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e ABSTRACT OF THE THESIS

Modeling Granularity in Data Flow Programs
by

Daniel Rex Greening
Master of Science in Computer Science
University of California, Los Angeles, 1988

Professor Milos Ercegovac, Chair

The execution time of a data flow program in a system depends intrinsically
on the degree of parallelism available, the resource requirements of the program,
and the resources provided by the system. Communication delays between actors
in a data flow graph present a significant performance degradation factor. We
can reduce these delays by partitioning actors into large sequential blocks. This
thesis provides a method for optimally partitioning static cyclic data flow graphs
into sequential blocks, when we know transition probabilities and communication
delays, to reduce overall execution time.

A structural model of data flow programs, called a “probabilistic data flow
graph,” provides a mathematical base for our analysis. We provide a method for
converting probabilistic data flow graphs to Markov chains.

We provide an algorithm to give the set of all maximal sequential partitionings

for a data flow graph. Selecting an optimal partitioning from this set, when tran-
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sition probabilities are not fixed, is incomputable. When transition probabilities

are fixed and known, we use Markov analysis to select the optimal partitioning.

We discover that suboptimal partitionings provide a nearly optimal speedup.
We show two sample data flow programs, apply our algorithms, and discuss

the advantages and disadvantages of the method based on the examples.






CHAPTER 1

Introduction

Communication and synchronization delays often dominate the execution
time of dynamic data flow programs. We can reduce execution time by iden-
tifying naturally sequential blocks in dynamic data flow programs which require
no synchronization. Generally, one can find several ways to partition a data flow
program, each with a different execution time.

We present an algorithm for enumerating all maximal sequential block parti-
tions of a dynamic data flow program. We construct the notion of a “probabilis-
tic data flow graph,” which allows us to describe a data flow program’s behavior
stochastically. Using a Markov modeling heuristic, we can estimate the execu-
tion speed of each partition. A software modeling tool we wrote applies these
concepts to select a good partitioning for a data flow program.

To judge the results of our modeling heuristic, we also wrote a tagged-token
data flow simulator, based loosely on the principles of the Manchester [Gurd85]
and the MIT Tagged-Token [Arvi87] data flow machines. We present two example
programs, and the results of applying our modeling system and simulation.

We discover that the modeling system chooses good partitions, but it requires

a large amount of CPU time. For large programs whose actual execution time



is small, simulation will provide partitioning information faster. However, when
a small program executes for a long time, our modeling system has merit over
simulation.

In the introductory sections that follow, we provide some background on
data flow programs, present some definitions and formalisms used later in the
text, discuss the notion of data flow granularity, and elaborate on our thesis

contributions.

1.1 Background

Traditional computers conform to the control flow computing model (some-
times called the von Neumann model), which attaches a single storage-unit to a
sequential control flow instruction processor.

Many researchers have criticized the control flow model's inherent difficulties
in executing concurrent programs [Back78]. Pipelining, multiprocessing, and
layered storage-units have improved the von Neumann model. But the so-called
“von Neumann bottleneck,” the data path between the instruction processors
and memory, caps the maximum parallelism that a von Neumann architecture
can exploit.

Researchers have proposed several alternative models to solve the problems
inherent in control flow machines [Vegd84] [Burt81] [Chan84] [Denn79] [Denn80)
[Erce84] [Grna80] [Gurd78] [Mago80]. All attempt to avoid the von Neumann

bottleneck. Many conform to the “data flow” computing model.



Data flow programs use no variables. Instead, one expresses all intermediate
results as “tokens” traveling along the directed edges of the graph, which establish
precedence relations between operators. When an operation’s predecessors have
all produced their results, the operation “consumes” its input values and begins
execution. Parallelism occurs implicitly.

Data flow execution requires a mechanism to detect when an instruction’s
operands are ready. Data flow machines often include a separate “matching
unit” to synchronize input operands. Unfortunately, matching time, in this thesis
considered a part of “communication time,” can dominate overall execution time.
This may be the major reason data flow machines have not replaced control flow
machines: the gains reaped from increased parallelism in data flow programs

have been offset by increased communication time.

1.2 Data Flow Notation and Terminology

When we describe data flow programs, we use directed positional graphs,
where the source and sink of each edge carry an integer position attribute.
[Ever79]. Each vertex represents an operation, and each edge represents the
flow of data from the producing operation to the consuming operation.

We call each operation (vertex) in a data flow graph an “actor.” A data flow
program can be coarse-grained or fine-grained, depending on the average “size” of
its actors. A large actor performs many functions in one indivisible action, while

a small actor performs few. When we have a program with many large actors,



actors, we call it “coarse-grained.” When only small actors comprise a program,
we call it “fine-grained.”

For the purposes of our discussion, small actors contain only one machine
primitive operation. Large actors contain more than one primitive. Within a
large actor, primitives execute in sequence, even if the encapsulated data flow
fragment expresses parallelism. In a sense, primitives within a large actor execute
as if they were running on a von Neumann machine.

We illustrate partitioning concepts in this thesis by pictorial data flow graphs.
Solid-lined circles represent primitive actors. Incoming edges represent the flow
of information to an actor, from another actor or from a constant.

We group edges into “enabling groups” and “production groups.” Enabling
groups are sets of incoming edges. In one enabling group, all edges share a
common sink actor. When tokens rest on all edges in an enabling group, that
actor can consume the tokens and begin execution. Several enabling groups can
be associated with a given actor.

Production groups are sets of outgoing edges. In one production group, all
edges share a common source actor. When an actor completes execution, it sends
tokens out on only one production group, one per edge.

We use thick arcs to connect members of enabling groups and production
groups.

Consider two simple actor input types, AND inputs and XOR inputs. Figure

1.1 shows how these appear in our examples. An actor with AND inputs requires
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Figure 1.1: Pictorial Conventions

tokens on both input edges before it will fire. When the actor fires, it consumes a
token from each edge, and begins operating on the data items associated with the
tokens. An actor with XOR inputs will fire when a token appears on any input
edge. When there are tokens on more than one input edge, an actor with XOR
inputs selects the input edge at random (in our model, selection probabilities are
specified). XOR inputs can be ANDed in our model. We show this by merging
two edges to one. Figure 1.1 shows this in the Composite Inputs example.

Consider two simple actor output types, AND outputs and XOR outputs.
Refer to Figure 1.1 for pictorial representations. An actor with AND outputs will
always produce a single token on each output edge when it completes execution.
An actor with XOR outputs will produce a single token on only one output edge
when it completes. The edge on which an output token is placed depends on the
input values to the actor.

Although AND and XOR inputs and outputs account for all actor types
in many data flow machines, including the Manchester machine, through these

simple constructs we can represent higher level data flow operations. Figure 1.2



Merge Actor

Figure 1.2: Merge Actor and Qur Representation

shows a typical data flow construct, the MERG operation. Note that the name
of the operation is written inside the node. The MERG operation first accepts a
boolean input token on input edge a. If that valueis true, the operation consumes
a value from input edge b. If false, the operation consumes a value from input
edge ¢. The operation merely transmits the consumed value to its output edge
d.

Constants appear as an edge with a numeric value at the edge’s source. In
our modeled machine, an actor will encapsulate all input constants, because com-
munication and synchronization time is reduced at no cost. Dynamic data flow
machines commonly retain this property [Arvi87] [Gurd85]. For visual clarity, our
graphs make it appear that physical tokens transmit constants along an edge,
but they don’t. Constants are embedded with the actor and are immediately
available when the actor needs them. Constants 0.02 and 1 appear in Figure 1.3.

When we show small actors combined into large partitioned actors, we demar-



cate each _partition with a dashed box. The small actors within the box execute
sequentially, while separate boxes may execute in parallel. Within a box, num-
bers adjoining each small actor indicate the sequential progression of the actors.

The first small actor in the sequence is “1,” the second “2,” etc.

No Partitioning Partition 1 Partition 2

Figure 1.3: Program Fragment, Three Partitions

Figure 1.3 shows the conventions we use to diagram coarse-grained data flow
programs. Examine Partition 1. Each dashed box defines a large actor. Three
machine-level operations comprise each large actor. In the topmost box, execu-
tions proceeds in the order specified by the number at the left of each node: BRT,
DUP, ADR. Tokens must appear on each incoming edge of BRT before the actor
can begin. Note that the constant 0.02 is embedded inside the ADR. The large

actor enclosing it requires only the two input tokens for BRT to begin operation.



Tokens exit the large actor and travel to the matching unit immediately after
they are calculated. Thus, execution of our actor proceeds as follows: BRT, DUP,
send left result of DUP, send right result of DUP, ADR, send result of ADR.

The bottom block, enclosing MLR, ADL, and DUP, must wait for three incoming
tokens before it can begin: the two input tokens for MLR and the single input token
for ADL. The constant 1 is embedded in the ADL actor. Note how encapsulation
of small actors that would normally run in parallel has severely penalized us: the
program fragment in Partition 1 runs completely sequentially, due to non-optimal
partitioning,.

Small actors in Partition 1 must run in sequence because the bottom actor
must wait for all incoming tokens before proceeding. ADR produces its result
when the top actor completes. The bottom actor requires that result.

Partition 2, on the other hand, causes no loss of parallelism. The left actor
begins with two entering tokens, operation BRT executes, sending its right out-
put token out, then operation DUP executes, et cetera. Immediately after BRT

produces its right output token, the rightmost coarse actor can commence.

1.3 The Problem

Tagged-token data flow computers tag each data token with an “instantiation
identifier” and a target actor. These instantiation identifiers allow the program
to express recursion and iteration easily. When an actor requires multiple input

tokens, a “matching unit” assembles the tokens based on equal instantiation



identifiers and target actor address. For more information on tagged-token data
flow computers, please see [Arvi87] and [Gurd85).

As we have mentioned, data transmission from one actor to another incurs a
large time cost when operands must pass through token matching or queuneing
units. Thus, coarse-grained data flow programs—where most intermediate data
incurs little communication and synchronization delays—often run faster than
equivalent fine-grained programs, even though fine-grained programs can intro-
duce greater parallelism. Machines with long transmission or matching delays
exacerbate the effect [Chan81] [Leco81}, as shown by both simulations [Gaud82]
[Huda85) and mathematical constructions [Gaud84].

In experiments on 29 different numerical analysis programs, Manchester ma-
chine researchers discovered that unary instructions comprised between 56% and
70% of the total instructions executed [Gurd85]. They modified the Manchester
machine to bypass the matching store when an instruction with a unary output
followed an instruction with a unary input, essentially creating a coarse-grained
actor, to reduce overall execution time.

The problem of identifying “unary-output followed by unary-input” consti-
tutes a special case of the problem of identifying “natural sequences in a data
flow program.” Precedence relations can force data flow program fragments that
include n-ary (not just unary) operations to run sequentially.

We extend Gurd and Watson’s work to identify and combine naturally se-

quential, small, n-ary actors into large actor blocks, avoiding unnecessary com-



munication and matching delays.

Using unfolded acyclic execution graphs, [Gaud84] shows that combining
small actors into large sequential blocks, even when that parallelism is reduced,
can improve the execution time of a data flow program. But to obtain an ex-
ecution graph, one must evaluate an entire program—flattening the loops and
conditional branches that occur in the unevaluated data flow graph. Gaudiot’s
analysis does not extend to cyclic data flow program graphs, a standard repre-
sentation of data flow programs. By analyzing execution graphs he limits the
usefulness of his results: execution graphs show the nature of the program af-
ter input values have been specified and the program has been run. And for
long-running, highly-parallel programs, execution graphs become prohibitively

large.

1.4 Thesis Contributions

We base our work on a hypothetical data flow machine where each indivisible
(i.e., uninterruptible) actor can be a single primitive operation or a composition
of several operations. The Manchester machine, since it is microprogrammable,
provides a concrete example.

We identify sequential subsections of fine-grained data flow graphs and en-
capsulate them into maximal sequential blocks or “partitions,” which form large
actors. In doing this, we preserve inherent parallelism (unlike Gaudiot), while

we attempt to reduce overall communication and matching delays to a mini-
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mum. We show how to obtain the set of ¢/l maximal sequential partitionings of
a data flow graph. We often find several alternatives to choose from, each with
a different execution time.

To help us select a good alternative, we create a stochastic model of data flow
program execution, called “probabilistic data flow graphs.” We provide a method
for transforming probabilistic data flow graphs to Markov chains, allowing us to
evaluate and compare the performance of different partitions without actually
executing the program. We show that we must deal with closed subsets in the
resulting Markov chain, an unfortunate consequence of modeling cyclic data flow
programs as if they ran stochastically.

Finally, after obtaining a set of partitionings, converting them to a Markov
representation, removing closed Markov subsets, and evaluating the resulting
Markov chains, we choose a good partitioning by finding the one which has the
lowest expected execution time.

To help us judge the model’s usefulness, we wrote a suite of programs:
g PIOg

1. A T-language [Slad87] program which reads a probabilistic data flow graph,
obtains the set of all maximal sequential partitions, converts each to a
Markov chain, removes closed subsets according to our algorithm, and pro-

duces the resulting Markov transition probability matrix.

2. A general purpose Markov chain solving program, which produces sta-

tionary probabilities and mean return times. The mean return time of a

11



program’s start state is it’s estimated execution time.

3. A tagged-token data flow machine simulator, based loosely on the philoso-
phy of the Arvind and Manchester machines. The simulator provides true

execution times for comparison.

We ran two example data flow programs through our suite. One called “In-
tegrate” is adapted from a program which runs on the Manchester machine
[Gurd85]. The other, called “Recursive.AQ” is the data flow object of a SISAL
program provided by Lawrence Livermore National Laboratory [McGr85).

As expected, execution time estimates provided by the modeling system di-
verged from the actual execution time. However, in each example case, the
modeling system chose the best partitioning, and substantially reduced overall

execution time.
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CHAPTER 2

Previous Research

Several researchers have discussed and developed ideas about data flow pro-
gram granularity. In this chapter we document and discuss several papers that
specifically address granularity issues. We then outline related work in perfor-

mance modeling.

2.1 Research on the Effects of Granularity

Gaudiot and Ercegovac study the granularity of acyclic binary-tree data flow
graphs [Gaud84] [Gaud83]. They show that reductions in parallelism can speed
up a data flow program. Their work did not consider cyclic graphs, a difficult
problem. But they reduced parallel constructs to sequential blocks, a topic we
will not explore. OQur work deals exclusively with the recognition and selection
of naturally sequential blocks in cyclic data flow programs.

Hudak and Goldberg discuss “serial combinators,” which explores ways to
identify and combine sequential sections of lambda expressions [Huda85]. Their
method fails to recognize a few non-obvious serial combinations. Our discussion
explores the nature of a “heuristic,” for selecting “serial combinators,” which

their work mentions but does not explain.
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Others made sketchy descriptions of machines that handled high granulanty
data flow programs, but no performance results (or even estimates) were given

[Chan81] [Leco81].

2.1.1 Gaudiot’s High Granularity Data Flow Ring

In [Gaud85), Gaudiot and Ercegovac present a well-analyzed argument for
using coarse-grained data flow programs. They explain that large data flow
actors can consolidate several low-level operations that would otherwise execute
sequentially. This consolidation helps decrease communication and matching
store delays without eliminating parallelism. In addition, one can combine low-
level operations that would otherwise execute in parallel, and still decrease the
overall execution time through the elimination of matching store operations and
the transmission of data.

[Gaud84] constructs an analytic model to predict the performance of a vari-
able resolution data flow machine. They restrict their analysis to unfolded exe-
cution graphs. That is, they use a data flow graph with no loops or conditional
operations. The model has limited practical value to data flow compiler writers,
due to this restriction. Unfolded execution graphs can only be formed from the
execution of a folded data flow graph. Thus, a compiler writer would have to
execute the program before he could optimize it. This may be impractical when
considering programs that execute many operations.

This paper first constructs a ring-based variable resolution data flow machine

14



[Thom78] [Gost80]. Using a binary tree data graph they obtain execution time
improvements of about 40% by reducing communication costs through elimina-
tion of parallelism.

However, the research does not develop techniques necessary to partition data
flow programs into optimally large actors. Nor does it apply to the problem of

partitioning unevaluated data flow graphs with embedded conditionals and loops.

2.1.2 Serial Combinators

Hudak and Goldberg [Huda85] discuss serial combinators for evaluation of
functional programs. Serial combinators are large actors which combine small
actors which would execute sequentially. Thus, a program with serial combina-
tors avoids the communication delays that would occur between small actors,
but retains the parallelism inherent in the program.

They present an algorithm that partitions a lambda expression to serial com-
binators. They assert this partitioning is complete, that is, that one cannot
create larger serial combinators without sacrificing parallelism.

But the algorithm presented in [Huda85] does not optimally partition se-
quential sections of the program. One part of the algorithm makes an arbitrary
choice for the subexpression to retain in a combinator. The selection of one
over another will affect overall execution time, which they do not account for.
We present an extended algorithm which chooses the best path, given accurate

statistical information.
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2.2 Performance Modeling

Besides the theoretical aspects of granularity specifically addressed by the
research discussed above, other works discuss the performance modeling of data
flow programs and the machines they run on. In choosing the optimal set of
sequential partitions for a data flow graph, we require performance modeling
tools. Thus, we present here a brief overview of previous work in modeling

parallel programs.

2.2.1 Kapelnikov’s System Model

[Kape86] develops a complex analytic model for predicting the performance of
specific programs on general multiprocessing machines. Using Markov analysis,
he predicts the performance of smaller Markov chains. Then to analyze larger
systems, he forms aggregates of smaller Markov chains into large exponential
server systems. These large servers approximate the original chain. Their ex-
ponential nature makes it possible to use them as nodes in more comprehensive
continuous time Markov systems.

Kapelnikov divides a machine-plus-program system into two subnetworks,
the P/C (Processing and Communication) subnetwork and the M/U (Matching
and Updating) subnetwork. The P/C subnetwork performs the following tasks:
receiving operands and program segments from the M/U subnetwork, selecting

processing units for execution, executing program segments, and sending results

16



to the M/U subnetwork. For example, the P/C subnetwork in a Manchester
machine handles token transfer from the matching unit, fetches instructions from
the instruction store, sends them to the processing unit, processes them, and

sends them to the token queue [Gurd85]. See Figure 2.1.

4 R
Token Queue

!

Matching Unit

{

Instruction Store

¥

Processing Unit

FU|FU FUFU Function Units

" y,

Figure 2.1: Manchester Communication Ring

The M /U subnetwork service centers account for delays in contention, access,
use and update of the “synchronization subsystem.” The synchronization sub-
system in a Manchester machine is the token queue, the matching unit and its
associated overflow unit.

Kapelnikov points out that when the system contains a shared, central syn-
chronization facility, one need not analyze the M/U subnetwork separately. It

can be merged into the P/C subnetwork. In fact, our Manchester-like machine
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uses a shared, central matching unit. We can avoid the extra complexity of ana-
lyzing two distinct units by merging our analysis of the matching store and token
queues with the remainder of the machine.

Kapelnikov constructed “computational control graphs,” which stochastically
model program behavior. We unknowingly and independently constructed a sim-
ilar stochastic graph structure in this thesis. We called them “stochastic” or
“probabilistic” data flow graphs. They are non-deterministic data flow graphs
where the edge taken from an “OR output” is determined strictly by fixed prob-
abilities.

Kapelnikov allows a great deal more flexibility in constructing graph models
than we do. He dealt with a broader topic—generating performance models for
all classes of multiprocessing systems, whereas we use our model specifically to
analyze data flow graph running on a Manchester machine.

Kapelnikov does not consider one problem with computational control graphs.
It is possible for the Markov chain model to form proper closed subsets that do
not contain the start state. These proper closed subsets might better be called
“deadlocks,” for once the system enters a state within the proper closed subset,
it cannot complete. When a Markov chain contains a proper closed subset, the
expected completion time will be infinite.

To handle this problem we provide an algorithm for deleting proper closed
subsets from a Markov chain. We believe this will more accurately model the

behavior of a correct data flow program.
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Proper closed subsets appear because stochastic data flow graphs are only ap-
proximations of actual data flow programs. Typical data flow operators program
are wholely deterministic—the input values to an operation determine which
output edges will produce values. When we adopt a stochastic model, we must
estimate the probability that an operator will produce a value on a particular
output edge. Using a stochastic model makes the problem of estimating perfor-

mance computable, but it must be made clear that this is only an approximation.

2.2.2 Thomasian and Bay Task System Performance Analysis

Like Kapelnikov, Thomasian and Bay [Thom85] [Thom86] construct a model
for evaluating the performance and behavior of parallel computations. Their
work is limited to analysis of systems with acyclic task precedence relationships.
Thomasian’s work provides methods for hierarchical decomposition.

In contrast, this thesis will analyze systems with cyclic task relationships, and
does not discuss hierarchical decomposition. We discuss Thomasian’s work, in
part, to provide motivation for future work in hierarchical decomposition based
on the discrete time model developed in this thesis.

Because Thomasian deals with continuous-time Markov approximations, he
can represent complex relationships between probabilistic and deterministic
precedence by introducing dummy tasks, with zero execution time. QOur model,
however, uses discrete-time Markov chains—zero execution time vertices cannot

be used. Therefore, we will provide explicit representations for these complex
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relationships.
Thomasian considers a simple scheduler which preassigns tasks to host com-
puters, and activates tasks as precedence and passive resource constraints are

satisfied. That satisfies our model as well.

2.2.2.1 Task Decomposition

Thomasian assumes a closed product-form queueing network, and shows that
one can construct an exact low-cost solution through convolution or mean value
analysis [Lave83].

In considering only acyclic graphs, Thomasian’s work is constrained to task
systems that do not loop. With loop-free systems, the resulting Markov chain is
also acyclic, and can be expressed as a triangular matrix. Triangular matrices
can be solved in linear time.

We consider cyclic graphs in this thesis, thus the solution time for our model
is of the order O(n3), where n is the total number of vertices and edges in a data
flow graph. Cloged proper Markov chain subsets cannot occur with acyclic data
flow graphs, but they can with cyclic data flow graphs. Thus, we will develop a
scheme for trimming closed proper subsets from the resulting Markov chain.

Thomasian’s work in decomposition may also apply to cyclic discrete-time

graphs, but we leave that topic to future research.
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CHAPTER 3

Modeling Data Flow Program Performance

In this chapter, we formally describe probabilistic data flow graphs, and their
relation to data flow programs. We construct a mapping from probabilistic data
flow graphs to discrete-time discrete-space Markov chains.

We show that the constructed Markov chains may contain proper closed sub-
sets. These subsets produce catastrophic failure in the model. We describe a
method for removing these from the Markov chain.

In later chapters we will use the performance estimates obtained from this
model to improve how we partition actors into sequential blocks. We must point
out. that our stochastic system is a heuristic for approximating the execution
time of a system. Several inaccuracies are introduced by this approximation—

we discuss them at the end of this chapter and in Chapter 5.
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3.1 Probabilistic Data Flow Graphs

In this section, we develop a formal descriptive model to characterize the
statistical behavior of data flow programs. We add transition probabilities to
data flow graphs [Karp69] [Karp66] [Camp87], calling them probabilistic data

flow graphs (PDFGs).

3.1.1 Introduction

In our graphs, each vertex corresponds to a machine operation, and each edge
corresponds to the communication of a value from its source vertex to its sink
vertex. Each edge has two ordinal positions, at the source vertex and the sink
vertex. If edge e has sink position i, edge e supplies the value for the ith operand
of edge e’s sink vertex. If edge e has source position j, edge e receives its value
from the jth output of edge e’s source vertex.

Each edge or vertex holds a set of tokens. Like Petri nets [Pete77], probabilis-
tic data flow graphs can be bounded or unbounded. A bounded probabilistic data
flow graph enforces a maximum number of tokens per edge or vertex, while an
unbounded PDFG places no limit on the number of tokens per edge or vertex. As
with unbounded Petri nets, unbounded PDFGs make analysis of most systems
impossible.

We further restrict our analysis to safe probabilistic data flow graphs. In a

safe PDFG, an edge may contain at most one token. This restriction simplifies
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our modeling task.

A PDFG executes as follows: Before a vertex may begin executing, there
must be one token available on each of a set of enabling edges, which we call an
enabling set. When tokens rest on each edge in an enabling set, we say the set
is ready. A vertex may have several enabling sets. The vertex consumes a token
from each edge in one enabling set.

After a delay it puts a token on each edge in set of production edges called a
production set. One vertex may have several production sets, but a vertex may
place tokens on only one production set at a time. A production set is called
ready if none of its edges carry tokens. When a vertex wants to place tokens on
a not-ready production set, the vertex halts until the production set is ready.

Each enabling set and production set carries a rational weight value. The
probability that a ready enabling set will fire is the ratio of its weight over the
total weight of all ready enabling sets on the same vertex. The probability that
tokens will be produced on a production set after its source vertex fires is the
ratio of its weight over the total weight of all production sets on the same vertex.
We require neither enabling sets nor production sets to be disjoint.

For example, suppose vertex v has three enabling sets By = {a,b,¢},E, =
{c,d}, and E5 = {e, f} with weights w(E;) = 0.3, w(E,) = 0.5, and w(E;) = 0.2.
Suppose tokens rest on edges a, b, ¢, e and f. Then enabling sets F; and E5 enable

vertex v. We compute the probability that vertex v will consume tokens from



E, in Equation 3.1.

_ w(E)
PE) =SB + w(Ty)

(3.1)
Unlike enabling set probabilities, production set probabilities are independent
of which sets are ready. Thus, if £, ..., E, are production sets for vertex v, the

probability that production set E; will receive tokens after vertex v fires is given

by Equation 3.2.

w(Ey)

E)=
P(E) S F,

(3.2)

We must point out that a probabilistic model can only be an approximation
to a deterministic system (like a data flow program). Our model occasionally
results in catastrophic modeling failures, namely closed proper subsets in the
generated Markov chain. We provide a mechanism for correcting this problem

{See Section 3.2.2).

3.1.2 Formal Description

Here, we formalize the notions expressed loosely in the previous section. This
will help us examine partitioning algorithms.

We characterize a data flow program by a directed positional graph, G =
(V,C,E,P,,P,,1,F), called a probabilistic data flow graph. Graph G consists of

the following:

1. A finite set of vertices V. Each v € V represents a single primitive actor in

a static data flow graph.

24



2. A finite set of constant generators C C V. Eachc € C represents a primitive

actor that place an output token whenever its production set is ready. A

constant generator produces tokens in zero time.

3. A finite set of edges EC V x Z* x (V' \ C) x Z*. Each edge represents a
communication path from one actor to another. If e € E,e = (v,i,v,7'),
then we call v the source vertez of edge e, i the source vertez position of
edge e, v’ the sink vertez of edge e, i’ the sink vertex position, ordered pair

v, 1) the source point of edge e, and (v, ¢’} the sink point of edge e.
g g

Our definition of E disallows edges with sinks which are constant genera-

tors. In other words, constant generators cannot have input edges.

Equations 3.3 and 3.4 ensure that all edges e € E have unique source points

and unique sink points.
Y({v,7,v',¥) € E),{v,i,v",i") € E= (v = VYA (i’ =) (3.3)
Y({v',#,v,i} € E), (¢v",i",v,i) e E= (V= v")A (' =1") (3.4)
Equation 3.5 restricts constant generators to a single output edge.

V(ie Z*\{1},c € C),(c,i, v,V ¢ E (3.5)

4. A finite set of enabling groups P, C 2% x Z+. Each enabling group w € P,
designates a set of input edges to a single vertex, and the weight associated

with that set.
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Equation 3.6 constrains subsets of E' marked with a single enabling group

to those sharing a common sink vertex.
Y(E,r) € P,),({v1, 1,01, 11) € E A (v2,82,v},%3) € E) = (v] = v3) (3.6)

Equations 3.7 and 3.8 ensure that a unique weight marks every enabling

set, and every edge e € E is marked by at least one enabling group.

V(B (B, € P (E ) # (Bary > (B£E)  (37)
V(e € E), 3((E’ r) € Fa)’e eE (3.8)

. A finite set of production groups P, C 2 x (0,1]. Each production group
in P, designates a set of output edges from a single vertex, and the weight
associated with that set. Equation 3.9 constrains subsets of E marked with

a single production group to those sharing a common source vertex.
V((E,r) € P)),({v1,01,v1,41) € E A (v2,i2,v3,43) € E) = (v; = v;) (3.9)

Equations 3.10 and 3.11 ensure that a unique weight marks every produc-

tion set, and every edge ¢ € E is marked by at least one production group.
V((Er: ) (Fa r') € ?t)s (E, r) # (Fs r') = (E # E) (3.10)
V(e € E),3({(E,r) € Py),e € E (3.11)

. A time delay function 7: ({V \ C)U E)} — Z*. Forany v € (V\ C), 7(v) is
the time cost of performing the operation. Note that actual primitive op-

erations occasionally require different execution times for different operand
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values. In that situation, we must decompose the operation into smaller

fixed-time primitives.

7. A set of termination vertices F' C (V \ C). When any of these vertices are

enabled by é (see below), the PDFG is said to have terminated.

Execution of a PDFG is represented by a series of instantaneous descriptions

I; = (6;, H;) which consists of the following;:
1. A residual firing time function 6;: (V\C)UE — Z° U {—1}. We designate
bo the start instantaneous description of the PDFG.

For any v € (V\C), () is the remaining time before v will fire. §(v) = —1

indicates that the vertex is in a quiescent state, not processing any data.

For any e € E, é(e) is the remaining time before a token on edge ¢ will be
made available to target vertices. é(e) = —1 indicates the edge does not

contain a token.

Equation 3.12 ensures that the values of the residual firing time function

do not éxceed those of the time delay function.
Y(a € (V\C)UE),éa) £ 7(a) (3.12)
Our definition precludes storing more than one token on an edge.
2. A holding set H; C P, of production groups, which satisfies Equation 3.13.

p=(E,r) € H; = 6;(vert(p)) = 0A (e € E)bi(e) # —1 (3.13)

27



The holding set retains the production sets which should receive tokens
from vertices which are ready to fire. That is, when a vertex completes,
a production set is selected. If that production set is not ready to receive
tokens (because at least one of its edges is not quiescent), the vertex must
“remember” the production set. It cannot “forget” and choose a different
production set because this would not correspond to the way deterministic

data flow programs work.

3.1.2.1 Additional Definitions

Let P, = {(E,r) € P,|¥({a,i,b,j) € E),b = v} denote the enabling sets for
vertex v. Let P, = {{E,r) € P,|¥({(a,i,b,5) € E), b = v} denote the production
sets for vertex v.

We define the source verter function source: E — V for {v,i,v',7') € E such
that source({v,i,v',7)) = v. We define the sink vertez function sink: E — V,
such that sink({v,,v',i"}) = v'. We define the source position function sourcep :
E — V for (v,1,¢,¢'} € E such that sourcep({(v,i,v’,i')) = i. We define the sink
position function sinkp: E — V for (v,i,v',#'} € E such that sinkp({v,i,v',i')) =
7.

We define the input edge function I: V — 2F and the output edge function

O:V -+ 2P in Equations 3.14 and 3.15, respectively.

I(v) = {e € EA(v' € V), 3(i,# € Z*),{v',,v,i) € EAe € E} (3.14)
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O(w)={e€ E|3(v € V),3(i, i € Z%),{v,i,v,iY € EAe € E} (3.15)
Equations 3.16 and 3.17 constrain the source vertex positions and the sink vertex

positions, respectively, for a given vertex to a sequential numbering starting at
1.
V(v e V), Vi€ 2,1 <i<|I[(v)]),3(j € Z%,v" € V), {v',j,v,i} € E (3.18)
Vive V),V(ie Z+,1 <i<|0(w)]),3(j € Z+,v' € V), {v,i,v",j) € E (3.17)
Each vertex v € V, designates a node in the program graph. We define func-
tions pred: V — 2V and suce: V — 2V in Equations 3.18 and 3.19, respectively.
pred(v) = {v € V|3 (e € E),e € I(v) Ae € O(T)} (3.18)
suce(v) = {v € V|I(e € E),e € O(v) A e € I(T)} (3.19)
Ifa = (E, r) € P, u P,, Equation 3.20 defines a function vert: P,U P, - V.
v, if a € P, AV(e € E)sink(e) = v

vert(a) = (3.20)
vy if a € P, AV(e € E)source(e) = v,

By Equations 3.6 and 3.9, when a € P,UP,, vert(a) has a unique, defined value.
If a € P,, then vert(a) returns the unique sink vertex associated with edges
in enabling group a. If a € P,, then vert(a) returns the unique source vertex

associated with edges in production group a.

3.1.3 PDFG Execution

We characterize the operation of a probabilistic data flow graph with a se-

quence of instantaneous descriptions derived from the initial state §,. Here we
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describe the generation of successive instantaneous descriptions.

We say an instantaneous description I = (8, H) directly yields I' = (§', H')
iff Equations 3.21 through 3.31 hold. These equations will derive §’ from é as
follows: We first construct a sequence of instantaneous descriptions starting from
I where edges and vertices fire, but where no time passes. The last instantaneous
description in the sequence, I,,, will be in a state where no edge or vertex may
fire until time passes. We then derive I’ from I, by incrementing our “clock” by
one time unit.

Equation 3.21 disallows a direct yield operation when I is a terminating

instantaneous description.
Y(f € F), 8(f) = -1 (3.21)

There exist a sequence of groups P, = (P, P,...,P,_,) with P; € P,UP,, a se-
quence of potential enabling groups R,. = (R,1,...,R,n_1) with R, ; C P,, a se-
quence of potential production groups Ry. = (Ryq,..., Ry noy) with R, ; C P, and
a corresponding sequence of instantaneous descriptions I, = (I, L,,..., I, I')
such that I; = I and for each ¢ € {1,...,n — 1}, Equations 3.23 through 3.27
hold.

Equations 3.22 through 3.24 fire edges in a single enabling set. Equation 3.22
constructs a set, R, ;, of enabling groups which can fire. Equation 3.23 selects

an enabling group P; = (E;, ;) from that set. Each edge ¢ € E; is ready to fire
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(6i(e) = 0) and the sink vertex for enabling group P is quiescent.
R,; = {{E,r) € P,|JE C 67'[0] A éi(vert(P)) = -1} (3.22)

P,=(E,r)€eP,= P.€R,; (3.23)

Equation 3.24 defines the state of the PDFG after the edges in E; have fired.
The sink vertex takes on its starting time delay, the edges in the enabling set

lose their tokens, and the state does not change for other edges and vertices. For
bix1: (V\NCYUE — Z* U {-1},
r(a) if a = vert(FP)

bim(a)=9 -1 ifacE, (3.24)

{ 6i(a) otherwise

Equations 3.25 through 3.27 fire a single vertex. Equation 3.25 constructs a set,
Ry, of production groups that can fire. Equation 3.26 selects a production group
P; = (E,,r;). The source vertex for E; is ready to fire, and no holding production

set has been designate for this vertex in H;.
R = {{E,r) € Py|vert({E;, r;)) € 67 [0)AV(P € H;)vert(P) # vert(P:)} (3.25)

P.={(E,r)€ P,= P,€ Ry; (3.26)

Equation 3.27 defines the instantaneous description of the PDFG after vertex
vert(P;) has fired or P; has been placed in the holding set. Each edge in the

production set takes on its starting time delay, the vertex loses its token or P is
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added to Hi,:, and the state does not change for other edges and vertices. Let

H; = H;U P,. We define 6;;,:(V \ C)U E — 2% U {—1} by Equation 3.27.

r(a) ifI(E,r) € H)ae EAE C§'[-1]

biv(@) =9 -1  if (E,r) € H)a = vert((E, ) AEC 671 [-1] (327)

6:(a) otherwise

We define the next holding set, H;;; € P, U P, by Equation 3.28.
Hiy = {(E,r) € H|3(e € E)e ¢ §7'[-1]} (3.28)

Finally, Equations 3.29, 3.30 and 3.31 must hold for the terminating instanta-
neous description in the sequence. Equation 3.29 states that there is no enabling

set which can fire in 6,.

V(E,r) € P,YE € 6-1[0] V 6, (vert((E, 7)) # —1 (3.29)
Equation 3.30 states that there is no vertex which can fire in 6.

V(E, ) € Povert((E,r)) ¢ 6 [0] vE € 61 [~1] (3.30)

Equation 3.31 completes one time step. Define §":(V\ C)U E — Z% U {-1}

such that Equation 3.31 holds.

(a) = -1 if 6.(a) = —1 (3:31)

max(0,6,(a) — 1) otherwise

Finally, Equation 3.32 completes the construction of I'.

I' = (8, H,) (3.32)
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3.1.4 ‘Transition Probabilities

s

For any yield operation I — I’ we can compute a probability p(I, I'Y. In
general, we compute this using the yield sequences we constructed in the previous
section.

For a yield operation I — J ', we can construct a set of yield sequences,

Y(I,I'), satisfying Equation 3.33.
Y(LIY={L|3(rne 2%, = (Z,..., I, I} (3.33)

This is the set of all possible sequences from I which directly yield I’
Pick any sequence I, = (I,..., LI, I') € Y(I, I'). Equation 3.34 gives the
probability, p(1;, Liyy), that a particular transition from I; to I}, occurs in 1.

Forl1<i<n,
w(F;)

Ii1 II =
PL L) PE(R, UR, ;) W(P)

(3.39)

Equation 3.35 gives the probability that sequence I, will occur from starting

instantaneous description I,

p(L) = ri:IIp(I.-,I.- +1) (3.35)

i=1
Finally, Equation 3.36 gives the probability that a particular yield operation

I — I will occur.,

I—-IV= 3 pI) (3.36)

L.eY (1,1}

We note that the — operation and the probability function p describe a Markov

chain. We can make use of this to predict the execution time of a data flow
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program.

3.1.5 Fitting the Model to the System

Since each edge must have two endpoints, we establish these conventions:
Where the program receives a value from the external environment, we create a
source vertex with zero residual firing time (i.e., with a resident token). When
the program sends a value to the external environment, we create a sink vertex,
where edges enter the vertex but do not leave.

The model cannot deal with multiple tokens per edge or vertex because it is
safe. One cannot accommodate this by simply multiplying the number of edges
in the model by the maximum number of expected tokens per edge in the data
flow machine. However, replications of the system can model a fixed maximum
number of tokens on each edge.

Unfortunately, this can increase the number of states exponentially with the
number of tokens accommodated, and does not significantly increase the power
of the model. In this thesis, we impose a maximum of one token per edge.

We must also point out that recursion cannot be handled adequately by our
model. We can approximate it by assigning a fixed time cost to each recursive
call. In a later section, we will show a recursive example program, Recursive_AQ.
While the modeled execution-times were extremely inaccurate for Recursive_AQ,
the relative ordering of the execution-time estimates and the partitioning results

were correct.
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Transition probabilities of distinct data flow actors are assumed independent
by the Markov construction. Dependencies in the original data flow program can

cause the Markov construction to produce inaccurate execution time predictions.

3.1.6 Obtaining Probability Estimates

A detailed exposition on how to obtain the probability estimates for a data
flow program is beyond the scope of this thesis. However, we will briefly mention
two methods, the first based on extrapolated empirical data, the second based
on analysis.

Using simulations of low execution-time sample data sets, one can obtain
transition frequencies. Extrapolating these transition frequencies to normal
execution-time data sets, one can obtain probabilities.

A second method involves probability estimates made by the programmer.
Often a cursory analysis of a program can produce reasonable transition proba-
bility estimates. Those estimates can be included as pragmatic remarks in source

code for the program.
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3.2 Interpreting the Markov Model

Figure 3.1 shows an example PDFG with weights assigned to each enabling
and production group. The decimal fractions shown in Figure 3.1 refer either to
the relative weight of an enabling set, if the numbers appear at the sink of a set
of edges, or the weight of a production set, if the numbers appear at the source

of a set of edges. Where no weight accompanies a group, the weight is 1.

Figure 3.1: Probabilistic Data Flow Graph

For convenience, we assume that edges and vertices in this PDFG have a fixed
delay time of 1, so Equation 3.37 holds. This gives us a simpler and more easily

explained Markov chain.

Y(a,b € (V\ C)UE)r(a) = (b) = 1 (3.37)
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Vertex (0) represents the “start node” in Figure 3.1. Two initial tokens reside
on edg-?csrta) z;nd (b). In another modeling system, both initial tokens might be
shown residing on the same edge. As mentioned before, we disallow more than
one token per edge in our safe PDFGQ model.

Vertex (1) can absorb a token from either edge (a) or edge (b), with equal
probability. After it operates on the input token it produces two output tokens
on edges (c) and (d). Vertex (2) absorbs an input token from either edge (c)
or edge (f), operates on the input token, and either produces an output token
on edge (g) with probability 0.4, or produces an output token on edge (i) with
probability 0.6.

Vertex (3) absorbs a token from ejther edge (h) or edge (g), operates on the
input token, and produces an output token on edge (f). Vertex (4) requires
tokens resident on both edge (i) and edge (e) before it can begin. It absorbs
the two input tokens, operates on them, and either produces an output token
on edge (h) with probability 0.3 or produces an output token on edge (j) with
probability 0.7.

Vertex (5) Simply absorbs a token from edge (d), operates on it, and produces
an output token on edge (e).

Vertex (6) represents a termination state. When it absorbs a token from edge

(i), the program has completed.
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3.2.1 Generating a Markov Chain

Figure 3.2 shows a graphical representation of the Markov chain produced by
the probabilistic data flow graph in Figure 3.1. This chain can be obtained by
transforming the PDFG to a Markov chain, as discussed in Section 3.1.4. We
have a program which performs this transformation. The transitions produced
by the program appear in Table 3.1.

We will discuss a few highlights from our example chain to elucidate the
general method.

The chain was generating assuming that each operation (vertex) takes a single
cycle and each data communication plus matching operation (edge) consumes one
cycle.

In the upper left corner of Figure 3.2, we see state (ab), the starting state for
the system. Vertex (1) can absorb a token from either edge (a) or edge (b) at
the next cycle, with equal probability. The 0.5 probability transitions to states
(al) and (bl) model the first cycle of the data flow program’s execution, an OR

input.
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Figure 3.2: Markov Chain for Probabilistic Data Flow Program




Source —Sink Probability Source —Sink Probability
ab —bl 0.5 i3 —fi 1.0
ab —al 0.5 fi —i2 1.0
al —cdl 1.0 j2 —i6 0.6
cdl ~+cd25 1.0 j2 — gt 0.4
cd2s —ei25 0.6 g6 —ab 1.0
cd25 —eglh 0.4 i6 —ab 1.0
eg25 —+ei35 [5-+{e)] 0.6 ei2 —id 0.8
eg25 —eg35 [5—(e)] 0.4 ei2 —g4 0.4
eg35 [5—(e)]—ef35 [5—(e)] 1.0 gd —j3 0.7
ef35 [5—(e)] —ef25 [5—(e)] 1.0 g4 —h3 0.3
ef25 [5—+(e)] —ei25 [5—(e)] 0.6 h3 —{3 1.0
ef25 [5—(e)] —eg25 [5—(e)] 0.4 i3 —f6 1.0
eg25 [5—+{e)]—ei35 [5—(e)] 0.8 f6 —ab 1.0
eg25 [5—(e)]—eg35 [5—(e)] 0.4 i4 —ij 0.7
€i25 [5—(e)] —eid 0.6 i —hi 0.3
ei25 [5—(e)] —~egd 0.4 hi —+i3 1.0
egd —e¢j3 0.7 i) —i6 1.0
egd —eh3 0.3 ej3 —ef6 1.0
eh3 —ef3 1.0 ef —ab 1.0
ef3 —ref2 1.0 eid —j4 0.7
ef2 —+ei2 0.6 eid —h4 0.3
ef2 —eg2 0.4 h4 —j3 0.7
eg2 —eil 0.6 h4 —h3 0.3
eg2 —eg3 0.4 i4 —j6 0.7
eg3 —ef3 1.0 j4 —hé 0.3
eil —14 1.0 hé —ab 1.0
f4 —ij2 a7 6 —ab 1.0
f4 —h2 0.3 €i35 [5—(e)]—45 [5—(c)] 1.0
h2 —i3 0.6 45 [5—(e})] —ej2 0.7
h2 —g3 0.4 £45 [5—(e)] —eh2 0.3
g3 —f3 1.0 eh2 —ei3 0.6
f3 —1f2 1.0 eh2 —eg3d 0.4
f2 —i2 0.6 ej2 —eif 0.6
f2 —g2 0.4 €j2 —egh 0.4
g2 —i3 0.6 egb —ab 1.0
g2 —g3 0.4 ei6 ~+ab 1.0
i2 —i2 [2—(i)] 0.6 ei25 —eid 0.6
i2 —gi 0.4 ei25 —egd 0.4
g —i3 1.0 bl —cdl 1.0
i2 [2-s(i)] —i2 2—()} 1.0

Table 3.1: Transitions for Example PDFG
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From state (cd25), vertex (2) can produce a token on edge (g) or edge (i),
with probablhtles 0.4 and 0.6 respectively. Simultaneously, vertex (5) fires and
must place edge (e) into the holding set (see page 28). The transitions to states
(i25,5-+¢) and (eg25,5—¢) model this XOR output example.

From state (cd1), vertex (1) produces two output tokens on edges (¢) and
(d). Simultaneously, the tokens previously on edges (c) and (d) are absorbed
by vertices (2) and (5). The transitions from (cdl) to (cd25) model this AND
output example.

From state (ef2), vertex (4) cannot begin because no token resides on edge
1. Vertex (4) has AND inputs. However, the state immediately following (ef2),
(ei2), has tokens on edges (i) and (e). Thus, from state (€i2), we can go to states
(i4) or (g4).

State (f6), (g6), (hs), (i6) and (j6) are termination states. At these states,
the designated “final vertex” has been reached and the data flow program halts.
We insert transitions from all final states in the Markov chain to the start state,
(ab). This allows us to obtain the estimated execution time for the program.

At states (h3) and (hi), the program enters an unrecoverable infinite loop.
The set of states { (h3), (13), (f2), (i2), (gi), (), (i3), (82), (g3), (hi), (12,2—1),
(h2) } form a proper closed subset of the state space (the shaded region in the
graph). Neither the start state nor the end state occupy this state space, thus
we have a useless infinite loop. Should a real data flow program enter state (3h)

or (hi), the program has a bug.
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3.2.2 Closed Subsets in Markov Chains

We define a mazimal closed subset of a Markov chain as a closed proper subset
of the chain which is not itself a proper subset of a closed (not necessarily proper)
subset of the Markov chain. For any Markov chain, there is either one maximal

closed subset or none.

a/(1-c

Before Deletion After Deletion

Figure 3.3: Deleting Closed Subsets from Markov Chain

For our analysis, we assume that the programmer will not intentionally pro-
gram an infinite loop. We cut infinite loops out of the Markov chain by removing
maximal closed subsets and adjusting transition probabilities appropriately. If
we do not remove these sections, our expected execution time will be infinite.

Figure 3.3 demonstrates the process of cutting state transitions to maximal
closed subsets. We must remove the state transition with probability ¢ from the
Markov chain. We set its probability to zero, eliminating the transition. We then
normalize the other state transition probabilities associated with this node, by

multiplying them by 1/(1 — ¢).

Theorem 1 Let T be a Markov chain with state space Vi, and let C be a mazimal
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closed subset of V,. Then Vv € (V;\ C),0 < ¥ Toi < 1.

ProoOF. We know 0 < 3 ¢ T, < 1, since T is Markovian. Suppose Jv €
(ViAC), Ziec Tv,i = 1. Then CU{v} is a closed subset of the Markov chain, and
C cannot be a maximal closed subset of V;, a contradiction. @

Theorem 1 shows that we can legally cut all transitions into a maximal closed
subset. Suppose that Theorem 1 was false. If Jv € (V;\ C), Z;cc To,i = 1, then
all transitions from state v go to states in maximal closed subset C. When we
applied our transition deletion algorithm, we would encounter an indeterminate
situation in deleting the last remaining transition to C.

Let directed graph G, = (V}, E,, p;, 3;) represent n X n stationary transition
matrix T. Graph G, consists of a finite set of vertices V;, a finite set of edges E,,

transition probability function p,: E, — [0,1] and a single start state s € V;.

1 |S5—{s}, F=0 ; § is unvisited nodes not in MCS.

2 | while S # @ do ; Find vertices that can reach any r € §.

3 select any x € 8 ; Visit one vertex.

4 F — Fu{x} H Add x to list of found vertices.

5 S — S\ {=} ; Remove r from list of unvisited.

6 S—Sul{veWVi<yz>e B3\ F}; Get vertices that can start this cne.

7 end while ;

8 | M—WV\F H Set M to Maximal Closed Subset.
Algorithm FMCS (Find Maximal Closed Subset)

Theorem 2 Algorithm FMCS completes in O(|Vi} + |E,|) time.

PROOF. Statements (1) and (8) complete in constant time. Statements (2),

(3), and (4) repeat at most once per element of V;. Statement (6) performs at
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most, over the complete execution of the program, |E;| set inclusion operations
and |V;| set-difference operations.

Thus FMCS completes in O(|V}] + |E;|) time. W

There are 52 vertices and 79 edges in Figure 3.2. So the FMCS algorithm
applied to that graph would take O(52 + 79) time. The graph resulting from the

application of Algorithm FMCS is shown in Table 3.2 and Figure 3.4.
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Figure 3.4: Markov Chain for PDFG After Algorithm FMCS
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Source -+ Sink Probability Source —Sink Probability
bl —cdl 1.0 j2 — g6 0.4
€i25 —egd 0.4 j2 —+16 0.6
ei25 —eid 0.6 4 —j2 1.0
€i6 —ab 1.0 ei3 —f4 1.0
egh —ab 1.0 eg3 —ef3 1.0
ej2 —eg6 0.4 eg2 —eg3 0.4
ej2 —+2if 0.6 ege —eid 0.6
eh2 —eg3 0.4 ef2 —eg2 0.4
eh2 —eid 0.6 ef2 —ei2 0.6
{45 [5—(e)] —eh2 0.3 ef3 —ef2 1.0
45 [5—{e)] —ej2 0.7 eh3 —ef3 1.0
i35 [5—+(e)]—~[45 [5—~(e)] 1.0 egd —¢eh3 0.3
j6 —ab 1.0 egd —ej3 0.7
hé —ab 1.0 ei25 [5—(e)] —egd 0.4
j4 —hé 0.3 €i25 [5—{e)] —eid 0.6
j4 —j6 0.7 eg25 [5—+(c)]—egd5 [5—(c)] 04
h4 —ij3 1.0 eg25 [5—+(e)]|—+ei35 {5—(e)] 06
eid —h4 0.3 ef25 [S—{c)] —eg25 [5—(<)] 0.4
eid —j4 0.7 ef25 [5—+(e)] ~+€i25 [5—(e)] 0.6
ef6 —ab 1.0 ef35 [5—(e)] —ef25 [5—(e)] 1.0
€j3 —ef6 1.0 €g35 [5—(e)]—ef35 [5—(¢)] 1.0
i —i6 1.0 eg25 —eg35 [5—(e)] 0.4
i4 —ij 1.0 eg25 —ei35 [5—(¢)] 0.6
f6 —ab 1.0 cd25 —eg25 0.4
i3 —f6 1.0 cd25 —ei23 0.6
gd —j3 1.0 cdl —cd25 1.0
ei2 —gd 0.4 al = cdl 1.0
ei2 —id 0.6 ab —-+al 0.5
i6 —ab 1.0 ab —bi 0.5
g6 s ab) 1.0

Table 3.2: Transitions Minus Closed Subset for PDFG
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The chain resulting from application of FMCS is irreducible and homogeneous

[Klei75]. It may not be aperiodic.

3.2.3 Obtaining Expected Execution Time

We determine the expected execution time for the data flow program by
obtaining the mean recurrence time of the Markov chain start state. Each
Markov chain is characterized by a transition probability matrix T. To ob-
tain the mean recurrence time, we must obtain the stationary probability vector
p = limjo p®.

We solve this equation by noting that 4 = uT, and if 4 is a 1 X n matrix, that
Yoicq pi = 1. Several algorithmms have been produced which solve the resulting
system of linear equations in order O(#*) time [Heym87] [Harr84].

If state ab is the start state for our data flow program, and g, is the stationary
transition probability for state ab, then 1/, is the mean recurrence time for the

start state and the expected execution time for the data flow program.

3.2.4 Limitations of the Stochastic Model

Three problems arise from our stochastic model. First, finding production set
probabilities is an incomputable problem (discussed later in Theorem 7). With
reasonable probability and starting state estimates, we can obtain reasonable
partitionings. Methods for accurately predicting state transition probabilities

exceed the scope of this manuscript, but they normally use program analysis or
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the statistical results of simulation.

Second, data flow operations do not operate stochastically. Predicting exe-
cution times from a statistical analysis occasionally produces strange artifacts.
Often two branches will always fire in the same direction. Our model assumes
that each branch will select it’s output edge with some fixed, independent prob-
ability. As a result, programs which include dependent branches cause errors in
the model.

The third major limitation of our model results from our prohibition of more
than one token residing on an edge or within a vertex. Many present machines
allow many token to rest on an edge, waiting for other matching tokens. Likewise,
in some machines, many copies of the same actor or vertex can be operating on
different sets of tokens simultaneously.

In Chapter 5 we will apply the stochastic model to a dynamic data flow
program (which allows multiple tokens per edge). We will compare our execu-
tion time estimates with actual execution times. While the problems we discuss
above cause errors, for our partitioning examples the model chooses the correct

partitions.
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CHAPTER 4

Partitioning Data Flow Programs

Using the methods outlined in Chapter 3 we can obtain performance estimates
for data flow programs. Our original goal was to find an automatic method for
partitioning data flow programs into naturally sequential blocks, or “sequences.”
As described in this chapter, one can find several alternative partitionings. We
will use the modeling method of Chapter 3 to select a good one, from the set of

all possible partitionings.

4.1 Naturally Sequential Blocks

One can partition data flow graphs in several ways. We choose to restrict
ourselves to partitioning in a way that preserves all parallelism, but which incor-
porates as many actors into each sequence as possible. To ensure this, we adopt
the following set of rules:

All input tokens coming into a sequence must enter before the sequence starts.
If a sequence could partially complete and then wait for a token, deadlock con-
ditions could occur.

Since input tokens must be available before a sequence starts, inherent par-

allelism in the system could be destroyed by interior actors that require tokens
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1| §—{veV|3ee E bo(e) # —1 A sink(e) = v) v fo(v) # —1} ; Establish starting nodes.
2i8—Suf{veV||P,|>1} ; If a pred{v) may not start v, include v.
3| M—S5,j~0 i Initialize.
4 | while S# @ do ; As long as there remains a start node,
5 select any s € S ; ... select one as this partition's start.
8 Se=8-{shj—j+1,k—0,Q — @, Found — true ; Update S, get next P, initialize.
7 while Found do ; If found a good successor, continue.
8 chndt—falac,kt—k+1,P(j’k) —5,Q+— Qu{s} ; Go to next vertex, add s to P and Q.
9 for all v € V such that v € succ(s}) Av g M do ; Use only “good” successor nodes.

10 if pred(v) C M ; Have predecessors been placed?

11 M— Mu{v} i Yes, this one will be too.

12 if pred(v) C Q@ A ~Found ; Are all predecessors in partition?

13 Found — true,n — v ; Yes. Put v in partition.

14 else ;

15 8~ Su{v} i No. Put v in start nodes.

16 end if i

17 end if ;

18 end for ;

19 3+—n ; Set up to put our successor in P,

20 end while H

21 Fiiner) — e ; Mark end of this partition.

22 end while H

Algorithm PSB (Partition Sequential Blocks)

from outside the sequence. Therefore, we will not incorporate an actor into a
sequence if it requires tokens from another sequence and it is not the first actor
in the sequence.

However, we do allow any actor (i.e., not necessarily the last actor in a se-
quence) to produce output tokens which are sent to another sequence. This is
easy to implement in hardware. When an actor produces a result, it could be
immediately sent to the matching store, for example, rather than wait for the
entire sequence to complete.

Algorithm PSB partitions a program graph into the largest possible sequences

according to the above rules.

Algorithm PSB first places all vertices that must begin sequential blocks in
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set S (s_tfaii_;f:ment 1). It uses this criteria: If an initial token rests on a vertex’s
incoming edge (i.e., if residual time do(e) # —1) or the vertex itself is processing
a token (8p(v) # —1), that vertex is placed in S. Sequences then grow from
these “starting nodes” in the loop beginning at statement 7. If an immediate
successor to the current vertex, s, requires a token from s to begin execution,
and if that successor accepts tokens solely from the vertices preceding it in the
current sequence (set @), it is selected as a successor within the sequence.

Any other successor vertices, whose predecessors are entirely in Q U M, will
be added to the set S. These will serve as additional sequence starting nodes.

Upon completion of Algorithm PSB, each P;, where 1 < i < j, comprises one
sequential block. If we form large actors from these blocks, we may eliminate

some communication delay while preserving all parallelism in the program.

Theorem 3 Upon completion of Algorithmn PSB, two-dimensional array P con-

tains all vertices in V', except unezecutable vertices.

Proor. First, we assume that Yo € V|[ec € C A v = end(c)] = [Je €
E,end(e) = v]. By this assumption, we disallow vertices executable solely by
input constants. Because vertices driven solely by constants have no clear in-
terpretation, and in some machines they could generate an infinite number of
output tokens, we exclude them.

By statement 1, we know that the labels of all vertices that might execute

immediately after initiation of the program are in S. Statement 7 executes at
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least once for every s € S, by statements 4 to 6. No statement in Algorithm
PSB removes an element of S, except statement 6. Thus, if at any time during
Algorithm PSB’s operation, 3 € S, then by the algorithm’s termination 3¢ €
{1,...,k},Piy = s.

Assume that ¢ € V, and a is executable. We want to show that for any
b € succ(a), where b is executable, that 3¢, j € Z%, P; j) = b.

Suppose b € suce(a). Then e € E, start(e) = a Aend(e) = b. By statements
3 and 11, M contains all vertices that at some point were members of S, or
those included in some previously constructed sequence. We know by the above
argument that all such elements of S will be in a sequence. Therefore, if b € M,
b is in a sequence.

Now consider statement 7. If a can receive a token, at some point the pro-
gram’s 3 equals a at statement 9. If b € M, we execute the body of the loop. If
pred(b) C M, that is, all predecessors of b are executable and have been placed
in P, then by statement 11, b will be added to M, and thus » will be placed in
a sequence (either immediately at statement 19, or later through statement 15).

We know that all vertices that can execute immediately upon program initi-
ation are present in P. We know that if a vertex is present in P, and successor
vertices will also be present in P. So by induction, the labels of all executable

vertices are in P. W

Theorem 4 Algorithm PSB preserves the ordering of directed graph G.
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PROOF, To prove this, we have to show that no sequence P; in P internally
violates the ordering of G. Then we must show that externally, no ordering
violations can occur.

By statement 12, a vertex v can only be included in P; if all o € pred(v)
precede it in P;. Therefore, internally all sequences P; preserve the ordering of
G.

Externally, according to the machine’s operation, all incoming tokens must be
present before a sequence begins. Therefore, P; cannot begin until the external

ordering is satisfied. W

Theorem 5 Algorithm PSB preserves all parallelism present in the original data

flow graph. -

PROOF. Assume otherwise. Then 3i,j,k € Z%,j < k, such that Py pre-
cedes F(;;) in graph G or no ordering exists between P;x) and P ;.
Theorem 4 implies that no ordering exists between Fix and Pj; ;. But by

line (9) of PSB, the succ relation orders all nodes in the string F;. With this

contradiction, we proved our theorem. B
Theorem 6 Algorithm PSB’s mazimum execution time is O(|V| + |E|).

PROOF. Clearly statement 1 executes in O(|E]) time, and statement 2 in
O(|E]|) time. The body of loop 9 iterates, at most, once per e € E before
Algorithm PSB terminates. The body of loop 7 iterates, at most, once perv € V

before Algorithm PSB terminates.



So Algorithm PSB completes in O(}V| + |E|) time. W

4.2 Execution Times for Different Partitionings

While the use of Algorithm PSB will reduce communication delays (see Chap-
ter 5), the indeterminacy of statement 9 allows several different partitionings of
most graphs. In some cases, selecting one partitioning over another will substan-
tially accelerate an algorithm. In this section, we examine criteria for selecting

one partitioning over another.

Outcomse 1 Outcome 2

Figure 4.1: Two Outcomes of Algorithm PSB

In Figure 4.1, we see two possible outcomes, depending on which v € suce(s)
statement 9 choses when 3 = DUP. In Outcome 1, a result token will appear on the

left input of SUB earlier than on the right input, because the left path requires
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fewer vertices (machine operations) and fewer exposed edges (communication
delays) than the right path. In Outcome 2, the two result tokens will appear at

SUB at more nearly the same time.
Remark 1 Outcome 2 of Figure 4.1 is faster than Outcome 1.

PRrOOF. Let t: C — R, where C is the set of all operation codes and R is the
set of real numbers. If ¢ € C, then #(c) is the execution time of that operation.
t; is the average time to process 1;input communications. i, is the average time
to process 2-input communications. t; < ¢, because the latter must go through
the matching store, while the former need not [Wats82].

The Outcome 1 program takes T} = #{DUP) + maz(¢(SQR),t; + t{ADD) +
t(SQR)) + t; + t(SUB) time units. The Outcome 2 program takes T; = #(DUP) +
maz(t, + t(SQR), t{ADD) + #(SQR)) + t; + ¢(SUB) time units. We easily compute
that T, = Ty — ¢; — {(ADD) + max(t,, t(ADD)). Srince 1 > 0 A t(ADD) > 0, we see
that T, <T7}. W

Ideally, we would generalize this concept, generating an algorithm to choose

the optimal path. We shall discover this task difficult.

Theorem 7 Partitioning an unevaluated date flow graph into optimal sequential

blocks is incomputable.

PROOF. We prove this theorem by example. Observe the data flow program

fragment in Figure 4.2. There are two possible partitionings under algorithm
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Qutcome 1 Qutcome 2

Figure 4.2: Optimal Partition Depends on Input
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PSB. Assume the incoming value z > 3, and the execution time of each node
1s the -Sé,;l"le. Then the leftmost partitioning completes earlier. Conversely, with
z £ 3, the rightmost partitioning completes earlier.

Thus, the optimal graph partitioning depends solely on the value of incoming
value z. But the algorithm used to calculate z can be any data flow algorithm.
By [Turi36], predicting the resulting value of z is incomputable. Therefore,
partitioning a data flow graph into optimal sequential blocks is incomputable.

4.3 Obtaining a Solution

Since partitioning is incomputable by Theorem 7, we must rely on approxi-
mations. Applying non-deterministic Algorithm PSB to a data flow graph will
result in a set of different sequential partitionings.

Execution times will differ between partitionings because intra-sequence com-
munication times will be less than inter-sequence communication times. Using
the method described in Chapter 3, we can obtain an estimated completion time
for each partitioning, and choose the partitioning which completes in the least
amount of time. We describe our experiences with an automatic system we

developed, in Chapter 5.
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CHAPTER 5

Implementation

In Chapter 3 we gave a notation for describing data flow programs probabilis-
tically. We showed how to convert those to discrete-time, discrete-space Markov
systems. We noted that these Markov systems can have proper closed subsets
which do not include the start state, and explained why this is a model failure.
We gave an algorithm to delete these closed proper subsets from the Markov
chain.

We showed in Chapter 4 how one can find all maximal partitionings for a
data flow graph preserving parallelism. We gave a high-level description of the
algorithm. We presented an example program which would run with different
execution times depending on the partitioning used. We showed that finding
the optimal partitioning is an incomputable problem, and the best we can do is
find a good heuristic. We suggested that the PDFG/Markov model provided in
Chapter 3 might provide a reasonable answer.

Here, we merge the ideas of the previous two chapters. We built a program
that accepts a probabilistic data flow graph specification and analyzes different
partitionings for it. To compare our results with the execution times on a real

machine, we wrote a tagged-token data flow machine simulator. In this chapter,
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we describe both systems in detail and present the results from two example data

flow programs.

5.1 The Analysis Program

Written in the Lisp language variant called “T” [S1ad87], our analysis program
reads a PDFG description and produces the transition probability matrix for an

equivalent Markov chain. It performs the following operations:

1. Computes the set of all maximal partitionings for the program according

to Algorithm PSB.
2. For each partitioning created, it

{a) Sets the execution time of edges internal to a sequence to zero. This
corresponds with zeroing the communication time between actors

which share a common sequence, in an actual data flow machine.
(b) Writes the names of the zeroed edges to a file.

(c) Converts the resulting PDFG to a Markov chain according to the

algorithm described in Chapter 3.
(d) Applies Algorithm FMCS to the Markov chain.

(e) Outputs the resulting modified Markov chain to a file.

3. Lastly, the analysis program performs operations 2c¢ through 2e on the

original PDFG.
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To complete the analysis, we wrote a program in the C language which com-
putes the stationary probability vector and the state return times for the Markov
chain output in step 2e. This program uses the method described in [Heym87] to

perform these calculations directly (rather than by successive approximation).

5.2 Input Format

The analysis program described above, and the simulator program described
in Appendix D, use the same input format to describe a data flow program. A
description of that input format follows:

The input format is designed to carry all information required by both the
analysis program and the simulator. Therefore, some of the information in the
common description format is superfluous to the analyzer (such as the actual
value of the initial token on an edge).

Likewise, some information is superfluous to the simulator. For example, the
ability to state that a vertex is in a partial state of completion (with §o(v) # —1) is
completely ignored by the simulator. The concept of a residual time is inherent
in the PDFG description for both edges and vertices, but implementing it as
part of the initial state of the simulator would not be worth the effort. None
of the examples documented in this thesis specify vertices in partial states of
completion, as initial states.

The input consists of a series of Lisp-style s-ezpressions, followed by the

keyword “end”. Each specifies a particular component of the data flow program.
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(edge name time residual)

(edge name time residual value)
The edge command specifies an edge in the graph. It has a label, name,

which can consist of any non-blank characters.

Time must be an integer greater than or equal to 0. It specifies the time
required to send a token from the source vertex of this edge to the sink
vertex. When the edge carries a value between vertices contained in the

same sequence, we will set time to zero.

Restdual must be an integer greater than or equal to -1. If it is -1, no value
parameter should be specified. A residual of -1 means there is no token
resting on the edge in its initial state. If residual # —1, it indicates that
a token is resting on the edge in its initial state, and that residual cycles

remain before the value will reach the edge’s sink vertex.

Value must be specified if residual # —1. If value is a sequence of digits,
it is tagged as an integer. If value is a sequence of digits with a decimal
point, it is tagged as a real number. If value is TRUE or FALSE, it is
given the corresponding boolean value. If value begins and ends with the

(310

character *”’, it is considered a string. Otherwise, it is invalid.

(vertex name instruction time residual enabling producing)
Name specifies a unique label. When instruction field is SUBR, the vertex

may be called as a subroutine, using the label given in name.
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Instruction is used only by the simulator, and indicates the instruction to

be executed when this vertex fires.

Time and residual correspond the execution time and residual execution

time of the vertex (see Chapter 3).

Enabling specifies the enabling groups for the vertex, in Lisp s-ezpression
format. Each enabling set is a list. The first value is the floating-point
weight associated with the enabling set. The remaining values are the
names of input edges. Enablingis a list of enabling groups. So, for example,
if edges a through d have been defined, “({1 a b ¢) (3.5 d))” specifies
two enabling groups. The first has three input edges, a through ¢, with
weight 1. The second has one input edge, d, with weight 3.5. The weights

are ignored by the simulator.

Producing specifies the production groups for the vertex, in the same format

as enabling.
The system requires all edges to be defined, before they are referenced in

a vertex command.

(constantvertex neme value producing)
This command defines a special vertex, which produces constants on de-
mand. Tt is like the vertex command, with an implied time of 0, a perma-

nent residual time of zero, and a null enabling set.

Value has the format outlined above in the description of the edge com-
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mand.

Producing must contain only one production group, with only one edge.
The weight specified for the producing group is ignored by both the simu-

lator and the analyzer.

The tokens produced by this vertex will match anything targeted for the
same instruction, in the simulator program’s matching store. In the ana-
lyzer program, a constantvertex is “absorbed” into its sink (constants are

assumed immediately available to target vertices).

(finalvertex name enabling)
This command defines a special vertex with an implied #ime of 0, a residual

of -1, and a null producing value.

When this vertex is enabled, both the simulator and the analyzer will

assume program termination.

5.3 Example Programs

Both Program 1 and Program 2 were originally written in SISAL, a stream-
oriented, Pascal-like applicative language. We used the retargetable SISAL com-
piler developed by Lawrence Livermore National Laboratory {McGr85] to gen-
erate data flow program object, and converted the object by hand to our input

format.
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5.3.1 Program 1: INTEGRATE

The INTEGRATE program is derived from an example discussed in [Gurd85],

and converted to SISAL version 1.2. The source follows:

define Integrate
function Integrate (returns real)
for initial

int := 0.0;
y = 0.0;
X = 0.02
while
x<1.0
repeat
int := 0.01 * (0old y + old y);
y := old x * old x;
b4 := o0ld x + 0.02
returns
value of sum int
end for

end function

The resulting data flow input for our analysis and simulation programs fol-

lows:
(edge =a 1 0 0.0)
(edge =b 1 0 0.0)
(edge =c 1 0 0.02)
(edge =d 1 0 0.02)
(edge =e 1 -1)
(edge =f 1 -1)
(edge =g 1 -1)
(edge =h 1 -1)
(edge =i 1 -1)
(edge =j 1 ~1)
(edge =k 1 -1)
(edge =1 1 -1)
(edge =m 1 -1)
(edge =n 1 -1)
(edge =0 1 -1)
(edge =p 1 -1)
(edge =q 1 -1)
{edge =r 1 -1)
(edge =8 1 -1)
(edge =t 1 -1)
(edge =u 1 -1)
(edge =v 1 -1)
(edge =w 1 -1)
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. fedge =x 1 -1)
(edge =y 1 -1)
(edge =z 1 -1)
(edge =aa 1 -1)
{edge =ab 1 -1)
(edge =ac 1 -1)
(edge =ad 1 -1)
(edge =ae 1 -1)
(edge =af 1 -1)
(edge =c0 0 -1)
(edge =c1 0 -1)
(edge =c2 0 -1)
(edge =c3 0 -1)
(edge =c4 0 -1)
{edge =c5 0 ~1)
(edge =c6 0 -1)
(edge =80 0 -1)
(finalvertex *F ((1 =af)))
(vertex *32 NOP 0 -1 () ({1 =a)))
(vertex *33 NOP 0 -1 () ((1 =b)))
(vertex *34 NOP 0 -1 () ((1 =¢)))
{(vertex *35 NOP 0 -1 () ((1 =d)))
(constantvertex *C0 1.0 ({1 =c0)))
(vertex *0 CGR 1 -1 ({1 =c0 =g)) ({1 =h)))
(vertex *1 DUP 1 -1 ({1 =h)) ((1 =m =0)))
(vertex *2 BRR 1 ~1 ({1 =n =£)) ((0.02 =80)(0.98 =1)))
(vertex *3 BRR 1 -1 ((1 =m =e)) ((0.02 =§)(0.98 =k)))
(vertex *4 DUP 1 -1 ({1 =0)) ((1 =n =p))
(vertex *5 BRRdAt 1 -1 ((1 =p =i)) ((0.02 )(0.98 =q =1)))
(vertex *6 DUP 1 -1 ({1 =q)) ({1 =8 =t)))

{constantvertex *C1 0.02 ((1 =ci}))

(vertex *7 ADR 1 -1 ((1 =r =c1)) ((1 =u))
(vertex *8 MLRd 1 -1 ((1 =8 =t)) ({1 =v =w)))
{constantvertex *C2 1 ((1 =c2)))

{vertex *9 ADL 1 -1 ((1 =u =c2)) ({1 =x)))
(vertex *10 ADR 1 -1 ((1 =1 =v)) ((1 =y)))
{vertex *11 DUP 1 -1 ((1 =x)) ((1 =ad =ac)))
{constantvertex *C3 0.01 ((1 =c3)))

(vertex *12 MLR 1 -1 ((1 =y =c3)) ({1 =2)))
{constantvertex *C6 1 ({1 =c6)))

(vertex *13 ADL 1 -1 ((1 =w =c6)) ({1 =ab)))
{(vertex *14 ADR 1 -1 ((1 =k =z)) ({1 =ae)))

(constantvertex *C4 1 ({1 =c4)))

(vertex #1656 ADL 1 -1 ({1 =aa =c4)) ({1 =aa)))
{constantvertex *C5 0 ({1 =c5)))

{vertex *16 SIL 1 -1 ((1 =j =c5)) ((1 =af)))
(vertex *20 MERG 0 -1 ((1 =a)(1 =aa)) ((1 =a)))
(vertex *17 MERG 0 -1 ({1 =b)(1 =ab)) ((1 =£)))
(vertex *18 MERG 0 -1 ({1 =c)(1 =ac)) ((1 =g)))
(vertex *19 MERG 0 -1 ({1 =d)(1 =ad)) ((1 =1)))
(vertex *S0 STUB 0 -1 ({1 =80)) ())

end
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Version Analysis Simulation

No partitioning | 602.1 cycles | 761 cycles
Partitioning # 1 | 286.0 cycles | 459 cycles
Partitioning # 2 | 301.3 cycles | 507 cycles

—_— | s
Table 5.1: INTEGRATE: Analysis vs. Simulation ’

The analysis program identified two partitionings for this program:

Partition 1
(*19) (%6 *8 »13) (*10 *12) (%14 *15)
(5 *7 %9 *11) (*18 *Q *1 *4) (*2 *S0)
(*3 *16 *F) (*17) (%20)
Zeroing edges:
=W =T =8 =Y =AF =X =} =R =0 =H =¢ =§0 =AF =]

Partition 2
(%19) (*7 *9 %11) (*5 %6 =8 *13) (*10 *12)
(¥14 *15) (%18 %0 *1 *4) (%2 *S0)
(*3 *16 *F) (*17) (»20)
Zeroing edges:
=X =U =W =T =§ =Q =Y =AE =0 =H =§ =50 =AF =]

Results of the analysis and simulation programs are shown in Table 5.1

We find that the analysis program estimated the execution time of INTF-
GRATE with an error between 20.8% and 40.6%. The error was kept relatively
low because INTEGRATE is not recursive,

Note that the best-case partitioning (partition # 1) improves execution speed
by only 9.4% over the worst-case partitioning (partition # 2), while the worst-

case beats no partitioning by 18.5%.
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5.3.2 Program 2: RECURSIVE_AQ

This program is taken from an example shown in [McGr85), a recursive adap-
tive quadrature program which integrates an arbitrary function, using a supplied

stop condition.
We inserted the subroutines necessary to integrate the function z% + 3z — 8
from z = 0 to z = 10. It should be noted that the actual input values, which to

a great degree determine the actual running time of this program, are not known

to the analyzer.

define Recursive_AQ

type Interval =
record [ X._.Low, Fx_Low, X_High, Fx_High : real ];
type Interval_lList = array[ Interval ]

function Evaluate_Function( X: real returns real )
(X *X) + (3.0*X)-8.0
end function

function Stop_Condition( Area_l, Area_ 2,
Interval_Width: real returns boolean )
(abs(Area_1l - Area_2) < 2.5) & (Interval_Width < 1.0)
end function

function Recursive_AQ( L, Leftv, R, Rightv: real
returns real, boolean )
lat
Mid := (L + R) * 0.5;
Midv := Evaluate_Function(Mid);
Prev_area := (R - L) * (Rightv + Leftv) * 0.5;
New_Area := (R - Mid) * (Rightv + Midv) * 0.5
+ {Mid - L) » (Midv + Leftv) * 0.5;
Done := Stop_Condition(Prev_Area, New_Area, R-L );
Abort := is error(New_Area) | is error(Done)
in
if Abort then Prev_Area, true
elseif Done then New_Area, falsae
else
let
Left_Area, Abt_Left
:= Recursive_AQ( L, Leftv, Mid, Midv);
Rgt_Area, Abt_Rgt
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:= Recursive_AQ( Mid, Midv, R, Rightv);
in
Left_Area + Rgt_Area , Abt_Left | Abt_Rgt
end let
end if
end let
end function

Rather than show the 234 line data flow input for this SISAL program here,
we provide a graphic description in Figure 5.1. A full listing of the data flow
program is supplied in Appendix B.

The results of our analysis and simulation programs appear in Table 5.2. The

detailed listing of the partitions is supplied in Appendix C.
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Figure 5.1: RECURSIVE_AQ: Probabilistic Data Flow Graph
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Version Analyais Simulation Version Analysis Simulation
No partitioning 65.3 cycles | 324 cycles Partitioning # 33 | 52.3 cycles | 259 cycles
Partitioning # 01 | 52.3 cycles | 259 cycles Partitioning # 34 | 53.3 cycles | 264 cycles
Partitioning # 02 | 53.3 cycles | 264 cycles Partitioning # 35 | 52.3 cycles | 259 cyclea
Partitioning # 03 | 52.3 cycles | 259 cycles Partitioning 3# 36 | 53.3 cyclea | 264 cycles
Partitioning # 04 | 53.3 cycles | 264 cycles Partitioning # 37 | 52.3 cycles | 259 cycles
Partitioning # 05 | 52.3 cycles | 259 cycles Partitioning # 38 | 53.3 cycles | 264 cycles
Partitioning # 06 | 53.3 cycles | 264 cycles Partitioning # 39 | 52.3 cycles | 259 cycles
Partitioning # 07 | 52.3 cycles | 259 cycles Partitioning # 40 | 53.3 cycles | 264 cycles
Partitioning # 08 | 53.3 cycles | 264 cycles Partitioning # 41 | 52.3 cycles | 259 cycles
Partitioning # 09 | 52.3 cycles | 259 cycles Partitioning # 42 | 53.3 cycles | 264 cycles
Partitioning # 10 | 53.3 cycles | 264 cycles Partitioning # 43 | 52.3 cycles | 259 cycles
Partitioning # 11 | 52.3 cycles | 259 cycles Partitioning # 44 | 53.3 cycles | 264 cycles
Partitioning # 12 | 53.3 cycles | 264 cycles Partitioning # 45 | 52.3 cycles | 259 cycles
Partitioning # 13 | 52.3 cycles | 259 cycles Partitioning # 46 | 53.3 cycles | 264 cycles
Partitioning # 14 | 53.3 cycles | 264 cycles Partitioning # 47 | 52.3 cycles | 259 cycles
Partitioning # 15 | 52.3 cycles | 259 cycles Partitioning # 48 | 53.3 cycies | 264 cycles
Partitioning # 16 | 53.3 cycles | 264 cycles Partitioning # 49 | 52.3 cycles | 259 cycles
Partitioning # 17 | 52.3 cycles | 259 cycles Partitioning # 50 | 53.3 cycles | 264 cycles
Partitioning # 18 | 53.3 cycles | 264 cycles Partitioning # 51 | 52.3 cycles | 259 cycles
Partitioning # 19 | 52.3 cycles | 259 cycles Partitioning # 52 | 53.3 cycles | 264 cycles
Partitioning # 20 | 53.3 cycles | 264 cycles Partitioning # 53 | 52.3 cycles | 259 cycles
Partitioning # 21 | 52.3 cycles | 259 cycles Partitioning # 54 | 53.3 cycles | 264 cycles
Partitioning # 22 | 53.3 cycles | 264 cycles Partitioning # 55 | 52.3 cycles | 259 cycles
Partitioning # 23 | 52.3 cycles | 259 cycles Partitioning # 56 ] 53.3 cycles | 264 cycles
Partitioning # 24 | 53.3 cycles | 264 cycles Partitioning # 57 | 52.3 cycles | 259 cycles
Partitioning # 25 | 52.3 cycles | 259 cycles Partitioning # 58 | 53.3 cycles | 264 cycles
Partitioning # 26 | 53.3 cycles | 264 cycles Partitioning # 59 | 52.3 cycles | 259 cycles
Partitioning # 27 | 52.3 cycles | 259 cycles Partitioning # 60 | 53.3 cycles | 264 cycies
Partitioning # 28 { 53.3 cycles | 264 cycles Partitioning # 61 | 52.3 cycles | 259 cycles
Partitioning # 29 | 52.3 cycles | 259 cycles Partitioning # 62 | 53.3 cycles | 264 cycles
Partitioning # 30 | 53.3 cycles | 264 cycles Partitioning # 63 | 52.3 cycles | 259 cycles
Partitioning # 31 | 52.3 cycles | 259 cycles Partitioning # 64 | 53.3 cycles | 264 cycles
Partitioning # 32 | 53.3 cycles | 264 cycles

Table 5.2: RECURSIVE_AQ: Analysis vs. Simulation
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The analysis program estimated the execution time of RECURSIVE_AQ with
an error between 78.2% and 79.8%. In large part, recursion introduces this
large error. Instead of making an accurate estimate for the cost of the two
RECURSIVE_AQ CALL instructions, we chose the fixed cost of 1 cycle per call.
Supplying an accurate estimate for the recursive call would presume information
not available to a compiler or a program designer.

The difference between simulated execution time of particular partitionings
was not significant (1.5% maximum). However, the speedup of the worst-case

partitioning over no partitioning was approximately 18.5%.

5.3.3 Discussion of Example Programs

A cursory glance at Tables 5.1 and 5.2 makes it obvious that our modeling
system does not handle recursion well. The analysis program estimated the exe-
cution time of RECURSIVE_AQ with an error of about 80%, whereas the analysis
program estimated execution time of INTEGRATE with an error between 20.8%
and 40.6%.

However, that did not invalidate the usefulness of the model in our partition-
ing problem. In both RECURSIVE_AQ and INTEGRATE, the relative ordering
of the simulation and analyzer times were the same. The analyzer would have
chosen a good partition in both cases.

We are concerned that the analyzer program is expensive to run. Analysis

of INTEGRATE took approximately 10 minutes of CPU time on an unloaded
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HP 9000/350, while simulation took 30 seconds. Analysis of RECURSIV EAQ
took 14hours, while simulation took 1 hour. This discrepancy may be explained
partially by the fact that the analyzer is written in T, and the simulator is written
in Modula-2.

Our experiences lead us to believe that Markov analysis is useful as a parti-
tioning heuristic when the data flow program is relatively small and the expected
execution time is large,

At least for these examples, selecting a particular partitioning makes only a
small difference in the execution time. For IN TEGRATE and RECURSIVE AQ,
the best-case partitioning execution time beats the worst-case partitioning by
9.4% and 1.8% respectively.

Even the worst-case partitioning beats no partitioning by a substantial mar-
gin, 33.3% and 18.5% for INTEGRATE and RECURSIVE_AQ. The best-case
partition beats no partitioning by 39.6% and 20.0%.

We note that the number of partitionings generated by Algorithm PSB grows
exponentially with the number of multiple-successor nodes. The decomposition
methods of [Kape87] [Kape88] can address this problem to some extent. However,
our experience seems to indicate that (since worst-case and best case times do not
differ substantially) using a cheaper heuristic to reduce the number of partitions
generated by Algorithm PSB would provide an efficient data flow optimization

scheme,
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CHAPTER 6

Conclusion

‘We have shown that optimally partitioning a data flow program is intractable,
but that approximate solutions can be obtained if the system is purely stochastic,
and transition probabilities are known and fixed.

We described a model for describing data flow program behavior stochasti-
cally, the “Probabilistic Data Flow Graph.” Probabilistic data flow graphs can
be transformed into discrete-time, discrete-space Markov chains.

However, Markov chains created from these PDFGs may contain proper closed
subsets, which destroy the predictive power of the model. We provide a linear-
time algorithm for deleting these closed subsets from Markov chains.

We described a linear-time, non-deterministic algorithm for partitioning a
data flow graph into sequential blocks. Several partitionings may exist, and
selecting the fastest is an intractable problem. Our stochastic model provides
an approximate value for the execution time of a partitioning, and allows us
to compare different partitionings. From this comparison, we can choose the
partitioning which results in the lowest estimated execution time.

We described our implementation of an analysis program and a simula-

tion program. We showed two example programs, INTEGRATE and RECUR-
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SIVE_AQ, and gave the analytical and simulated execution times of both.

We discovered that, in these cases, the modeling method chose the correct
partitioning. Its inaccuracy in estimating execution time, however, could cause
a non-optimal partitioning to be selected in other programs.

On the other hand, we know that an optimal solution is incomputable by The-
orem 7, and with the example programs we gave, our modeling system appears
to be a reasonable heuristic for selecting a good partitioning.

We also discovered that, in our examples, selecting a parficular partitioning
made little difference. We feel that a cheap heunstic might be more appropriate
for this partitioning algorithm, since the performance of the worst-case and best-

case partitionings differed by only a small margin.

6.1 Work Remaining

The work developed in this thesis gives rise to many unanswered questions,
which could provide fuel for further research. Among the unaddressed issues

remaining are:

1. We suspect that selecting the optimal partitioning, even with fixed known
transition probabilities, is an N P-complete problem. Algorithm PSB and
Theorem 6 provide proof that selecting the optimal partitioning is in N P.
Several N P-complete problems, including the knapsack problem, linear

programming, etc., are known to be N P-complete, but they belong to a
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class of problems where either

(a) in most cases, tractable solutions exist, or

(b) in most cases, obtaining a close approximate solution is tractable.

2. A method for decomposing a discrete-time system into an simpler, higher-

level problem is needed.

3. Using a cheaper heuristic seems to be indicated by our results. Other

heuristics should be investigated and compared to the Markov heuristic we

developed.
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APPENDIX A

Notation

Q The set of rational numbers.

R The set of real numbers.

Z The set of integers.

Q* The set of positive rationals (0 & Q*).

R+ The set of positive reals (0 ¢ R*).

Z* The set of positive integers (0 € Z+).

Q%  The set of non-negative rationals (Q* U {0}).
R%*  The set of non-negative reals (R* U {0}).
Z% The set of non-negative integers (Z+ U {0}).
f[A] The image of function f under the set A.

24  The power set of set A.

{} Set constructors.

3! “There exists a unique element ...”
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APPENDIX B

RECURSIVE_AQ: Data Flow Program Listing

(edge =a 1 0 0.0
(edge b 1 0 -8.0)
(edge =¢ 1 0 10.0)
(edge =d 1 © 122.0)
(edge =e 1 ~1)
(edge =£ 1 -1)
(edge =g 1 ~-1)
(adge =h 1 -1)
(edge =i 1 -1)
(edge =k 1 -1)
(edge =1 1 -1)
(edge == 1 -1)
(edge =n 1 -1)
(adge =0 1 -1)
(edge =p 1 -1)
(edge =q 1 -1)
(edge =r 1 -1)
(adge =s 1 -1)
(adge =t 1 -1)
(edge =u 1 -1)
(edge =v 1 -1)
(edge =w 1 -1)
(edge =x 1 -1)
(edge =y 1 -1)
(edge =z 1 -1)
(edge =aa 1 -1)
(edge =ab 1 -1)
(edge =ac 1 -1}
(edge =ad 1 -1}
(edge =ae 1 -1)
(edge =af 1 -1)
(edge =ag 1 -1)
(edge =ah 1 -1)
(edge =ai 1 -1)
(edge =aj 1 -1)
(edge =ak 1 ~-1)
(edge =al 1 -1)
{edge =am 1 -1)
(edge =an 1 -1)
(edge =ao 1 ~-1)
(adge =ap 1 -1)
(edge =aq 1 -1)
(edge =ar 1 -1)
(edge =as 1 -1)
(edge =at 1 -1)
(edge =an 1 -1)
(adge =av 1 -1)
(edge =aw 1 -1)
(edge =ax 1 -1}
(edge =ay 1 -1)
(odge =az 1 -1)
(edge =ba 1 -1)
(edge =bb 1 -1)
(edge =bc 1 -1)
(edge =bd 1 -1)
(edge =be 1 -1)
(adge =bf 1 -1)
(edge =bg 1 -1)
(edge sbh 1 -1)
(edge =bi 1 -1)
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(edge =bj 1 -1)

(edge =bm 1.~1)

(edge =bq 1 -1)
1

(edge =br 1 ~-1)
(edge =bs 1 -1)
(edge =bt 1 ~1)
(edge =bu 1 -1)
(adge =by 1 -1)
(edge =bw 1 -1)
(edge =cb 1 -1)
(edge =cc 1 -1)
(edge =cd 1 -1}
(adge =ce 1 -1)
(adge =cj 1 ~1)
(edge =ck 1 -1)
(edge =c1 1 -1)
(edge mcm 1 -1)
(edge =cn 1 -1)
(edge =co 1 ~1)
(adge =cp 1 -1)
(adge =cq 1 -1)
(edge =cr t -1)
(edge =c3 1 -1)
(edge =ct 1 -1)
(edge =cu 1 ~1)
(edge =cw 1 -1)
(edge =cx 1 -1)
(edge =cy 1 -1)
(edge =cz 1 -1)
(edge =db 1 -1)
(edge =dc t ~1)
(edge =dd 1 -1)
(edge =de 1 -1)
(edge =df 1 -1)
(edge =dg 1 -1)
(edge =dh 1 -1)
(odge =di 1 -1)
(edge =dj 1 -1)
(edge =dk 1 -1)
(edge =d1 1 -1)

(edge =dm 1t -1)

Codge =dn 1 -1)

(edge =do 1 -1)

(edge =dp 1 -1)

(vertex Recursivedf NOP 1 -1 () ((1 =a =b mc =d}))
(vartex *1 DUP 1 -1 ((1 =a)) {(1 =dl =e)))
(vertex *2 DUP 1 -1 ((1 =b)) ((1 =¢ =g)})
(vertex 3 DUP 1 -1 ((1 mc)) ({1 =h =i)}}
(vartex *4 DUP 1 -1 ((1 =K)) ({1 =p =m)))
(vertex +5 DUP 1 -1 ((1 =d)) ((1 =k =1)))
(vertex #6 DUP 1 -1 ((1 =e)) ((1 =n mg)})
(vartex »7 PLUS 1 -1 ({1 =dl =h)) ({1 =q)))
(vertex «8 DUP 1 -1 ({1 =m)) ((1 =r =g)))
(vertex +9 DUP 1 -1 ((1 =1))} ((1 =t =g)))
(vertax *10 PLUS 1 =1 ((1 =g =1)) ({1 =v)))
(edge =cO O -1)

{conatantverteax *CO 0.5 ((1 =c0)))

(vertex *11 TIMES 1 -1 ({1 =q =¢0)) ((1 =x)))
(vertex *12 DUP 1 -1 ((1 =x)) ({1 mac =ad)})
(vertex 13 DUP 1 -1 ({1 =£)) ((1 =g =y)))
(vertex »14 DUP 1 -1 ({1 =t)) ((1 =z =aa)))
(vertex »15 MINUS 1 -1 ((1 »u =0)) ((1 =ab)))
(edge =c13 0 -1)

(constantvertex *C13 "Evaluate_Function" ((1 =c13)})
{vartex *18 CALL 9 -1 ((1 =c13 mac)) ((1 =ag)))
{vartex #17 DUP 1 =1 ((1 =ad)) ((1 =ae wah)))
{vertex #18 DUP 1 ~1 ((1 =ae)})} ({1 =af =aj}})
(vertex +19 DUP 1 -1 ((1 =al)) ({1 =an »ac)}}
(vertex #20 DUP 1 ~1 ((1 =ab)) ((1 =aj =ak})))
(vertex 21 DUP 1 -1 ((1 =ag)) ((1 =al =am)})
(vertex +22 PLUS 1 -1 ({1 =p =am)) ((1 =ap)))
(vertex #23 MINUS 1 -1 ((1 =z =ah)) ((1 =aq)))
(vertex =24 MINUS 1 -1 ({1 =ai =r)) ((1 =ar)))
(vertex #25 PLUS 1 -1 ((1 =an =y)) ((1 =as)))
(vertex 26 TIMES 1 -1 ((1 =aj =v)) ((1 =at)))
(vertex #27 TIMES 1 -1 ((1 =ap =aq)) ({1 =au)))
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(vertex +28 TIMES 1 -1 ({1 =ar =as)) ({1 =av)))
(edge =c1 O-=1)
{constantvertex *C1 0.5 ({1 =c1}))
(vertex *29 TIMES 1 -1 ({1 =at =c1)) ((1 =aw)}))
(edge =c7 0 -1)
(constantvertex *C7 0.5 ((1 =c7)))
(vertex =30 TIMES 1 -1 ((1 =au =¢7)) ({1 =ax)))
(vertex 31 PLUS 1 =1 ((1 =ax =ay)) ({1 =az)))
(edge =c2 0 -1)
(constantvertax 3C2 0.5 ({1 =c2)))
(vexrtex 32 TIMES 1 -1 ({1 =a¥ =c2)) ((1 w=ayd)))
(vertex %33 DUP 1 -1 ((1 maw)) ({1 =ba =bb)))
(vertex #34 DUP 1 -1 ({1 =az)) ({1 =bc =bd))})
(vertex =35 ISERROR 1 -1 ({1 =bf)) ((1 =bg)))
{vertex *#36 DUP 1 -1 ((1 =bd)) ({1 =bf =be)))
(edge =c12 0 -1)
{(constantvertex *Ci2 “Stop.Condition" ({1 =c12)))
(vertex *37 CALL 7 -1 ((i =¢12 =ba =be w=ak)) ({1 =bj)))
(vertex +38 OR 1 -1 ((1 =bg =bh)) ((1 =bq)))
(vertex +39 ISERROR 1 -1 {(1 =bi}) ({1 =bh)))
(vertex *40 DUP 1 -1 ((1 =bj)) ({1 =bi =bs)))
{edge =c3 0 -1)
{constantvertex *C3 TRUE {{1 =c3)))
{vertex #Bi BRR 1 =1 (({ wbr =bb =c3)) ((9999 =bt =bv} {1 =bm =bu)))
{edge »c4 0 -1)
(constantvertex *C4 FALSE ((1 =c4)))
(vextex »B2 BRR 1 -1 ((1 =ce =bc =c4)) ((1 =cw =cy) (1 =cx m=cz)))
(vertex *B3 BER 1 -1 ((1 =tm =g =y =as =m =af =agp))
({1 =ck scm =co =cq =cs =cu) (1 =cj =cl =cn =cp =cr =ct)))
(vartex »47 DUP 1 -1 ((1 =bg)) ((1 =br =cb)))
(vertax »48 AND 1 -1 ((1 =bs =cc)) ((1 =cd)))
(vertex »57 WOT 1 -1 ({1 =cb)) ({1 =cc)))
(vertex »58 DUP 1 -1 ({1 =cd)) ((1 =bm =ce)))
(adge =c10 0 -1)
(constantvertex *C10 “Recursived@” ({1 =c10)))
(vertex #62 CALL 1 -1 ({1 =c10 =ck =cm =db =dd)) ((1 =df =dg)))
(edge =c11 O -1)
(constantvertex *»C11l "RecursivedQ" ({1 =c11)))
(vertex #63 CALL 1 -1 ({1 =cil =dc =de =co wcq)) ((1 =dh =di)))
(vertex *64 PLUS 1 -1 ({1 =df =dh)) ({1 =dj)))
(vertex 65 OR 1 ~1 ({1 =dg =di)) ({1 =dk)))
(vertex *#68 MERG 0 -1 ({1 =cx) (1 =bu)) ((1 =dm)))
(vartex #«67 MERG 0 -1 ((1 =cz) (1 sbw)) ((1 =dn}))
{vertex *68 MERG 0 -1 ({1 =dw) (1 =dj)) ({1 =do)}))
(vartex »89 MERG 0 -1 ({1 =dn) (1 =dk)) ({1 =dp)))
(vertex =70 DUP 1 -1 ({1 =cu)) ((1 =dd =de)))
(vartex »71 DUP 1 -1 ((1 =cs)) ((1 =db =dc)))

(vartex #51 STUB 0 -1 ({1 =cj)) ())
{vertex #32 STUB 0 ~t ({1 =cl)) (})
{vartex *83 STUB 0 ~1 ((1 =cn))} ())
(vertex #84 STUB 0 -1 ({1 =cp)) ()
(vertex #S5 STUB 0 -1 ((1 w=cr)) ())
{vertex *36 STUB 0 -1 ((1 =ct)) ())
{vertex »87 STUB 0 -1 ((1 =cw)) ())
{vertex #8B8 STUB 0 -1 ({1 =cy)) ()
{vertex #39 STUB 0 -1 ((1 =bt)) ())
(vertex #3810 STUB 0 =1 ({1 =bwy)) ())

(finalvartex *F ((1 =do =dp)))
end
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APPENDIX C

RECURSIVE_AQ: Identified Partitions

Partition t

(#5 *4) (%22) (*27 #30) (%31 =34 #=36 *35) (#10) (26 *29 +33) («37 40
*39) (38 *47 *57)} (»48 *58) (%58) (#B2 #S7) (s58) (»S55) (#84) (=83)
(»52) (#S1) («70) (#B3 #71) (+63) (=62} (+65) (*64) («39) (+B1 *310)
(+3 =9 #14) (*15 #20) (*17 »18) (*24) (=28 »32) (#23) (=7 #*11 *12 »16
*21 #19) (#25) (*2 *13) (=1 *6 »8) (w63) (=F) (+68) («67) (+66)

Zerced edges:
=K =AU =BF =BD =AZ =iV =AT =Bl =B] =CB =B =CD =CW} =CS =BV aT =] =jB
=AF =iV =i] =iG =AC =X =} =F af af

Partition 2

(5 #4) (%22) (%27 »30) (»31 =34 #38 #35) (*10) (#28 +29 =33) (37 240
«39) (238 247 «57) (=48 »58) (+58) (+»B2 *S7) (*58) (»8B6) (+S4) (»83)
{*32) (#81) («70) (»B3 »71) (#63) (»82) (#65) («64) (x59) (*B1 *510)
(+3 *9 $14) (+15 *20) (#16 »21 #19) (»25) (»28 »32) (&7 11 »12 =17
*18) (#24) (#23) (*2 #13) (o1 #8 «8) (69} («F) (+68) (+67) (+566)

Zoroed edges:
=k =il =BF =BD wAZ =AW =AT =BI =BJ =CB =B} =CD =CW =CS =BV =T «I =AB
#AL =AG aAV =AE =AD =X =( =F =§ =E

Partition 3

(#5 =4) (#22) (#27 #30) (+31 #34 =38 =35) (»10) (»28 +29 +33) (37 *»40
*39) (+38 #47 *5T7) (+48 «58) (»58) (»B2 ¢37) (#38) («55) (*54) (+83)
(x32) (#81) (+70) (»B3 »71) (#83) (#62) (»85) («84) (»310) (=Bt »39)
(+3 29 »14) (=15 #20) (#17 »18) (+24) (*28 »32) (#23) (+7 =11 =12 =18
*21 +19) (#25) (#2 «13) (»1 =6 *3) (+69) (sF) (»68) (=&7) (=68)

Zeroed esdges:
=X =AU =BF =BD =iZ =AW =AT =BI =BJ =CB =B} «=CD =CW =C3 =BT =T =] =jB
=jE =AY =il =i} =iC =Y = oF =l =E

Partition 4

(o5 =4) (+22) (427 «30) (+31 «34 438 «35) (#10) (#2868 *#329 33) (*37 *40
*39) (+38 %47 *57) (*48 +58) (»88) (+B2 *87) (#38) (#835) (»34) (»353)
{*352) (#8S1} («70) (#»B3 *71) (*83) (*+62) (+85) (*84) (*310) (+PB1 »59)
(»3 9 »14) (#15 +20) (»168 #21 *19) (#25) (#28 «32) (a7 »11 *12 =17
*18) (#24) (*23) (*2 #13) (*1 *8 *8) (#69) (sF) (=+88) (*67) («66)

Zeroed edges:
=K =AU =BF =BD =AZ =AY =AT =BI =BJ] =CB =B =CD =CW =CS =BT =T =] =iB
=Al, =AG =AV =AE =AD =I =] =f =J =K

Partition b

(#5 *4) (#22) (227 »30) (+31 +34 =38 x35) (#10) (*26 *29 =33} (+37 »40
*39) (+38 #47 +E7) (+48 »58) (#38) (+B2 *»87) (+86) (»85) (»354) (+33)
(+52) (#81) (»71) (B3 »70) («83) (+62) (+65) (=84) (+39) (+B1 *810)
(23 0 »14) (015 #20) (#17 218) {(=24) (928 =232) (#23) (a7 =11 *12 =16
#21 *19) (#26) (%2 »=13) (*1 6 »8) (*69) (»F) (=68) (+87) (=68)

Zeroed edges:
uf =4]) aBF =B =jp7 =j§ =\T =Bl =p] =CB =B =D =CW =CU =BY =T =I =jip
=AE =iV =AL =id wiC =1 ={ »F =1 »E

Partition 6

(o5 #4) (#22) (+#27 =30} (=31 *34 38 »35) (#10) (#26 #29 »33) {(*37 »40
*39) (#38 »47 *57) (+48 «58) (+38) (*B2 #87) (+38) (+#55) (»54) (83}
{x82) (#81) (*71) (*B3 »70) (*863) (*62) (+65) (+#64) (+59) (*Bl »810)
(+3 »9 »14) («15 +20) (*16 21 +19) (=25) (428 #32) (=7 +11 *12 *17
*18) (#24) (*23) (*2 #13) (1 *8 »8) (»69) (+F) (+68) (+67) (+66)

Zeroed edges:
=K =AU =BF =BD =A7 =AW =AT =BI =BJ] =CB =B =CD »CW =CU =BV =T =] =jiB
=AL =AG =AV =mAE =AD =X = =F =)} =f

Partition 7

(*5 =4) (222) (»27 »30) (31 #34 =38 x38) (#10) (226 *29 »33) (=37 *40
*#39) (#38 »47 #57) (+48 +58) (+38) (*B2 +37) (#38) (+35) (+84) (+83)
(#82) (+S1) (*71) (+B3 *70) (*+63) (+62) (+65) (+54) (+3810) (+B1 «39)
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(*3 3 #14) (%15 *20) (17 #18) (+24) (228 *32) (#23) (+7 *11 +12 *18
*21 t19)_(-@§) (#2 #13) (+1 +6 *8) (+69) (+F) (+68) (%67) (+66)

Zeroed edges:
=K =AU =BF =BD =AZ =AW wiT =B] =B] mCp =BQ =CD »CW =CU =BT =T =] =3B
=AE =AV =AL =pG =4C =X =Q =F =) =g

Partition B

(*5 4) (%22) (#27 +30) (+31 +34 +38 $35) (#10) (%26 %29 #33) (+37 +40
*39) (%38 #47 #57) (*48 #58) (+$8) (B2 *S7) (#36) (#S6) (#54) (s83)
(#32) (*§1) (#T1) (*B3 #70) (+63) (+562) (#65) (+64) (#310) («B1 #39)
(+3 *9 514) (*15 #20) (*16 *21 »19) (#25) (#28 #32) (o7 #11 %12 =17
*18) (#24) (+23) (42 #13) (+1 6 +3) (+89) (+F) (*88) (+67) (»66)

Zeroed edges:
=K =AU =BF =BD =AZ =AW =AT =Bl =BJ =CB =B =CD =CW =Cy =BT =T =T =AB
=AL =AG wAV =AE =AD =X = =F =§ =g

Partition 9

(*5 »4) (+22) (=27 #30) (%31 *34 »36 *35) (*10) (%26 »29 %33) (+37 *40
*39) (%38 %47 #57) (#48 #68) (+58) (+B2 *57) (+36) (*55) («54) (+53)
(#32) (#70) (*71) (+63) (%62) (+85) (+64) (*B3 »31) (+89) (eB1 *310)
(*3 9 #14) (+15 #20) (*17 »18) (#24) (»28 #32) (+23) (7 #11 12 *16
*21 #19) (+25) (%2 +13) (#1 #6 +8) (#69) (+F) (+68) (#67) (*66)

Zeroed edges:
=K =AU =BF =BD =AZ =AW =AT =Bl =B] =CB =B =CD =CW =CJ] =BY =T =I =jp
=AE =iV =il =AG =iC =] = =F =} =E

Partition 10

(*5 *4) (#22) (#27 #30) (*31 *34 3§ *35) (#10) (*26 +29 #33) (+37 +40
*39) (#38 #47 #57) (448 «58) (+58) (eB2 *37) (#88) (#85) (+54) (»33)
(#32) (#70) (a71) (#63) (+62) (+65) (#64) (+B3 #S1) (+59) (sB1 +510)
(*3 +9 #14) («15 »20) (*16 #21 *19) (%25) (#28 #32) (&7 *11 =12 *17
*18) (%24) (#23) (#2 #13) (*1 +6 »8) (#69) (sF) (+68) (*67) (+E6)

Zeroed edgea:
=K =AU =BF =BD =AZ =AW =AT =Bl =BJ =CB *EQ =CD aCW =CJ =BV =T aI =i
=AL =AG =AY =AE =AD =X ={ =F =J =g

Partition 11

(#5 %4) (#22) (*27 +30) (*31 +34 »38 *35) (w10) (#26 #29 #33) (+37 =40
*39) (+38 #47 »57) (48 «58) (+S8) (B2 *37) (#88) (#95) (*34) (»53)
(#82) (w70) (#71) (+63) (%82) (+66) (#64) (+B3 #31) (*$S10) (#Bi «39)
(*3 9 #14) (»15 #20) (+17 *18) (e24) (#28 #32) (#23) (¢7 11 +12 »i8
*21 #19) (#25) (*2 +13) (%1 6 #8) (+69) (+P) (#68) (+67) (+66)

Zeroed edges:

=K =AU =BF wBD =AZ =iV =AT =B] =BJ =CB =BQ =CD =CW =CJ] =BT =T =I =AB
=AE =AY =il =AG =AC =I =Q =F =§ =E

Partition 12

(+5 #4) (%22) (+27 »30) (*31 +34 36 *35) (#10) (#28 «29 #33) (#37 »40
*39) (#38 *47 #57) (+48 #58) (#38) (+B2 *37) (#S8) (#55) («34) (*$3)
(»82) (*70) (#71) (+63) (82} (=65) (*64) (+B3 #31) (+510) (sB1 *S9)
(*3 %9 »14) (%15 #20) (*16 =21 *19) (%25) (28 #32) (#7 #11 #12 &17
*18) (#24) (#23) (*2 #13) (#1 +6 *8) (+€9) (sF) (+68) (+87) (+686)

Zeroed edges:
=K =AU =BF =BD =i7 =4§ =iT =B] =B] =CB =BQ =CD =CW =CJ =BT =T =] =iB
=AL =16 =iV =iE =AD =I =} aF =§ =g

Partition 13

(35 »4) («22) (*27 #30) (#31 +34 +36 *35) (*10) (%26 *29 #33) (37 +40
*39) (#38 47 #57) (#48 «58) (+88) (xB2 *37) (+38) (#85) (+34) (+83)
(»81) (*70) (#71) (*63) (*62) (#85) (+64) (*B3 *32) (#59) (=Bl «810)
(#3 9 #14) (#15 *20) (17 *18) (#24) (#28 #32) (%23) (s7 %11 =17 #18
*21 +19) (+25) (+2 #13) (*1 6 *8) (#69) (+F) (+63) (+67) (+88)

Zeroed edgas:

=K =AU =BF wBD =AZ =iV =AT =BI =B] =CB =B} =CD} =CW =CL =BV =T =I =iB
=AE =AV =AlL =AG =iC =] =] =F =§ =g

Partition 14

(35 #4) (#22) (27 #30) (»31 «34 »36 *36) (#10) (*26 329 «33) (%37 +40
*39) (38 47 »57) (+48 *58) (+88) (+B2 #»87) (*S6) (#85) (»34) (*33)
(*31) (s70) (#71) (#63) (=62) (+65) (#64) (sB3 #32) (#89) (*B1 *$10)
(3 #9 »14) (%15 #20) (#16 +21 *19) (#25) (#28 »32) (7 #11 #12 »17
*18) (224) (+23) (*2 +13) (»1 6 +8) (*69) (#F) {»68) (*B7) (»66)

Zaroed edges:

=K =AU =BF =BD =47 =AY =jAT =B] =B] =CB =BQ =CD =CW =aCL =BV =T =I =iB
=AL =4Q =iV =AE =iD =l =Q =F =§ =§

Partition 15
(+6 #4) (%22) (#27 %30) (#31 *34 +36 35) (#10) (%26 29 #33) (37 »40
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*39) (e38 %47 #57) (w48 68) (+38) (=B2 #37) (»86) (#35) (+54) (»33)
(#31) (*70) (eT1) («63) (»62) (+65) {*64) (#B3 #52) (+510) (+B1 +358)
(53 »9 »14) (¢15 220) (o17 »18) ($24) (%28 *32) (#23) (o7 #11 *12 16
*21 #19) (s25) (*2 #13) (*1 +6 *8) (+69) («F) (+68) (*87) (+66)

Zerced edges:
=K =AU =EF =BD =iZ =iV =AT =BI =B =CB =B =CD =CW =C[, =BT =T =] =ip
=AE =AV =AL =iG #AC aI =] =F =F =E

Partition 16

(#5 #4) (#22) (+27 #30) (+31 »34 *36 #35) (#10) (%28 +29 «33) (37 40
*39) (#38 47 *57) (v48 *58) (+38) (»B2 »37) (#88) («S5) (=854) (+33)
(#31) («70) (*71) (e63) (#62) (+#65) (+64) (*B3 *32) (+310) (*B1 +89)
(3 *9 #14) (*16 #20) (18 #21 *19) (#25) (28 #32) (o7 »11 #17 17
*18) (+24) (923) (#2 #13) (»1 +6 +8) (»89) (+F) (968) (+67) (+66)

Zoxroaed edges:
=K =AU =BF =BD =A7 wiW =AT «BJ =BJ] =CB =BQ =CD =CW =CL =BT =T =T =5B
=AL wiQ =iV =AF =jD =Y =] =F =J «E

Partition 17

(s5 *4) (#22) (*27 *30) (+31 %34 236 #35) (#10) (#26 «29 +33) (+37 #40
*39) (%38 *47 «57) (+48 *58) (#58) (#B2 «37) (*S8) (#S5) (#54) (#82)

Zerved edges:
=K =AU =BF =BD =i7 =A§ =4T =Bl =B] =CB *BQ =CD =CW =CN =BV =T =] mp
=AE =iV =AL =4G =AC =X ={ =F =} =E

Partition 18

(#5 #4) (»22) (*27 #30) (31 ¢34 *36 *35) (*10) (#28 39 »33) (+37 =40
#39) (#38 #47 «57) (4B #58) («S$3) (+BZ2 *37) (#56) (#55) («84) (#32)
(*S1) (*70) (#71) («63) (+62) (#65) (+64) (#B3 #53) (»53) (#Bi *810)
(#3 #9 »14) (%15 #20) (16 »21 *19) (#25) (%28 *32) (#7 #11 #»12 .17
*18) (#24) (%23) (%2 #13) (o1 #6 +8) (»69) (#F) (+68) (+67) (+68)

Zeroed edges:
=K =AU »BF =BD =A7 =AW =AT =BI =BJ] =CB *BQ =CD =CW =CN =BV =T =I =ap
*AL =AQ =AV =AE =AD =I = =F =§ =g

Partition 19

(26 %4) (#22) (%27 #30) (+31 +34 »38 *35) (#10) (#26 #29 +33) (#*37 #40
#39) (438 947 #57) (»48 »58) (+58) (*B2 *57) (+56) (*S5) (+84) («82)

(#3 #9 s14) (+15 #20) (e17 *18) (#24) (28 *32) (%23) (&7 »i1 *12 »18
#21 *19) (#26) (92 +13) (%1 »8 «8) (#69) (sF) (+68) (+67) (+86)

Zeroad edgesa:
=K =AU =BF =BD =A7 =iV wiT =BI =B] =CB =BG =CD =CW =CN =BT =T =] m;B
=AE =4V =mAL =AG =AC =X = =F =} =g

Partition 20

(35 *4) (#22) (427 »30) (s3t *34 *36 #35) (+10) (26 +29 +33) (s37 *40
*39) (%38 »47 #57) (#48 #53) (+58) (*B2 *87) (»26) (#35) (+54) (+32)
{#31) (#70) (+71) (»63) (+82) (*65) (+64) (+B3 *33) (510} (Bt *59)
(#3 29 #14) (*15 «20) (+16 *21 *19) (#25) (28 €32) (7 =11 »12 »17
#18) (#24) (223) (%2 #13) (#1 »8 *8) (+69) («F) (+68) (+87) (+686)

Zeroed edges:

=K =AU =BF =BD »i7 wiW =AT =BI =B] aCB =B =CD =C¥W =C§ =BT =T =] =AR
=AL =4G =AV =iE =iD =X =Q =F =§ =g

Partition 21

(o5 #4) (#22) (+27 #30) (a3t *34 36 *35) (+10) (26 +29 +33) (+37 »40
+39) (%38 %47 #57) (s48 «58) (+58) (sB2 #S7) (#36) (*S6) (+33) («32)
(*81) (#70) (#71) (#83) (+82) (*85) (#64) (+B3 »34) (eS9) (#B1 +310)
(#3 +9 #14) (*15 #20) (#17 +18) (224) (#28 #32) (+23) (+7 *11 ¢12 18
*21 +19) (#25) (*2 #13) (s1 =6 »8) (#69) (+F) (#68) (»67) (»66)
Zaroed edges:

=Kk =iU =BF =pD w=gZ ajiW =3T =Bl =BJ =CB =BQ =CD =CW =CP =BY =T =] =pBp
=AE =AV =i, =AG =AC w=} = wF a) =E

Partition 22

(#3 *9 «14) (*15 %20) (=18 *21 #19) (#25) (+28 *32) (»7 %11 s12 *17
*18) (#24) (#23) (2 #13) (+1 »6 *8) (s69) (*F) (*68) (+67) (+66)

Zeroed sadges:
=K =AU =BF =BD =i7 =AW =AT »BI =BJ] =CB =B =CD =CW =CP =BV =T =] =iB
=AL ®=iG =AV =AE =AD aX = =F =§ =g

Partition 23
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(e5 »4) (e22) (*27 +30) (*31 34 36 *35) (*10) (*26 #29 «33) (+37 »40
*39) (w38 947 -s57) -(e48 #58) (=88) (»B2 #$7) (#86) (#85) (=83) (+82)
(*S1) (*70) CeT1) (+63) (*62) (#65) (#64) (*B3 =54) (+510) (#B1 »59)
(*3 »9 »14) (*#15 #20) (*17 *18) (*24) (#28 =32) (23} (27 =11 *12 »i6
#21 *19) (#26) (#2 «13) (*1 «6 #8) (+59) (sF) (+68) (»87) (»68)

Zaroed edges:
=K =AU =BF =BD =AZ =AW =AT =BI =B] =CB =BQ =CD =CW =CP =BT =T =] =iB
=AE =AV =AL =iG =AC =X =Q =F =§ =E

Partition 24

(o5 #4) (e22) (»27 #30) (#31 %34 %38 #35) (#10) (+28 *29 +33) (+37 »40
#30) (438 «47 #57) (48 =568) (+S8) (#B2 «87) (#86) (+55) («83) (+32)
(=81) (#70) (*71) (*63) (#62) (»65) (*64) (*B3 *34) (+510) (+B1 »39)
(+3 39 »14) (#15 »20) (*16 +21 #=19) (#25) (#2858 *32) (*7 #11 =12 17
*18) (#24) (#23) (=2 *13) (+1 +8 *8) (+63) (+F) (+68) (»867) (+66)

Zexced edges:
=K =AU =BF =BD =A7 =AW =AT =BI =BJ =C3 =B] =CD =CW =CP =BT =T =I =iB
=Al, =G =AV =AE =AD =I =(} =F =) =g

Partition 26

(*5 #4) (#22) (»27 #30) (+31 34 »36 »35) (*10) (+26 =29 »33) (=37 *40
+39) (%38 #47 »67) (*48 #58) (*5S8) (+B2 »87) (#36) (#34) (»83) (»82)
(*81) (»70) (*71) (%63} (#62) (#65) (+64) (+B3 #35) (#59) (*B1 *3510)
(23 %9 »14) (s15 »20) (»17 *18) (#24) (28 +32) (+23) (=7 w11 »12 »18
*21 #19) (#25) (#2 #13) (»1 =8 #8) (+69) {*F)} («68) (+&67) (»66)

Zazoed edges:
=k =AU =BF =BD =jiZ =j§ =AT =Bl =B] =CPB =B{ =CD =CW =CR =BV =T =] =jiB
=AE =AYV =AL =43 =AC =X = =F =f =f

Partition 26

(»5 #4) (#22) (27 #30) (w31 #34 #36 +35) (+10) (*26 29 »33) («37 *40
#39) (+38 »47 +57) (=48 »58) (*S8) (B2 *87) (»S8) (+54) (»53) (»52)
(*51) (*T0) (»71) (#63) (¥62) (#+85) (+64) (#B3 »55) (=39) (4Bl *510)
(3 #9 #14) (#15 #20) (»16 *21 »19) (*25) (*28 »32) (=7 =11 »12 »17
*18) (#24) (+23) (»2 »13) («1 28 +8) (*69) (+F) (+68) (+6T) (=68)

Zaroed edges:
=k will wBF wBD =j7 wiW =AT =Bl =B) =Cp =B} =CD =CW =CR =BV =T =] =iB
«A], =AG =iV =AE =AD =X ={ aF =)F =E

Partition 27

(#5 »4) (»22) (#27 *30) (#31 *34 #36 +35) (*10) (#2686 +29 *33) (=37 =40
#39) (#38 »47 «57) (#48 #58) (e58) (#B2 *87) (+36) (»54) (#83) (»82)
(#81) (*70) (#71) (#63) (+52) (+85) (»64) (+B3 +85) (+#310) (=Pl *39)
(3 =9 »14) (*15 *20) (*17 =18) (*24) (+28 «32) (#23) (#7 »11 %12 *16
«21 *19) (#25) (*2 #13) (#1 «8 *8) (»89) («F) (*68) (*87) (#68)

Zeroed edges:
=Kk =AU =BF =ED =i7 =iV =AT =B] »B] =CPB =BQ a~CD =CW =CR =BT =T =] =iB
=AE =iV =il mAG =AC =] =] =F a] uf

Partition 28

(w5 #4) (#22) (*27 *30) (*31 %34 +38 »35) (s10) (»26 »29 233) (#37 =40
*39) (#38 »47 #57) (#48 »58) (+S8) (=#B2 *37) {#36) (»84) (»33) (»352)
(+31) (s70) (»71) (+63) (+62) (»65) (+64) (*B3 #+S5) (#S10) (+B1 *39)
(+3 *9 #14) (+15 +20) (+16 #21 #19) (#25) (*28 #32) («7 »11 =12 »17
*18) (*24) (#23) (=2 »13) (+1 »6 »8) (+69) (+F) (»88) (=67) (+66)

Zaroed edges:
=K =AU »BEF »BD =A7 =iV =iT =B] =B] =CB =B{] =CD =CW =CR =BT =T =l =iB
=], =AG =AV =AE =iD »X ={} =F =} =f

Partition 29

(»5 #4) (22) (#27 #30) (31 #34 »36 +35) (#10) (*26 29 *»33) (+37 »40
#39) (*38 #47 «57) (+48 «E£8) (#38) (*xB2 »S7) (#55) (#84) (»83) (+32)
(*51) (*70) (+71) (*83) (*62) (+65) (+64) (*B3 ¢$6) (+59) (+B1 *S510)
(#3 »9 =14) (+15 »20) (#17 #18) (*24) (#28 #32) (*23} (#7 #11 *12 »18
221 #19) (#26) (52 »13) (#1 26 «8) (*69) («F) (+68) (+67) (+68)

Zaxoed edges:
=K =AU =BF =BD =47 =AW =\T =B] =B] =CB =BQ =CD =CW =CT =BV =T =] =iB
=AE =AV =il sAQ siC =Y =) =F = =K

Partition 30

(*5 »4) (%22) (*27 *30) (+31 *34 =36 »35) (#10) (#26 %29 +33) (#37 *40
#39) (38 *47 *57) (e48 «63) (+58) (#B2 *37) (#85) (#54) (»53) (e32)
(#31) (»70) (*71) (#83) (*62) (#65) (+64) (*B3 »36) (+59) (*B1 #310)
(3 29 #14) (=15 *20) (»18 »21 +19) (#25) (=28 «32) (=7 *i1 »12 @17
+18) (*24) (+23) (=2 »13) (+1 «6 +8) (»+69) (+F) (+68) (*67) (+66)

Zeroed edges:
=K =) =BF =B) =A7 =iV =AT =RI »BJ] =CB =B] =CD =CW =CT =BV aT eI =iB
=41, =i3 =AY =AE =)D =] = =F =] =E
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Partition 31

(*5 #4) (#22) (+27 +30) (+31 934 +36 #35) (¢10) (+26 +29 #33) (*37 +40
*39) («38 47 *57) (*48 =58) (+58) (wB2 »$7) (*35) (#34) (»33) («32)
(#S1) (#70) (»71) (%63} (#62) (+65) (*64) (+B3 #36) («S10) (*Bl *89)
(*3 *9 #14) (*15 »20) (#17 #18) {#24) (%28 *32) (*23) (*7 =11 *12 »16
*21 #19) (#25) (e2 313) (1 #6 28) (+69) (+F) (#68) (*87) (»68)

Zeroced edges:
=K =il =BF =BD =AZ =AW =AT sBI =B] =CB =BQ =CD =CW =CT =BT =T =I =iB
=AE =iV =il =AG =AC =] ={ =F =§ =E

Partition 32

(*5 *=4) (#22) (%27 »30) (231 %34 +38 #35) (*10) (#26 =29 *33) (*37 *40
+39) (+38 #47 =57) (%438 +58) (#58) (=B2 #57) (#55) (»34) («33) (+52)
(#51) (*70) (*71) (#83) (+62) («65) (»64) (+B3 +56) («S10) (+B1 *59)
(*3 »9 »14) (*15 *+20) (+16 #21 #19) (#25) (=28 =32) (&7 *11 »12 *17
*18) (*24) (*23) (*2 #13) (1 =6 «8) (*69) (+F) (»68) (+67) (+66)

Zaroed edges:
=k =AU =BF »BD =A7 =AW =AT =BI =BJ =CB =BQ =CD sCW =CT =BT =T =] =iB
=gl wi@ =iV =AE =iAD =] =] =f =) =E

Partition 33

(6 #4) (#22) (27 #30) (#31 #34 *38 +35) (*10) (%26 »29 «33) (37 »40
#39) (*38 »=47 #57) (+48 #58) (+57) (*B2 #58) (+56) (#35) (»54) (»83)
(#82) (»S1) (»70) (+B3 *71) (*63) (*62) (+65) (+64) (»59) (+B1 510)
(#3 *9 »14) (*15 #20) (*17 «18) (%24) (#28 »32) (»23) (7 #11 *12 »186
#21 «19) (#25) (*2 #13) (1 »6 #8) (#69) (sF) (+68) (+67) (+66)

Zeroed eq ]
=K =AU =BF =BD =AZ =AW =iT =Bl =B] =CB =BQ =»CD =CY =C§ =BY =T =] =iB
=AE =AYV =i], =AG =AC =X = =F =) =E

Partition 34

(#5 #4) (#22) (*27 %30) (*31 »34 »36 *35) (*10) (+26 =29 «33) (37 »40
#39) (*38 #47 +57) (*48 »58) (*87) («B2 »358) (#38) (»85) (*54) (»383)
(+82) (#81) (+70) (+B3 »71) (*63) (»62) (+65) (+64) (»39) («B1 *310)
(+3 »9 *14) (*15 *20) (*18 *21 *19) (#25) (#28 »32) (=7 »11 212 »17
#18) (#24) (#23) (42 13} (=1 #8 *8) (»89) (+F) («@8) (+67) (=68)

Zeroed edges:
=K =Al} =BF =BD =jZ =iW =iT =BI =Bl =»CB =B( »CD =CY =C3 =BV =T =I =iB
=], =AG =AV =AE wiD =] =)} =f =§ =E

Partition 36

(*5 #4) (#22) (%27 »30) (+31 ¢34 »38 «35) (+10) (28 *39 »33) (+37 +40
#39) (38 *47 *57) (%48 +58) (#37) (+B2 *358) (#38) («S5) (#34) (=83)
(=82) (#81) (»70) (*B3 »71) (+83) (»82) (#65) (=64) (»510) (+Bl »89)
(*3 29 =14) (*15 +20) (+17 »18) (+24) (28 #32) (=23) («7 +11 12 +16
221 %19) {#25) (#2 »13) (*1 *8 «8) (*x69) (*F) (+68) (+87) (+66)

Zeroed edges:
=k =i =BF =BD mjZ =AY =AT =B] =B)] =CB =B =CD =CY =C3 =BT =T =] =jB
=AE =)V =il =iG =AC =I =( =F =§ =E

Partition 36

(*5 =4) (#22) (+27 +30) (#31 +34 »38 *35) (+10) (*26 #29 *33) («37 »40
*«39) (*38 =47 «57) (+48 »58) (+87) (»B2 +88) (+38) («85) (+84) (+33)
(#82) (#51) («70) (=B3 »71) (#63) (#82) (»65) (»64) («510) (»Bi »59)
(+3 9 #14) (#15 #20) (+16 »21 =19) (»25) (#28 *32) (*7 »11 12 »17
*18) (*24) (#23) (*2 »13) (=1 26 =8) (*69) (+F) (x88) (=«87) (+66)

Zeroed edges:
=X =AU =BF =B} =AZ =j{ =AT =BI -BJ =CB =8Q =CD =CY =C3 =BT =T «] =\B
=AL =AG =AV =AE =iAD =I =( =F =¥ =E

Partition 37

(#5 #4) (#22) (#27 #30) (»31 34 »38 *35) (#10) (26 »29 «33) (*37 »40
#39) (#3808 247 «57) (+48 #58) (457) («B2 ¢$8) (+86) (#55) (e54) (=83)
(#82) (#81) (»71) (B3 »70) (»83) (»62) (+65) (+»64) {»39) (+B1 «810)
(3 =9 #14) (*15 #20) (=17 #18) (»24) (+28 »32) (*23) (»7 =11 #12 »18
*21 »19) (*#26) (*2 #13) (»1 =8 *8) (*x63) (+F) (»68) (*87) (+65)

Zerced edges:
=gk =4 =B =BD =jZ =j¥ =iT =B] =B] =CB =B =CD =CY =ClJ =BY¥ =T =] =B
=iE wiV =Al, =iQ =iC =X »{] =F =il =g

Partition 38

(#6 #4) (*22) (=27 *30) (*31 *34 38 »35) (#10) (#26 29 »33) (#37 =40
+39) (38 «47 ¢57) (+48 #58) (eS7) (»B2 #38) (e36) (#85) («84) (»33)
(+52) (#31) (*71) (*B3 #70) (+63) (+62) (+65) (+64) (+359) (*B1 »310)
(=3 29 »14) (%15 *20) (+16 21 #19) (*#25) (%28 »32) (7 =11 »*12 »17
*18) (%24) (*23) (*2 #13) (s1 »6 #8) (»63) (+F)} (+68) (*67) (+68)

Zerved edges:
=K =AU =BF =BD =AZ =AW =AT =BI =BJ] =CB =B =CD =CY =CU =BV =T =] =iB
u)], =AG =AY =AF =iD =X =Q =F = =
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Partition 39

(o5 w4) (8227} (927 +30) (*31 «34 *36 *36) (#1Q) (+26 »29 «33) (437 240
*39) (%38 #47 +57) (#48 #53) (#87) (+B2 #38) (*86) (e§5) (+84) («33)
(#82) (*81) (*71) (sB3 +70) (*83) (#62) (+65) (+84) (#510) («B1 »39)
{*3 #9 »14) (%15 #20) (+17 +18) (+24) (28 %32} (23) («7 11 #12 16
*21 #19) (#26) (o2 #13) (*1 8 »8) (#69) («F) (+6B) (+67) (+66)

Zaroed edges:
=K =iU =BF «BD mAZ =AW =AT =BI =pJ =CB =BQ =CD =CY =Cll =BT «T I »4B
=AE =iV =4l =AQ =iC =X =Q wF =§ =g

Partition 40

Zeroed edges:
=K =AU =BF =BD =A7 =AW wAT sBI =B] =Cp *BQ =CD =CY =CU =BT =T «I =4B
=AL =AG ®AV =AE =iD =Y =Q =F =N =g

Partition 41

(#5 w4) (+22) (#27 +30) (+31 +34 »28 *35) (910) (*26 %29 *33) (+37 +40
*39) (#38 %47 #57) (%48 «58) (#57) (B2 #38) (*36) (*35) (*54) (»53)
(#32) (#70) (*71) (+63) (+62) {*65) (#64) (*B3 #51) (+359) (sB1 *810)

Zoroed adges:
=X =AU =BF =BD =A7 =AW =iT =BT =BJ =CB =BQ =CD =CY =(] =BY =T =] =ABR
AE =AV =AL =i} wil =Y =Q =F =§ =g

Partition 42

(*6 #4) (+22) (*27 30) (*31 =34 #36 235) (»10) (*26 %29 »33) (37 »40
*39) (#38 %47 #57) (448 #583) (*57) (+B2 »88) (56) (»35) (#34) (=83)
(*32) (*70) (»71) (#83) (#62) (#65) (*64) (*B3 #31) (+89) (%B1 #810)
(#3 #9 #14) (+15 +20) (»16 »21 *19) (225) (28 *32) (7 #11 12 .17
*18) (#24) (+23) (*2 »13) (s1 #8 *8) (#69) (+F) (»68) (+67) (+86)

Zeroed edges:
=K =AU =BF =BD =AZ wiW =AT =BI =BJ =CB =BQ =CD =CY =CJ =BV »T =T =sp
=AL =AG =AYV =AE =iD =l = =f af af

Partition 43

(o5 =4) (#22) (27 +30) (#31 *34 #36 =35) (#10) (26 29 *33) (37 *40
#39) (*38 47 »57) (+48 =58) (#57) (#B2 »38) (*36) (+S5) (*S4) (+53)
(#52) (#70) (*+71) (»83) (#62) (#65) (+64) (»B3 »51) (#510) («B1 »S9)
(*3 %9 #14) (+15 #20) (+17 +18) (+24) (+28 #32) (%23) (+7 +11 %12 *16
*21 #19) (%25) (#2 #13) (%1 *8 #8) (*69) (+F) (v68) (»67) (+68)

Zeroed edges:
=k =AU =BF =BD =A2 =AW =AT =BI =B] =CB =B =CD =CY =CJ =BT =T = =iB
*AE =AV =AL =iG wiC =X =Q =F =J =f

Partition 44

Zerced edges;
=X =AU =BF =BD =A7 =AW =iT =BI =B] =CB =R} =CD =(Y =C] =BT =T =l =j}
=AL =4G =)V =AE =iD =Y =Q] aF =} ag

Partition 45

(#6 =4) (#22) (%27 +30) (#31 ®34 38 *35) (*10) (*26 *29 #33) (a7 =40
#39) (938 %47 #67) (#48 #68) (+57) (#B2 #38) (»S6) (#S5) (+54) (+83)
(*31) (e70) (*71) (+63) (*62) (#65) (»64) (+B3 *32) (*89) (*B1 #310)
(€3 29 %14) (+15 #20) (e17 *18) (#24) (28 +32) (%23) (a7 »11 *12 18
*21 #19) (#25) (#2 #13) (a1 6 #8) (+69) {+F) (%68) («87) (+86)

Zeroed edges:
=Kk =AU ~#F =RBD =AZ =i =AT =B =BJ =CB =BQ =CD «CY =CL =BV aT =T =ip
=AE ®AV =il ®=AG »iC =I =f ¥F =} =E

Partition 46

(*31) (*70) (#71) (#63) (+62) (+65) (#64) (+B3 ¢52) (#S9) (#B1 *510)
(*3 %9 #14) (+15 #20) (16 *21 *19) (#25) (#28 »32) (e7 *11 »12 17
*18) (»24) (#23) (#2 #13) (1 »6 *8) (+69) (+F) (#68) (+6T) (+66)

Zeroed edges:
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=k =AU =BF =R} =iZ =AW =AT =BI =B] =CB =BQ =CD =CY =CL =BV =T =] =iB
=AL =iG =iV =AE =AD =] =Q »F = =E

Partition 47

(25 #4) (222) (*27 »30) (31 ¢34 »38 »35) {(*10) (#26 #29 »33) (+37 =40
*39) (38 *47 *57) (%48 «58) (=87) («B2 +58) (#86) (»35) (=34) (*33)
{#81) (#70) (*T1) (#63) (+62) (#65) (#64) (+B3 »52) (+510) (»B1 »89)
(*3 *9 »14) (*15 #20) (*17 »18) (=24) (+28 »32) (#+23) (*7 *11 %12 *1§
*21 *19) (#25) (+2 #13) (1 +8 +38) (+69) (+F) (+68) (+67) (+68)

Zeroed edges:
=K =AU =BF =BD =i7 =AW =AT =B] =BJ =CB =B( =CD =CY =CL =BT =T =] =iB
=AE =AV =ji]. =iG =iC =] =Q =F =} =E

Partition 48

(»5 =4) (%22) (27 #30) (%31 «34 *36 #35) (*10) (%26 *29 233) (=37 =40
#39) (*38 #47 »67) (%48 «58) (+S7) («B2 »58) (»56) (+36) (»S4) (+83)
(*51) (#70) (*71) (#63) (+82) (#65) (+64) (*B3 »52) (+#S10) (#B1 *59)
(%3 *9 *14) (*15 *20) (*18 *21 *19) (*25) (*28 #32) (7 #11 +12 »217
*18) (#24) (#23) (#2 *13) (1 «8 »8) (s69) (sF) (+68) (+67) (+#66)

Zeroed edges:
=K =AU =BF =BD =i7 =AW =AT =B] -BJ =CE =BQ =CD =CY =CL =BT =T =] =iAB
=AL =4G =AV =AE =AD =X =Q =F N =E

Partition 49

(5 #4) (*22) (%27 »30) (=31 »34 +35 *=35) (»10) (+28 29 »33) (#37 »40
+39) (#38 #47 *67) (»48 +58) («87) (»B2 #38) (#58) (+85) (#84) (»82)
(»31) (#70) (»71) (#83) (+62) (#65) (+84) (+»B3 +33) (+39) (Bl #310)
(%3 *9 #14) (=15 »20) (=17 #18) (*24) (+28 »32) (+23) (=7 »11 »12 =18
21 +19) (#25) (2 +13) (*1 +8 +8) (+69) (*F) (*68} (#67) (=66)

Zeroed edges:
=k =AU =BF =BD =AZ =AW =AT =BR] »BJ] =CB =B{ =CD =CY =CN =BV =T =T =iB
=AE =3V =il =AG =AC =X =( w»F =E =E

Partition 5O

(5 »4) (222) (27 %30) {+31 #34 +36 *35) (*10) (%26 229 233) (»37 =40
*39) (%38 #47 =57) (*48 »58) (#S7) (*B2 »88) (+56) (#85) (»34) (=32)
(*S1) (=70) (+71) (*63) (#82} (#65) (*64) (%B3 »33) (#59) (sB1 =310}
(*3 »9 *14) (*15 «20) (*16 21 »19) (#25) (e28 »32) (27 »#11 =12 *17
*18) (#24) (#23) (*2 *13) (*1 6 *8) (269) (+F) (#63) (=67) (s86)

Zeroed edges:

uE =jU «BF #sBD =AZ =AW =iT =B] =B] =CPB =BQ =CD =CY =CJ) =BV =T =] =jB
=il =4G =AV =AE =AD I =Q =F sl sE

Partition 51

(»5 #4) (#22) (=27 »30) (»31 =34 +38 ¢35) (+10) (»28 +29 «33) (+37 =40
+39) (#38 »47 #57) (#48 »58) (»S7) («B2 +58) (*+86) (+55) (»54) («82)
(#81) (+70) (=71) (»83) (#62) (*65) (+64) (#B3 #583) (*810) (*B1 »59)
(#3 29 #214) (*15 #20) (#17 +18) (#24) (+28 ¢32) (=23) (s7 #11 12 »18
#21 #19) (+25) (o2 *13) (#1 8 =8) (s69) (sF) (+68) (#67} (#66)

Zeroed ed,
=K =)l =B -BD =AZ =i =AT =BI =BJ =CB =BQ =CD =CY =C§ =RT =T =] =iB
=jE =AV =i, =AQ =AC =] =] =F =) =E

Partition B2

(a6 #4) (%22) (=27 *30) (+31 *34 38 *35) (#10) (*26 29 +33) (*37 +40
#39) (38 *47 *57) (+48 *58) (#37) («B2 *88) (#38) (#85) (#34) (+32)
(#81) (#70) (*71) (=63) (»62) (+65) (=64) (#B3 +83) (*510) (=Bl =§9)
(+3 #9 #14) (*15 #20) (#16 #21 *=19) (#25) (#28 *32) (#7 #11 »12 =17
*18) (*24) (#23) (#2 «13) (e1 #8 +8) (*69) («F) (*88) (»87) (=66)

Zeroed a L $}

=Kk =iU =BF =BD =iZ =iV =iAT =BI =B] =CB =BQ =CD =CY =CF =BT =T =] =iB
wjil =i =AY =AE =AD «] = «F =} =E

Partition 53

(5 #4) (w22) (*27 «30) (31 *34 +35 %35) (#10) (e28 #29 233) (37 =40
#39) (#38 +47 «57) (#48 +58) (#87) (»B2 »3S8) (#36) (#85) (#33) (+82)
(+31) (#70) (471) (#63) (%62) (+65) (#54) (+#B3 #34) («89) («B1 #510)
(%3 «9 +14) (w15 $20) (417 #18) (*24) (=28 »32) (#23) (7 =11 »12 186
21 *19) (+25) (%2 *13) (+1 +8 «8) (+69) (+F) (+68) (+87) («68)

Zexrced edges:

=K =AU =BF =BD =AZ wji§ =iT =BI »BJ aCB =B} =CD =CY aCP aBV =T =] =iB
=AE =AV =il =iG =AC =] =} =F =§ =E

Partition 54

(5 #4) (#22) (27 %30) (%31 #34 38 »35) (+10) (#268 29 »33) («37 +40
*39) (*38 %47 *57) (+48 «58) (#$7) (+B2 »88) (e36) («35) (#353) (=82)
(#51) (»70) (=71} (»63) (»62) (#65) (*64) {#B3 +54) (+59) (sB1 #410)
(#3 *9 #14) (%15 #20) (*16 *21 #19) (#25) (28 232) (7 =11 #12 »17
#18) (#24) (#23) (#2 »13) (+1 #6 *+B) (#69) (sF) («88) (%x67) (+86)
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Zeroed edges:
wl =il =RF =B) =7 =j¥ =iT =BI =B] =CB =B{] =CD =CY =CP =BV aT =] =jAB
ujl, =AQ =AY =iAE »iAD =X ={ =F =§ =E

Partition 556

(a5 #4) (#322) (*27 +30) (*31 *34 *38 »38) (%10} (26 %29 »33) (#3T7 »40
#*39) (38 #47 #57) (»48 »58) (*87) (=B2 *88) (#56) (*55) (*53) (+32)
(#81) (*70) (»71) (w83) (#62) (»65) (*64) (=B3 +54) (*310) (=Bl *»59)
(=3 9 #14) (*15 #20) (*17 »18) (*24) (*28 »32) (%23) (»7 »11 #12 *i6
*21 »19) {#25) (#2 #13) (#1 »6 *8) (»63) (+F) (+68) (%67} (+66)

Zaroed edges:
=K =AU =BF =BD =AZ =AW =AT =BI =BJ] =CB =BQ =CD =CY =CP =BT =T =I =iB
=AE =AY =AL =AG =AC =I =( =F =} =E

Partition 56

(a5 #4) (#22) (%27 *30) (*31 =34 *36 #35) (*10) (#26 29 «33) (=37 =40
#39) (*38 »47 #57) (*48 258) (*57) («B2 »58) (#86) (a55) (e53) (»32)
(*81) (*70) (»71) (+63) (+62) (#65) (+64) («B3 »84) (#»510) («Bl »59)
(+3 #9 »14) (»16 *20) (*16 *21 +19) («25) (*28 #32) («7 +11 *12 *17
*18) (*24) («23) (»2 *13) (*1 »§ »8) (»69) (»F) («68) (*67) (*66)

Zerved adges:
=K =AU =BF =BD =iZ =iW =iT =Bl =B} =CB »B] =CD =CY =CP =BT =T =I =iB
=AL =AG =AV =AE =AD =X =Q aF =§ =E

Partition 57

(5 *4) (#22) (#27 *30) (31 *34 +36 =35) (#10) (+268 #29 *+33) («37 »40
#39) (#38 #47 #57) (=48 #58) (+37) (+B2 »58) (+S8) (#54) (=83) (+82)
{(*81) (*70) (#71) (#63) (»62) (#65) (*64) (+B3 »55) (+59) («B1 ¢510)
{3 =9 *14) (»15 *20) (e17 =18) (e24) (#28 *32) (*23) (*7 =11 »12 =16
%21 #19) (#26) (*2 ¢13) (*1 *6 »8) (+69) (+F) {(+68) (+67) (»66)

Zeroed edges:
=K =AU wBF =8D =A7 =AW =AT =BI =B] =CB =B =CD =CY =CR =BV =T =I =iB
=AE =iV wiAl =AG =AC =] =( =F =] =

Partition 58

(#5 »4) (+22) (27 *30) (#31 =34 36 #35) (»10) (+26 +29 +33) (+37 »40
#39) (#38 47 #57) (»48 #58) (#87) (B2 »38) (+856) (+«34) (+53) (+52)
(*81) (»70) (=71} (%63) (+62) (#65) (+64) (#B3 »85) (38) (+B1 +810)
(3 #9 #14) (=15 #20) (=216 21 «19) (*25) (#28 »32) (=7 »11 #12 *17
#18) (e24) (%23) (#2 »13) (#1 #8 «B8) (+69) (aF) {+88) (»87) (+66)

Zeroed edges:
=K =AU =BF =BD =AZ =AW =iT =BI =B] =CB =BQ =CD =CY =CR =BV »T =] =iB
=AlL =AG =AV =AE =AD =) =] =F =} sE

Partition 59

(»5 *4) (+22) (27 »30) (231 ¢34 *36 *35) (+10} (+26 »29 *=233) (*37 #40
#*39) (38 =47 #57) (#48 #58) (*37) (+B2 *58) (+56) (#54) (»353) (»82)
(w81) (*70) (»71) (*63) (#62) (+65) {*64) (»B3 «85) (#510) (+B1 *39)
(#3 *#9 #14) (»15 +20) (#17 *18) {«24) (»#28 #32) (*23) (+7 »11 »12 s16
»21 »19) (#25) (*2 #13) (»1 #6 *B) (#69) (+F) (»68) («67) (#66)

Zeroad adges:
=K =AU =BF =BD »AZ =AW =AT =BI =B] =CB =B{ =CD =CY =CR =BT =T =I =iB
=AE =AV =il =AG wAC =1 ={ =F =F =E

Partition 60

(*5 =4) (#22) (+27 +30) (*31 »34 »36 #35) (#10) (=268 +29 +33) («37 #40
*39) (238 »47 *57) (+48 #«58) («87) (#B2 #838) (+36) (+34) (»33) (*32)
(%81) (e70) (#T71) (#63) (#62) (*65) (+64) (+B3 #S5) (#510) (+B1 #89)
(*3 *9 «14) (#15 +20) (=16 =21 +19) (*25) (*28 »32) (+7 +11 12 *17
*18) (*24) (#23) (22 »13) (#1 +6 #8) (+69) (+F) (+68) (%67} (+66)

Zeroed edges:
=K =AU =BF =BD =iZ =iV =AT =Bl =B] =CB =BQ =CD =CY =CR =BT =T =] =iB
=Al. =AG =AV #AE #AD =Y =Q =F =} =E

Partition 61

(»5 »4) (»22) (*27 »30) (*31 =34 »36 »35) (#10) («26 *29 *33) (+37 =40
*#39) (»38 «47 #57) (%48 «58) (#87) (*B2 *58) (»55) (*54) (+353) (e52)
(#S1) (*70) (+71) (+63) (#82) (*65) (+64) (#B3 +86) (%39) («B1 #510)
(23 9 #14) (15 #20) (17 =18) (+24) (28 »32) (#23) (a7 =1l +12 »16
21 »19) (#25) (#2 «13) (*1 +68 ¢8) (+69) (+F) (+68) (+87) (+66)

Zerved edges:

=K wjl =sBF =BD wAZ =iW =AT =BI =BJ =CB =BQ =CD =CY =CT =PV =T =I =iB
=AE =AV =Al, =AQ aiC =X ={ «F =N =E

Partition 62

(#5 #4) (*22) (%27 +30) (*31 *34 =36 »35) (*10) (+26 *+29 «33) («37 =40
*39) (=38 #47 =57) (*48 *58) (+S7) (#B2 +58) (#35) (+54) (+53) («32)
(*81) (+70) (*71) (%63) (x62) (#65) (+64) (+B3 +86) («§9) («B1 #510)
{3 »9 *14) (*15 #20) (%16 21 +19) (+25) (+28 +32) (#7 =11 *12 *17
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*18) (*24) (#23) (2 #13) (+1 #6 «8) (+69) (+F) (»63) (#67) (»886)

Zaroed edges:
=X =) =BF mBD =AZ =)y =AT =p] =B] =CB =B} =CD =CY =CT =BV =T =] =jp
=A], =A(Q =AV wiE =AD =I =(Q =F =J =E

Partition 63

(*5 #4) (22) (»27 »30) (#31 34 #3686 »35) (+10) (#26 «29 ¢33) (+37 *=40
»39) (%38 #47 »57) (+48 #53) (*57) (+B2 »88) (#85) (*S54) (*83) (+#52)
(*81) (#70) (*71) (+63) (=62) (+65) (*84) (+B3 +56) (+510) (sBi »89)
{3 =3 *14) (*15 #20) (#17 «18) (*24) (28 #32) (#23) (=7 e¢11 =12 =16
%21 #19) (226) (+2 #13) (»1 =8 »8) («69) (+F) (*68) (*+67) (%88)

Zerced edges:
=Kk =AU =BF =BD =A7 =jW =4AT =B] =B] «CB =B] =CD =CY =CT =BT =T =] =iB
=AE =AYV =il =AG =AC =I =} =f a} =E

Partition 64

(5 #4) (#22) (*27 +30) («31 #34 #36 ¢35) (*10) (#26 »29 +33) (*37 =40
+39) (238 =47 #57) (*43 #58) (#37) (+B2 »38) (#85) (»54) («53) («82)
(#81) (#70) (»71) (%63} (#62) (#65) (#64) (#B3 *56) (*510) (*B1 *59)
(#3 »9 #14) (*15 #20) (18 *21 *19) (#25) (*28 #32) (+7 11 *12 »17
#18) (*24) (#23) (*2 *13) (+1 *6 #8) (»69) (+F) (+68) (+67) (#66)

Zerced edgas:

uE =40 =BF =D wiZ =il =AT =B] =B] =CB =B} =CD =CY =CT =BT aT =] =jB
=A], =AG wiAV =AE =AD =X =Q =F =} =E
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APPENDIX D

The Simulator

We wrote a tagged-token data flow machine simulator in Modula-2, using the
SIMON simulation package. Our machine corresponds roughly to the Manchester

machine [Gurd85). It differs from the Manchester machine in the following ways:

1. Communication plus matching time is given a fixed value for each edge.
On a real machine, this time will vary depending on the machine load, and

the size of the data tokens.

2. The matching unit can handle operations which require more than two in-
put operands. The Manchester machine matching unit imposes a maximum

on the number of input operands: two.

3. The matching unit handles arbitrary multiple “enabling groups” according
to the PDFG specification given on page 23. The Manchester machine

allows only one enabling group per instruction.

4. Our system does not allow two edges to share the same sink vertex and

sink position. We provide an equivalent construct in the MERG instruction.

5. Our system provides no special structure store, and has no structure oper-

ations.
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6. An infinite number of processors are provided. There is no processor con-

tention.

D.1 Instructions Provided

The simulator has an easily extensible instruction set. We implemented only
those instructions necessary to simulate our example data flow programs. The

instructions provided include:

MERG This instruction allows any number of input edges, each in its own
enabling set. There is only one output edge. An input edge will be ran-
domly selected from those which contain tokens, the token absorbed and

reproduced as an output token. This operation executes in zero time.

Its function corresponds exactly to the case in the Manchester machine
.where two input edges enter the same vertex at the same position. We
provide an explicit instruction to do this, simply to keep the input format

of our analysis program and our simulator the same.

DUP The DUP instruction has one input edge. It duplicates an input token,

and outputs it on two output edges.

SUBR The SUBR instruction takes no input edges and allows any number of
output edges. It functions simply as a label for a subroutine. The output
edges correspond to the parameters of the subroutine. CALL instructions

which refer to this subroutine must have the same number of input edges
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(not including the subroutine name) as the corresponding SUBR instruction

has output edges.

CALL The first input edge to a CALL instruction should be a string constant
naming the subroutine to be called. The remaining input edges correspond
to parameters. There should be the same number of input parameter edges

as there are output edges to the corresponding SUBR instruction.

The CALL instruction allows a varying number of output edges. The number
of output edges for a particular CALL instruction should equal the number

of input edges to the appropriate RET instruction in the called subroutine.

The CALL instruction first obtains a new unique “invocation ID” for the
subroutine being called. It saves the invocation ID of its input tokens, the
label of the CALL instruction, and the new invocation ID in an “invocation
memory.” It changes the invocation IDs of its input tokens to the new
invocation ID. The CALL instruction then send the tokens out on the output

edges of the named SUBR instruction.

RET This instruction takes any number of input edges and produces no output
edges. When it receives input tokens, it looks up their invocation ID in the
invocation memory. It sets the invocation IDs of its input tokens to the
old invocation ID. It then produces output tokens on the appropriate CALL

instruction.
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PLUS, MINUS, TIMES These instructions all take two input operands and
produce one output token. Their functions are obvious. If inputs are
integers, they produce an integer output. If inputs are real, they produce

a real output.

ABS This produces the absolute value of its single input token. If the input is
an integer, it produces an integer output. If the input is real, it produces

a real output.

OR, AND, NOT These instructions perform corresponding logical operations

on their boolean inputs.

BRR This branch instruction takes a number of inputs greater than 1. The
first input edge must carry a boolean value. If there are n input edges, the
BRR instruction must have 2(n — 1) output edges. If the first input edge
carries a false value, the tokens on input edges 2 through n will be copied
to output edges 1 through (n — 1). If the first input edge carries a true
value, the tokens on input edges 2 through n will be copied to output edges

n through 2(n — 1).

CGR This “compare greater” instruction compares its two input tokens. If the

left is greater than the right, it outputs a true value. Otherwise it outputs

a false value.
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ADL This “add to iteration level” instruction increments the iteration level

number of the left input token by the integer value of the right input token.

SIL This “set iteration level” instruction sets the iteration level number of the

left input token to the integer value of the right input token.
STUB This instruction merely absorbs an input value, and produces nothing,.

ISERROR This instruction produces a true output value if the input token is
an error value. It produces a false output value if the input token has any

other value.
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