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The performance of multistage interconnection networks with blocking switches is de-
graded when the traffic pattern produces nonuniform congestion in the switches, that is, when
there exist nonuniform traffic spots (NUTS). For some specific patterns we evaluate this degra-
dation in performance and propose modifications to the network organization and operation to
reduce the degradation. Successful modifications are the use of diverting switches and the exten-
sion of the network to include alternate paths. The use of these modifications to the basic block-
ing policy for control of contention makes the network more effective for a larger variety of
traffic patterns.

1. Introduction

Multistage interconnection networks (MIN) are used in multiprocessor systems to con-
nect processors with other processors or with memory modules. These networks provide a
compromise between networks of low latency and high cost, such as the crossbar, and networks
of high latency and low cost, such as the shared bus. Moreover, MINs can be pipelined to pro-
vide a bandwidth comparable to that of the crossbar for suitable traffic patterns. In addition, the
control of routing is simple. A large body of work has been done on the structure, operation, and
performance of these networks; a comprehensive reference is [SIEG85). These networks were
initially introduced for use in array computers of the SIMD type; in this context the interconnec-
tion networks are sometimes called permutation networks. More recently, they are being pro-
posed and used in multiprocessors of the MIMD type, especially of the shared-memory variety
[HWANS84, GOTTS3, PFIS85, RoMa86, THOMS6]. In this paper we are concerned with this
second type of use.

A more extensive discussion of the operation and performance of multistage networks is
given in the next section. In their basic form, these networks provide a unique path between any
source-destination pair. However, the paths for different pairs are not disjoint and, therefore,
conflicts might occur when simultaneous communication is established between several source-
destination pairs. The basic method used to handle this problem is to use a packet-switched type
of operation and to buffer the packets in the switches. Blocking occurs whenever the buffers be-
come full.

It has been shown that the performance of these networks is satisfactory for uniform
traffic [DiJu81, KrSn83], that is, for traffic in which the destinations are generated by a random
variable with uniform distribution. More recently, several studies [PfNo85] have indicated that
the performance of the network is degraded significantly when the traffic includes hot-spot



traffic, that is, when each source generates a larger fraction of the traffic to one particular desti-
nation. This type of traffic occurs because of access to shared variables, such as semaphores. To
overcome this degradation, a network with combining switches has been proposed.

The topic of this paper is a more general type of nonuniform traffic, in which there is no
concentration of the traffic to one destination, but the traffic is not uniformly distributed among
the switches, producing nonuniform traffic spots (NUTS). In this paper, we illustrate some typi-
cal cases of this type of traffic and show the degradation in network performance produced by
them. We then explore solutions to reduce this performance degradation.

Of course, in this case the use of combining switches is not a solution since the conten-
tion packets do not necessarily have the same destination. We show that randomization of the
traffic, proposed for reducing contention in multicomputers [VALI82, MITR86], is not suitable
either. As positive alternatives to improve the performance, we consider the use of diverting
switches, with several diverting policies, and networks with alternate paths. Because of the
reduction in degradation produced, the proposed modifications to the basic network with block-
ing make the multistage network suitable for a larger variety of multiprocessor applications.

The performance of the proposed solutions is evaluated by simulation. The objective of
this evaluation is to show that, under reasonable conditions, performance of the original network
with blocking switches is badly degraded by the presence of NUTS and that the modifications
proposed significantly reduce this degradation. On the other hand, it is not our objective to give
an extensive set of graphs from which the performance of particular networks with specific
traffic patterns can be determined. Consequently, we select a set of reasonable network parame-
ters and traffic patterns and use these for the simulation.

2. Multistage Network Structure and Operation

We now give a brief description of the structure and operation of the multistage network,
emphasising the assumptions we make. A more detailed discussion can be found in {Sieg85].
The type of multistage interconnection network we are considering has N =2" inputs (sources)
and outputs (destinations), both labeled from 0 to N-1. It consists of n stages of N72 2x2
switches, as shown in Figure 1. The outputs of stage-i switches are connected to the inputs of
stage-(i —1) switches, with the network inputs going to stage-(n—1) switches and the network
outputs coming from the stage-0 switches.

Several specific multistage networks have been proposed, differing in the interconnection
pattern between stages. Since the characteristics, in terms of type of operation and performance,
are similar for all these different topologies, we consider here the Omega network [LAWRT75],
which has been extensively studied [CHENS81] and is being used in several multiprocessor sys-
tems. In this network, the interconnection pattern between stages corresponds to the perfect
shuffle connection, as shown in Figure 1.
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The routing of packets in the network is unique since there is a single path from a
specific source to a specific destination. The control of routing is done using a destination tag
that is associated with the message as part of each packet. At stage i, the routing depends only
on the ith bit of the tag; if the bit has value 0(1), route to the upper(lower) output of the switch.

The operation of the network is synchronous and pipelined. In its basic form, each switch
has one register per output and each cycle one packet is transferred from an output register in a
switch of stage i to the corresponding output register of a switch of stage i 1. This implies that
the packets are all of the same size. If the packet is large, the above mentioned cycle can be di-
vided into several subcycles and a part of the packet be transferred per subcycle. However, we
will not be concerned with this subdivision and will use the packet as the basic unit of transfer
and the time of this transfer as the unit of time (one cycle).

Since each output register can receive only one message per cycle, there is a conflict
when both packets entering a switch in a cycle have to be routed to the same output. One solu-
tion to this conflict is to have a buffer for each output and to store the additional packet in such a
buffer. Of course, these buffers are finite so it is necessary to have an operation policy when the
buffer is full. The basic scheme used is a blocking policy in which the predecessor switches do
not send packets to a full buffer. To support this policy it is necessary to have signals from a
switch to its predecessors indicating that the corresponding buffer(s) is full (Figure 2). Note that
since both predecessors can send messages to the same buffer, it is necessary to establish a poli-
cy also for the case in which there is just one space in the buffer. In such a case, we select alter-
natively the predecessor that is blocked.

Several variations to the basic switch design are possible. The switch can have a single
buffer pool to service both inputs/outputs, which leads to the best buffer utilization. However,
this requires that two packets be accepted and sent from the queue per cycle and, if a FIFO poli-
cy is used, a packet in the front of the queue can block the sending of another packet. The other
possibility is to have dedicated buffers, either servicing one input or one output. Input buffers
have the advantage of simplifying the generation of the full signal and receive at most one pack-
et per cycle. However, arbitration is necessary to determine which packets are sent to the output
and a FIFO policy leads to the same blocking characteristics as for the single buffer. Output
buffers have to be able to receive two packets per cycle and have a more complex generation of
the full signal. Queue management policies can be FIFO or non-FIFO with some kind of priority
scheme. More complex control algorithms are possible, leading to better utilization, but the cost
and speed requirements of the switch limit the practicality of such complex algorithms. As tech-
nology improves, however, more options become available.

In this paper we do not evaluate the different buffering organizations and policies. The
degradation produced by NUTS is inherent to the blocking operation of the network, which is
present for any of the buffer organizations and policies. Moreover, the modifications we propose
are applicable to all these organizations. Consequently, we perform our analysis using output
buffers with FIFO policy.
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As mentioned, the basic network is composed of 2x2 switches. However, generalizations
are possible in which kxk switches are used. This has the advantage of reducing the number of
stages to log, N, with the corresponding reduction in delay. In this paper, we only consider 2x2
switches, but the results should be equally applicable to the general case.

When processors send request packets to remote memory modules, traffic in the opposite
direction is also generated. These return packets must traverse an analogous network to reach
the processors. The analysis of this type of traffic is similar to the request traffic, and is not con-
sidered here.

3. Performance evaluation by simulation

We now describe the measures that we will use to evaluate the performance of the net-
work. We also indicate the types of traffic used and the different network parameters considered.
As discussed in the introduction, we select a reasonable set of parameters and perform simula-
tions to compare the performance for the original network and for the modifications proposed.

Of importance in our study are the different traffic patterns used, since the degradation
due to nonuniform traffic spots (NUTS) and the applicable solutions depend on the traffic pat-
terns considered. In the next section we present the patterns we will use.

In addition to the traffic pattern, the traffic load is of importance. We distinguish two
types of systems: open and closed systems. In an open system, each processor generates a packet
each r cycles, so that the load is specified by the fraction 1/r.Ina closed system, on the other
hand, each processor has a maximum of » outstanding packets. We have found that the results
are qualitatively similar for both cases for the same total throughput. Consequently, to concen-
trate on significant parameters, we only report on results for open systems.

We evaluate the steady-state behavior of the system, that is, we assume that the traffic
pattern under consideration remains for a period long enough to achieve this steady state.

The fundamental parameters for the network are its size and the size of the queues. We
have found that the relative performance of the network remains essentially the same for dif-
ferent values of these parameters. Consequently, we report our results for a network of size 64
and queues of size 2, which are also convenient because they produce a relatively small delay,
except for the blocking case where, because of the way the full signal is generated, this size of
queue is not adequate. In this latter case, we use a queue of size 4.

The main performance measures of interest are the throughput of the network in
packets/cycle, and the average delay of the packets. The maximum throughput is of N packets
per cycle and the minimum delay is of n cycles. This performance is obtained when there are no
conflicts, that is, when in all cycles all switches receive two packets and route one to each out-
put. For other cases, the performance is shown by the function delay vs. throughput.



In a multiprocessor system all processors cooperate in the execution of a task and have to
synchronize periodically. Consequently, it is convenient for all processors to advance at a uni-
form pace, so that processors do not have to wait unnecessarily for slower processors. The meas-
ure we use to evaluate the relative advance of the processors is the distribution of throughput.

For the simulations we built a network simulator using as a basis SIMON, a general-
purpose multiprocessor simulator developed at the University of Utah [FUJI86].

Several studies have been reported on the performance of multistage interconnection net-
works with uniform traffic [DiJu81, KrSn83]. In this case, the destinations are generated by a
random variable with uniform distribution. Since our purpose is to consider the performance for
nonuniform traffic, we performed simulations for uniform traffic only to validate the simulator
and provide a reference point with which to compare the other traffic patterns. The results of our
simulations for uniform traffic confirm what previous studies have indicated.

4. Traffic patterns producing NUTS

The evaluation studies that have been made for the “hot spot" problem point to a more
general situation with nonuniform traffic. The same type of degradation should occur whenever
the traffic is such that one or more switches carry a larger fraction of the total traffic than its
share. This degradation is due to the same “tree saturation” effect observed in the hot-spot case.
In the context of the Omega network, switch i of stage j carries the traffic going from a specific
subset of 2/ sources to a specific subset of 2Uog p =i +1) gestinations. Consequently, switch
congestion occurs whenever this traffic is excessive. This can occur even in situations in which
the fraction of traffic going to each destination is the same. The main objective of this research
is to identify the traffic patterns that produce non-uniform traffic spots (NUTS), to evaluate the
degradation in performance, and to propose and evaiuate solutions to this problem.

To study the influence of NUTS on performance we have considered two types of traffic
as follows. These types are just examples to illustrate the problem and evaluate the solutions;
they correspond to situations that could occur, but are not specific practical patterns.

Traffic of Type 1.

In the first type, each source issues all its requests to one destination and no pair of
sources sends to the same destination. In the shared memory case, this type of pattern models a
system in which each processor has a preferred memory module that contains both the code and
the data for that processor. It might be argued that in such a case it would be better to assign to
each processor a local memory module with direct access without going through the network
(this is the scheme used, for example, in the BBN Butterfly). However, the use of the network to
have a uniform access time from any processor to any memory module, permits a flexible
dynamic scheduling approach that is not possible in the local scheme. In this dynamic schedul-
ing model, a processor can have its code/data in any memory module, and this module can vary
with time. This type of traffic would model also situations in which the communication is
among pairs of processors.



Some specific instances of this type of traffic patterns produce significant NUTS while
others do not. We use two different instances for our study. In instance 1, we use a bit-reversal
permutation which is known to produce a large contention in the Omega network as evident
from the switch positions shown in Figure 3. This is an extreme case, it shows a lower bound on
the improvement that can be achieved with the techniques used. To model a more typical situa-
tion, as instance 2 we generated an arbitrary permutation.

The throughput-delay for these patterns is shown in Figure 4, As can be seen, there is
significant degradation in performance, as compared with the uniform traffic case.

Moreover, in case of the arbitrary permutation there is a large variation between the
throughput of the different processors (Figure 5). As mentioned before, this is not desirable
when the processors are cooperating in a single task.

Traffic of Type 1.

The second traffic pattern we consider consists of requests going from even numbered
sources to destinations in the first half and from odd numbered sources to destinations in the
second half (EFOS). This pattern serves to illustrate a case in which each source accesses a sub-
set  of destinations. In this case there are also NUTS. The performance of the net is shown in

Figure 4.

We conclude from these simulations that the performance of the network is badly de-
graded by the NUTS, with respect to the performance for uniform traffic. We now explore ways
to reduce this degradation.

5. Two unsuccessful solutions: randomization and discarding

We now report on randomization and discarding, two approaches to reduce the degrada-
tion due to NUTS which turned out to be unsuccessful.

Randomization

As a first solution to the degradation due to NUTS, we consider the use of randomization
of the traffic. In this approach, proposed previously to handle load imbalances in routing of mul-
ticomputers [VALI82, MITR86], packets are first sent to random destinations and then rerouted
to their final destinations. This scheme has the effect of making the traffic pattern uniform and,
therefore, of eliminating the added congestion of nonuniform traffic.

In the context of multistage networks, the use of this scheme implies that all messages
make two passes through the network. This has the two negative effects of doubling the
minimum delay and reducing the effective throughput to half, because of the additional traffic
through the net produced by rerouting. The results of simulations for the two types of traffic
described in the previous section are shown in Figure 6, which exhibits the expected throughput
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and delay. As seen from there, randomization produces a relatively small improvement for the
extreme bit-reversal case, while it is detrimental for the others.

Discarding Switch

Another solution we considered was the use of discarding switches. Switches of this type
resolve congestion by discarding overflow packets instead of blocking. The original source of
the packet is made aware of the status of the packet, through an explicit signal from the switch or
a timeout mechanism, and retransmits it. Note that this requires the source to buffer all out-
standing packets until an acknowledgement is received from the destination. The switches also
require the ability to signal the appropriate source that a particular packet was discarded. This
requires additional interconnect and more complex control.

This type of switch is used in the Butterfly Parallel Processor to deal with contention in
the network and avoid °‘tree saturation’’ [Thom86].

The simulations reported in Figure 7, show that for the traffic patterns considered there is
no improvement with respect to the network with blocking switch. This can be explained by the
fact that the discarded traffic is reissued by the same processor as the first time and, therefore,
follows the same path leading to the NUTS.

6. Diverting Switch

In a diverting switch the messages in front of the buffers are always sent to the succes-
sors, irrespective of whether there is space for them in the corresponding destination buffers. If
both messages that arrive to a switch go to the same output buffer and there is no space for both,
then one of the messages is diverted to the other buffer of the switch (Figure 8). Note that there
is always at least space for one message in each buffer since one message departs from each
buffer in every cycle. Of course, the diverted message will go to a wrong destination (since there
is just one path in the network for each source/destination pair); therefore, the message will have
to be resent into the network to the correct destination. Consequently, this mode of operation re-
quires a connection between each network output and corresponding input (a wrapped-around
organization).

Diversion has potentially a better performance than discarding because the packets are
rerouted from a source that is different from the original source. This makes it possible for the
message to avoid the NUTS in the second pass.

Since to obtain a good performance it is convenient to reduce the number of packets that
are diverted, whenever a conflict occurs and one of the packets in the conflict has already been
diverted (in that pass through the network) we give preference to the nondiverted packet (to go
to the correct destination).
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Because of the diversions, a message might traverse the network several times before
getting to its destination. A possible problem with this form of operation is that it is not possible
to assure that a particular message will have a bounded delay. To avoid this and make the delay
more uniform, we give preference to older packets.

Diverting policies

Once a packet 18 diverted in the network, it cannot reach its desired destination during
that pass; it has t0 20 through the network again. This means that we now have a great deal of
freedom in deciding where to Toute these diverted packets. The main goal is to route the divert-
ed packet to an interim destination that has a "clear” path to the true destination, so that it will
not be diverted again.

We have experimented with several diverting policies. We present here the results of two
of them, to show that diverting produces an improvement in the performance and that the
specific diverting policy has an impact.

The first diverting policy we call direct diverting. In it the routing of the diverted mes-
sage continues using the destination tag. That is, each time the message is diverted actual desti-
nation is wrong in the corresponding bit. As shown in Figure 9 the performance is significantly
better than with the blocking policy.

The second diverting policy we call complement diverting. In this case, once a message 18
diverted, instead of using the destination tag for routing, it is routed using a tag corresponding to
the complement of the source. On its next pass through the network, the original destination tag
is again used. This policy has the advantage that it assures that the rerouted message will avoid
the NUTS where it was diverted in the first pass, as illustrated in Figure 10. Of course, it can
pass through some other NUTS.

Figure 9 shows the corresponding performance for the various traffic patterns, We see
that this policy produces a somewhat better performance than the direct policy.

These simulation results indicate that the use of diverting switch improves the
throughput-delay characteristic of the network when the traffic produces NUTS. Morgover, the
use of diverting switches makes the distribution of throughput more uniform, as shown in Figure
11.

7. Network with alternate paths

The MIN’s previously considered have the characteristic of 2 unigue path between each
source-destination pair. Several reports [AdSi82, KuRe85, TZEN85] have described adding
redundant paths 10 MIN’s to improve fault tolerance characteristics. These alternate paths can
also improve the performance of a fully functional network.
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In particular [TZEN85] and [KuRe85] propose the addition of links to connect switches
in the same stage into rings so that from any switch in a particular ring packets can reach the
same subset of destinations. The application of this technique to the OMEGA network is illus-
trated in Figure 12(a). If a packet entering a switch finds the desired output queue full, it can be
re-routed to another switch in the same group via the alternate path link, and still be able to reach
its true destination directly without a second pass through the network.

This modified OMEGA network requires augmented switches acting as a 3x3 crossbar,
as shown in Figure 12(b). The routing control is somewhat more complex than for the original
2x2 switch. We still use a diverting policy, because this has given better performance for the ori-
ginal network and this policy is also simpler to control since no "full signals" are needed. Each
cycle up to three packets enter the switch. They are placed in the output queues giving priority to
the older packets that have not been diverted (in that pass). The highest-priority packet is always
placed in the correct queue, since there is always at least one space in each queue (because one
packet leaves each queue each cycle). The next packet is placed in the correct queue, if there is
space, or in the alternate queue. Finally, the least-priority packet is placed in the correct queue,
in the alternate queue, or in the wrong queue (diverted).

Figure 13 shows the performance of the network with alternate paths for the various
traffic patterns. We can see that the introduction of alternate paths produces a big reduction in
the degradation due to NUTS.

8. Conclusions

We have shown several traffic patterns that produce NUTS in multistage interconnection
networks and therefore result in a degradation of performance. The randomization technique,
proposed for eliminating imbalances of loading in multicomputers, is not appropriate in this case
because it increases the delay of each packet and the real traffic through the network. The use of
discarding switches instead of blocking switches is not advantageous either because the discard-
ed traffic has to be resent through the same congested path.

As positive solutions, we have shown that diverting switches produce a significant reduc-
tion in the degradation. Moreover, the control of congestion is simpler than that for blocking
switches because no "full signals" are needed. However, to implement this policy, it is necessary
to have a network with wrap-around connections.

The performance is much better using networks with alternate paths. However, this net-
work require 3x3 switches instead of the basic 2x2, which complicates the implementation.

The use of these modifications to the basic blocking policy in the control of contention in
multistage interconnection networks makes it possible to use the network effectively for a larger
variety of traffic patterns.
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