcts into the relationship. The system provides the

necessary operations to maintain ordered relationships.

The DB_KERNEL contains the primitive operations by which the objects and
relationships within the augmented ERD are defined and manipulated. The definition
operations are used either directly by the tool designer or, as in the case of the
SARA/IDEAS system, by a DB_COMPILER. A complete description of the
DB_COMPILER is given in the following chapter.

The basic operations which create an augmented ERM are defined in the fol-
lowing partial CADIS syntax. Additionally, there are corresponding operations to
destroy entities, relationships or properties as well as to unlink entities from existing
relationships. The majority of these operations are similar to those data definition
operations which would be found in a standard ERM data base system. However, the
augmented ERM defined in the previous sections requires additional syntax in order

to define generic and aggregate objects. Therefore, we have included in these opera-
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tions the specification of types of objects in the entity description. This information
is used while integrating the ERM into the CADIS system. The N-ary relationships
permitted in the ERM must be formed by linking in the other entties after creating a
binary relationship and cannot be formed directly, as is the case in some ERM sys-
tems. These additional entities must be explicitly linked to an existing relationship.
The link operation is necessary so that the tool developer may define entities which

then can be linked to existing system or external relationships.

5.5.5.1 CADIS Definition Operations
Make_tooldb := <Make_entity list> <Make_relationship list> <Make_property
list> <Link_entity list>
Make_entity list := <MAKE_ENTITY COMMAND> <Make_entity list> | ()

Make_relationship list ;== <MAKE_RELATIONSHIP COMMAND>
<Make_relationship list> | {)

Make_property list := <MAKE_PROPERTY COMMAND:> <Make_property
list> 1 {}

Link_entity list := <LINK_ENTITY COMMAND> <LINK_entity list> | {}

MAKE_ENTITY COMMAND:= "MAKE_ENTITY" <entity_type>
<spec_types_list> <key_list> <econstraint_list>

MAKE_RELATIONSHIP COMMAND:= "MAKE_RELATIONSHIP’ <rel-
type> <relspec_types> <entName list> <role_list> <mapping_list> <key_list>
<rconstraint_list>

MAKE_PROPERTY COMMAND:="MAKE_PROPERTY" <host_id>
<attrName> <attr_type> <constraint_list>

LINK_ENTITY COMMAND:= "LINK_ENTITY" <entName> <relName>
<role> <mapping> <key> <econstraint_list>

spec_types_list= <spec_types> <spec_types_list> | {}
spec_types:= "Subtypes’ <subtypes_list>| "Aggregate’ <aggregate_list> | {}

rel_spec_types:= <rel_access> <completeness_class>
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subtypes_list:= <subtype> <subtypes_lisc>1 {}
aggregate_list:= <aggregatetype> < aggregate_list> | {}
subtype:= <instantiation> <ent_access> <entity_type>
instantiation:= 'External’lInternal’ | *System’
ent_access:= "SIME’"COME’

rel_access:= 'SIMR'I'COMR"i{)

completeness_class :="P" I’T" | 'C” I{}

key_list:= key <key_list> | (}

constraint_list:= <constraint body> <constraint_list> | {}
role_list:= <role> <role list> | ()

mapping_list:= <mapping> <mapping list> | {}
host_id:= <entName> <relName> <role,entName>
attr_type:= <single_attr> | <multival_attr> | <multiatir_attr>
role:= <roleid> <constraint_list>

mapping:= <mapping_type> <mapping_group>
entName list= <entName> <entName list> | {}
entity_type:= <entName>

entName:= string

rel_type:= <relName>

relName:= string

atrName:= siring

key:= <attrName>

single_attr:= integer | real { text | code | reference | boolean | string | char
multival_attr := "M’ <single_attr>

multiattr_attr ;= <single_attr> <multiattr_attr> § {}

attrNamelist := <attrName> <attrNamelists | {]
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An example of the transcript which was used to define the database schema
for the SM tool follows. The operations are simply functions which create internal
representations of objects, relationships and attributes. The subtypes for the generic
objects, instantiation and access, are specified within the MAKE_ENTITY command.
This example show only the use of the subtype Internal. However, a GMB transcript
would generate the other generic instantiation type, External. The implementation of
the language is in the form of function calls with a list of parameters needed to com-

plete the operation.

MAKE_ENTITY(UNIVERSE,

{Subtypes Internal, COME),

{Aggregate MODULE,SOCKETS INTERCONN,MODSOC,MODIC LINK ,HAS),

(Name))

MAKE_ENTITY(MODULE,(Subtypes Internal, COME),(Name));
MAKE_ENTITY(SOCKETS,(Subtypes Internal SIME),(Name));
MAKE_ENTITY(INTERCONN,(Subtypes Internal SIME),(Name});
MAKE_PROPERTY(MODULE Name,string,());
MAKE_PROPERTY(SOCKETS Name,string,(});
MAKE_PROPERTY(INTERCONN Name,string,();
MAKE_RELATIONSHIP((MODSOC,(MODULE,1))(SOCKETS .n,EX))();
MAKE_RELATIONSHIP((MODINT (MODULE,1))(INTERCONN,nEX)N();
MAKE_RELATIONSHIP(HAS,((MODULE,1,parent)( MODULE,n,children(E ID)));
MAKE_RELATIONSHIP(LINK{(SOCKETS, 1)INTERCONN,1,inside(E})));
LINK_ENTITY ( LINK,(INTERCONN,1,Outside(E)));

SM Editor Data Definition Transcript
5.5.5.2 Data Manipulation Operations

Operations which manipulate the data model are also found in the
DB_KERNEL. These operations include insertion, retrieval, and modification of the
database objects, relationships and their respective attributes. They too are in the
form of a set of functions which are later translated into lower level access functions

provided by the underlying database system. For purposes of this work the underlying
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model, supporting the augmented ERM, is an extension of the relational model, Rela-
tional Model Tasmania. {[Codd79] Since this model is used as the basic model of the

system, a detailed description will be given in chapter Six.

The following sample design would be generated by an SM editor consistent
with the augmented ERD requirements. We now illustrate the structure and use of
the various classes of data manipulation operations. These operations can be used by
the tool builder to provide query facilities for the designer through a tool subdialogue.
The basic philosophy underlying the semantics of these operations is that the funda-
mental units manipulated by the designer are objects and relationships. Therefore,
selection, retrieval, and insertion are defined in terms of these objects and/or relation-

ships.

Ll Lr
Si 52

Figure 5.20 Sample SM Design

Figure 5.20 indicates that the user of the SM Editor tool has created an aggre-
gate object, UNIVERSE. Recall that an aggregate object is associated, through the
relationship ISCOMPOF, with other objects. These objects are MODULE A and B
and INTERCONN L1. MODULE A assumes the role of the parent of the child
MODULE B via the relationship HAS. MODULE A also is associated through the
relationships MOD/INT and MOD/SOC with INTERCONN L1’ and SOCKETS St .

163



Likewise, there is another MODULE B, the sibling of A, which has a SOCKETS S2.
MODULE B, the child of A, also has a SOCKETS S2.

SELECTION

The first class of manipulation operations defined for the model are the select
operations. The semantics of a FIND is to select and return a set of unique identifiers
for which some qualification clause is true. As is the case in many database systems,
a unique identifier must be found before retrieval or modification of objects or rela-

tionships can occur.
The partial syntax of the FIND operation is

Select_op := <select_entity> | <select_relation> | <select entrole>

select_entity := FIND <entity> WHERE <entityqual clause>

select_entrole := FIND <relation><role> WHERE <entityqual clause>

select_relations := FIND <relation> WHERE <relatqual clause>

equalexpr := <keylattrNamelire]Namel<relName><role>>
<boolexpr><valueexpr>

rqualexpr := <keylattrNamelentNamelrole>
<boolexpr><valueexpr>

entityqual clause:= <Select_op> | <equalexpr>

relatqual clause:= <Select_op> | <rqualexpr>

entity := <entName>

role :=<roleName>

relation := <relName>

boolexpr:="=","<>"...

valueexpr= <value>lentNamelrolelre]Namel< >
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The result returned by the operﬁtion
FIND UNIVERSE WHERE Name = designl
is the set of 1 element whose value is the system identifier of the UNIVERSE. For

use in later examples the system identifier returned is referred to as @U1. To access

the child of A - MODULE B, the following operation would be formed.

FIND MODULE WHERE HAS parent WHERE Name = A

Note that the query provides for access to the role set parent. Inresponse to another

operation:

FIND MODULE WHERE Name =B
the unique identifiers would be that of a set of two elements indicating both
MODULES whose NAME is B.

As can be seen from the syntax, the operations provide for return of the

identifiers of relationships.

FIND ISA WHERE INTERNAL = MODULE

will return the set of identifiers of all modules classified as internal objects. In the
example of the SM this would be all of the modules in the diagram. This example

query illustrates the ability to access subclasses of objects.
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RETRIEVAL

The second class of operations are the retrieval operations. Retrieval is ini-
tiated only after the establishment of a unique identifier. The syntax is relatively sim-
ple, yet execution of these operations can be complex. The semantics of these opera-

tions are detailed in Chapter Seven.

load_op :=RETRIEVE object-id

| <attrName> OF <object-id>| <relation-id>

Execution of the operation RETRIEVE @U1 will result in the entire model being
brought into the system. The database retrieves the entity UNIVERSE with the pro-
perty Name whose value is A. Since the entity retrieved contains the entity
MODULE with the property Name whose value is A and the entity MODULE with
the property Name whose value is B, these MODULE, their SOCKETS, INTER-
CONN and children will be retrieved.

INSERTION/DELETION

The third class of operations are those that allow instances of the ERD objects to be

placed in the database or removed from the database.

INSERT <object-list>| <relation-list>

DELETE <object-list>|<relations-list>

The construction of the operations to store an instance of an actual model

could be quite tedious. However, identification of MODULE as the unit of access
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eliminates the need to perform individual insertions and attachments. Following is a
sample transcript of an insert of the model in figure 5.20 into the SARA/IDEAS data-

base.

INSERT MODULE( Name=A;

Parent;

SOCKETS;

INTERCONN( Name=L1);

Children( (Name=A;
SOCKETS( Name=S81);
INTERCONN;
Children;)

(Name=B;
SOCKETS(Name=S2);
INTERCONN,;
Children;))

Inside;

Qutside L1,51:L1,52)

Since the DB_KERNEL knows that this is a complex object and has classified the
relationships, the individual inserts into MODULE of the children and the linking of

the children to their parent A are all accomplished automatically.

MODIFICATION

The final class of operations are the modification operations. These opera-
tions simply allow the tool builder to modify the values of the properties attached to

relationships and objects.
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CHANGE property = value OF object-id/relationship-id
TO newvalue

ATTACH property=value TO object-id/relationship-id

The CHANGE operation takes an existing attribute value pair and changes it,
whereas the ATTACH operation places a new attribute-value pair in the database.
Together the INSERT and ATTACH operations are the means of creating instances

of those SM objects, relationships and properties.

We have presented a limited selection of operations which can be used to
manipulate the database. Chapter Seven details the various access operations,
whereas in Chapter Eight we find examples of some of the types of query operations

performed on the database.
5.5.5.3 Summary

This chapter has defined an augmented ERD to be used as the conceptual
model for a tool builder using the Worley methodology. We have identified those
augments needed in order to support the development of tools which will be used ina
design environment. These augments have enabled a tool developer to clearly
specify the semantics of the tool, have allowed the tool designer to specify complex
data base access requirements without being a database expert, and have provided

alternate ways for developing the tool’s specification model.

We showed that inclusion of specific generic objects provides an extensible
easily integratable database. Integration of a tool’s data base scheme is achieved via
the external object mechanism. This generic object allows a tool developer to use

objects created by other tools. Use of the generic object access provides the tool
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developer with complex data base access routines. Aggregate objects can be used to
represent composition and decomposition of designs, as well as allowing an object to

be abstracted to a level more appropriate to use.

We expanded upon the concept of roles so as to provide the tool developer
with the capability of focusing on subsets of objects and their attributes. This ERD
enhancement affected the storage and access design of the underlying data base. The
support for additional primitive types enable the ERD models to be more closely
attuned to the design environment, where such phenomena as documentation, execut-

able code, and references to such objects as component lists are common.

Dynamic constraint specification capability is introduced through the inclu-

sion of class representation, directionality and ordering of relationships.

The concluding sections gave a brief introdution to the data definition and
data manipulation language of the CADIS system. Operations on the CADIS data
base are object oriented and are capable of handling the manipulation of classes of
objects. Although these languages are similar to other Entity-Relationship languages
in many respects, the introduction of query capability on generic and aggregate
objects was necessary to support the augmented ERM. Another major difference in
the manipulation language is the ability to access subsets of objects based on the roles

they assume in the various relationships.
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CHAPTER 6

The Implementation Level

The implementation level of CADIS consists of the underlying data structures
and the functions needed to access these structures. The development of this imple-
mentation level requires the generation of specifications which later become input to
the implementation’s technical design. This specification is required to contain
sufficient technical design information, present the information in a structured form
and be readily converted to the implementation model. The augmented ERM defined
in Chapter Five is the major source of such a specification. It includes the data items
in the user’s environment together with the relationships between them, specifications
as to the size and type of data items, and partial specification as to the access require-
ments. This chapter shows how the augmented ERM is converted to the implementa-

tion data model, an extended relational model.

The chapter begins by discussing the issues which arise when mapping from
one model into another. The reasons for converting the augmented ERM into the
extended relational model, RM/T [Codd79] are then listed. A brief definition of the
RM/T is given prior to a presentation of the translation rules needed to map the aug-
mented ERM to the RM/T. These rules form the nucleus of the classifier algorithm,
the main procedure found in the DB_COMPILER. Excerpts of the code used in the

SARA/IDEAS system are given at the end of the chapter.
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6.1 Mapping Schemas

We have seen that the traditional data models; relational, hierarchical, and
network, have been proposed independently of one another. More recently, numerous
semantic data models have also been proposed. However different they seem, there
are some basic underlying concepts which relate them. This relationship makes it
possible to determine equivalence relationships and equivalence preserving mappings
between data models. Algorithms [Bork78, Lien80] have been developed for map-
ping from 2 relational model to a network model or from a relational model to a
hierarchical model, and vice versa. The basic ERM has also been mapped to the rela-

tional, hierarchical and network models. [Jajo83, Lusk80, Dump81]

Being able to map from one data model to another is of practical importance,
since many large organizations have different data bases and DBMSs which have to
coexist. The Worley tool building methodology has specified that tools should be
able to be built independent of the underlying existing DBMS. As a consequence, this
independence permits CAD system developers to experiment with the various DBMS
systems which are available. These systems may or may not support different data
models. Thus, the exercise of mapping the augmented ERM into an underlying data
model is important so as to validate the claim that the augmented ERM supports the
Worley tool building methodology. Since both the augmented ERM and other data
models, in particular the relational model, are defined in terms of sets and relations, it
would appear to be relatively easy to specify structure mappings between these data
models. The major difficulties in the mapping process are introduced as we consider

the constraints.
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The underlying model we have chosen to map into is relational. Mapping
from an augmented ERM into a relational schema structures the less formal ERM
into a more formal data representation model. The mathematical formality of the
relational model allows a data base expert to analyze the resulting storage structures
and modify, if necessary, in order to achieve greater performance and also to elim-
inate anomalies which may have been present in the original model. This process is

known as fine tuning the database.

Mapping from a conceptual model (the augmented ERM) to an underlying
schema involves three major tasks. First, a mapping from the conceptual model’s
structure to the underlying model’s structure must be defined. Next, the ERM’s
operations must be mapped to the underlying model’s operations. Finally, the con-
straints expressed in the conceptual model must be mapped to equivalent constraint
representation in the underlying model. This chapter defines the structural mappings
and included structural constraints. The mapping of operations and operational con-

straints are considered in Chapter Seven.
6.2 Implementation Model

Early in the design of the SARA/IDEAS system, it was decided to experiment
with the use of Troll as the underlying data base system. The reasons for this choice
are listed in Chapter Four, However, we note here again that the primary attraction of
Troll is that it is a small and simple data base system based on the relational model.
The basic relational model is known to lack the capability of representing the addi-
tional abstraction primitives and the complex inter-relational constraints such as
those added to the basic ERM. Therefore, it is necessary to modify Troll in order to
support these augments. [Codd79] defines an extension to the relational model in

order to capture more semantics. A review of this extended relational model shows

172



the constructs to be similar to those found in the model used by the SARA/IDEAS
tool building system. We have indicated such provisions of the RM/T in section 4.3.
The modifications to the Troll code to support this extended relational become obvi-

ous as we look into the description of RM/T.
6.2.1 RM/T Description

The following description is a condensed version of the original description
found in. [Codd79] The fundamental RM/T constructs are preceded by the notation

[C-#] (where # is an integer), so that we can easily reference these definitions.

The basic assumption underlying RM/T is that the real world can be modeled
in terms of entities. It is also assumed that entities can be categorized into entity
types, so that a simple regular structure can be imposed on the database. Relation-
ships of many types can exist among entities. Entities of the same type have certain
properties in common and hence, the RM/T model factors out that commonality and

achieves some economies of representation.

In order to illustrate some of the definitions found in Codd’s paper, we refer to
the following hypothetical model of an EMPLOYEE - PROJECT example data base

system.

A PERSON is an entity. Some properties of this entity
are that of a name and birthdate. The property
birthdate consists of a month, day and year.

Instances of this entity PERSON are:
Entity 1: Jones March 22, 1934
Entity 2: Smith April 1,1942
Entity 3: Johl  June 21, 1965

An EMPLOYEE is an entity. EMPLOYEE is a PERSON.
Thus some properties of this entity are name,
birthdate and also social security number,
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department assigned to and dependents.

Instances of this entity EMPLOYEE are:
Entity 1: Smith 123-234-455 Dept A
Tom, Mary, Joe
Entity 2: Johl 987-567-345 Dept C
Dick, Joe

A DEPENDENT is also an entity. Properties of this entity
are age and name.

Instances of this entity DEPENDENTS are:
Eatity 1: Tom 13
Entity 2: Mary 15
Entity 3: Joe 4
Entity 4: Dick 3
Entity 5: Joe 2

PROJECTS is an entity. Some properties of this entity are
that of a name, a start date, a finish date, and the
department in which this entity takes place.

Instances of this entity PROJECTS are:
Entity 1: StarWars 1/23/84 1/1/99 Dept A
Entity 2: Gemini 6/14/85 1/1/92 Dept B

DEPARTMENT is an entity. Some properties of this entity are
a name, building number, number of offices it contains.

Instances of this entity DEPARTMENT are:
Administration 7 86
Engineering 2 43

EMPLOYEE entities are associated with PROJECTS entities to
represent the projects an employee might be assigned to.

Instances of these associations are:
EMPLOYEE Entity 1 is assigned to
PROJECTS Entity 1
EMPLOYEE Entity 2 is assigned to
PROJECTS Entity 2
EMPLOYEE Entity 1 is assigned to
PROJECTS Entity 2

Example 6.1
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Continuing with the definition of the RM/T, the RM/T supports the concept of
the use of surrogates within the database. Surrogates are system generated entity
identifiers, which address the problems of user key change, duplicate user keys to
identify the same entity, and lack of a user key. Within the database all entity
identification and entity referencing is performed via surrogates. The use of an

appended *@’ throughout the following chapters indicates a surrogate.

Formal constructs of the RM/T are:

. [C-1}: E-domains, domain of all possible surrogate values;
. [C-2]: E-attributes, any attribute defined on the E-domain;
. [C-3]: E-relations, a relation exists for each entity type.

The primary purpose of the E-relation is to record the existence of the entities in

question. E-relations accept insertions and deletions but not updates.

[C-4]: A property is an immediate single-valued piece of information that
describes an entity. The property types for a given entity type are represented by a set
of P-relations. Every E-relation has a corresponding set of P-relations. If a given
entity is classified as belonging to different types then it will have properties
corresponding to each type. The RM/T convention that P-relations for a given entity
type do not have any attribute names in common, allows supertype properties to be

automatically inherited by its subtypes.
Figure 6.1 illustrates the tabular representation of the E-relations for the enti-

ties EMPLOYEE, DEPENDENT, DEPARTMENT and PROJECT. The tuples in

these relations consist soley of an E-attribute whose value is found in the E-domain,
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EMPLOYEE PROJECTS DEPARTMENT

E@ P@ DT@
El@ PI@ DTI@
E2@ 2@ Dr2@
E-RELATION E-RELATION E-RELATION
DEPENDENTN AME
DP@ name
DPI@ Tom
DEPENDENT oh@ Mary
D@ DP3@ Joe
DP1@ DP4@ Dick
Dr2@ DP5@ Joe
DP3@ P-RELATION
DP4@
DEPENDENTA GE
DP5@
E-RELATION Dr@ 2ge
DP1@ 13
DP2@ 15
DP3@
DP4@
DP5@
P-RELATION

Figure 6.1 Selected E-Relations and P_Relations from Example 6.1
the domain of surrogate id’s. Only the P-relations for the E-relation DEPENDENT
are illustrated in this figure. The properties of DEPENDENT are name and age. The
DEPENDENTNAME P-relation is shown to consist of five 2-tuples; surrogate id and
name value; for each of the dependents defined in Example 6.1. Similarly, the P-
relation DEPENDENTAGE contains five 2-tuples, each one having an attribute value

which identifies the ages of its respective DEPENDENT entity.
Additionally, entities are classified into the following four groups :

. [C-5]: Characteristic: A characteristic entity is an entity whose sole func-
tion is to qualify or describe some other entity. The characteristic entity
is subordinate to and existence-dependent on a superior entity which it

qualifies. If an entity has multivalued properties then those properties are
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classified as characteristic entities. The supporting integrity rule is thata
characteristic entity cannot exist unless the entity it most immediately

describes also exists.

. [C-6]: Associative: An associative entity is an entity whose function is to
represent a many-to-many relationship between two or more entities The
associative entity has participants which are entities that are independent
and adhere to the integrity rule that a given instance of an associative
entity type can exist in the data base only if for that instance each E-
attribute in its P-relations either has the value E-null or identifies an exist-

ing entity of the appropriate type.
. [C-71: Kernel: A kernel entity is an entity that is neither of the above.

. [C-8): Designative: A designative entity is an entity which is used to
complete the description of another entity but is also an entity in its own
right. The designative integrity rule for this type is that a given instance
of type designative can exist only if for that instance each entity it desig-

nates is either null or is an existing entity of the approprate type.

RM/T maintains catalogs, as relations, which describe the relations, attributes,
and domains present in the database. These are referred to as the RELATION rela-
tion, ATTRIBUTE relation, and DOMAIN relation, respectively. The system tables
shown in figure 6.2 are the RELATION catalog and ATTRIBUTE catalog. The tuples
found in the RELATION relation consist of a relation name and relation type. The
attribute Relname contains the name of every relation in the database and the attri-

bute Reltype designates which class of entities the relation represent. For example,
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RELATION

Relname Reliype

PERSON K
ATTRIBUTE

elname |  Aur Domain | Pkey Ukey Null
EMPLOYEE | DX PERSN | name string Talse troe false
MPLOY| name stang Talse true " Talsd
DEPENDENT ¢ DEPENTT  name stnng faise true false
PROJ name sinng Talse inie Talse |

PROJECTS KD

DEPARTMENT] K

BIRTHDATE C

Figure 6.2 Partial System Tables for Example 6.1
the EMPLOYEE entity is classified as being a Designative (D), as well as Kermel (K)

entity. The DEPENDENT entity is classified as a Characteristic entity(C). The
ATTRIBUTE relation contains tuples for every attribute present in the database.
Although there are no entries in the table, the attributes are: the name of the relation
in which the attribute is found (Relname); the name of the attribute (Attr), the domain
of the attribute values (Domain); and the three boolean attributes indicating whether
the attribute is used as a primary key (Pkey), is used as part of a user key (Ukey), and
if nullvalues are allowed (Null).

[C-9]: Entities may also have one or more subtypes defined for them. This
subtype classification constitutes a generalization hierarchy which provides for inher-
itance of properties by subtypes. Entities may also be divided into several distinct
categories of subtypes. RM/T supports a subtype integrity rule which states that a sur-
rogate of an entity or type e must also belong to the E-relation for each entity-type of

which e is a subtype.
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[C-10]: Aggregation is also supported in the RM/T. Aggregation is broken

down into three types:

1. [C-11]: Aggregation of simple properties which yields an entity type - all the

properties which comprise an entity type.

2. [C-12]: Aggregation of characteristic entities yields an entity type - all of the
characteristic entities of a given entity type, along with the respective proper-

ties.

3. [C-13]: Aggregation of any combination of kernel and associative type yields
an associative type or nonentity association type - this aggregation promotes a
relationship relation to that of a relationship entity so that it may participate in

other relationships.

Since RM/T entity types are not related in ways based only on values of attri-
butes, graph relations are maintained by RM/T which specify the way in which the
entity types are related to each other. These graph relations provide the ability to
specify relationship types, generalization hierarchies and other semantics. The fol-

lowing is a brief description of the graph relations found in RM/T.

. Property graph relation (PG-relation or PropGraph relation): indicates

which P-relations belong to which E-relations.

. Association graph relation (AG-relation): indicates which entities partici-

pate in which relationship types.

. Characteristic graph relation (CG-relation or CharGraph relation): indi-

cates which entities are characteristic and which entities they characterize.
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. Designation graph rclation'(DG-relation): indicates the designated and

designative entity-types together with the name of the designative pro-

perty.

. Generalization graph relation (SubGraph relation): indicates an entity-type,

its generalization and the category to which it belong.

. Aggregation: uses the P-, PG-, CG-, and AG-relations and does not main-
tain an individual graph relation. Support for the first type of aggregation
is found by the P-relations together with the PG-relations; the second type
by the characteristic relations with the CG-relations; the third type by the

kernel relations, associative relations and the AG-relations.

There are additional graph relations which provide for more semantics to be
represented such as a cover aggregation type and entities of type event. As it turns out
representation of a cover aggregation type does not necessitate the need of a special
graph relation in our database. Rule 7 in the following section requires that the ERM
aggregate entity, analagous to Codd’s cover aggregation, need only be mapped to a
characteristic entity. Entities of type event are not considered in this research pri-

marily because the need for such entities did not arise.

Figure 6.3 shows a partial listing of three of the graph relations generated for
Example 6.1. The PropGraph (PG-relation) contains a tuple for each property of the
entity EMPLOYEE, DEPENDENT, and PROJECT. For example, the EMPLOYEE
entity has a tuple indicating the property, Name (EMPLOYEENAME), and a tuple
for the property, Social-Security-Number (EMPLOYEESS). Birthdate is not listed in
the PropGraph relation since, according to Codd, it is considered a characteristic

entity (Section 6.4) of EMPLOYEE. Therefore, it appears in the CharGraph (CG-
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PropGraph

PReINAME EReINAME
EMPLOYEENAME | EMPLOYEE
EMPLOYEESS EMPLOYEE
DEPENDENTNAME | DEPENDENT
DEPENDENTAGE | DEPENDENT
PROJECTNAME PROJECT
PROJECTSTART PROIJECT
CharGraph
ChEReINAME  [SupEReINAME| RelType
DEPENDENT EMPLOYEE HAS
BIRTHDATE EMPLOYEE —ene
SubGraph
SubEReINAME  {SupEReINAME Suatus
EMPLOYEE PERSON IsA

Figure 6.3 RM/T Graph Relations
relation) relation as a characteristic entity of EMPLOYEE, as well as the entity
DEPENDENT. The third field in the CharGraph relation indicates the type of charac-
teristic relationship being represented. The value of "HAS" in the tuple indicates that
the relationship is an entity-entity relationship labeled HAS, whereas, the value of "-
---", indicates the type of relationship is that of a multivalued property relationship.
The SubGraph relation represents all of the class-subclass categories defined for the
database. The Status field indicates the type of category. For purposes of representing

the standard generalization category we have used the value "ISA".

The system relations described in this section constitute the meta data used to
manipulate an RM/T database. Therefore, any modifications to the underlying rela-

tional database (Troll) must include the capability to process these system relations.
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6.3 Translation Rules

The augmented ERD, generated from a tool’s concept definition
specifications, is used to define the underlying database schema. This schema con-
sists of the appropriate RM/T relations described in the preceding section. The
schema is defined either by a database designer using the data definition operations
provided by CADIS (Section 5.7) or by some form of a data base compiler which
automatically translates the ERD into the underlying RM/T data model.

© DESIGN

1 parent
MODULE <EA>

N children/Eid

Figure 6.4 SM Editor ERD

Chen [Chen77] originally defined translations of the basic ERM into a tradi-
tional relational model, a hierarchical model and a network model. The translation
into the relational data mode! primarily involved mapping entities into entity rela-
tions and relationships into relation relations. Others (Section 6.1) have defined map-
pings of various extended ERM’s into relational, hierarchical and network data
models. We now define the mapping of the augmented ERD’s (Chapter Five) objects

and relationships into the extended relational model, RM/T.
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The ERD of the SM Editor tool is used to pictorially illustrate the mapping

rules. The translation begins with the identification of RM/T entities.

Rule 1

Each entity in the ERD which has no graphical constraints, such as existence-
dependencies, is mapped into a unary E-relation using the entity-type as the

name of this E-relation.

This mapping rule is derived from the natural correspondence between Codd’s
definition of E-relations {C-1] and an ERD entity. The CADIS DB_COMPILER pro-
cedure for identification of the E-relation’s single attribute is: the composition of the
first n unique letters of the relation’s name followed by @’ constitutes the E-attribute
of all such E-relations. Figure 6.5 illustrates the entity MODULE being mapped into
an E-Relation MODULE. The E-Relation’s attribute is M@.

MODULE
M@

MODULE $

ENTITY E-RELATION

Figure 6.5 Entity Identification
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Rule 2

Each single valued property of an entity is mapped into a P-relation for

that entity’s E-relation.

This rule is also derived from the natural correspondence between Codd’s definition
of entity properties [C-4] and an ERD property. Since the augments for the proper-
ties of type code and rext merely involve identifiers for the files in which these types
reside, they are viewed as single valued properties. The CADIS naming procedure
for P-relations is to concatenate the entity-type with the attribute name. Figure 6.6
illustrates the creation of a P-relation MODULE NAME, representing the attribute
Name which is a property of MODULE. This binary relation consists of the attributes

M@ and Name,

MODULE NAME
M@ Name

MODULE =

ENTITY P-RELATION

Figure 6.6 Property Identification

Rule 3
Each entity which has a property of type reference is mapped into a Desig-

native entity.

Entities can be Designative as well as being classified as either Kernel, Characteristic

or Associative. This mapping rule also results from the natural correspondence
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between [C-8] and the augmented ERD definition of type reference. Application of
rule 3 does not create any new relations. However, the system relations are modified
so as to indicate that an entity is of type Designative and to also indicate the Desig-

nee.
Rule 4

Each multivalued property of an entity is mapped into a unary E-relation,

which is classified as a characteristic entity.

A single P-relation is required to be created for this new E-relation. The P-relation’s
name is the name of its E-relation concatenated with *P’. This P-relation identifies
each instance of the property and indicates to which entity it belongs.

This translation rule results from application of Codd’s definition of characteristic
entity {C-5] to a multivalued ERD property. The CADIS naming convention for this
E-relation is to concatenate the first n unique characters of the characterized entity’s
E-relation with the attribute name. Figure 6.7 shows the multivalued property
SYNONYM, of the entity Design mapping into the E-Relation SYNONYM and its
respective P-Relation SYNONYMD. The binary P-relations relates an instance of a

SYNONYM entity to the instance of its DESIGN entity.

Rule 5

Each entity set which is existence-dependent on an entity set and partici-
pates in a binary 1:n relationship with that entity set is mapped into an E-

relation of type Characterstic.

This rule is also derived from the natural correspondence between [C-5] and Chen’s
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SYNONYMD SYNONYM

DESIGN

ENTITY P-RELATION E-RELATION

Figure 6.7 Multivalued Identification
definition of a dependent entity. As an example, SOCKETS and INTERCONNECTS
are defined to be existence-dependent upon entity set MODULE and therefore map
into characteristic entities of MODULE. The relations defined are similar to those
described in Figure 6.7 for the characteristic entity SYNONYM. The schema would
then consist of two relations SOCKETS and INTERCONNECTS, along with their
respective P-Relations, SOCKETSM and INTERCONNECTSM. Using this rule,
would eliminate any instances of the relationships MODIC and MODSOC. There-
fore, the algorithm developed in 6.4 retains the defined relationships by placing them
in the Characteristic Graph Relation as values of the attribute RelType - see Figure

6.3.

Rule 6
Each m:n unrestricted relationship type is mapped into a unary E-relation
which is classified as associative. A P-relation is required to be created

which indicates each participant in the association.

This is another direct mapping from the basic ERM based on Codd’s definition of an
associative entity [C-8]. Figure 6.8 shows the relationship type USE as an E-relation
along with its P-relation USEP. P-relation USEP has as entries those entities which

are paired in the relationship USE. There is also an entry made in the AG-relation
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indicating the name of each entity along with the name of the associative entity name.

USERS USEP P USE
U@ | D@ U@
P-RELATION E-RELATION
DESIGN

Figure 6.8 M:N Relationships

Rule 7
Each aggregation is mapped into an E-relation. All entities which

comprise this entity are then marked as characteristic of this entity.

[C-12] provides the correspondence between the augmented ERM’s definition of
aggregation and RM/T support for aggregation. The dotted aggregate notation
encompasses all of the entities which are part of the aggregate object. Relationships
within these boundaries are also included. Use of the explicit relationship ISCOM-
POF will result in an equivalent translation. Recall from Chapter Five that
UNIVERSE and MODULE are related via the relationship type ISCOMPOF (the
aggregating relationship). Application of this rule would cause the MODULE entity
to be changed from a kemnel entity to a characteristic class. A new P-relation is also
created for MODULE which contains the UNIVERSE entity identifiers which define
MODULE (see Rule 4). Rule 8

Each role which has no existence-dependencies is mapped into a subtype
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for the entity for which it is defined.

The use of roles in the augmented ERM serves to identify subsets of entity types and
allow properties to be associated with that subset. Codd defines the categorization of
entity types into subsets as a subtype [C-9]. Roles, in the augmented ERM may have
properties defined on them as well as constraints. The only restriction is that they
may not participate in other relatioships using the same rolenames. Thus, in the SM
ERD, parent role is mapped into the E-relation PARENT, which is declared to be a
subtype of MODULE.

Rule 9

Each existence-dependent role is mapped to an E-relation which is charac-

teristic of

L. the entity it participates in a non-recursive relationship with, or

2. is characteristic of the role the other entity assumes in recursive
relationship.

Since roles assume the status of an entity all of the mapping rules associated with
constrained entities apply to roles which have similar constraints placed upon them.

~ Therefore, as a result of applying Rule 4 to the role entity, a characteristic entity for
CHILDREN is created. This entity is characteristic of the PARENT entity which was

described in the preceding rule.

We have formulated nine rules which provide the mechanism by which an
augmented ERD can be mapped into the RM/T model. The rules have dealt with the
augments of; generalization, aggregation, expanded role sets, expanded property

types and a portion of the expanded relationship representation. We have not pro-

188



vided rules for the mapping of direction, ordering and the concept of complete rela-
tionships. These constraints have no direct structural mapping and must be included

with the operations. Chapter Seven describes the operational mappings.
6.4 Data Base Compiler Algorithm

Application of the preceding rules enables us to develop a DB_COMPILER.
The algorithm used by this compiler takes as input the augmented ERD and produces
a database schema for that particular ERD. This algorithm uses the rules defined in
Section 6.3 to create relations, both E-relations and P-relations, and to modify the
existing system relations which were defined in 6.2. Modification of the system
tables involves both the insertion of tuples and the modification of attribute values.
Level 1 of this algorithm is given in this section using pseudo code although the
actual implementation was done in T, a dialect of LISP developed at Yale. This first
portion is the main driver which traverses the ERD looking for entities and
relationships.The entities are classified as to being characteristic or kernel. All
unmarked relationships are considered associative. Following Part I we look at por-

tions of the algorithm in Parts II and III, again using pseudo code.
6.4.1 Algorithm
PART I. Algorithm Transformation: Level 1

While traversing ERD do

for each internal entity do
if Characteristic-entity then
call apply Rule 5
else
if not Aggregate-entity then
call apply Rule 1
end if
mark visited
end do
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for each relationship do
if not marked done then
call apply Rule 6
mark done
end if
end do

for each internal entity not visited do
call apply Rule 7
end do

End while

The main driver uses only Rules 1, 5, 6 and 7. These are the rules which
create the major entities found in the RM/T. The boolean functions Characteristic-
Entity and Aggregate-Entity use the definitions of these types of entities in order to
determine the return value. The marking of a relationship is done if it was subsumed
through the creation of a characteristic entity and does not produce an associative
entity. We see in the following portions of the algorithm that the major rules apply
the remaining rules. It is within these sections of the algorithm where modifications
are made to the existing system table which identifies subtypes of previously defined

entity types.

Part II. Algorithm Transformation: Level 2

Rule 1
call Create Kernel-Entity
If Subtype entity then
call Modify Sub Graph
end if
Mark entity created
End Rule 1

Rule 5

call Create Characteristic-Entity
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Mark entity created
End Rule 5

Rule 6
call Create Associative-Entity
Mark relationship created
End Rule 6

Rule 7
call Create Aggregate-Entity
if Subtype entity then
call Modify Sub Graph
end if
Mark entity created
End Rule 7

The creation of the four entity types triggers the creations of relations for the
representation of their properties. It is at this point that entities of type Designative
are determined, either as the property of type reference or as a complete relationship.

Roles are considered when creating associative entities.

Part III Algorithm Transformation: Level 3

Create Kernel Entity

Create E-relation
for each property do
if single-valued property then
call apply Rule 2
else
if multi-valued property then
call apply Rule 3
end if
end do

End Create Kernel Entity
Create Characteristic Entity
Create E-relation

for each property do
if single-valued property then
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call apply Rule 2
else
if multi-valued property then
call apply Rule 3
end if
end do

Create Characteristic P-relation
Modify CG relation

End Create Characteristic Entity
Create Associative Entity

Create E-relation
for each property do
if single-valued property then
call apply Rule 2
else
if multi-valued property then
call apply Rule 3
end if
end do

Modify AG relation

if Complete relationships then
call apply Rule 5
Modify Relation relation
Modify DG relation

end if

End Create Associative Entity

Create Aggregate Entity

Create E-relation
for each property do
if single-valued property then
call apply Rule 2
else
if multi-valued property then
call apply Rule 3
end if
end do

for each aggregate component do
Create characteristic P-relation
Modify Relation relation
Modify CG relation

end do
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End Create Aggregate Entity

6.4.2 T Classifier

The prototype implementation of the SARA/IDEAS system is in the T
language, a dialect of LISP. The DB_COMPILER, considered an auxiliary tool of
this system, was also implemented using T. The following represents the introductory
T code implementation of Part I of the compiler. Appendix C contains the T code

which implements the remaining algorithms described in the previous section.

;**********************

;This is the classifier which traverses the erd and

; translates the objects, relationships and properties into

; entities in the RM/T data model

;**************************

(define (traverse-erd)
;We first examine each object and determine if it is
-either kernel or characteristic. Creation of the appropriate
;entity type takes place and the object is marked as created
;:Order is not predetermined, so it is necessary sometimes to
;search for the root kernel entity (inner kernel)

(walk (lambda (x)
(if (not (checked x))
{cond ((check-constraints 'E x)
(if (checked
(find-other-object x))
(block (set (checked x) t)
(characteristic-create x
(name (find-other-object x))))
(block (parent-create
(find-other-object x)):find inner kernel
(set (checked x) 1)
(characteristic-create x (name (find-other-object x))))))
(else (block (set (checked x) t)
(kernel-create x))))))
(objects *erd*))
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6.4.3 Troll code

Figure 3.8 indicates that the input to the DB_COMPILER is an augmented
ERD produced from the OReO Compiler. The OReO Compiler is responsible for
automatically producing the graphical representation of the ERD along with any
additional text needed to completely augment the graph. At this time the OReO Com-
piler is not implemented and so the input to the DB_COMPILER is a textual descrip-
tion of functional calls which generate the ERD. This text is manually created and
merely creates the graphical form found in Figure 6.2. The creation of an ERD is
realized invoking functions which make entities, make relations, and make links con-
necting entities and relations. The parameters to these functions include all of the
properties and all the constraints placed on entities, relations and roles. The role con-

straints are included in the parameter list of the link-arc function

« 3k 2 2k 3 36 afe e e e 2 o e de e e o ok ook k-

?
; This file is a test file to generate an augmented ERD
;*************************

(create-erd)
;The following section creates all of the entities of the ERD

(create-object "module”

*((properties ("name" "string" M)) (constraints A Comp INT)))
(create-object "sockets”

’((properties ("name" "string" M)) (constraints E INT)))
(create-object "interconn”

*((properties ("name" "string" M)) (constraints E INT)))

:The following section creates all of the relatdonship types of the ERD

(create-relation "modic"
’({constraints E)))
(create-relation "modsoc”
’((constraints E)))
(create-relation "has"
4
(create-relation "link"
’((constraints E)))
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;The following section links an entity type to a relationship type.

(link-arc
(find-object objects *erd* "module”)
(find-object relations *erd* "modic™)
'1°0)
(link-arc
(find-object objects *erd* "interconn")
(find-object relations *erd* "modic™)
'N’(0)
(link-arc
(find-object objects *erd* "module™)
(find-object relations *erd* "modsoc”)
’1 ’())
(link-arc
(find-object objects *erd* "sockets")
(find-object relations *erd* "modsoc”)
'N’0)
(link-arc
(find-object objects *erd* "sockets")
(find-object relations *erd* "link")
!1 !())
(link-arc
(find-object objects *erd* "interconn™)
(find-object relations *erd* "link™)
*1 *({role "inside™) (constraints E)))
(link-arc
(find-object objects *erd* “interconn")
(find-object relations *erd* "link")
*1 *((role "outside™) (constraints E)))
(link-arc
(find-object objects *erd* "module”)
(find-object relations *erd* "has™)
"1 ’((role "parent™)))
(link-arc
(find-object objects *erd* "module™)
(find-object relations *erd* "has")
N ((role "children") (constraints E ID)))

Figure 6.8 Code to Create Augmented ERD
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The output of the DB_COMPILER is a Troll database schema for the tool
which is being developed. We have chosen to use the Troll database management
system for the reasons described in Chapter Four. The resulting relational schema
differs from a more traditional relational schema, such as was described in Section
2.2.1, in that there are in general more relations each of a smaller degree. This is a
result of having individual P-relations for each object and maintaining relations
which indicate the molecular structure of the objects - the system tables described in
6.3. Figure 6.9 shows the resultant Troll schema for the SM Editor. We have
identified each object and relationship by preceding the respective Troll relation with
a label (in italics) indicating which object, relationship, or role is represented by the

relation(s).

;Aggregrate Object Universe
relation Universe [

uid :surrogate  (1)]
;Object Module
relation Module | relation ModuleU [
mid :surrogate  (1)] mid :surrogate (1)
uid :surrogate |
;Object Sockets
relation Sockets [ relation Socketsname |
sid :surrogate  (1)] sid :surrogate (1)
relation SocketsM [
sid :surrogate (1)
mid :surrogate |
;Object Interconn
relation Interconn [ relation Interconnname [
iid :surrogate (1)) iid :surrogate (1)
name string ]
relation InterconnM [
iid :surrogate (1)
mid :surrogate ]
;Relationship Link

relation Link |
lid :surrogate  (1)]
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;Role Child

relation Child [ relation ChildP [
mid :surrogate  (1)] mid :surrogate (1)
mid :surrogate |
;Role Parent
relation Parent [
mid :surrogate  (1)]
;Role Inside
relation Inside [ relation InsideS [
iid :surrogate  (1)] iid :surrogate (1)
sid :surrogate ]
;Role Outside
relation QOutside [ relation QutsideS [
iid :surrogate (1)) iid :surrogate (1)
sid ;surrogate ]

Figure 6.9 Troll Relations for SM Editor

The relationships MODSOC, MODINT, and HAS are found in the system
tables and are not represented as a relation in the schema. The translation rules absorb

- these relations when a participating object is of type characteristic. The CharGraph

system relation indicates the name of the relationship as the attribute Relrype. Figure

6.10 contains four of the system tables, previously defined in section 6.2.1.

CharGraph Relation for SM Editor

| ERelName | ChRelName | Reltype
| Module | Interconn | Modinc

| Module | Sockets | Mosoc

| Parent | Child | Has

| Sockets | Inside | Link

| Sockets | Qutside | Link

| Universe | Module | Contains
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SubGraph Relation for SM Editor

| SubRelName | SupRelName [ Status
(Child  |Module |ISA

| Inside | Interconn | ISA

| Qutside | Interconn [ ISA

| Parent | Module |ISA

AssocGraph Relation for SM Editor

| AssocName | Keyid | ERelName
ILink  IHd | Inside

{ Link [ Tid | Outside

| Link | Sid | Sockets

PropGraph Relation for SM Editor

| PRelName | ERelName
| Childp | Child

| InsideS | Inside

| Interconnm | Interconn

| Interconnname { Interconn

| Modulename i Module

| Moduleu | Universe

| Socketsm | Sockets

| Socketsname | Sockets

Figure 6.10 SM Editor Graph Relations

Had we used the more traditional relational approach for representing the SM objects
and relations the amount of relations would be reduced by about 50%. However, the
increase in the amount of code required in the application programs would be a com-
parable increase (Chapter Seven). These base relations, together with the system meta
data, enable the tool developer to provide query capabilities and access operations on
the information content of the tool as well as the structural content of the tool. Infor-
mational queries would include the standards such as: find module where name= A’

find sockets where name = *B’, etc. Structural queries available would include, but
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not be limited to: list the children of module *x’; list the parent of child "y’; list the
components of design "z’; give the subclasses of module(if any), etc. Chapters Seven

and Eight continue the development of access and modification to the database.
6.5 Summary

This chapter first briefly defined the RM/T extended relational model. This
was the model chosen to serve as the implementation model for the development of
the CADIS database. Although this chapter focused on the mapping of the augmented
ERM into this relational model, the mapping could have been into some other model.
The philosophy behind the Tool Building Methodology [Worl86] supports the use of
a user conceptual model which may be used to create schemas for any existing data-
base system. The fact that the basic ERM has been mapped into various traditional

models lends support for this philosophy.

We presented the translation rules used in the mapping process. The majority
of these rules were seen to be a direct result of the similarity of basic constructs found
in the augmented ERM and the RM/T. However, the augmented ERM contained
some constructs which were not directly supported by the RM/T. The rules involving
the mapping of roles did not have a natural correspondence. Based on the definition
of roles as subsets, we were able to make use of the subclass entity in order to map

roles.

The concluding sections presented fundamental portions of the algorithm
designed to automatically generate the underlying database schema for the tool’s
ERD. A partial database schema was illustrated in order to give the reader an idea of
the underlying structure. The number of relations generated by the DB_ COMPILER

seem to be numerous when compared to the number of relations found in standard
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relational data base systems. However, the realization that we are able to maintain not
only the standard information, but also the structural information outweighs any
disadvantage arising from having a large number of relations. A major advantage
seen in the use of the DB_COMPILER is the reduction of time needed in order to
generate the Troll relations and also to modify the system relations which maintain

the semantics of the the tool’s objects and relationships.
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CHAPTER 7
The System Level

The system level of the CADIS architecture combined with the kernel level
comprises the conceptual model of the CADIS data base system. We regard CADIS
as a type of aggregate object containing objects and relationships needed to provide
the data management support for both the SARA/IDEAS tool building system and the
SARA/IDEAS run-time system. One such object type within CADIS is the SYS-
TEM. The SYSTEM object contains objects and relationships defined by a system
developer, as well as objects and relationships defined by the tool developer. Itis
responsible for maintaining relationships expressed between tool objects, maintaining
relationships between tool objects and system objects, and maintaining relationships

between the various system objects.

Many of these relationships are defined as a new tool is brought into the sys-
tem. Integrating a new tool into the SARA/IDEAS system requires integrating the
tool’s data model into an existing global system data model. The augmented ERD

and the tool’s database schema serve as input to a DB_INTEGRATOR.

This chapter defines the SYSTEM object. A description of some of the system
objects, generic and non-generic, provide insight into the functioning of the CADIS
database system. Operations performed by these system objects are detailed. Follow-
ing this description, system relationships are defined and examples of their use are
given. The concluding section presents a description of the CADIS database and

presents an approach by which a tool is integrated into the CADIS database.
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7.1 The System

Figure 7.1 illustrates the relationships which exist between the TOOL object,
KERNEL obiject, and SYSTEM object. The aggregate object containing these objects
and relationships is the CADIS data base management system. CADIS is the object

through which all interactions with the underlying database takes place.

SYSTEM

M  uses
oo s>
. N usedby

Figure 7.1 ERD of CADIS

The object TOOL consists primarily of user defined objects. These tools have
been described as those built specifically for the purposes of designing models and/or
evaluating and analyzing models, such as the GMB editor, the Simulator, or the Con-
trol Flow Analyzer (Chapter Three). There might also be auxiliary type tools such as
tools built to maintain versions of design (RCS), configure designs (MAKE), or pro-

vide browsing capabilities to the users of the system (SARA/IDEAS Browser).
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We have also previously described (Chapter Five) how the tool builder is able
to use objects which have been created by other tools. An example of such a capabil-
ity is found in the GMB ERD, in which the GMB ARC is associated with SM SOCK-
ETS. The GMB tool builder creates a relationship (REFERS) with an external
object, the SM SOCKET. Other relationships can also be established during the pro-
cess of specifying the tool’s objects and relationships. The SYSTEM is the object
through which instances of these relationships (REFERS) are established.

The object KERNEL consists of the mechanisms which allow the underlying
database objects (Troll relations) to be accessed, created, and modified. The KER-
NEL contains those operations which send messages to perform operations on the
underlying Troll database. Both the TOOL object and SYSTEM object communicate
with the KERNEL via the relationship OPS.

The SYSTEM object contains objects and relationships which are defined by
the system developers. These system developers are the database experts, whereas the
tool developers are considered the non-database experts. It is via these objects that
system policies are defined and implemented. Such policies might include: defining
the level of granularity at which to lock objects ; defining the different types of pro-
tection to provide for tool objects (read, write, or modification of selected values); the
extent of update propagation as changes in objects occur (whether to cascade changes
to relationships of objects); types of notification to provide for changes in a design
object. SYSTEM relationships provide the interface between these various objects as
well as between tool objects and system objects. The TOOL object becomes a com-
ponent of the SYSTEM object after integrating the tool into the SARA/IDEAS sys-

tem.
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The top level view of the CADIS data base management system conceptual-
izes CADIS as an object which has operations defined for its manipulation. Initial
interaction with CADIS occurs when a request is made to access a database object.
Operations to access any tool’s database are invoked by sending a message to the
object CADIS. The tool builder, as well as the end user, does not need to know how
to formulate complex database requests. The database is simply accessed in terms of
the objects or relationship defined for the tool (section 5.6.2). CADIS in turn then

accesses these various objects through the SYSTEM object.

The following two sections describe objects and relationships found in the

SYSTEM.
7.2 System Objects

The previous chapters, defining the conceptual model in terms of objects and
relationships, concentrated on the representation of information concerning these
objects through its properties, relationships, and constraints. The augmented ERD
model served the primary purpose of providing a non-database expert with the ability
to aid in the specification of the tool’s underlying database through generation of the
tool’s specifications. However, we did not discuss at that time the other dimension of
objects. This dimension is the object’s capability to perform various operations. Bor-
rowing from the SMALLTALK [Gold83] definition, objects are considered to be a
uniform representation of information that is an abstraction of the database’s capabil-
ities. Database capabilities include the storage of information and the accessing of
information. Operations can be performed on objects through the use of messages
sent to the object. An object operates on itself when another object sends a message
to do so. Methods defined for each object represent these various operations. Groups

of objects which respond to messages in a similar way are considered classes. These
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classes correspond to the concept of a generic object, as the inheritance of methods

from a class to a subclass (super object to sub object) is supported.

The kinds of objects and classes needed to represent a data base management
system’s capabilities and the operations supported by these objects are considered out
of the realm of an expert tool builder. Therefore, CADIS provides these supporting
objects in order to achieve such functionality. This relieves a tool builder from the

additional task of having to define specific database operations
7.2.1 Generic Objects

The SYSTEM object contains generic types created by the system developers.
These objects are provided so that the tool objects can be classified as belonging toa
specific subtype and thus inherit database specific methods defined for these objects.
Database activity involves access operations and/or modification operations. Hence,
two objects are required to support both activities. The two generic objects, defined
for CADIS, are an access object and an instantiation obiect. All SARA/IDEAS tool
objects are placed into a sub category of the access object and a sub category of the
instantiation object. These subsets are analagous to the SMALLTALK class concept,

hence the terms generic object and class are used interchangeably.

In the SARA/IDEAS system, one such message sent to a MODULE object

would be:

Retrieve M1@

where M1@ is the database’s unique identifier of a MODULE object.

The method which is used to respond to this message depends upon which subclass of
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access object the tool builder had originally designated MODULE to be. The two
classes available for the tool builder to use are COMPLEX and SIMPLE. Recall that
the SM Editor creates a somewhat complex object, the MODULE. Figure 7.2 illus-
trates the complexity of this object. The fact that SOCKETS and INTERCONN are
contained in MODULE is noted by the dependency constraint. This constraint affects
the retrieval of the complex MODULE, in that instances of SOCKET and INTER-
CONN must also be retrieved if the entire structure of MODULE is to be retrieved.
Another indication of the complexity is that an instance of a MODULE which is a
parent needs to have all of its children retrieved. Since this is a recursive relationship,

then all the children MODULE(S) are retrieved recursively.

" 1 parent
ame MODULE <®
_ N children/Eid

Figure 7.2 SM ERD
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Figure 7.3 Access Class Hierarchy

ACCESS CLASS:

Figure 7.3 shows that there are four subclasses of the generic access object.
This object provides the tool developer with the capability of identifying the unit of
access. In a traditional DBMS, the unit of access is a record. However, since complex
objects are found in a design environment, and do not necessarily comprise a record,
there is a need to change the unit of access to something more meaningful to the end
user as well as the designer. A system defined method is provided for each generic
object. If there does not exist an access method for an object or relationship, then that
object inherits the access method defined for the object’s superclass. In the CADIS
system, we can regard the implementation of such an inheritance mechanism as the

following:

Case Id-type
Object:  case Access class

Simple : SIME
Complex : COME

End case
Relationship: case access class of

Simple : SIMR
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Complex : COMR

end case
End Case

Figure 7.4 is an instance of such an SM Editor design used to illustrate the definitions

of the various classes of access.

S2 |82 St s;T

Figure 7.4 SM Instance

Simple Entity Access:

A simple entity access object is nuil expanded. A null expanded object is one
which is accessed at the top level. That is, in response to a request to retrieve a simple
entity, the immediate properties are accessed along with a list of the names of the
entities are contained within this entity. Also included is a list of relationships in

which this object participates. This type of access is information bearing but does not
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provide the structure of the object to the user. A typical use of this type of access
would be by a browser, which is interested in properties of the object, but does not
need to recreate the multi-dimensional structure of the abject. This classification is
designated by placing "(SIME)" in the rectangle defining the object type. This is the

default classification of all entities.

SIME Access Algorithm

For object-id do
Foreach prop in property-list do
Retrieve (prop,value)
End do

Foreach type in relationship-list do

If type = DEP then

Foreach key in characteristic-list do
Retrieve (key,value)

End do

End if

End do
End do

Suppose (Figure 7.4) the unique id for Module A was used as the parameter for the
Retrieve operation, then the following information would be the result of this opera-

tion.

OBJECT MODULE

Name = A;

MODINC INTERCONN name =L1;
MODSOC SOCKETS name = S1;
HAS Children name = B;

HAS Parent ;

The relationships that the Module participates in are listed and since they are all of
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type characteristic, the key values of the other participants are also listed. However,
the fact that L1 links S1 and S2 is not known from this retrieval, indicates that the
relationship LINK is not traversed. Although the SM Editor ERD shows that LINK is
contained within the Module object, Module does not participate directly in this rela-

tionship.
Complex Entity Access:

A complex entity access object is one which is fully expanded when accessed.
A fully expanded object contains all of the information about the object as well as its
structural composition. Structural composition includes all of the objects contained
within the object along with a lisf of any relationships the object is associated with. In
Figure 7.2, MODULE, when classified as a complex entity is accessed in its entirety.
That is, a retrieval of MODULE will materialize a complete module along with all
objects contained in it, such as sockets, interconnections and children modules. The
placement of "(COME)" in the ERD rectangle defining MODULE classifies it as a

complex entity.

COME Access Algorithm:

For object-id do
Foreach prop in property-list do
Retrieve (prop,value)
End do

Foreach rel-type in relationship-list do
Retrieve (rel,rel-type)
If rel-type = DEP then
Foreach key in characteristic-list do
Retrieve (key,value)
End do
End if
End do
End do
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Using the same retrieval request as before, we illustrate the information access if

MODULE had been classified as a complex access object.

OBJECT MODULE
Name = A;
MODINC Interconn name =L1;
MODSOQC Sockets name = S1;
HAS children name = B;
OBJECT MODULE
MODINC Interconn name = L.2;
MODSOC Sockets name = 82;
HAS children name = C;
OBJECT MODULE
MODINC ;
MODSOC Sockets name = S3;
HAS children ;
HAS parent name = B;
LINK outside S3-L2;

HAS parent name = A;
LINK inside S2-L2;

HAS parent;
LINK inside S1-L1;

A complex retrieval returns all of the information with which the structure of the

object can be recreated.
Simple Relationship Access:

A simple relationship access object is null expanded. A null expanded rela-
tionship is one which is accessed at the top level of the relationship. That is, the
immediate properties of the relationship and the keys of the entities which participate
in the relationship are retrieved. "SIMR" is the designation for a relationship as the
unit of access. The algorithm is similar to SIME in that the properties of the relation-

ship are retrieved along with any roles defined on that relationship.
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Complex Relationship Access.

A complex relationship access object is one which is partially expanded when
accessed. A partial expansion returns a portion of the structural content. As an exam-
ple, the following text shows the results of a retrieval request for the relationship
LINK. The immediate properties of the relationship along with the entities, not fully
expanded, participating in the relationship are returned. "COMR" is the designative

term for this type of relationship.

RELATION LINK
Name =L1;

QOutside SOCKETS name = S1;
Inside SOCKETS name = S2;

There is no default access type for relationships. If a relationship has no designation

then access through relationships is not available.
INSTANTIATION CLASS:

The generic object instantiation contains three subclasses: internal, external
and standard. Each of these generic objects contain system defined methods for
modifying any instance of an object belonging in its class. These methods are defined
by the system’s developers in order to implement the particular policies of the system

with regard to modifications: deletion, insertion and updates.

Internal Object:

Internal objects are those objects which are defined by the tool builder. The
SARA/IDEAS policy applied to instances of this internal object is that they can be

created, destroyed, changed, and manipulated by the user of this tool. If additionally a
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particular instance can only be modified by the user who created it, then protection
constraints can be associated with that particular object as to specifically who or
when such modification are allowed. In Figure 7.2 SOCKETS has been defined to be
internal. Pictorially this is indicated by the (INT) found in the SOCKET rectangle.

External Object:

Again reference is made to the GMB Editor to illustrate the use of an external
object. MODULE and SOCKET entities are external to the GMB tool as indicated by
the (EXT) found in reference to the two entities by the GMB builder. This GMB Edi-
tor needs to link to objects which have already been created by the SM Editor tool.
Use of these objects might be limited by the SM Editor tool designers. However, if
the SM Editor tool designer has not designated specific protection constraints, then
the SARA/IDEAS policy is that the GMB may access these entities, but may not
modify their values. If the linked external object is deleted from the database, a ghost
will survive for use by the GMB until a decision is arrived at whether to unlink or

relink to a currently existing external entity.
Standard Object:

Standard objects are those objects which have been placed in the SYSTEM
for direct use by the tool builder. There are two categories of standard objects: gen-
eric and non-generic. Within the non-generic class there are two categories of
objects, non-generic templates, and non-generic instances. The tool builder indirectly
uses standard generic objects by classifying objects according to their access class
and instantiation class. However, the SYSTEM can provide direct use of object types
for use in relationships with tool objects. These objects may serve as templates,

whose instance variables are given values by the tool user, or as objects whose
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instance variables have been previously given values by the system.

7.2.2 Non-Generic Objects

Since we have classified standard objects as a subclass of the instantiation
object, there is a method associated with these objects which determines how such an

object can be modified. The modification policy for each of the types of system

objects might be:
1. modifications are not allowed on the methods of standard generic objects
2. modifications are allowed to the instance variables of standard non-generic

template objects

3. modifications are not allowed on the instance variables standard non-generic

instance objects.

Although the modification policy for generic and non-generic instance objects
appears to be similar, the additional constraint is that generic objects may participate
only in the predefined relationship ISA, whereas the non-generic object may partici-

pate in any user defined or system defined relationship.

An example of a template might be an Authorization object which contains
the list of authorized users associated with an SM design. The list of users would be
designated by the author of the design at the time the design is stored in the Database.
This same standard object could be used to associate a design with an instance of a

predefined authorization list.
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7.3 Relationships

System relationships are those relationships which are defined by the system.
We have previously defined a relationship as being an entity which associates two or
more object entities. This relationship may have properties and additional constraints
associated with it, such as completeness class, direction and ordering. This is only
one dimension to the multi-dimensional relationship. Another dimension is that the
relationship defines an interface between related objects. Since we have described
objects as communicating with other objects via messages, we similarly can describe
relationships as the message bearers. An object may send the same type of message to
the same object on two different occasions. Each occasion may result in a completely
different response. The different responses are due to the different relationships in
which the two objects participate each time. For example, Object A may send a mes-
sage to object B to access its contents. If its contents consists of a program, then the
message may mean to display in textual format the program code or it may mean to
execute the program. The relationship which serves as the interface modifies the
message so that the receiving object responds correctly for that type of relationship.
An analagous situation occurs within some data base management systems which
incorporate some form of query modification in order to implement integrity con-

straints.

CADIS contains predefined relationships ISA, IS_PART_OF, CONTAINS.
These relationships modify access operations so that the resultant object makes sense
within the context of the relationship. For example, in response to a request to
retrieve instances of CONTAINS, an access operation would be applied to each of
the types of objects participating in that relationship. These relationships are those

which allow us to implement the abstract notions of generalization and aggregation.
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The SYSTEM could also contain instances of other types of relationships.
These relationships would need to be created by the system’s programmers to serve
as interfaces to other objects. One such relationship which is of importance in a
design system would be the Version relationship which provides an interface to some
versioning process such as RCS. This relationship maps the store and retrieve
request for an object into the appropriate RCS commands to store/retrieve a given
version. In other words, the relationship serves as a dispatcher and modifier of a sent
message. Other relationships can be defined by the system developers as new tools
are brought into the system. This interface capability expands upon the types of tools

which can be integrated into SARA/IDEAS tool building and run-time systems.
74 DB_INTEGRATOR

The DB_INTEGRATOR is part of the SYSGEN component in the
SARA/IDEAS system (éhapter Three). It is the sub processor within the Integration
Facility (Figure 3.8) which is responsible for integrating a tool database into the
CADIS database. Input to this processor (Figure 4.2) consists of the tool data base
declarations generated by the DB_COMPILER (Chapter Six) as well as a listing of
any constraints not processed by the DB_COMPILER, the CADIS data base declara-
tions, and any tool-specific data base manipulations. At this time the processor has
not been automated so that this processing is manually performed. The output from
the DB_INTEGRATOR is a modified CADIS data base system, consisting of the

CADIS data base declarations and CADIS data base manipulations.

A description of the tool's schema has previously been given in Chapter Six.
The CADIS data base declarations contains the schema for representing all of the
standard objects defined previously as well as the objects already placed into the sys-

tem by other tools. Figure 7.5 serves as merely a skeletal ERD representation of the
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CADIS database system. A detailed representation would only cloud the salient

features of the CADIS database schema.
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Figure 7.5 CADIS Database System

The CADIS schema is shown to be composed of three objects; the Access object
(ACCESS), the tool object (TOOL), and the Instantiation object (INSTANT). We
have chosen to represent these three system objects, as well as the object CADIS,
using ovals instead of rectangles. This is so that the reader remains aware that these
are special system objects that have been previously placed in the CADIS database.
The system maintains system catalogs and specially defined procedures for manipula-

tion of these objects.
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The various subclasses of these three CADIS objects are also represented as
ovals connected to their superclass via an upward pointing arrow. This representation
is the standard hierarchical tree representation. Subclasses of the ACCESS object are
shown to be the four access classes defined in section 7.2: Complex Entity (CE); Sim-
ple Entity(SE); Simple Relationship(SR); and Complex Relationship (CR). The dot-
ted upward arrows of Figure 7.5 show that the object MODULE, represented using
the standard ERD notation of rectangle, is classified as a Complex Entity and that
SOCKETS is classified as a Simple Entity. We use the dotted upward arrow notation
to indicate that this classification is user-defined. This classification identifies the
type of access needed for retrieval of such objects. Subclasses of the TOOL object
are the SM Editor(SM) and GMB Editor(GMB). MODULE and SOCKETS are the
only individual tool objects shown in Figure 7.5 so as not to complicate the figure
with too much detail. The Instantiation object (INSTANT) has three subclasses: Stan-
dard (STAND); Internal (INT); and External (EXT). The Standard object has two
subclasses, Generic (GEN) and Non-Generic (NON). We see also that the ACCESS
object is classified as a generic object (GEN), that MODULE is classified as an inter-
nal object (INT) and SOCKETS is classified as and external object (EXT) of the
GMB tool.

The DB_INTEGRATOR places the tool’s database declaration in the database
and then proceeds to modify system catalogs indicating that these objects and rela-
tionships are those belonging to the specified tool. Then the listing of the constraints
which are input to the DB_INTEGRATOR are processed. Such constraints are those
represented in the augmented ERD such as the specification of objects as to class of
instantiation and access. The DB_INTEGRATOR creates the necessary catalog
information to maintain these classifications. Additionally, the relationship classes,

directionality and ordering, are entered into the catalogs used by the access and
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modification database procedures. Finally, information concerning any tool specific
database procedures is placed into the CADIS library of procedures. These pro-
cedures are invoked by the system as a particular tool calls on them. The process of
integration is straightforward, consisting of primarily the modification of existing sys-
tem relations and files and additionally, the introduction of new relations and files to

represent the new tool’s objects and relationships.
7.5 Summary

This chapter has described in detail the methods defined for four of the more
important system defined objects. These methods provide access to both objects and
relationships so that a tool developer need only classify a tool’s object or relationship
within one of these categories so that she/he might be provided with the complex data

manipulation operations necessary to access these entities.

We continued with the description of the SYSTEM object by defining other
objects such as the Internal, External, and Standard. Methods associated with these

objects provide modification procedures for the CADIS database.

The concluding section briefly discussed steps taken to integrate a tool’s data-
base schema into the system’s schema. The schema defined for CADIS is easily

modified during such integration.

Chapter Eight is a description of a tool, the SI Browser, which enables a tool

developer to browse through this schema.
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CHAPTER 8
The Tool Level

The concept definition phase presented in [Worl86] (Chapter Three) is applied
to the description of a new SARA/IDEAS tool, the SI Browser. In general, a browser
presents information about the underlying data relevant to a system. In particular, the
SI Browser presents information about the data of the SARA/IDEAS System which is

-relevant to the development of a new tool. We have described that data in previous
chapters. The basic data, that is of importance to the tool designer, is that data associ-

ated with the CADIS System object and the CADIS Tool object (Chapter Seven).

After describing the fundamental characteristics of the S/ Browser , each step
within the concept definition phases of the Worley Tool Building System is applied.
The complete concept specification corresponding to the ERD of the SI Browser is

presented. The output of this conceptual definition phase is then described.
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8.1 The SI Browser

The concept of a browser is taken from the use of browsers in the
SMALLTALK system. [Gold84] The SMALLTALK programmer typically creates
special purpose browsers, either as additional software development tools or as appli-

cations.

One such software development tool is the system class browser. In
SMALLTALK, the main way to find out about classes in the system is to use the sys-
tem class browser. This browser presents a hierarchical index to such information.
The index is independent of programming logic; it is designed solely for user access
to class descriptions via subject categories. The browser presents categories that
organize the classes within the system, and categories that organize messages within
each class. SMALLTALK browsers have views and dependent subviews. A view
consists of information choices aﬁd a subview consists of the information itself. The
SMALLTALK user is provided with editing capabilities in the subview. Such editing
capabilities include the addition of new categories, the renaming of categories, the

removal of categories, and the updating of views.

An example of a SMALLTALK application browser is a budget browser,
which browses a database of financial plans, income and expenditures. The designer

of this browser determines the structure of the information displayed to the end user.

The SI Browser, similar to the SMALLTALK system class browser, is
designed for use by a SARA/IDEAS tool builder in order to find out about the infor-
mation structures of the system objects, including the objects defined by other tool
designers. Itis a SARA/IDEAS software development tool. Unlike its counterpart,

this browser provides only a limited amount of editing capability because the end
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user does not necessarily have the expertise which enables him/her to edit the struc-
ture of the CADIS database architecture. The information about the System objects

that you can retrieve using a browser includes:

. a comment about the role of the object in the system;

. a description of the level in the CADIS hierarchy in which the

particular object is found;

. a description of the subclasses of the object;

. a description of the relationships in which the object partici-
pates;

. access to operations defined for that object.

The remaining paragraphs describe the overall functioning of the SI Browser
tool. This description is in the format of a scenario between the end user and the SI
Browser. Following this description, the objects, relationships, and operations will be

defined.

The SI Browser consists of a view. Displaying the browser view brings up a
list of the objects contained in the system, as well as a paragraph description of the
SARA/IDEAS System. Associated with this view are a set of view commands. Each
view has appropriate commands defined for it, such as: select; addcategory; edit; and

quit.
Figure 8.1 is an illustration of what an initial view display might look like.

We will refer to this display as the menu. The tool developer chooses a general for-

mat for all menus: the upper left corner contains the information choices; the area to
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Access

Select
Instantiation
AddCategory|
Tool Edit
Quit

The CADIS entity consists of three entities
of interest to the SARA/IDEAS tool designer:
the Access object, the Instantiation object,

and the Tool object

Figure 8.1 SI Browser Initial Menu
the right of the information choices contains a list of permissable menu commands;
the bottom third of the menu contains descriptive text. The menu of Figure 8.5,
Structure Model View, differs from this menu in that an additional list, between the
information choices and the menu command list, indicates those components associ-
ated with a selected item from the information choices. Selection of choices is
through either a command line or mouse, etc. This is defined in the logical - physical
definition phases of the tool’s development. In Figure 8.1, the view is displayed in
the upper left corner, the descriptive text in the bottom part of the screen, and the
menu commands to the right of the view display. The initial menu of Figure 8.1
shows the data of interest in the SARA/IDEAS System. This is the top level in the
CADIS hierarchy consisting of: the Access object, the Instantiation object, and the
Tool object. The commands which the user may choose, within the initial menu, to

invoke are:
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. Select: selection of a view choice causes another view or

instance to be displayed;

. AddCategory: places the user in edit mode so as to enter in

name of new category;

. Edit: places the user in the edit mode in the bottom part of

display so that the text may be edited;

. Quit: places the user at the previous level of the hierarchy.
Complex Entity
Simple Entity Select
Complex Relationship AddCategory
Simple Relationship Edit
Quit

Access Object is the database object through which
all accesses to the database are made. This is a
generic object which may be used by the designer
A ERD ohject or relationship may be classified
as one of the categories listed so as 10 define
retrievel/storage procedures for use by the tool

Figure 8.2 Access View

Figure 8.2 is the display resulting from selection of Access in the initial menu.

The view of the Access category is one which contains information choices of Com-
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plex Entity, Simple Entity, Complex Relationship, Simple Relationship. The descrip-
tive text defines an Access object. If the user chooses the menu command
AddCategory, then a new type of Access object can be defined. However, this capa-
bility is restricted to users with system status so as to maintain the integrity of the

database structures.

SM Editor
Select
AddCategory
GMB Editor
Edit
Quit

The SARA/IDEAS wols provide for the strucutral

behavioral modeling of hardware/software concurrent...

Figure 8.3 Tool View

Selection of the view choice Tool (Figure 8.1) brings up a view which
displays all of the current SARA/IDEAS tools in the system. Again, the menu com-
mands provide the user with the capability of browsing further by selecting one of the
tools, adding a new tool name to the list, editing the descriptive text, or returning to

the previous menu. Figure 8.3 is a display of the Tool view.
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UNIVERSE
MODULE Select
SOCKETS Update
HAS Edit
MODINC Quit
MODSOC
LINK

The structure of a system is expressed
in terms of the SM. The SM has three primitives:
MODULES, SOCKETS, and INTERCONN........

Figure 8.4 SM Editor View

Selection of the SM Editor entry in Figure 8.3 brings up a new view; the SM
Editor view (figure 8.4). This view has entries which consist of the database entities
defined for the SM Editor. These entities are the objects and relationships found in
the augmented ERD (Figure 5.5). Since the initial object of the SM Editor 1s the
aggregate object UNIVERSE, it is included in the listing. The menu command list
for this view differs from the previous menu command lists. The menu choices at
this level in the CADIS hierarchy are: Select, Update, Edit and Quit. Select, edit and
quit operate in the same manner. However, AddCategory is replaced with Update. At
this level in the hierarchy the user is not allowed to add ERM entities. Choosing the
Update entry results in the database being searched for any medifications to the SM
Editor’s ERM. If it has been modified since the SM Editor View had been created
then a new SM Editor View will replace the one on the screen. The user is not

allowed to modify the view in an arbitrary manner.
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UNIVERSE
Properties
MODULE roperte: Select
Roles
SOCKETS - AddCategory
Relations
Edit
HAS Subclasses
MODINC Constraints Quit
MODSOC
LINK

The components of a MODULE are its properties,
roles, relations, subclasses and constraints

Figure 8.5 Component Subview of Structure Model

Figure 8.5 shows the display of a subview of the SM Editor view. This sub-
view is dependent upon the selection chosen by the user. Selection of MODULE
brings up the subview which lists properties, roles and relationships as the com-
pom;nts of MODULE, whereas, selection of HAS brings up the subview which lists

properties, objects, relationtypes as components of HAS.

Figure 8.6 is an illustration of the display which results from the selection of

roles in Figure 8.5.

The roles of MODULE are themselves objects and so the display will have a format
similar to that of figure 8.4 Since roles are limited to objects the components are
listed at the same time. Note that neither the component roles nor the components

subclasses is included in the menu. The reason for this omission is that roles do not
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Parent

Children Properties Select
Relations Update

Constraints Edit

Quit

The instances of a MODULE'S roles are given
in the new left menu. The components of roles
are given in the middle menu.

Figure 8.6 Role Instance
have other roles associated with them, nor do they have any subclasses associated
with them. Selection of properties will list all of the attributes associated with that

particular role.

8.2 SI Conceptual Specification

According to the Worley methodology, the first step in the design of the SI
Browser is to identify the objects that the user must be aware of. These objects are
viewed and manipulated through tool use. The end-user of the Browser can view this
tool as an object with which to interact. The end-user will also recognize some other
objects within the Browser tool. First on our list is to describe those objects that the
end-user sees and eventually manipulates via the user interface. Worley has provided

a Concept Definition Language(CDL) to use in order to describe these objects. We
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use both the CDL and the augmented ERD in this section to describe the SI objects.
Figure 8.7 represents the designer’s conceptualization, via the ERD, of the SI objects,
their properties and relationships. The conclusion of this section gives the CDL
description of each object. The sections following the CDL objects’ description then

describe each object’s attributes, relationships, and defined operations.

8.2.1 Object Identification

@ :

BROWSER

1

: {Access COMP)

%

Figure 8.7 SI Browser ERD

BROWSER: The initial step in the design of a tool is the determination of the
tool’s objects. We have previously stated that the Browser itself is an object
(BROWSER) and we choose to associate with this object 2 name. We have associ-

ated a name with the BROWSER so that later, additional browsers could be designed
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which would browse portions of the system other than the data base.

VIEW: Since the Browser was defined in Section 8.1 to contain a view,
another ERD object shown in Figure 8.7 is a view (VIEW). We indicate this contain-
ment in Figure 8.7 by use of the dotted aggregate notation which was discussed in
Chapter Five. When retrieving the Browser object whose name is SI, we desire that
all of the objects contained in this aggregate object also be retrieved. Therefore, we
classify the Browser object as a complex entity. This is indicated by the textual por-
tion "Access COMP" in Figure 8.7. This view object is to represent information about
each individual system object, represented in Figure 7.5 as ovals. A VIEW has a
name, its system name, such as CADIS, ACCESS, etc. Another property of this
object is a textual description of this system object. Thus, we will later need to indi-
cate the augmentation described in Chapter Five which provides for the support of
properties of type text. This mapping of types to attributes is done using the CDL

(section 8.2.3).

CATALOG: Since the objects in Figure 7.5 have subclasses, which are them-
selves objects, we need to define another Browser object to represent this
classification. We consider these subclass objects catalog type objects. Thus, we
define the catalog object (CATALOG). Also, as seen in Figure 7.5, the system
creates a type of tool object for each tool introduced into the CADIS database. These
tool objects contain user-defined objects. Therefore, in addition to subclasses being
defined as a CATALOG object, we consider the user-defined objects to also be cata-
log type objects. The relationship between a VIEW and a CATALOG is defined to be
"has." A VIEW has many CATALOG objects associated with it. This is graphically
represented in the augmented ERD as the 1:N relationship HAS. The object CATA-

LOG also is shown to have an existence dependency upon the object VIEW, indi-
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cated by the double box enclosing CATALOG and the "E" within the diamond. This
dependency represents the semantics that such objects cannot exist independent of
their parent object. Catalog objects also have name and description attributes. In
CADIS (Figure 7.5), such objects have the name "CE", "CR", "MODULE", "GMB",
etc. Figure 8.7 becomes more complex with the inclusion of the 1:1 relationship
"ISA" linking CATALOG and VIEW. This is necessary to enable us to represent the
fact that if a catalog object is a system subclass then it ISA view. In other words, a

subset of catalog objects are also each considered a view.

COMPONENT: Since some of the CATALOG objects in the Browser
represent user-defined objects and relationships which were generated using the aug-
mented ERM, we need to associate with those particular CATALOG objects another
object which represents the characteristics of the augmented ERM (Chapter Five).
This object is defined to be a COMPONENT object. Component objects represent
augments defined in Chapter Five such as roles, properties, generics, aggregates, rela-
tionships. These augments constitute the meta data of the CADIS database. Associ-
ated with each COMPONENT are a name, indicating which of the above augments
are associated with the particular component, and a textual description, Note that
some CATALOG objects will have only one COMPONENT, whereas, some will
have a COMPONENT object for each type of augment defined in Chapter Five. For
example, if the CATALOG object associated with the COMPONENT is a user-
defined object , then the individual COMPONENT objects would include a com-
ponent whose name is "property”, a component whose name is "role”, a component
whose name is “constraint", a component whose name is "relationships”, and a com-

ponent whose name is "subclass”.
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INSTANCE : Since the user has defined attributes for objects and relation-
ships, and also defined specific relationships using generic objects and aggregate
objects, we need to represent these definitions. We define an object INSTANCE
which represents the actual instances of properties and constraints associated with a
particular COMPONENT object. To illustrate, the component object whose name is
Property and which is related to the MODULE catalog object will have an instance
object associated with it which has the name of Name and a description which indi-
cates that this property name is of type string. We are also able to indicate to the
end-user of the Browser, the user-defined objects which are roles, subclasses of a par-
ticular object, the relationships they participate in, any objects contained in the rela-
tionships as well as their attributes and the data types associated with these attributes.
We are also able to allow the end-user to traverse any generalization tree which may
have been created through the use of the COMPONENT subclass. The parts of an

object may be found by viewing all of those instances of COMPONENT aggregate.

Although we have described the Browser objects and relationships using the
augmented ERD, the original method of designing such a tool would commence with
the CDL specification. Work is presently begin undertaken which would allow for the
initial step in the tool development process to be the graphical, as well as textual
specification of the tool’s objects, relationships, and operations. We now present the

CDL specification of the Browser.
The object Browser.

The Browser is an object. Initially, there are none; later, there is 1
Initially, the end-user may or may not be provided with a
Browser. If a Browser object does not exist in the database, then it
is the user’s responsibility to create a Browser object.
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The object View.

A View is an object. Initially there are none; later, there may be
many. Views represent a level in the hierarchy of information
found in the CADIS database.
Catalog.
A Catalog_item is an object. Initially there are none; later, there
may be many. Catalogs represent a sublevel of a View.
The object Component.
A Component is an object. Initially there are none; later, there
may be many. Components represent the meta data of a Catalog.
The object Instance.
An Instance is an object. Initially there are none; later, there may
be many. Instance represent the database entities for each com-

ponent.

8.2.2 Relationship Identification

The next step in the design of the Browser is to identify the relationships into
which the objects enter. The three types of relationships identified by Worley are: a
primitive type; an aggregating type; and a user-defined type. Augmentation of the
ERM has added a fourth type of relationship, the c/ass type relationship. A primitive
relationship is that relation which objects enter into with identifying properties which
are considered attributes. An aggregating relationship is one in which an object
possesses other objects. The third type of relationship is one in which two or more
objects are related to each other via a verb. An example of this type is: Object
(Designers) Verb (Workon) Object (Designs). A class relationship is one in which the
verb is ISA. We make use of this fourth type in the description of the relationships
between objects. The ERD of Figure 8.7 indicates these various relationships using

the dotted notation, the diamond and the oval.
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The relationships in the SI Browser are primarily the aggregating type of rela-

tionship. The relationships identified in the SI Browser are:

The Browser has a name and has a view. The Browser ISA Com-

plex Entity

A view has a name, a description and many (m) catalog items. A

view represents a System object.

A catalog has a name, a description, may be a view and may have
many (m) components. A catalog represents subclasses and aggre-

gate objects

A component has a name, a component description, may have

many (m) catalogs, and may have many (m) instance.
An instance has a name, an instance description.
8.2.3 Attribute Identification

The attribute identification section merely includes a listing of the domains on
which this simple type relationship is defined. The SI Browser ERD indicates that
each object has a name and a description. The descriptions of each object may differ

and are qualified to indicate the object to which it refers.
A name is a string
A description is text;
An instance description is one of [text, string, integer, boolean, code, real]

A component description is one of [properties, roles, relationships, objects,
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constraints]

8.2.4 Operations

Worley has defined four categories of operations which need to be specified
by the tool developer. The categories of operations are transformation, query, pre-

transformation validation, and time-invariant validation.
8.2.4.1 Transformation Operations

Transformation operations to are those operations which cause a state change.
Such operations are those which would create views, add a category to a view, etc.
Since the creation of such objects needs input from the CADIS data base, the tool
developer will need to include CADIS manipulation operations within the code. The
development of such code takes place after specifications are produced by the OReO
Compiler. We will illustrate such data base operations in Section 8.2.5. The follow-

ing represent the transformation operation for the SI Browser:

to CreateBrowser() returns Browser
-- A new, empty Browser will be created.
-- Only one Browser may exist at one time.
-- Returns Nil if it fails for any reason.
-- or a new Browser if it succeeds
to CreateView() returns View
-- A new, empty View will be created.
-- Returns Nil if it fails for any reason.
-- or a new View if it succeeds
to CreateCatalog() returns Catalog
-- A new, empty Catalog will be created.
-- Returns Nil if it fails for any reason.
-- or a new Catalog if it succeeds
to CreateComponent() returns Component
-- A new, empty Component will be created.
-- Retums Nil if it fails for any reason.
-- or a new Component if it succeeds
to Createlnstance() returns Instance
-- A new, empty Instance will be created.
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-- Returns Nil if it fails for any reason.
-- or a new Instance if it succeeds
to BrowserNameSet(B: in out Browser; N: in name)
-- Returns Nil if fails for any reason.
-- If it succeeds, the name of B will be set to N and
-- the updated B will be returned.
to ViewNameSet(V: in out View; N: in name)
-- Returns Nil if fails for any reason.
-- If it succeeds, the name of V will be set to N and
-- the updated V will be returned.
to CatalogNameSet(C: in out Catalog; N: in name)
-- Returns Nil if fails for any reason.
-- If it succeeds, the name of C will be set to N and
-- the updated C will be returned.
to ComponentNameSet(CP: in out Component; N: in name)
-- Returns Nil if fails for any reason.
-- If it succeeds, the name of CP will be set to N and
-- the updated CP will be returned.
to InstanceNameSet(I: in out Instance; N: in name)
-- Returns Nil if fails for any reason.
-- If it succeeds, the name of I will be set to N and
-- the updated I will be returned.
to ViewDescriptionSet(V: in out View; D: in description)
-- Returns Nil if fails for any reason.
-- If it succeeds, the description of V will be set to D and
-- the updated V will be returned. ‘
to CatalogDescriptionSet(C: in out Catalog; D: in description)
-- Returns Nil if fails for any reason.
-- If it succeeds, the description of C will be set to D and
-- the updated C will be returned.
to ComponentDescritpionSet(CP: in out Component; N: in name)
-- Returns Nil if fails for any reason.
-- the updated CP will be returned.
to InstanceDescriptionSet(I: in out Instance; N: in name)
-- Returns Nil if fails for any reason.
-- If it succeeds, the description of I will be set to N and
-- the updated I will be returned.
to AddViewToBrowser(B: in out Browser; V: in view)
-- Returns Nil if fails for any reason.
-- If it succeeds, V will be added to the collection of
-- views contained in B, the updated B will be returned.
to AddCatalogToView(V: in out View; C: in catalog)
-- Returns Nil if fails for any reason.
-- If it succeeds, C will be added to the collection of
-- catalogs contained in V, the updated V will be returned.
to AddViewToCatalog(C: in out Catalog; V: in view)
-- Returns Nil if fails for any reason.
-- If it succeeds, V will be added to the collection of
-- views contained in C, the updated C will be returned.
to AddComponentToCatalog(C: in out Catalog; CP: in component)
-- Returns Nil if fails for any reason.
-- If it succeeds, CP will be added to the collection of

236



-- components contained in C, the updated C will be returned.
to AddCatalogToComponent(CP: in out Component; C: in catalog)
-- Returns Nil if fails for any reason.
-- If it succeeds, C will be added to the collection of
-- catalogs contained in CP, the updated CP will be returned.
to AddInstance ToComponent(CP: in out Component; I: in instance
-- Returns Nil if fails for any reason.
-- If it succeeds, I will be added to the collection of
-- instances contained in CP, the updated CP will be returned.
to RemoveViewFromBrowser(B: in out browser; V: in view)
-- Returns Nil if fails for any reason.
-- If it succeeds, V will be removed from B
-- the updated B will be returned.
to RemoveCatalogFromView(V: in out view; C: in catalog)
-- Returns Nil if fails for any reason.
-- If it succeeds, C will be removed from the collection of
-- catalogs contained in V, the updated V will be returned.
to RemoveViewFromCatalog(C: in out catalog; V: in view)
-- Returns Nil if fails for any reason.
-- If it succeeds, V will be removed from C and
-~ the updated C will be returned.
to RemoveComponentFromCatalog(C: in out catalog; CP: in com-
ponent)
-- Returns Nil if fails for any reason.
-- If it succeeds, CP will be removed from the collection of
-- components contained in C, the updated C will be returned.
to RemoveCatalogFromComponent(CP: in out component; C: in cata-
log)
-- Returns Nil if fails for any reason.
-- If it succeeds, C will be removed from CP
-- and the updated CP will be returned.
to RemovelnstanceFromComponent(CP: in out component; I: in
instance)
-- Returns Nil if fails for any reason.
-- If it succeeds, I will be removed from the collection of
-- instances contained in CP, and the updated CP will be returned.

8.2.4.2 Query Operations

Query operations qo do not cause state change. They are often invoked to
extract information. The information the end user of the SI Browser needs to extract
is the name and description of each object.

qo BrowserName(B: in browser) returns name

-- Returns Nil if fails for any reason,
-- or the name of B if it succeeds.

go ViewName(V: in View) returns name
-- Returns Nil if fails for any reason,
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-- or the name of V if it succeeds.
qo CatalogName(C: in Catalog) returns name
-- Returns Nil if fails for any reason,
-- or the name of C if it succeeds.
qo ComponentName (CP: in Component) returns name
-- Returns Nil if fails for any reason,
-- or the name of CP if it succeeds.
qo InstanceName(l: in instance) returns name
-- Returns Nil if fails for any reason,
-- or the name of I if it succeeds.
qo ViewDescription(V: in view) returns description
-- Returns Nil if fails for any reason,
-- or the description of V if it succeeds.
qo CatalogDescription(C: in catalog) returns description
-- Returns Nil if fails for any reason,
-- or the description of C if it succeeds.
go ComponentDescription(CP: in component) returns description
-- Returns Nil if fails for any reason,
-- or the description of CP if it succeeds.
qo InstanceDescription(I: in instance) returns description
-- Returns Nil if fails for any reason,
-- or the description of T if it succeeds.

8.2.4.3 Pre-transformation Validation Operations

Pre-transformation validation opel:ations ptvo are those operations which are
invoked so as to ascertain whether or not the end user is able to enter a legal or desir-
able state. Since the transformation operations involve modification of the objects
Browser, View, Catalog, Component, and Instance, the following routines are typical
of pre-transformation operations required by the Worley methodology.

ptvo ExistsBrowser()

-- Returns the Browser if it exists, Nil otherwise.
ptvo ExistsView()

-- Returns the View if it exists, Nil otherwise.
ptvo ExistsCatalog()

-- Returns the Catalog if it exists, Nil otherwise.
ptvo ExistsComponent()

-- Returns the Component if it exists, Nil otherwise.
ptvo ExistsInstance()

-- Returns the Instance if it exists, Nil otherwise.
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8.2.4.4 Time-Invariant Transformation Operations

Time-invariant validation operations tivo are those operations which check
the validity of the design model, particularly when it is about to be stored. The
semantics of the SI Browser are such that there must be one and only one Browser
View, that there cannot be any catalog, component, or instance item not participating
in the aggregate relationship HAS, there must be a name associated with every object
and there must be a description for each component and instance. The following rou-
tines are those which are necessary to validate a browser.

tivo ValidBrowser(B: in Browser)
-- Retumns B if it is a valid one, Nil otherwise.
-- A valid browser is one that passes the following predicates.
tivo ExistsUniqueView(B: in Browser)
-- Returns Nil if there is not one and only one view
-- belonging to the Browser, otherwise it returns the
-- browser.
tivo NoDanglingCatalog(B: in Browser)
-- Returns Nil is there is no catalog not belonging to
-- a View, otherwise it returns the browser.
tivo NoDanglingComponent(B: in Browser)
-- Returns Nil is there is no component not belonging to
-- a Catalog, otherwise it returns the browser.
tivo NoDanglingInstance(B: in Browser)
-- Returns Nil is there is no instance not belonging to
-- a Component, otherwise it returns the browser.
tivo UnnamedView(B: in Browser)
-- Each View must have a name.
-- Returns Nil if there is no View without a name, otherwise
-- it returns a list of unnamed Views.
tivo UnnamedCatalog(B: in Browser)
-- Each Catalog must have a name.
-- Returns Nil if there is no Catalog without a name, otherwise
-- it returns a list of unnamed Catalogs.
tivo UnnamedComponent(B: in Browser)
-- Each View must have a name.
-- Returns Nit if there is no Component without a name, otherwise
-- it returns a list of unnamed Component.
tivo UnnamedInstance(B: in Browser)
-- Each Instance must have a name.
-- Returns Nil if there is no Instance without a name, otherwise
-- it returns a list of unnamed Instance.
tivo UnDescribedComponent(B: in Browser)
-- Each Component must have a description.
-- Returns Nil if there is no Component without a description,
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otherwise
-- it returns a list of Components without descriptions.
tivo UnDescribedInstance(B: in Browser)
-- Each Instance must have a description.
-- Returns Nil if there is no Instance without a description, otherwise
-- it returns a list of Instance without descriptions.

8.2.5 OQutput

Having generated the SI tool specification, the OReO Compiler(Figure 3.8)
produces output which consists of class definitions, operation specifications, and an

augmented ERD which is then input to the DB_COMPILER.
CLASS DEFINITIONS

The class definitions incorporate the information extracted from the object
and relation specification. They include the necessary data structures to represent an
object, its attributes and its relations with other objects. The prototype implementa-
tion of the SARA/IDEAS system is in the T language. Worley hypothesized that
many of the T objects would be able to be generated automatically from the
specification. However, some portions of the code could not be generated antomati-
cally. The tool developer must then supply such code. Designers of the
SARA/IDEAS system supplied all of the code. Figures 8.8 and 8.9 are example T

code class definitions of the Browser and View objects.
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(define (MakeBrowser)
(let ((bname "")
(bview *())
(object nil

{(name self) bname)

((view self) bview)

(((setter view) self val) (set bview val))

(((setter name) self val) (set bname val))

((browser? self) 1)

((show self)
(print bname (standard-output))
(walk (lambda(x) (show x)) bview)))))

Figure 8.8 Browser Class Definition
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(define (MakeView)
(let ((vname "")
(description "")
(veatalog "()))
(object nil
((name self) vname)
((describe self) description)
((catalog self) vcatalog)
(((setter name) self val) (set bname val))
(((setter describe) self val) (set description val))
(((setter catalog) self val) (set vcatalog val))
((view? self) t)
((show self)
(print vname (standard-output))
(print description (standard-output))
(walk (lambda(x)
(show x (standard-output))) vcatalog)))))

Figure 8.9 View Class Definition

OPERATION SPECIFICATIONS

The OReO compiler’s output generated from the analysis of the operation sec-
tion is provided to the implementor as a template. The implementor is responsible for
filling in the routine in accordance with its specification. Simple, descriptive exam-
ples are provided for each of the types of operations. These routines are then input to
the Integration Facility (Figure 3.8) in order to integrate the new tool into the
CADOCS System. We give an example of each type of operation specification,
transformation, query, pre-transformation validation, and time-invariant validation.
Following each example specification will be code supplied by the tool implementor.
The sample code includes the use of the manipulation operations defined in Chapter

Five.
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Transformation Operation

(define CatalogNameSet C N);; a transformation operation
..-:C is a Catalog which is both input and output

3:N is a name which is input

;iReturns Nil if it fails for any reason

;s or Cif it succeeds

The operation which sets the name of a catalog object requires that the name
be input not from the user, as is the case in the creation of objects within editors, but
from information found in the CADIS database. Therefore, the tool implementor
must write operations which access CADIS in order to retrieve this information. In
the case of the names of catalog objects, the names of the subclasses of a system
object, as well as all objects and relationships defined for each tool are needed to be
retrieved from the CADIS database. The following T code illustrates the creation of
the CATALOG objects related to the VIEW named CADIS. Recall that CADIS is
considered a system object, therefore the tool developer starts by retrieving all system

objects within CADIS.

« e3¢ sje ok e 3 e ok fe o 6 sk ke e 8¢ e e s sde e e e 3 e 3 e ke el e ok

y
- The following function is invoked by the call "create-View "cadis”
;**********************************

;********************************

;This creates a View
;**********************************
(define (create-View namestring)
(let ((temp
(tmp1l °())

(set (name temp) namestring)
(set (describe temp) (input-desc temp))
(set (catalog temp)
(append
(catalog temp)
(map (lambda(x) (create-catalog
(string-downcase
(return-string x)) "system"))
(set tmpl (mksyslst namestring)))))
(close-sysdb)
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(set (catalog temp)
(append
(catalog temp)
(map (lambda(x)
{cond
((if-exists? x)
(table-entry
*catalogtable*
(string->symbol (string-downcase (return-string x)))))
(else
(create-catalog
(string-downcase (return-string x)) "else"))))
(mksyscatlst namestring))))

(cond ({ eq? (catalog temp) nil)
(set (catalog temp)

(append
(catalog temp)
(map
(lambda(x)
(cond ((eq?
(sys-obj?
(string-downcase (return-string x))) T)
(create-catalog
(string-downcase
(return-string x)) "system"))
(else '
(cond ((if-exists? x)
(table-entry
*catalogtable*

(string->symbol
(string-downcase
(return-string x)))))
(else
(create-catalog
(string-downcase
(return-string x)) "user™))))))
(mkcatloglst (delch namestring) tmp1))))))

temp))

« sk fe e e e e she e e S she ok ok o ok e 3¢ sl e ke o e afede o she ol o o sk e e ok e ke ok
3

; This creates a Catalog
« she e 3 e ok 2l e sfe s s e e ofe ofe abe dbe ke aje b s 3k o e ade Sbe e e e e e o e o ok

(define (create-Catalog catalogtype origin)

(set (name temp ) catalogtype)
(set (describe temp) (input-desc temp))
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(cond {(string-equal? "system" origin)
(block (trollmsg "close;")
(set *open* nil)
(set (view temp)
(create-view catalogtype))
(close-sysdb)))

((string-equal? "else” origin)
(trollmsg
(string-append "open "
(car (return-Dbstring catalogtype)) ;"))
(set (component temp)
(map (lambda (x)
(create-component
catalogtype x)) (mkcomplst
(return-string catalogtype))))
(set *open* nil)
(trollmsg “close;™))
(else (set (component temp)
(map (Jambda(x) (create-component catalogtype x))

(mkcomplst (return-string catalogtype))))))
temp))

Query Operation

(define ComponentName CP N);; a query operation

;5;;CP is a component which is input

;33N is a name which is output

;i Returns Nil if it fails for any reason,

;i or N if it succeeds.
The query operations defined by Worley, merely query the active data structure and
are not meant to query the database. We have seen that the tool implementor of the SI
Browser queries the database when performing the transformation operations. There-
fore, the following portion of code merely returns the name of a given component, in
other words, the method associated with the T object MakeComponent and referred

to as name is invoked.

(define (ComponentName Component namestring))
(set namestring (name Component)))
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Pre-transformation Validation Operation

define ExistsInstance CP);;a pre-transformation validation operation
;3::CP is a component which is input

.+++ Returns True if an instance for CP exists

iio; or Nil otherwise

(define (existsinstance component)
{cond (findins (name component))
else nil))

Time-invariant Validation Operation

(define NoDanglingCatalog B);; a time-invariant validation operation
;3s B is a Browser which is input

;5 Returns True if there is no catalog without a view

;;;; otherwise it returns a list of those catalogs failing the test.

(define (nodanglingcatalog browser)
(cond (searchforcatalog browser)
else nil))

AUGMENTED ERD

The final output from the OReO Compiler would be similar to the ERD of
Figure 8.7. This augmented ERD would then be used to generate a database schema
for the SI Browser. We have shown in Chapter Six the generation of a schema for the
SM Editor. The textual input generated by this author follows the format of Figure
6.8. The SI Browser schema differs only in that its database consists of more tradi-
tional database entries, those that are informational and not structural. In fact, the
database entries for the Browser can be regarded as information similar to that found

in a catalog file of a reference library. The actual entries represent information about
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the structure and contents of the SARA/IDEAS database system, CADIS. The SI
Browser can be regenerated by accessing the complex entity Browser, according to
the algorithms given in Chapter Seven. The following code shows the tool implemen-
tor needed to create so that if a Browser already exists then the tool invokes a load
operation - "loadbrowser namestring”. This load operation need only find the Browser

by querying the database (findobj) and call on the database operation retrieve.

;*******************************

: This function creates a Browser
;**********************************
(define (create-Browser namestring )
(Iset temp (MakeBrowser))
(set (name temp) namestring)
(dbcontrol "open” “/u/landis/cadis/tools™)
(cond ((sysobjx namestring)
(loadbrowser namestring))
(else
(set (view temp) (create-View "cadis")))))
;*******************************
; This function loads all of the objects of the browser
- it calls a findobj and retrieve function supplied by the DB_KERNEL
;****************************************
(define (loadbrowser namestring)
(set tmp (findobj "Browser” "name" "=" namestring))
(retrieve tmp))

The outputs of the OReQ Compiler which have been described, the routines
and the database schema are a portion of the input to the Integration Facility (Figure
3.8). The database schema is then used by the subprocessor, DB_INTEGRATOR,
within this facility in order to integrate this tool’s schema into the CADIS database.

Chapter Seven has described what that process would involve.
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8.2.6 Generation of Screen Graphics

Although the focus of this chapter is on the conceptual specification phase of
the SI Browser tool, we presented the scenario of the tool’s use using pictures of
menus which we envisioned would display the information. These menus are gen-
erated during the creation of the Browser objects which were described in detail in
section 8.2. The tool implementor is able to associate with each Browser object,
which is to be displayed, a menu containing the appropriate items. The
SARA/IDEAS tool implementor is able to create such menus through the use of
graphic primitives which are available within the SARA/IDEAS KERNEL. For our
purposes, we needed to generate the following code.

(herald menu)

(define (MakeMenu)

(let* ((MenuTable (make-table))
(MenuCount 0)
(RectangleObject nil)
(Textltems nil))

(object
nil -
((print self port)
(format port
"#{Menu ~d}"
(object-hash self)))
((rectangle self) RectangleObject)

(((setter Rectangle) self v)
(set RectangleObject v))

((selectitem self point)
{catch found
(walk (lambda (x)
(if (picked? x point)
(found (table-entry MenuTable x))))
Textltems)
nil))

((AddSelection self view Text)
(let ((item (MakeText (init-TextShp (init-point 5
(fx+ (fx* MenuCount
15)
3)
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(init-point 0 0)
Text)
self)))
(set (screen item) (screen self))
(set Textltems (cons item Textltems))
(set MenuCount (fx+ MenuCount 1))
(set (table-entry MenuTable item) view)
(->rtshape self)
(set-bbox self)
(set (rtshape RectangleObject)
(init-RectShp (coord self)
150
(fx+ (fx* MenuCount 15) 10)))))
((SelectByName self name)
(catch found
(walk (lambda (x)
(if (string-equal? name (TextShp-txt (rtshape self)))
(found (table-entry MenuTable x))))
Textitems) nil)))))
(define-operation (selectitem self))
(define-operation (SelectByName self))

(define-operation (AddSelecton self))
(define-settable-operation (rectangle self))

Figure 8.10 Menu Object Code
The above code defined a Menu object. Although the browser tool was originally
implemented on a system which had little graphical capabilities, we later transported
the tool to the current system used for the SARA/IDEAS system, a SUN workstation.
In order to take advantage of the window capabilities for use with the Browser tool,
we went back through the original code for each object found within the Browser
and added code which would associate with each VIEW, CATALOG, COM-
PONENT and INSTANCE, an individual menu-object. We did this by augmenting a
"Menu" object with the Browser object. This "Menu" is the object created by the call
to MakeMenu found in the above code. Then for each item found in an individual
object’s list, we invoked AddSelection with the respective name. The ability to select

a menu item from a window with the mouse is provided by the graphic primitives.
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Recall that the selection of a particular menu item by the end-user causes another
menu associated with the selected item to appear. The mechanisms to display and

return selections are provided by these same graphic primitives.
8.3 Summary

This chapter has defined a new SARA/IDEAS tool and has described it using
both the augmented ERD and the Concept Definition Language. This definition
covered the conceptual phase of the Worley methodology. The final input to the
Integration Facility (Figure 3.8) also includes output from the other three phases, the
semantic, lexical, and physical. Details of the mechanics involved in the completion

of these phases can be found in [Worl86] , Chapters Five, Six and Seven.

The purpose of this exercise was twofold. The primary purpose was to
develop a tool which the SARA/IDEAS tool implementor could use to browse
through the existing database. This browser precludes any knowledge of the structure
of the CADIS database. The presentation of the design of this type of tool included a
description of the conceptualization of the objects which would be manipulated and
viewed by the end-user. The actual tool presents the CADIS database by representing
the traversal of the CADIS tree presented in Figure 7.5. Use of this tool by another
tool implementor would provide information as to existing system objects and tool

objects which the tool implementor might find useful when designing a new tool.

The second purpose of this exercise was to demonstrate the manner in which a
different type of tool could be added to the existing system. Portions of code needed
to realize such a tool were presented. Although the focus of Section 8.2 was on the
steps taken to specify the tool, in terms of its objects, relationships, and operations,

there were many occasions when the need arose to use the augments developed by
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this author for use within the conceptual design phase. Such occurences were the
classification of the Browser as a complex entity so as to provide easy database access
to the Browser’s information, use of the dotted aggregate notation so as 1o easily
represent the inclusion of views, catalogs, and components within the Browser, etc.
Code produced by the tool implementor also used those portions of this author’s work
which defined data manipulation operations for the augmented ERM (Chapter Five).
Another contribution of this work, related to the conceptual specification phase is the
automated generation of a database schema associated with the definition. We did
not, within this chapter, show the structure of the Browser’s database, since it would

be similar to that database schema shown in Chapter Six.
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CHAPTER 9

Conclusions

As computer-based systems become more complex and assume greater
responsibilities, the need for intelligent data management becomes increasingly
important. An area in which the growth of computer use is rapidly growing is that of
computer-aided design. Many tools have been proposed and built that support the
design activity. When several of these tools are gathered together, the aggregation is

called a Computer-Aided Design (CAD) System.

We have seen that often, CAD systems are constructed from separately
developed computer programs. These programs are frc;quently written in different
programming languages to run on different computer systems; they offer different
user interfaces; and they store the results of their analysis or simulation in a way that
precludes information sharing between programs. Tool developers typically concen-
trate their efforts on the design capability of a tool and are unable to justify the
expense (time and money) of providing a state-of-the-art support system. The result-
ing CAD systems are only nominally integrated and are difficult to use at best. This
dissertation and a companion dissertation [Worl86] have provided both a methodol-
ogy to develop extensible, integrated CAD systems, and an underlying nucleus which
provides support for the tool building methodology. This particular dissertation

focused on the backend of this system, the database design and support.
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As a result of the investigation into the problem domain associated with the
design and development of data management support of the computer-aided design
process, a major contribution has been the provision of a mechanism by which the
tool builder can still focus on the design capability, but at the same time specify com-
ponents of the underlying database. This mechanism captures the semantics of the

tool’s output so that information sharing can be promoted.

The fundamental approach is to decouple the database functions from the tool
functions. This is realized by providing, within the tool building methodology, the
means to represent the tool’s data in a semantically meaningful way so that this data

may-be used by other tool builders.

The mechanism is the Data Base Kemel. This DB_KERNEL supports a user’s
conceptual model generated during the conceptual definition phase. Besides defining
operations the tool performs on objects, the tool builder defines in somewhat greater
detail, the structure and information associated with each tool object. This description
is used to generate the database specifications allowing for automation of the data-

base facility.

The CADIS System interacts with this DB_KERNEL in order to provide the
data-base-specific functions applicable to the CAD system under development. This
CADIS System regards the tools as objects which themselves contain objects and
therefore the System must maintain inter-tool and inter-system relationships between
such objects. The provision of generic system objects, which contain the complicated
methods to retrieve and modify complex objects removes the tool designer from the
data base arena. A Data Base Integrator (DB_INTEGRATOR) is necessary to bring

new tools into the system.
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The SARA/IDEAS system has proven to be a fertile testbed for this data base
concept. Heretofore, the SARA/IDEAS system stored complete designs in a file, and
retrieval was at this gross level of granularity. The semantics of the internal com-
ponents of the design was known only to the specific tool which created the design.
Obtaining knowledge about, or being able to use components deep within the design
was an impossibility. Since, the design tools are varied and at different levels of
complexity, identification of objects and relationships within these tools promotes the
access and retrieval of finer units of granularity. The interaction we see among the
SARA/IDEAS tools (SM-GMB) promotes the need for some type of inter-tool rela-

tionships.

9.1 Contributions
Design Data Base System

We have developed a design data base system based on a four level architecture, in
order to meet the proposed goal of implementing a design data base system within the
SARA/IDEAS environment. This architecture provides for view representations of
the tools (Tool level) as well as the data base conceptual representation ( System +
Kernel level). The separation of the traditional conceptual level into two levels
enables the non database-expert (we hypothesize this to be the tool builder) to con-
centrate on those aspects of tool-building with which she/he is an expert. Database
experts supply the System objects, which can be later integrated with the tool objects,
to provide a completely functional data management system (CADIS). The physical
level of the architecture is a commercial relational system which has been modified
so as to provide for the mamagement of the complex objects and relatioships. The

benefits derived from using a relational system are that such systems are proven as
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well as strongly supported.
Data Base Management Kernel

The major focus of this work was on research into desired properties of a
DB_KERNEL and the development of such a DB_KERNEL. Included in this
DB_KERNEL were the procedures to create and manipulate the view defined by a
tool designer. It was important to us that the tool designer does not have to be a data-
base expert in order to produce an underlying schema. Of equal importance was the
support for design knowledge primitives within the DB_KERNEL so that the data
base may be more powerfully extended than otherwise. Such a DB_KERNEL not
only provides for the management of design data, but also provides the basis for use
of intelligent design tools in capturing design expertise and design histories. To meet
these goals, the DB_KERNEL was designed to support an extended data model. We
defined (Chapter Five) such extensions n‘ecessary for the support of a design

environnment, the augmented ERM.
Augmented ERM

The augmented ERM provided us with an extensible and flexible data struc-
ture so that we could provide required data management support for a design environ-
ment, as well as provide the necessary mechanisms for the acquisition and manage-
ment of design knowledge. Extensibility, the ability to easily modify the model, is
achieved by being able to easily add new entities and relationships. If the system is
represented as an object, then tools are linked to this object via previously defined
relationships. Flexibility, the capability to represent information in more than one

way, is facilitated through the use of generic objects and the introduction of role sets.
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Data Base Compiler

We have met the goal of providing extensible data definition facilities for use
by both design tools and the CAD system designer. A DB_COMPILER was imple-
mented in the T dialect of LISP for use in the SARA/IDEAS system. This
DB_COMPILER produced standard Troll relations for objects and relationships
defined for the SM Editor tool. The DB_COMPILER also modified the system’s meta
data; relational tables which are used to process classes and aggregates. The comple-
tion of such a compiler allowed us to meet the stated goal of integrating existing

tools, e.g. Troll, into the system.
Translation into RMIT relations

We have provided a set of mapping rules, which allowed us to develop an
algorithm to translate the augmented ERD structure into an underlying extended rela-
tional model, the RM/T. The RM/T allowed us to maintain integrity constraints on
molecular entities as well as atomic entities. This provision, we found, is is an essen-
tial component in a design environment which is composed of complex molecular

objects.
SARA/IDEAS Browser

A data intensive tool, the SARA/IDEAS (SI) Browser was designed using the
defined tool building methodology. Through the use of menus the structure of the
entire CADIS database can be viewed. The development of this tool illustrated the

power and flexibility of the data base design.

During development of this tool, the process by which a designer arrives at a

choice of objects in and their respective relationships was examined. This examina-
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tion resulted in a description (Section 8.2 - Object Identification) of the process by

which one might determine appropriate objects which a tool would manipulate.

Additionally, the design of this tool combined the use of CADIS database
primitives, as well as primitives provided by the User Interface Management System
(UIMS). These primitives included those that allowed graphical objects, Menus, to

be associated with the Browser objects.
9.2 Future Research

This research has produced a model and data base support system on which a
robust integrated CAD system can be built. We envision ths SARA/IDEAS system to
be an evolving system, supported by a state-of-the-art development environment.
There are still many components and areas of research associated with the database

aspect of the environment which need to be developed.
Multiple Underlying Models

The philosophy behind the tool building methodology was that the resulting
integrated system could be built on any type of data base system. This research chose
to use an extended relational system as the underlying support system. However,
recent advances in database technology [Maie86] have produced systems which
much more effectively support an entity-relationship model . The overhead incurred
in the mapping from the augmented ERM into a relational scheme might be consider-

ably reduced if CADIS could be supported by this type of database.
Graphical User Interface

This research produced a rich semantic model which can easily support a graphical,

interactive user facility. Work has already begun on developing an ERD editor which

257



can be used by a tool developer to express the semantics of the tool’s objects, rela-
tionships, properties and constraints in lieu of using the Conceptual Definition

Language provided by Worley.

Related to the provision of a graphical ERD editor, would be the creation of a
more “intelligent’ tool which would be able to used by a designer to help in the gen-
eration of alternate ERDs. This tool might be provided with keyword descriptions of
a tools’s specification and produce high level objects corresponding to such
specification. The generation of appropriate objects is perhaps the most difficult task

presented to a tool designer.
Tool Browsers

The research produced a design of a system browser. However, tool browsers, for use
while creating a design would enhance the development environment by allowing
designers to browse through portions of their designs while in the process of creating
the design. The creation of individual tool browsers is actually provided through the

subdialogue mechanism provided by Worley.
Building Block Library

As of yet, there exists no library of previously designed models for use by the
designer. The CADIS database architecture should be able to easily support the addi-
tion of such a library. It is hypothesized that the Worley methodology could be
applied to the design of such a tool. The tool would be a Librarian which would enter
the building block into a system library. The Librarian’s subdialogue would provide

appropriate browsing capabilities for the user.
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Update Propagation

Incorporate mechanisms to provide for update propagation among the different
representations of design. A change in the control graph would automatically change
the data graph. This could be provided using the instantiation object as a vehicle

through which such constraints could be maintained.
Multi-user Environment

The work done for this research concentrated on the provision of a data model and
the resultant data base, for use in the development of design tools for the
SARA/IDEAS system. However, at this time the SARA/IDEAS system supports
only a single user environment, It is envisioned that this system will eventually sup-
port a multi-user environment. To support such a system, the data base facilities
must support concurrency in the use of objects and relationships. Future research into
the definition of appropriate system objects which would be able to provide such

concurrent usage of the data model is necessary.
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APPENDIX A
SM_Editor Code

The following T code represents the object definitions for the SM_Editor

;****************************************

:  OBJECT MODULE
;****************************************
(define (MakeModule)
(let ((mname "")
(mparent nil)
{mchildren nil)
{msockets nil)
{(interconn nil))
(object nil
(( name self) mname)
(( parent self) mparent)
(( children self) mchildren)
(( sockets self) msockets)
(( interconnections self) interconn)
(((setter name) self val) (set mname val))
(((setter parent) self val) (set mparent val))
(((setter children ) self val) (set mchildren val))
(((setter sockets ) self val) (set msockets val))
{((setter interconnections) self val)(set interconn val))
{((module? self)t)
)
(define-settable-operation ( name x))
(define-settable-operation ( parent x))
(define-settable-operation( children x))
(define-settable-operation ( sockets x))
(define-settable-operation ( interconnections X))
(define-predicate module?)

;***************************************

; OBJECT SOCKET
;***************************************
(define (MakeSocket)
(Iet ((sname "")
(sparent nil)
(insideC nil)
(outsideC nil))
(object nil
{(name self) sname)
((parent self) sparent)
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((socketInside self) insideC)

((socketOutside self) outsideC)

(((setter parent) self val) (set sparent val))

(((setter socketlInside) self val) (set insideC val))
(((setter socketQutside) self val) (set outsideC val))
(({(setter name) self val) (set sname val ))

g(socket? self) t)

)

(define-settable-operation (socketInside s))
(define-settable-operation (socketQutside s))
(define-predicate socket?)
;*****************************************

- OBJECT INTERCONNECTION
;*****************************************
(define (Makelnterconnection)
(let ((iname "")
(iparent nil)
(isockets nil))
(object nil
((name self) iname)
((parent self) iparent)
((sockets self) 1sockets)
(((setter name) self val) (set iname val))
(((setter parent) self val) (set iparent val))
(((setter sockets) self val) (set isockets val))
((interconnection? self) t))))
(define-predicate interconnection?)

The folloowing T code represents the semantics of the SM_Editor

;************************************************

; CREATES THE UNIVERSE
;***********************************************
(define (CreateUniverse nameString)
(set *UNIVERSE* (MakeModule))
(set (CurrentModule) *UNIVERSE¥)

(if (string-empty? nameString)

(set ( name (CurrentModule)) "universe™)

(set ( name (CurrentModule)) nameString)))
;****************************************************

;  CREATES A MODULE
;**************************************************
(define ( CreateModules module nameStringlist)
(walk (lambda(nameString)

(1set temp (MakeModule))

(set ( name temp) nameString)

(set ( parent temp) module )

(set ( children module)
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(append ( children module) (list temp))))
nameStringlist))

« ok o o 3 o e o o o s e e e b e e s sl e sk s s o s s o e e k¢ e ke e b o e e o o e e ek e sde sk sleoke ke

; CREATES A SOCKET
;************************************************
(define (CreateSockets module nameStringlist)
(walk (lambda(nameString)
(1set temp (MakeSocket))
(set (name temp) nameString)
(set (parent temp) module)
(set ( sockets module)
(append ( sockets module) (list temp)
N)nameStringlist))
;*********************************************

; CREATES AN INTERCONNECTION
;*********************************************
(define (Createlnterconnects nameString socketsl sockets2)
(Iset temp (Makelnterconnection))
(set (name temp) nameString)
(set (sockets temp) (cons socketsl sockets2))
(set tmp] (parent socketsl))
(set tmp2 (parent sockets2))
(cond ((eq? (parent tmp1) (parent tmp2))
(set (socketOutside sockets1) temp)
(set (socketQutside sockets2) temp)
(set (parent temp) (parent tmp1l))
(set (interconnections (parent tmpl))
(append (interconnections (parent tmp1)) (list temp))))
((eq? mp1 (parent tmp2))
(set (socketInside socketsl) temp)
(set (socketOutside sockets2) temp)
(set (parent temp) tmp1)
(set (interconnections tmp1l)
(append (interconnections tmpl) (list temp))))
((eq? (parent tmpl) tmp2)
(set (socketOutside socketsl) temp)
(set (socketInside sockets2) temp)
(set (parent temp) tmp2)
(set (interconnections tmp2)
(append (interconnections tmp2) (list temp))))))

« 356 3k e 3k e s e o o o ok o b s abe ke s e e e o e e e e s e 3k e e e de o ol e alede e e o e e ke e

; DELETES A MODULE
;********************************************
{define (DeleteModules module)
(if (not (null? (sockets module)))
(map (lambda(x) (DeleteSockets x)) (sockets module)))
(set ( children ( parent module))
(delg module ( children (parent module)))))

****************************************

262



: DELETES A SOCKET
;******************************************
(define (DeleteSockets socket)
(if (not (null? (socketInside socket) ))
(DeleteInterconnects (socketinside socket)))
(if (not (null? (socketOutside socket) ))
(DeleteInterconnects (socketOutside socket)))
(set ( sockets (parent socket) ) (delq socket ( sockets (parent socket)))))
;******************************************

; DELETES AN INTERCONNECTION
;******************************************
(define (Deletelnterconnects interconnect )
(walk (lambda(x)
(walk (lambda(y) (cond ((eq? interconnect
(socketInside y))
(set (socketInside y) nil))
((eq? interconnect (socketOutside y))
(set (socketOutside y) nil))))
( sockets x))) ( children (parent interconnect)))
(set ( interconnections (parent interconnect)
) (delq interconnect ( interconnections (parent
interconnect)

)
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APPENDIX B
GMB_Editor Code

The following T code defines the GMB objects
;;;******************
;::* The GMB object *
;;;******************
(define (MakeGMB)
(let
((the-cg nil)
(the-dg nil)

(smmodule nil) ; an SM module
(cg-dg nil)) ; the mapping
(object nil
((print self port)

(format port " {SemanticGMB “d} %"
(object-hash self)))
((name self) (string->symbol "GMB"))
((gmb? self) "#T)
((cg self) the-cg)
((dg self) the-dg)
((cg-dgMapping self) cg-dg)
((module self) smmodule)
(((setter cg) self val)
(set the-cg val))
(((setter dg) self val)
(set the-dg val))
(((setter cg-dgMapping) self val);; may want to change the rep.
(set cg-dg val));; of mapping to objects later
(((setter module) self val)
(set smmodule val))
((add-object self x)
;; should set the parent here
(cond ((controlgraph? x)
(set the-cg x)
(set (parent x) self))
((datagraph? x)
(set the-dg x)
(set (parent x) self))
(else (error-mess "object cannot be added to GMB™))))
((del-object self x)
(cond ((controlgraph? x) (set the-cg nil))
((datagraph? x) (set the-dg nil))
(else (error-mess "object is not a part of GMB")))
(del-child self x))
((delete self)
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(del-object (parent self) self)
(erase self) )
((store self port)
(format port

"“%(let ((ThisGMB

(AddGMBfromDB ThisModule}))) %")

(store (cg self) port)
(store (dg self) port)
(format port "(AddMappingFromDB ThisGMB *7s)™%"

(map (lambda (x) (list (name (car x))

(name (last x))))
(cg-dgmapping self)))

(format port "ThisGMB) " %")))))

1****************************************
*

;:* The Control Graph Semantic Object *
;****************************************

{(define (MakeControlGraph)
(let
((cnodes nil) ; controt nodes
(carcs nil) ; control arcs
(cgmb nil)
)

{object
nil
((print self port)
(format port "{SemanticControlGraph “d} %"
(object-hash self)))
((name self) (string->symbol "CG"))
((ControlGraph? self) "#1)
({(controlnodes self) cnodes)
((controlarcs self) carcs)
((gmb self) cgmb)
((module self) (module (gmb self)))
(((setter controlnodes) self val)
(set cnodes val))
(((setter controlarcs) self val)
(set carcs val))
({((setter gmb) self val)
(set cgmb val))
;; translogic takes an logic expression which uses the
;; normal logic operators and tranlate it into one using
;; operators of the form 'apply-OP’, where OP is the
;; corresponding logic operator
((translogic self logic)
(COND ((nuil? logic) nil)
((list? (car logic))
(cons (translogic self (car logic))
(translogic self (cdr logic))))
(else
(case (car logic)
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((and)
(cons apply-and

(translogic self (cdr logic))))
((or)

(cons apply-or
(translogic self (cdr logic))))
(>)

(cons apply-prio
(translogic self (cdr logic))))
(else
;; should take care of the case when
;; logic is neither input or
;; output arc of node, this is signalled
;; by get-arc returning nil
(cons (name->container self
(string->symbol
(string-downcase
(symbol->string
(car logic)))))
;; need to check what obj-assq does
(translogic self (cdr logic)))))))
((add-object self x)
(cond ((ControlNode? x)
(set cnodes (cons x ¢nodes))
(set (parent x) self))
((ControlArc? x)
(set carcs (cons x carcs))
(set (parent x) self))
(else
(error-mess "object cannot be added to Control Graph"))))
((del-object self x)
(cond ((controlnode? x)
(set cnodes (delq x cnodes)))
((controlarc? x)
(set carcs {delq x carcs)))
(else
{error-mess "object not a part of Control Graph™)))
(del-child self x))
((delete self)
(del-object (parent self) self)
(erase self))
((store self port)
(let ((logiclist nil))
(format port
"(let ((ThisCG (AddCGFromDB ThisGMB))) %")
(set logiclist (map (lambda (x) (list
(name x)
(reverse-translogic (inputLogic x))
(reverse-translogic (outputLogic x))))
(controlnodes self)))
(walk (lambda (x) (store x port)) (controlnodes self))
(walk (lambda (x) (store x port)) (controlarcs self))
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(format port
"(AddLogicFromDB ThisCG s)"
logiclist)

(format port
“ThisCG) %))

o o 2 3 e e 3¢ o sk she e e e o o e ok ok e o o b o ol ok she e e e e e e ok e sk ol ol s ode ok sk ke

;;* The Data Graph Object *

r****************************************
b

(define (MakeDataGraph)
(let
({(dprocs nil) ; data processors
(darcs nil) ; data arcs
{dsets nil) ; datasets
(object nil
((print self port)

(format port "{SemanticDataGraph “d} %"
(object-hash self)))
({(name self) (string->symbol "DG")}
((datagraph? self) "#T)
((dataprocs self) dprocs)
((dataarcs self) darcs)
((datasets self) dsets)
{(gmb self) cgmb)
{(module self) (module (gmb self)))
(((setter dataprocs) self val)
(set dprocs val))
(((setter dataarcs) self val)
(set darcs val))
(((setter datasets) self val)
(set dsets val))
(((setter gmb) self val)
(set cgmb val))
((add-object self x)
(cond ((dataset? x)
(set dsets (cons x dsets))
(set (parent x) self))
((dataarc? x)
(set darcs (cons x darcs))
(set (parent x) self))
((dataprocessor? x) (set dprocs (cons x dprocs)))
(else (error-mess "object cannot be added to Data Graph™))))
((del-object self x)
(cond ((dataset? x)
(set dsets (delq x dsets)))
((dataarc? x)
(set darcs (delq x darcs)))
((dataprocessor? x)
(set dprocs (delq x dprocs)))
(else (error-mess "object not a part of Data Graph™)))
(del-child self x))
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({delete self)
(del-object (parent self) self)
(erase self))
{(store self port)
(format port
"(let ((ThisDg (AddDGFromDB ThisGMB)))"%")
(walk (lambda (x) (store x port)) (dataprocs self))
(walk (lambda (x) (store x port)) (datasets self))
(walk (lambda (x) (store x port)) (dataarcs self))
(format port
"ThisDG) %")))))

+ 35030 346 3 35 3 e e 26 e e o e abe e e dhe e e e e e o ek ek
]
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;¥ The Control Node object *
-1***************************

(define (MakeControlNode)
;; static information

(let ((cname nil) : name
(iarcs nil) ; input arcs
(oarcs nil) ; output arcs
(ilogic nil) ; input Logic
(ologic nil) ; output Logic
(cap 1) ; capacity

;; dynamic information,
;; subject to change during simulation

(custmr 0) ; current # of tokens
(visits 0) ; number of times node has been executed
(act? nil) ; currently active or not
(queue nil) ; queueing
(bpoint (MakeNBrk)) ; breakpoint stuff
)
(object nil
((print self port}

(format port " { SemanticControlNode "d "a} %"
(object-hash self)
(symbol->string (name self))))

((controlNode? self) "#T)

{(name self) cname)

((gmb self) (parent (parent self)))

((inputArcs self) iarcs)

((outputArcs self) oarcs)

((inputLogic self) ilogic)

((outputLogic self) ologic)

((capacity self) cap)

({customers self) custmr)

((numvisits self) visits)

((active? self) act?)

{(queueing self) queue)

((breakpoint self) bpoint)

(((setter name) self val)

(set cname val))

(((setter inputArcs) self val)
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(set iarcs val))
({(setter outputArcs) self val)
(set oarcs val))
(((setter inputLogic) self val)
(set ilogic val))
(((setter outputLogic) self val)
(set ologic val))
(((setter capacity) self val)
(set cap val))
({(setter customers) self val)
(set custmr val))
(((setter numvisits) self val)
(set visits val))
{((setter active?) self val)
(set act? val))
(((setter queueing) self val)
(set queue val))
(((setter breakpoint) self val)
(set bpoint val))
((delete self)
(del-object (parent self) self)
(walk (lambda (x ) (del-head x self)) iarcs)
(walk (lambda (x ) (del-tail x self)) oarcs)
(erase self))
{(add-object self arc)
(cond ((controlarc? arc) .
(cond ((memq self (headset arc))
(set iarcs (cons arc iarcs)))
(clse
(set oarcs (cons arc 0arcs))) ))
(else (error-mess "not a control arc"))))
{(del-object self arc)
(cond ((controlarc? arc)
(set iarcs (delq arc iarcs))
(set oarcs (delq arc oarcs)))
(else (error-mess "not a Control Arc™))))
((addlogic self logic-exp infout)
(let ((Cgraph (parent self)))
(case in/out
((in)
(set (InputLogic self) logic-exp))
((out)
(set (OutputLogic self) logic-exp)))))
((checkbrk self tag)
(break? bpoint tag visits))
{(store self port)
(format port
"(AddCnodeFromDB ThisCG s "d "d "d "d "d)™%"
(symbol->string (name self))
(capacity self)
;; this could be done with (store ... point port)
(point-x (cplxshp-loc (abshape self)))
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(point-y (cplxshp-loc (abshape self}))
(circshp-rad (abshape (circle self)))
(Pscale sel))))))

» =« 24 3¢ s 3 she abe s ol she e ok ok s 3 3k ke sk dk e e e e ofe ok e o
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i;:*¥ The Control Arc Object *

;;**************************

(define (MakeControlArc)
;; static information
(let ((aname nil) ; name
(hset nil) ; headset
(tset nil) ; tailset
(itoks 0) ; initial # tokens
;; dynamic information, subject to change during simulation
{(als nil) ; alias
(toks Q) ; current total # tokens
(Itoks 0) ; current local # tokens
(bpoint (MakeABrk)) ; breakpoint
(queue nil) ; queueing info
(object
nil
((print self port)
(format port "{SemanticControlArc “d "a} %"
(object-hash self)

(symbol->string (name self))))

((name self) aname)
((gmb self) (parent (parent self)))
((headset self) hset)
((alias self) als)
((tailset self) tset)
((initialTokens self) itoks)
((localtokens self) ltoks)
((tokens self) toks)
((breakpoint self) bpoint)
((queueing self) queue)
((add-tail self x)
(cond ((or (socket? x) {controlnode? x))

(set tset (cons X tset)))

(else (error-mess "picked TAIL not a Control Node"))))
((add-head self x)
(cond ((or (socket? x) (controlnode? x))

(set hset (cons x hset)))

(else (error-mess "picked HEAD not a Control Node™))))
((del-tail self x)
(cond ((or (socket? x) (controlnode? x))

(if (not (null? (assq x (tailpairs self))))

(erase (cadr (assq x (tailpairs self)))))

(set tset (delq x tset))

(if (null? tset) (delete self)))

(else (error-mess "picked TAIL not a Control Node"))))
((del-head self x)
(cond ((or (socket? x) (controlnode? x))
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(if (not {null? (assq x (headpairs self))))
(erase (cadr (assq x (headpairs self)))))
(set hset (delq x hset))
(if (null? hset) (delete self)))
(else {error-mess "picked HEAD not a Control Node"))))
(((setter name) self val)
(set aname val))
(((setter headset) self val)
(set hset val))
(((setter tailset) self val)
(set tset val))
({(setter initialtokens) self val)
(set itoks val))
(((setter localtokens) self val)
(set ltoks val))
(((setter tokens) self val)
(set toks val))
({(setter breakpoint) self val)
(set bpoint val})
(((setter queueing) self val)
(set queue val))
(((setter alias) self val)
(set als val))
((delete self)
{del-object (parent self) self)
(walk (lambda (X) (disconnect self x)) tset)
(walk (lambda (X) (disconnect self x)) hset)
(erase self))
; end traverse

..
r”
3

((addtoken self)
(increment ltoks)
(increment toks)
(walk (lambda (arc)
(set (tokens arc) (fx+ 1 (tokens arc))))
als)

((remtoken self)
(decrement ltoks)
(decrement toks)
(walk (lambda (arc)
(set (tokens arc) (fx- (tokens arc) 1)))
als)

((disconnect self node)

(del-object node self)

(set hset (delq node hset))

(set test (delg node hset))
(disconnect (inner-object self) node))
({(checkbrk self tag)

(break? bpoint tag toks))
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((controlArc? self) "#T)
((store self port)
(format port
"(AddCarcFromDB ThisCG s s *"s "d "d "d *"s "d)" %"
(textshp-txt (rtshape (name (inner-object self))))
{map (lambda (x)
(list (name (car x))
(point-x (cplxshp-loc (abshape (cadr x))))
(point-y (cplxshp-loc (abshape (cadr x))))

(list (ptlist->xylist
(polyshp-pts (abshape (cadr
(children (cadr x))))))
(ptlist->xylist
(splishp-pts
(abshape (car (children {cadr x)))))))))
(headpairs self))

(map (lambda (x}
(list (name (car x))
(ptlist->xylist
(splishp-pts (abshape (cadr x))))))
(tailpairs self))

(initialtokens self)
(point-x (cplxshp-loc (abshape self)))
(point-y (cplxshp-loc (abshape self)))
(ptlist->xylist (splishp-pts (abshape (body self))))
(Pscale self))))))

;;**********************

;1* The Dataset Object *
« »» 06 e 24 o 3 e e e 26 sfe 36 e s e e 3fe e e e e e e
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(define (MakeDataSet)
:; static information
(let ({dname nil) ; name
(dival nil) ; initial value
(darcs nil) ; data arcs

;; dynamic information
(dval nil) ; current value

)
(object nil

((print self port)

(format port " {SemanticDataSet "d “a} %"
(object-hash self)
(symbol->string (name self))))

({(name self) dname)

((gmb self) (parent (parent self)))

((initial Value self) dival)

((Value self) dval)
((dataArcs self) darcs)

(((setter name) self val)

(set dname val))

(((setter initialValue) self val)

272



(set dival val))
(((setter Value) self val)
(set dval val))
{((setter dataArcs) self val)
(set darcs val))
((add-object self x)
(cond ((dataarc? x)
(set darcs (cons x darcs)))
(else (error-mess "not a data arc"))))
((del-object self x)
(cond ({dataarc? x)
(set darcs (delq x darcs)))
(else (error-mess "not a data arc™))))
({(delete self)
(walk delete darcs)
(del-object (parent self) self)
(erase self))
((store self port)
(format port

"(AddDsetFromDB ThisDg"s s s "d"d"d"dd

"d"dd"d"d"d 'd "d)"of "

(textshp-txt (rtshape (name (inner-object self))))

(initialValue self)
(Value self)
(point-x (cplxshp-loc (abshape self)))
(point-y (cplxshp-loc (abshape self)))
(rectshp-wi (abshape (rect self)))
(rectshp-he (abshape (rect self}))
(northleft self)
- (northright self)
(southleft self)
(southright self)
(easttop self)
(eastbottom self)
(westtop self)
(westbottom self)
(Pscale self)))
((dataset? self) *#T))))

***********************

:5:* The Data Arc Object *
***********************
(dcﬁne (MakeDataArc)
;; static information
(let {(dname nil)
{(dsets nil)
(dprocs nil)
;3 dynamic information
{ddsets nil)
{varctype 'rw)

(object

; name
: can be also a socket
; can contain sockets

; dynamic dataset
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nil

((print self port)

(format port "(SemanticDataArc "d "a} %"
(object-hash self)
(symbol->string (name self))))

((name self) dname)

((gmb self) (parent (parent self)))
((dataset self) dsets)
((dyn-dataset self) ddsets)
((dataprocs self) dprocs)

(({setter name) self val)

{set dname val))

(((setter dataset) self val)

(set dsets val))

(((setter dyn-dataset) self val)

(set ddsets val))

(((setter dataprocs) self val)

(set dprocs val))

((arctype self) varctype)
(((setter arctype) self v)

(set varctype v))

:; need to handle sockets
((add-object self x)

(cond

((dataProcessor? x) (set dprocs x ))

((dataset? x) (set dsets x )

(set ddsets x ))
(else (cond ((null? dprocs)
(set dprocs x))
{else
(set dsets x)
(set ddsets x)))))
((del-object self x)

{cond ((eq? x dprocs)

(set dprocs nil))
{else

(set dsets nil)
(set ddsets nil))))

((delete self)

(del-object (parent self) self)

(del-object dprocs self)

(del-object dsets self)

(erase self))

({store self port)

(format port
"(AddDarcFromDB ThisDG s *"s ""s "s *"s "d "d ""s "d) %"
(textshp-txt (rtshape (name (inner-object self))))
(name (objl sclf))

(name (obj2 self))

(cond ((null? (dyn-dataset self)) ’nil)
(else
(textshp-txt
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(rtshape (name (inner-object
(dyn-dataset self)))))))

(ptlist->xylist

(polyshp-pts (abshape (polyline self))))
(point-x (cplxshp-loc (abshape self)))
(point-y (cplxshp-loc (abshape self)))
(arctype self)

(Pscale self)))

((dataArc? self) "#T))))

;;***********************************

;3;* The Data Processor Object *
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(define (MakeDataProc)
:; all attributes are static
(let ({pname nil) ; name
(darcs nil) ; data arcs
(id niD)) ;id
(object nil
((print self port)
(format port " {semanticDataProc "d "a} %"
(object-hash self)

(symbol->string (name self))))
((name self) pname)
((gmb self) (parent (parent self}))
((dataArcs self) darcs)
((idcode self) id)
(((setter name) self val)
(set pname val))
(((setter dataArcs) self val)
(set darcs val))
(((setter idcode) self val)
(set id val))
((delMapping self cnlist)
(set cnlist (map xy->container cnlist))
(cond ({null? cnlist)
;; if no cnodes given, all the mapping to
;; data proc is removed
(set (cg-dgMapping (parent (parent self)))
(del (lambda (x y)
(eq? (cadr y) x))
self
(cg-dgMapping (parent (parent seif))))))
(else
:: otherwise take care only of the specified nodes
(walk
(lambda (cnode)
(set (cg-dgMapping (parent (parent self)))
(del (lambda (x y)
(and (eq? (car y) x)
(eq? (cadr y) self)))
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cnode
(cg-dgMapping (parent (parent self))))))
cnlist))))
((addmapping self clist)
(set clist (map xy->container clist))
(cond ((and (every? (lambda (x)
(eq? (parent (parent self))
(parent (parent x))))
Clist)
(every? Controlnode? CList))
(set (cg-dgMapping (parent (parent self)))
(append (map {lambda (x)
(list x self))
Clist)
(cg-dgMapping (parent (parent self))))))
(else
;; this is an error
(error-mess "invalid mapping™))))
((add-object self x)
{cond ({dataarc? x) (set darcs (cons x darcs)))
(else (error-mess "not a Data Arc"))))
((del-object self x)
(cond ((dataarc? x) (set darcs (delq x darcs)))
(else (error-mess "not a Data Arc™))))
((delete self)
;;may need change if rep. of dataarc is changed
{walk delete darcs) '
(del-object (parent self) self)
(erase self))
((store self port)
(format port
"(AddDprocFromDB ThisDG s s "d"d "d d s
dd°d"d"d"d"d"d"d)y"%"
(textshp-txt (rtshape (name (inner-object self))))
(idcode self)
(point-x (cplxshp-loc (abshape self)))
(point-y (cplxshp-loc (abshape self)))
(point-x (pgonshp-base (abshape (polygon self))))
(point-y (pgonshp-base (abshape (polygon self}))))
(ptlist->xylist (pgonshp-pts
(abshape (polygon self))))
(northleft self)
(northright self)
(southleft self)
(southright self)
(easttop self)
(eastbottom self)
(westtop self)
(westbottom self)
(Pscale self)))
((dataprocessor? self) "#T1))))
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APPENDIX C
DB_Classfier Code

;After all objects have been transformed into entities, then

; the relationships are examined, one at a time, and their

;entity type, if applicable, is determined.

; After creation of the appropriate entity type or modification of
;existing entities the relationship is marked.

;This portion will also examine roles associated with the arcs connected
;to each relationship and create the proper entity.

:Relationships with no roles and participating in existence dependencies
; will not be represented. There is no loss to the semantic understanding
:of the model.

(walk (lambda(x)
(block (print x (standard-output))
(if (not (checked x))

;Relationships with E constraint and no roles on arcs.

(cond
((and {check-constraints ’E x) (not (role-attached (arcs x))))
(if (properties x)
(block
(set (checked x) t)
(characteristic-create x (name (find-1-entity x)))
(designative-create (find-dep-entity x) x))))
;Relationships with E constraint and roles attached to some arcs.
((and (check-constraints 'E x) (role-attached (arcs x)))
(print "special case” (standard-output)))

;Relationships with no E constraints and roles attached to arcs.
((role-attached (arcs x))
(if (recursive-relation x)
(if (and (or (check-constraints ’E (car (arcs x)))
(check-constraints "E (car (¢dr (arcs x)))))
(or (string-equal? "1toN"
(mapping-string
(car (arcs x)) (car (cdr (arcs x)))))
(string-equal? "Ntol”
(mapping-string
(car (arcs x)){car (cdr (arcs x)))))))
(block (subtype-create
(role (find-arc ’1 x)) (find-1-entity x))
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(characteristic-create
(role (find-arc "N x))
(role (find-arc ’1 x)))
(set (checked x) 1))
{block
(subtype-create
(role (car (arcs x)))(find--1-entity x))
(subtype-create
(role (car (cdr (arcs x)))) (find-1-entity x))
(set (checked x) t))) nil))
;Relationships with no E constraints and no roles.
(else (block
(if (eq? (length (arcs x)) 2)
(cond ((or
(string-equal? "1toN"
(mapping-string
(car (arcs x))
(car (cdr (arcs x)))))
(string-equal? "Ntol" (mapping-string
(car (arcs x))
(car (cdr (arcs x))))))
(designative-create
find-n-entity find-1-entity))
((or (string-equal? "MtoN" (mapping-string
(car (arcs x))
(car (cdr (arcs x)))))
(stnng-equal" "NtoM" (mapping-string
(car (arcs x))
(car (cdr (arcs x)))))

(associative-create x))) nil)))))))

(relations *erd*)))
;Functions which create the various entities are next.
;***********************

; This function creates a designative entity
**********************
(dcﬁne (designative-create objectl object2)
(create-entity (name objectl) "D" (list (return-erelation (name object2))) ’()))

;********************

;This function creates an associative entity
;*********************
(define (associative-create relation)
(let ((extra ()
(entity *()))
(if (set extra (check-multiplicity relation))
(block
(set entity (create-entity
(name relation) "A" (object-list relation)
(properties relation)))
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(walk (lambda(x)
(create-entity (c)z;r x) "C" (list entity)
X
extra))
(create-entity
(name relation) "A" {object-list relation)
(properties relation)))))

= e s e e e e e e e abe e e A ke e e e ke ke
?

; This function creates a type entity
;**************************
(define (subtype-create rolename supertype)
(create-entity rolename "S" (append (list
(return-erelation (name supertype)))

(list "has"))’0))

;************************

;this function defines a characteristic entity
;************************
(define (characteristic-create objectl object2)
(let ((extra *()
lentity ()
@f (if (objects? objectl)
(set extra (check-multiplicity object1)) nil)

(block
(if (string? objectl)
(set entity
(create-entity objectl "C"
(list
(return-erelation object2)) '()))
(set entity (create-entity (name objectl) "C"
(list (return-erelation object2))
(properties object1)))))
(walk (lambda(x)
(create-entity (car x) "C" (list entity)
X))
extra))
(if (string? objectl)

(create-entity objectl "C"
(list (return-erelation object2)) '())
(create-entity (name objectl) "C"
(list (return-erelation object2))
(properties object1)))))

« s e s 4 s b e sk e o she e s ke sk ok ke o e e o
r

:This function defines kernel entities
;*************************
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(define (kernel-create objectl)

(et ((extra *())

(entity "())
(if (set extra (check-multiplicity objectl))
{block
(set entity {create-entity (name objectl) "K" *() (properties object1)))
(walk (lambda (x)
(create-entity {car x) "C" (list entity) (list x)))
extra))

(create-entity (name objectl) "K" ’() (properties objectl)))))

;*********************

:This function recursively generates characteristic entities
;*************************
(define (parent-create x)
(cond ((check-constraints 'E x)
(if {checked (find-other-object x))
(block
(set (checked x) t)
(characteristic-create x (find-other-object x)))
(block
(parent-create x)
(set (checked x) t)
, (characteristic-create x (find-other-object x)))))
(else
(set (checked x) t)
(kernel-create x)))
(print "in parent create” (standard-output})))
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