Computer Science Department Technical Report
University of California
Los Angeles, CA 90024-1596

STRATEGIES IN LANGUAGE ACQUISITIONS:
LEARNING PHRASES FROM EXAMPLES IN CONTEXT

U. Zernik January 1987
CSD-870099

Strategies in Language Acquistions:
Learning Phrases from Examples in Context
Uri Zemik
January 1987
Technical Report UCLA-AI-87-1

Forwarding Address: General Electric

Research & Development Center
Schenedtady, N.Y. 12301

UNIVERSITY OF CALIFORNIA

Los Angeles

Strategies in Language Acquisition:

Learning Phrases in Context

A dissertation submitted in partial satisfaction of the
requirements for the degree Doctor of Philosophy
in Computer Science
by

Uri Zernik

1987

© Copyright by
Uri Zernik

1987

The dissertation of Uri

s
==
Edward L. Keenan
. B ’
) il
DuBois
Judea Pearl

LS /Q«w#«/-

Walter J. Karplus

/// AN KR g,kf'

Michael G. Dyer, Committee Chair

University of California, Los Angeles

1987

i

iii

To My Grandfather David

Table of Contents

PREFACE

1. LEARNING LANGUAGE IN A COMPUTER PROGRAM

1.1 LEARNING A NEW PHRASE

1.2 ISSUES IN LANGUAGE ACQUISITION
1.3 THE APPROACH

1.4 THE COMPUTER PROGRAM RINA - -

1.5 PREVIOUS COMPUTATIONAL MODELS ... -

1.5.1 Language Processing

1.5.2 Language Leaming - -

1.6 OUTLINE OF THE FOLLOWING CHAP’TERS -

PART I: DHPL: A Dynamic Hierarchical Phrasal Lexicon

2. ISSUES IN LEXICAL REPRESENTATION .. -

2.1 INTRODUCTION - -

2.1.1 The Linguistic Behavior - - -

2.1.2 Issues in Language Acquisition
2.2 ACCOUNTING FOR IDIOMACITY IN THE LEXICON

2.2.1 Idioms as Equal Citizens -

2.2.2 Productive vs. Non-Productive Phrases

2.2.3 Fixed vs, Variable Phrases
2.2.4 Overspecification and Underspecification

2.3 LEXICAL REPRESENTATION: PREVIOUS WORK

2.3.1 Lexical Presupposition -

2.3.2 Language as a Knowledge-Based System
2.3.3 LFG and Language Acquisition

2.4 REPRESENTING THE CONTEXT -

2.5 CONCLUSIONS -

3. ORGANIZING THE LEXICON

3.1 THE LEXICON: CONTENTS AND STRUCTURE -

3.1.1 Basic Phrases -

3.1.2 The Global Structure e

3.2 REPRESENTING THE INFINITIVE - -

3.2.1 Phrase Interaction -

3.2.2 Parsing an Unknown -

3.2.3 Overgeneralization and Recovery
3.2.4 Error Recovery - - -

3.3 HANDLING WORD SENSES - -

3.3.1 Assigning Meanings to Particles -

3.3.2 Resoiving Word-Sense Ambiguity -

3.3.3 Determining Level of Generality .. - - -

iv

page

— b s
COOh B PhOONARWN

20

21
21
23
25
27
27
28
29
31
32
33
35
36
38
41

42
43
43

47
50
51
52
53
53

54
55

3.3.4 Analyzing a New Production - — 58

3.3.5 Leaming from Exampies - 58

3.4 INHERITING CASE ORDER 59
3.5 CONCLUSIONS - - — 61
4. UNDERLYING KNOWLEDGE 63
4,1 INTRODUCTION - 63
4.1.1 The Task Domain 64
4.1.2 The Issues . 65

42 THE PROGRAM 67
4.2.1 Phrasal Parser 67
4.2.2 Phrasal Lexicon 68
42,3 Phrase Acquisition through Generalization and Refinement - 69

4.3 CONCEPTUAL REPRESENTATION - 69
4.3.1 Scripts - . 70
4.3.2 Specific Plans and Goals ... - . 70
4.3.3 Relationships 71
434 Abstract Planning Sitations J— 73
4.3.5 Emotions and Attitudes - 74

4 4 LEARNING PHRASE MEANINGS 75
4.5 CONCLUSIONS - - - 76
PART If: Leamning Phrases in Context .. 78
5. LEARNING A HIERARCHY OF PHRASES 79
5.1 INTRODUCTION .. - 80
5.1.1 The Linguistic Phenomenon - 80
5.1.2 The Issues .. 82
5.1.3 The Approach - 83

5.2 REPRESENTING THE CONTEXT - - 85
5.3 THE LEXICON - - 87
5.4 THE ALGORITHM - 89
5.4.1 Extracting a Phrase from a Single Example . - 90

(1) Forming the Pattem - - - e 91

(2) Forming the Meaning - 92

5.4.2 Generalizing from Two Examples 92
5.4.3 Specializing a General Phrase 93

5.5 PREVIOUS WORK IN LANGUAGE ACQUISITION - 93
5.6 CONCLUSIONS - - 96
6. LEARNING IDIOMS — WITH AND WITHOUT EXPLANATION 97
6.1 INTRODUCTION 98
6.1.1 The Passive-Voice Anomaly - e 98
6.1.2 The Program Behavior 100
6.1.3 Issues in Idiom Acquisition .. . - 101

6.2 THREE MACHINE-LEARNING PARADIGMS - - - S 101

6.3 KNOWLEDGE REPRESENTATICON - w103

6.4 THE ALGORITHM

6.5 THE PROCESS MODEL

6.6 LEARNING WITHOUT EXPLANATION

6.7 CONCLUSIONS

PART III; Parsing for Leamning

7. PERFORMING IN THE PRESENCE OF INCOMPLETE LEXICAL KNOWLEDGE -

7.1. INTRODUCTION

7.1.1 The Linguistic Behavior

7.1.2 The Issues

Overgeneralization: -

7.1.3 The Approach: A Unified Parsing Mechanism
7.2 SEMANTIC REPRESENTATION OF ACTS
7.3 A HIERARCHICAL PHRASAL LEXICON

‘7.3.1 Single Phrasal Entries
7.3.2 Generalized Features

7.3.3 The Hierarchical Structure

7.4 PHRASE INTERACTION

7.4.1 Specific Interaction
7.4.2 General Interaction

7.5. GENERATION: A PROCESS MODEL
7.6 CONCLUSIONS

7.7 LIMITATIONS

8. PARSING IS MONITORED

8.1 INTRODUCTION

8.1.1 The Linguistic Phenomenon
3.1.2 The Theoretical Issues

8.1.3 Theoretical Approaches

8.1.4 The Program

8.2 THE PHRASAL LEXICON

8.2.1 A Verb Phrase

8.2.2 Modifiers

8.2.3 References

8.3 THE CONTEXT

8.4 PHRASE INTERACTION
8.4.1 Levels of Interpretation

8.4.2 Types of Interactions

8.5 DISCREPANCY DETECTION ..

8.6 ERROR ANALYSIS ...

8.7 CONCLUSIONS

8.8 LIMITATIONS -

9. BOOTSTRAPPING SYNTACTIC PATTERNS FROM SEMANTIC CONCEPTS

9.1 INTRODUCTION

sesasmvanmmesesen

9.1.1 The Linguistic Phenomenon ..

vi

105
106
109
110

112

113
113
114
115
116
116
117
118
119
120
121
122
123
124
125
126
127

128
129
129
130
132
133
134
134
135
136
136
137
137
138
141
142
143
144

145
145
146

9.1.2 The Issues ..

9.1.3 Lexical Representation e

9.1.4 Phrase Acquisition ..

9.2 PARSING A COMPLEX CLAUSE -

9.3 LEARNING A NEW INTERACTION .. -
9.4 HANDLING AN OVERGENERALIZATION ..

eressse

9.5 CONCLUSIONS -

nseese

PART IV: Design and Implementation ..

10. IMPLEMENTING A SELF-EXTENDING PARSER

10.1 INTRODUCTION

10.1.1 The Structure of the Program
10.1.2 The Functionality of the Program

10.1.3 Design Goals ..

10.2 CASE-LEVEL PARSING

10.2.1 Martching Syntactic Patterns
10.2.2 Constructing a Case Frame ..

10.2.3 Looking Up the Lexicon

10.2.4 Retrieving Referents -

10.2.5 The Case-Frame-Stream -

10.3 PHRASE-LEVEL PARSING

10.3.1 Triggering a Phrase

10.3.2 Unifying Case Frames

10.3.3 Inheriting Case Properties
10.3.4 Proving the Presupposition .. -

10.3.5 Instantiating the Concept-..

10.3.6 Juxtaposing Phrases

10.4 CONCLUSIONS

11. STRATEGIES IN LEARNING

11.1 FIGURATIVE PHRASE ACQUISITION: A PROCESS MCODEL

11.1.1 Literal Interpretation
11.1.2 Learning by Feature Extraction

11.1.3 Forming the Patem .. -

11.1.4 Forming the Concept

11.1.5 Phrase Generalization

112 THE STRATEGIES .

11.2.1 Extracting a New Pattemn ...

11.2.2 A Phrase-Modification Cycle

11.2.3 Modifying Class Specifications

11.2.4 Learning General Phrases ...

11.2.5 Extracting Phrase Concepts ...

11.3 CONCLUSIONS - -

12. SUMMARY, CONCLUSIONS, AND FUTURE WORK
12.1 CONCLUSIONS ... -

147
150
151
151
154
156
157

158

159
160
160
162
163
164
165
165
166
167
167
170
170
172
173
175
176
178
131

183
183
184
185
185
186
187
138
189
192
196
199
202
205

206
206

12.2 STATUS OF IMPLEMENTATION
12.3 LIMITATIONS
12.4 IMPORTING ARTIFICIAL INTELLIGENCE METHODS INTO LINGUISTICS
12.5 THE LEARNING ALGCRITHM ..
12.6 FUTURE RESEARCH

Was It Worth it?

References ..

A. PROGRAM TRACE

A.1 PARSING WITH A COMPLETE]’...EXICON
A2 LEARNING A NEW PHRASE

B. MCRINA
B.1 Getting Started ..
B.2 Adding Lexical Entries
B.3 Sample Session
B4 A Sample Lexicon
B.5 SIngle-Word Definitions
B.6 Verb Inflections
B.7 Interfacing with GATE
B.8 The Code

References

viii

208
208
210
210
211
215

216

227
227
239

257
258
258
259
264
267
272
273
275

309

ACKNOWLEDGEMENTS

I wish to thank my adviser Michael Dyer who taught me to distinguish between
the interesting and the mundane. Michael has single handedly created an en-
vironment, the Artificial Intelligence Laboratory at UCLA, which enabled us all
to pursue research challenges, that otherwise would have remained only as
dreams. Within the lab, I acknowledge Mike Gasser’s impact on my work. It is
interesting how two people can investigate the same phenomenon, have a com-
plete agreement about it—and still come up with two different views. I ack-
nowledge the constructive criticism I continuously received from the people in
the lab: Sergio Alvarado, Charlie Dolan, Stephanie August, Ric Feiefer, Anna
Gibbons, Seth Goldman, Jack Hodges, Erik Mueller, Mike Pazzani, Alex Quili-
ci, Walter Read, John Reeves, Eve Schooler, Ron Sumida, and Scott Turner. I
thank professors Evelyn Hatch and Margot Flowers, and my committee
members Judea Pearl, Walter Karplus, Jack DuBois, and Ed Keenan, for helpful
comments. In general, people who gave me a hard time about my research

helped me the most.

I wish to thank my parents Rivka and Rafael. I don’t want to underestimate the
contribution by theirs and my grandmother’s, Sara, in weekly nudging from Is-
rael, "Noo, when are you going to finish your PhD?" Linda, my wife, and David,
my son, helped me in ways that are hard to explain. Linda also read and rewrote

parts of the dissertation, and she would be the one to tell me: "Well, this sen-

tence really supports your theory, but it does not make sense!” Yehuda Afek
supported me through the years with his friendship.

My getting started in a new country was, and still is, a difficult task. Academi-
cally, I was always supported by Walter Karplus’ advice. Personally, I was sup-
ported by my family, Henry and Miriam Picard, and Shlomo and Chana Givon.
Hopefully, in the future, I will be instrumental in helping out other students who

are fresh off the boat—whether in America or in Israel.

This work has been supported throughout the years by a grant from the Initial
Teaching Alphabet (TTA) foundation. I thank in particular Betty Thompson, the
executive director of the foundation, for her faith in our work, and for her per-

sonal interest. Finally, I acknowledge numerous second language speakers, who

inadvertently contributed errors which stimulated this work.

ABSTRACT OF THE DISSERTATION

Strategies in Language Acquisition
Learning Phrases in Context
by
Uri Zernik
Doctor of Philosophy in Computer Science
University of California, Los Angeles, 1987
Michael G. Dyer, Chair

How is language acquired by people, and how can we make computers
simulate language acquisition? Although current linguistic models have investi-
gated extensively parsing and generation, so far, there has been no model of

learning new lexical phrases from examples in context.

We have identified four issues in language acquisition. (a) How can a phrase be
extracted from a single example? (b) How can phrases be refined as further ex-
amples are provided? (c) How can the context be incorporated as part of a new

phrase? (d) How can acquired phrases be used in parsing and in generation?

In solving this problems, we have established three theoretical points. (a) We
have shown how a dynamic lexicon is structured as a phrasal hierarchy. (b) We
have constructed strategies for learning phrases. (c) We have constructed a

parsing mechanism which can operate even in the presence of lexical gaps.

The program RINA has incorporated these elements in modeling a second-

language speaker who augments her lexical knowledge by being exposed to ex-

amples in context.

xiii

PREFACE

Here is the basic artificial intelligence paradox: On the one hand, computer systems
can solve problems which are very difficult for humans. One can sit at home and type
a query regarding his income tax into a personal computer, and in spite of the tremen-
dous complexity of the problem, the computer will come back in no time with the
answer.

On the other hand, computers fare poorly on tasks which people perform every day.
Understanding even simple sentences expressed in human language, a task we can
perform without any mental effort, is considered a tough task for computers. In fact,
the simpler the utterance is, the harder it is for a computer to analyze. How can a com-
puter understand a simple word such as this? In the computer’s notion, what is
this? Clearly, talking, and communicating in general, is just a manifestation of
deeper thinking processes. This is what makes linguistics research so difficuit.

We have learned to live with the basic stupidity of computers as an inevitable evil.
Chief among these evils is computers’ inability to learn from experience. How many
times have you, as a computer user, asked yourself: "Why can’t some systems pro-
grammer write a piece of code so that I won’t have to type in the same sequence of
commands each time? If only I had the time, I would write this simple program that
learns common sequences of commands by experience, but I can’t right now, my
hands are full with writing this proposal..." (and so it goes). Learning by incorporat-
ing experiences turns out to be one of the most exciting areas of research in artificial
intelligence. For one thing, it is so useful, even in the simple tasks outlined above. For
another, this mode of leaming is the key for turning computers into smart machines.
The ability to collapse individual episodes into applicable knowledge is a keystone for
intelligent behavior—which again seems to be one of those very difficult tasks.

If both language and learning by experience are difficult, then why did I decide to take
on the task which is their cross section, namely to investigate language acquisition?
My answer is personal. As a second-language speaker I find myself constantly occu-
pied with guessing what people mean when they say certain things. My adviser would
introduce me to an audience by saying: Uri, take it away!, and I would be left
wondering, "take whar away?" For an American this is a "dead idiom", a known. But
for me, figuring out such phrases is a very lively problem, in which I am consciously
engaged. Consequently, I decided to investigate in depth the issues involved in
language acquisition.

Chapter 1:
Learning Language
in a Computer Program

How can a computer program augment its own lexicon? Current language processing
programs have assumed the existence of a fixed lexicon, which is given to the pro-
gram at the outset. However, is this assumption realistic, or must programs acquire
language dynamically? First, due to the huge size of the human vocabulary, especially
when considering phrases and idioms, it is impossible to manually code the entire lex-
icon, and it is necessary to automate the encoding process. Second, human language is
not a static entity. Since language is dynamically evolving, a complete, fixed lexicon
cannot be supplied to a program at the outset. Consider the phrases to debug a
program, to reboot a node, to bring down an operating system, to kill
a process, in the world of computer jargon. Whether or not these are new phrases or
they are new interpretations to existing phrases, for both human or a computer reader
to be robust, these elements must be encoded dynamically as they are encountered.

Finally, there is also a methodological problem to consider: what other alternative ex-
ists for encoding systemarically a large body of knowledge? How can each individual
entry be justified as to its validity? Acquisition presents the method for encoding a
lexicon in a principled way: a uniform set of learning strategies is applied throughout.
Thus, the task is shifted from the justification of many individual entries to the
justification of a relatively small number of learning strategies.

However, although many acquisition models [Reeker76, Anderson77, Bates82, Lang-
ley82, Berwick85, MacWhinney87] have learned grammar rules, which are relatively
easy to encode manually, only a few language acquisition models [Granger77, Sel-
fridge80] have aimed at the automatic augmentation of the lexicon itself. Why has this
aspect been overlooked? If, indeed, this is a difficult task, what are the problems in-
volved?

1.1 LEARNING A NEW PHRASE

Second language acquisition has presented the paradigm for our model. This learning
mode was chosen—and not child learning acquisition—in order to factor out aspects of
world-knowledge acquisition. Subsequently, world knowledge is assumed to be a
given. Consider, for example, the following dialog between a second language speak-
er and a native speaker:

Native : Remember the story of David and Goliath?
David took on Goliath.

Learner: David took him somewhere?
Native: No. David took on Goliath.
Learner: David won the fight. He tock on him?
Native: No. David took him on. he decided to fight.
Learner: David accepted the challenge. He took him on?
Native ;: Ok.
later on:

Native: I took on the hardest question in the exam,
Learner: You tried to solve a hard problem.

In this dialog the learner acquires a new English phrase, to take on, relative to the
given context, the biblical story of David and Goliath. The learner is familiar with the
single words take and on. However, he/she does not know the entire phrase to
take on. Surprisingly—for a native speaker—the learner does not immediately zero in
on the appropriate meaning for the phrase. Leaming proceeds in three steps.

Literal interpretation: First, the learner passed over the new phrase altogether, as-
suming that take was used in its literal meaning: "to move an object from point A to

point B". In processing a new word combination, the learner incorrectly applied exist-
ing vocabulary. However, since this interpretation contradicts the learner’s notion of
the biblical story (David did not take Goliath anywhere in that story), the learner real-
ized that this literal interpretation was inappropriate,

Hypothesis Formation: Second, when the native repeated his original sentence, the
learner identified the existence of a new phrase and tried to form its meaning: "to take
on means to win a fight". This incorrect guess is interesting: how did the learner
come up with this hypothesis? Moreover, the learner also acquired incorrectly the
syntax of the new phrase, thus producing: he toock on him.

Hypothesis Correction: Finally, by the third input sentence, the learner figured out
the appropriate meaning of the phrase: "he accepted a challenge”. However, can the
new phrase be used in understanding other examples? By confronting an example in a
different domain, which involves a different kind of a challenge—solving a question
rather than fighting an enemy, the learner demonstrated his/her ability to generalize
the new phrase.

This process, in which a human learner (a) encounters a new linguistic concept, (b)
acquires it through a process of hypothesis formation and error correction, and (c)
generalizes the original concept, is the subject of this research.

1.2 ISSUES IN LANGUAGE ACQUISITION
We have identified three issues in language acquisition.

Learning from Examples: How can a leamner extract a general linguistic concept
from examples? Is it simply by detecting similarities among the set of given exam-
ples? Assume that the phrase to take on is given to the leamner in three different ep-
isodes:

{1l) David toock on his enemy.
(2) Mary took on her elder brother.
{3) I decided to take on the school establishment.

By extracting features shared by all the given episodes, the learner could have hy-
pothesized that the phrase includes the words take and on, and that it depicts a

conflict between a person and a stronger agent. However, there are two differences
between the behavior of this model and the behavior of a human learner.

(a) This model might acquire spurious features, and it might hypothesize that
take on must appear always in the past tense, whereas a person realizes
that the past tense need not be taken as a mandatory feature.

(b) This model required multiple examples. A person, as shown in the dialog
above (Section 1.1), is able to extract a linguistic concept even from a sin-
gle example.

The yet-unresolved issue is: how can the appropriate linguistic concepts be extracted
from single examples?

Generalization and Specialization: Phrases in the lexicon must be further developed
as additional examples are provided. Assume that the learner is given the following
sequence of examples:

(4) The Lakers tock on the Celtics.

(%) I finally tock on the hardest question in the exam.
{6) I took on a new job.

(7) John took on the character of his professor,

(8) We took on a new systems programmer.

These examples illustrate why learning is not a simple process of generalization.
Indeed sentences (4) and (5) only extend the meaning acquired in the original dialog:
by sentence (4) (the Lakers took on the Celtics) the characters, X and Y, are general-
ized from persons into agents. Similarly, by sentence (5) (to take on a hard question)
the meaning itself is generalized from a fight into a challenge. However consider sen-
tence (6) (to take on a new job) Is this a manifestation of the same phrase, or is it a
specific idiom? Furthermore, in regard to sentence (7) (to take on a character), the en-
tire concept constructed so far might diminish by trying to find a general sense that
accounts also for this new case, since , at the conceptual level, there is nothing in
common between sentences (4), (5), and (6) on the one hand, and (7) on the other
hand. Similarly, sentence (8) (to take on a system’s programmer) is a manifestation of
a separate phrase altogether.

Thus, the dilemma at each new encounter is whether to generalize the existing phrase
or whether to create a new phrase with a separate meaning.

Coping with Knowledge Gaps: In learning a new linguistic concept, the first prob-
lem a learner faces is processing the text in the presence of that unknown element.
Here are two examples:

{9) Goliath goggled David to fight him,
(10) David tock on Goliath.

In sentence (9) the learner is presented with a new word goggled, which should be
acquired. However, how can the sentence be processed in the first place, in absence of
knowledge of that word?

In contrast, in sentence (10) the learner is presented with a new combination of words
take on. However, here since the single words take and on are known to the
learner, how does the learner identify the existence of an unknown?

Thus, alternatively, the issues regard: (a) processing sentences which include unk-
nown words, and (b) identifying the existence of an unknown when it is a combination
of known words.

1.3 THE APPROACH

In addressing the issues above we pursued an approach which is defined by five as-
pects: (1) second language acquisition, (2) semantic knowledge representation, (3)
lexical representation, (4) learning in a conceptual hierarchy, and (5) computer model-
ing.

Modeling Second Language Acquisition: Learning in general, and specifically
learning linguistic concepts, is an ongoing process. Two groups in particular are ex-
tensively engaged in language learning: children learning native language and adults
learning a second language [Richards74, Ulm75, Hatch83, Gasser85]. Adults, as op-
posed to children, may augment their linguistic knowledge while, to a large extent,
maintaining otherwise unchanging world knowledge. Three aspects of second
language acquisition are investigated in our research:
(1) The various types of errors committed: acquiring incorrect concepts, ac-
quiring incorrect linguistic patterns and performing incorrectly while hav-
ing the correct linguistic knowledge.

) The processes underlying these errors (observing errors is the only way to
expose these processes).

3 Strategies for error-recovery based on failure-analysis.

The implications of this study, however, are not confined only to second language
speakers. Rather, observing second language speakers may reveal general learning
processes which are used more frequently by second language speakers.

Representing the Context: What is the representation of the context? For example,
how can the events involved in the biblical story of David and Goliath be represented
in a computer system? Following Schank [Schank77], we use a set of primitive acts
(CD’s) for representing events in the context. For example, the following sentence :

David threw a stone at Goliath.

is represented using the primitive act, propel, as shown in the following slot-filler no-
tation:

act propel
actor . david
ohject stone
direction goliath

However, primitive acts such as propel, mtrans (mentally transfer) and ptrans (physi-
cally transfer) can hardly depict complex notions such as the ones underlying that
biblical story. Thus, higher level concepts, which pertain to the character’s
motivations—why did David throw the stone at Goliath-are given by a system of
plans, goals and interpersonal relationships [Wilensky83, Dyer83]. There are two
basic relations between the two characters in the story: (a) a goal conflict exists
between D (David) and G (Goliath), and (b) the physical-power relation, by which G
is superior to D. The goal conflict leads to other potential plans, one of which is to
fight, and one possible move in a fight is to throw a stone. Thus, the low level act of
propelling a stone is connected through this representation to higher-level motivations
of the characters. This representation is used in two ways: (a) in parsing text, words
are converted into such conceptual representation, and (b} in learning, this representa-
tion provides clues for meaning formation.

Regularity and Idiomaticity in Phrases: Idiomatic behavior of phrases is difficult to

capture in the lexicon. For example, read the next two sentences:

{12) Peace was struck between Israel and Egypt.
The hatchet was buried.
(13) Finally, death prevailed. The bucket was kicked.

As opposed to the second phrase kick the bucket, the first phrase bury the
hatchet can take the passive voice and still maintain its figurative meaning. What is
the reason for this difference, and how can it be predicted for idiomatic phrases in
general? Fillmore, Kay and O’Connor [Filimore87] address the problematic behavior
of idiomatic phrases, classifying them into categories according to the knowledge re-
quired for the understanding of each idiom. Our contention is that the only way to
predict phrase behavior is by modeling the learning process.

Conceptual Hierarchy: Humans perceive objects in conceptual hierarchies
[Rosch78, Fahlman79]. This is best illustrated by an example from peoples’s com-
munication. Consider the question: what is Jack? The answer Jack is a catis
satisfactory, provided the listener knows that a cat is 2 mammal and a mammal is an
animate. The listener need not be provided with more general facts about Jack (e.g.,
Jack has four legs and a tail), since such information can be accessed by in-.
heritance from the general classes subsuming a cat. In fact, for a person who does
not know that cats are mammals, an adequate description of Jack should be more ex-
tensive.

Hierarchical organization is essential in dynamic representation systems for three rea-
sons:

o Economy: Redundancy is avoided if shared features are not repeated in each
instance, but are given by a single generality.

o Learnability: As shown by Mitchell [Mitchell82], through a hierarchy, learn-
ing can be reduced to a search process. When one acquires a new zoological
term, for example feline, one can traverse the conceptual hierarchy, by gen-
eralizing and specializing, until the appropriate location is found for feline in
the hierarchy—above a number of specific species, and below the general mam-
mal.

o Prediction: Hierarchy accounts for predictive power, which allows learning

models to form intelligent hypotheses. When first observing a leopard and by
assuming it is a feline, a learner, who has not been exposed to prior informa-
tion about leopards, may hypothesize that this new animal feeds, breeds, and
hunts in certain ways—based on his/her knowledge of felines in general.

While it is clear how hierarchy should be used in representing zoological concepts, it
is not clear how it applies in representing linguistic concepts. Can linguistic systems
too benefit from a hierarchical organization? We show how elements in a lexicon can
be organized in a hierarchy and thus facilitate a dynamic linguistic behavior.

A Propositional Computer Program: What level of analysis is appropriate in
modeling language acquisition? In contrast to connectionistic models, for exampie, in
which a computer program basically organizes a set of connections, we suggest
modeling language acquisition by a propositional computer program. In this program,
all aspects of cognition are represented as symbolic propositions, and learning
processes are simulated as logical interaction of rules. This level of analysis is ap-
propriate for two reasons. First, such a program could be used as part of a larger na-
tural language processing system. Acquired linguistic knowledge would be stored in
the computer memory and could facilitate an interface between a knowledge-based
system and natural language text. Furthermore, by tracing such a program, we could
ask qualitative questions, and obtain answers about the learning process itseif.

At this level of analysis we are concerned only with exrernal observed behavior. No
correspondence is claimed between logical structures in the program with physiologi-
cal structures in a human. Rather, the purpose of the model is to satisfy Turing’s cri-
terion [Turing50] for intelligent behavior, by ultimately making the external behavior
of the proposed program indistinguishable from expected human behavior.

1.4 THE COMPUTER PROGRAM R/NA

Accordingly, we have constructed a computer program, called RINA, as a model of a
second language speaker. The computer paradigm is simple:

(1) All knowledge of language in the program resides in a data structure
called a lexicon.

(2) The program receives input sentences from a user. By parsing, using the
lexicon, text is converted into a conceptual representation.

3 By learning, new phrases in the input text are added on to the lexicon.

The figure below illustrates schematically the operation of the program.

text processing .

-._M_)

Figure 1.1: RINA: Basic Operational Scheme

Language processing, namely parsing as well as leaming, is relative to (a) a given
context, and (b) a given lexicon. By parsing, new concepts are added to the context
and, by learning the lexicon itself is augmented with new phrases encountered in the
text. At each stage, the program conveys back to the user the hypothesis regarding the
input sentence. The three main components of the program are: lexicon, parser, and
learner*.

A Lexicon of Phrases: The proposed Dynamic Hierarchical Phrasal Lexicon
(DHPL), has three important features:

¢y Lexical entries consist of entire phrases, and not of single words as in
general dictionaries. This provision enables us to represent uniformly a
large variety of phrases, including idioms.

(2) The lexicon is organized in a hierarchy by generality, and not as a "flat”
list of entries. This enables us to acquire phrases in a process of generali-
zation and specialization.

(3) Lexical presuppositions provide the semantic conditions for phrase selec-
tion, by incorporating elements of the context.

* Generation in RINA has not been developed. The sentences generated as output are produced not by
a full-fledged generator, but by simple phrase instantiation.

10

The lexicon is described by (a) the form of a single entry, and (b) its global structure.
(a) A Single Entry: Consider, for example, the entry for take on:

phrase
pattern: Personl take on Person2
concept: Personl decide to fight Person2
presupposition : Person2 is stronger than Personl

This entry is given as a triple: the pattern defines the syntax of the phrase; the concept
is the meaning of the phrase; and the presupposition is the context in which the phrase
may be applied.

(b) The Global Structure: The lexicon is structured as a hierarchy of phrases. All
phrases in the hierarchy are given uniformly as triples, (as the one above)—at various
levels of generality.

Learning in a Hierarchy: The hierarchy is instrumental in learning. For example, in
encountering either a new word (e.g., John goggled Mary to come over), OF a New
word combination (e.g., John described it away in court), learning is not from
scratch, but it is influenced by other existing words and phrases. The general learning
step involves propagation of phrases in the hierarchy.

2 e

X

El El E2 El

(a) (b) (©)
Figure 1.2: Propagating Phrases in a Hierarchy

This scheme, in which a box stands for an example, and an oval stands for a lexical
phrase, illustrates how lexical phrases are propagated: (a) phrase P1 is extracted from

11

a single example E1, (b) phrase P3 is generalized from two existing phrases P1 and
P2, and (c) phrase P4 is formed as a specialization of an existing generalized phrase
P3. The last step, (c) presents the predictive power of the program: the meaning of a
new phrase is hypothesized through existing similar phrases.

Step (a) in the scheme above is problematic, since it involves extraction of a phrase
from a single example. The process in that case is given below:

example sentence context

extract extract

Figure 1.3: Learning from an Example

For example, consider learning the phrase to take on, as it is represented in Section
(1) above. The pattern is extracted from the sentence David took on Goliath, and
the concept is extracted from the context given by the biblical story. Since the context
contains many aspects, there are heuristics for concept extraction. Acquisition is a
process of hypothesis formation and error correction, by strategies associated with
parsing discrepancies.

12

The purpose of learning in RINA is to augment the program’s lexicon, so that the
model’s performance capabilities are improved.

PO PO

Im\ P2 IPI P2
. ™~ ™~

P4 PS P6 P4 P35 P6 P?

Figure 1.4: The Hierarchy: Before and After Learning

This figure illustrates how the lexicon is augmented by learning. An entire subtree
(the marked triangle) is acquired in an incremental process. As a result, the model can
parse gfter learning sentences it could not parse before learning.

Phrasal Parsing: The acquired lexicon is a functional unit which accounts for pars-
ing text. RINA’s parser introduces three features:

(1) Parsing is relative to the context. Semantic disambiguation is supported
by lexical presupposition.

(2) The parser does not stall in the presence of an unknown. If a certain word
or phrase is yet unknown, then a more general phrase is applied instead.

3 Parsing is monitored. Consequently, discrepancies in parsing are detected
and are used to motivate learning.

These features have been introduced to support learning.
In conclusion, RINA has two functions: in the first place, RINA performs a task,

namely, analyzing natural language text. Second, RINA is engaged in learning. By
learning, the program improves its original performance capabilities.

13

1.5 PREVIOUS COMPUTATIONAL MODELS

In language processing, we have investigated (a) language processing programs, and
(b) language learning programs.

1.5.1 Language Processing

In many applications, where it is advantageous to use natural language input, text
must first be converted into an internal representation. It would be desirable to have a
natural language front-end independent of any given task domain. However, language
comprehension relies heavily on world knowledge, which varies according to the
differing assumptions and underlying semantics of each task domain. Thus a diversity
of language processing paradigms continue to exist, usually distinguished by the na-
ture of the application:

In database applications, (e.g., LADDER and DCG [Hendrix77, Pereira80]) input
sentences express queries and modifications to the database. A typical input query
might be: How many ships are currently loading which weigh above 3000
tons? For such retrieval tasks, natural language queries are often parsed into logical
expressions, where the major semantic elements consist of quantifiers, variables, and
predicates over these variablies.

In knowledge-based systems (e.g., MYCIN [Shortliffe76]), the task is to find the
cause of a situation, or to project a consequence, such as: What could be the
worst result of prescribing penicillin to my patient? Answering such
questions requires identifying and activating cause/effect relations, often represented
in the form of if/then rules.

A planner-adviser such as UC [Wilensky84] is intended to support the user by sug-
gesting plans. It must figure out the goals and intended plans of the user. A typical in-
put would be: I need more space. How do I remove some files? where the
program must dynamically update the goal-plan situation from the input. Here, under-
standing the text may require maintaining a model of the user’s current knowledge
state and using this to guide comprehension.

Information-gathering and analysis systems (e.g., BORIS [Dyer83]) are required

14

to read documents and relate the facts into an intelligible picture. Such systems re-
quire deep-analysis of the input, where conceptual representations of goals, affects,
beliefs, plans, justifications, reasoning, and abstract themes must interact. For in-
stance, affect analysis is essential in understanding: The third launching attempt
was rather frustrating since the weather changed again. Here we are not told
that the attempt was aborted. This is inferred from knowledge of the affect frustrating
combined with knowledge that good weather enables launches.

In all these applications, input text is converted into an internal representation geared
to the semantics of the task domain. Parsing by a program is a difficult task, which is
contrasted by the apparent ease with which people communicate in natural language.
In designing algorithms for language processing, we discover the complexity of the
cognitive tasks involved. Tasks in language processing can be ordered by increasing
complexity:

Disambiguation: Ambiguity can appear at all levels of speech, and it must be
resolved in the parsing process. Current language processing programs have focussed
on disambiguation both at the syntactic [Marcus80} and at the semantic [Dyer83,
Hirst86, Wilensky80] level. However, all these programs have assumed (a) well-
formed input, and (b) complete lexical knowledge.

Lenient parsing accounts for ill-formed input. Input text might not always abide by
text-book grammar, for three reasons: (a) a noisy channel might cause problems in re-
ception, (b) operational conditions might cause people to generate terse sentences in
which non-content words are omitted, and (c) in colloquial speech people tend to use
sentences which are not well formed. Programs such as [Carbonell84, Granger83] are
designed, by lenient parsing, to cope with ill-formed text. However, while these pro-
grams can cope with gaps in lexical knowledge they cannot construct new knowledge
to fill in these gaps.

In acquisition, the program’s knowledge is augmented. In contrast to lenient pars-
ing, where the objective is to parse in spite of lexical unknowns, in acquisition, the
objective is to identify discrepancies and to process them appropriately. So far there

has been no general model for lexical acquisition by parsing.

In order to communicate effectively in natural language, a parser must first address

15

the ambiguity problem. Moreover, to appear robust and to face new situations, parsers
must learn new lexical items from experience.

1.5.2 Language Learning

Past work in language learning emphasized either (a) learning of linguistic patterns or
(b) learning of conceptual representations. There are three models for learning
linguistic patterns:

General Problem Solving: PST [Reeker76] operated by GPS principles [Newell57]
and similarly used a table of difference-action pairs. PST learned grammar by acting
upon differences between the input sentence and an intemnally generated sentence. Six
types of differences were classified and the detection of a difference which belonged
to a class caused the associated alteration of the grammar. Although in our model we
address learning of entire lexical entries (and not only syntactic patterns), we also use
similar discrepancy-driven strategies.

General Production Systems: LAS [Anderson77] learned ATNs (Augmented Tran-
sition Networks) [Woods70] from sample sentence/meaning pairs. LAS presented one
element in a larger cognitive model which accounted for general human inference and
memory access [Anderson84].

Langley [Langley82] pursued Anderson’s effort in his program AMBER which
learned use of basic function words. The learning process was directed by mismatches
between input sentences and sentences generated by the program. Learning involved
recovery from both errors of omission (omitting function words such as is and the
in daddy bouncing ball) and errors of commission (producing daddy is liking
dinner). Like LLAS, AMBER’s main thrust was to apply general leamning principles
in language learning. These two projects were intended to demonstrate that language
learning could be modeled using general production-system principles. In our model
the generality of the learning algorithm is obtained by pursuing the knowledge-based
approach [Wilensky81, Kay79].

Deterministic Syntactic Parsing: Berwick’s program [Berwick85] performed in the

context of PARSIFAL, a deterministic syntactic parser [Marcus80]. Berwick’s pro-
gram demonstrated how parsing rules can be acquired by actually applying the pars-

16

ing framework itself. In contrast to our approach, where learning is relative to the
context, in Berwick’s approach, the semantic context did not present a legitimate clue
in the learning process, as stated by the following "psychological plausibility cri-
terion" which dictated ([Berwick85] Chapter 1, page 41):

Minimal use of extrasyntactic information. Nearly every grammatical
theory posits something like thematic role information. The acquisi-
tion procedure uses this information, but only for simple sentences,
and only to fix a few syntactic parameters early in acquisition,

In other words, Berwick’s program not only acquires language by ignoring the seman-
tic context, Berwick asserts that using the context in language acquisition in general is
not valid psychologically.

On the other hand, two computational models emphasized learning semantic
representations:

Script Application: FOUL-UP (Granger77] learned meanings of single unknown
words from context. The meaning was extracted from the script [Schank77} which
provided the context. A typical learning sitzation was The car was driving on
Hwy 66, when it swiveled off the road. The unknown verb was guessed from
the $accident script. FOUL-UP introduced three important elements which have been
applied also in our model: (1) Learning was invoked by parsing failures. However,
there was only one possible failure—the absence of a word in the lexicon—thus failure
analysis was not required. (2) Word meanings were figured out from currently active
scripts. (3) Linguistic clues, such as preposition senses, took part in forming mean-
ings.

Minimalistic Parsing: CHILD [Selfridge80] modeled a one-year old child leamning
native language. At that age, concepts rather than language word-order conventions
account for comprehension. A sentence such as Joshua, put the ball in the
box is understood from the conceptual relationships and conceptual clues. Thus
CHILD was able to learn basic word meanings starting only with a minimal linguistic
knowledge. CHILD introduced heuristics to identify the unknown word in a sentence
and to identify the intended concept in a context. Learning was accomplished by asso-
ciating the new word with that concept.

17

The integration of these two approaches (learning syntax and learning semantics) is at
the focus of our approach, in which:

. The model learns both syntactic patterns and semantic concepts. In fact, learn-
ing only one of these aspects in isolation is analogous to learning only one
side of a mathematical equation.

. Semantic concepts are acquired by using linguistic clues, such as meanings of
single words.
. Syntactic patterns themselves are acquired by using semantic clues which are

derived from the representation of the context.

Thus learning syntax and learning semantics cannot be viewed as two isolated
Drocesses.

1.6 OUTLINE OF THE FOLLOWING CHAPTERS

Chapter 2 describes the issues in the design of a self-extending lexicon. Why can
current linguistic theories not account for learning?

Chapter 3 presents a Dynamic Hierarchical Phrasal Lexicon (DHPL), which facili-
tates both language analysis and language acquisition.

Chapter 4 explains how figurative phrases can be represented using semantic struc-
tures such as scripts, goals, relatons and emotions.

Chapter 5 presents the learning scheme: how phrases are acquired by propagation in
a hierarchy. General as well as specific nodes in the hierarchy must be acquired from
input whith is restricted to specific examples.

Chapter 6 focuses on the basic learning step: (a) how a phrase can be extracted from
a single example, and (b) what the significance is of the metaphor in the learning pro-

CCSS.

Chapter 7 describes how parsing is performed in spite of missing lexical knowledge,
and how application of general knowledge accounts for performance errors.

18

Chapter 8 turns to the basic parsing mechanism. In order to facilitate learning, pars-
ing itself must be monitored, and discrepancies must be detected.

Chapter 9 introduces the duality between syntax and semantics as it is manifested in
learning and in parsing. Syntactic derivation is presented as a short cut for a lengthy
semantic derivation.

Chapter 10 details the implementation of the program RINA itself.

Chapter 11 lists the disrepancy-drivenstrategies applied in the learning schemes
above.

Chapter 12 presents an evaluation of the project, and ideas for future work.
Appendix A describes sessions with the program RINA.

Appendix B introduces a "micro” version of RINA, called MCRINA, which can be
used as a basic phrasal parser.

19

Part 1
DHPL: A Dynamic Hierarchical
Phrasal Lexicon

20

Chapter 2:
Issues in Lexical Representation

Part I of the dissertation focuses on the lexicon. First, in Chapter 2 we explain the is-
sues involved in designing a lexicon which is inherently dynamic. We identify un-
resolved problems with existing, contemporary linguistic systems. Second, in Chapter
3 we present our design of a Dynamic Hierarchical Phrasal Lexicon (DHPL). We
show how Finally, in Chapter 4, we describe how we handle the semantic aspect of
lexical representation.

2.1 INTRODUCTION

Examination of the language acquisition task sheds light on the nature of the lexicon,
illuminating issues which have been ignored by existing linguistic systems [Wilks75,
Kay79, Bresnan82a, Gazdar85]. Current systems restrict their account to analysis and
generation of text, by making the assumption that a fixed, complete lexicon exists at
the outset. However, computational linguistic models are required to learn lexical
items in context, the way people learn new words and phrases.

Learning commonly occurs when the learner detects a gap in his or her knowledge. In
analysis, such a discrepancy can be detected when a new word or phrase is encoun-
tered. Learning involves three issues: (a) detecting the discrepancy in the first place,
(b) forming an initial hypothesis about the new phrase, and (¢) refining and generaliz-
ing this hypothesis through a process of error correction [Granger77, Langley82, Sel-
fridge82, Zernik85a]. These three issues impose new requirements on the lexicon, re-
garding (a) its contents—the way individual entries are encoded, and (b) its

21

structure—the way entries are organized.

The need to detect discrepancies affects the contents of the lexicon. Both semantic
and syntactic discrepancies must be detected, and correction strategies must be associ-
ated with various types of errors. Thus, lexical entries should not be underspecified,
lest they will allow discrepancies to slip by unnoticed.

The need to generalize affects the structure of the lexicon. In order to make an initial
hypothesis about a new element, it is important to glean from the text as much infor-
mation as possible. This requirement is problematic: the text cannot be analyzed since
an element is unknown; but on the other hand, for the element to be acquired, the text
must be analyzed. The solution for this bootstrapping problem is to employ a lexical
hierarchy by generality. When a specific pattern does not exist for a precise matching
against the new element, one can apply a more general pattern, which albeit being less
informative, does match the new element.

Thus, we propose employing a Dynamic Hierarchical Phrasal Lexicon (DHPL) which
has three features: (a) lexical entries are given as entire phrases and not as single
words, (b) phrases are organized in a hierarchy by generality, and (c) there is not
separate grammar; grammar is encoded in general lexical phrases. The program
RINA [Zernik86a] employs DHPL in modeling language acquisition. In particular,
the program models second language acquisition of English phrases and idioms. The
linguistic concepts being acquired are complex enough, so that neither a human
learner, nor a computer program can acquire their complete behavior through a single
example. Thus the initial hypothesis might be incorrect. Capturing incorrect hy-
potheses generated by humans, and simulating them by the computer program is
essential for practical and theoretical reasons. First, the human user of the program
will relate to the human-like errors generated by the program. Consequently he may
present the program with constructive counterexamples. Second, human errors, such
as errors of overgeneralization, reveal otherwise inaccessible cognitive processes and
internal structures. Thus, errors made by human learners play a central role in con-
structing a cognitive model of acquisition. Subsequently, observed human behavior is
analyzed in terms of the its corresponding computer program RINA.

22

2.1.1 The Linguistic Behavior

RINA receives examples from a user who teaches her new phrases. When RINA en-
counters a new phrase, she creates a hypothesis about its behavior, and accordingly
she generates an example to demonstrate her state of knowledge. Communication
between the program and the user is only through a sequence of examples ~ there is
no way to discuss syntax and semantics explicitly.

Learning New Phrases: In the following dialog, RINA encounters an unknown
phrase, throw the book at somebody.

User: Al Capone went on trial. The judge threw the book at him.
RINA: He threw a book at him?

User: No. The judge threw the book at him.

RINA: He punished him severely?

RINA is familiar with the single words throw and book. However, the entire figura-
tive phrase is not in her lexicon. RINA first attempts a literal interpretation using a
phrase existing in the lexicon (throw an object). When this interpretation fails she
realizes the existence of an unknown, and tries to form the meaning of the new phrase
by using (a) the context, and (b) the single words in the phrase.

Processing an Unknown: In the next dialog, RINA encounters a new word, gog-
gled.

User: Jenny goggled John to come over.
RINA: Jenny told John that he must/can/will come to her.

RINA manages to extract useful information from the sentence in spite of the missing
element. In particuiar, RINA’s hypothesis includes three points:

(a) Jenny’s unknown act is a kind of mtrans* (an act of communication).

(b) The actor of the communicated event (coming over) is John.

* Conceptual classes such as merans, mbuild, select-plan, are based on semantic representation. Several
of these elements are taken from Schank’s [Schank77] system of primitive acts, goals and plans.
Mirans for example represents the transfer of mental information, and mbuild represents the
construction of new information in memory. The particular scheme chosen is not so important as the
fact that syntactic classes (such as verbs) are organized phrasally in terms of conceptual categories.

23

(c) The communicated event is a conditional plan for the future (in contrast,
for example, to the case: Jenny goggled John that he came over).

Normally, properties of an embedded phrase (e.g., to come over) are determined by
the definition of the embedding verb. RINA manages to make an initial hypothesis
even though the embedding verb (goggle) is unknown, by using generalized
knowledge of phrase interaction. (The structure of a sentence Personl goggled
Person2 to do Act3 implies mrans such as ask, tell and instruct, in contrast
t0 Personl goggled to do Act2 which implies an mbuild, such as decide). The
hypothesis must be abstract, since RINA cannot determine at this point whether this
mtrans act comes in the sense of allow (can come over), or instruct (must come
over). Yet, even this hypothesis may turn out to be incorrect. For example, goggle
could mean seduce, or influence in some other way. In either, it is important to
come up with a hypothesis which provides a basis for further modification.

Resolving an Ambiguity: As with human listeners, computer parsers must also be
able to interpret text successfully only when supplied the appropriate context
[Zernik86b]. Consider the following sentence:

User: She took it up with her dad.
RINA: ?

Imagine a person hearing a fragment of a conversation between two unknown people,
or alternatively, a computer program being given this sentence in isolation. Clearly, in
the absence of a context, this sentence does not make complete sense. The pronouns,
she, and it cannot be resolved in absence of referents which have been introduced in
the discourse. In addition, the same phrase will mean different things in different con-
texts. Consider these two examples.

User: Jenny wanted to buy a new car.
She took it up with her dad.
RINA: She discussed the issue with her dad.

User: Jenny started jogging.
She took it up with her dad.
RINA: She started an activity with him.

Since the same sentence can be interpreted in two ways in two different contexts, a

24

question is raised regarding disambiguation. What is the impact of the context on
phrase selection?

2.1.2 Issues in Language Acquisition

Three lexical representation issues must be addressed in modeling language acquisi-
tion.

Using Generalizations: As shown in the sentence below,

Jenny goggled John to come over.

the system must cope with unknown elements. Parts of the text must be examined to
some extent, in spite of the presence of the unknown. Ideally, each element in the text
is matched by a lexical phrase. Since no such phrase exists for a precise matching of
the unknown element, a generalized phrase must be used to recover at least partial in-
formation. However, by the nature of generalization, the more generalized the match-
ing phrase, the less informative it is.

Typical errors of overgeneralization were generated in a version of this paper by the
first author, who is a second language speaker:

o The third phrase requires to generalize the initial notion.
(Section 3.3.1)
o] Wilensky suggested to represent knowledge
as a database of rules. (Section 2.3.2)

In both cases, the learner applied the wrong generalized phrase, which accounts for
verbs such as decide and plan (John decided to go home). This behavior does
not capture verbs such as suggest, require or tell (John told to go sounds in-
correct). The speaker faced a generation task in presence of incomplete lexical
knowledge- about suggest and require, and he resorted to using generalized
knowledge. Using such knowledge, an idea could be communicated, albeit grammati-
cally incorrectly.

Therefore, the lexicon must maintain phrases at various level of generality, to cope
with different degrees of partial knowledge.

Using Linguistic Clues: Meaning representation is extracted from the context. For
example, given the text below,

Al Capone went on trial,
The judge threw the book at him,

RINA guessed that throw the book at somebody means to punish that person
severely. However, the context might consist of many concepts, some appropriate
and some inappropriate (e.g.: did the judge acquit Al or did he punish him?). Thus, a
basic task is feature extraction. In extracting features, the system must utilize clues
provided by single words. For example, what is the significance of the particle at?
How does it contribute to the construction of the meaning? An experiment with
second language speakers reveals, predictably, that using a different preposition leads
to a different learning resuit. When the given text is:

Al Capone went on trial.
The judge threw the book to him.

language learners formed the hypothesis that the judge actually acquited the defen-
dant. Thus, the lexicon must maintain senses for single words such as at and to that
could be used as linguistic clues in feature extraction.

Using Semantic Clues: The system must hypothesize the scope and variability of the
new phrases. Which one of the phrases below best captures the new phrase: the
judge threw the book at him?

He threw something at him.
He threw abook at him.
He threw thebook at him.

Each one of these pasterns could be the specification of the new phrase. In determin-
ing degree of specificity the system must consult semantic clues extracted during
parsing. For example, since no actual book exists in the context, then the reference
the book is assumed to be a fixed literal. In contrast, consider the context below:

The judge was holding the third volume of tax law.
He threw the bock at Al.

In this context, an instance of a book is found in the context (i.e., the third volume),
and a different hypothesis is made about the the generality of the new pattern. Thus,

26

semantic discrepancies in parsing must be utilized in determining both scope and gen-
erality of syntactic patterns.

2.2 ACCOUNTING FOR IDIOMACITY IN THE LEXICON

What are the contents of the lexicon to be acquired? Traditionally, the lexicon has
been viewed as a list of words, specifying syntactic and semantic properties for each
entry. However, since in our theory, the lexicon provides the sole linguistic database,
it must include a variety of linguistic knowledge types, not just properties of single
words. Here the lexicon is extended in two ways: towards the specific by bringing in
idioms, and towards the general by including grammar also.

2.2.1 Idioms as Equal Citizens

Are idioms such as throw the book at a ciass apart, to be distinguished from "nor-
mal” phrases which abide by grammar rules? The first to proclaim "equal rights” for
idioms was Becker [Becker75], who called for a systematic treatment for the variety
of phrases in the language. Consider these phrases:

We will be looking forward to seeing you guys.
He is cheap. He will not spend $5, letaiome $8.
Somuch for superficial solutions.
Productive aswell as non-productive phrases
should reside in the lexicon.

These phrases defy traditional text-book grammar analysis, however, they possess
their own grammar. For example, it sounds odd to say he is cheap. He will not
spend 835, let alone 55 [Fillmore87]. (Is the behavior of as well as analogous to
the behavior of let alone?) Such linguistic phenomena cannot be ignored merely by
tagging it as idiomatic, since idioms turn out to be ubiquitous in people’s speech.
Hardly can a sentence be found which behaves according to textbook grammar. There
is a need therefore for a systematic treatment of idiosyncracy {Fillmore87]. Further-
more, linguistic knowledge cannot be strictly divided into grammar rules and lexical
items. Rather, there is an entire range of items: some very specific, in the sense that
they pertain to a small number of instances, and some very general, pertaining to a
large number of instances. The former have been called "lexical items”, and the latter
"grammar rules”. However, it is not possible to define a clear borderline between such
two distinct groups, as elements could be found at all levels of generality, not just at

27

the two ends of the spectrum. On one end, the phrase it is raining cats and
dogs is very idiomatic. On other end, the phrase in John took the spoon from
Mary is an instance of a general verb, to take, which may appear in many other
ways. However, consider the phrase John took the issue up with his dad. Is
this an idiom, or is it just an instance of the general verb to take?

2.2.2 Productive vs. Non-Productive Phrases

In the phrasal approach [Wilensky84] rather than maintaining lexical entries for sin-
gle words, the lexicon maintains entire phrases. For example, the lexicon will contain
many phrases involving the word throw. Consider these phrases as they appear in the
following sentences.

(1) He threw her off by a single inaccurate clue.
(2) He threw a wild party for her graduation.

(3) He threw up his whole breakfast.

(4) He threw his weight around.

{3) He threw a temper tantrum.

{6) He threw a stone at the kitchen window.

(N He threw out that old chapter of his dissertation.
(8) He threw out the garbage.

(9) He threw the banana peel away.

(10) He threw in the towel.

(11) He threw the bock at his students.

(12) He threw it. His answer was totally incorrect.

To a certain extent, all the phrases above derive their meanings from the meaning of
the verb to throw. However, the issue here is whether a single generic lexical entry
for throw can suffice to produce the meanings of all those sentences. In example (6)
(he threw a stone), the phrase for throw is used in its generic form and meaning:
to throw a physical object means to propel that object through the air. Sentence (9)
(he threw away a banana peel) t00 can be interpreted using the generic phrase. In
sentence (8) (he threw out the garbage), on the other hand, the derivation of the
meaning using the generic phrase is less direct, as it requires analysis at the level of
plans and goals. Throwing an object causes the object to become inaccessible. Thus
throwing out the garbage does not necessarily mean throwing it in the air as much as
getting rid of it.

28

The meanings of the other sentences are even more detached from the generic mean-
ing. The meaning of throw the book at is not a mere composition of the meanings
of the single words, but requires extraneous knowledge from the trial situations. Nei-
ther a person, nor a computer program can produce the meaning of the phrase if the
context is not given. Sentence (4) (he threw his weight around) introduces a
metaphor [Lakoff80] in which a person’s authority is compared to a weight, being
used in a careless way. Sentence (2) (he threw a party) as well as sentence (5) (he
threw a temper tantrum), use a different meaning of throw (to throw an
event) which can hardly be related to its original meaning. Finally, sentence (12) (nhe
threw it) represents a novel, yet still understandable, use of the word throw (as in
he blew it),

Non-productive phrases are those in which the meaning of the entire phrase cannot be
produced from the meanings of its constituents. Such phrases should be maintained in
the lexicon as distinct entries. In fact, even productive phrases, such as to throw
out the garbage, should be maintained as distinct entries. Even if the meaning can
be produced each time from the single words, an objective of an efficient system is to
compile knowledge whenever possible, and to minimize unnecessary derivations.
Thus, phrases in the lexicon can be viewed as linguistic episodes indexed and com-
piled for further use. Such knowledge is redundant in regard to language parsing (the
meaning could be derived from the constituents again and again). However, this is not
the case in language generation, where unless the phrase is stored, it is unlikely to be
generated again by the system. Thus, both productive and non-productive phrases
must be stored in the lexicon.

2.2.3 Fixed vs. Variable Phrases

As another example of lexical phrases, consider phrases involving the word at:

(13) John left school at noon.

(14) He actually stayed at school for an hour.

{15) He dabbled at the piano for a while.

(16) John aimed the ball at Mary.

{17) The c¢riminal is still at large.

(18) Mary did not feel at ease in the presence of her dad.
(19) This is what I am trying to get at. :
{20) Pid you understand anything at all?

(21) Please come at once!

29

(22) John looked at Mary.
(23) Fred lives at New-York. (produced by a second language speaker.)

Certain phrases are fixed, in the sense that they do not take any variation. For exam-
ple, at large, at all, or at once are such fixed phrases. One cannot say, for ex-
ample, at twice. However, other phrases might be mutated and still maintain their
basic meaning. For example, at noon, at midnight, at the hour, €tC. convey a
meaning of sharp timing. Another meaning shared among a set of phrases is described
by the following sentences:

{1%) He dabbled at the piano for a while.
(24) He nibbled at the corn.
{25} He is playing at AI programming.

The use of the proposition at here implies an aimless, unfocused activity (This is the
difference between playing the piano and playing at the piano). Similarly,
the set of sentences:

(22) John loocked at Mary.
(286) Spot sniffed at Mary.
(27) Mary glanced at John.

share the implication that the sensory act was directed at the object.

Which ones of these phrases should be maintained in the lexicon? Fixed, idiosyncrat-
ic phrases such as at large, at once, and at all must be maintained in the lexi-
con. Otherwise they cannot be predicted by the system. However, the dilemma arises
regarding variable phrases, such as in (22), (26) and (27). The question is whether to
maintain all instances of a certain variable phrase or to maintain a single generalized
entry which encompasses them all. We argue that both must be maintained. Specific
phrases must be maintained as compiled, easy to access knowledge, while general
phrases, which can derive many specific phrases, must be maintained too so that the
system has a predictive power. Using such generalized phrases, the system can handle
instances which have not been previously encountered.

In fact, specific "canned” phrases could not account for the following generation task,
concerning the selection of appropriate prepositions in the following sentences:

{28) {in on at} our school, there is one teacher I really like.

30

(29 I stayed late (in on at} achoel.

Notice that since both sentences involve the word school, it could not be used as a
discriminator. Unless the lexicon maintains general predicates for the use of in, at,
and on, the generator cannot select the appropriate preposition in each case. Clearly,
it is difficult to capture the intuition of a native speaker in forming the general senses
of these prepositions. An approximation of this intuition can be captured by modeling
a second-language speaker who might "incorrectly” gencrate a sentence such as (23)
above:

(23) Fred livea at New York.

Although it does not sound right to an English speaker, this sentence reflects the no-
- tion of that particular speaker.

2.2.4 Overspecification and Underspecification

Lexical entries should not be either underspecified or overspecified. Unless the lexical
phrases are fully specified, they cannot serve in disambiguation. On the other hand,
overspecification should also be avoided. Indeed, in encoding lexicons there is a
temptation to overspecify. Consider the following pairs of examples in regard to lexi-
cal constraints:

He kicked the bucket. The bucket was kicked.
Mary was taken by the car dealer. The car dealer toock her.
He put his foot down. He put down his foot.
She laid down the law. She laid the law down.
He took on Geliath. He tock on him.

There is a tendency to incorporate in the lexicon syntactic restrictions which will
prevent the instances on the right. For example, kick the bucket would be marked
as active-voice-only. This is in contrast to the phrase. bury the hatchet which
maintain its figurative flavor also in the passive voice: the hatchet was buried by
Israel and Egypt.

We believe that this behavior is not dictated by an arbitrary, ad hoc syntactic restric-
tion, rather it reflects the conceptual representation of the phrase as it has been shaped
in the acquisition process [Zernik87]. The acquisition of the phrase bury the
hatchet was based on a metaphor, and generalized from single-word meanings.

31

Bury was generalized into disenable-use, and the referent the hatchet was general-
ized to a tool, the availability of which is a precondition for an active conflict. There-
fore, the reference to the hatchet stands for a certain generalized object. On the
other hand, kick the bucket was learned as a whole chunk, since the underlying
metaphor remained unresolved. Thus, the referent the bucket is maintained as a
literal not associated with any concept. Due to this difference, there may arise a
discourse function for passivizing bury the hatchet. However, since there is no re-
ferent for the bucket, there will never occur the need to passivize that phrase.
Therefore, marking the phrase pattern as active-voice-only is redundant (albeit
correct).

Another issue is verb-modifier separation, i.e.: David took on Goliath vs. He took him
on. How can the lexicon account for this separation phenomenon? A grossly
overspecified rule claims that pronouns (and only pronouns) separate such two-word
verbs. However, there are counterexamples such as:

He took that ugly giant on.

(where the separation is by a lengthy reference). Therefore the rule must be revised to
relate the phenomenon to givern and new references. A given, or an already resolved
reference, can separate, while a new reference cannot be placed between the verb and
its modifier. We believe that this behavior should not be specified by the lexicon, rath-
er the generation decision is according to discourse functions.

Overspecified lexical entries can always be contradicted by instances in context. In
order to avoid the such contradictions we take the approach of maintaining syntactic
specifications of lexical entries at appropriate levels, and use conceptual representa-
tion to account for apparently syntactic restrictions.

2.3 LEXICAL REPRESENTATION: PREVIOUS WORK

DHPL is a continuation of efforts in three distinct areas. First, in integrating the
underlying situation as part of the lexical entry, we extend previous work on lexical
presupposition. Second, we modify Wilensky’s method of lexical representation for
use in language acquisition. Third, we examine Bresnan’s system of linguistic
representation, which proves problematic in light of the acquisition task, and compare
it to DHPL’s representation.

32

2.3.1 Lexical Presupposition

A message might be conveyed by an utterance beyond its straightforward illocution.
That message, called the presupposition of the utterance, is described by Keenan
(1971) as follows*:

The presuppositions of a sentence are those conditions that the world must
meet in order for the sentence to make literal sense. Thus if some such condi-
tion is not met, for some sentence S, then either S makes no sense at all or else
it is understood in some nonliteral way, for example as a joke or metaphor.

Despite this definition of presupposition as a condition for application of lexical
knowledge, presupposition has been studied as a means for generation and propaga-
tion of inferences, reversing its role as a condition. In [Gazdar79, Karttunen79,
Keenan71] the goal has been to compute the part of the sentence which is already
given, by applying "backward" reasoning, i.e.: from the sentence the king of
France is bald determine if indeed there is a king in France, or from the sentence
it was not John who broke the glass, determine whether somebody indeed
broke the glass. Rather than using presuppositions to develop further inferences, we
investigate how presuppositions are actually applied according to Keenan’s definition
above, namely, in determining appropriate utterance interpretations.

Fillmore [Fillmore78] introduced lexical presupposition to describe situations in
which lexical items may appear. He described the meanings of judgement words such
as accuse, criticize, blame, and praise, by separating the entire meaning into
(a) a statement (the illocutionary act), and (b) a presupposition. We illustrate this dis-
tinction by comparing the meanings of criticize and accuse in the following sen-
tences:

{30} John criticized Mary for adjourning the meeting.
(31) John accused Mary of adjourning the meeting.

In both sentences, John referred to a hypothetical act, namely adjourning the meeting.
In (30), it is presupposed that Mary committed the act (a test for determining presup-
position is invariance under negation: John did not criticize Mary of ad-

* (See aiso [Grice75], and [Fauconnier85] Ch. 3)

33

journing the meeting still implies that Mary committed the act), while it is stated
that the act is judged negatively. In (31), on the other hand, it is stated that Mary
committed the act, while it is presupposed that the act is negative.

We believe Fillmore’s approach is suitable also for the task of language acquisition,
since learning involves factoring out the statement of a phrase from the entire sur-
rounding context. We have further pursued Fillmore’s notion in utilizing lexical
presupposition in specific tasks such as disambiguation, indexing, and accounting for
communicative goals [Gasser86].

Presupposition must be distinguished from precondition. Consider the following text.

John ran into a pedestrian on a red light.
He managed to explainitaway in court.

The lexical phrase under consideration is explain away. The presupposition for the
application of the phrase is the entire situation in which the phrase typically appears.
A person is attempting to justify a certain planning failure. The precondition for the
enablement of the act, on the other hand, is a planning element from the domain itself.
One precondition in the story above could be the judge’s permission for John to stand
up in court and defend his own case. Another trivial example is the sentence below.

John threw a rock at Mary.

There is no presupposition for the generic phrase person throw phys-obj. This
phrase may appear in almost any context. However, from a planning point of view,
for a person to throw a rock she must first grasp the rock in her hand. In contrast to
presupposition, such planning information should not reside in the lexicon. In fact,
any information which could be derived by means of general world knowledge does
not belong in the lexicon.

Dyer [Dyer83] has described text comprehension as an integrated cognitive process.
Parsing, he claimed, cannot be separated from other cognitive tasks such as memory
update and retrieval. Accordingly, search demons were introduced in lexical entries
to perform memory retrieval. For example, consider the difference between the two
sentences.

(32) John made up his mind.

34

{33) He decided to go swimming.

In parsing sentence (33) the selected plan, namely going swimming, is mentioned ex-
plicitly. However, in sentence (32) neither the plan nor the problem to be resolved are
mentioned explicitly. Therefore, a search demon associated with the phrase make up
one’s mind is dispatched to retrieve from memory the probiem under consideration
by the actor of the phrase. One of the objectives of DHPL representation is to elim-
inate such procedural knowledge. Lexical presupposition serves the task of memory
retrieval. The mechanisms we use are unification and variable binding.

2.3.2 Language as a Knowledge-Based System

Wilensky [Wilensky81] promoted the view of language processing as a knowledge-
based task. Accordingly, he suggested representing linguistic knowledge as a database
of rules given at various levels of generality. The basic representation element is
called a phrase, given as a pattern-concept pair. For example, the phrase in the sen-
tence:

John dropped out of police academy.

is given as the phrase

pattern: <?x> <drop> out of <?y:school>
concept: goal-purasue-education by ?x terminated unsuccessfully

Parsing is viewed as a process of rule (phrase} application. When more than one rule
is applicable (ambiguity), selection is by specificity, namely, the most specific phrase
is selected.

An additional layer was added to this work by Jacobs [Jacobs85a] who noticed the
need for inheritance and hierarchy in the lexicon. Concepts in memory are organized
in a hierarchy of categories, through which more specific concepts can inherit features
from more general ones. Concepts in the lexicon, namely lexical items, should be or-
ganized through the same general discipline. This approach enjoys three advantages:

o Modularity: Adding a new entry does not require any global modification.

o Declarativeness: The representation is neutral with respect to parsing and
generation. The representation does not reflect any programming style (beyond

35

basic slot-filler notation) and it does not reflect the mechanism of any particu-
lar parser.

o Uniformity: Modifying the level of generality of a phrase does not require a
change of the phrase beyond the single feature being updated (generalized or
specified).

These properties make the system more amenable to modeling language processing
[Kay79] and acquisition [Mitchell82].

2.3.3 LFG and Language Acquisition

Bresnan’s [Bresnan82b] linguistic representation, lexical functional grammar (LFG),
is a system with a "flat" lexicon, which does not define a hierarchy of generalizations.
LFG is contrasted here with DHPL's hierarchical approach, and it is examined here in
regard to learning [Pinker84]. In LFG there are two lexical entries representing the
word ask, as it appears in the following sentences.

(32) John asked to leave.
{33) John asked Mary to leave

The corresponding lexical entries are given respectively below.

ask: V:PRED = "ask(SUBJ,V-COMP)"™
SUBJ = V-COMP’s SUBJ (subject-equi)

ask: V:PRED = “ask (SUBJ,OBJ,V-COMP)"
OBJ = V-COMP’s SUBJ (object-equi)

Figure 2.1: LFG representation of ASK

The meaning of ask is given as the predicate ask which takes either two or three ar-
guments. There is no general notion which captures the similarities in the behavior of
the two specific entries. In the hierarchical approach, on the other hand, the behavior
of ask is described in the broader context of the infinitive interaction between
phrases.

36

The schematic hierarchy is given in Figure 2.2 below:

P1 equi-rule
communication-verbs planning-verbs
prom15e suggest P2 ask tell intend decide

Figure 2.2: ASK as Part of a Broader Hierarchy

In this scheme, there is a single phrase for ask (P2). This phrase draws properties
from a more general phrase (P1) which defines the general equi rule in complement-
taking English verbs. In this representation, the behavior of ask is inherited from the
general phrase P1 and there is no need to duplicate specific cases.

LFG current theory does not facilitate such hierarchies. In absence of hierarchy and
inheritance, there is a need for duplication of the learning effort and can lead to seri-
ous flaws in modeling human behavior. For example, the word promise presents an
exception to the general equi rule. Consider John promised Mary to go, in contrast
t0 John asked Mary to go. The latter implies that John is the actor of the future act
of going (John promised that he will go, but John asked that Mary go). In learning
this behavior of promise, children make an error by hypothesizing the default equi
rule, thus committing an error of overgeneralization (a child might say: pad prom-
ised Tommy to drive the big car alone meaning "Tommy will drive the car”).
In LFG it is impossible to model this behavior since generalizatons do not exist.
Indeed, Pinker [Pinker84] accounted for this error, but the equi rule he resorted to is
not part of the LFG system itself. Moreover, through LFG it is impossible to recover
from overgeneralization. Normally people recover from overgeneralizations by being
given a counterexample (No. Dad promised Tommy to take him to Disneyland).
However, since neither Bresnan nor Pinker attempt to represent meanings of words
such as take and drive — the meanings are actually represented as the symbols take

37

and drive — it is impossible to make the necessary semantic inferences for error
recovery. Thus, without the ability to generalize and without an appropriate represen-
tation of concepts, LFG as currently defined, cannot account for these behaviors in
learning.

2.4 REPRESENTING THE CONTEXT

The semantics of entries in the lexicon draw from the various contexts in which they
have been applied. Here we represent contexts using scripts, plans, goals, and rela-
tionships [Schank77, Dyer83, Dyer86]. Consider, for example, the context in reading
the text:

Al Capone went on trial.

The judge threw the book at him.

The underlying knowledge is the the trial script, which captures the basic events tak-
ing place in court.

{a) The Prosecutor communicates (mtrans) his arguments.
(b) The Defendant communicates his arguments.
(c) The Judge decides (select-plan) either:

{1) Punish (thwart a goal of) Defendant,

{2) Do not punish him.

Figure 2.3: The Acts in $Trial

This script, as shown in Figure 1, consists of a sequence of four events, in which the
characters are the judge, the prosecutor, and a defendant. In addition, there is
knowledge of the character’s goals. The prosecutor is interested in thwarting a preser-
vation goal — p-freedom, p-property of the defendant. The defendant attempts to block
this goal thwart. Both parties advance their cases by trying to convince the judge. By
this representation the meaning of the phrase to throw the book at somebody
means fo punish him severely, based on events (a) and (1) in the script.

Another situation, involving the same script, is presented in the following text.

John ran over a pedestrian.

38

He failed to explainitaway in court,
and he went to jail.

In this case the phrase explain away pertains to the underlying goal-plan situation,
given in Figure 2.4 below.

driving-accident /pilanmng
(coming late) faiture
judge
{(wife)
cause
authori ‘
to — = \execute
mtrans il plan-block authority
> punish
explai
xplain goal-thwart
argue
discuss preservation
goal
preserve license
(preserve social-~relation)

Figure 2.4: The Goal-Plan Structure for explain away

John experienced a planning-failure (failed plan of driving safely). John's preserva-
tion goal of freedom is threatened. A plan for preserving this goal is convincing the

judge as to why John himseif was not at fault. This second plan is executed and it
fails also. Thus, his p-goal fails.

Notice that the same goal-plan schema exists also in the case of the next story:

Joe forgot to put away the dirty dishes.
When his wife came home, he argued it away
by telling her he had been working.

39

The phrase argue away also involves a prior plan failure, a thwarted p-goal (p-
social-relation) and a recovery plan of convincing the other party. This underlying
schema is a presupposition. It holds whether Joe fails to argue it away or whether he '
manages to argue it away. Since the same plan-goal schema underlies both phrases
(up to the specific plan: argue vs. explain), they both can be viewed as instances of a
more general phrase.

Many other phrases draw their meanings in terms of such general plan-goal struc-
tures. Consider the phrases in the next sentences:

This machine was idling away for hours.
They stayed at home, and argued away for hours.
The class was boring. John sat near the window dreaming away.

In all these sentences there is a similar underlying situation, shown in Figure 2.5
below.

play
dream

number crunch
work
achieve achieve
competition
achieve

Figure 2.5: The Goal-Plan Structure for idle away

In this schema a resource competition (the resource is time) exists for an agent
between two competing tasks, and that agent subordinates the important goal.

The fact that phrase representation can be elevated to a level of general plans and
goals is very significant. It implies that a relatively small number of structures can
represent phrases whose instances can be used across many domains.

2.5 CONCLUSIONS

We have shown the issues in lexical representation, in regard to language acquisition.

The lexicon must first provide the conditions for disambiguation, based on
the context.

Lexical entries must be presented at various levels of generality, to ac-
count for various of cases of partial knowledge.

Knowledge must be given in a way that is declarative, uniform, and
modular, so that learning is not complicated.

We have shown how are approach draws from three previous lines of research:

Lexical representation has been defined as the element which guarantees
felicity of phrase application. However, in spite of this definition, previous
systems have not used presupposition in the task of semantic disambigua-
tion.

The knowiedge-based approach to language has promoted representation
which is amenable to general computational mechanisms, such as
unification. This approach is suitable to acquisition, in particular in light
of Mitchell’s [Mitchell82] theory of learning in a version space.

Current linguistic theories such as LFG [Bresnan82a] have failed to take
into account the two consideration above. LFG must be extended in two
ways: (a) so that it maintains a hierarchy, and (b) so that it maintains con-
textual conditions.

41

Chapter 3:
Organizing the Lexicon

How can a lexicon account for a dynamically evolving language? In this chapter we
describe a Dynamic Hierarchical Phrasal Lexicon (DHPL), in which:

(1 Lexical entries are represented not as single words but as entire phrases.

(2) Lexical entries are organized in a hierarchy by generality. Specific
phrases reside at the bottom, and general grammar rules, also given as
phrases, reside at the top. There is no separate grammar in this system.

3 At each stage, the lexicon presents the partial knowledge possessed by a
learning model. The lexicon can be updated dynamicaily.

We show how this organization relates to the issues raised in the previous chapter:

(1) The lexicon provides the means for semantic disambiguation, relative to
the context.

(2) The lexicon enables parsing even in conditions of partial knowledge.

3) The lexicon allows learning of phrases by propagation in the lexical
hierarchy: phrases can be generalized and specialized incrementally.

42

3.1 THE LEXICON: CONTENTS AND STRUCTURE

We present here a dynamic lexical structure. Normally, linguistic systems account for
spanning a static languages. In DHPL, a Dynamic Hierarchical Phrasal Lexicon,
we propose a system which facilitates a dynamic linguistic behavior. The structure of
this lexicon is specified by (a) the structure of a single lexical element, and (b) the
global structure in which elements are interconnected.

3.1.1 Basic Phrases

We first describe the structure of a single lexical entry. Consider the marked clause in
the following text.
For years they tried to prosecute Al Capone.

Finally, ajudge threw the book athim for income-tax evasion.

This clause is derived from a lexical phrase which is given as the following simplified
tempiate:

phrase
pattern: Personl throw the book at Person2.
presupposition: Personl is an authority for Person2.
concept: Personl punishes person2 severely.

This lexical phrase is a triple associating a linguistic pattern with its semantic concept
and presupposition. The pattern specifies the syntactic appearance in text. The
presupposition specifies the surrounding context, while the concept specifies the
meaning added by the phrase itself. Phrase presupposition, distinguished from phrase
concept, is introduced in DHPL's representation since it solves three problems: (a) in
disambiguation it provides a discrimination condition for phrase selection, (b) in ac-
quisition it allows the incorporation of the context of the example as part of the
phrase, and (c) in generation it provides an indexing scheme for phrase discrimination
and triggering.

The role of the three slots in a phrase template may be better understood by the way
they are applied in parsing the text above. The clause is parsed in four steps:

(1) The pattern is matched successfully against the text. Consequently, Per-

43

sonl and Person2 are bound to the judge and to Al Capone respectively
(as the person class restrictions imposed by the pattern are satisfied).

(2) The presupposition associated with the pattern is validated using the con-
cepts in the context. Using knowledge of human relationships, it is in-
ferred that the judge presents an authority to Capone.

3 Since both (1) and (2) are successful, then the pattern itself is instantiated,
adding to the context: The judge punished Al Capone severly.

(4) Steps (1)-(3) are repeated for each relevant lexical entry. If more than one
entry is instantiated, then the concept with the best match is selected.

Actual Slot-Filler Notation: The actual representation of the phrase is implemented
using GATE’s [Mueller87] slot-filler language, as shown below. This representation
of a phrase, which is a linguistic object, is not different from the representation of oth-
er objects in the database.

(comment (y THROW THE BOOK AT x))
(pattere ?x throw <the bock> <at ?2y>
{presupposition
{ (head authority)
(class soc-relation)
(high ?y)
(low ?x}))
{concept
((head auth-punish)
{class event)
(from 2y}
{(obi ((head thwart-gcal)
(geal {(gocal-of ?y)
(class p-goal)))))
{to ?2x))))

Figure 3.1: The Phrase Notation

Notice that the phrase consists of three main parts: pattern, concept and presupposi-
tion (the comment is for reference only).

Case-Frame Representation: The pattern of the phrase above can be written as:

?2x throw <the book> <at 7y>

This is an abbreviation which stands for the full notation given below.

(subject ({class person)
(instance 7x}))
(verb {(root throw)))

(objectl ((determiner the)
(root book)))}

(object2 ({marker at)
{class person)
{instance ?y)))

This full notation has three features:
(1) The pattern is constructed of four case frames [Carbonell84].

(2) Case frames are named. For example, object2 is the name of the case frame
given as:
(marker at)

{class person)
{instance ?y)

This case is referred to as the lexical subject to be distinguished from the swrface sub-
ject (the element actually preceding the verb in the text).

(3) Case frames are unordered, namely no order is imposed among the case
frames. In no place in the case frame is it mentioned, for example, that the lexical
subject should precede the verb or follow it (or not appear at all). Case ordering, thus,
is inherited from general linguistic patterns, as shown later in this paper).

(4) Case frames contain both semantic and syntactic properties. For example, ob-
jectl defines the named constituents the and book, while object2 defines the class

person,

Since not all properties are given explicitly within the pattern itself, there is a need for

45

an inheritance scheme. Properties such as case order (e.g. active and passive voice),
and word-order of the syntactic constituents within cases (e.g. the determiner the
precedes the root book) are inherited from general linguistic patterns.

3.1.2 The Global Structure

While varying in generality, lexical entries are represented uniformly throughout.
The lexicon can be viewed as a collection triples (Pattern-Concept-Presupposition), as
shown in Figure 3.2, which are retrieved for parsing and for generation tasks, and be-
come operational by unification.

atall passwe voice

take it up with
away
throw the book . '
. explam . explain away .

Figure 3.2: The Lexicon as a Collection of Triples

To facilitate learning, these triples are organized in hierarchies by generality. In a
hierarchical scheme, the bottom nodes are very specific and idiomatic while the ones
at the top are more general. Phrases may reside at and inherit from, more than one
hierarchy. For example, the phrase to take on can inherit from the hierarchy of
take as well as from the hierarchy of on (a hierarchy which defines properties of
verb modifiers). Four operations, implemented as forms of unification, and are
defined by this representation. They are: (a) interaction between two unrelated
phrases, (b) inheritance between two related phrases (one more general than the oth-
er), (¢c) generalization, and (d) discrimination of a phrase, which both update its level
of generality. Three hierarchy schemes are given in the following sections to demon-

strate three aspects of the system: (a) phrase interaction through the infinitive con-
struction, (b) word-sense representation, and (c) case-order.

3.2 REPRESENTING THE INFINITIVE

Consider the following pair of clauses:

Judge Wilson threw the book at him.
Judge Wilson decided to throw the book at him.

(1)
{2)

Parsing the first sentence is carried out simply as a lexicon lookup: a phrase is found
in the lexicon, and its concept is instantiated. Parsing the second sentence is more
complex since no single lexical phrase is matched for throw. For one thing, the sub-
ject does not precede the verb throw as anticipated by the lexical pattern. Identifying
the implicit subject involves knowledge of phrase interaction. Properties of phrase in-
teraction (through the infinitive form [Kiparsky71]) are represented by a hierarchy
below.

P1: equi-rule
influence / \ \\ modal
fanni
help// SSC b2+ communication & \\\ '
/ continug
Stop
let / \ Start
see
.. plan
hear) dgc:de
feel tell P3: ask command” ten
\\ episode2

P4: episodel

Figure 3.3: The Hierarchy for Phrase Interaction

The names of the individual nodes are mnemonic, and are used for reference only.
Each such node is a full pattern-concept-presupposition triple (the presupposition may
not appear). The nodes in Figure 3.3 are described as follows:

47

(a) The most general node (P1) denotes the basic equi rule, which stands for the
following object:

(comment the general EQUI behavior)
(pattern ((subject ((instance ?x)))

{verb {(root 2v}})
(objectl ({instance ?y)}))
(comp ((pattern
{(subject ((instance {(and?y?x))))
{verb ({(form infinitive)))

{concept 7z)))))}))
(comcept ({actor ?x)
(obj 22)))

In this phrase, notice in particular the complement (comp), which defines the embed-
ded phrase. The implicit subject of the embedded phrase is taken as either (1) the ob-
ject of the embedding phrase, if that object exists, or (2) the subject of the embedding
phrase, if the object does not exist

(b) Middle-level nodes encompass classes of verbs. For example, P2 encom-
passes communication verbs such as ask, tell, instruct, etc., share certain
features. It is represented as follows:

(comment communication verbs)
(pattern ((subject (({insatance ?x}))
(verb ({root 7?v)))
(cbiectl ({inatance ?y)))
(comp
{(pattern
{ (subject ({instance (and?y?x))})})
{verb ({form infinitive) (comp’er to)))
{(concept 2z)))))))
{concept ((head mtrans)
{actor 7x)
{(to ?y)
(plan ?2z}))
This phrase is similar to the phrase P1. However, it includes information specific to
that class of verbs. It defines shared syntactic features: subject, verb, object, comple-
ment (where the complementizer is to). It also defines shared semantic properties: (a)

48

the equi-rule, (b) the concept of the complement, which is a hypothetical, future plan
communicated by the actor.

(c) Specific nodes give the behavior of individual verbs, such as the phrases for
decide (a planning verb) and command (a communication verb).

(comment X DECIDE TO Z)
(pattere ((subject {({(instance ?x}))
(verb { (root decide)))
{comp
{(pattern
{ {(subject ((instance x)))
{verb {(form infinitive) (comp’er to)))
(concept ?z)})))))
{concept ((head plan-select)
(actor 7x)
(plan ?2)))

{(comment X COMMAND Y T0 2)
{pattern ((subject ((instance ?x)))
{verb { (root command)))
(cbjectl {(instance ?y)))
{comp
{{pattern
((subject ({instance ?7y)))
(verb ((form infinitive) (comp’er to)))
(concept ?z)))))))
{presupposition
{head authority)
(high ?x)
(low 2y))
{comcept ((head mtrans)
{actor ?x)
{to 2y)
{obj ({active-goal ?2z)
{goal-of ?x)))))}

Each one of these phrases adds on the information specific to the denoted verb. Ac-
cording to this representation ?x command ?y to ?z means that 7x who presents an
authority to ?y, tells ?y that 7z is a goal of 7x.

49

(d) Episodes such as P4, which include specific instances of a phrase, are indexed
to the phrase. For example, P4 is the situation in which God commands Moses to ap-
proach the Mountain. This episode contains the semantic ingredients constituting the
meaning of the phrase.

The hierarchy of Figure 3.3 is used by four processing tasks.

3.2.1 Phrase Interaction

The analysis of sentence (2):

{2) Judge Wilson decided to throw the book at him.

involves the interaction of two specific phrases, as shown schematically in Figure 3.4.
equi-r’ulc

\

4 / p‘m\”g\ ,

P1: decide throw the book

unification

Figure 3.4: Interaction of Two Specific Phrases

The two specific lexical phrases involved are the entries for decide (the embedding
phrase, P1, elaborated in item (c) at the beginning of Section 3.1 above) and for
throw the book (the embedded phrase, P2, described in Figure 3.1 above). The
unification of these two phrases guarantees that: (a) the subject of P1 is the subject of
P2, and (b) the concept of the P2 (denoted by 2z) is plugged in the plan slot of P1.
The interaction of these two phrases yields the compound concept:

50

(head plan-select)
(actor wilson.l)

iplan ((head auth-punish)
(actor wilson.l)
{to capone.2)))

This concept conveys the meaning of the entire sentence.

3.2.2 Parsing an Unknown

In contrast to the previous example, consider the analysis of a sentence in which an
unknown word is included:

Mary goggled John to come over.

In analyzing this sentence, no lexical phrase is found to account for the word goggle.
Therefore, the meaning of the entire sentence cannot be produced. Yet, even a partial
meaning cannot be produced for the known clause, to come over, since it is in-
tertwined with the unknown clause Mary goggled John. In order to overcome this
obstacle, the interaction involves a more general phrase as shown in Figure 3.5.

equi-rule

/

P1: communication
/ P2:
come over

command
SN—

unification

Figure 3.5: Interaction with a Genaralized Phrase

In contrast to Figure 3.4, here no specific phrase could be found for goggle, and it
was necessary to select the generalized phrase, P1, which encompasses communica-

51

tion verbs in general. For come over, on the other hand, there exists a specific entry
in the lexicon, P2, thus a generalization is not sought for. The partial meaning con-
structed for the sentence, in absence of a phrase for goggle is:

{head mtrans)

{(actor mary.l)

(to john.2)

{obj ((head ptrans)
(actor john.2)
(to mary.1l)))

Thus, even when the particular phrase does not exist, the parser is able to construct an
initial hypothesis, based on a generalization.

In fact, the selection of the generalized phrase is not unambiguous. The nature of the
selected phrase is restricted by two schemes: (a) the hierarchy in Figure 3.3 above,
and (b) the persuade plan box {Schank77] which provides the planning options avail-
able for a person in persuading another person to act (overpower, threaten, promise,
steal, etc.). Accordingly, goggle could have as well conveyed meanings such as:

(3) Mary pushed John to come over. (Influence verb)
{4) Mary let John come over. (help verb)
(5) Mary threatened John to come over. (promise verb)

Indeed option (5) is not available in English, however, since the phrase is yet unk-
nown to the learner, this option must be given consideration.

3.2.3 Overgeneralization and Recovery

In the case that the word promise does not exist in the lexicon, the program behaves
as follows:

User: John promised Mary to come over.
RINA: John told Mary that she must/can come to him.

In using the generalized phrase, RINA unified inappropriately the roles. This is an er-
ror of overgeneralization which is typical of children learning new vocabulary items.

52

3.2.4 Error Recovery

The user can correct the program by giving an explicit example.

User: No. John promised Mary to come to her place.

By using few inferences (e.g., person ?x does not come to the same person 2x),
RINA figures out the confusion in the role-binding and corrects appropriately the
phrase for promise, as given below:

{comment X PROMISE Y TO 2)
(pattern ((subject ((instance x)))

(verb {((root promise)))
(objectl ({instance ?y)))
{comp

({pattern

{ (subject ({instance x)))
(verb ((form infinitive) (comp’er to)))
(concept 22))))}))
(presupposition

(head goal)
(goal=-of 7y))

{concept ((head plan-select)
(actor 7?x)
(to ?2y)
(plan ?2)))

Notice two interesting points regarding the semantics of promise: (a) ?x (the embed-
ding subject) is always the subject of the embedded phrase, and (b) the act ?z is
presupposed to be a goal of ?y. 7x is the subject of the embedded act, and the act ?z is
presupposed to be a goal of ?y.

3.3 HANDLING WORD SENSES
By its nature, the phrasal approach is oriented towards the representation of entire

groups of words. However, single words, such as up, at, and away must aiso be
represented. Three issues are involved in representing such words.

53

3.3.1 Assigning Meanings to Particles

Compare the following two sentences:

(6) John looked up at Mary.
{7 John loocked at Mary.

The meanings of the two sentences are given below*:

(6) {head attend) (N (head attend)
{obj eyes) (obj eyes)
{actor john.3) (actor john.3)
{to mary.4) (to mary.4)
(direction vertical-positive)

The contribution of the particle up is given as (direction vertical-positive). The role
of the particle in the next sentence is less obvious.

(8) John flewaway from the scene of the crime.
What is the contribution of the word away to the meaning of sentence (8)? For in-

stance, how is the meaning of sentence (8) different than the meaning of sentence (9)
below?

(9 John flew to Alaska.
3.3.2 Resolving Word-Sense Ambiguity

Is the contribution of away identical in all the sentences (10)-(13), or are there several
meanings involved?

(10) John flewaway from the scene of the crime.
{11) John did not putaway the clean dishes.
{12) He managed to argueitaway with his wife.
(13) This machine was idling away for hours.

For example, consider two appearances of the production argue away which involve
two different senses of away:

* Another phrase, John locked up to Mary, iN CORMrast to John looked up at Mary, iS not
processed as a simple production of the particles, since it involves the entire phrase "X look up to Y.

54

(14) His lawyer can argueaway any tax violation.
(15) He is a bum. He can argue away for hours without
convincing anybody.

The first sense implies success in deceiving the authorities (as in get away with),
while the second sense implies a waste of time (as in idle away). If there is more
than one sense for away, then how is the appropriate meaning selected in each in-
stance?

In our lexicon, there are two phrases for argue away, which are disambiguated by
matching their presuppositions with the context. The two phrases are:

pattern: 2?x <argue away> ?y
presupposition :

1. ?y is a planning fazilure by ?x.

2. 2g is a goal of ?x thwarted by authority punishment ?a.

3. ?v (argue) is a communication act by ?x for blocking act ?a.
concept: act ?v is successful, and the goal thwart is removed.

pattern: ?x <argue away>
presupposition ;
1. act ?v (arguing) serves no achievement goal of ?7x.
2. ?v is in a resource conflict over time with goal ?g
concept: act ?v is selected over a long period of time,
causing ?g to be abandoned.

Figure 3.6: Two Different Senses for argue away

The appropriate phrase is selected in each context by matching the presupposition.

3.3.3 Determining Level of Generality

Which is the appropriate alternative for representing the phrase in sentence (16)?

{16) He managed to argueitaway with his wife.

(a) Is it as "fixed" phrase as given below?

pattern: ?2?x <argue away> ?y <with ?z>

55

concept: 7x managed to explain event 2y
to person ?z by arguing.

(b) Orisita "variable” phrase as given next:

pattern: ?x <?v away> ?y
concept: ?x managed to explain event ?y
to person ?z by act ?v.

Answers for these dilemmas are given by the hierarchy in Figure 3.7 below:

P1: verb-modifier

— [\ .

over)
P2: away around against

P3b: waste-ime / \\ .
P3a: get-away become pigclél
/) \%«ith Y Jatessible P \\
i store
&, AN
stash
sing stack away

away P4: argue explain fly run walk away
away away away away away

\.
. episode2
PS5: episodel

Figure 3.7: The Hierarchy for away

The most general phrase (P1) denotes the general properties of English verb
modifiers. The modifier follows the verb, but separation is allowed (i.e.: he ex-

plained it away V8. he explained away his latest goof).

Second-level nodes represent some general meaning conveyed by words such as away
(P2), up and down. The pattern for P2, for example is <?v away>, where ?v can be

any verb.

56

Nodes at the third level convey word senses which encompass classes of specific
phrases. For example, P3a (convince) conveys the meaning encompassing both ex-
plain it away and argue it away, while P3b (waste time) conveys the meaning
encompassing both idle away and sing away. These two phrases (P3a and P3b)
are elaborated here:

pattern: ?x <?v away> ?y
presupposition :
1. ?y is a planning failure by ?x.
2. ?g i3 a goal of 7?x thwarted by authority punishment ?a.
3, ?v is a communication act by ?x for blocking act ?a.
concept: act ?v is successful, and the goal thwart is removed.

pattern: ?x <?v away>
presupposition :
1. act ?v serves no achievement goal of ?x.
2. ?v i3 in a resource conflict over time with goal ?g
concept: act ?v is selected over a long period of time,
causing ?g to be abandoned.

Figure 3.8: General Phrases for away
These two phrases generalize respectively the phrases in Figure 3.6.

Nodes at the next level denote specific phrases, or productions, such as run away,
argue away (P4), idle away, etc. Such phrases are given in Figure 3.6 for two
cases of argue away.

Nodes at the bottom level describe episodes in which instances of phrases were en-
countered (e.g., the instances Al Capone argued it away in court (P3), John
Smith argued it away with his wife are indexed to the phrase 7x argue 2y
away).

On the face of it, it seems that levels (a) and (d) are sufficient for all parsing and gen-
eration purposes. What is the function of levels (b), (c), and (¢)?

57

3.3.4 Analyzing a New Production

These intermediate levels of generalization facilitate the analysis of new productions
such as:

(17) John tried to describeitaway in court.

Sentence (17) introduces a new production to the reader of this paper. Yet, the reader
should be able to resolve the new production by using the generalized linguistic pat-
tern P3a in Figure 3.7.

3.3.5 Learning from Exampies

In the previous example we have assumed an existing generalized phrase P3a, which
was used in predicting a specific phrase. When such a generality does not exist, learn-
ing must be done by induction from specific examples. The following set of examples
provide episodes from which RINA can hypothesize the meaning of the phrase to

take on.

(18) David tock on Goliath.
(19 The Celtics tock on the Lakers.
{20) Finally, I took on the hardest question on the midterm.

58

So far we have shown two ways of deriving new phrases: First, a new phrase can be
generalized from indexed episodes (which include instances in context). However,
learning is easier when a generalized template already exists, in which case learning is
by applying a generality [Zermnik85b].

away
P3a: convmce continue
/ <Mx away> <?x on> <”x on>
explain descnbc hang/ Bold take
away away away on on
T episodel \
episode3 episode2

Figure 3.9: Top-Down vs. Bottom-Up Propagation

Figure 3.9 shows two learning processes: describe it away is deduced top-down
from an existing general concept (P3a). On the other hand, take on is induced
bottom-up from the set of specific episodes such as David and Goliath, the Celrics vs.

the Lakers, and the midterm. There is no generalized concept which could serve as a
short cut.

3.4 INHERITING CASE ORDER

Consider the lexical pattern given as a set of four unordered case-frames:

PO: ?y throw <the book> <at x>

59

Since ordering is not specified explicitly in pattern PO, then how can this pattern
match sentences such as:

(21) The judge threw the book at Al. (active voice)
(22) The book was thrown at him. (passive voice)
(23) Al he decided to throw the book at,
but John he gave a break. (left dislocation)
(24) nTake it easy!"™ said the prosecutor. (right dislocation)

Under what condition does the lexical subject precede the verb, and when can the lex-
ical subject be omitted altogether? This information is contained in a case-order
hierarchy (Figure 3.10 below) in the lexicon.

S<V<Q
assive / \ ight
gofcc tive left . lcili%.locm:ion
voice dislocation

Figure 3.10: Case-Order Hierarchy

The patterns for the passive and the active voice, for example, are given in the figure
below.

P2: {subject ((locaticn bef) (marker none}))
(verb { (Location ref) (voice active)))
(objectl ({location aft)})
(object2 ((location aft}))

P3: (objectl ({lccation bef) (marker none)))
{verb {(location ref) (voice passive)))
(object2 ((location aft)))
(subject ((location any)))

In matching sentences (21) and (22) above, the pattern PQ inherits case-order proper-

ties from these general linguistic patterns. For example, after inheriting the passive
voice for matching sentence (22), the pattern augmented by inheritance from P3
would be:

Pl: {objectl ((location bef) (determiner the) {root book)
{instance ?x))})
(verb {(location ref) (root throw) (voice passive)))
(object2 ((location aft) (marker at) (class person)

{(instance ?y)))
(subject ({location any) (marker by) (class person)
(instance ?x)))}

An even more general pattern exists which captures the basic SVO structure of the
language. This phrase is given at the top of the hierarchy:
{pattern
(subject ({location bef) (marker none) (instance ?x)})
{verb ({location ref)))
{objectl ((location aft) (marker none) (instance ?y)))
(object2 ({(location aft) (marker ?m} (instance ?z)})})
(concept
(head act) (actor ?x) {(patient ?y) (7m 22))

What is the use of that general SVO phrase? This phrase is called for in absence of
more specific knowledge. Children who have not yet mastered specific case-structure
patterns resort to this pattern. For example, a 2-year-old child might incorrectly
understand:

Mary was fed by John.

as if Mary actually fed John. Adults too, in case of missing knowledge, might resort
to this generality in making sense out of sentences.

3.5 CONCLUSIONS
We have shown how the Dynamic Hierarchical Phrasal Lexicon (DHPL) supports
language analysis, and language acquisition. We accounted for a dynamic language

behavior by promoting four aspects of lexical representation:

Phrases: The lexicon contains entire phrases, accounting uniformly for an entire

61

range including productive as well as non-productive phrase.

Hierarchy: The lexicon organizes in a hierarchy, phrases ranging from specific "lexi-
cal entries” at the bottom, to general "grammar rules” at the top.

Lexical Presupposition: Contextual conditions are incorporated into the lexicon
through lexical presuppositions. Presuppositions account for disambiguation in pars-
ing, and for phrase selection in generation.

Integration of Syntax and Semantics: Phrases specify a relation (in the logical
sense) between syntax and semantics. Thus, the question whether any lexical feature
is syntax or whether it is semantics, becomes insignificant. For example, consider
thematic roles for a phrase such as promise (Section 3.2.4). Are they syntactic or are
they semantic? They can be viewed as either.

62

Chapter 4:
Underlying Knowledge

This chapter describes the structures used in semantic lexical representation. The se-
mantics of entries in the lexicon are drawn from contexts in which those entries have
been applied. The contexts we considered involved the domain of interpersonal rela-
tionships, and planning situations in that domain. It would have been possible to
represent phrases in respect to any other domain. However, meanings of phrases in
the language, even of specialized and technical phrases, are derived as extension of
the interpersonal domain. Accordingly, even an application of a phrase in the comput-
ers domain, for example, to kill a process [Martin86], is interpreted by mapping
it to the basic interpersonal act of one person terminating the life of a second person.

We have selected a set of primitives: acts, goals and plans, relations, and emotions.
We show, for a large number of phrases, how they can be represented using these
primitives.

4.1 INTRODUCTION

Since English words and phrases are applied in many domains, a question is raised re-
garding the ingredients of the representation: is the semantic representation given in
terms of concepts drawn from each particular domain? In this case there would be a
vast number of elements which take part in phrase representation. Alternatively, is it
possible to represent phrases using a set of concepts which pertain to all domains? In
this case, a relatively small number of elements could cover representation of many
phrases. We will answer this question by analyzing for a variety of phrases, how they

63

are acquired, and how the are applied in text analysis.

4.1.1 The Task Domain

Consider the figurative phrases in the sentences below, as they are parsed by the pro-
gram RINA.

S1: The Democrats in the house carried the water
for Reagan’s tax-reform bill.*

S2: The famous mobster evaded prosecution for years.
Finally, they threwthebook at him for tax evasion.

Depending on the contents of the given lexicon, the program may interpret these sen-
tences in one of two ways. On the one hand, assuming that the meaning of a phrase
exists in the lexicon, the program applies that meaning in the comprehension of the
sentence. In S1, the program understands that the Democratic representatives did the
"dirty" work in passing the bill for Reagan. On the other hand, if the figurative phrase
does not exist in the lexicon, an additional task is performed: the program must figure
out the meaning of the new phrase, using existing knowledge. First, the meanings
given for the single words carry and water are processed literally. Second, the con-
text which exists prior to the application of the phrase, provides a hypothesis for the
formation of the phrase meaning. A dialog with RINA proceeds as follows:

RINA: They moved water?
User: No. The Democrats carried the water for Reagan.
RINA: They helped him pass the bill?

Thus, RINA detects the metaphor underlying the phrase, and using the context, it
learns that carry the water means helping another person do a hard job. Consider
encounters with three other phrases:

Jenny wanted to go punk but her father

S3: laid down the law .
S4: put his foot down.
55: read her the riot act.
S6: gave her a hard time .

* This sentence was recorded of the ABC television program Nightline, December 12, 1985. At that
point, by a peculiar turn of events, the Democrats pushed forwards Reagan’s favorite legislation.

64

In all these cases, it is understood from the context that Jenny’s father objected to her
plan of going punk (aided by the word but which suggests that something went
wrong with Jenny’s goals). However, what is the meaning of each one of the phrases,
and in particular do all these phrases convey identical concepts?

4.1.2 The Issues
In encoding meanings of figurative phrases, we must address the following issues.

Underlying Xnowledge: What is the knowledge required in order to encode the
phrase throw the book? Clearly, this knowledge includes the situation and the
events that take place in court, namely the judge punishing the defendant.

The phrase carry the water, for example, requires two kinds of knowledge:

(a) Knowledge about the act of carrying water which can support the analysis
of the phrase metaphor.

(b) Knowledge about general plans and goals, and the way one person agrees
to serve as an agent in the execution of the plans of another person. This
knowledge supports the analysis of the context.

While the phrases above could be denoted in terms of plans and goals, other phrases,
i.e.. rub one’s nose in it, climb the walls, and have a chip on one’s
shoulder require knowledge about emotions, such as embarrassment and frustration.
Unless the program maintains knowledge about reseniment, the phrase have a chip
on the shoulder, for example, cannot be represented. Thus, a variety of knowledge
structures take place in encoding figurative phrases.

Representing Phrase Meanings and Connotations: The appearance of each phrase
carries certain implications. For example, John put his foot down implies that
John refused a request, and on the other hand, John read the riot act implies
that he reacted angrily about a certain event in the past. John gave Mary a hard
time implies that he refused to cooperate, and argued with Mary since he was an-
noyed, while John laid down the law implies that John imposed his authority in a
discussion. The representation of each phrase must account for such implications.

Four different phrases in sentences $3-S6 are applied in the same context. However,

65

not any phrase may be applied in every context. For example, consider the context
established by the following paragraph:

S6: Usually, Mary put up with her husband’s cooking, but when
he served her cold potatoes for breakfast,
she put her foot down.

Could the phrase in this sentence be replaced by the other two phrases: (a) lay down
the law, or (b) read the riot act? While understandable, these two phrases are
not appropriate in that context. The sentence she read him the riot act doesnot
make sense in the context of debating food taste. The sentence she laid down the
1aw does not make as much sense since there is no argument between individuals with
non-equal authority. Thus, there are conditions for the applicability of each lexical
phrase in varjous contexts. These conditions support phrase disambiguation, and must
be included as part of a phrase meaning.

Phrase Acquisition: Phrase meanings are learned from examples given in context.
Suppose the structure and meaning of put one’s foot down is acquired through the
analysis of the following sentences:

S6: Usually, Mary put up with her husband’s cocking, but when
he served her cold potatoes for breakfast,
she put her foot down.

S7: Jenny was dating a new boyfriend and started to show up
after midnight. When she came at 2am on a weekday,
her father put his footdown: no more late dates.

§8: From time to time I took money from John, and I would
forget to give it back to him. He put his foot down
vesterday when I asked him for a quarter.

Since each example contains many concepts, both appropriate and inappropriate, the
appropriate concepts must be identified and selected. Furthermore, although each ex-
ample provides only a specific episode, the ultimate meaning must be generalized to
encompass further episodes.

Literal Interpretation: Single-word senses (e.g.: the sense of the particle into in

run into another car), as well as entire metaphoric actions (e.g.: carry the wa-

ter In the Democratic representatives carried the water for Reagan’s

66

tax-reform bill) take part in forming the meaning of unknown figurative phrases.
Can the meaning of a phrase be acquired in spite of the fact that its original metaphor
is unknown, as is the case with read the riot act (what act exactly?) or carry
the water (carry what water)?

4.2 THE PROGRAM

The program RINA [Zernik85a] is designed to parse sentences which include figura-
tive phrases. When the meaning of a phrase is given, that meaning is used in forming
the concept of the sentence. However, when the phrase is unknown, the figurative
phrase should be acquired from the context. The program consists of three com-
ponents: phrasal parser, phrasal lexicon, and phrasal acquisition module.

4.2.1 Phrasal Parser

A lexical entry, a phrase, is a triple associating a linguistic partern with its concept
and a presupposition. A clause in the input text is parsed in three steps:

(1) Matching the phrase partern against the clause in the text.

(2) Validating in the context the relations specified by the phrase presupposi-
tion.

3) If both (1) and (2) are successful then instantiating the phrase conceprt us-
ing variable bindings computed in (1) and (2).

For example, consider the sentence:
S9: Fred wanted to marry Sheila, but she ducked the issue

for years. Finally he put her on the spot.

The figurative phrase is parsed relative to the context established by the first sentence.
Assume that the lexicon contains a single phrase, described informally as:

pattern: Personl put Person2 on the spot
presupposition: Person2 avoids making a certain tough decision
concept: Personl prompts Person? to make that decision

The steps in parsing the clause using this phrase are:

(1 The pattern is matched successfully against the text. Consequently, per-

67

sonl and Person2 are bound to Fred and Sheila respectively.

(2) The presupposition associated with the pattern is validated in the context.
After reading the first phrase the context contains two concepts: (a) Fred
wants fo marry Sheila, and (b) she avoids a decision. The presupposition
matches the input.

3) Since both (1) and (2) are successful, then the pattern itself is instantiated,
adding to the context:

Fred prompted Sheila to make up her mind.

Phrase presupposition, distinguished from phrase concept, is introduced in our
representation, since it helps solve three problems: (a) in disambiguation it provides a
discrimination condition for phrase selection, (b) in generation it determines if the
phrase is applicable, and (c) in acquisition it allows the incorporation of the input con-
text as part of the phrase.

4.2.2 Phrasal Lexicon

RINA uses a declarative phrasal lexicon, with unification [Kay79} as the grammatic
mechanism. Below are some sample phrasal patterns.

Pl: ?x <lay down> <the law>
P2: ?x throw <the book> <at ?y>

These patterns actually stand for the slot fillers given below:

Pl: (subject ?x (class person))
{(verb (root lay) (modifier down))
{ocbject (determiner the) (noun law))

P2: (subject ?x (class person)}
{varb {root throw))

{(cbhject ?z (marker at) {claas person)i)
(object (determiner the) (noun book})

This notation is described in greater detail in the previous chapter.

68

4.2.3 Phrase Acquisition through Generalization and Refinement

Phrases are acquired in a process of hypothesis formation and error correction. The
program generates and refines hypotheses about both the linguistic pattern, and the
conceptual meaning of phrases. For example, in acquiring the phrase carry the wa-
ter, RINA first uses the phrase already existing in the lexicon, but it is too general a
pattern and does not make sense in the context.

?x carry:verb ?z:phys-obj <for ?y>

Clearly, such a syntactic error stems from a conceptual error. Once corrected, the hy-
pothesis is:

7% carry:verb <the water> <for ?y>

The meaning of a phrase is constructed by identifying salient features in the context.
Such features are given in terms of scripts, relationships, plan/goal situations and
emotions. For example, carry the water is given in terms of agency goal situation
(2x executes a plan for 2x) on the background of rivalry relationship (?x and 2y are
opponents). Only by detecting these elements in the context can the program learn the
meaning of the phrase.

4.3 CONCEPTUAL REPRESENTATION
The key for phrase acquisition is appropriate conceptual representation, which ac-

counts for various aspects of phrase meanings. Consider the phrase to throw the
book in the following paragraph:

52: The famous mobster avoided prosecution for years.
Finally they threw thebook at him for tax evasion.

We analyze here the components in the representation of this phrase.

69

4,.3.1 Scripts

Basically, the figurative phrase depicts the trial script (shown in Section 2.4), which
is given below:

(a) The prosecutor says his arguments to the Jjudge
{b) The defendant says his arguments to the judge
{c) The judge determines the outcome, either:

(1) to punish the defendant

(2) not to punish the defendant

Figure 4.1: Four events in $trial

This script involves a Judge, a Defendant, and a Prosecutor, and it describes a se-
quence of events. Within the script, the phrase points to a single event, the decision to
punish the defendant. However, this event presents only a rough approximation of the
real meaning which requires further refinement.

(a) The phrase may be applied in situations that are more general than the tri-
' al script itself. For example:

S10: When they caught him cheating in an exam
for the third time, the dean of the school
decided to throw the book at him.

Although the context does not contain the specific trial script, the social authority
which relates the judge and the defendant exists also between the dean and
John,

(b) The phrase in S2 asserts not only that the mobster was punished by the
judge, but also that a certain prosecution strategy was applied against him.

4.3.2 Specific Plans and Goals

In order to accommodate such knowledge, scripts incorporate specific planning situa-
tions. For example, in prosecuting a person, there are three options, a basic rule and
two deviations:

70

(a) Basically, for each law violation, assign a penalty as prescribed in the
book.

(b) However, in order to loosen a prescribed penalty, mitigating cir-
cumstances may be taken into account.

(c) And on the other hand, in order to toughen a prescribed penaity, addition-
al violations may be thrown in.

In S2 the phrase conveys the concept that the mobster is punished for tax evasion
since they cannot prosecute him for his more serious crimes. It is the selection of this
particular prosecution plan which is depicted by the phrase. The phrase representation
is given below,

pattern ?x:person throw:verb <the book> <at ?y:person>
presupposition ($trial {prosecution ?x) {defendant ?y))}
concept (act {select-plan
{actor prosecution)
{plan {(ulterior-crime
(crime ?c¢)

{crime-of 2y)))))
{result (thwart-goal
{goal 2g)
{goal-of ?v)))

Figure 4.2: Representing throw the book at

where uiterior-crime is the third prosecution plan above.

4.3.3 Relationships

The aquthority relationship [Schank78, Carbonell79] is pervasive in phrase meanings,
appearing in many domains: judge-defendant, teacher-student, employer-employee,
parent-child, etc. The existence of authority creates certain expectations; if X presents
an guthority for Y, then:

(a) X issues rules which Y has to follow.
®) Y is expected to follow these rules.

7

(c) Y is expected to support goals of X.
(d) X may punish Y if Y violates the rules in (a).

(e) X cannot dictate actions of Y; X can only appeal to Y to act in a certain
way.
® X can delegate his authority to Z which becomes an authority for Y.

In S10, the dean of the school presents an authority for John. John violated the rules
of the school and is punished by the dean. More phrases involving authority are given
by the following examples.

S11: I thought that parking ticket was unfair
so I tookitup with the judge.

§12: My boss wanted us to stay in the office until 9pm
every evening to finish the project on time,

Everybody was upset, but nobody stood upto the boss.

S13: Jenny’s father laid downthelaw: no more late dates,

The representation of the phrase take it up with, for example, is given below:

pattern ?x:person <take:verb up>
?z:problem <with ?y:person>
presupposition (authority (high ?y) (low 2x))
concept {act {auth-appeal
{actor ?x) (to ?y) {object ?2))
(purpose (act
{(auth-decree
{actor ?y) (to ?x) (object 2z)))
{result (support-plan (plan-of 7x)}))

Figure 4.3: Representing take it up with

The underlying presupposition is an aurhority relationship between X and Y. The
phrase implies that X appeals to Y so that Y will act in favor of X.

72

4.3.4 Abstract Planning Situations

General planning situations, such as agency, agreement, goal-conflict and goal-
concordance [Wilensky83] are addressed in the examples below.

S1: The Democrats in the house carried the water
for Reagan in his tax-reform bill.

The phrase in S1 is described using both rivalry and agency. In contrast to expecta-
tions sternming from rivalry, the actor serves as an agent in executing his opponent’s
plans. The representation of the phrase is given below:

pattern ?x:person carry:verb
<the water ?z:plan> <for ?y:person>
presupposition (rivalry (actorl 2?x) (actor2 ?y)}
concept {agency (agent ?x)
(plan ?z)
(plan-of ?7y))

Figure 4.4: Representing carry the water

Many other phrases describe situations at the abstract goal/plan level. Consider S14:

S14: I planned to do my CS20 project with Fred.
I backedoutof it when I heard that
he had flunked CS20 twice in the past.

Back out of depicts an agreed plan which is cancelled by one party in contradiction
to expectations stemming from the agreement.

S15: John’s strongest feature in arguing is his ability

to fallbackon his quick wit.

Fall back on introduces a recovery of a goal through an alternative plan, in spite of
a failure of the originally selected plan.

S§16: My standing in the tennis club detericrated since
I was bogged down with CS20 asaignment the whole summer.

73

In bog down, & goal competition over the actor’s time exists between a major goal
(tennis) and a minor goal (CS20). The major goal fails due to the efforts invested in
the minor goal.

4.3.5 Emotions and Attitudes

In text comprehension, emotions [Dyer83, Mueller85] and attitudes are accounted for
in two ways: (a) they are generated by goal/planning situations, such as goal failure
and goal achievement, and (b) they generate goals, and influence plan selection.
Some examples of phrases involving emotions are given below. Humiliation is ex-
perienced by a person when other people achieve a goal which he fails to achieve.
The phrase in S17 depicts humiliation which is caused when John reminds the speaker
of his goal situation:

S17: I failed my CS20 class. My friend John rubbed my nosein it
by telling me that he got an A+.

Resentment is experienced by a person when a certain goal of his is not being
satisfied. This goal situation causes the execution of plans by that person to
deteriorate. The phrase in S18 depicts such an attitude:

S18: sSince clients started to complain about John, his boss
asked him if he had a chip on his shoulder.

Embarrassment is experienced by a person when his plan failure is revealed to other
people. The phrase in §19, depicts embarrassment which is caused when a person is
prompted to make up his mind between several bad options.

§19: Ted Koppel put his guest on the spot when he asked him if he
was ready to denounce apartheid in South Africa.

In all the examples above, it is not the emotion itself which is conveyed by the phrase.
Rather, the concept conveys a certain goal situation which causes that emotion. For
example, in $20 (rub one’s nose) a person does something which causes the speak-
er to experience humiliation.

74

4.4 LEARNING PHRASE MEANINGS

Consider the situation when a new phrase is first encountered by the program:

User: The Democrats in the house carried the water
for Reagan’s tax-reform bill.

RINA: They moved water?

User: No. They carried the water for him.

RINA: They helped him pass the bill.

Three sources take part in forming the new concept, (a) the linguistic clues, (b) the
context, and (c) the metaphor.

The Context: The context prior to reading the phrase includes two concepts:
(a) Reagan has a goal of passing a law.

(b) The Democrats are Reagan’s rivals—they are expected to thwart his goals,
his legislation in particular.
These concepts provide the phrase presupposition which specifies the context required
for the application of the phrase.

The literal interpretation of carried the water as "moved water” does not make
sense given the goal/plan situation in the context. As a result, RINA generates the
literal interpretation and awaits confirmation from the user. If the user repeats tne
utterance or generates a negation, then RINA generates a number of utterances, based
on the current context, in hypothesizing a novel phrase interpretation.

Since the action of moving water does not make sense literally, it is examined at the
level of plans and goals: Moving water from location A to B is a low-level plan which
supports other high-level plans (i.e., using the water in location B). Thus, at the
goal/plan level, the phrase is perceived as: "they executed a low-level plan as his
agents” (the agency is suggested by the prepositional phrase: for his tax-reform
bill; i.e., they did an act for his goal). This is taken as the phrase concept.

The Constructed Meaning: The new phrase contains three parts:
(a) The phrase pattern is extracted from the example sentence:

?x carry:verb <the water> <for 2y>

75

(b) The phrase presupposition is extracted from the underlying context:

{rivalry (actorl ?x) (actor2 ?y))

(©) The phrase concept is taken from the metaphor:

{plan-agency (actor ?x) (plan ?z) {plan-of ?y))

Thus, the phrase means that in a rivalry situation, an opponent served as
an agent in carrying out a plan.

4.5 CONCLUSIONS

The phrasal approach elevates language processing from interaction among single
words to interaction among entire phrases. although it increases substantially the size
of the lexicon, this chunking simplifies the complexity of parsing since clauses in the
text include fewer modules which interact in fewer ways. The phrasal approach does
reduce the power of the program in handling non-standard uses of phrases. For exam-
ple, consider the situation where a mobster kidnaps a judge, points the gun at him, and
Says: No funny book you could throw at me now would do you any good!*.
Our current parser would certainly fail in matching the syntactic pattern and inferring
the ironic meaning. The analysis of such a sentence would require that the program
associate the two existing phrases, the general throw something and the figurative
throw the book, and make inferences about the pun meant by the mobster. Such ex-
amples show that it is difficult to capture human behavior through a single parsing

paradigm.

Phrase acquisition from context raises questions regarding the volume of knowledge
required for language processing. A phrase such as throw the book requires highly
specialized knowledge involving sentencing strategies in court. Now, this is only one
figurative phrase out of many. Thus, in order to handle figurative phrases in general, a
program must ultimately have access to all the knowledge of a socially mature person.
Fortunately, learning makes this problem more tractible. In the process of phrase ac-
quisition, phrase meaning is elevated from the specific domain in which the phrase
has originated to a level of abstract goal situations. For example, once throw the
book is understood as the act of authority-decree, then knowledge of the trial si-

* This example is attributed to an anonymous referee.

76

tuation no longer needs to be accessed. The phrase is well comprehended in other
domains: my boss threw the book at me, his parents threw the bock at
him, her teacher threw the book at her, etc. At that level, a finite number of
goal situations can support the application of figurative phrases across a very large
number of domains.

77

Part 11
Learning Phrases in Context

78

Chapter 3:
Learning a Hierarchy of Phrases

The previous part of the dissertation presented DHPL, the dynamic lexical structure.
This part presents the learning algorithm itself: Chapter 5 describes the entire learning
scheme, and the various steps taken at each situation. Chapter 6 focusses on one step
in that scheme: how a phrase is acquired from a single exampie.

Since the lexicon is organized as a hierarchy, and not as a flat structure, phrases can-
not be simply placed in the lexicon: they must be interconnected with other phrases in
the hierarchy at the appropriate level of generality. Furthermore, since input examples
are given in terms of specific phrases only, phrases must be propagated up and down
the hierarchy, starting at the bottom level.

In this chapter we describe a learning algorithm, which is based on two existing
machine-learning models: learning in a version space [Mitchell82], and learning by
accumulating specific episodes in a dynamic memory [Kolodner84, Schank82]. The
input required by the algorithm is a sequence of specific episodes, or training exam-
ples, from which lexical entries at various levels in the hierarchy are generalized and
specialized.

79

5.1 INTRODUCTION

Traditionally, the lexicon has been viewed as a flar list of lexical entries. Recently,
however [Jacobs85b, Langacker86], hierarchy has emerged as a method for organiz-
ing lexical information. Through the hierarchical representation, linguistic knowledge
ranging form general grammar rules, to specific lexical entries can be covered uni-
formly. A significant advantage of this approach is the ability to cope with incomplete
knowledge—a problem faced by any running linguistic model, as well as by humans.

Two aspects of this problem must be investigated: performance—parsing and
generation—and acquisition. In a later chapter we show how the hierarchical lexicon
facilitates performance even in conditions of incomplete knowledge: through the
hierarchy, general phrases can fill in for missing specific ones. However, how is the
lexicon generated in the first place? In this chapter we show how the hierarchy itself
is constructed dynamically, as a by-product of parsing.

5.1.1 The Linguistic Phenomenon

Four scenarios are distinguished here, according to two parameters: (a) the contents of
the program’s lexicon, and (b) the clues given by the user’s example. The entire se-
quence illustrates how the program upgrades its parsing ability as experiences are be-
ing accumulated.

(1) Neither the Entry Exists in the Lexicon, Nor is the Context Provided by the
User: Initdally, the lexicon contains no entry to cope with the new phrase to push
around.

User: Throughout their childhood,
Frank used to push Corinne around.
RINA: He moved her in circles?

Although the words push and around exist in the lexicon, the entire phrase push
somebody around is yet unknown. Neither does the context, established by the text
(throughout their childhood does not reveal the essence of the characters’ rela-
tionship), provide any clue. Therefore, the program cannot cope with the new phrase,
and it uses the literal interpretation of the single words: he moved her in cir-
cles?.

{(2) No Entry Exists, but an Explanatory Context is Given: While no entry exists
in the lexicon for push around, this time the context provided by the user is explana-
tory:

User: Frank, Corinne’s elder brother, pushed her around.

He asked her to make his bed against her will.
RINA: Frank made Corinne carry out a job on his behalf.

Here, due to the context provided by the user, RINA forms an initial hypothesis.
However, based on a single example, the hypothesis is not general enough (doing a
job on behalf of a second person is not the essence of the meaning).

(3) A Similar Entry Exists, and a Context is Given: Next, RINA hears a similar
phrase, to boss around.

User: Mary was hired on the same day as John, but she knew
the manager. Therefore, she used to boss around
her colleague, John.

RINA: Mary forced him to act.

At this point, RINA could identify the similarities between the two situations. Basi-
cally, RINA detected a common surface feature (the word around), and common se-
mantic features (one person uses his power to impose his will on a second person).
She constructs a generalization regarding the association between these features, and
accordingly, she conveys a more general hypothesis to the user. This hypothesis may
help the learner predict the behavior of other phrases involving the word around.
However, since there are phrases involving around which do not have this meaning
(e.g., stick arocund, get around to it, etc.), the acquired generalized phrase
must carry discriminating conditions.

(4) No Context is Given, but a General Entry Exists: Next, RINA hears a third re-
lated phrase, t0 order around:

User: Doug, Linda’s younger brother,
told her to stop ordering him around.
RINA: Doug asked Linda to stop forcing him to act?

Like the first scenario, neither: (a), the phrase order somebody around is encoded
explicitly in the lexicon, nor (b), any explanatory context is provided by the user.

81

However, in absence of specific knowledge for parsing the new phrase, RINA applies
here the general phrase acquired previously. RINA’s hypothesis is not guaranteed to
be correct, yet it enables the formation of a hypothesis regarding the unknown phrase.

Notice how learning improved the performance of the program.

. Before learning, RINA was not able to parse push around (without an expla-
natory context).
. After learning, even in conditions of minimal context, RINA could parse sen-

tences which include, not only the phrase itself, but an entire set of similar phrases.

5.1.2 The Issues
Five issues must be addressed in acquiring such a hierarchical lexicon.

Determining Scope and Variability: The syntactic pattern of a new phrase is ex-
tracted initially from a single sentence.

Frank used to push Corinne around,

From that sentence, the program must determine scope and the variability of the pat-
tern. However, the unknown pattern could take on many forms.

Frank pushed Corinne

X:person push:verb Y:person

¥:person push:verb Y:person arcund

X:person use:verb to push:verb Y:person around

Which one of the forms above is appropriate as the phrase pattern?

Forming the Meaning: The meaning of the phrase is extracted form the context.
However, the context includes many concepts, some appropriate, and some inap-
propriate for meaning formation. Thus, based on the given context of Frank and
Corinne, what is the meaning of push around?

Generalization: From the first example, RINA extracted a narrow meaning:

RINA: Frank made Corinne carry ocut a job on his behalf.

By hearing a second example, RINA was able to generalize the meaning:

82

RINA: Mary forced John to act against his will.

This meaning pertains to general interpersonal relationships (power, authority) and
can cover more situations in which the phrase may appear. (1) How can a generaliza-
tion be formed across two apparently distinct situations (family feud vs. problems at
the working place)? (2) How far should generalization be pursued without causing
overgeneralizing {(e.g., here is an overgeneralization: Frank did something nega-
tive to Corinne)?

Specialization: A new phrase order around is encountered without an explanatory
context. Yet, although a specific lexical entry for that phrase does not exist, the phrase
can be analyzed by a generalized phrase. How is generalized knowledge applied in
coping with gaps in specific knowledge?

Phrase Disambiguation: Even when all the necessary information exist in the lexi-
con, parsing is not without problems. Consider the following pair of sentences:

Mary and John were ice skating in circles.
He was pushing her around.
John atcted bossy with Mary. He was always pushing her around.

Since two phrases exist for push . around, the program must select the appropriate
one in each case. Individual lexical entries must provide the sufficient conditions for
phrase discrimination.

5.1.3 The Approach

The phrasal lexicon {Becker75, Wilensky81, Fillmore87] contains not only single
words (e.g., around), rather it contains entire phrasal entries (e.g., to get around
to it, to stick around, around the clock, around S5pm). The phrasal ap-
proach has proved effective in parsing [Wilks75] and in generation [Jacobs85b]. Yet
the basic dilemma regarding inclusion of phrases in the lexicon is unresolved. Which
linguistic elements belong in the phrasal lexicon, and which elements do not? On the
one hand, productive phrases such as John gave Mary the spoon, Of Mary went
to school, should not reside in the lexicon, lest the lexicon will get oversized. On
the other hand, non-productive phrases such as the big apple, Or to throw the
book at somebody must reside in the lexicon. Their meanings cannot be derived

83

from their constituents. However, there is a gray area which includes phrases such as
stick around, hang around, and sit around, for whom the inclusion question is
unclear. These phrases are non-productive, since their meanings cannot be simply
derived from the single words. Thus, they must be included. However, they all share
semantic and syntactic features, thus they should not all be included as separate en-
tries. Therefore in our model, such groups of phrases are clustered into generalized
phrases, which represent their shared features. Such generalized phrases serve in
predicting meanings of similar combinations even before they have been encountered.

The hierarchical representation facilitates learning as a continuous process of
knowledge refinement. Two approaches have been integrated in our model. Using
Mitchell’s method [Mitchell82] we view the lexicon as a version space of rules. Since
phrases are organized in a hierarchy by generalization, then both parsing and learning
require determining location of phrases in that hierarchy. Kolodner [Kolodner84], on
the other hand, has shown how learning is accomplished by organizing episodes in a
dynamic memory. In our model, the lexical hierarchy itself is dynamic and nodes at
all levels of generality are updated by receiving instance episodes at the bottom of the
hierarchy.

84

5.2 REPRESENTING THE CONTEXT

The context is represented as a goal-plan situation at two levels: specific planning, and

abstract planning.

Specific Planning Knowledge: Planning knowledge in each domain consists of
goals—and acts which implement those goals. For example, consider the paragraph:

Frank needed to clean up his room.
Corinne made his bed for him.

The events underlying the sentence are given in the following plan box [Schank77].

/

\
subgoal

GO:

goal-of

frank.37

G3:

G2:

Gl:

\

implement

corinne.25

act-by

Al

Figure 5.1: The Specific Plan Box

Making the bed (G1), wiping the floor (G2), clearing the desk (G3), are all subgoals
for cleaning one’s room (GO). In this case, although GO is a goal of Frank, Act Al

which implements G1 is executed by Corinne.

835

Abstract Planning Knowledge: Many specific plan boxes are required in covering
planning situations across domains. In contrast, a relatively small set of abstract plan-
ning structures [Wilensky83] (e.g., goal-conflict, goal-competition, goal-concordance,
plan agency, etc.), and relations (authority, power, friendship) can cover situations
across all domains. In our example, due to the power relationship between characters
X and Y, X causes Y execute an act A on X’s behalf. This is shown in figure 5.2
below.

G3: .
[frank.37 | G0:<G2: —{corinne.25]
Gl1: —
plan-agency Al

authority
power

friendship

Figure 5.2: An Abstract Goal Situation

Corinne serves as a plan agent in executing a plan for Frank. Her motivation is nei-
ther (a) an authority relationship (Frank is not an authority for Corinne), nor (b) a
friendship with Frank, but (c) the power relationship (due to his Frank’s age). The
abstract planning elements are used here to expiain the planning situation. Planning
knowledge at these two levels provide the semantics for lexical representation.

86

5.3 THE LEXICON

As explained in Chapter 3, the phrasal lexicon is specified in two ways: by the con-
tents of single lexical entries, and by the structure of the entire lexicon.

Single-Phrase Representation: A lexical entry, or a phrase, is a triple associating a
linguistic pattern with its concept and a presupposition. For example compare the
following sentences:

(1) John sat three days working on his thesis.

(2) John sat around three days working on his thesis.

What is the difference between their meanings, and what is the value added by the
modifier around? The phrase to sit around is represented as a triple:

pattern: X:person sit around
presupposition: X dedicates time to an act P
concept: the execution of P i3 a waste of time

Sentence (2), then, is parsed in three steps using the lexical phrase:

(1) The pattern is matched successfully against the text. Consequently, X is
bound to the person called John.

(2) The presupposition is unified with the current context. In this case the
variable P is taken by the context as the Ph.D work.

3) Since both (1) and (2) are successful, then the pattern itself is instantiated,
adding to the context: working on the Ph.D wasted John's time (which
disabled execution of other acts by John).

Generalized Phrases: However, the representation given above for hang around is
not satisfactory when considering two other similar phrases:

John used to stick around for hours.

John hung around, waiting for his girlfriend.

The lexicon cannot simply enumerate all word combinations. There must be a more
general entry to account for all the phrases of the from "verb around" which convey
this particular sense.

paittern: X:person V:act around

87

presupposition: V is an act of staying in location L
for a period of time
concept: staying in L disables execution of other acts by X

This entry captures an entire set of such phrases. The presupposition part is used to
discriminate phrases such as hang around, and stick around from phrases such as
push somebody around and boss somebody around, by detecting necessary condi-
tions in the context.

The Global Hierarchy: A hierarchy is defined, to accommodate for phrases at all
levels of generality.

P 0 verb-modifier

| _

P2 around P1 away P3 over
\\
P6 "idle” P7 "dominate"
\\ \\
P1- hang P8 push
P12 stick P9 boss
P13 sit P10 order

Figure 5.3: The Hierarchy for Verb-Modifiers

(The names of the nodes in this scheme are for reference only.) Phrases in this hierar-
chy are all given uniformly as partern-concept-presupposition triples. For example,
P13 (sit) is the phrase for sit around, and P6 ("idle") is the phrase encompassing a
set of v around phrases. Specific phrases, traditionally called "lexical rules”, reside
near the bottom. General phrase, or "grammar rules”, reside at the top. P2 (around),
for example, maintains general knowledge about the behavior of that modifier.

88

5.4 THE ALGORITHM

The learning algorithm accepts as input a sequence of episodes, from which it gen-
erates a subtree of phrases. The hierarchy before and after learning is given schemati-

cally below, where subtree T4 is the element added to the lexicon by learning.

PO

™~

P4

T

P5

T2

|
Pm P2 (around)

P6

T3

PO

I \
P1 P2

~

P4

T

PS5

T2

PB\PT

Figure 5.4: The Hierarchy Before and After

The process itself is shown schematically through a sequence of snapshots.

P2(around)

P2

P8

T

E1

P2

\PT
AN

P2

P1

/

AN

P7

0P

\

[E2

E1

E3

E2

B

Figure 5.5: Four Snapshots in the Sequence

89

M

)
3)

4)

Initiaily, the subtree includes only a the general node P2 (which stands for
the modifier around).

Node P8 is extracted from episode El.
Node P9 is extracted from episode E2. However, P7 is generalized by
detecting the similarities between E1 and E2,

E3 is not informative enough for extraction of a node. However, node P10
can be specialized from the general node P7.

Thus, a subtree is added under P2. The specifications of the algorithm are given
below. The given information is:

1)

)

3

An initial hierarchy. This hierarchy is not sufficiently developed, so pars-
ing of certain sentences might faii.

A sequence of episodes. An episode is a paragraph embedding a new
phrase in an explanatory context.

The semantics of the context. Semantic knowledge is given in terms of
planning knowledge.

The objective is to refine the initial hierarchy. By adding on additional nodes, or by
specializing and generalizing existing nodes, the new hierarchy should facilitate pars-
ing of sentences on which the initial hierarchy has failed. The three basic steps of the
algorithm are explained in regard to the sequence of scenarios in section 1.1.

5.4.1 Extracting a Phrase from a Single Example

Two simultaneous actions are involved in acquiring an unknown phrase from a train-
ing example (Frank pushed his younger sister around).

o))
05

The pattern is extracted from the input sentence.

The meaning (both concept and presupposition) is extracted from the
given context.

(1) Forming the Pattern

Two problems arise in pattern formation: determining the scope and determining the
variability of the new pattern.

Determining the scope: Since the input sentence includes not only the bare phrase it-
self, but some additional elements, it is necessary to determine which elements in the
sentence should be included in the pattern and which ones should be excluded. For
example, the sentence under consideration contains two modifiers:

Throughout their childhood, Frank used to push Corinne around

While throughout their childhood is excluded, around is taken as a part of the
new phrase. The reason is that throughout their childhood can be interpreted
successfully by the parser in any context. It does not cause a parsing failure. Howev-
er, around does cause a parsing failure: "Frank moved Corinne around something"?
Thus, the pattern is scoped as follows:

X:person push Y:person arocund

Determining variability: In converting an instance sentence into a general pattern,
each element in the new pattern either becomes a variable, or it remains as a literal. In
the conversion above, both Frank and Corinne were taken as generalized references
to persons, X and Y. Accordingly, it appears that the rule was:

References to persons and to objects are converted into vari-
ables.

However, this ruie is refuted by examples such as:

(1) Admiral Nellson went to Davey Jones’ locker.
(2) He kicked the bucket in Trafalgar.

In these idioms, the marked references are taken as literals and not as variables, in
violation of the rule above. Thus, the rule must be refined:

References which can be resolved in the context are converted
into variables. References which cannot be resolved in the con-
text are kept as literals.

91

Further strategies for pattern formation are described elsewhere [Zernik85a).

(2) Forming the Meaning

Initially, the program focuses at the level of specific plans.

G (cleaning the room) is goal ofX (Frank).
P {making the bed) is a plan for G.
P is carried out byY (Corinne).

The meaning captured at this level is: X carried out a job on Y’s behalf. Consequent-
ly, the acquired phrase is:

pattern: X:person <push arcund> Y:person
presupposition P is a plan for G
concept: Y is a plan agent in executing plan P for X

P8: The Specific Phrase for push around

However, many situations in which push around may be applied, are not included in
P8’s definition. Thus, P8 must be generalized.

5.4.2 Generalizing from Two Examples

The second scenario, Mary bossed her colleague around, does not share the
specific features with the first example. Syntactically: the verb is boss and not
push. Semantically: John did not carry out a job in Mary’s behalf. Thus both the
pattern and the meaning must be generalized.

The pattern is generalized as the verb becomes a variable. The meaning is generalized
when specific planning elements are replaced by abstract planning structures which
are shared by both episodes: Mary used her power (and not an authority), and Frank
used his power to make Corinne act against her will. Therefore, the resulting phrases
is:

pattern: X:person <V:act around> Y:person
presupposition: X presents a power for Y
concept: X causesa Y to act against X's will

92

P7: The Generalized Phrase for "dominating"

Notice that although the general phrase P7 was generated, the specific phrases P8 and
P9 have not been eliminated. Specific information is maintained even though it is sub-
sumed by more general information.

5.4.3 Specializing a General Phrase

A specific phrase does not exist for order around in the fourth scenario. However,
the sentence is parsed by using the generalized phrase P7. P7 is matched successfully
in the episode E3, since:

(1) The syntactic pattern of P7 matches the input sentence (the form is X Verbed
Y around).

2 The semantic presupposition matches the input context (X presents a power to
Y).

The specific phrase P10 (for order around) is added on to the lexicon, although it is
subsumed by P7. For one thing, specific phrases enrich the program’s vocabulary. In
text generation they enabie production of sentences which include specific variants of
generalized phrases.

5.5 PREVIOUS WORK IN LANGUAGE ACQUISITION

Two previous models of language acquisition are related to our work. Granger’s pro-
gram FOUL-UP (Granger77], which acquired word meanings, and Pinker’s model
[Pinker84] which acquired language syntax.

FOUL-UP was devised as a mechanism for extending SAM’s [Cullingford78] lexicon
while performing conceptual analysis. SAM constructed meanings for English sen-
tences by a two-step cycle: (a) select a script, and (b) instantiate the script. For exam-
ple the following text:

John’s baby caught a cold. He called up his doctor,
and made an appointment for the next morning.

The nurse toock his temperature, and it was 106 degrees.
She realized immediately that he needed to be raggled.

93

involves the $clinic script, which stands for a chain of events associated with a visit to
the family doctor. Thus, the combination of child-being-sick followed by call-up-a-
doctor causes the selection of $clinic. Once this script is selected, references and
events can be readily resolved. Made an appointment for example is taken as a
standard $clinic event. The nurse is bound to a designated roie-holder in the script,
and take his temperature also matches an anticipated action while in the clinic.
The reference his (in his temperature) is bound to John’s baby (and not to John)
since the baby holds the role of the parient in $clinic. FOUL-UP is activated by SAM
at the point that the word raggled is encountered, a word which does not appear in
SAM’s lexicon. By knowing the rest of the possible events and the possible out-
comes of $clinic, FOUL-UP can predict that to be raggled means to taken to the
hospital. FOUL-UP learned lexical entries assuming that the new single word ap-
peared in the context of a script, and that the meaning of the word could be drawn
from that script. FOUL-UP did not handle syntax acquisition, nor multi-word
phrases.

Pinker [Pinker84] modeled child language acquisition, covering phenomena ranging
from basic phrase structure identification to mastering phrase interaction—the issue be-
ing addressed here. Phrase interaction, or complementation, is restricted by two sub-
stantive constraints:

(a) The argument which might be missing in the complement is always the subject
(e.g.: in John persuaded Mary to leave, the subject of the verb leave is
not explicit in the text).

(b) The missing argument is equated with either one of:

0} an object of the controlling verb (persuade in the example above), if
an object exists (which is the case in the example),

(2) The subject of the controlling verb if the object does not exist (as in

John asked to go).
This pattern of behavior holds for virtually all complement-taking English verbs.
Nonetheless there are some exceptions such as promise in John promised Mary to
go, OF make in John made Mary a fine husband. Such exceptions, although small
in number, are significant since they could be used for testing the power of language-
learning theories. If such exceptions did not exist, the learning of verb complementa-

94

tion would be trivial. Indeed this behavior (of promise) accounts for errors in
children’s language, as recorded by Carol Chomsky [Chomsky69] (as in Jenny’s
father promised her to go to Disneyland meaning he promised her that
she would go there). At this point, an example in context (in which it is clear that
the father is supposed to go) can correct such a hypothesis.

RINA draws from both these approaches. RINA's acquisition of lexical items con-
cerns the mapping between syntactic patterns and their semantic concepts. However,
Granger’s model was restricted to single words and simple script-like contexts.
RINA also addresses issues such as control and complementation. However, in our
view, behavior of verbs reflects their semantics, and it is not just an arbitrary parame-
ter which needs to be acquired to distinguish promise from persuade. Concepts
representing such verbs must account for two facts. The verb means that (1) one party
conveyed fact to a second party, and (2) each individual verb denotes a different
speech act performed by conveying that fact. Thus learning the special syntax of
promise is a by-product of understanding what promise means.

Pinker presupposes the existence of certain innate learning procedures. In his model,
each language feature is accounted for by a custom-tailored procedure. For example,
in learning the control aspect of complement-taking verbs, Pinker assumes this preex-
isting rule (Rule C3):

Add to the lexical entry of the complement-taking predicate the equa-
tion X-COMP’s SUBJ = (FUNCTION) where (FUNCTION) is the
grammatical function annotated to the matrix argument that is coin-
dexed with the missing complement subject in the contextually inferred
semantic representation. ([Pinker84] pp. 213).

Pinker has chosen Lexical-Functional Grammar (LFG) [Bresnan82a]

as his linguistic framework. While LFG intends to denote a variety of linguistic
phenomena, the rule C3 talks abour LFG notation, but it certainly is not expounded in
LFG terms. Moreover, if a language-learning program requires such a specific pro-
cedural rule for each language feature, then the purpose of modeling learning in the
first place is defeated. Learning must be handled by a general declarative mechanism.
In fact, the same unification mechanism which accounts for parsing and generation,
should account also for learning.

95

5.6 CONCLUSIONS

Although the lexicon includes both specific and general phrases, the algorithm which
constructs the hierarchy requires as input only specific episodes. This reflects human
learning behavior. When communicating, peopie do not exchange syntax and seman-
tics in form of rules, rather they communicate in terms of specific examples in con-
text.

Accordingly we have shown a learning algorithm which augments a hierarchical lexi-
con as follows:

(1) A partial initial lexicon is given.
(2) The input is a sequence of specific examples.

3 The result is an augmented lexicon.
The initial lexicon can be augmented by new specific prases. It can also be enhanced

by generalization and specialization of existing entries. As a result of learning, the
system can parse sentences it initially could not parse.

96

Chapter 6:
Learning Idioms —
With and Without Explanation

The previous chapter presented the entire learning scheme, in which the basic task
was learning phrases from examples. Two cases were described. On the one hand,
when multiple episodes exist to exemplify a phrase, the phrase is generalized from the
set of input examples by detecting structural similarities. On the other hand, when a
phrase is first encountered, only a single example exists, the methods above fail. We
must address alternative methods, which are not based on comparing similarities
among multiple examples.

Modeling learning in any domain can be pursued in two directions: either by finding
the domain-specific heuristics, or by applying general machine-learning methods. In
the linguistic domain, programs such as FOULUP and CHILD [Granger77, Sel-
fridge80] have used specific heuristics, regardless of the general learning methodolo-
gy; other programs [Reeker76, Anderson77, Langley82, DeJong86] have focussed on
the general learning methodology. In our particular task, learning idioms from exam-
ples, the evaluation of general learning models is very appealing, since such methods
have been studied extensively, and may offer ready solutions.

Language is a special domain in regard to learning. Consider for example behavior of

idioms. By definition, idiosyncratic properties are not systematic, and are not predict-
able. Thus, how do people learn such properties from examples? What is the general

97

learning model then, which accounts for idiom acquisition?

6.1 INTRODUCTION

Although idioms are pervasive in human communication, especially in spoken
language, their irregular behavior has not been investigated systematically. Idioms are
interesting since they provide singular points by which linguistic theories and
machine leamning theories should be evaluated. Here is a puzzling phenomenon
[Katz63, Chafe68, Dong71, Jacobs85a], which has not been explained so far:

1) In 1977, Israel and Egypt resolved their long conflict.
The hatchet had been buried.

) Finally the patient succumbed.
The bucket had been kicked.

These two phrases (kick the bucket and bury the hatchet) behave differently
with respect to the passive voice. While the first paragraph is generally acceptable to
native English speakers, the second one sounds awkward. This behavior is surprising
(and unpredictable in computer-program terms) since this pair of phrases are structur-
ally similar. We investigate this idiosyncratic property in terms of its acquisition.
This behavior is significant because it sheds light on the otherwise hidden language-
acquisition processes, and illuminate the role of metaphor.

Metaphors provide learners with the information necessary for explaining the nature
of idioms. When encountering an idiomatic phrase, people seek for the clues which
would make it less arbitrary. However, a metaphor might be obscure, at least from
the view of a learner, and thus an explanation cannot always be constructed. Regard-
ing this problem, the questions we consider are: (a) can people learn an idiom even
when its metaphor is not accessible? (what is the metaphor underlying kick the
bucket?) (b) what is the impact of the metaphor on the use of idioms?

6.1.1 The Passive-Voice Anomaly

Consider the two phrases introduced in sentences (1) and (2). Why can the phrase
kick the bucket not take the passive voice? Are there other such phrases? In fact,
there are: put one’s foot down, for example, cannot appear in the passive (his
foot was put down does not convey the meaning of the idiom). How do language

98

learners predict for each new phrase, its behavior, whether it takes the passive voice
or not? There must be a rule for supporting this prediction.

Traditionally, linguistic systems [Fraser70] accounted for this phenomenon by includ-
ing arbitrary syntactic restrictions in the lexicon. Accordingly, lexical entries includ-
ed explicit clauses to inhibit the passive voice.

pattern: kick the bucket pattern: bury the hatchet
pasaive: notpossible passive: possible

We argue against the. inclusion of such arbitrary structural restrictions, and seek a
more substantial solution, in which metaphor accounts for idiom behavior.

Compare the metaphors underlying our pair of idioms. On the one hand, in bury the
hatchet, learners assume that hatchet stands for a generic war implement, whose
disposal ends a war (similarly, the poet buried her pen could mean that she
stopped writing poetry). Some learners can imagine a remote culture in which burying
a hatchet is a ceremonial act in signing a peace treaty. On the other hand, no such
metaphor could be found for kick the bucket. Learners cannot come up with an
explanation as to why the words kick and bucket really mean "to die".

Discourse analysis concemns why people phrase utterances the way they do. Sandy
Thompson [Thompson87] gives a detailed account of people’s use of the passive
voice. She concludes that the passive voice is not just an arbitrary feature, but it is a
device for accomplishing certain communication goals, such as placing the discourse
topic at the beginning of the sentence. In light of this fact, consider the semantic
structure of our idioms. Although the reference the hatchet does not stand for any
concrete knife, it symbolically refers to the enablement of a fight between two parties.
In contrast, the bucket is merely a literal. It does not refer to any object in the con-
text. In the lexicon this difference is denoted as follows:

3 X:person bury:verb <Y:the hatchet>

(4) X:person kick:verb <the bucket>

The marked object in (4) is merely a literal. The marked object in (3) also specifies
the surface appearance of the reference. But in addition, it has a variable which can be
bound to a concept. Accordingly, a discourse structure can be conceived, in which Y,

the concept associated with the hatchet, is the topic (as I tried to show in example
(1) above), and consequently a communication goal exists for a speaker to apply the
passive voice. However, no context can possibly be conceived in which the bucket
refers to a topic—since it is merely a literal.

In conclusion, it turns out that the question itself, "Can a phrase take the passive
voice?" is wrong. The correct question should be: “Is there any discourse structure, in
which the phrase should appear in the passive?”. The phenomenon is interesting in
terms of machine learning, since it enables us to examine learning concepts with and
without explanation, and to show how the availability of explanation (or a metaphor)
makes a difference in applying the acquired concepts.

6.1.2 The Program Behavior

The behavior above is explained in terms of the program RINA. Here RINA en-
counters the yet unknown phrase, bury the hatchet.

User: In 1977 Israel and Egypt buried the hatchet.
RINA: They placed a hatchet under the ground?

In this scenario, since the figurative phrase does not exist in the program’s lexicon,
RINA resorts to the use of the single words bury and hatchet, thus forming a literal
interpretation. Next, the user provides the program with a clarification:

User: Iarael and Egypt were involved in a long conflict.

In 1977 they signed a peace agreement.
RINA: They buried the hatchet; they terminated the conflict.

By this clarification, RINA is able to form a hypothesis involving the elements in the
situation. Later on, RINA encounters the same phrase in a different situation:

User: Doug buried the hatchet.

RINA: He terminated a dispute with his wife.

In this case, RINA was able to parse the sentence. Thus, by receiving examples in
context, the program improved its parsing ability. Before learning, RINA failed in
parsing the phrase; after learning, RINA managed to parse the phrase.

100

6.1.3 Issues in Idiom Acquisition
Three issues must be resolved in learning idioms from examples.

Extracting the Pattern from the Sentence: The syntactic pattern of the new phrase
is extracted from the given sentence. However, since the sentence does not consist
only of the phrase itself, the program must determine the scope and the variability of
the new pattern. There are many ways the pattern can be extracted:

X buried the hatchet - not generalizing the verb

X bury Z:phys-object - allowing any physical object
In 1977 X bury the hatchet - requiring the complement

X and Y bury the hatchet - requiring conjunction

Which elements belong in the pattern, and to what extent should they be generalized?

Extracting the Meaning from the Context: The meaning of the new phrase is ex-
racted from the context. However the context contains only a specific episode. Does
bury the hatchet pertain only to "signing a treaty” or can it be applied in other si-
tuations (such as a family dispute) by generalizing the meaning?

Forming an Explanation: We have described independently acquisition of two
separate entities: the pattern and the meaning. However, is their association arbitrary?
Is there any significance to the words of the pattera in relation to the meaning? Would
a different wording, for instance they buried the poodle, produce the same learn-
ing behavior?

6.2 THREE MACHINE-LEARNING PARADIGMS

What is the method by which a model can predict linguistic properties of idioms
(do/do-not take the passive voice) as well as their meanings, by being given a small
number of examples? Three machine learning paradigms are considered.

In learning by rote, an idiom is copied as a chunk. However, this treatment is unac-
ceptable since: (a) idioms must be generalized semantically to be applicable in a
variety of situations, different from the original one, (b) as shown by examples (1)
and (2), idioms, possess their own internal grammar [Fillmore87], which must also be

101

acquired. Thus idioms cannot be acquired merely as "extended words".

In similarity-based learning (SBL), by being given a sufficiently large ensemble of
examples, the model acquires surface features which are shared by a number of in-
stances. There is no justification as to why a feature is acquired. This approach raises
three problems: (a) humans are able to acquire idioms from few, or even from a single
example, (b) humans do not require negative examples (e.g., "the bucket was
kicked is incorrect™), and (c) humans do not acquire spurious features. Imagine two
coincidental instances such as In 1977, X buried the hatchet, and in 1977, ¥
buried the hatchet. Humans are not thrown off by this coocurrence, while an SBL
model would assume that In 1977 is a mandatory part of the phrase. Similarly, the
appearance of a phrase in the past tense could be taken as a mandatory property by an
SBL model.

Explanation-based learning (EBL) remedies these problems by acquiring only
features whose appearance can be justified. Spurious similarities are thus ruled out,
and significant features can be acquired from a single example. However, this method
requires existence of perfect explanatory information, whereas humans are required to
learn certain phenomena even without explanatory information. For example, from the
learner’s point of view, there is no explanation (metaphor) for the idiom kick the
bucket. What is then the reason that the sequence of words kick, the, and bucket
means "to die"? Unfortunately—for language learners— many such linguistic phenome-
na appear arbitrary.

In our model, explanation is a by-product of hypothesis formation, and accordingly,
the existence of a metaphor determines the quality of the explanation. Thus, three
questions must be answered:

. How is an explanation constructed for an idiom?
. To what extent can idioms be explained?
. How does explanation effect idiom application in speech?

So far, only Pazzani [Pazzani86] and Lebowitz [Lebowitz86] have suggested models
for learning in varying states of explanatory knowledge.

102

6.3 KNOWLEDGE REPRESENTATION

Explanation-based learning depends critically on contextual knowledge and its
representation. The context in our model is given in terms of two types of planning
knowledge: abstract, and specific planning situations.

Abstract Planning Knowledge: Abstract goal situations [Wilensky83], such as
goal-conflict, goal-competition, goal-concordance, etc., apply across many domains.
In particular consider the situation under analysis:

X

active
goal-conflict

04

active plan

Figure 6.1: The Conflict Situation and Four Options

Two parties, X and Y are related by a goal competition situation (GC). There are four
options for this situation to develop: (O1) X and Y fight, (02) X and Y negotiate,
(03) X give up, (04) Y give up. In our case, X and Y have been engaged in a fight

(option O1). The sentence “they signed a peace treaty” implies that the parties have
abandoned O1 for O2.

103

Specific Planning Knowledge: Specific goals in a certain domain can be accom-
plished by specific plans. For example, consider the following set of specific plans,
all involving fights at various situations.)

name party tool goal
1 dog-fight aircraft cannon shoot down
C 2 nation-fight nation person kill)
3 family-dispute person dish intimidate
4 street-fight person knife inflict wound

Figure 6.2: Specific Plan Boxes

These plans encode conditions and alternative options for fights between two parties,
according to the type of the fight. For example, in a domestic fight, the combatants are
is supposed to attack each other verbally, or maybe throw dishes. In a fight between
nations, the parties may use people and weapons in order to kill people. In a street
fight, the parties typically use fists or knives in order to wound each other. Maintain-
ing specific plans in many domains is a difficult problem in knowledge representation.
Here we assume that all knowledge required for learning is given.

The Metaphor: Two domains, the primary domain, and the metaphor, are brought to
bear in understanding the following sentence (assuming that the idiom is yet unk-
nown):

After a long conflict, Israel and Egypt buried the hatchet.

On the one hand, there is knowledge of the political situation between Israel and
Egypt—a conflict which is being resolved by negotiations. The phrase itself has bee
applied in this primary domain; by understanding the sentence, a reader augments
his/her knowledge of this domain. On the other hand, there is knowledge of violent
fights in general, and the fact that a knife is a tool in a street fight in particular. This
domain is not under focus in reading the sentence above, and it must deliberately be

104

accessed. This domain is called the metaphor. 1t is the structural similarities between
these two domains that facilitate learning of the new idiom.

Lakoff and Johnson [Lakoff80] have investigated the role of metaphor in human
thought. In their analysis, complex situations are understood through mappings to
other weil-known situations. So, for example, due to the existence of the war meta-
phor, an argument between two people can be talked of metaphorically as a war. The
thrust of Lakoff and Johnson’s effort was in showing how a large number of novel si-
tuations can be understood via a set of such mappings.

In contrast to our approach [Schank77, Dyer83, Wilensky83, Gentner83], in which
analysis is based on structural similarities of the underlying representation, in Lakoff
and Johnson’s model, the mappings between pairs of situations are direct. This aspect
is problematic computationally, since it requires the proliferation of metaphoric con-
nections. Moreover, how is a mapping in that model constructed in the first place?

6.4 THE ALGORITHM

A phrase is an association of a syntactic partern with a conceptual meaning [Wilen-
sky80]. Accordingly, learning is defined as formation of pattern-concept associations
(unlike other systems [Mitchell86, DeJong86, Lebowitz86] which acquire concepts in
general). The learning algorithm is provided with two knowledge sources: (2) linguis-
tic knowledge and (b) world knowledge.

The lexicon: A partial lexicon is assumed to be given, including the single words
and the phrases involved in the input text—except for the phrase under
construction.

105

World knowledge: The representation of the explanatory context is assumed ac-
cessible to the program. This includes knowledge about the specific
domain as well as planning knowledge in general.

context sentence

| [
extraction extraction

explanation

Cooncent), e (Cpittern)

Figure 6.3: The Learning Algorithm

The algorithm takes as input (a) the sentence provided by the user, and (b) the expla-
natory context. The inductive leap in learning involves (a) the extraction of the pattern
from the context, and (b) the extraction of the concept from the context. Explanation
provides the association between the two acquired elements, and supports both steps
(1) and (2). The construction of the explanation is not a process on its own*, as in
[Mitchell86] rather it is a by-product of learning. Moreover, expianation cannot al-
ways be constructed. In fact, the point of this paper is to compare cases where expla-
nation can and cannot be constructed.

6.5 THE PROCESS MODEL

Next, we show the steps in learning bury the hatchet from an explanatory context,
as shown in Secton 6.1.2.

Detecting a Discrepancy: The acquisition of a new phrase is initiated only if there is
no other valid interpretation for the sentence. There is an interpretation for the input
sentence In 1977, Israel and Egypt buried the hatchet, based on the single
words.

* To avoid confusion, notice that "explanation” is used here to denote a static object, and not a process.

106

pattern: X:person bury Y:phys-cbj
concept: X ptrans Y, causing Y to be under the ground

While syntactically intact, this interpretation, which amounts to "in 1977 they put a
hatchet under the ground”, fails on semantic grounds. Burying a hatchet does not re-
late to the given goal-plan situation. In fact, the program detects a near miss [Wins-
ton72]. The buried object is not some arbitrary physical object, but it is a fighting
tool-albeit for a different kind of fight. Thus, a new hypothesis must be formed.

Extracting a Phrase Pattern: Four discrepancy-driven strategies are employed in
this case, where the general intuition is to maintain frozen elements which cause pars-
ing failures, and to generalize elements which can be explained by the parser. An il-
lustrative example is in learning the phrase Admiral Nelson went to Davey
Jones’ locker, which includes two references. Nelson is variabilized (turned from
a literal into a variable), since a person by that name is accessible to the learner, but
the reference pavey Jonea’ locker is taken as a literal since no referent can be
found in he context (who is Davey Jones?).

(1) The modifier 1n 1977 is excluded altogether as it is matched by an exist-
ing lexical phrase, and it is taken as a standard modifier (the prepositional
phrase In T:year exists as a lexical phrase which is taken as a time
modifier.

(2) Both Israel and Egypt can both be resolved in the context, and there-
fore, these names are variabilized.

(3) The conjunction itself is not taken as a mandatory element. Conjunction
is explained by the context, since Israel and Egypt are both linked by the
goal-conflict situation. Thus, the reference becomes:

<Israel and Egypt> =--> <N:nation>

(4) In contrast, the reference the hatchet cannot be resolved, and hen-
ceforth it is maintained as a literal:

<the hatchet> --> <the hatchet>

Clearly, this process depends on the actual contents of the lexicon (In T:year exists
in the lexicon) and actual world knowledge (in a different culture, where hatchets

107

serve in inter-nation wars, burying a hatchet could be taken as a concrete act). In this
particular state of knowledge the new formed pattern is:

X:nation bury:verb the hatchet

Extracting a Phrase Meaning: The meaning is constructed by parsing the user’s
clarification:

Israel and Egypt had been involved in a bloody conflict.
In 1977, they signed a peace treaty.

The first sentence establishes the goal-conflict situation (GC) between Israel and
Egypt (I&E), which is being pursued in a fight (O1). The second sentence is taken as
a switch from O1 to O2 (negotiate). Thus, the meaning is taken as:

goal conflict (GC) exist between Israel and Egypt (I&E)
I&E quit the fight

At this point, the new phrase has a pattern and a meaning:

* pattern: <N:nation> bury <H: the hatchet>
meaning : N is involved in a conflict C
N quits fight F

In contrast to the variable N which is bound to a concept in the meaning, the variable
H is unbound. No hatchet was found in the context, and as explained previously, H is
bound to an element in the metaphor.

The Explanation: The explanation maintained by a phrase connects the phrase con-
cept to the phrase partern. This is only a "connection” and not a "proof”, since by
their nature, metaphors do not fully account for meanings of idioms. In our example,
four clauses are used in the explanation, obtained by the idiom metaphor:

(1) I&E bury hatchet H % the sentence itself
2y if X bury Y
and Y is a tool
=w=> X disenable-use of Y % generalizing "bury”
(3) hatchet H ===> war-implement H % generalizing "hatchet™
(ay if X disenable-use of implement I for plan P
% an inference rule

108

and X executing plan P
===> ¥ intend to quit plan P

These four given clauses interact in the following sequence:

{5} =---> I&E disenable-~use of hatchet H

% by (1) and (2)
(6) ==-> I&E disenable-use of war-implement H

% by (5) and (3)
(7) =---> I&E intend to quit fight P

% by (8) and (4)

Proposition (7) matches the meaning of the phrase, and is maintained as a clause in
the phrase.

pattern : <N:nation> bury <H: the hatchet>
meaning : N is involved in a conflict €. N quits fight F
explanation

-==> I&E disenable-use of hatchet H
-==> I%E disenable-use of war-implement H
-«=> I&E intend to quit fight F

Consequently, the variable H in the pattern gets its binding in the explanation clause.

6.6 LEARNING WITHOUT EXPLANATION

In learning kick the bucket, no such explanation exists. The pattern and the mean-
ing are both extracted, but the metaphor which could provide an explanation, remains
obscure. The constructed phrase is:

pattern: <Pl:agent> kick <P2: the bucket>
concept: P1 die

The reference P2 is not associated with any concept, since a bucket cannot be found
either in the context (there is mention of a bucket in previous discourse), or in the ex-

planation (since the explanation does not exist)

In a different learning situation an explanation could be constructed for the same

109

phrase. Suppose for example the following input context:

John was standing on the bucket with a rope around his neck.
Then he kicked the bucket away, and fell toc his death.

In this case an explanation could be constructed as:

~=> X kick the bucket B

is not supported by B

is hanging from the rope R
strangles X

dies

)

|

v
-

Interestingly, second language learners, when presented with this context, are able to
generalize the phrase and even use it in the passive voice, since they have an explana-
tion.

6.7 CONCLUSIONS

We have analyzed phrase acquisition as a function of information provided to the
learner. We have identified three information sources and evaluated their contribution:

(1) Lexical entries given for the words constituting a phrase.
(2) The context underlying the utterance of a phrase.

3 Metaphors associated with the words in the phrase.
Both in parsing and in learning, meanings of word combinations are derived by using
the single words. However, in parsing meaning derivation involves simply looking
up single words in the lexicon. In learning, on the other hand, the literal derivation is
not acceptable, and the process is complicated: meaning derivation involves a search
for metaphors implied by the single words, and selection of concepts from the con-
text.

We have explained two surprising phenomena:

(1 How can a phrase be learned from a single example? To that end, we have
shown strategies for concept extraction which rely on linguistic clues and
on existing metaphors.

2) How can a phrase be learned even when a metaphor does not exist (xick
the bucket)? The same learning strategies as in (1) are applied with and

110

without a metaphor.
However, when a metaphor does not exist, the association between the pattern and the
meaning remains unexplained. The phrase cannot be used in a general way, and its ap-
plication is limited.

111

Part III:
Parsing for Learning

112

Chapter 7:

Performing in the Presence
of Incomplete

Lexical Knowledge

In the previous part of the dissertation we described the learning algorithm. In
describing learning we assumed that the learning algorithm is provided with a set of
discrepancies which are used for upgrading a hypothesis. However, how are these
discrepancies detected, and how is the text processed in the first place in the presence
of lexcal gaps? Since learning is based on language analysis, or parsing, we investi-
gate in this part parsing in a learning system. There are three topics: In Chapter 8 we
explain how a parser can cope with lexical gaps; in Chaper 9 we describe the monitor-
ing mechanism; and in Chapter 10 we analyze the relation between syntax and seman-
tics.

7.1. INTRODUCTION

How can humans cope with lexical gaps? It turns out that humans are able to con-
struct meanings of novel elements by finding analogies with existing elements. Thus,
when a specific lexical concept is required, but is yet unavailable, as frequently hap-
pens in second-language acquisition, learners are able to process the text by "borrow-
ing"” similar existing lexical elements. This process might lead to errors of generation

113

and comprehension, however it enables second-language speakers to convey (or
understand) at least a partial meaning, rather than give up the communication task al-
together.

We show here how a single mechanism can be applied in cases of complete as well as
incomplete knowledge. By using a hierarchical lexicon, a parser can cope with
knowledge gaps, applying knowledge at various level of generality. By their nature,
general entries are less informative than the specific ones, and their use might lead to
performance errors. Qur model explains (1) how people carry out communication
tasks in spite of incomplete knowledge, and (2) how people produce such communica-
tion errors.

7.1.1 The Linguistic Behavior

The problems arising from incomplete lexical knowledge are illustrated through the
following scenario, as they are reflected by the program RINA’s behavior. First,
RINA reads a paragraph provided by a user, in which she encounters new words.
RINA forms a hypothesis regarding the meaning of the input, and then she generates
text which conveys the state of her knowledge to the user. The first input sentence is
given below:

User: Corinne needed help with her homework.
Frank called and plended her to come over.

The word piend does not exist in RINA’s lexicon*. However, RINA is able to ex-
tract partial information: Frank communicated a concept to Corinne regarding coming
over. It is not clear however, who comes over. Did Frank promise Corinne to come
over to her, or did Frank ask Corinne to come over to him? The input paragraph, con-
tinues:

User: But she dooved to stay home,
The word doove is also unknown. Here too, RINA can guess the main concept:

Corinne decided not to come over. This hypothesis is not necessarily correct. Howev-
er, it fits the context and the structure of the sentence well.

* Llend is just a hypothetical English word which brings home, even to native speakers, the problems
under consideration.

114

At this point, RINA must respond to the input text by generating a paraphrase which
conveys her hypothesis. However, also in generation, RINA faces the problem of in-
complete lexical knowledge. '

RINA: Frank suggesied her to come over.
But she turned down the suggestion.

In absence of specific knowledge regarding the use of suggest, RINA produced an
incorrect sentence.

At this point the reader might ask why we promote a program which is error prone,
and why we focus on incorrect human behavior—picking on second-language speak-
ers’ errors. The answer is twofold: this behavior demonstrated that in spite of missing
lexical information humans are ables, (a) to form an initial hypothesis regarding an
unknown word combination, and (b) to convey the essence of the hypothesis ot anoth-
er person. These two elements facilitate learning [Zernik86b].

7.1.2 The Issues

The general problem is this: how can any program parse a sentence when a lexical en-
try such as doove Or plend is missing? And equivalently, how can a program use a
lexical entry—suggest—which is not precisely specified? Four issues must be
answered to resolve this problem.

Syntax and Control: In Frank asked Corinne to come over, the word ask actu-
ally controls the analysis of the entire sentence [Bresnan82b]. The embedded phrase
to come over, which does not have an explicit subject obtains its subject from the
control matrix [Bresnan82b] of the entry for ask. Accordingly, Corinne is the subject
of "coming over".

On the other hand, in he plended her to come over, the controlling word plend,
is yet unknown. In absence of a control matrix it is not clear how to interpret to
come over. How can a program then, glean even partial information from text in such
circumstances?

Initial Hypothesis: The form of the sentence X plended Y to come over, Suggests
that "X communicated to Y a concept regarding coming over”. This intuition facili-

115

tates the hypothesis which initiates the learning process. How is this intuition encoded
in the lexicon?

The Context: But she dooved to stay home, might have several possible mean-
ings, among them planning acts such as decide or turn down, aimed at current
goals of the character. This intuition stems from the prior context. How does the con-
text affect the parsing process?

Overgeneralization: In absence of specific knowledge, there is a need to generalize.
While presenting a necessary capability, generalization might also yield "overgeneral-
izations". For example, in he suggested her to come over the program commit-
ted such an overgeneralization. What is a process model for predicting overgenerali-
zation errors?

Some of the issues above can be handled by specific heuristic rules, custom tailored
for each case. However, the challenge of this entire enterprise is to show how a
unified model can employ its "normal” parsing mechanism in handling "exceptions”.

7.1.3 The Approach: A Unified Parsing Mechanism

So far, natural language parsers have maintained two distinct functions [Granger77,
Carbonell84, Pinker84, Zemik85a]. "Normal" parsing of text proceeds as long as
"exceptions” are not encountered. When an exception, such as a missing lexical entry
is encountered, a second function is called in for handling the exception. However,
two distinct functions cannot cover many intermediate situations. For example, in en-
countering elements such as plend or doove, where only partial knowledge exits,
what model should be applied? This case falls into both the categories above, and
thus, the need arises for a uniform analysis. Accordingly, the task is described nor as
(a) text analysis, and (b) language acquisition, but as parsing in the presence of in-
complete lexical knowledge.

This task is difficult to model computationally. In order to make an initial hypothesis
about an unknown element, a model must first process the text. However, in order to
process the text, the model must possess knowledge about all the elements in the text,
including the unknown element. Therefore, the problem is to process the text in spite
of the present unknown.

116

The solution to the problem is found by representing knowledge hierarchically
[Jacobs85b, Langacker86]. A hierarchical lexicon contains specific as well as general
entries. A general entry pertains to many instances in the language, while a specific
entry, residing lower in the hierarchy, spans fewer instances. By their nature, howev-
er, general entries are not as informative as specific ones. Therefore a specific entry,
when it is available, is preferred to a general entry. But when a specific entry is miss-
ing, the general entry must be resorted to. Thus, a parser can employ a single mechan-
ism, by invoking lexical entries at various levels of generality.

7.2 SEMANTIC REPRESENTATION OF ACTS

The semantics of the verbs under consideration are given in terms of characters’ plans
and goals, as shown by five typical communication verbs [Kiparsky71].

the phrase the meaning:

X communicates to Y that:

promise (X, Y, Z) X will execute act Z,

where Z achieves a goal G of Y.
suggest (X, Y, Z) Executing act 2 will achieve goal G of Y.
ask (X,Y,2) Act Z achieves goal G of X

(X wants Z to be executed).
warn (X, Y, 2) Bct 2 thwarts a goal G of Y.
threaten (X, ¥, Z) Executing act Z by Y will cause

thwarting a goal G of Y.

(The top line, X communicates to Y that, is a common prefix for each one of the
meanings.) Notice three subtleties in the representation above: (a) Only ask pertains
to a goal of the communicator, X. the rest of the phrases pertain to a goal of the ad-
dressee, Y. (b) Promise and suggest pertain to a positive impact (achieve) on the
goal X, in contrast to the negative impact (thwart) in warn and threaten. (C) Prom-
ise specifies the actor of the act Z, while suggest does not specify an actor. These
differences enable us to discriminate among phrases’ meanings.

117

Accordingly, the application of such lexical entries in text analysis yields conceptual
goal-plan structures. For example, the homework situation underlying the text in Sec-
tion 7.1, is represented in terms of the following goal-plan structure.

0: get Y's help in homework

commumcate with Y G4: XgotoY

get document fromY
G5: YgotoX

Figure 7.1: Goal-Plan Structure

This structure describes goal-subgoal relations among acts. These relations are
domain specific—there is nothing universal about a person getting help in her home-
work from another person—and they are assumed to be given as part of the program’s
knowledge. RINA’s hypothesis, based on this structure is: Corinne has goal GO (to be
helped by Frank). Frank suggests subgoal G1, and in particular subgoal G4 of G1.
Corinne in turn, rejects this plan.

This underlying contextual structure is an important factor in the parsing process,
especially when lexical knowledge is missing.

7.3 A HIERARCHICAL PHRASAL LEXICON

Two aspects of the lexicon must be specified: contents, given by representations of
single entries; and structure, given by the global hierarchy.

118

7.3.1 Single Phrasal Entries

Consider the representation of word ask in the sentence below:

(1) The meeting was long and tedious. So Frank asked to leave early.

The word ask is given below* as an entire phrase, or a pattern-concept pair [Wilen-
sky81].

pattern : X:peraon ask:verb Z:act
concept: X communicated that act Z byX can achieve a goal G of X.

P1: First Lexical Entry for ask

The pattern of the phrase has two constituents: a subject X (Frank) and a complement
Z (to leave early). In particular, the semantic concept of the phrase specifies that
X is the subject of the embedded act Z, a fact which is not explicit in the text. How-
ever, this specification fails in capturing further sentences, such as the following one.

(2) Frank asked thechairman to adjourn the meeting.

There are two discrepancies: (a) the sentence above includes a direct object (the
chairman), and (b) Frank is not the subject of the complement as prescribed in phrase
P1. Thus, a second phrase P2 is added on to account for sentences of this kind.

pattern : X:persaon ask:verb Y:person Z:act
concept: X communicated toY
that act Z byY can achieve a goal G of X

P2: Second Lexical Entry for ask

(The differences between P1 and P2 are marked.) However, as further sentences in-
volving ask are encountered, and as other complement-taking verbs are considered,
we observe that certain properties given in these instances can be abstracted and gen-
eralized.

* This notation stresses semantic aspects. For precise syntactic specifications of patterns see
(Dyer86b]. In particular, the syntactic definition of Z dictates interaction through the infinitive form: to

leave early.

119

7.3.2 Generalized Features
The phrases P1 and P2 above can be abstracted in three ways.

First, semantic properties of ask itself can be generalized across other instances of
ask by the general phrase:

patterm: X:person ask:verb 2:act
concept: X communicate that act Z can achieve a goal G of X

P3: A Generalized Phrase for ask

This generalized phrase simply states the meaning of ask, namely "X says that he
wants Z to be executed", regardless of (a) who is the object of the communication act,
and (b) who executes the act Z.

Second, semantic properties determining the identity of the subject in verb comple-
ments can be generalized across many verbs, by general phrases (called also equi-
rules) which are stated as follows:

pattern: X:person vV:verb Z:act
concept: X is the subject of the embedded act 2

pattern: X:peraon V:verb Y:peraon Z:act
concept: Y is the subject of the embedded act 2

P4 and PS: Generalized Phrases for Verb Interaction

These phrases dictate the identity of the subject in complement-taking verbs such as
tell, decide, force, start, €iC.

Third, Semantic properties of communication acts can be even further abstracted:

pattern: X:person V:verb Y:person Z:act
concept: ¥ communicated 2 to Y

P6: A Generalized Phrase for Communication Verbs

Phrase P6 can be applied across many verbs which share the same pattern as P3.

120

However, P6 does not mean that any clause abiding by P6’s pattern conveys a com-
munication act; there are other phrases which carry different meanings, but share this
common syntactic pattern (.e.g., select, force, etC).

7.3.3 The Hierarchical Structure

Consequently, a hierarchical structure is introduced in DHPL.

PO

infinitive
% \\\ P4 subject-equi

o3 a’s;/ Pé6 com\municate P5 object-equi
4 \P P10 suggest

Pl// threatg i
n mi
askl P2 promise
ask2

Figure 7.2: The Hierarchy for Complement-Taking Verbs
This hierarchy* specifies interaction of phrases with embedded phrases. The fuil
hierarchy contains many more ways of interactions than we have shown here.

1 At the top of the hierarchy, there are general phrases denoting general "gram-
mar rules” such as P4 and P5.

¥3) Lower in the hierarchy there are phrases such as P6, the communication
phrase.

(3) Under P6 in the hierarchy there are phrases such as P3 (the generalized verb
for ask) and phrases for other communication verbs (e.g.,suggest, tell, etc).

4) At the bottom of the hierarchy there are specific phrases which describe
specific forms of each verb, such as P1 and P2 for ask.

* Notice that each node in this hierarchy is a full-fledged phrase; the mnemonic words are for reference
only.

121

Therefore when a new word, or a novel use of a word (a use for which there is no
specific lexical entry) is encountered, a program can apply generalized entries in
predicting the meaning.

7.4 PHRASE INTERACTION
The previous section defines the structure of the lexicon. Yet, we must explain how

the lexicon becomes operational in parsing text. Consider the following three sen-
tences, ordered according to their complexity.

(1) Frank came over.
(2) Frank asked Corinne to come over.
{3) Frank plended Corinne to come over.

(a) Sentence (1) is analyzed by a simple table lookup. A phrase (P7) is found in
the lexicon, and its concept is instantiated.

pattern : X come over
concept: ¥ ptrans to the location of another person Y

P7: The Specific Phrase for come over

(b) No single lexical phrase matches sentence (2). Therefore, the analysis of (2)
involves interaction of two lexical phrases (P2 and P7).

(c) No specific lexical phrase matches (3), since it includes an unknown word.
Therefore the analysis of (3) involves interaction with generalized phrases.

122

7.4.1 Specific Interaction

Two phrases, P2 and P7, take part in parsing sentence (3), as shown schematically in
Figure 7.3 below.

P P10 /k
— / P8 P9

P7 come over

skll,1 P2
a aSkz \ /
o '

Figure 7.3: Interaction with a Specific Phrase

Interaction is by unification [Kay79], and it is carried out in two steps:

¢} Unify the individual patterns of the phrases P2 and P7. In particular, the
variable X in the embedded phrase (P7) inherits the value of Y from the
embedding phrase (P2).

(2) Instantiate the composite concept of P2 and P7:
F.13 communicated to C.17 that:

C.17 coming over to F.13 will achieve a goal of F.13

where F.13 and C.17 are the objects representing Frank and Corinne in the
database.

123

7.4.2 General Interaction

No specific phrase in the lexicon matches the word plend. However, the clause
matches two generalized phrases P5 and P6, as well as the specific phrase P7, as
shown in Figure 7.4 below:

nfinitive

6 commumcate

object-eqm
/ PIO
P7 come over

Figure 7.4: Interaction with a Generalized Phrase

The generalized phrase, P6 implies that plend is a communication act, it leaves some
parameters unspecified. In particular, the identity of the subject of the embedded
phrase is yet unknown. Phrase P5 contributes that parameter by unification (P5 dic-
tates object-equi). As a result, the constructed concept is:

F.1l3 communicated to C.17 that:
C.17 will come over to F.13

However, how was P6 selected in the first place? Obviously, the situation is not
unambiguous. A second matching phrase P8 could have meant he influenced her
to come over, (which is not a communication act) or P9, he promised her to
come over which implies that F.13 will come over to C.17 (subjecr-equi). However
regardless of the precise concept, the main goal, namely forming an initial hypothesis,
has been accomplished. In general, resolution of this kind of ambiguity cannot be han-
dled at this stage, since there is no sufficient information. Further refinement and
correction of the hypothesis must be pursued by receiving additional input, such as:

124

User: He just wanted her to come over.

This new input allows the program to refine the meaning of the word plend.

7.5. GENERATION: A PROCESS MODEL

Consider the task involved in generation of a paraphrase for a concept.

PO
infinitive

Pé6
—_— N P§ object-equi,
/ \ P10 suggest P7 come over
| \) s\g ection
W selection
P11 P12

suggestl suggest2
missing entries

Figure 7.5: Generation Using a Generalized Phrase

'As shown in the scheme above, the generator is given two elements:
(a) The concept to be described by the generated text:

X communicated to Y that:
A goal G of Y can be achieved by act Z (X come over to Y)

(b) A hierarchical lexicon. In particular, notice that P10, the general phrase
for suggest is given, vet P11 and P12, the phrases describing specific in-
teractions of suggest (i.e., he suggested to come over, and he
suggested to her that she come over) are missing.

In this particular configuration of knowledge, the generated sentence is this:

Frank suggested Corinne to come over.

Generation proceeds in three steps:

125

(a) Select a specific entry for the embedded act Z. P7 is selected to describe
C.17 come over to F.13.

(b) Select a specific entry for the communication act. P10, the phrase for
suggest matches the goal-plan situation: "X communicated to Y that: act
Z achieves Y’s goal". However, P10 does not specify the precise syntac-
tic interaction of suggest with its constituents:

X suggest...¥Y...come over

There is a need for an interaction phrase to connect these elements.

(©) Select an interaction phrase. The input concept matches P35, the the gen-
eral object equi phrase, due to the structure of the communication act in
the concept. This lexical selection causes the error.

This explains similar errors made by second language speakers. Although the sen-
tence sounds awkward (to a native speaker), it certainly conveys the main concept,
and a user is acknowledged of the program’s hypothesis. The general principle is
summarized below:

Specific phrases are preferred to general phrases. However,
in absence of a precise specific phrase, resort to the use of a
general phrase.

This presents a basic principle of knowledge-based systems. Wilensky [Wilensky81]
has applied this principle in parsing and in generation: in case of two competing lexi-
cal phrases, select the more specific one. However, this principle has not yet been ap-
plied in language acquisition.

7.6 CONCLUSIONS

Text analysis tasks can be ordered by increasing difficulty: (1) Performing by assum-
ing perfect knowledge: analysis fails when unknown elements are encountered. (2)
Performing even in the presence of incomplete knowledge: partial concepts are pro-
duced when unknowns are encountered. Yet, new elements are not incorporated. (3)
Filling in knowledge gaps by acquisition: new elements encountered in the text are ac-
quired and added on to the lexicon.

126

We have addressed here tasks (1) and (2). Whereas in task (3) the lexicon itself is up-
graded as a consequence of parsing, tasks (1) and (2) involve the parser itself. We
have described A uniform, unification-based mechanism which accounts for parsing
in the presence of missing knowledge. Coping with knowledge gaps is done by apply-
ing phrases at various levels of generality.

7.7 LIMITATIONS

Ambiguity in Learning: Parsing as well as learning involves formation of a hy-
pothesis, and both tasks are fraught with ambiguity. However, in leaming, when a
specific lexical entry does not exist, hypothesis formation is an under-determined
problem. Namely, many possibilities exist for the initial hypothesis. For example, in
the sentence:

He plended her to come over,

it is not clear which one of the following concepts plend is similar to: ask promise
influence or wish. We are not able, with the given information, to determine the pre-
cise category. Hypothesis correction requires further input, such as:

He insisted that she come at 8pm.

By this input, the cases of promise, and wish are ruled out. Thus, the initial hy-
pothesis is a basis for further refinement.

Sound Patterns: People’s hypotheses are biased by sound patterns {Chomsky68].
Accordingly, two frequent guesses for plended are pleaded and prodded which
share some phonetic features with plend. Our model of language analysis cannot
combine linguistic clues at that level. A possible mechanism, which could incorporate
linguistic clues at many levels, currently under consideration, is similar to the connec-
tionistic model suggested by Waltz and Pollack [Waltz85].

127

Chapter 8:
Parsing is Monitored

As shown in the previous chapters, in acquiring new words and phrases, a learning
model corrects its hypothesis according the nature of detected failures. Therefore, a
learning model based on language analysis, must not only analyze the text, but it must
also monitor the parsing process itself, and make inferences about parsing. However,
this task is complicated by ambiguiry. Since even simple sentences can lead to more
than one interpretation, the model must systematically monitor the entire set of possi-
ble interpretations, rule out the inappropriate ones, and account for interpretations
which present "near misses”.

In this chapter we describe a mechanism for language analysis which handles both
ambiguity and detection of errors by monitoring multiple interpretations. It features
three properties:

(1) Lexical entries are represented as phrases, which associare syntax and seman-
tics.

(2) Language analysis is based on entire-phrase interaction (rather than interac-
tion of single words).

3 Multiple interpretations are monitored, where syntactic and semantic
discrepancies are detected and treated.

While in previous chapters we focussed on aspects of error-correction, in this chapter

128

we focus on error detection and monitoring of the parsing process itself.

8.1 INTRODUCTION

Semantic parsers convert sentences into semantic representation. Ideally, each sen-
tence should have a unique interpretation, but unfortunately, natural language analysis
is fraught with two problems: (a) ambiguity and (b) knowledge gaps. On the one
hand, even a simple sentence such as

Mary was taken by the car dealer.

might have many interpretations, two of which are: "she fell in love", and "she was
cheated". On the other hand, a language learner reading the same sentence, might not
be familiar with the phrase "to be taken", and for him/her the sentence might not have
any interpretation at all.

Detection and analysis of parsing failure is a precondition for learning: only by failing
to construct a valid interpretation for she was taken, does a learner identify the ex-
istence of an unknown phrase. As long as a valid interpretation exists, it might be
used by the program, and learning would not take place.

In this chapter we describe the mechanism driving parsing in the program RINA. This
mechanism is non-deterministic since it spans simultaneously all possible interpreta-
tons, upon which the program either (a) selects the most appropriate interpretation, if
one or more interpretations exist, or (b) initiates learning, if no valid interpretation ex-
ists.

8.1.1 The Linguistic Phenomenon

Text analysis is determined by the context. Consider for example the following sen-
tence, which is given in absence of context (imagine hearing an isolated sentence on
entering a room):

P1: She took it up with her dad.

In absence of context, this sentence hardly makes sense. What are the referents for
she and it, and what is the meaning of take? In an appropriate context, however,
this sentence can be unambiguously interpreted:

129

P2: Jenny thought jogging was an easy sport.
She took it up with her dad.

This sentence now means that Jenny started jogging with her dad. However, in a
second context, the sentence assumes an entirely different meaning:

P3: Jenny needed money for her new car.
She took it up with her dad.

Here, it is understood that Jenny discussed a problem with her dad. And yet in a third
context, there is another interpretation:

P4: Jenny’s mother needed the vacuum cleaner upstairs.
She took it up with her dad.

Here take comes in its simple meaning: physically transferring (ptrans) an object
upstairs.

Text interpretation is also relative to the state of lexical knowledge. Consider the si-
tuation in which a language learner encounters a sentence for which his/her lexicon
does not include the appropriate phrase.

Native : Jenny wanted to buy a new car.

She took it up with her dad.
Learner: She took the car uphill?
Native : No. She took up the problem with him.
Learner: They discussed buying a new car?

In this case, in absence of the appropriate phrase, the learner first applies a different
phrase which seems applicable. Thus, unless the learner can identify the discrepancy
with this interpretation, the new phrase would be passed over unnoticed.

8.1.2 The Theoretical Issues

Semantic ambiguity must be accounted for at all levels of communication. In the
paragraphs above we have identified three sources of ambiguity.

Lexical Ambiguity: Many phrases in the lexicon involve the word take. Some are
shown below:

130

X take
X take
X take
X take
X take

up Y (an issue) with Z (an authority)
up Y (an activity-theme)

up Y (a solution)

up with Z (a mate)

Y (a physical object)

How can the appropriate phrase be selected in each one of P1-P4?

Referential Ambiguity: References, and pronouns in particular, might refer to many
objects in the context. For example in P3 above, the reference it can refer to any one
of the objects mentioned in the prior context:

the car

(a certain car instance called car.74)

Jenny’s goal to buy a car (an instance of a goal called GoOAL.15)

the money

required for the deal (MONEY.1l4)

Jenny herself (JENNY.13) - this one is refuted trivially,

since Jenny is a person

How is selection of a referent (reference resolution) related to the selection of the en-
tire verb phrase?

Modifier Ambiguity: Phrase complements, and modifiers in general, introduce furth-
er ambiguity. For example, there are three phrases for with in the lexicon:

X do V with ¥: X act with Y’s company,

as in she dined with her family.

X do V with ¥ X act with Y’s assistance,

as in she practiced tennis with a pro.

%X do V with Y X act with an instrument Y,

as in she ate rice with chopsticks.

131

How is the appropriate complement selected in each one of the cases above? The
complexity of the problem is illustrated schematically by the graph in Figure 8.1
below.

|
she jenny
took rans discuss start
> N >
i JOggIng
it o - goal |
> X X > X X
up ‘
with assistance \ company
> >x X >

Figure 8.1: Multiplicity of Interpretations
In this tree, each leaf represents an interpretation, and each branch is a separate word
meaning. Inappropriate interpretations are crossed out as discrepancies are detected..
Notice that a large number of interpretations was created, although we ignored many
interpretations.

8.1.3 Theoretical Approaches

There are two theoretical approaches to semantic disambiguation: the quantitative and
the qualitative. The quantitative approach, is represented by connectionistic models
such as [Waltz85, Cottrell85, McClelland86]. Selection of interpretations is accord-
ing to a preference function which is computed for each interpretation. A variety of
preference functions have been introduced so far, where selection is done by a meas-
ure of connection weights. In Waltz’s model [Waltz85] for example, two interpreta-
tions exist for a sentence such as the sailor ate a submarine. AS parsing
proceeds, the total weight shifts from one interpretation (submarine = a vessel) to the
second (submarine = a sandwich).

The qualitative approach, on the other hand, is based on examining the validity of log-

ical predicates. This set of predicates is resolved as a constraint-satisfaction problem.
The first mechanism for processing systematically multiple competing interpretations

132

was presented by [Small82]. In Small’s model, procedurally-encoded "experts” at-
tached to individual words, were spawned in order to check validity of word interac-
tons.

The phrasal approach [Becker75, Wilensky81, Fillmore87] is another qualirative ap-
proach, emphasizing modularity and declarativeness. This approach provides an
abstraction by elevating language analysis from interaction of single words to entire-
phrase interaction. Lexical entries are not given as single words (e.g., take), rather as
entire phrases (e.g., take over, take it up with, take on, €tc), and consequent-
ly, disambiguation involves selection of entire phrases. This method proves effective
in parsing [Wilks75, Wilensky80] and in generation [Jacobs85b].

Since our task involves language acquisition, we selected the method which is most
amenable to learning. The phrasal approach, being modular and declarative, turns out
to be advantageous since it enables us to make inferences about language analysis.

8.1.4 The Program
A phrasal parser which monitors multiple interpretations consists of three main func-
tions: ‘

Phrase Interaction: Identifies lexical phrases accessed through the text. Constructs
entire sentence interpretations by unification [Kay79] of individual phrases.

Discrepancy Detection: This function detects syntactic and semantic discrepancies in
the interpretations constructed by (1).

Error Analysis: Based on detected discrepancies, this function uses learning stra-

tegies to form new hypotheses (this function is not elaborated in this chapter).

This mechanism depends for its operation on existence of two kinds of knowledge
sources:

Lexical knowledge: parsing is relative to a certain incomplete lexicon which is aug-
mented by discrepancy-driven strategies.

World knowledge: error analysis is supported by given rules and facts of the domain.

In fact, one way of testing out the program is to observe its behavior under various

133

sets of lexical and world knowledge.

8.2 THE PHRASAL LEXICON

In order to apply a single unifier in text analysis, lexical entries must all be represent-
ed uniformly. Here, a lexical entry—a phrase—is a triple associating a linguistic pat-
tern with its concept and a situation. We show how a variety of lexical elements
(verb phrases, modifiers, and noun phrases) are given using this method.

8.2.1 A Verb Phrase

Consider the phrase in the following text.

Jenny needed money. She took it up with her dad.

This phrase is represented as a triple:
LP1: pattern: X:person <take up> Y:goal-situation
<with Z:person>
situation: Z can solve problem Y for X
concept: X discuss Y with 2

After reading the first sentence, the context contains several concepts including jen-
ny.13 and jenny.13’s goal to possess money (goal.15). The second sentence is parsed
in four steps:
(1) The pattern is matched successfully against the text. Consequently, X and
Y respectively are bound to people called Jenny and Willard (Jenny’s fa-
ther) respectively. Z is bound to goal.15.

(2) The situation is validated using the context. Jenny’s father has money he
can give Jenny.

3 Since both (1) and (2) are successful, then the pattern itself is instantiated,
adding to the context: jenny.l3 discussed goal.15 with willard.17.

Phrase situation, distinguished form phrase concept, is introduced in our representa-
tion since it solves two problems: (a) in disambiguation it provides a discrimination
condition for phrase selection, and (b) in acquisition it allows the incorporation of the

context of the example as part of the phrase.

For reading convenience, the phrase pattern was abbreviated above as follows:

134

pattern: X:perscn <take up> Y:gcal-situation <with Z:person>

Bowever, internally, this pattern is denoted using a slot-filler notation as shown
below:

(subject (verb
{ (concept X) {(verb take)
{class person})) (modifier up)))
{object (object
{ (concept Y) ({ (marker with)
{class goal=-situ)}) {(variable 2)

{class person)))

This representation is geared to unification and instantiation. Notice, that syntactic re-
lations are not specified explicitly in the pattern itself: word-order information, for ex-
ample, is inherited from general syntactic templates.

8.2.2 Modifiers

Consider the following paragraph:

Jenny’s mother needed the vacuum cleaner upstairs.
She took it up with herdad.

The modifier with is represented as the triple below:

LP2: pattern: X:person Y:act <with Z:person>
concept : Z supports X in executing Y
situation : Z is in a position to support X

The situation is used in discriminating a sentence such as she runs with a coach,
from sentences such as she runs with her friends. Notice that a single word
with is denoted here as a full-fledged phrase.

135

8.2.3 References

References too are given in the same phrase notation. For example consider two
words which appear in paragraphs P1-P4, it and father.

LP3: pattern: father
situation ; class family
role parent
concept : class person

gender male

LP4: pattern: it
concept: class *not* person

The situation (in father) is used for identification of the family structure in the con-
text, since father is a relation which is part of family. This is the declarative imple-
mentation of Cullingford’sCullingford78 algorithm for resolving role-holder re-
ferents. Thus, we have shown how verbs, modifiers, and references, are all represent-
ed uniformly as phrases.

8.3 THE CONTEXT

The context is represented as a structure of plans and goals. For example, the context
underlying paragraph P3 is given in the figure below.

G2

- Gl G4
§ub goal \ — G5
GO
sub geoal — G6 A6
execute

Figure 8.2: A Goal-Plan Representation
This scheme gives relations between goals and their subgoals [Schank77]. The major

136

goal GO (buying a car) is preconditioned by its subgoal G1 (getting money). G1 on its
part, can be accomplished by one of five alternative plans: (G2) work and earn the
money, (G3) draw money from one’s bank account, (G4) steal, (G5) sell old car, and
(G6) borrow money from a relative. This scheme of plans and goals is given as
domain knowledge. The parser on its part identifies G6 as the plan selected by Jenny.,
In executing this plan, Jenny communicates the situation to her father, in order for
him to give her the money.

8.4 PHRASE INTERACTION

In this section we describe how entire interpretations are constructed from their con-
stituent phrases.

8.4.1 Levels of Interpretation

Consider for example, the parsing process in analyzing the second sentence in the fol-
lowing paragraph:
Jenny needed money for her car.

She took it up with her dad.

The meaning is constructed at four levels.

Single Words: Single words are packaged into case frames:

<She> <took up> <it> <with her dad>

Although tock and up are separated in the text, they are packaged into the same case
frame (up is taken as the verb modifier).

Case Frames: case frames get bound to concepts which are found in the context.

she: JENNY.13 took: ptrans it: CAR.74 with her dad: WILLARD.17
GOAL.1S
MCNEY .14

Notice that three referents (non-person objects) are found for it in the context. At

this level, the word it cannot be uniquely resolved, since the context contains three
NON-person concepts.

137

Phrases: Multiple case frames are packaged into phrases:

X take up Y with 2 - JENNY.13 tock up GOAL.15 with WILLARD.17
X take ¥ - JENNY.13 took CAR.74

Notice that the referential ambiguity for it disappeared at this level, since each
phrase selected one of the three objects according to class specifications.

Interpretations: Interactions of entire phrases yield entire-sentence interpretations.
she (J.13) took it (GOAL.13) up with her (J.13) dad (W.17)
she (J.13) took it {(CAR.74) -- up (upwards) -~ with her dad(W.1l7)

The first interpretation consists of a single lexical phrase ("she discussed a problem™).
The second interpretation, on the other hand, consists of a verb phrase and two com-
plements.

8.4.2 Types of Interactions

Pairs of phrases interact in two steps, in a process of unification and instantiation
[Charniak80].

(1) The patterns of the individual phrases are unified.

(2) If the unification in (1) is successful, then the composite concept is insian-
tiated.

Phrase interaction is simplified through the case-frame abstraction, as shown by two
types of interactions: internal interaction, and external interaction.

138

Internal Interaction: An interaction of a phrase with a constituent such as a refer-
ence or an embedded phrase is called internal interaction. Consider for example the
marked reference it in the text below: Jenny’s mother needed the vacuum
cleaner upstairs. She tookit up with her dad.

X: person TAKE UP Y: goal WITH
Z: person

IT:
goal.74
car.77

Figure 8.3: Interaction with References
The reference it, packaged in a case frame, interacts with the lexical phrase:

Each case frame includes candidate referents. The case frame for she is associated
with jenny.13 and wilma.4 as referents, while it is associated with vacuum.98 and
goal.101. Due to class specifications on X, goal.101 is rejected, and X gets bound to
jenny.13. The discrimination between jenny.13 and wilma.4 (jenny’s mother) cannot
be resolved by class specifications, and thus there are two interpretations at this point,
which need to be pruned by other means. The instantiated interpretations are as fol-
lows:

X:jenny.1l3 take:ptrans Y:vacuum.98
X:wilma.4 take:ptrans Y:vacuum.98

139

External Interaction The interaction of a phrase with phrase modifiers is called
external interaction. For example in the sentence she took it up with her fa-
ther, the main verb phrase interacts with two modifiers: up, and with her father.
The interaction is shown schematically below:

X: person TAKE Y: phys-obj
X: person V:act UP
WITH
X: person Viact
Z: perscn

Figure 8.4: Interaction with a Complement
Interaction is by case frame unification, as the unifier guarantees that there are no syn-
tactic or semantic contradictions between matching case frames. The composite con-
cept resulting from the instantiation of the three phrases is:

act ptrans

actor jenny.13

object vacuum. 98

direction positive-vertical

supported-by willard.l7

However, in coming up with a single concept, we ignored ambiguity stemming from
various sources:

(1) There are two instances for she tock it (as shown above).

(2) There are two possible phrase for with: with assisrance and with com-
pany.
3 There are two instances for her in with her mother (whose mother?)

4) The syntax here is not unambiguous either. The reference her father
could actually be interpreted as two separate references. This kind of am-
biguity is better demonstrated in the following pair of sentences:

140

He took her home {(he also tock the rest of her property).
Be took her home (he took her in his new car).

(5 Finally, this entire discussion assumed only one meaning of take
(ptrans). Other senses of take must also be considered.

Thus, we ended up with at least 16 interpretations for this simple sentence. Some of
the interpretations in this set are obviously inappropriate:

wilma.4 take:ptrans vaccum. 98 with wilma.4

However, the point of this entire exercise is to show that interpretations cannot not be
ruled out at the outset: all interpretations must be systematically constructed and ex-
amined before they can be ruled out.

8.5 DISCREPANCY DETECTION

So far we have shown how a large set of interpretations is constructed. However, how
is this large set reduced so that a single relevant interpretation is left out? Phrases are
ruled out by syntactic as well as semantic discrepancies. We describe here context-
related semantic discrepancies.

Lexical Presupposition: Phrase presupposition accounts for the matching of a phrase
with its anticipated context. For example consider this pair of paragraphs:

P3: Jenny needed money for a car.
She took it up with her father.
PS: Jenny started jeogging.

She took it up with her father.

Compare the application of lexical phrase LP1 (X discuss a problem with Y) in both
cases. The presupposition of LP1 requires that the father would be in a position to
solve a problem of Jenny. In P3, a suitable problem is found: Jenny’s father can sup-
port with giving her money. Thus the interpretation Jenny discussed the problem with
her father is appropriately applied. In PS, such a problem of Jenny is not found and a
discrepancy is detected with the interpretation suggested by LP1.

Referent Not Found: Another kind of discrepancy is based on class specifications.

141

For example, consider phrase LP6 below:
LP6: pattern: X:person <take up> Y:activity-theme
concept: X started activity Y

The variable Y can be bound to referents such as jogging, stamp collecting, etc. How-
ever, in the context under consideration:

Jenny wanted to buy a car,

there is no such activity, and the phrase LP6 is ruled out. Indeed an activity, namely,
"buying a car" does exist, however, this is a one-time act and not an activity-theme.

Common Sense: Consider again the following context:

Jenny wanted to buy a car.

An interpretation such as "jenny drove the car up the hill" is refuted by rules of the
domain: a person cannot drive a car he does not possess. Clearly, this ruling is based
on given domain knowledge, and under certain given rules, this interpretation could
make sense ("she tested the new car by driving it uphill")

8.6 ERROR ANALYSIS

Now consider the case described in Section 1.1, in which a phrase such as LP1 does
not exist in the model’s lexicon, and must be acquired.

input : Jenny wanted to buy a new car.

She took it up with her dad.
interpretation: she ptramsed it --- up =--- with her dad
output: She drove the car uphill with her dad?

In absence of the phrase LP1 (X discuss a problem with Y), the learner interpreted the
sentence using an interaction of three existing phrases. The output was marked by a ?
(question mark) to denote a detected discrepancy (how can Jenny drive a car she did
not possess?). Next the user provides the second sentence, as given below:

input: No. She took up the problem with her dad.

The user indicates explicitly that the object (it) pertains to the problem and not to the
car. This input invokes three discrepancies which is associated with error-correction

142

strategies. One such strategy is given below:

old-hypothesis: X take Y:possession

discrepancy: referent class is not subsumed by reference class
action : change reference class

new-hypothesis : X take Y:goal=-situation

The entire learning process and a large set of error-correction strategies is described
elsewhere [Zernik85c]. In general, hypothesis modification is driven by discrepancy
detection.

8.7 CONCLUSIONS

Semantic analyzers have dealt with the construction of a few designated interpreta-
tions, out of which a single one was conveniently selected. However, no parser so far
has was designed to facilitate learning.

Reasoning About Parsing: In order to facilitate learning, a parser must be able to
identify and draw conclusions from existing discrepancies. However, since even sim-
ple sentences lead to multiple interpretations, it is important consider systematically
all possible interpretations. The model of semantic parsing described here, can moni-
tor interpretations in situations of multiple ambiguity, as required by a learning pro-
gram. Only by being able to make inferences about parsing, can a program learn new
phrases.

The Case-Frame Abstraction: Two abstractions have been used in our model, to
factor out low level details of parsing.

(1) Sentence meanings are constructed by the meanings of individual phrases.
Thus, meaning construction is elevated from interaction of single words to
interaction of entire phrases.

2) Phrase unificaton is done by unifying entire case frames, assuming that
low level parts of speech are already packaged into case frames.

This method enables us to express error-correction rules at a higher level of abstrac-
tion.

143

8.8 LIMITATIONS

It Does not Make Sense: In ruling out interpretations we tried to identify interpreta-
tions which do not make sense. This task is difficult for theoretical reasons. Within a
model, a proof can be found for a certain proposition—if the connecting rules exist in
the model’s database. However, if a proof for a proposition cannot be found, it does
not positively refute the proposition—it simply means that a proof was not found
within the model’s memory. Thus, it is necessary to find positive conditions for pro-
position refutation. This task has not been within our scope, so in our model, we
resorted to simple heuristics instead.

Tie Breaking: Indeed we have shown how inappropriate phrases can be rejected.
However, there is no way of selecting among a set of multiple interpretations which
have not been rejected. Consider the following sentence:

Jenny needed a partner for the party.
Finally ahe decided to take Fred.

Although the interpretation "she took him dancing” is preferred by a human reader,
our model cannot determine between that interpretation and the alternative interpreta-
tion "she cheated him" (as in he was taken by the car dealer). This problem
stems from the nature of the qualitative approach. An interpretation is either valid or
is not valid. There are no intermediate preference values (between O and 1). This
problem may be remedied by using a Waltz and Pollack-style connectionistic mechan-
ism [Waltz85] which features preference of certain interpretations, as well as inhibi-
tion of others.

144

Chapter 9:
Bootstrapping Syntactic Patterns
from Semantic Concepts

In this chapter we investigate a syntax-semantics duality, and its manifestation in
parsing and in acquisition. Lexical phrases are comprised of two parts: (a) a syntactic
pattern, and (b) a semantic concept. In parsing a sentence, the meaning of the sentence
can be derived either (a) by a syntactic interation of the entities in the text, according
to grammar rules, or (b) by a semantic interaction according to knowledge of the
domain. Normally the syntactic derivation prevails since it provides a short cut to the
long semantic derivation. In learning, however, there are situations in which the syn-
tax is yet unknown. In those cases the dual derivation facilitates acquisition of the
new syntactic pattern. Thus, the unknown pattern is bootstrapped from the given se-
mantic concepts.

9.1 INTRODUCTION

In the phrasal approach to language processing rather than maintaiﬂing a single gen-
eric lexical entry for each word, e.g.: take, the lexicon contains many phrases, €.g.:
take a break, take it easy, take someone to task, take to the streets,
etc. In this approach , the task of disambiguation as in the workers took to the
streets VS. the juvenile delinquent took to the streets is based on selec-
tion between entire phrases. Also the task of concept formation shifts to the interac-
tion between entire phrases. Although the lexicon contains isolated phrases such as:
make up one’s mind and take to task, it is necessary to analyze phrase combina-

145

tion in complex clauses such as: he made up his mind to take her to task,
which cannot be looked up in the lexicon. The construction of a composite concept for
such a complex clause, which involves a comlement-taking verb, is called phrase in-
teraction.

The ultimate objective in parsing is to construct the conceptual meaning for a given
text. Despite this, phrase interaction has been investigated in existing linguistic
theories only in regard to morphology and control. The computation of composite
concepts, which presents a major probiem, remains unaddressed. For example, two
different concepts are constructed for the judge decided to throw the book at
Mary, VS. the judge decided that John threw the book at Mary, due to the
difference between the interaction of the phrases decide to and decide that. The
desirable lexical representation of such phrases must capture both the syntax and the
semantics of phrase interaction.

9.1.1 The Linguistic Phenomenon

Initially, RINA’s lexicon contains certain interaction patterns. However, the text
might also contain unknown interactions which require additional lexical knowledge.
In the following dialog, RINA possesses the lexical entry required for the interaction
between ask and read:

User: The teacher, Mr. Wilson,
asked Jenny if she had read the story.
RINA: He asked her a question.

RINA had no problem in parsing the sentence involving the obvious sense of the word
ask. However, she does encounter a problem in the next dialog, which includes an
unknown interaction.

User: The teacher asked Jenny to tell the story.

RINA: He asked her a question?

User: No. He instructed her to tell the story.

RINA: OK. The teacher wanted her to tell the story.
He gave her a command.

Thus, RINA encountered a new sense of the word ask which conveys a different
meaning, and involves a different interaction: ask to. RINA acquires both the syn-

146

tactic pattern and the semantic concept of the interaction from the example given in
the teacher-student context. On another occasion, RINA hears a dialog between Jen-
ny and her mother.

Jenny: I asked to go to the bathroom.
Mom: You asked who to go to the bathroom?
Jenny: I asked Mr. Wilson to go to the bathroom.

(The last sentence is said with anger. Jenny’s tone implies "now I gave you all the de-
tails, please leave me alone!”) Clearly, Jenny did not mean that the teacher was sup-
posed to go to the bathroom. In spite of the apparent deviation from English conven-
tions, RINA realizes what Jenny really meant.

RINA: Jenny wanted to go to the bathroom.
She asked for permission from her teacher.

9.1.2 The Issues

Six issues must be addressed with regard to phrase interaction, while parsing the text
above: '

Forming Composite Concepts: The major objective is to construct composite con-
cepts for complex clauses. Consider the following two sentences:

Judge Wilson decided that Mary threw the book at John.
The Judge decidedto throw the book at Mary.

Although in both sentences the constituent verbs (decide and throw) are the same,
the composite meanings are entirely different. The respective meanings are:

(a) *"Wilson mbuild a fact: Mary propelled a book at John"

(b) "Wilaon select a plan: Wilson will punish Mary severely™.

Only the use of two different interaction forms: decide to vS. decide that can ac-
count for the construction of these different meanings. Thus, what is the process
through which different meanings are constructed for such sentences?

Syntactic Interaction: One lexical entry for throw is:

147

Personl throw the book at Persan2

However, this pattern cannot be matched against the clause in the text:

Judge Wilson decided to throw the book at John,

since the Personi is not explicit in the text. Only by phrase interaction can this pat-
tern matching be satisfied and Personl be bound to Wilson. Syntactic patterns
resolve bindings of such phrase roles. Thus, the interaction of syntactic patterns must
be used in constructing composite concepts.

Semantic Interaction: Contrary to textbook grammar, people do use semantics to
override strict syntax rules:

My father did not let me see that movie,
But he promised me to go to Disneyland.

Such "violations” of textbook grammar are easy to demonstrate using children’s
language. However, they can be heard also in adult speech, and be appropriately un-
derstood in context by a human listener. Thus, the program must construct the mean-
ing of a clause by negotiating also its semantic context.

RINA must apply knowledge beyond syntax also in analyzing the next sentences:

John started runping after the bus.
Since it was a long stretch he needed to stop tocatch his breath .

Since the verb stop can interact through the infinitive, the appropriate meaning must
be inferred. Note that the meaning is not that he stopped breathing, but that he stopped
in order to breathe. Semantic concept interaction must be used as a second way in
constructing composite concepts.

Generalization: A pervasive dilemma in lexical representation is whether a feature
should be encoded as a single-phrase idiosyncracy, or it should be encoded as a gen-
erality which is shared among many phrases. For example, consider the behavior of
MTRANS verbs (e.g.: ask, tell, instruct, inform, etc.) as they interact with
their embedded phrase through the infinitive form. In a phrase such as John told
Mary to do something, Mary holds two roles in the constructed concept: (a) Mary
is the recipient of the MTRANS act, and (b) Mary is the actor of the embedded act.

148

This interaction must appear as a general lexical entry and be applied in all specific
phrases, for two reasons:

(a) Modification, which occurs by learning, requires changes only in a single en-
try.

(b) When a new verb is encountered (such as remind) it is possible to apply the
general form before hearing a specific example, and thus make a prediction.

Recovering from Overgeneralization: While a feature is shared among a set of
verbs, there are always exceptions. For example, the behavior of the verb promise
deviates from the general infinitive behavior of MTRANS verbs.

User: John promised him to come early the next day.
RINA: The boss will come early?

Another example of overgeneralization (elaborated in Chapter 6), involves the verb
suggest:

He suggested her to come over.

While the program must be able to make correct as well as incorrect predictions, it
must also be able to backtrack from overgeneralizations in case of an incorrect predic-
tion.

Bootstrapping a Syntactic Pattern: We have specified two ways in which composite
concepts can be derived: by the syntax of lexical patterns and by semantic inferences.
While this duality presents a redundancy in most cases, it has a significance for learn-
ing. In learning, when the syntax of a lexical item is still unknown, the semantic
derivation will present the only possible way to construct the concept. Moreover, it
can also serve in acquiring the syntactic pattern. For example, assume that the special
interaction pattern for promise is still unknown, when the following sentence is en-
countered.

John was late to work today,
sc he promised his boss to come early tomorrow.

It is clear from the context (employer-employee authority relationship) that the action
referred to is John's coming early. This causes a conflict with the syntactic derivation

149

(the default MTRANS infinitive) which suggests that "the boss" is the actor. By
detecting this discrepancy, the syntactic pattern for promise is modified. Thus, the
program must analyze such discrepancies and come up with the modified interaction
patterns.

9.1.3 Lexical Representation

Lexical Phrases: RINA uses a declarative phrasal lexicon. Below are two sample
phrasal patterns.

Pl X:person give:verb <a break> <to Y:person>
P2 X:person decide:verb <to Y:phrase(X)>

These patterns are used for reference only. They actvally stand for the slot fillers
given below:

P1: subj {inat X) (class person)
verb {rcot decide)
comp (inst Y)
(form infinitive)
(subj (inst X)))

P2: subj {inst X) {class person)
verb {root throw)
obj (inst Z) (marker at) (class person)
obj (det the) {noun book)

In P1, the infinitive form accounts for detecting the appropriate morphology of the
embedded clause. The variable X accounts for equating the subject of the embedded
phrase with the subject of the controlling phrase.

Lexical Semantics: The concepts used in our examples involve knowledge of
goal/planning and of interpersonal relationships. The semantic representation of
phrases is given as a situation-concept pairs. The presupposition provides the re-
quired background for the phrase application, and the concept is the element to be in-
stantiated. For example, the situation of the phrase X:person throw the book at
Y:person, is given below:

(authority (high X) (low Y)}

150

meaning that X presents an authority for Y. The concept itself is given as:

(auth-decree (actor X)
(cbject (thwart-goal
{(goal p-goal)
{goal-of Y))})

This means: X decreed that a preservation goal of Y will be damaged. Thus, in order
to understand text involving this phrase, the program must have knowledge about qu-
thority and people’s plans and goals.

9.1.4 Phrase Acquisition

Learning is by error correction. For example, in acquiring the phrase for promise,
RINA first hypothesizes the pattern:

X:person promise:verb Y:person <to Z:phrase(Y)>

This hypothesis might incorrectly cause RINA to understand he promised her to
go a5 he promised her that she would go. By providing an appropriate context
(he promised her to come toher place), the user causes RINA to modify her hy-
pothesis into:

X:person promise:verb Y:person <to Z:phrase(X)>

which has the correct syntax for promise. The hypothesis is updated (1) by detecting
a discrepancy, and (2) by correcting the pattern causing that discrepancy.

9.2 PARSING A COMPLEX CLAUSE

In the previous section we described the three steps involved in parsing a simple
clause. However, the process gets complicated when the clause includes two interact-
ing phrases, as shown in the last sentence in the story S1 below.

S1: Mary went to court for her traffic violation.
She had gone through a red light.
She asked Judge Wilson to give her a break,
but the judge decided to throw the book at her.

The phrases taking part in the clause above are P1 and P3 below; P2 and P4 are candi-

151

dates which must be discarded through disambiguation.

Pl:

P4

pattern: X decide <to Y:phrase(X)>
concept: X select-plan Y

pattern : X decide Y:sentence
concept : X mbuild Y

pattern : A throw <the book> <at B>
presupposition : A is an authority for B
concept : A punish B severely
pattern ; A throw ?c¢c <at B>

concept:] A propel ?c to B

The context prior to reading the last sentence is $trial (the trial script) [Dyer86b],
where mary1 is the defendent and wilsonl is the judge. Parsing the clause requires (a)
that the patterns of the selected phrases be unified successfully with the text, and (b)
that the situations of the selected phrases (if it is prescribed) be unified successfully in
the context. Left-to-right parsing of the sentence proceeds through the following

steps:

(1)

)
(3)

(4)

&)

(6)

decided triggers two lexical phrases: P1 and P2 (where X is bound to
wilsonl).

to throw triggers phrases P3 and P4.

The infinitive is detected (in to throw) and is used to mark the form in
P3 and P4.

the book and at Mary maich the patterns of both P3 and P4 (in both, B
is bound to mary2).

The situation of P3 matches the context through $trial, which includes the
relationship:

{(authority (high wilsonl) (low mary2))

As aresult, A in P3 is bound to wilsonl.
The pattern of P1, in particular the comp part which is now:

{subj {inst wilsonl)}
{verb (root decide) (tense past))

152

(comp (inst Y)
(form infinitive)
{subject (inst wilsonl))})

is matched successfully:
(a) The form of P1’s complement (P3) is indeed the infinitive.

(b) The subject of P3 matches the subject of P1, wilsonl.
)] The concept of P3 is instantiated as:

(auth-decree (actor wilsonl)
(object (thwart-goal (goal p-gecal)
{goal-of mary2))))

(8) The concept of P1 is instantiated. It includes the concept of P3.

{select-plan {(actor wilsonl)
{cbject
{auth-decree (actor wilsonl)
(object (thwart-goal
(goal p-goal)
(goal-of mary2))))))

Disambiguation was carried out to select between P1 and P2, and between P3 and P4.
P2 was ruled out (and P1 was selected by default) since its syntactic pattern
(specifically its complement’s form) did not match the sentence. P3 and P4 were both
unified successfully; P3 was selected by being more specific.

The purpose of this entire exercise has been to demonstrate how the implicit subject
was derived in two ways. Through the syntactic pattern (step 6b), and through the si-
tuation (Step 5). In this case, both derivations yielded the same result, namely wil-
sonl. When a conflict arises between these two derivations, then learning is initiated.

153

9.3 LEARNING A NEW INTERACTION

Now, consider the case in which an unkown phrase is encountered. For example, the
phrase in the following sentence from the story S1 above.

Mary asked Judge Wilson to give her a break.

The lexicon does contain a phrase to process this sentence.

Context Representation: The trial script is given as a chain of events.

1. The prosecutor tells the judge about the law violation.
2. The defendant tells the judge about the law violation.
3. The prosecutor asks the judge to give a severe penalty.
4. The defendant asks the judge to lighten the penalty.
S. The judge decides, either to:

a. give the defendant a light penalty, or

b. give the defendant a severe penalty.

This script, given in greater detail in Chapter 4, represents the context.

Given Lexical Knowledge: Initally the program’s lexicon includes two given
phrases. The phrase for ask:

PS: pattern: X:person ask:verb <Z:question-sentence>
concept: (mtrans (actor X)
{object (goal-of X)
{(d=know Z)))

This phrase means X say that X want to know Z. It can produce sentences such
a5 he asked if it rained, he asked whether it rained, Or he asked when
it rained. However, it cannot produce a sentence such as he asked to go.
Second, there is the knowledge of the general MTRANS phrase:

P6: pattern: X:person ?v:verb Y <to Z:phrase(Y)>
concept: (mtrans (actor X)
{to Y)
(object (goal-situation Z)))

This general phrase is shared among a set of phrases, such as tell, order, in-
struct, etc. [t denotes the common syntactic interaction through the infinitive and the

154

common structure of the semantic representation: the actor informs the recipient a cer-
tain fact which conveys a common goal/plan of the speaker.

Initial Hypothesis: Two discrepancies are encountered in parsing the sentence using
the existing phrase, P5: syntactic and semantic. First, P5’s pattern cannot match the
infinitive form which appears in the input text. Therefore, the program resorts to the
general phrase P6, to extend the syntax of P5. Using the syntax of P6 with the specific
meaning of P35 yields a new hypothesis.

P7: pattern: X ask Y <to Z:phrase(Y)>
concept: (mtrana (actor X)
{to ¥)
(object (goal-of X)
(d-know 2)))

This means X tells Y that knowing 2 is a goal of X, where X is the actor in
the event Z, as implied by the syntactic pattern. Using this phrase, a conceptual
discrepancy is encountered. From the trial script which contains several expected
events, Mary is expected to make a plea or to explain her situation to the judge. She is
not expected to ask the judge a question.

Updating the Hypothesis: The context, given by $trial contains a slot in which the
Defendant appeals to the Judge to minimize the penaity. This slot is matched with the
event described in Mary asked the judge to give her a break. Using this
match, the hypothesis is corrected:

P8: pattern: X ask Y <to Z:phrase(Y)>

concept: (mtrans (actor X)
(to Y
{(object (goal-of X)
{act 2)))

This means: X tells Y that doing Z is a goal of X, This phrase describes the speech-
act performed by "X ask to do something." The interpretation of such a speech-act is
according to the context. Thus, in Mary asked the judge to give her a break,
the act is interpreted as auth-appeal, while in the judge asked Mary to approach
the bench, the act is interpreted as auth-decree, due to the asymmetry of the authori-
ty relationship.

155

Thus, RINA has used the general MTRANS phrase and the knowledge of the context
to (a) extend the syntax of the given lexical phrase, and (b) to learn a new meaning.

9.4 HANDLING AN OVERGENERALIZATION

In a similar way RINA acquires the special syntax of the word promise. Initially the
lexicon contains only the general phrase P35 and the phrase:

P9: pattern: X promise <to Y:phrase(X)>
concept: (mtrans (actor X)
(obiect (plan-of X)
(act 2)))

This phrase can handle sentences such as he promised tc go. When the next sen-
tence is heard, RINA makes an overgeneralization by using the syntax of P5:

User: The judge promised Mary to punish her lightly.
RINA: The judge told Mary that she would punish herself lightly?

The generated concept is:

(mtrans
(actor wilsonl)
{to mary2)
{cbject (plan-of wilsonl)
{act (actor mary2)
(plan (auth-decree
(actor mary2)
(object {polarity negq)
(cause (thwart-goal
{goal p-goal)
{goal-of mary2)

This concept contains two obvious discrepancies. First, the original sentence should
have been The judge promised Mary to punish herself lightly, and second,
this concept does not fit in the context. By matching it with the existing slots in $trial,
the identity of the "punishing” act is attributed to tme judge, Accordingly, the syntac-
tic pattern is corrected.

156

9.5 CONCLUSIONS

In this chapter we have described the aspect of phrase interaction, focusing our atten-
tion on the interaction of complement-taking verbs with their constituent phrases.
This specific language feature and the specific context chosen as the background for
the given text, serve to highlight our theory of phrasal processing.

Semantic concepts as well as syntactic patterns take part in the process of conceptual-
ly analyzing text. Normally, the syntactic derivation of a clause is much simpler than
the tedious semantic reasoning process. However, when the syntactic pattern is still
unknown, the conceptual interaction provides an alternative method in computing the
meaning of the clause. Moreover, the syntax itself can be bootstrapped from the se-
mantic derivation. Thus, the syntax is viewed as a short-cut, or a macro-operator,
which is based on previous lengthy derivations.

157

PartIV:
Design and Implementation

158

Chapter 10:
Implementing a Self-Extending
Parser

In the previous parts we have presented the learning and the parsing algorithms. How-
ever, we did not describe in detail the mechanisms themselves. In this part, we
describe in detail: (a) the operation of the parser (Chapter 10), and (b) the learning
strategies (Chapter 11).

In this chapter we describe the actual implementation of RINA’s parser. RINA is
designed to cope with incomplete lexical knowledge, and accordingly, RINA’s parser
is required: (a) not to stall in the presence of unknown phrases in the input text, and
(b) to detect discrepancies in parsing, thus to motivate the learning process. Accord-
ingly we have stated two principles:

(a) For linguistic knowledge to be learnable, it should not reflect either the
logic of the idiosyncratic parsing mechanism or the specifics of the pro-
gramming language in which the parser is written.

(b) For the parsing to motivate learning, the parser must monitor interpreta-
tions. Parsing is rigorous rather than lenient [Granger83]. In other words,
the parser is not required to function in spite of discrepnacies by ignoring
them, rather is is expeted to highlight detected discrepancies.

Accordingly we have designed the structure of the lexicon and the mechanism which
applies lexical entries in parsing.

159

10.1 INTRODUCTION

The program RINA [Zernik87b] is structured in a way that emphasizes parsing at the
phrase level. RINA’s mechanism can be compared to DYPAR [Dyer83] and to
PHRAN [Wilensky84].

1)

2)

DYPAR was an expectation-based parser. It operated by identifying verbs and
keywords in the input stream of words. Each keyword spawned demons
which anticipated other words and concepts. Only by satisfying the syntactic
and the semantic expectations of its demons, could the concept of the keyword
be instantiated.

PHRAN was a phrase-based parser. On the identification of a keyword, a set
of lexical phrases was activated. Each phrase was matched against the words
and concepts coming in the input stream. In case that the matching was suc-
cessful, the concept of the phrase was instantiated.

RINA is both phrase based and expectation based.

(1)

(2)

Like PHRAN, RINA too activates entire phrases which associate syntax and
semantics. However, in RINA phrases, are comprised of entire case frames
[Carbonell84] (and not of single words as in PHRAN) which enable abstrac-
tion of low-level parsing.

While expectations in DYPAR were embodied by procedural demons, RINA’
phrases account for context dependency by declarative lexical presupposi-
fions.

Thus, the program RINA is structured in a way that emphasizes parsing at the phrase

level.

10.1.1 The Structure of the Program

The program is described along two lines: (a) the functional components, and (b) the
data structures.

Case-Frame Parsing: Two Processes and a Stream: RINA analyzes phrases at the

160

case-frame

[Carbonell84] level. This is in contrast to DYPAR [Dyer83] and PHRAN [Arens82]
which inspect an input stream of single words and concepts. Thus, RINA operates as
two piped processes, interacting through a stream. The two processes are:

(1) Case-frame parsing (the "low level” process). This process pre-packages
words into entire case frames.

2 Phrasal parsing (the "high level" process). This process can be thought of
as a parser whose input tokens are not words but entire case frames.

Ths separation between this processes is only conceptual. The two processes operate
simultameously as text is read left-to-right. One process places case frames on the
stream while the second process retrieves them as input tokens. The structures in
both processes are similar, and both involve pattern unification. Yet they were
separated in order to enable phrasal parsing at a higher level of abstraction. It is ad-
vantageous to carry out phrase unification at the case-frame level, since it is preferred
to report parsing discrepancies at this level (As shown in Chapter 7, an error reported
at the case level would be: a case marker ON is missing. The same error would
be reported at the word level as: word ON, which is the 4th word in the pat-

tern, is missing).

The Data Structures: The program maintains five data structures.
(1) The phrasal lexicon which provides the linguistic database.

o Each entry, a phrase is a triple: a syntactic pattern associated with
a concept and a presupposition.

o The lexicon includes specific phrases which pertain fixed word
combinations, as well as general phrases which encompass many
word combinations.

The lexicon provides the entire linguistic knowledge required by the

parser. There is no other linguistic source in the system.

(2) The context reflects the conceptual structure of the discourse.

o The context accounts for reference retrieval by organizing con-
cepts mentioned in the text.

161

o The context provides a port through which the output of the parser
is accessible to the external world including the rest of the system
itself.)

3) The database contains domain knowledge in terms of rules and facts.

Phrases are interpreted using such knowledge.

(4) The case-frame-stream is an intermediate representation of the input
stream of words. Case frames on the stream are produced by the case-
frame parser, and are consumed as input tokens by the phrasal parser.

(5) The active-phrase-stack is the structure containing all candidate interpre-
tations.

{6) The current hypothesis is the tentative phrase under construction. This
phrase is being upgraded through the examples provided by the user.

10.1.2 The Functionality of the Program
The behavior of the program is specified in two ways. By parsing, and by learning.
The Basic Parsing Cycle: Parsing presents the short-term effect of reading text. By

parsing, text is converted into internal representation. The scheme of the operation is
shown below:

case~-frame stream >
parsing
laxicon

contaxt

Figure 10.1: The Parsing Scheme

By reading a sentence, input tokens, or case frames, are read in the input. Relative to

162

(a) the lexicon, and (b) the current context, the meaning of the sentence is constructed
and placed in the context.

The Basic Learning Cycle: Learning presents the long-term effect of parsing. By
learning, discrepancies discovered in the parsing process itself cause the upgrading of
the lexicon. The scheme is shown below:

casa-frame stream >
" current) learning
hypothesis
\

lexicon

Figure 10.2: The Learning Scheme

By reading a sentence, a discrepnacy is detected between the current hypothesis and
the input sentence. Relative to a set of discrepancy-driven strategies the hypothesis is
upgraded and placed in the lexicon.

10.1.3 Design Goals

The original set of design goals are stated below:

(1) Declarative representation. Neither LISP, nor any other programming
language, should be a prerequisite for using the parser, and for encoding
lexical entries.

2) Transparency of the mechanism. No knowiedge of the idiosyncratic logic
of the parser should be required in order to use the parser.

(3) Rigorous parsing. Information should be gleaned from linguistic clues at
all levels of speech. Thus, although we focus on semantic parsing, we do
not downplay the significance of linguistic clues.

163

4) Multiple interpretations. Ambiguity arises at all levels of speech. All pos-
sible interpretations of the text must be maintained and monitored for the
parser to eventually select the appropriate one.

(5) Concurrency at the cognitive level. Clearly, any program may be executed
on a parallel computer by relying solely on the allocation mechanism of
the machine itself. However, our purpose to maintain concurrency at the
interpretation level.

(6) Phrasal unification. Linguistic knowledge represented modular declara-
tive units become operational by unification.

A prerequisite to a implementing a self-extending parser is a parser whose lexicon is
easy to upgrade manually— the rationale being that if lexical entries are not modular,
not declarative, and do reflect the idiosyncratic logic of the specific parser, then (a) a
human operator might find it difficult to upgrade the lexicon manually, let alone (b) it
would be impossible to modify lexical entries programmatically.

In this chapter we describe the design issues and their solutions as implemented in
RINA. The intention of the chapter is threefold:

(L To provide a user’s manual to the program RINA.
) As a parsing algorithm which can be duplicated in other environments.

3 As a set of conventions for setting up an operational lexicon.

10.2 CASE-LEVEL PARSING

The case-frame parser converts a stream of input words into a stream of case frames.
It carries out four tasks:

(1) Match Syntactic Patterns
-identify simple syntactic patterns at the level of word-group morphology

(2) Instantiate semantic features
-glean the semantic information conveyed by the syntax.

3 Look up the lexicon.
-for content words, find word meanings in the lexicon.

164

(4) Retrieve referents.
-use the lexical descriptions of step (3) to retrieve instances from the con-
text.

Each one of these steps is given in greated detail in the next sections.
10.2.1 Matching Syntactic Patterns

Combine words and morphemes into noun groups and verb groups such as:

the young man
had not been taken

Figure 10.3: Two Word-Group Examples

Identify simple syntactic patterns, such as:

{type determiner) (type describer) (type noun)
or
{root be) (suff en)

Figure 10.4: Two Syntactic Patterns

Each one of these patterns specifies properties of adjacent words (i.e. <the young
man> and <been taken>).

10.2.2 Constructing a Case Frame

Using the meanings of such patterns, construct the entire case frame for a word group.
For example, for the group:

had not been taken

Figure 10.5: A Verb Group

determine tlic following properties:

((head wverb)
{root take)
{tense past)

165

{aspect perfect)
{(voice passive)
(polarity negative))

Figure 10.6: The Constructed Case Frame

Word group properties are given as pattern-concept pairs.

10.2.3 Looking Up the Lexicon

Access the lexicon. For example, for the group:

the young man
Figure 10.7: A Noun Group

where the constructed case frame was:

{ {determiner the)
(describer young)
(root man))

Figure 10.8: The Constructed Case Frame

get from the lexicon the phrases for young and man,

({age N-)) ({class person)
{gender male))

Figure 10.9: The Lexical Concepts

and construct the description:

descriptionl :
({head person)
(gender male)
(age N-))

Figure 10.10: The Combined Concept

166

10.2.4 Retrieving Referents

According to descriptionl above, find a matching concept in the context. Place the
concept in the concept slot of the case frame.

({head noun}

{root man)

{(describer young)
{(determiner the)

{concept john.4 paul.62})

Figure 10.11: The Instances Found in the Context

Notice that more than one referent can be found for a reference. The packaged case
frame is placed on the case-frame-stream.

10.2.5 The Case-Frame-Stream

The contents of the case-frame-stream is illustrated by a typical example, as yielded
in parsing the sentence:

Last week she took it up with her dad.

is given below:

CASE~-FRAME, 148:
((CONCEPT "WEEK.2071)
(ROCOT WEEK)
{MARKER NONE}
(DESCRIBER LAST)
(DETERMINER NCNE))

The case frame is given in a slot filler notation. It packages syntax and semantics.
Concept holds the instance of the object referred to. root, marker, describer, and
determiner hold syntactic features indentified in the reference.

CASE-FRAME ., 149:
{ (CONCEPT ~JENNY.1095)
(RCOT SHE)
(MARKER NONE)

167

Jenny which was found in the context is taken as the referent.

CASE-FRAME.150:
{ (TENSE PAST)
{ROOQT TAKE)
{(VOICE ACTIVE)
(MCDIFIER UP)
(PCLARITY POS))

This case frame describes the single word take and its modifier up. Although up
and take are separated in the text, they belong in the same case frame.

CASE-FRAME.151:

{ (CONCEPT
“CAR.2100
"GOAL.2125)

(ROOT IT)

(MARKER NONE)
(DETERMINER NONE))

The reference it retrieved two referents: the car, and Jenny’s goal to buy a car. The
slot-filler representation allows multiple values per slot.

CASE-FRAME.152:
{ (CONCEPT "HAROLD.2758)
(ROOT DAD)
({DETERMINER ((HEAD POSSESSIVE)
(ROOT SHE)
(CONCEPT “JENNY.10895))))

This case frame involves two references: her and dad. Both need to be resolved.
Her refers to Jenny and dad (in conjunction with her) refers to Jenny’s dad.

168

case frame

CASE~FRAME,148:
{ (CONCEPT "WEB.2071)
{(ROQOT WEEK)
{(MARKER NONE)
{(DESCRIBER LAST)
(DETERMINER NONE))

CASE-FRAME.149:
{ (CONCEPT "WEB.1095)
(ROOT SHE)
{MARKER NONE))

CASE-FRAME.150:
((TENSE PAST)
(ROOT TAKE}
(VOICE ACTIVE)
(MODIFIER UP)
(POLARITY PQS))

CASE-FRAME .151:
{ (CONCEPT
"WEB.2100
"WEB.2123)
(RCOT IT)
{MARKER NONE)
({DETERMINER NONE) }

CASE-FRAME.152:
((CONCEPT “WEB.Z2758)
(ROOT DAD)

(DETERMINER ({(HEAD POSSESSIVE)
{ROOT SHE)

mnemonic name

<week>

<jenny>

<take-up>

<it>

<with-dad >

{CONCEPT "WEB.1095)))}

Figure 10.12: The Case-Frame Stream

169

10.3 PHRASE-LEVEL PARSING

The major task in phrasal parsing is resolving ambiguity at the phrase level, while
coping with multiple values for case-frame concepts. Phrasal parsing is carried out in
seven steps:

1)

)

3)

(4)

&)

(6)

)]

Trigger a phrase.
-add the phrase to active-phrase-stack.

Inherit general linguistic properties.
-inherit word-order from general linguistic patterns.

Unify the pattern.
-unify the lexical case frames against the tokens on case-frame-stream.

Prove the presupposition.
-use the facts in the context plus the facts and rules in the database, try to
prove the presupposition.

Instantiate the concept. _
-using the binding list acquired in steps (3) and (4) instantiate the phrase
concept.

Interact with other phrases.
-in case there are "juxtaposed” phrases, create the combined meaning.

Select a phrase.
-select one of the phrases on the acrive-phrase-stack and place its meaning
in the context

These actions are described in greater detail in the next sections.

10.3.1 Triggering a Phrase

An indexing scheme is used for reducing the number of phrases being actually pro-
cessed. Theoretically, phrasal parsing could be done by matching all the phrases in
the lexicon. However, theoretically, there are tens of thousands of phrases in the
phrasal lexicon, and it is desireable to process only the relevant ones.

170

A simpie solution would be to index each phrase by its head, i.e.: take would be the
index for take it up with. However, in the phrasal lexicon there are hundreds of
phrases under take, and it is not practical to consider them all in each sentence in-
cluding take.

The solution is to index verb phrases under the fixed elements in their pattern. For ex-
ample consider the phrases below and their list of indices:

PATTERN INDEX-LIST

X take Y up with 2 take up with

X throw the book at Y throw the book at
X take up ¥ take up

X put X's foot down put foot down

Figure 10.13: Lexical Entries and their Indices

Only if all the indices for a phrase are encountered, then the phrase is triggered. This
way, only a minimal set of phrases is considered at each instant.

For example as the following sentence is read from left to right,

She took it up with her dad.

these are the phrases triggered on each word:

WORD TRIGGERED-PHRASE

she

toock X take Y

it

up X take up Y

with X take Y up with 2
her

dad

Figure 10.14: Phrases Triggered in Reading a Sentence

Notice, the fact that a certain phrase is triggered does not mean the phrase has been
matched. It merely means the phrase is a candidate for matching.

171

In the future we intend to use also semantic features in the indexing scheme, so that
phrases such as:

X take ¥ (as in She was taken by the car dealer)
X take Y (asin I take it that you are tired)

would not be considered each time take is encountered. Such a scheme would use
the presupposition as an index.

10.3.2 Unifying Case Frames

In order for a phrase to be instantiated its partern must first be matched successfully
with the input stream. Therefore, unification is carried out for each phrase, between:

(D The cases of the phrase pattern.

(2) The cases of the case-frame-stream.
Unification is based on GATE’s unifier [Mueller84] which matches a template against
a concept. Accordingly, the partially filled template is provided by the lexical case;
the fully specified case frame is provided by the case-frame-stream. Unification is
demonstrated for the sentence:

Last week, she took it up with her dad.

The case-frame-stream consists of the following case frames (the names are
Mnemonic):

The case-frame-stream :

. <week> <jenny> <take-up> <it> <with-dad>...

The active-phrase-stack :

Pl: «?x> <take> <?y> (as in take her home)
P2: <7x> <take-up> <?y> (as in take up jogging)

P3: <?x> <take-up> <?y> (as in take up an offer)

P4: <?x> <take-up> <?y> <with-7z> (asintake it up with an authority)

172

Figure 10.15: Input Cases vs. The Lexical Cases

where names of case frames are mnemonic. A pattern is matched if all its cases are
matched. Therefore, in this case:

Pl: <take-up> does not match <take>
P2: <?y> requires a soc-activity which is not found under <it>
P3: <?y>requires an gffer which is not found under <it>

P4: All the cases are matched.
As a result of the unification of P4, a binding list is created, containing the following
bindings:

{(x jenny.l) {(y goal.3) {(z harold.4))
Figure 10.16: The Binding List

In carrying out this unification we ignored the aspect of case-frame order. Namely,
the lexical pattern of P4, for example, does not specify that <2x> should appear be-
fore <take-up>. This information is provided by inheritance.

10.3.3 Inheriting Case Properties

General linguistic properties of phrases are not specified in each individual phrase.
The properties which are not specified in individual phrases are inherited from general
lexical phrases.

Inheriting by Unification: An Example: Consider the inheritance of word-order
properties in parsing the sentence:

She took it up with her dad.

The pattern of phraseS is merged with general templates which can contribute further
properties. For example two inheritance patterns which can possibly unify with the
lexical pattern above are:

T1:
{ (head pattern)
(subject ((loc bef) (marker none)))

173

{(verb {{(loc ref) (voice active)))
(objectl ((loc aft)))
(object2 ((loc aft))))

T2:
{ (head pattern)
(objectl ({(loc bef) (marker none)))
{verb {{loc ref) (voice passive)))
(subject ((marker by) (loc any)})
(chiject2 (({loc aft))))

Figure 10.17: Word Order Templates

Each one of these templates is merged with the lexical pattern above. Merging the
pattern P1 with the template T1 yields the pattern:

P2:
head pattern
verb ({loc ref) (root take) {(modifier up) (voice active))

subject ((loc bef) (marker none) {concept ?x) (restriction rl))
objectl ({loc aft) (marker none) (concept ?y) (restriction r2))
object2 ((loc aft}) (marker with) (concept 2?z) (restriction r3)}

Figure 10.18: P2: Augmenting Pattern P1 by Template T1

This pattern incorporates word-order information, and is amenable to unification with
the case-frame stream below.

({no 11) (describer last) (root week) (concept web.l112))

({no 12) {(root john) (concept web.3))

((no 13) (root take) {(modifier up) (tense past) (voice active))
({no 14) (root it) (concept web.12 web.107))

{(no 15) (root dad) (determiner his) (concept web.,3))

Figure 10.19: The Case-Frame Stream

The location information in the augmented pattern enables unification of input case
frames with lexical case frames. For example, the verb is taken as input case no 13,
and consequently, subject is taken as no 12, object! is taken as no 14, and object2 is
taken as no 15.

174

10.3.4 Proving the Presupposition

For a phrase to be instantiated, its presupposition needs to be satisfied by the context .
Rules and facts of the domain support the proof. For example, consider paragraphl
below:

Mary wanted to buy a car.
She took it up with her dad.

The presupposition of phraseS (x take up Y with 2)is:

{ (head authority)
{class soc-relation)
{high ?x)

(low 2y))

Figure 10.20: The Presupposition of PhraseS

A function call is issued to prove the proposition:

{prove target facts rules binding-list)

where the arguments of the function call are:

) target is the presupposition itself.

(2) facts is the list of concepts in the context. The fact supporting this actual
proof is:

factl:
{ (head family)
(class soc-structure)
(parent harold.4)
{actor jenny.l))

Figure 10.21: A Fact Found in the Context

3) rules is the list of rules in the database. The rule actually supporting the proof
is:

175

rulel:
{ (head rule)
(IF
({head family)
{class soc-~structure)
(parent 7?p)
{(person ?q)))
(THEN
{ {(head authority)
(class relation)
(high ?p)
(low 2q))))

Figure 10.22: A Rule Pertaining to Authority

Rulel encapsulates general common knowledge of peopie’s relationship.

4) binding-list is the list of variables already bound through the unification of the
pattern. At this point, the binding list is:

{(x john.l) {(y mary.2) (z goal.3))

Figure 10.23: The Binding List Input to the Proof

Proving proceeds in backward chaining. The actual chain is trivial:

presupposition --> rulel --> factl

Proving phrase presupposition usually does not involve a lengthy chain, such as re-
quired for example in planning.

10.3.5 Instantiating the Concept

The binding list created as a result of (a) unifying the pattern, and (b) proving the
presupposition, is used in instantiating the concept of the phrase. In our example
(parsing the sentence she took it up with her dad), the binding list is:

({x jenny.l) (y goal.3) (z harold.q))

Figure 10.24: The Input Binding List

176

The uninstantiated concept is:

(concept
{ (head auth-appeal)
(class event)
(from ?x)
{obj 2z)
{to ?¥)))

Figure 10.25: The Uninstantiated Concept

The concept instantiated using the binding list above is:

{concept
{ (head auth-appeal)
(class event)
{from jenny.l)
(ocbj goal.3)

{to harold.4)})

Figure 10.26: The Instantiated Meaning
This instantiated concept is taken as the meaning of the phrase.

Merging Concepts: A problem arises with phrases which do not actually instantiate
an additional concept, but rather modify an existing phrase. This is the case with
modal verbs and modifiers in general. The probelm is to specify and execute this
modification through the unify-instantiate discipline. The solution is described by an
example, phrase3 (given in Section 5.3 above). The uninstantiated concept is:

(concept
{*merge* 2z
{ (actor 7x)
(mode initiated))))

Figure 10.27: The Uninstantiated Concept

where 2z is the modified concept and the other expression is the modifier. The bind-
ing list is:

177

{{z (({head running-for-fitness) {x john.l})
(class soc-activity))

Figure 10.28: The Binding List

this is the modified concept

{ (head running-for-fitness)
{class soc-activity)
{actor john.3)

(mode initiated))

Figure 10.29: The Merged Concept

10.3.6 Juxtaposing Phrases

Complements such as prepositional phrases require a special treatment. Consider the
role and the meaning of the prepositional phrase in the following three sentences.
She took up jogging with her dad.

s1
s2; She learned swimming with a tutor,
s3 She took up the issue with her dad.

In s1 the complement means "she was accompanied by her dad”. In s2 the comple-
ment has a different meaning: "she was assiszed by the tutor”. In s3 the complement
is actually an integral part of the pattern. The selection of the appropriate meaning of
the complement, relies on the concept of the main verb.

Phrase Interaction: an Example

We show complement interaction through unification, in regard to the following para-
graph:

paragraphé :
Jenny wanted to go jogging.
She took it up with her dad.

Four phrases reside on the active-phrase-stack when the word with is encountered.

178

Pl: X take Y, (as in take her to school)

P2: X take up ¥, {as in take up an offer)
P3: X take up Y, (as in take up jogging)
P4: X take up 2z with Y, (as in take it up with an authority)

At this point two phrases involving with are triggered. The representation is given
below:

PSs:
{ (comment (?x ?v:verbh WITH ?y))
(pattern
((subject ((concept ?z0)
{restriction ((class person)))})
{(verb {{root 72v)
(prase-concept ?pc)
(restriction (({class soc-activity)))))
{chject { (marker WITH)
(restriction ((class person)))
{concept 7p}))))
{concept
{(*merge* ?pc
{ (company ?p)))))
Figure 10.30: With a Companion
P6:

((comment (?x ?v:verb WITH ?y))
{(pattern

({subject ((concept ?20)
(restriction ((claas person))}))

(verb ((root ?v)
{prase-concept ?pc)
{(restriction ({claas soc—activity))}))

(object ({(marker WITH)
(restriction ({(class person)))
{concept ?p)))))

179

(concept
{*merge* ?pc
((assist ?p))
(presupposition
(head profeasiocnal)
(class role-theme)
{actor ?p)
{activity ?pc)))))

Figure 10.31: With an Assistant

The interaction is by unification between: (a) A complement and (b) a main verb
phrase, for each one of the phrases on the active-phrase-stack. The unification in-
volves four steps:

(1) Check juxstaposition (the phrases do not overlap).

(2) Check semantic conditions.

3) Merge the concepts of both phrase.
Each one of these steps is detailed below.

(1) An interaction does not takes place if the complement is part of the phrase it-

self. Thus, P4 does not interact with either P5S or P6 (since the complement is part of
P4).

(@) Conditions are placed on the concept of the main phrase. The concept of the
main phrase is accessible (by unification) through the slot phrase-concept, filled in by
the variable ?pc. In interacting with P1, for example, 2pc gets bound to:

{ (thead ptrans}
(class act)
{(actor ?x)
(cbj ?y))))

Figure 10.32: The Phrase-Concept in Case of P1

Conditions can be expressed in two ways:

(a) restriction is a proposition to be satisfied by ?pc. This condition is actu-
ally met in the interaction of P5 with P3, where the concept bound to 2pc
is:

180

{ (head running-for-fitness)
{(class scc-activity)
(actor john.3)

{(mode initiated))

Figure 10.33 The Phrase-Concept in Case of P3

satisfying the restriction (class soc-activity).

(b) presupposition is a proposition to be proved which might include ?pc as
an argument. Unless Jenny’s father is known to be a jogging coach, the
presupposition is not satisfied by any phrase.

3 Thus, the interaction is successful only with P3, for which the concepr of P5 is
instantiated. Since this is a *merge*, the concept bound to ?pc is augmented. The
resulting concept is:

({head running-for-fitness)
{class soc-activity)
(actor john.3)

(mode initiated)
(company harold.4))

Figure 10.34: The Merged Concept

10.4 CONCLUSIONS

Thus the parser maintains multiple interpretations in the course of parsing a sentence.
The set of active interpretations grows as ambiguities are encountered and shrinks as
certain interpretations are ruled out.

Interpretations are generated as a cross product of:
(1) multiple referents (e.g.: it)

(2) multiple phrases (e.g.: take)
Interpretations are pruned out through:

(1) phrase restrictions
(2) phrase presupposition

181

3) phrase juxtaposition
Eventually, it is desireable that only a single interpretation is left out. However, the

parser cannot guarantee the uniqueness of the outcome of the parse. For example if _
the sentence is:

Jenny wanted to go jogging.
She took it up with her dad.

Then there are two interpretations which cannot be resolved by the program.

182

Chapter 11:
Strategies in Learning

In previous chapters we presented the learning scheme and the parsing mechanism.
We showed (a) how single phrases are extracted from episodes, and (b) how an entire
hierarchy is upgraded by generalization and specialization. Those schemes are general
and could be applied in any domain. We have not yet shown the rules used in those
schemes, which are specific to the linguistic domain.

In this chapter we detail the strategies which facilitate the learning process. These
strategies are specific to a language learning program, and account for its inductive
behavior. In order to illustrate the use these rules, we first outline a process model in
which rules are applied, and then we detail the rules themselves.

11.1 FIGURATIVE PHRASE ACQUISITION: A PROCESS MODEL

In this section we describe a process model of figurative phrase acquisition, driven by
learning strategies. Consider the situation in which the figurative phrase throw the
book at somebody is first encountered.

User: The mobster eluded prosecution for years.
Last month, they threw the book at him
for income~tax evasion.
RINA: The prosecutor propelled a book at him?
User: No. A judge threw the book at him.
RINA: The judge threw the bock at him. He found him guilty.

183

Angd later on:

User: The dean of the school threw the book at John.
RINA: He punished him.

Process 1: A Day in Court
There are three stages in the acquisition process: (1) Applying the literal interpreta-
tion; (2) Acquiring the figurative phrase; (3) Generalizing the new phrase beyond the
specific context.

11.1.1 Literal Interpretation

In the absence of the appropriate phrase in the lexicon, RINA utilizes other available
knowledge sources, namely (a) the literal interpretation and (b) the context. The
literal interpretation is given by the phrase:

pattern: X:person throw Y:phys-obj <at Z:person>
concept: (act (propel (actor X)
(object Y)
(to {location-of 2)))}
(purpose (thwart (goal p-health)
(goal-of X)))

Figure 11.1: Propel a Phys-Obj

This phrase describes propelling an object in order to hit another person. Notice that
no presupposition is specified. General phrases such as take, give, catch, and
throw do not have a expressed presupposition since they can be applied in many si-
tuations.*

The literal interpretation fails by plan/goal analysis. In the context laid down by the
first phrase (prosecution has active-goal to punish the criminal), "propelling a book"
does not serve the prosecution’s goals. In spite of the discrepancy, RINA spells out

* Notice the distinction between preconditions and presupposition. While a precondition for
"throwing a ball” is "first holding it", this is not part of the phrase presupposition. Conditions which are
implied by common sense or world knowledge do not belong in the lexicon.

184

that interpretation above with a question mark, The prosecutor propelled a book
at him? to notify the user about her current state of knowledge, and the fact that a
discrepancy has been detected.

11.1.2 Learning by Feature Extraction

In constructing the new hypothesis, the program must extract the relevant features
from the given episode.

(a) The initial phrase presupposition is taken as the entire trial script.
(b) The pattern is extracted from the sample sentence.

(c) The concept is extracted from the script.
In extracting either the pattern or the concept, the problem is to distinguish between
features which are relevant and should be taken in as part of the phrase, and features
which are irrelevant and thus should be left out. Moreover, some features should be
taken as is, where other features must be abstracted before they can be incorporated.

11.1.3 Forming the Pattern

Four rules are used in extracting the linguistic pattern from the sentence:

Last month, they threw the book at him for income-tax evasion.

(1) Initially, use an existing literal pattern. In this case, the initial pattern is:

patternl : X:person throw:verb Z:phys-obj <at Y:person>

(2) Examine other cases in the sample sentence, and include in the pattern cases
which could not be interpreted by general interpretation. There are two such cases:

(a) Last month could be interpreted as a general time adverb (i.e.: last year
he was 3till enrolled at UCLA, the vacation started last week,
etc.).

(b) For income-tax evasion can be interpreted as a element-paid-for ad-
verb (i.e.: he paid dearly for his crime, he was sentenced for a murder
he did not commit, etc.).

Thus, both these cases are excluded.

3) Variablize references which can be instantiated in the context. In this case X

185

is the Judge and Y is the Defendant. They are tirned into as variables, as opposed to
the other case:

(4) Freeze references which cannot be instantiated in the context. No referent is
found for the reference the book. Therefore, that reference is taken as a frozen part
of the pattern instead of the case z:phys-obj.

The resulting pattern is:

pattern2s: X:person throw:verb «the book> <at Y:person>

11,1.4 Forming the Concept

In selecting the concept of the phrase, there are four possibilities, namely the events
shown in Figure 4.1. The choice of the appropriate one among these four events is fa-
cilitated by linguistic clues. As opposed to the phrase they threw the bookto him
which implies cooperation between the characters, the phrase they threw the book
at him implies a goal conflict between the characters. at implies not taking ack-
nowledgement protocol into consideration. E.g., x throws the rock to y implies
that x catches y’s attention, and gets acknowledgement for y’s receipt of the rock. On
the other hand, x throws the rockat y implies that y may not be aware or ready to
receive the rock. This analysis applies also to talk at vs. talk to, etc. Since this
property is shared among many verbs, it is encoded in the lexicon as a general phrase:

pattern: X:person ?v:verb Y:physobj <at Z:person>
concept: (propel

{actor X)
{object Y)
(to zZ)

{mode no-acknowledge))

Figure 11.2: propel at, a General Phrase

Notice that rather than having a specific root, the pattern of this phrase leaves out the
root of the verb as a variable. From lack of acknowledgement, a goal conflict may be
inferred.

186

(thwart-goal
(goal p-health)
(goal-of Z))

Using this concept as a search pattern, the "punishment-decision” is selected from
$trial, Thus, the phrase acquired so far is:

pattern: X:person throw <the book> <at Y:person>
concept: (select-plan
(actor X}

{plan (thwart-goal
{goal p-goal)
(goal-of Y))))
presupposition: (head trial)
{judge X)
{defendant Y)

Figure 11.3: The Acquired Phrase

11.1.5 Phrase Generalization

Although RINA has acquired the phrase in a specific context, she might hear the
phrase in a different context. She should be able to transfer the phrase across specitic
contexts by generalization. RINA generalizes phrase meanings by analogical map-
ping. Thus, when hearing the sentence below, an analogy is found between the two
contexts.

The third time he caught John cheating in an exam,
the profeasor threw the book at him.

The trial-script is indexed to a general aurhority relationship. The actions in a trial are
explained by the existence of that relationship. For example, by saying something to
the Judge, the Defendant does not dictate the outcome of the situation. He merely in-
forms the Judge with some facts in order to influence the verdict. On the other hand,
by his decision, the Judge does determine the outcome of the situation since he
presents an authority.

187

Three similarities are found between the $trial and the scene involving John and the
professor: (a) The authority relationship between X and Y; (b) A law-violation by Y;
(c) A decision by X.

Therefore, the phrase presupposition is generalized from the specific trial-script into
the general authority-decree situation which encompasses both examples.

11.2 THE STRATEGIES

Phrases are extracted from input sentences by failure-driven strategies. For example,
consider the sentence:

Last month, they threw the bock at Al Capone.
The scope and the variability of the yet unknown pattern must be determined, and a
hypothesis about the new pattern must be constructed as follows:

X:person throw:verb <the book> <at Y:person>

By applying learning strategies, an instance sentence is converted into a lexical pat-
tern which can be applied in other instances.

Strategies are applied not only in forming an initial hypothesis, but also in upgrading
an existing hypothesis. For example for the phrase pavid took on Goliath, the ini-
tial hypothesis is:

X:person take:verb <on Y:person>

This incorrect hypothesis is upgraded when the user provides the second example:

He took him on.

This sentence does not match the pattern above, and consequently a discrepancy is
detected. The hypothesis must be upgraded by analyzing the discrepancy. Thus, learn-
ing is an on-going process motivated by detection of failures.

188

11.2.1 Extracting a New Pattern

The user’s first example is the following sentence:

User: Last month, they threw the book at him for tax evasion.

From this sentence the program must extract a pattern. There are two issues in ex-
tracting the pattern.

Scope: Which parts of the sentence belong in the pattern and which parts do not?
Variability: Among the included parts, which elements should be frozen (taken ver-
batim) and which elements should be variabilized?
(1) General Complements: The prepositional phrase for tax evasion is taken as
a general phrase. There are several general phrases for for in the lexicon:

For a time unit, as in for a short period of time.

For a purpose, as in he worked hard for his degree.

For a matching act, as in he was punished for his crimes, OF he was re-
warded for his bravery.

For a beneficiary, as in he worked hard for his family.

For in the input sentence is assumed to belong in the third class, where tax evasion
is taken to be the law violation Capone was sentenced for.

modifier : for tax evasion
lexical phrase : for A:act (for a matching act)
action: exclude a general modifier

Figure 11.4: Excluding a prepositional phrase

Similarly 1ast month is also taken as such a general modifier.

modifier : last month
lexical phrase: last T:time-unit
action : exclude a general modifier

Figure 11.5: Excluding a modifier

189

Learning is Relative to the Lexicon

An apparent weakness of this strategy is its dependence on the current lexicon con-
tents. It does not sound right that learning should depend on the particular contents of
the lexicon. However, this is the main strength of our theory. Learning must be rela-
tive to the lexicon since by learning the lexicon itself is modified. Thus learning is a
negative feedback mechanism. This idea is further explained in Section 11.5.

Specific Attachments: at him, on the other hand, cannot be interpreted as such a
general phrase. There are two general interpretations for at:

at time unit, as in at noon.
at place-of-activity, as in she works at school.

Since these two phrases do not match the current case, the phrase at him is included
in the pattern.

modifier : at him
lexical phrase : none
action : include a specific modifierx

Figure 11.6: Including a prepositional phrase

Similarly, the book cannot be interpreted as a general modifier.

modifier : the book
lexical phrase: none
action : include a direct obiject

Figure 11.7: Including the direct object
Thus, last month, and for a tax ewvasion are left out, while the book and at

him are taken in,

Therefore, References which can be resolved in the context are turned into variables.
On the other hand, references which cannot be resolved are kept as literals.

Variabilized Elements: The reference him is resolved by the parser as Al Capone.
Thus him is turned into a variable.

old-reference: him

190

referent: Capone.l104
action : variabilize resolved reference
new-reference: Y:person

Figure 11.8: Turning a reference into a variable
Frozen Elements:

The reference the book cannot be resolved in the context, as a book was not men-
tioned in the discourse. Therefore the reference is taken as a frozen unit.

old-reference: the book

referent : none

action : freeze unresolved reference
new-reference: the book

Figure 11.9: Freezing a reference

Similarly, references are frozen in other exampies:

He kicked the bucket.

They buried the hatchet.

They carried the water.

His father laid down thelaw.
He went to Davey Jones’ Locker.

The references in all these phrases cannot be resolved in their corresponding contexts.
However, consider the same reference in a different context:

The judge was carrying a heavy book.
He threw the book at Al.

In this context, since a book has been mentioned, the reference is not taken as a frozen
element, rather it is interpreted as a variable.

Resolving a Reference by a Script: Referents must not be given explicitly in the
context. They can be derived indirectly, as in the following text:

Al went on trial.
The judge threw the book at him.

191

A judge has not been mentioned explicitly in the context, however the reference the
judge is taken as a role holder in the trial script. This strategy is based on a parsing
strategy first introduced by Cullingford [Cullingford78] in script application.

old-reference: the judge

referent : judge.106 in trial.ldS

action ; variabilize reference resolved in a script
new-reference: X:person

Figure 11.10: Vanabilizing a reference resolved in a script

This is in contrast to a the following paragraph (which appeared as a newspaper title):

Judge Wins the California Lottery.

Here, a trial script has not been instantiated. In fact, it is merely a coincidence that
the winner in the lottery script is a judge.

11.2.2 A Phrase-Maodification Cycle

To illustrate pattern-moedification rules, we introduce here a second process model, in
which the program acquires the phrase to take it up with:

User: Greg needed money for his trip.
He took it up with his dad.
RINA: He took the money from his dad?

User: No. He took up the problem with his dad.
RINA: He sclved the problem with his dad? *

He took it up?
User: No. He discussed the problem with his dad.

RINA: He appealed to an authority?
He took it up with his dad?

User: 0Ok.

Process 2: The Trip to Palm Springs

* Notice that althcugh the user’s example looks as if it is a "give away”, RINA fails in zeroing on the
appropriate meaning. Take it up with does not mean "sclve a problem". How could the program
miss such a straightforward clue? See Section 11.2.5 for explanation

192

Notice the stages in the sequence:

(1) Literal interpretation: RINA first attempts the use of an existing entry:
"he took the money from his dad”.

(2) New Hypothesis formation: the program extracts the wrong meaning for
the phrase, assuming that to take it up with means "to solve a prob-

lem".

(3 Hypothesis correction: At this stage the program forms the correct
meaning.

Compare the initial and the second hypotheses as they are given in the figure below:

before: pattern: X:person take Y:possession
concept: X atrans Y

after: pattern: X:person <take up> Y:gcal-situation
concept: X know a plan for Y

Figure 11.12: The hypothesis before and after

The sentence which motivates the modification is given below:

User: He took up the problem with his dad.

Three discrepancies are encountered by comparing the initial hypothesis with the new
input:

)] Up-in the sentence is extraneous.
2 With his father iS extraneous.

3) The problem does not refer to a possession.
Accordingly, the following strategies are applied.

Identifying a Verb Modifier: up appears in the lexicon as a verb modifier which
defines a vertical positive line (.e.g., he looked up, he put it up on the shelf,
etc.). However, this interpretation does not fit the meaning above ("his dad helped
him"), thus the modifier is taken as a mandatory part of the phrase.

old-hypothesis;: X take Y
input : he took up the problem (with his father)
discrepancy: extraneous particle up

193

action : include particle as a verb modifier
new-hypothesis: X <take up> Y

Figure 11.13: Including a verb modifier

Identifying a Case Marker: with appears in the lexicon in four phrases, as follows:

(1) Act with instrument, as in he dug a hole with his fingers.

2) Act with an assistant, as inshe learned tennis with a pro.

(3) Social-act with a company, as in he walked with his brother.

()] Communication-act with a partner, as in he discussed it with his

atives.

The second lexical interpretation fits well in the hypothesized meaning above (“his fa-
ther helped him"), and therefore this element is taken as a general complement—and is
not included in the pattern.

old-hypothesis: X <take up> Y

input: he took up the problem with his father
discrepancy: extraneous phrase withZ

lexical-phrase: X V:act <with 2Z>

action ; exclude a modifier

new-hypothesis: X <take up> Y

Figure 11.14: Excluding a general complement

A Class Discrepancy: The class discrepancy motivates the following strategy:

old-hypothesis: X take Y:possession

input he took (up) theproblem (with him)
discrepancy: referent class is not subsumed by reference class
action : change reference class

new-hypothesis: X take Y:goal-situation

Figure 11.15: Changing a reference class
Accordingly, the class specifications are modified.

Correcting a Particle’s Role: The process model below is given in order to introduce
another strategy involving class specifications:

194

User: David took on Geclaith,
RINA: He took on him. He won the fight.

User: No. He decided to fight. He took him on.
RINA: He accepted the challenge. He took him on.

Process 3: David and Goliath

In acquiring the phrase take on, RINA has initially assumed that on is a case mark-
er. This is corrected by the user’s sentence:

User: He took him con.

The hypothesis before and after the correction is given below.

before: pattern: X:person take <0m Y:person>
concept: X win a fight with ¥

after: pattern : X:person <take on> Y:person
concept : X decide to fight Y

Figure 11.16: The hypothesis before and after

In making the first hypothesis, the program classified the phrase incorrectly along
with phrases such as he nibbled on the corn, he hit on her, he turned on
him, etc. The user’s sentence causes the detection of rwo discrepancies:

X take <on I>
he took him on

Figure 11.17: Comparing the Hypothesis with the Exampie

(a) on is absent from its designated location as a case marker.

(b) on appears extraneously after the object.
This combination of discrepancies motivates the following strategy:

old-hypothesis : X take <on Y>

example : he took him on

discrepancy: extraneous particle om
missing case marker om

lexical-phrase : <V:verb on>

action : change role of particle

185

new-hypothesis : X <take on> Y

Figure 11.18: A case marker becomes a verb modifier

This hypothesis is further generalized in later iterations.

11.2.3 Modifying Class Specifications

In this section we describe the strategies pertaining to class specifications. The dilem-
ma presented in this section is when to modify and when not to modify class
specifications.

Indirect References: Class specifications are problematic. They look nice on paper
but in real parsing they never work out properly. Consider the following set of sen-
tences:

John listened to the sound of his car.

He listened to Mozart before he went to sleep.
He listened to the kidsin the backyard.

He listened to his parents.

The marked reference attains a different class in each instance, aithough the lexical
class specifications for listen require a unique class, sound-type, as shown in the
following phrase:

Po: pattern: X:person listen Y : sound-type
concept: X attend X's ears to Y

Figure 11.19: The phrase for listen

However, in light of the diversity of types in the sentences above, how could we
specify a fixed class in the lexicon? Alternatively, consider a learning algorithm which
modifies lexical class specifications each time it encounters a class discrepancy. In
that case, the lexical representaton would appear pretty fluid. The phenomenon
above is called indirect reference and is described by Fauconnier [Fauconnier85] and
Hershkovitz [Hershkovits85] In general, people avoid the use of lengthy descriptions
when shorter ones suffice. Thus a person would not say:

I listened to the air-~waves created by a needle of
a record-player in playing a record of music
written by Mozart before going to sleep.

196

A typical short cut would be:

I listened to mozart before going to sleep.

Similarly, the following sentences are short cuts:
I ran into my neighbor on a red light.
She likes horses.
They both stand for longer sentences which have been reduced:

My car ran into my neighbor’s car.
She like’s horseback riding. or perhaps:
She likes eating horses,

Indirect references pose a difficuit problem in forming a discrepancy-based learning
strategy. The problem is: when a difference exists between the nominal class and the
actual class, when is class modification appropriate, and when it is not appropriate?

A Class Discrepancy: Assume that the current hypothesis for the phrase X take up
Y with Z is as given below (see Process Model 1).

X:person take Y:possession

The user corrects this hypothesis by providing the following sentence:

He took up the problem with his dad.
Due to this sentence, the program changes the class of the variable Y from a posses-
sion to a goal-situation.

old-hypothesis: X take Y:possession

input ; he took (up) theproblem (with him)
discrepancy: referent class is not subsumed by reference class
action : change reference class

new-hypothesis : X take Y:goal-situation
Figure 11.20: Changing a reference class

Generalizing a Reference Class: A similar discrepancy occurs with the phrase take
on. as shown in the Process Model 2. The current hypothesis is given below as:

197

X:person <take on> Y:person

This hypothesis fails in handling the next example:

John took on a new job.

Since a new job is not a reference to a person, a modification is required. Thus, ac-
cording to the strategy in Figure 11.20, should the class specifications be modified to
accommodate for the new reference as show below?

X:person <take on> Y:task

The learning situation here is different than the previous one. In take it up with,
there was a single episode whose interpretation required a correction: "no, it is the
problem, not the money that he took up with his father". In contrast, here there are
two episodes which must be encompassed by a general concept. A generalization is
required to cover both person and task. The generalization is found based on the
underlying contexts. In both examples, the referent presents a challenge to the actor.
Therefore, the pattern is generalized:

X:person <take on> Y:goal-situation

The specific goal-situation, namely challenge, is not given in the pattern, rather it is
imposed as an underlying presupposition.

old-hypothesis: X <take on> Y:person

input He took on a new job.
discrepancy: twe referents subsumed by a common class
action : generalize the class

new-hypothesis: X take Y:goal-situation
Figure 11.21: Finding a common generalization

Indirect Reference: Consider the lexical phrase PO:

PO: pattern: X:person listen <to ¥Y:sound>
concept: X attend X’'s ears to Y

The input sentence is:

158

John listened to Mozart.

In this case, should the strategy in Figure 11.21 be applied to update the class
specifications from sound to person? In this case, no modification should occur since
the reference Mozart is dereferenced indirectly:

mozart --> name —--> person --> musician --> record --> socund

Since the ultimate referent is of type sound the modifying strategy is not applied. The
rule is:

old-hypothesis: X listen <to Y:sound>

input John listened to Mozart.
discrepancy: referent resolved indirectly
action : none

new-hypothesis : X listen <to Y:sound>

Figure 11.22: Finding an indirect referent

This strategy accounts for cases where a referent is found indirectly.

11.2.4 Learning General Phrases

So called "optional” modifiers have been problematic in any lexical representation,
Consider for example, the phrase in the sentence:

John sold the car to Mary for $1500.

What is the representation of the phrase for sell1? In particular, does it include the
modifiers for and to? One possible representation for this phrase and two similar
phrases is given below:

P1: U:persaon sell V:possession <to X:person>

<for Y:posession>
P2; U:person buy V:possession <from X:person>

<for ¥Y:posession>
P3: U:person purchase V:possesaion <form X:person>

<for Y:posession>

* This way linguistic systems such as [Wilensky84, Wilks73] represent phrase complements. In fact, in
those systems, the parts which are not mandatory are marked by "optional”.

199

Three problems are identified regarding the appearance of the modifier <for
Y:possession: in all these phrases:
(1) This modifier is not mandatory. For example, P1 can appearasin I sold
my car, without the modifier.

2 This representation is not economical, since the same modifier is repeated
in the same form, carrying the same meaning in all three instances.

3) This representation does not allow processing of phrases which do not ap-
pear explicitly on the list.
DHPL'’s solution is to maintain a single generalized phrase for for which is applica-
ble in P1-P3, as well as in many other phrases:

P4:
pattern : X:person V:atrans-act Z:possession

<for Y:pocssession>
presupposition: persons X and U are involved in a transaction T
concept: within T, Y is exchanged for Z

Figure 11.23: The phrase for for

In addition to the three problems above, this representation also solves the problem of
representing word senses in the lexicon. Phrase P4 conveys one sense of the word
for. Next, consider the impact of this generalized phrase on the learning process.

The General Phrase P4 Already Exists: Consider the case in which the program en-
counters the new word to trade, in the following sentence:

{1): John traded the book for a journal.

How can a program guess the meaning of the word trade? An important clue is pro-
vided by the modifier for a journal as given in phrase P4, which suggests that one
possession was exchanged for another. However, in acquiring the phrase for trade,
the modifier should be excluded from the new pattern since it can be derived by P4.
The applied strategy, is the same as in Figure 11.23:

modifier for a journal
lexical phrase: P4- for a matching poassession
action : exclude a general modifier

Figure 11.24: Excluding the general modifier

200

In this case, the phrase acquired for trade is as given below:

PS: pattern: X:person trade Y:possession
presupposition : X is involved in a transaction T
concept : X gave Y

Figure 11.25: The new phrase for trade

Here, the modifier does not appear in the new phrase for trade.

The General Modifier P4 is Yet Unknown: In contrast, consider the case of a
learner who encounters the word trade in sentence (1), but who is not familiar with
the basic phrase P4 (a person whose English competence is pretty low). In this case,
the learning process is different in two ways:

(1) The word trade is more difficult to acquire since for cannot serve as a
linguistic clue.

2) For is included within the new pattern since it cannot be derived by the
general phrase P4 (which yet does not exist).

The applied strategy here is the same as in Figure 11.26:

modifier : for a journal
lexical phrase: none
action : include a specific modifier

Figure 11.26: Including a specific modifier

In this case the phrase constructed for trade is given below:

P6:
pattern: X:peraon trade Y:posseasion
<for Z:possession>
presuppaosition : X is involved in a transaction T
concept: X exchanges Y for 2

Figure 11.27: The new phrase for trade
Constructing the Phrase P4 Itself: How is the phrase P4 itself added to the lexicon?

General phrases such as P4 are created by generalization of specific phrases such as
P6 above. Suppose that after acquiring P6, the model has acquired a similar phrase

201

P7 for sell:

P7:
pattern : X:person sell Y:possession
<for Z:possession>
presupposition : X is involved in a transaction T
concept: X exchanges Y for 2

Figure 11.28: The new phrase for sell

At this point, by detecting the similarity between the features of P5 and P6, the model
creates and adds to the lexicon the new general phrase P4 above. The strategy applied
in the generalization is given as follows:

If two new phrases PA and PB have a common concept and a common presupposi-
tion, and they also have a common modifier, then

(1) Create a new general phrase PC by changing the verb into a variable, and
maintaining the modifier itself.

2) Link PA and PB to the general phrase PC.

Notice that although a general phrase PC could account for the modifier M in both PA
and PB, M is not removed from PA and PB themselves. Thus, a small hierarchy is
added on to the lexicon, as shown in Chapter 6.

11.2.5 Extracting Phrase Concepts

So far we have described methods for pattern formation. By giving three examples,
we describe a general strategy for concept formation. The general problem in guess-
ing the meaning is that the context includes many concepts, some appropriate and
some inappropriate for meaning formation. The task is to identify and to extract one
of these concepts as the phrase meaning. The general strategy is to select the concept
which best matches the given linguistic clues.

Story Points: The story of David and Goliath is given in terms of story points

[Wilensky82]). Story points are used to memorize past events, indexing them by
high-level knowledge structures. Leamers who are asked to reconstruct the biblical

202

story* cannot tell the exact details of the fight between the characters. However, they
all remember two points:

. In spite of his physical inferiority, David decided to fight Goliath.

. In spite of his physical inferiority, David won the fight.
These story points serve as the context in learning the new phrase.

The second factor in learning a phrase is the senses conveyed by the single words
themselves. In particular, the word on has a meaning "a positive state”. Thus, when
the new phrase take on, is encountered in the presence of the story points given
above, the second story point-which means "David won the fight" is selected. The po-
sitive outcome of the fight as conveyed by that point best matches the meaning of the
particles.

Scriptal Events: The phrase throw the book at somebody is encountered In the
context of the trial-script. As shown in Chapter 4, this script describes the events tak-
ing place in court. Three parties are involved: the judge (J), the defendant (D), and
the prosecutor (P). The script is given as a sequence of events:

(1) P communicates to J in order for J to punish D.
) D communicates to J in order to avoid the punishment.
3) D selects either one of two acts:

(a) punish (thwart a preservation goal of) D.

(b) do not punish D.
The partial concept constructed for J throw the book at D (in absence of the
figurative phrase) is:

J thwart a preservation geoal of D
This particular partial concept was constructed due to the sense of the word at (as

described in Section 11.1). Event 3a is selected due to its match with the partial con-
cept obtained by the literal interpretation.

General Planning Knowledge: Another aspect of world knowledge being used in
learning is knowledge of planning behavior. As shown in Chapter 4, there are two

‘We consider here only learners who had heard the story earlier.

203

kinds of planning knowledge: abstract strategies, and specific strategies. For exampie,
consider planning aspects in the context created by the following sentence.

Greg needed money for his trip.

He took it up from his dad.

The major goal is for Greg (Gto go on a trip (G1). This goal G1 has an active subgoal,
that G possess money (G2). G2 on its part has four potential subgoals: earn money
(G3), borrow money (G4), draw money from bank (GS), and steal money (G6). This
specific-planning level is assumed by the learner in his first hypothesis:

He took-the money from his dad.

Here subgoal G4 is selected, assuming that he took it up with his dad means
"he borrowed the money from him".

Next, the user replies:

No. He took the problem with him,

This causes the program to shift its search to abstract-planing. In fact, it seems that
the user gave away the entire meaning. How could the program make an error in spite
of this explicit example? The reference the problem points to a goal situation (rather
than a physical object as first hypothesized by the learner). Moreover, a problem is
represented as follows:

A Problem:
active goal G of person A for which a feasible plan P is not known to A.

Accordingly, one planning act associated with such a goal situation is

A find a plan P for achieving goal G.

This act is selected as the meaning of the phrase, and is spelled out by the program:

He sclved the problem with his dad.

(Here with his dad is just a complement and not a mandatory part of the phrase).
Similarly, the next iteration with the user involves a planning act. One possible action
in face of a problem is consulting with an authority about the problem.

A communicate to B (an authority) about G.

204

This planning act is selected by the learner in response to the user’s example:

He discussed it with his dad.

Finally, after three iterations, the resulting phrase is:

pattern: X <take up> 2:goal-situation

<with Y:person>
presupposition : Y present an authority fo X
concept: X communicate about Z to Y

11.3 CONCLUSIONS

We have presented learning rules for creating and modifying lexical phrases. We have
shown how these rules, or learning strategies, take part in three process models where
unknown phrases are acquired. In each case, learning is a gradual process of
refinement and generalization.

In forming patterns, the strategies were motivated by detecting syntactic discrepan-
cies. The entire body of rules is motivated by one basic intuition: when a discrepancy
is encountered, correct the source of that discrepancy.

In forming concepts, we have shown one general strategy. Two elements are given:
(a) the context

(b) the single words comprising the new phrase
However, each one of these two elements individually cannot yield the desired mean-
ing, since:

(a) The context contains many concepts

(b) The single words construct only a partial meaning.
Therefore, the rule is to select the concept which best matches the partial meaning
constructed by the single words.

205

Chapter 12:
Summary, Conclusions
and Future Work

We have presented a dynamic lexical structure called DHPL, and we described a
learning model embodied by the program RINA.

12.1 CONCLUSIONS

DHPL (Dynamic Hierarchical Phrasal Lexicon) supports language acquisition by four
features:

Phrases: The lexicon contains entire phrases, accounting uniformly for an entire
range including productive as well as non-productive phrase.

Hierarchy: The lexicon organizes in a hierarchy phrases ranging from specific "lexi-
cal entries" at the bottom, to general "grammar rules” at the top.

Lexical Presupposition: Contextual conditions are incorporated into the lexicon
through lexical presuppositions. Presuppositions account for disambiguation in pars-
ing, and for phrase selection in generation.

Integration of Syntax and Semantics: Each phrase specifies a relation (in the logical

sense) between syntax and semantics. Thus, the question whether any lexical feature
is syntax or whether it is semantics, becomes insignificant. For example, consider

206

thematic roles for a phrase such as promise. Are they syntactic or are they semantic?
They can be viewed as either.

In the program RINA we have shown three results in language processing:

Coping with Lexical Gaps: The hierarchical structure of the lexicon enables parsing
of text even when certain lexical elements are unknown. A partial meaning for the
text, which serves as an initial hypothesis, is formed by applying general knowledge
when specific knowledge is missing.

Using Lexical Clues: In learning meanings of phrases we have used "linguistic
clues”. For instance, the word at in the judge threw the book at Al, SUPpOTIS
the learning process of that idiom. What is the justification for drawing inferences
from apparently vague senses of words? In making the lexicon amenable as a linguis-
tic database, from which inference rules can be drawn, we have systematically organ-
ized words in a hierarchy, representing words such as at, to, around and away.
Thus, the use of linguistic clues per se is not inappropriate; however, all linguistic
clues used in a reasoning system, must be drawn from a well-organized lexicon.

Knowledge Propagation through Generalization and Specialization: Hierarchy is
a precondition for learning by generalization. Through the hierarchical scheme, there
are two ways of propagating knowledge: First, bottom-up—from instantiated episodes
up towards specific phrases, and even higher to generalized word senses. Second,
top-down—generalized word senses are propagated down for prediction of new
specific phrases. In both cases, effective learning depends on the existence of a well
refined hierarchy.

Any linguistic system must accommodate not only for spanning a static language, but
also for augmenting the original linguistic system itself. In DHPL we have shown
how, for a variety of linguistic features, the lexicon itself can be augmented through
linguistic experiences. Thus we have accomplished a dynamic linguistic behavior.

207

12.2 STATUS OF IMPLEMENTATION

The computer prgram RINA is written in T [Rees84], which is an object-oriented
LISP dialect. RINA has been developed using GATE [Mucller87], a graphic
artificial-intelligence development environment. RINA is an ongoing project, whose
current status is described by these figures:

1
)
3
4)
3

6

)

RINA’s lexicon has more than 200 phrases.
There are 35 learning rules.

RINA can learn 10 different types of phrases.
RINA has about 10,000 lines of code.

Parsing a sentence on an APOLLO workstation takes about 40 seconds, in
the presence of 5 competing interpretations.

Each step in a learning session takes about 1 minute. Most of this time is
spent by the theorem prover.

RINA uses in representing world knowledge: 5 goal situations, 3 scripts,

4 interpersonal relations (each of this structures is associated with rules),
and more than 200 specific planning rules.

12.3 LIMITATIONS

The following aspects have not been covered by the current model.

Learning Concepts: Our model does not concern the construction of new semantic
concepts. Learning in RINA amounts to making new associations between patterns
and already existing concepts. This is obviously a serious limitation for two reasons:

(a)

(b)

Knowledge required for learning of new phrases must be hand coded.
Thus, RINA falls into the same class as all current programs which con-
sume a lot of knowledge, and produce only a little knowledge.

RINA is able to refine its representation only in discrete steps. In learning
a phrase, the program shifts its hypothesis from one concept to another. It
cannot refine concepts gradually.

Language Transfer: The aspect of language transfer has been ignored. How does
knowledge of language I impact acquisition of language II? This line of research is

208

carried out by Mike Gasser [Gasser86b] who investigates English generation by a
Japanese speaker. Gasser’s research complements ours, by explaining errors stem-
ming from different lexical organizations.

Incomplete Grammar: Only fragments of the English language have been encoded
by DHPL in a principled way. The syntactic simplicity of examples given throughout
this dissertation is not accidental. Qur current model accounts only for a modest
number of constructs. While we have dedicated effort to syntactic issues of control
and thematic-role assignment, we have ignored many other constructs, such as rela-
tive clauses, and global sentence constructs.

Learning Segments of Hierarchies: We have shown in Chapter 5 how a partial
hierarchy can be augmented. We focussed on a few types of phrases. Many other
types, at various levels of generality have not been considered in this model. Conse-
quently, a full hierarchy cannot be constructed by a program due to large portions
which can still not be acquired programmatically.

Idioms: The current model is not capable of acquiring phrases such as in the follow-
ing examples:

We do not drink supermarket water, letalone tap water.
LA water is full of Chlorine aswell as other minerals.
Here is aome more asbestos. Somuchfor healthy water!

Water here consists of .7%, .03% and .9% of
A, B and C respectively.

This component is not unhealthy,
only when it interacts with Oxygen it reeks.

Each one of these phrases features syntactic, semantic and pragmatic properties which
are difficult to explain. We have focused mainly on acquisition of phrases which are
derivatives of verb phrases.

Generation has not been implemented in RINA in a general way. Issues such as
phrase selection and phrase interaction in generation have not been addressed.

209

12.4 IMPORTING ARTIFICIAL INTELLIGENCE METHODS INTO
LINGUISTICS

This model is an additional step in integrating computational linguistics with general
artificial intelligence methodology.

The Knowledge-Based Approach: Following Wilensky [Wilensky81], we have
shown how a linguistic system can be viewed as body of rules and facts. Lexical en-
tries are given as declarative modular units, incorporating syntax and semantics.

Unification: Following Kay [Kay79], we have shown how text can be produced by
general unification. Subsequently, general mechanisms such a PROLOG can be ap-
plied in processing text.

Hierarchy: Following Jacobs [Jacobs85b], and [Lytinen84] we have shown that
hierarchy by generalization can be used in representing lexical concepts. Thus, the
linguistic database can be integrated with the rest of a model’s memory of concepts.
This is advantageous in particular for coping with gaps in lexical knowledge.

Learning: We have shown how general learning methods [Mitchell82, Schank82,
Kolodner84, DeJong86, Lebowitz86] can be applied in language acquisition. Accord-
ingly, language acquisition has been viewed as learning of concepts in a lexical
hierarchy.

12.5 THE LEARNING ALGORITHM

The learning algorithm is specified as follows:

(a) Input: The input is a set of instatiated episodes given as sentences embed-
ded in contexts.

(b) Given: An initial partial lexical hierarchy is given. However, certain sen-
tences cannot be parsed using this partial lexicon (since not all phrases are
encoded at the outset).

(c) Given: Full knowledge of the domain. Inference rules enable explanation
on the one hand, and discrepancy detection on the other hand.

d) Qutput: The initial hierarchy is augmented. Sentences which could not

210

be parsed originally, can now be parsed.
The algorithm was presented in two parts. The basic step involves learning a phrase
from a single episode. The general step involves generalizing and specializing
phrases in a hierarchy.

Learning Phrases from Single Examples: How can a phrase such as kick the
bucket, OF bury the hatchet be acquired from a single example? We have shown
how (a) the pattern is extracted from the given sentence, and (b) how the concept is
extracted from the given context. A metaphor, when it exists, is used to explain why
the words convey that particular concept.

Learning a Hierarchy: As further examples are received, phrases must be refined.
Moreover, generalities must emerge from sets of similar phrases. We have shown
how a full hierarchy can be generated from specific examples.

12.6 FUTURE RESEARCH
We have identified five research issues for future investigation.

Learning and Forgetting: Two related issues are system stability and obsolescence,
or forgetting. Stability concerns the ease with which well-established knowledge can
be modified. If the behavior of the program is too dynamic, then it might easily get
thrown off by one esoteric, or incorrect use of a phrase. It is not desirable that an adult
native speaker would get his lexicon ruined by listening to a second language speaker.
Forgetting involves inaccessibility of unused phrases, or getting rid of incorrect hy-
potheses. Are incorrect hypotheses simply destroyed, or is there a more realistic
model of obsolescence? These two issues involve quantitative reasoning which re-
quire implementation of strength of links and activation. These kind of problems
demonstrate the limitations of a strictly qualitative approach, such as ours, which rely
on manipulation of logical propositions, and it raises the need for quantative ap-
proaches such as connectionism [Waltz85, McClelland86] and spreading activation
[Anderson84, Charniak83].

Accumulation of Episodes: The lexicon retains episodes in which phrases have been

encountered. For example, in learning put somebody on the spot, the phrase is
associated with the two episodes in which it has been acquired:

211

(1) Ted Koppel put his guest on the spot.
(2) John’s wife put him on the spot.

However, it is impractical to retain such episodes for phrases which are encountered
in diverse situations. For example, in leamning a general word such as teach or
drive it is not desirable to maintain all the episodes in which they have been encoun-
tered. Thus associated episodes must disappear when there are too many of them.

Ambiguity: Both in parsing and in learning a hypothesis is selected from a set of pos-
sible interpretations. However, since the set of interpretations for each sentence is
huge, we reduce its number by finding discrepancies. However, inhibition only cannot
reduce that set to a single solution and we must address also preference. Consider for
example the following sentence.

John needed money for his trip.
He took it up with his dad.

The interpretation preferred by a human reader is "he discussed the problem with his
dad". However, the second interpretation "he took the money up" which is never
selected by humans, cannot be ruled out by our computer model. There is nothing
logically incorrect with that interpretation, however the first interpretation is preferred
due to its connections to the context. We need to incorporate such a preference
mechanism in our model.

Generation of Examples: We have identified a difference between generation tasks
in general, where the generator describes a state of affairs in the world, and our
specific task of example generation. In example generation, the program is required to
demonstrate its own state of knowledge. For instance, one dialog given earlier
proceeds as follows:

User: Greg wanted to buy a new car.
He took it up with his dad.
RINA: He took up thecar with his dad?

The explicit reference the car is important since it conveys RINA’s failure in ac-
quiring the phrase. How could a program decide to generate the car (and not it)in
contrast to he (and not Greg)? The research issue is: how a program or a person can
test out its notion of a phrase. Examples must be generated to examine the boundary

212

conditions in which the phrase can still be applied. This issue has not been investigat-
ed so far.

Sound Patterns: We have ignored the impact of sound patterns [Chomsky68] on
word acquisition, although we have noticed the significance of this factor in human
learning. Consider for the following example:

. Reagan pledged to fight on,

Second-language speakers almost invariably assume that pledge is actually plea,
probably due to the similar sound pattern. Accordingly they guess: he asked them
to fight rather than he promised to fight. Similarly, native speakers are biased
in making a guess about the following word:

. Reagan plended his voters to fight on.

The initial hypothesis is biased by the similarity of the sound patterns of the words
plend and prod. In general it is difficult to design a computational model that ac-
counts simultaneously for many layers of cognition.

Concept Generalization: Proliferation of knowledge is the process we try to approxi-
mate. The ubiquitous dilemma in comparing two concepts is whether a generalization
exists for both, or whether they are distinct concepts. For example, consider the fol-
lowing sequence of examples in teaching the phrase to take on.

(3) David tock on Goliath.

(4) I took on my elder brother.

(5} I took on a new job.

(6) We took on a new systems programmer.

(7 This piece of paper took on the shape of a butterfly.

The second phrase can share the concept acquired for the first one, namely 2x de-
cided to fight ?y. The third phrase; however, requires one to generalize the initial
notion since it now appears as ?x accepted a challenge presented by ?y.
However, can a generalization be found to encompass the fourth phrase? Notice that
although a very general concept which encompasses all of the given examples could
be found (?x has something to do with ?y), however, the effectiveness of such a gen-
eralized notion is totally diminished. Therefore, a shared concept should be sought at
the appropriate level of generality.

213

Deviational Uses of Language: So far, the notion of lexical presupposition has not
been developed according to its agreed functional definition. It is agreed that lexical
presupposition presents felicity conditions for phrase application. When these condi-
tions are violated, phrases sound awkward, ironic, or simply incorrect. Consider the
sentences below:

(8) We refused to let our baby stay up all night,
so he threw the book at us.
He yelled and screamed for hours.

(N My pals asked me how I got straight A’s. I managed
to explain it away by telling them
it was a bureaucratic mistake.

In each one of these sentences, a lexical presupposition is being violated. Our baby, as
we all know, is not really an authority, as required of the actor of the phrase throw
the book. Therefore, Sentence (8) sounds ironic. A presuppositional condition is
violated also in sentence (9). The entire presupposition states: (a) a planning failure
by the actor, (b) a threatening act by a social authority, and (c) an explanation act tak-
en to block that punishment. Now, getting A’s is not a planning failure, rather it is a
fortuitous success, which makes the situation humorous. Consider the next pair of
sentences:

{10} I made an appointment with my advisor.
I met him on time,
(11) I made an appointment with my advisor,

I raninto him on time.

Both run into and meet make the same statement: two characters got into a physi-
cal proximity. However, since run into presupposes an unplanned, surprising ele-
ment which does not exist in the situation, sentence (11) sounds incorrect.

In contrast to previous research in which presupposition was used for deriving secon-
dary inferences which are mostly redundant, we suggest using presupposition for
disambiguation, detection of irony [Dyer86a], and even for generation of irony by a
computer (by applying phrases in situations where a presuppositional condition has
been slightly mutated).

214

Was It Worth it?

The learning model described here cannot fully account for either one of the original
problems, namely:

How do humans acquire language?

How can a computer program learn human language?

However, four general conclusions can be drawn from our research experience itself:

(D

2

(3)

4

Learning must be an integral function of any linguistic system. Static
grammars cannot account for important ubiquitous linguistic phenomena.

Learning must be an integral part of language research, since it sheds
new light on important outstanding issues. Widening the research scope in
that dimension turns out to be profitable.

Language acquisition requires a systematic semantic representation.
Even learning of syntax rely on the context as it is brought to bear by
world knowledge.

Language acquisition cannot be studied as an isolated learning domain.
Learning of linguistic concepts is just a case, although a very special one,
of general learning in a task domain.

In this project, we have conducted a top-down, issue-driven research. Rather than
coming up with conclusive answers, we have pursued issues, and sub issues, which,
when eventually are resolved, may explain observed behavior.

215

[Anderson77)

[Anderson84]

[Arens82]

[Bates82]

[Becker75]

[Berwick85]

[Bresnan82a]

{Bresnan82b]

References

Anderson, J. R., ‘‘Induction of Augmented Transition Net-
works,’’ Cognitive Science 1, pp.125-157 (1977).

Anderson, John R., The Architecture of the Mind, Harvard
University Press, Cambridge, Mass (1984).

Arens, Y., “The Context Model: Language Understanding in a
Context,”’ in Proceedings Fourth Annual Conference of the Cog-
nitive Science Society, Ann Arbor, Michigan (1982).

Bates, E. and B. MacWhinney, ‘‘Functionalist Approaches to
Grammar,”’ in Language Acquisition: The State of The Art, ed. E.
Wanner L. R. Gleitman, Cambridge University Press, Cambridge
(1982).

Becker, Joseph D., ‘“The Phrasal Lexicon,”’ pp. 70-73 in
Proceedings Interdisciplinary Workshop on Theoretical Issues in
Natural Language Processing, Cambridge, Massachusets (June
1975).

Berwick, R. C., The Acquisition of Syntactic Knowledge, The MIT
Press, Cambridge MA (1985).

Bresnan, J. and R. Kaplan, ‘‘Lexical-Functional Grammar,”” in
The Mental Representation of Grammatical Relations, ed. .
Bresnan, MIT Press, MA (1982).

Bresnan, J., “‘Control and Complementation,”” in The Menial
Representation of Grammatical Relations, ed. J. Bresnan, The
MIT Press, Cambridge MA (1982).

216

[Carbonell79]

[Carbonell84]

[Chafe68]

[Charniak80]

[Charniak83]

[Chomsky69]

[Chomsky68]

[Cottrell85]

[Cullingford738]

[DeJong86]

Carbonell, J. G., ‘‘Subjective Understanding: Computer Models
of Belief Systems,”” TR-150, Yale, New Haven CT (1979).
Ph.D. Dissertation.

Carbonell, J. G. and P. J. Hayes, ‘‘Coping with Extragrammatical-
ity,”” pp. 437-443 in Proceedings Coling84, Stanford California
(1984).

Chafe, W. L., *““Idiomaticity as an Anomaly in the Chomskyan
Paradigm,’’ Foundations of Language 4 (1968).

Chamiak, E., C. Riesbeck, and D. McDermott, Artificial Intelli-
gence Programming, Lawrence Erlbaum Associates, Hillsdale,
New Jersey (1980).

Chamiak, E., ‘‘Passing Markers: A Theory of Contextual
Influence in Lnaguage Comprehension,”’ Cognitive Science 7(3)
(1983).

Chomsky, C., Acquisition of Syntax in Children from 5 to 10, MIT
Press, Cambridge MA (1969).

Chomsky, N. and M. Halle, The Sound Partern of English, Harper
and Row, New York, NY (1968).

Cottrell, G. W., “‘Connectionistic Parsing,”” in Proceedings The
7th Annual Conference of the Cognitive Science Society, Irvine,
CA (1985).

Cullingford, R. E., ‘‘Script Application: Computer Understanding
of Newspaper Stories,”” 116, Yale University, Department of
Computer Science, New Haven, Connecticut (1978).

DeJong, G. and R. Mooney, ‘‘Explanation-Based Learning: An
Alternative View,”’ Machine Learning 1(2) (1986).

217

[Dong71]

[Dyer86a]

[Dyer83]

[Dyer86b]

[Fahlman79]

[Fauconnier85]

[Fillmore87]

[Fillmore78]

[Fraser70]

[Gasser85]

Dong, Quang Phuc, ‘“The Applicability of Transformations to
Idioms,”” in Proceedings Chicago Linguistic Society (1971).
(written by J. McCawley).

Dyer, M., M. Flowers, and J. Reeves, ‘A Computer Model of
Irony Recognition in Narrative Understanding,’”” Advances in
Computing and the Humanities 1(1) (1986).

Dyer, M. G., In-Depth Understanding: A Computer Model of In-
tegrated Processing for Narrative Comprehension, MIT Press,
Cambridge, MA (1983).

Dyer, M. G. and U. Zemik, ‘‘Encoding and Acquiring Figurative
Phrases in the Phrasal Lexicon,”’ in Proceedings 24th Annual
Meeting of the Association for Computational Linguistics, New
York NY (1986).

Fahlman, S. E., NETL: A System for Representing and Using
Real-World Knowledge, MIT Press, Cambridge, MA (1979).

Fauconnier, Gilles, Mental Spaces: Aspects of Meaning Construc-
tion in Natural Language, MIT Press, Cambridge MA (1985).

Fillmore, C., P. Kay, and M. O’Connor, Regularity and Idiomati-
city in Grammatical Constructions: The Case of Let Alone, UC
Berkeley, Department of Linguistics (1987). Unpublished
Manuscript.

Fillmore, C. J., *‘On the Organization of Semantics Information in
the Lexicon,’’ in Proceedings CLS (1978).

Fraser, Bruce, ‘‘Idioms within a Transformational Grammar,”’
Foundations of Language 6 (1970).

Gasser, M., ‘‘Second Language Production: Coping with Gaps in
Linguistics Knowledge,”” UCLA-AI-15, LA CA (July 1983).

218

[Gasser86a]

[Gasser86b]

{Gazdar79]

[Gazdar85]

[Gentner83]

[Granger77]

[Granger83]

[Grice75]

[Hatch83]

Gasser, M. and M. G. Dyer, ‘‘Speak of the Devil: Representing
Deictic and Speech Act Knowledge in an Intchatcd Lexical
Memory,’’ in Proceedings 8th Conference of the Cognitive Sci-
ence Society, Amherst MA (August 1986).

Gasser, M., ‘“Memory Organization in the Bilingual/Second
Language Learner: A Computational Approach,” in Proceedings
Eastern States Conference oh Linguistics (ESCOL), Chicago IL
(1986).

Gazdar, Gerold, ‘‘A Solution to the Projection Problem,”” pp. 57-
87 in Syntax and Semantics (Volume 11: Presupposition), ed.
Choon-Kyu Oh David A. Dinneen, Academic Press, New-York
(1979).

Gazdar, G., E. Klein, G. Pullum, and 1. Sag, Generalized Phrase
Structure Grammar, Harvard University Press, Cambridge MA
(1985).

Gentner, Dedre, ‘‘Structure-Mapping: A Theoretical Framework
for Analogy,’’ Cognitive Science 7(2), pp-155-170 (1983).

Granger, R. H., *“FOUL-UP: A Program That Figures Out Mean-
ings of Words from Context,”” pp. 172-178 in Proceedings Fifth
IJCAI , Cambridge, Massachusets (August 1977).

Granger, R. H., ‘“Expectation-Based Detection and Correction of
Errors during Understanding of Syntactically and Semantically
1ll-Formed Text,”” American Journal of Computational Linguis-
tics 9(3) (1983).

Grice, H. P., ‘“Logic and Conversation,”’ in Syntax and Semantics
(volume 3: Speech Acts), ed. P. Cole J. Morgan, Academic Press,
NY (1975).

Hatch, E. M., Psycholinguistics: A Second Language Perspective,
NewBury House, Rowley MA (1983).

219

[Hendrix77]

[Hershkovits85]

[Hirst86]

[Jacobs85a]

[Jacobs85b]

[Karttunen79]

[Katz63]

[Kay79]

[Keenan71]

Hendrix, G., E. Sacerdoti, D. Sagalowicz, and J. Slocum,
“‘Developing a Natural Language Interface to Complex Data,’ in
Proceedings The Third International Conference on Very Large
Data Bases, Tokyo, Japan (1977).

Hershkovits, Annette, ‘‘Semantics and Pragmatics of Locative
Expressions,’” Cognitive Science 9(3) (1985).

Hirst, G. 1., Semantic Interpretation and the Resolution of Ambi-
guity, Cambridge, New York, NY (1986).

Jacobs, P. S., ‘A Knowledge-Based Approach to Language Pro-
duction,”” UCB/CSD 86/254, UC Berkeley, Computer Science
Division, Berkeley CA (August 1985). Ph.D. Dissertation.

Jacobs, Paul S., “PHRED: A Generator for Natural Language In-
terfaces,”” UCB/CSD 85/198, Computer Science Division,
University of California Berkeley, Berkeley, California (January
1985).

Karttunen, L. and S. Peters, ‘‘Conventional Implicature,’” in Syn-
tax and Semantics (Volume 11, Presupposition), ed. C. K. Oh D.
Dinneen, Academic Press, NY (1979).

Katz, J. and P. M. Postal, *“The Structure of a Semantic Theory,”’
70, MIT, Research Lab of Electronics, Cambridge MA (1963).

Kay, Martin, ‘‘Functional Grammar,”” pp. 142-158 in Proceed-
ings 5th Annual Meeting of the Berkeley Linguistic Society,
Berkeley, California (1979).

Keenan, Edward L., ‘““Two Kinds of Presupposition in Natural
Language,”” pp. 44-52 in Swudies in Linguistic Semantics, ed.
Charles Fillmore D. T. Langendoen, Holt, Reinhart and Winston,
New York {1971).

220

[Kiparsky71]

[Kolodner84]

[Lakoff80]

fLangacker86]

[Langley82]

[Lebowitz86]

[Lytinen84]

{MacWhinney87]

[Marcus80]

[Martin86]

[McClelland86]

Kiparsky, P. and C. Kiparsky, ‘‘Fact,’’ in Semantics, an Interdis-
ciplinary Reader, ed. D. Steinberg L. Jakobovits, Cambridge
University Press, Cambridge, England (1971).

Kolodner, J. L., Retrieval and Organizational Strategies in Con-
ceptual Memory: A Computer Model, Lawrence Erlbaum Associ-
ates, Hillsdale NJ (1984).

Lakoff, George and Mark Johnson, Metaphors We Live by, The
University of Chicago Press, Chicago and London (1980).

Langacker, R. W., “‘An Inwoduction to Cognitive Grammar,’’
Cognitive Science 10(1) (1986).

Langley, Pat, ‘‘Language Acquisition Through Error Recovery,”
Cognition and Brain Theory 5(3), pp.211-255 (1982).

Lebowitz, M., ‘‘Integrated Learning: Controlling Explanation,’’
Cognitive Science 10(2) (1986).

Lytinen, S. L., ““The Organization of Knowledge in a Mulii-
Lingual, Integrated Parser,”” YALEU/CSD/RR #340, Yale
Department of Computer Science, New Haven, CT (1984).

MacWhinney, B., ‘‘The Competition Model,”” in Mechanisms of

Language Acquisition, ed. B, MacWhinney, Lawrence Erlbaum,
Hillsdale, NJ (1987). (in press).

Marcus, M., A Theory of Syntactic Recognition for Natural
Language, The MIT Press, Cambridge MA (1980).

Martin, J. H., *‘Views from a Kill,”” in Proceedings The Eighth
Annual Meeting of the Cognitive Science Society, Amherst, MA
(1986).

McClelland, J. L. and D. E. Rumelhart, Parallel Distributed Pro-
cessing, MIT Press, CAmbridge MA (1986).

221

[Mitchell86]

[Mitchell82]

[Mueller84)

[Mueller85]

[Mueller87]

[Newell57]

[Pazzani86]

[Pereira80]

{Pinker84}

[Reeker76]

Mitchell, T., R. Keller, and S. Kedar-Cabelli, ‘‘Explanation-Based
Generalization: A Unifying View,” Machine Learning 1(1)
(1986).

Mitchell, T. M., “‘Generalization as Search,”” Artificial Intelli-
gence 18, pp.203-226 (1982).

Mueller, E. and U. Zemik, ‘‘GATE Reference Manual,”” UCLA-
AI-84-5, Computer Science, AI Lab (1984).

Mueller, E. and M. Dyer, ‘‘Daydreaming in Humans and Comput-
ers,”’ in Proceedings 9th International Joint Conference on
Artificial Intelligence, Los Angeles CA (1985).

Mueller, Erik T., ‘‘GATE Reference Manual (Second Edition),”’
UCLA-AI-87-6, UCLA, Computer Science Department, Los
Angeles, CA (1987).

Newell, A., J. C. Shaw, and A. Simon, ‘‘Preliminary Description
of General Problem Solving Program-I (GPS-I),”’ CIP Working
Paper 7, Camegie Institute of Technology, Pittsburgh PA (1957).

Pazzani, M., M. Dyer, and M. Flowers, ‘“The Role of Prior
Causal Theories in Generalization,’” in Proceedings 5th National
Conference on Artificial Intelligence, Philadelphia, PA (1986).

Pereira, F. C. N. and David H. D. Warren, ‘‘Definite Clause
Grammars for Language Analysis- A Survey of the Formalism
and a Comparison with Augmented Transition Networks,”’
Artificial Intelligence 13, pp.231-278 (1980).

Pinker, S., Language Learnability and Language Development,
Harvard University Press, Cambridge MA (1984).

Reeker, L. H., ‘*“The Computational Study of Language Learn-
ing,”” in Advances in Computers, ed. M. Yovits M. Rubinoff,
Academic Press, New York (1976).

222

[Rees84]

[Richards74]

[Rosch78]

[Schank77]

[Schank78]

[Schank82]

[Selfridge82]

[Selfridge80]

[Shortliffe76]

[Small82]

Rees, Jonathan, Norman Adams, and James Meehan, ‘“The T

‘Manual,”” , Computer Science Department, Yale University,

New Haven CT (1984).

Richards, Jack C., Error Analysis, Longman, Norfolk, Britain
(1974).

Rosch, E., ‘‘Principles of Categorization,”” in Cognition and
Categorization, ed. B. Lloyd, Lawrence Erlbaum Associates
(1978).

Schank, R. and R. Abelson, Scripts Plans Goals and Understand-
ing, Lawrence Erlbaum Associates, Hillsdale, New Jersey (1977).

Schank, R. and J. Carbonell, ‘““The Gettysburg Address:
Representing Social and Political Acts,”” TR-127, Yale Universi-
ty, Depatment of Computer Science, New Haven CT (1978).

Schank, R. C., Dynamic Memory, Cambridge University Press,
Cambridge Britain (1982).

Selfridge, Malory, ‘“Why Do Children Misunderstand Reversible
Passives? The CHILD Program Learns to Understand Passive
Sentences,”” pp. 251-257 in Proceedings AAAI-82, Pittsburgh,
Pennsylvania (August 1982).

Selfridge, Mallory G. R., ‘“‘A Process Model of Language Ac-
quisition,’”’ 172, Yale University Department of Computer Sci-
ence, New Haven, Connecticut (May 1980). Ph.D. Dissertation.

Shortliffe, E. H., Computer Based Medical Consultation: MYCIN,
American Elsevier (1976).

Small, S. and C. Rieger, ‘‘Parsing and Comprehending with Word
Experts (A Theory and Its Realization),”’ in Strategies for Natural
Language Processing, ed. M. Ringle, Lawrence Erlbaum, Hills-
dale, NJ (1982).

223

[Thompson87)

[Turing50]

[Ulm75]

[Waltz85]

[Wilensky80]

[Wilensky81]

[Wilensky82]

[Wilensky83]

[Wilensky84]

Thompson, Sandra, ‘“The Passive in English: A Discourse Per-
spective,”” in In Honor of Ilse Lehist, Ilse Lehist Fuhendusteos,
ed. Robert and Linda Shokey, Foris (1987). to appear.

Turing, A. M., ‘‘Computing Machinery and Intelligence,” Mind
54(236) (1950).

Ulm, Susan C., ““The Separation Phenomenon in English Phrasal
Verbs, Double Trouble,”’ 601, University of California Los
Angeles (1975). M.A. Thesis.

Waltz, D. L. and J. B. Pollack, ‘“Massively Parallel Parsing: A
Strongly Interactive Model of Natural Language Interpretation,’
Cognitive Science 9(1) (1985).

Wilensky, R. and Y. Arens, ‘‘PHRAN: A Knowledge-Based Ap-
proach to Natural Language Analysis,’” in Proceedings 18th An-

nual Meeting of the Asosciation for Computational Linguistics,
Philadelphia, PA (1980).

Wilensky, R., ‘A Knowledge-Based Approach to Natural
Language Processing: A progress Report,” in Proceedings
Seventh International Joint Conference on Artificial Intelligence,
Vancouver, Canada (1981).

Wilensky, R., ‘“‘Points: A Theory of Structure of Stories in
Memory,”’ pp. 345-375 in Strategies for Natural Language Pro-
cessing, ed. W. G. Lehnert M. H. Ringle, Laurence Erlbaum As-
sociates, New Jersey (1982),

Wilensky, R., Planning and Understanding, Addison-Wesley ,
Massachusetts (1983).

Wilensky, R., Y. Arens, and D. Chin, *‘Talking to UNIX in En-

glish: an Overview of UC,”’ Communications of the ACM 27(6),
pp.-574-593 (June 1984).

224

[Wilks75]

[Winston72]}

[Woods70]

[Zernik85a]

[Zernik85b]

[Zernik85¢]

[Zernik86a]

[Zernik86b]

[Zernik87a]

Wilks, Y., ‘‘Preference Semantics,”’ in The Formal Semantics of
Natural Language, ed. E. Keenan, Cambridge, Cambridge Britain
(1975).

Winston, P. H., ‘““Learning Structural Descriptions from Exam-
ples,”’ in The Psychology of Computer Vision, ed. P. H. Winston,
McGraw-Hill, New York, NY (1972).

Woods, W. A., ‘““Transition Network Grammars for Language
Analysis,”” Communications of the ACM 13 (1970).

Zemik, U. and M. G. Dyer, ‘‘“Towards a Self-Extending Phrasai
Lexicon,”” in Proceedings 23rd Annual Meeting of the Associa-
tion for Computational Linguistics, Chicago IL (July 1985).

Zemik, U. and M. G. Dyer, *‘Failure-Driven Aquisition of Figura-
tive Phrases by Second Language Speakers,”’ in Proceedings of
the 7th Annual Conference of the Cognitive Science Society, Irvine
CA (August 1985).

Zemik, U., ““A Computer Model of Second Language Acquisi-
tion,”” in Proceedings The 1985 Second Language Acguisition
Forum, Los Angeles, CA (1985).

Zemik, U. and M. G. Dyer, ‘‘Language Acquisition: Learning
Phrases in Context,”” in Machine Learning: A Guide to Current
Research, ed. T. Mitchell J. Carbonell R. Michalsky, Kluwer,
Boston MA (1986).

Zernik, U. and M. G. Dyer, ‘‘Disambiguation and Acquisition
through the Phrasal Lexicon,”’ in Proceedings 11th International
Conference on Computational Linguistics, Bonn Germany (1986).

Zemik, U, “*Acquiring Idioms from Examples in Context: Learn-
ing by Explanation,’” in Proceedings 13th Annual Meeting of the
Berkeley Linguistic Society, Berkeley, California (February 1987).

225

[Zernik87b] Zernik, U. and M. G. Dyer, ‘“The Self-Extending Phrasal Lexi-
con,”’ The Journal of Computational Linguistics: Special Issue on
the Lexicon (1987). to appear. '

226

Appendix A:
Program Trace

In this appendix we present three sessions with the program RINA. In the first ses-
sion, RINA processes text when all the elements are given. In the second session
RINA acquires a new phrase.

A.1 PARSING WITH A COMPLETE LEXICON

The input paragraph in the first session is given below:

Jenny Wanted to buy a car.
She took it up with her dad

In parsing this text, the program’s lexicon includes all the required phrases. Here is
the interaction of the user with the program.

>>> (show *context*)

The context is initially empty. (see footnote).

--

>>> (parse f (Jenny wanted to buy a car))

**%* reading word: JENNY

The following text was produced by the program, however, the text enclosed by two lines of
semicolons is comments added by the author.

227

..... P T T Y EE NN I NI B R LR R I S I O 0 - I -
l'IfJ'l'IJl'l"f!-lllll'll'IJ!'.'f""l'll"ll'l"l'!"ll'll'l!Jfll

Single words are packaged into case frames, as the one below.

**%* instantiating case frame:
"WEB.1261:
{ (CONCEPT ((CLASS PERSON)
{NAME JENNY)
(FIRST-NAME JENNIFER)
(AGE N-)
(GENDER FEMALE) })
(ROOT JENNY)
{MARKER NONE)
(DETERMINER NCNE))

***% reading word: WANTED

***x* triggering phrase: (X WANT T0 Y)

%x% inatantiating case frame:
“WEB.1262:
{ (TENSE PAST) {(ROQT WANT) (MODIFIER NONE) (POLARITY POS))

xx reading word: TO

*%x%** reading word: BUY

***% triggering phrase: (X BUY Y)

**%x* jnstantiating case frame:
"WEB.1282:
({ROOT BUY) (MODIFIER NCNE) ({(TENSE PRESENT) (POLARITY P0OS))

**%* phrage: (X WANT TO Y) is matched in the sentence

***%* jnstantiating phrase meaning:
"WEB.1278:

228

({ACTOR ({(CLASS PERSON)
{NAME JENNY)
{FIRST-NAME JENNIFER)
(AGE N-)

(GENDER FEMALE}))
{GOAL ((HEAD ATRANS)
(CLASS ACT)
{ACTOR (*VAR* rX})
{TO (*VAR* 'X))
(OBJ (*VAR* “¥))))
(STATUS ACTIVE)
(CLASS GOAL))

*x** reading word: A

x%x reading word: CAR

x jnstantiating case frame:

“WEB.1268:

{ (CONCEPT ({CLASS PHYS-OBJECT} (HEAD MOTOR~-VEHICLE)))
{ROOT CAR)
(DETERMINER A)
(MARKER NONE))

%%* phrase: (X BUY ¥) is matched in the sentence

**** jnstantiating phrase meaning:
"WEB.1290:
{(ACTOR ((CLASS PERSON)))
(TO ((CLASS PERSON)))
{OBJ ({CLASS PHYS-OBJECT) (HEAD MOTOR-~VEHICLE)))
(CLASS ACT)
(HEAD ATRANS))

------------- P T T T T O R O e R I R N I A R R N B I - A -
RN RN I A A A A A B B A A L A A

The embedded phrase is instantiated and attached to the
rest of the concept.

229

---------------------- P N N I N I I R R N R N B S R R I N I R I R I I R I I
!f'Il’fIlIf’Il"’lf"l'll',ll’f'"’""!f'l"fflll‘.l'rl"ll’l!!ll’

¥ generating text:
JENNIFER HAS AN ACTIVE GOAL
TO POSSESS A MOTOR-VEHICLE.

--

>>»> (show *context*)

“WEB.1278:
{ (ACTOR ((CLASS PERSON)
{NAME JENNY)
{FIRST-NAME JENNIFER)
(AGE N-)
(GENDER FEMALE)))
(GOAL { (HEAD ATRANS)
{CLASS ACT)
{OBJ ((CLASS PHYS-OBJECT) (HEAD MCTOR-VEHICLE)))
{(TO ((CLASS PERSCN}))
(ACTOR ((CLASS PERSON)))))
(STATUS ACTIVE)
(CLASS GOAL))

The object above is the main concept of the sentence. It
represents Jenny’s goal to buy {(atrans) a car.

"WEB.1296:
({HEAD MOTOR-VEHICLE) (CLASS PHYS-OBJECT))

--

“"WEB.458:
((GENDER FEMALE)
(AGE N-)

230

{FIRST-NAME JENNIFER)
(NAME JENNY)
(CLASS PERSON))

--------- 4 & B e s s b A 4 BN S EEEs e s oo

PP FFFF PR S

l!f'Ifll’llf"fl‘l"ll'll'llf’!"'l!'llll""ll'!f’

The object above represents Jenny. Notice that the order
of objects in the context is by recency.

----------------------- M R R IR R R
lll-llf'Jlflll'I"!l'l’llI’J'll'lIf!!'l’ll'lIflfl'!ll'lflffll’l!ll

>>> (parse ’ (she took it up with her dad))

**x* reading word: SHE

x%x instantiating case frame:
“WEB.2658:
{ (CONCEPT ({{CLASS PERSON)
(NAME JENNY)
(FIRST~-NAME JENNIFER)
(AGE N-)
{GENDER FEMALE)))}
(ROQT SHE)
{MARKER NONE)
(DETERMINER NONE))

Here the program read the reference "she", and by recency,
realized that the intended referent was Jenny.

--

k raading word: TOOK

**** triggering phrase: (X TAKE Y)

case frame:

“WEB.2659:

{ (TENSE PAST)
(ROOT TAKE)
{MCDIFIER NONE)
(POLARITY POS))

x reading word: IT

231

****% instantiating case frame:
"WEB.2664:
(({CONCEPT
({CLASS PHYS-OBJECT)
(HEAD MOTOR-VEHICLE))

{ (CLASS GOAL)
{STATUS ACTIVE)
{GOAL ((HEAD ATRANS)
(CLASS ACT)
(OBJ “WEB.2656)
(TO "WEB.1l1l1l3)
(ACTOR "WEB.1113)))
(ACTOR ((CLASS PERSON)
{NAME JENNY)
(FIRST-NAME JENNIFER)
{AGE N=-)
{GENDER FEMALE)})))

(ROOT IT)
(MARKER NCNE)
(DETERMINER NONE))

x more than one concept found for reference: IT

------------------- 4 9 % 3 8% 82 a8 0w I EEENEEN] R I
'f'llf"lf"l"flIf'J"I"l!’ll'l!'lJ'lf'lf'l""'!l"l'll'lll'!l

Here the program read the reference "it"™; there
is more than one possible referent: the car and the goal.

Pl'll'l"I"I’ll!ll".l!IIf'll"l'll'lIl'.lIf!’f"f!f'lf'll'lf'llf'll

*x%** phrase: (X TAKE Y) is matched in the sentence

% jnatantiating phrase meaning:
“WEB.2670:
{ (ACTOR ((CLASS PERSON)
(NAME JENNY)
(FIRST-NAME JENNIFER)
(AGE N-)
(GENDER FEMAILE)))
{OBJ ({CLASS PHYS-OBJECT)}
(HEAD MOTCQR~VEHICLE)})

232

(TO ((CLASS PERSCN)
(NAME JENNY)
(FIRST-NAME JENNIFER)
- (AGE N-)
{GENDER FEMALE)))
(CLASS ACT)
(HEAD PTRANS))

----------------- 4 % ® o s v E A & 4 8 % B WSS AS N E I E A SR LSS SN ks,

lllllllIlIIl'IllIllf'!llIIlf'llrl"ltl!'J"l"'rl'r!lll'!lt!lJlll
First, the program assumes the following meaning: she took the

car.

***x* reading word: UP

****x triggering phrase: (X V:PTRANS Y:PHYS-CBJECT UP)

**** phrase merge:
{X TAKE Y)
{X V:PTRANS Y:PHYS-OBJECT UP)

"WEB.2670:
((HEAD PTRANS))
(ACTOR ((CLASS PERSON)
{NAME JENNY)
(FIRST-NAME JENNIFER)
(AGE N-)
(GENDER FEMALE)))
(OBJ ((CLASS PHYS-OBJECT)
(HEAD MOTOR~VEHICLE)))
{TO ((CLASS PERSON)
(NAME JENNY)
{FIRST-NAME JENNIFER)
(AGE N-)
(GENDER FEMALE)))
(CLASS ACT)
(DIRECTON VERTICAL-PQSITIVE))

The particle "up" is used to modify the meaning, as shown
above: she moved the car upwards.

233

L R R 4 B 4 8 8 3 9 5 3N S s E e s e P I R A A e A N -
N NN EEE RN NI A A R A A A A B A A A

*x** reading word: WITH

***x* triggering phrase: (X TAKE Y UP WITH 2)

%x% rriggering phrase: (X V:ACT WITH Y)

**** reading word: HER

***x* reading word: DAD

%% jnstantiating case frame:
“"WEB.2677:
({CONCEPT ((TITLE FATHER}
{(CLASS PERSON)
) {GENDER MALE)))
(ROOT DAD)
(MARKER WITH)
(DETERMINER ((HEAD PQOSSESSIVE)
{ROOT SHE)
(CONCEPT ((CLASS PERSCN)
{NAME JENNY)
{FIRST-NAME JENNIFER)
(ARGE N-)
(GENDER FEMALE))))))

¥ % % ¢ 8 49 064s0a00se5vesas ¢ m 8 % 8 4 B S E S S 8B R EI NS AR sy 4 m e e B A e e
P A A A A A A A A A A A A A A A A A A NN R N R N A

"Her dad"™ is a complex clause which has two referents:
Jenny as the possessor, and the father who is the possessed.

~e

**%* phrase merge:
{X TAKE Y)
{X V:PTRANS Y:PHYS-OBJECT UP)
(X V:ACT WITH Y:PERSON)

234

“WEB.2670:
((HEAD PTRANS)
{ACTOR ({(CLASS PERSON)
{NAME JENNY)
(FIRST-NAME JENNIFER)
{AGE N-)
(GENDER FEMALE)))
(OBJ ((CLASS PHYS~OBJECT)
(HEAD MOTOR-VEHICLE)))
(TO {((CLASS PERSON)
(NAME JENNY)
(FIRST-NAME JENNIFER)
(AGE N-)
(GENDER FEMALE)})
{CLASS ACT)
(DIRECTON VERTICAL~-POSITIVE)
(ASSISTED-BY ((TITLE FATHER)
{(CLASS PERSON)
{(GENDER MALE))))

The particle "with™ is used to modify the meaning, as shown
above: she moved the car upwards with her dad’ assistance.

--

x phrase: (X TAKE Y UP WITH 2)
is matched in the sentence

x proving (trying to prove) presupposition of phrase:
“WEB.2714:
((HIGH ((TITLE FATHER)
(CLASS PERSON)
{(GENDER MALE)))
(LOW ((CLASS PERSCN)
{(NAME JENNY)
(FIRST-NAME JENNIFER)
(AGE N-)
{GENDER FEMALE)))
(CLASS RELATION)
(HEAD AUTHORITY))

235

--

In order for this interpretation to be validated, its
presupposition must be proved.

PROVE #{"WEB.2714}
RULE #{"WEB.229%7}

UNIFIES WITH #("WEB.2714}
PROVE ALL (¥{ "WEB.2731})
PROVE #{"WEB.2731}

FACT #{"WEBR.2727}

UNIFIES WITH #{ "WEB.2731}
PROVED #{“WEB.2731} 1 WAY(S)
PROVED #{"WEB.2714} 1 WAY(3)

*x*x* instantiating phrase meaning:
"WEB.2715:
((FROM ((CLASS PERSON)
(NAME JENNY)
(FIRST~NAME JENNIFER)
{AGE N-)
(GENDER FEMALE)))
{OBJ ((CLASS GOAL)
(STATUS ACTIVE)
(OBJ ((HEAD ATRANS)
(CLASS ACT)
(OBJ "WEB.2656)
(TO "WEB.1113)
{ACTOR "WEB.1113)))
(ACTOR ({ (CLASS PERSON)
(NAME JENNY}
{FIRST-NAME JENNIFER)
{AGE N-)
{GENDER FEMALE}})})
(TO ((TITLE FATHER)
(CLASS PERSON)
(GENDER MALE)))
(CLASS EVENT)
(HEAD AUTH-APPEAL})

*%*** proving (trying to prove) a discrepancy:

236

PROVE #{ “WEB.2715}

et e m s s e ean “ e s s e s s sy ca s e s s W s s am s .
NN RN NN NN IS R S S R R R R R R R RO A A

In order for this interpretation to be wvalidated, its
presupposition must be proved (see next section) . The concept
cannot be disproved (the trace of the proof is omittted).

NOT PROVED #{ "WEB.2715}

**** phrase select: (X TAKE Y UP WITH Z)

~
-~
-
-
~-
~
-
-
-
-
.
.
0
-
-
~
-
LY
-
-
-
-
-
~
-
-
-
-
-
-
-
-
-
-
-
-
-~
-
-
-
-
-
-
~
-
-
-
.
-
.
~
-
-
-
~
-~
-
-
-
-
-
e
AT
~
~a

Two interpretations exist. The one which consists of a single
component, and whose presupposition is validated, is selected.

x**x*x generating text:
JENNIFER APPEALED TO HER FATHER ABQUT HER ACTIVE GOAL
TC POSSESS A MOTOR-VEHICLE.

4 2 s u a2 s es. - " e s e s mw - -

+ w0 PR N N B} " a e s e - + = 2 a8 83 .
AN A A I A O B A B A A L A A
a 3

Piririiiiziiiiiiiiiiiiiviiiiiiiiig
The entire meaning is instantiated: Jenny discussed with

her father the issue of buying a car. As parsing proceeds,

the level of nesting of the objects in memory increases.
PiitiRiiciRiziiiidiiiviii iy Piriiiiii : Friiiisi

;
>>> (show *context*)

“WEB.2715:
{{(FROM ((CLASS PERSON)
(NAME JENNY)
(FIRST-NAME JENNIFER)
(AGE N-)
{GENDER FEMALE)})
(OBJ ((CLASS GOAL)
(STATUS ACTIVE)
(GOAL ((HEAD ATRANS)
(CLASS ACT)
(OBJ “WEB.2656)
(TO "WEB.1113)
(ACTCR "WEB.1113)))
(ACTOR ((CLASS PERSON)

237

{NAME JENNY)
{FIRST-NAME JENNIFER)
(AGE N-)
(GENDER FEMALE)))))
{TO {(TITLE FATHER)
{CLASS PERSON)
(GENDER MALE)))
(CLASS EVENT)
(HEAD AUTH-APPEAL))

"WEB.2726:
{ (GENDER MALE) (CLASS PERSON) (TITLE FATHER))

“WEB.2727:
((HEAD FAMILY)
(CLASS SOC-STRUCTURE)
(PARENT ((TITLE FATHER)
(CLASS PERSON)
(GENDER MALE)))
(ACTOR ((GENDER FEMALE)
{AGE N-) .
{(FIRST-NAME JENNIFER)
(NAME JENNY)
{CLASS PERSON))))

"“WEB,1113:
{ {(SENDER FEMALE)
{AGE N=-)
{FIRST-NAME JENNIFER)
{NAME JENNY)
{CLASS PERSON))

The context includes the concepts brought in by parsing,
ordered by recency.

In conclusion, notice two points: (a) how the reference "it" was resolved by selection-
al restrictions; (b) how the appropriate phrase was selected and proved; (¢) how the

context takes place in the parsing process.

238

A.2 LEARNING A NEW PHRASE

Next we show how the program handles the same input when a lexical entry (x take
¥ up with 2) is not included in the lexicon. The input text is the same as in A.l;

Jenny wanted to buy a car
She took it up with her dad.

>>> (show *context*}

TPRIINIRIIRRIZiIsRINNiiiiNciiiiviiiiii;
The trace for this sentence is identical to the trace in A.1l,
and it is not shown here. However, the trace for the next
sentence is different, since the phrase is unknown.

IR EEEE NN] R I R R R R R R R N I FaE B R A] 8.
flf"lIl‘l’"Jll'lf’ll'.lI'!lll"lilIIIf'.l'l’f"llf’ll'llllf!f!l‘lll

x generating text:
JENNIFER HAS AN ACTIVE GOAL
TO PQOSSESS A MOTOR-VEHICLE.

>>> (parse ' (she took it up with her dad))

*x**% reading word: SHE
xx reading word: TOOK
**%x%* reading word: IT
**%x* reading word: UP

RN EE N E N EEEE N E RN R R RN NN P T N R R R S R R R N N N R I R)
l"l"ll"!"lll'!l"f'l"'!lJ’l'l!flJ'l'lf'l!t!l'llll'lf'll'lf!l

So far, the trace is identical to the previous trace and it is
not shown here. The continuation is different.

a2 m 4 % 4 & % 3 P B N e me s e esn - ® 2 4 s 8 8 e s 8 e 8 4 % s W oa s s e as e B EEEEEERE]
A A A A A R A A A I A R A I A A B O B

k*** triggering phrase: (X V:PTRANS Y:PHYS-OBJECT UP)

**%* phrase merge:
(X TAKE Y)

239

(X V:PTRANS Y:PHYS-CBJECT UP)

“WEB.3530:
((HEAD PTRANS))
(ACTOR ((CLASS PERSON)
(NAME JENNY)
(FIRST-NAME JENNIFER)
(AGE N-)
{GENDER FEMALE)))
(OBJ ((CLASS PHYS-OBJECT)
(HEAD MOTOR-VEHICLE)))
(TO ((CLASS PERSON)
{NAME JENNY)
{FIRST-NAME JENNIFER)
{AGE N-)
{GENDER FEMALE)))
{(CLASS ACT)
(DIRECTON VERTICAL-POSITIVE))

--
"’J’l"’!"lf’f’fl’l"l""!'l'l!"II'f"l'l"lIt!'lll'lllltt'll

The particle "up" is used to modify the meaning, as shown
above: she moved the car upwards.

**%%* reading word: WITH

x*** rriggering phrase: (X TAKE Y UP WITH 2)

***%* triggering phrase: (X V:ACT WITH Y)

**%%* reading word: HER

**** reading word: DAD

**%x* inatantiating case frame:
"WEB.3621:
((CONCEPT ((TITLE FATHER)
{CLASS PERSON)
(GENDER MALE}))
{ROOT DAD)
{MARKER WITH})

240

(DETERMINER ((HEAD POSSESSIVE)
{ROOT SHE)
(CONCEPT ((CLASS PERSCN)
(NAME JENNY)
(FIRST~-NAME JENNIFER)
(AGE N-)
(GENDER FEMALE))))))

--

"Her dad"™ is a complex clause which has two referents:
Jenny as the possessor, and the father who is the possessed.

**** phrase merge:
(X TAKE Y)
(X V:PTRANS Y:PHYS-OBJECT UP)
{X V:ACT WITH Y:PERSON)

“WEB.3530:
{ (HEAD PTRANS)
(ACTOR ((CLASS PERSON)
{(NAME JENNY)
(FIRST~-NAME JENNIFER)
{AGE N-)
(GENDER FEMALE)))
(OBJ ((CLASS PHYS-OBJECT)
(HEAD MOTOR-VEHICLE)))
(TO ({(CLASS PERSON)
{NAME JENNY)
(FIRST-NAME JENNIFER)
(AGE N-)
{GENDER FEMALE)))
(CLASS ACT)
{(DIRECTON VERTICAL-POSITIVE)
(ASSISTED-BY ((TITLE FATHER)
(CLASS PERSON)
(GENDER MALE))))

The particle "with" is used to modify the meaning, as shown
above:; she moved the car upwards with her dad’ assistance.

241

*k** proving (trying to prove) a discrepancy:

“WEB.3530:
((EEAD PTRANS)
{ACTOR ((CLASS PERSON)
(NAME JENNY)
(FIRST-NAME JENNIFER)
{(AGE N-)
(GENDER FEMALE)))
(OBJ ({CLASS PHYS-OBJECT)
{HEAD MOTOR-VEHICLE)})
(TO ((CLASS PERSON)
(NAME JENNY)
{(FIRST~-NAME JENNIFER)
(AGE N-)
{GENDER FEMALE)))
(CLASS ACT)
(DIRECTON VERTICAL-PQOSITIVE)
{ASSISTED-BY ((TITLE FATHER)
(CLASS PERSON)
{GENDER MALE))))

In order for this interpretation to be disproved, its
concept must be proved inconsistent with the context.

........ P R I I R N R R I S R I I IR T I . B -
R R EEE RN EEEEE R EE R R R A A A A A A B T S A S A L A A A S A

PROVE #{“WEB.3530}

By chaining two rules, the concept is proved inconsistent with
the context (the actual trace fills several pages, and it shows
a lot of backtracking):

person drive a car --> person possess the car

person want to buy a car --> person do not possess the car

PROVED #{“WEB.3530} 1 WAY(S)

*x** generating text:
JENNIFER DROVE A MOTOR-VEHICLE UPWARDS WITH HER FATHER?

242

4 2 8 = 8 a8 s TSR]
[A A I A A A R A A A A A R R
.

This hypothetical meaning is known to be incorrect,
yet the user must know RINA’s state of knowledge.

------- . O N N I T R R R B R
FEPPFFPFPIPFRYIDS

current-hypothesis

“WEB.3706:
{ (HEAD PHRASE)
(PATTERN ((SUBJECT ({(CONCEPT "WEB.1l1l1l3)
{MARKER NONE)))
{VERB ((ROOT TAKE)
(MODIFIER UP)))
(OBJECT1 ((CONCEPT “WEB.1296)
{MARKER NONE)))
{OBJECT2 ((CONCEPT "WEB.2726)
(MARKER WITH))}))
(CONCEPT ((HEAD PTRANS)
(ACTOR "WEB.1113)
(OBJ "WEB.1296)
(TC "WEB.1113)
{CLASS ACT)
{DIRECTON VERTICAL-POSITIVE)
(ASSISTED-BY “WEB.2726))))

ISR IRIEINIRRIFRIIGICICIGRINNNRNIRIVIIIGINIINGiV
The user reviews the hypothesis. This hypothesis is not
yet generalized into a template since the program has not

yvet decided a new phrase is involved.

a0 e v on . .
s P EFF P FPY

" e s a e e s 4 m s a2 0 2 0 = naw 4 % 4 4 % 8 % % oA aam oo

N EER] LR RN BN BN
R R EEEEE RN A A A A A A A A A A A A N L

>>> (parse ' (no.)) i

*%**x% reading word: NO

*x** roaady to accept another example.

243

>>> (parse ’ (she took up the problem with her dad.))
***x*x reading word: SHE

**x*% instantiating case frame:
“WEB.3713:
{ (CONCEPT ((CLASS PERSON)
(NAME JENNY)
{FIRST-NAME JENNIFER)
(AGE N-)
(GENDER FEMALE)))
{ROOT SHE)
{MARKER NONE)
(DETERMINER NONE))

*x*x* reading word: TOOK

**x* triggering phrase: (X TAKE Y)

case frame:

“WEB.3716:

((TENSE PAST)
(ROOT TAKE)
(MODIFIER NONE)
(POQLARITY POS))

**** reading word: UP

-------------- P T T I I T R R B N N I R R R N N R R I I R B N - I
flll’IJll'-'f!'Jf"l"l"ff"'llIIJf'lIf!"Jl"lfl!lll'll’!lt!'ll’ll

**%%* reading word: THE

xx** reading word: PROBLEM

**** jnstantiating case frame:

“WEB.3719:

{ (CONCEPT ({CLASS GOAL)
{STATUS ACTIVE)

244

(GOAL ((HEAD ATRANS)
{CLASS ACT)
{OBJ "WEB.2656)
(TO "WEB.1113)
(ACTCR "WEB.1113)))
(ACTOR ((CLASS PERSON)
(NAME JENNY)
{FIRST-NAME JENN1FER)
{AGE N-)
(GENDER FEMALE)))))
{RCOT PROBLEM)
{MARKER NONE)
{DETERMINER THE))

--
lllfIf'Jlllllrl!f'l!IJ"J"flllrIl'JIll'l!f’l!llll'!lll'l!'ll’lll

The reference "the problem" is matched with Jenny’s problem
which is found in the context (a problem is an active goal).

x reading word: UP

**** reading word: WITH

xx reading word: HER

x*%* reading word: DAD

**** inatantiating case frame:
"WEB.3764:
((CONCEPT ((TITLE FATHER)
(CLASS PERSON)
(GENDER MALE)))
{ROOT DAD)
{MARKER WITH)
(DETERMINER ({(HEAD POSSESSIVE)
(ROOT SHE)
(CONCEPT ({CLASS PERSON)
(NAME JENNY)
(FIRST-NAME JENNIFER)
(AGE N-)
(GENDER FEMALE))})))

245

**** compare hypothesis with input phrase

*x** found discrepancy:

"WEB,3784

{ (HEAD DISCREPANCY)
(EXPECTED ((CLASS PHYS-OBJECT))}
(RECEIVED ((CLASS GOAL}))
{CASE OBJECTI))

The class of "the problem” does not match the class expected
in the hypothesis above.

--

***x%x forming a new hypothesis

*x*x%x 1, forming the new meaning

**** the context:

“WEB.3650
{ (HEAD PLANNING-SCRIPT)
(NAME PROBLEM-SOLVING)
(PROBLEM ((HEAD GOAL)
(STATUS ACTIVE)
{VAR 2X)))
(SOLUTION ((HEAD PLAN)
(FOR-GOAL ((HERD GOAL)
(STATUS ACTIVE)
(VAR 2X)))
(STATUS UNKNOWN)
(VAR ?Y)))
(EVENT1 ((CLASS EVENT)
(HEAD FIND-SOLUTICN)))
{EVENTZ2 ((CLASS EVENT)
{HEAD APPLY-SOLUTION)))
(EVENT3 ((CLASS EVENT)
(HEAD RESCLVE-PROBLEM})))

246

PR RIIIERRRIEIEIIIIREIIIGIIRRIININIIINICIGRINIIFRNNNINGNGPGVGG
Within the global context, the search is in the problem-
solving script {Jenny tries to solve her problem), due

to the reference "the problem".

**kx* gelect event in script: PROBLEM-SOLVING

%% the clues:

X:PERSON V:ACT WITH Y:PERSON
“WEB.1034

{ (CLASS RELATION)

(HEAD ASSISTANCE)

(ACTOR 7X)

(ACT 2?V)

(ASSISTED-BY ?7Y))

------- 4 8 4 % ¥ B W s mom B oE e E S WA A E EE R E NS S ME S I ST M E A S S Es sy oo
llf'lllf.ll'f!lf'l"l"ll'l.l!l'l'rll'l'lf'llll'l"lfl'll!'lll’l.lll’
. :]

X:PERSON V:ACT UP
“WEB.1046
{ (CLASS STATE)
{STATUS POSITIVE-QUTCOME)
{ACTOR ?X)
{PLAN 2V))

~u

. n 48 8 3 0w [I R IR
R RN R A A A A R A A A S R
]

inguistic clue: the word "up" can mean a positive

w

o

Q

2]

=]

[}
[EEE

outcome for a plan.

*k** galected event:

“WEB.3787
{ (HEAD FIND-SOLUTION)
(CLASS EVENT)
(ACT ((HEAD GOAL)
(NAME D-KNOW)))

247

(ACTOR ((CLASS PERSON)
{(NAME JENNY)
(FIRST~-NAME JENNIFER)
{AGE N-)
{(GENDER FEMALE}))
{(PROBLEM ((CLASS GOAL)
(STATUS ACTIVE)
(GOAL ((HEAD ATRANS)
(CLASS ACT)
(OBJ “WEB.2656)
(TO "WEB.1113)
(ACTOR "WEB.1113)))}
{ACTOR { (CLASS PERSON)
(NAME JENNY)
{(FIRST-NAME JENNIFER)
{AGE N-)
{(GENDER FEMALE)}))}))

------------- P N E N N N N R N R N I R I N B R B B I I
ffl'I!ll'llJ"J"'lll‘llf!l'lI"!"f'll'l"!'IJ"!I'J'II'II'IJI'II

The first event of the script is attempted first.

--

**** the hypothesis:

“WEB, 3792
{ (HEAD ASSISTANCE)
{(CLASS RELAION)
{ACTOR “"WEB.2726)
(ASSISTED-BY "WEB.1113)
(OBJ {{HEAD EVENT)
{NAME FIND-SOLUTION)
(ACT "“WEE.2754)
(ACTOR "WEB.1113)
(PROBLEM ({(CLASS GOAL)
(STATUS ACTIVE)
(GOAL "WEB.2213)))
(ACTOR “WEB.1113)}))

--

this hypothesis indicates that the father helped Jenny find

248

a solution.

**%* prove the hypothesis:

PROVE #{"WEB.37921}

The hypothesis is proved by the following chain:
1. Jenny’s father possesses money.

2. A father agrees to give money to a daugther.
3. Giving money to Jenny can solve her problem.

PROVED #{"WEB,3792} 1 WAY(S)

**%xx 2 eceonstructing the new pattern:

x%* jnluding phrase:
(X:PERSON V:ACT WITH Y:PERSON)

%x axcluding phrase
{X:PERSON V:ACT UP)

**** the new hypothesis:

current~-hypothesis

“WEB.3706:
({HEAD PHRASE)
{PATTERN ({SUBJECT ((VAR ?X)
(MARKER NONE)))
(VERB (({ROQT TAKE)
(MODIFIER NONE)))
{OBJECT1 ((VAR ?Y)
{(MARKER NCNE))}
{OBJECT2 ((VAR ?2)
{MARKER WITH}))))
(CONCEPT ((CLASS RELATION)
(HEAD ASSISTANCE)
(ACTOR 7?7X)
(ASSISTED-BY ?Z)
(0BJ { (HEAD EVENT)
(NAME FIND-SOLUTION)

249

(ACTOR ?X)}

(PRCBLEM { (CLASS GOAL)
(STATUS ACTIVE)
{GCAL 2Y)))}1))))

k**%x generating text:
JENNIFER TOOK IT WITH HER FATHER.
HE HELPED HER FIND A SOLUTICN.

R R R R R R R R R R RN

The user provides another example to correct the pattern.

..
flll"ll"ll"l"!ll"’f’l”"ll’lI'll'll'll'!lll'lff!f'fflt'l!.frl

>>> (parse ' (no)

*x*x* reading word: NO

**%x* ready to accept another example.

>»> (parse ' (she took up it with him.))

*k*x* reading word: SHE

**x%x* jnatantiating case frame:
“WEB.3713:
({CONCEPT ((CLASS PERSON)
{(NAME JENNY)
(FIRST-NAME JENNIFER}
(AGE N-)
(GENDER FEMALE)))
(ROQT SHE)
(MARKER NONE}
(DETERMINER NCNE) }

**** reading word: TOOK

***x* triggering phrase: (X TAKE Y)

case frame:
“WEB.3716:
({TENSE PAST)

250

(ROOT TAKE)
{MODIFIER NONE)
(PCLARITY POS))

*x**x reading word: IT

*%*x% ipnastantiating case frame:
"WEB.3719:
{ (CONCEPT {(CLASS GOAL)
(STATUS ACTIVE)
(GOAL ((HEAD ATRANS)
(CLASS ACT)
(OBJ “WEB.2656)
{TO "WEB.1113)
(ACTOR “WEB.1113)))
{ACTOR ({CLASS PERSCN)
(NAME JENNY)
(FIRST-NAME JENNIFER}
(AGE N-)
(GENDER FEMALE))})))
(ROOT PROBLEM)
{MARKER NONE)
({DETERMINER THE))

x reading word: UP

*x** preading word: WITH

x reading word: HIM

*x** instantiating case frame:
“"WEB.3764:
{ (CONCEPT ({(TITLE FATHER)
{CLASS PERSON)
{GENDER MALE}))
({ROOT HE)
{MARKER WITH))

**** compare hypothesis with input phrase

%x%x found discrepancy:

251

“WEB.3784

({HEAD DISCREPANCY)
{EXPECTED ((MODIFIER NCNE)))
{(RECEIVED (({MODIFIER UP)))
(CASE VERB))

--
ll'.ll’I’ll"l!fl"'.l"llflI’I’flI’!"""'f""""""f'l’ll'f!’

The particle "up" is not accounted for.

**** constructing the new pattern:

**** jncluding phrase
(X:PERSCN V:ACT UP)

***x* the new hypothesis:

current-hypothesis
“WEB.3706:
((HEAD PHRASE)
(PATTERN { (SUBJECT ({(VAR 7?X)
{MARKER NCNE)))
(VEREB ((ROOT TAKE)
(MODIFIER UP)})
(OBJECT1 ((VAR ?Y)
(MARKER NONE)))
(OBJECTZ2 ((VAR ?2)
(MARKER WITH)))))
(CONCEPT ({(HEAD ASSISTANCE)
{CLASS RELATION)
{ASSISTED-BY ?2Z)
{ACTOR ?X)
{INTENTION ((HEAD EVENT)
(NAME FIND-SOLUTION)
(ACTOR 7?X)
(PROBLEM ((CLASS GOAL)}
(STATUS ACTIVE)
(GOAL ?Y)1)1)))))

**** cenerating text:
JENNIFER TOCK IT UP WITH HER FATHER.

252

HE HELPED HER FIND A SOLUTION.

phrase.

>>> (parse ' (no)

*x*x* reading word: NO

=*x*%x ready to accept another example.

>>> (parse ' (she discussed it with him))

x reading word: SHE

**x*x* instantiating case frame:
"WEB.3713:
{ (CONCEPT ((CLASS PERSON)
(NAME JENNY)
(FIRST-NAME JENNIFER}
{AGE N-)
{GENDER FEMALE)})
{(RCOT SHE)}
(MARKER NONE)
{DETERMINER NOCNE) }

**%* reading word: DISCUSSED

*x*x* triggering phrase: (X DISCUSS Y WITH 2)

case frame:

“WEB.3716:

{ (TENSE PAST)
(ROOT DISCUSS)
{MODIFIER NONE)}
(POLARITY POS))

**x* reading word: IT

**** instantiating case frame:

253

"WEB.3719:
((CONCEPT ((CLASS GOAL)
(STATUS ACTIVE)
(GOAL ({HEAD ATRANS)
{CLASS ACT)
(OBJ "WEB.2656)
{TC "WEB.111l3)
{(ACTOR "WEB.1113)))
{ACTOR ((CLASS PERSON)
(NAME JENNY)
(FIRST-NAME JENNIFER)
(AGE N=~)
(GENDER FEMALE)))))
{(ROOT IT)
{MARKER NONE))

**%x* reading word: WITH

**%x* reading word: HIM

**x*%x instantiating case frame:
“WEB.3764:
{ (CONCEPT ((TITLE FATHER)
(CLASS PERSON)
(GENDER MALE)))
{ROOT HE)
(MARKER WITH))

*x** phrase: (X DISCUSS Y WITH Z)
is matched in the sentence

**%*x instantiating phrase meaning:
“WEB.2715:
((FROM ((CLASS PERSON)
{NAME JENNY)
(FIRST-NAME JENNIFER)
(AGE N-)
(GENDER FEMALE)))
(0BJ {(CLASS GOAL)
{(STATUS ACTIVE)
(OBJ ((HEAD ATRANS)

254

{(CLASS ACT)
(OBJ "WEB,2656)
{TO "“WEB.1113) _
(ACTOR "WEB.1113)))
(ACTOR ((CLASS PERSON)
(NAME JENNY)
(FIRST~NAME JENNIFER)
(AGE N-)
(GENDER FEMALE)))}))
(TO ((TITLE FATHER)
(CLASS PERSON)
(GENDER MALE)))
(CLASS ACT)
(HEAD MTRANS))

xx% found discrepancy:
“WEB.3784
{ (HEAD DISCREPANCY)

(EXPECTED ((CLASS RELATION)
{HEAD ASSISTANCE)
{ASSISTED-BY 22)))

(RECEIVED {(CLASS ACT)

(HEAD MTRANS)
(TC 22)))

--

Instead of the expected asistance relation where the father
helps, the new example means an mtrans where the father is talked
to.

**** constructing the new meaning:

**x* jncluding phrase
(X:PERSON V:ACT UP)

**** the new hypothesis:
current-hypothesis¥

‘WEB.S?OG:

255

((HEAD PHRASE)
(PATTERN ((SUBJECT ((VAR ?X)
(MARKER NONE)))
(VERB { (ROOT TAKE)
(MODIFIER UP)))
(OBJECT1 ((VAR ?Y)
(MARKER NONE)))
(OBJECT2 ((VAR 22)
(MARKER WITH)))))
(CONCEPT ((HEAD MTRANS)
(CLASS ACT)
(ACTOR1 ?X)
(TO 22)
(OBJ ((HEAD EVENT)
(NAME FIND-SOLUTION)
{ACTOR ?X)
(PROBLEM ((CLASS GOAL)
(STATUS ACTIVE)
{(GOAL 2Y))1) 1))))

**%k* generating text:

JENNIFER TALKED TO HER FATHER
ABOUT HER ACTIVE GOAL
TO POSSESS A MOTOR-VEHICLE.

»>> (show *context¥*)

In conclusion, we showed how the a phrase is extracted from a given episode. The
pattern was extracted from the given sentences, and the context was extracted from
the context.

256

Appendix B:
MCRINA

The program MCRINA presents a basic phrasal parser, which is a stripped down ver-
sion of RINA. MCRINA is intended to serve as a text alayzer for Al applications, by
converting text into conceptual representation. MCRINA can be extended in several

ways:

1)

)

(3
(4)

The sample lexicon provided in Section B.4 can be extended to include other
phrases as needed for the application.

Conceptual representation, which is up to the application, can be constructed
as the system is developed and added on to the file called rules.t.

Linguistic features can be added according to the guidelines in Chapter 11.

Acqisition functions can be implemented by adding on the learning rules in
Chapter 8.

In general, Chapters 8 and 11 should be used sa the background for understanding the
program, in addition to the old and the new GATE manuals {Mueller84, Muellerg7].

257

B.1 Getting Started

In order to use the parser, the following steps must be taken:

(D

2
3)

C))

Get into the MCRINA directory on the APOLLO system (at UCLA):

cd /ucla/ai_research/uri/MCRINA

Load GATE (see GATE Manual [Mueller87])

Load MCRINA.

{load fload.t)

Call the parsing function:

{parse ' (david took on goliath))

B.2 Adding Lexical Entries

In order to add entries to the lexicon, use the format in the sample lexicon.

(D
2

(3
(4

Place your lexicon in the file lexicon.t

Call the loading function:

{load-from=file *lex* ’lexicon.t)

Add new single words into the file world.t

Call the loading function:

{load-from=file wl ‘world.t)

258

B.3 Sample Session

Next, we show a session with the program MCRINA, demonstrating how the program
processes the following input text:*

Al went on trial.
The judge threw the book at him.

--

>>> (mem-get-all *context*)
(#{0B.1199: (PERSON name ‘JENNY)})
{(#(0B.1197: (PERSON name ’‘DAVID}])

T T A A N A I N N IS N N B N B O B B IR - - O -
ll"!ll'J!"If'll"l"J".'lll'lIfl"J!"'lf”'llf!'f!flll'l'll!ll

This is the call to the parser

--

>>> (parse ’ (david went on trial))

x%x reading word: DAVID
(WORD~SPEC root ‘DAVID
number ’'NIL
word-type ‘NAME
lex "DAVID
form ’NOUN
function ‘NONE)

*x%xx jnstantiating case frame:
{NOUN-CASE marker ’'NONE
determiner ’NCONE
root ‘DAVID
concept (PERSON name 'DAVID)
lex ’'DAVID)

* Differences in the input and output formats between this trace and the trace in the previos appendix
are due to the use of an upgraded version of GATE. This version has two new features: (a) /O is
conceptually clearer, and (b) it uses only minimal object-oriented features of the language T, and thus
it runs much faster.

259

**** raading word: WENT
{WORD-SPEC root ‘GO
lex 'WENT
form ’VERB
suff 2)

*x** instantiating case frame:
{VERB-CASE tense ‘PAST
modifier ‘NONE
lex ’'NONE
root 'GO)

****%* triggering phrase: (HE WENT ON TRIAL)}

**x* reading word: ON
{WORD~SPEC root ‘ON
form ‘PREP)

**x%x* reading word: TRIAL

{WORD-SPEC root ‘TRIAL
number ’SINGLE
word-type ‘NONE
lex "TRIAL
form ’'NOUN
function ’‘NONE)

x%x instantiating case frame:
(NQUN-CASE marker ’'ON
determiner ’'NONE
root 'TRIAL
concept (SOC-SCRIPT name ‘TRIAL)
lex ’TRIAL)

*xxxxx modified concept: #{0B.1222: (SOC-SCRIPT name 'TRIAL)}
0

--

This is the trial script which is applied as a result
of reading the text. David is inserted as the
defendant in that script (since he went on trial).

260

>>> (px “ob.1222)
{ (TYPE #{SOC-SCRIPT} {())
(NAME TRIAL {())

(DEFENDANT #{0B.1197: (PERSON name ‘DAVID) }

------- P N N N A o O R R N RN B B B - -]
IJfl'.ll"ll"lf'lIf”"-"lJ”"ll"l'lff.l'l’f!"l"l'!

>>> (parse ‘' (the judge threw the book at him))

(N

*%x** reading word: THE
{WORD~SPEC root 7THE
form ‘DETERMINER)

x reading word: JUDGE

{WORD-SPEC root "JUDGE
number ’SINGLE
word-type ’‘NONE
lex " JUDGE
form *NOUN
function ‘NONE)

**%* inatantiating case frame:

(NOUN-CASE marker ’'NONE
determiner ’THE
root ‘JUDGE
concept (PERSON)
lex ‘JUDGE)

*%x** reading word: THREW

{(WORD-SPEC root ’THROW
lex ‘THREW
form *VERB
suff 2)

% instantiating case frame:
(VERB-CASE tense ’‘PAST
modifier *NONE
lex ’'NONE

261

root ! THROW)

xx% triggering phrase: (THE JUDGE THREW THE BOOK AT HIM)

***** {riggering phrase: (HE THREW A PHYS-0BJ)

**** reading word: THE
(WORD=-SPEC root ’THE
form *DETERMINER)

***x* reading word: BOOK
(WORD-SPEC root !BOOK
number ‘SINGLE
word-type 'NONE
lex ’BOOK
form ’NOUN
function ‘NONE)

x jnstantiating case frame:
{NOUN-CASE marker ’‘NONE
determiner ’THE
root fBOCK
concept 'NIL
lex fBOOK}

*x*xx* fajled case
¥{OB.1244: (NOUN-CASE marker 'NONE concept)}

Failed case frames are instrumental in error analysis for
learning.

----------- PR E N R R N N I B N N N R I I R N R R R I N I IR I N N B I]
NI I I I I A R R R R A R R AR A A A A A AP R B R A R A

**** reading word: AT
(WORD-SPEC root ‘AT
form ’PREP)

***x%* triggering phrase: (HE PROPELLED A PHYS-OBJ AT THING)

*x** fajiled case
#{0OB.1254: (NOUN-CASE marker ‘NONE concept)l

262

**** reading word: HIM
{(WORD-SPEC root 'HE
number ‘NIL
word-type ’PRONOUN
lex "HIM
form ’NOUN
function 'OBJECTIVE)

% jngtantiating case frame:
{(NCUN-CASE marker ’AT
determiner ’NONE
root 'HE
concept (PERSON name ‘DAVID)
lex fHIM)

xk fajled case
#({0B.1255: (NOUN-CASE marker ‘AT concept 1}

**x%* proved presupposition of phrase: (THE JUDGE THREW THE
BOOK AT HIM)

x* jnastantiated concept
#{0B.1262: (AUTH-PUNISH from (PERSON) to ...}}
of phrase (THE JUDGE THREW THE BOCK AT HIM)

ll"!f"fl"Jf"l"l"l'I'l’!"l"Il'l'll'.l'll'lllll!llll'!l'l!lll'

>>> (mem-get-all *context*)

{(#{CB.1262: (AUTH-PUNISH from (PERSON) to ...)1)
(#{0B.1222: (SOC=-SCRIPT name ‘TRIAL)})
(#{0B.1197: (PERSON name ‘DAVID)})

(#¥{0OB.1228: (PERSON)]})

(#({0B.1199: (PERSON name ’'JENNY)})}

>>> (px “ob.1222)
((TYPE #{SOC-SCRIPT} (})

263

(NAME TRIAL {())

(DEFENDANT #(0B.1197: (PERSON name ‘DAVID)} (}))
{(JUDGE #{0B.1228: (PERSON)} ()))

>>> (px "0ob.l1262)
{ (TYPE #{AUTH-PUNISH} {})
(FROM #{OB.1228: (PERSCMN)} ()}
{(TO #{0B.1197: (PERSON name ’‘DAVID)} (}))

--
.!ft!lrrrlllrllfrl!trllllrllf.lr.rfllfl;fl!fllt!ltl:rl!'l!'lltf.!!t!.!

B.4 A Sample Lexicon

The following entries reside in the file called lexicon.t

;lexicon for DAVID AND THE JUDGE
(PHRASE

comment ‘ (he took it up with his dad)
pattern (PATTERN
subject (CASE marker ’'none

concept 7?x:PERSON)
verb (CASE root 'take
modifier ‘up)
objectl (CASE marker ‘none
concept ?z:ACTIVE-GOAL)
object2 (CASE marker ‘with

concept ?7y:PERSON)}
pres (AUTHORITY high ?y

low ?x)
concept (AUTH-APPEAL from ?x
to ?y))

{PHRASE
comment ‘ (he toock up jogging)
pattern {(PATTERN
subject (CASE marker ’'none

concept ?x)
verb (CASE

root 'take
modifier ‘up)

264

objectl (CASE
marker ‘none
concept ?z:ACTIVITY-THEME))

modify
(MODIFIER
concept 7z
path ' {actor)
val ?x))
(PHRASE

comment ‘ (he took a ball)
pattern (PATTERN
subject (CASE marker ’none
concept 7x:PERSON)
verb (CASE
root ‘take
medifier ‘none)
objectl (CASE
marker ’‘none
concept ?z:PHYS-OBJECT)) -

concept
(ATRANS
actor 7x
to ?x
oby ?z))
(PHRASE

comment ' (he threw a phys-obj)
pattern (PATTERN
subject {(CASE marker ’none
concept ?x:PERSON)
verb (CASE root 'throw
modifier ‘none)
objectl (CASE marker 'none
concept ?z:PHYS-OBJECT))
concept (PRCPEL actor ?x
obj ?z
inatrument ‘hand)})

(PHRASE

265

comment ' (he propelled a phys-obj AT thing)
" pattern (PATTERN
subject (CASE marker ‘none
concept ?x:PERSON)
verh (CASE root ?v
modifier 'none)
objectl (CASE marker ‘none
concept ?z:PHYS-OBJECT)
object2 (CASE marker ‘AT
concept 7y:PERSON))
concept (PROPEL actor ?x
obj 2z
direction ?y
mode ‘no-acknowledge))

(PHRASE
comment ’ (the judge threw the book at him)
pattern (PATTERN
subject (CASE marker ‘none
concept ?x:PERSON)
verb (CASE root ’‘throw
modifier ‘none)
objectl (CASE marker 'none
determiner ‘the
root ‘book)
cbject2 (CASE marker ’at
concept ?z:PERSON))
pres (SOC-SCRIPT name ‘trial
judge 7?x
defendant ?z)

concept (AUTH-PUNISH from 7x

to ?z))

(PHRASE
comment (he went on trial)
pattern (PATTERN

266

subject (CASE marker ‘none
concept ?x:PERSCON)
verb (CASE root ‘go)
modifier ‘none)
cbjectl ({CASE marker 'on
determiner ’‘none
concept 2y:SOC-SCRIPT
root ’‘trial))
modify (CONC-MODIFIER
concept 7y
path * {(defendant)
val ?x))

B.5 SIngle-Word Definitions

Single words are encoded separately. However, this system is not different from
definitions of phrases. The entries below reside in the file called world.1.

(PHRASE

pattern "ball

concept (PHYS-OBJECT
name ’ball
shape ’round
function ftoy))

(PHRASE

pattern ’‘book

concept (PHYS-OBJECT
name ‘book
functicn ‘container
contents ’information)})

(PHRASE
pattern ‘boy

267

concept

{PHRASE
pattern
concept

(PERASE
pattern
concept

{PHRASE
pattern
concept

pres

(PHRASE
pattern
concept
pres

{PHRASE
pattern
concept

(PHRASE
pattern
concept

pres

(PERSON
age "N-
gender ‘male})

’ woman
(PERSON
age 'N
gender ‘female))

fcar
VEHICLE
function ftransportation)

fdad

(PERSON
gender ‘male
title ‘father)

(SOC~-STRUCTURE
name ‘family
parent ?concept))

‘defendant

(PERSON)

{SOC-SCRIPT
name ‘trial
defendant ?concept))

’ Jogging
(ACTIVITY-THEME
name ’‘running-for-fitness))

! judge

(PERSON
title ’ judge)
(SOC-SCRIPT

268

name ‘trial
judge Zconcept))

(PHRASE

pattern ’law

concept (ABS-OBJECT
name ’‘rule)

pres (SOC~SCRIPT
name ‘trial
code 7Zconcept))

(PHRASE
pattern 'money
concept (SCC-POSSESSION
function ‘currency))

(PHRASE

pattern ‘problem
concept (ACTIVE-GOAL)
pres {(GOAL-SITUATION))

{PHRASE
pattern ‘school
concept (LOCATION
name ’‘school
function ’education))

(PHRASE

pattern ‘son

concept (PERSON
gender 'male
title ’son)

pres (SOC~OBJECT
name ‘family
child ?concept))

(PHRASE
pattern ‘trial
concept {SOC-SCRIPT
name ‘trial))

269

{PHRASE
pattern
concept

(PHRASE
pattern
concept

(PHRASE
pattern
concept

(PHRASE
pattern
concept

(PHRASE
pattern
concept

(PHRASE
pattern
concept

(PHRASE

‘trip
(SOC-SCRIPT
name ‘trip))

* John

(PERSON
name ‘ john
gender 'male))

fMary

(PERSON
name ‘mary
gender ’'female))

'David

(PERSON
name ‘david
gender 'male))

f Jenny

(PERSON
name ' jenny
gender ‘female))

fGoliath
(PERSON
name ’‘goliath
gender ‘male))

pattern ’'ucla

concept

(LOCATION
head "ucla))

270

(PHRASE
pattern 'he
concept (PERSON
gender 'male))

(PHRASE
pattern ’she
concept (PERSON

gender ‘female))

{PHRASE
pattern ‘i
concept {(PERSON
gender ‘male
name ‘uri
degree ‘MSc))

(PHRASE
pattern ‘you
concept (PERSON
gender ‘male
name ‘erik
age "N+
degree ’‘M3c))

(PHRASE
pattern ‘uri
concept (PERSON
gender ‘male
name ’uri})

{PHRASE
pattern ‘erik
concept (PERSON
gender 'male
name ‘erik))

271

B.6 Verb Inflections

In MCRINA there is no morphological analysis, and verb inflections are given expli-
citly. These entries reside in the file verb-inflections.t.

--

{ask asked asked asking asks)

{(bog bogged bogged bogging bogs)

(bring brought brought bringing brings)

{buy bought bought buying buys)

{call called called calling calls)

{decide decided decided deciding decides)
{discuss discussed discussed discussing discusses)
(dress dressed dressed dressing dresses)
{explain explained explained explaining explains)
(fall fell fallen falling falls)

{get got got getting gets)

{give gave given giving gives)

(go went gone going goes)

(make made made making makes)

{need needed needed needing needs)

(propel propelled propelled propelling ﬁropels)
{put put put putting puts)

(run ran run running runs)

(sell sold sold selling sells)

{show showed showed showing shows)

{stash stashed stashed stashing atashes)

(store stored stored storing stores)

{take took taken taking takes)

(think thought thought thinking thinks)

{throw threw thrown throwing throwa)

{toss toased tossed tossing tosses)

(walk walked walked walking walks)

{(want wanted wanted wanting wants)

272

B.7 Interfacing with GATE
The interface of MCRINA with GATE is by several function calls, which are
described here briefly. This section should not replace reading the GATE manual it-

self [Mueller87]. In GATE, web is the basic slot-filler representation object. Pattern
matching, unification and instantiation are all in terms of webs.

(1) WEBSCREATE

This function takes a web definition and returns an instantiated web. For example,

> (webScreate ’ (PERSON name ’‘erik degree ’phd)

(2) WEBS$SET-SLOT

This function sets the designated slot by a new value:

> (web$set-slot ~“web39 age 28)

(3) WEBSGET-SLOT

This function returns the value of the designated slot:

> (web$get-slot “web39 age)

(4) WEBSUNIFY

This function unifies two webs and returns a binding list,

> (webSunify “webl “web2 ’ (t (x 6)}))

(5) WEBSINSTANTIATE

This function takes a web template and instantiates it relative to a given binding list:

> (webS$instantiate web"2 "(t (x 6)))

273

(6) WEBS$PROVE

This function takes a web template and proves it relative to (a) a binding list, (b) a da-
tabase of facts, (the *context*, in our case), and (c) a database of rules.

> (web$prove “web25 ‘(t (x 6)) *context* *prules*)

In the code below there few are other calls to GATE, which are variations of the calls
above.

274

B.8 The Code

The code itself is given below. This code resides in several files. Each file can be
recognized here by the "herald” form at its head.

:**********************************t**i**************************

MCRINA
Version 1.3

LU 1Y

..

; ** Copyright (c) 1985 by Uri Zernik. All Rights Reserved.

~

LT}

Originally written: April 1985
Latest version: January 1987

e

;t***t*****

(herald parser (read-table *gate-read-table*))

PEIIFIINRRINININIIGFINPGIGREIGIGIRRMIZIGGENRIGINIiviiiiGGGQG
;PAR

;top level parser

;1. read new word (into *word¥*)

;2. convert a word to its corresponding web ({into *web¥)

;3. activate phrases triggered by a word

: (into Active-Phrase-Stack)

;4. package the current case frame (into *case*)

;5. check active case frames (on Active-Case-Stack)

;6. check active phrases (on Active-Phrase-Stack)

{define (par sentence)
{locop (for word in (append sentence ‘{())))
(do {read-word word}
(wordTOweb *word*)
(webTOcase *web*)
(phrase-trigger (index-of *case*))
(scan~cases *case¥*)
‘ (scan-phrases)
)

275

uing
ontin

3 co

able

e parse) en

tinu

{con

se

cpar

aece
sent
the same

sing

par

Ctu
’

)
r s)
er) (pa

8) (init-pars

(parse

ine

(def

(

; PARSE,

’
.

"
LN
.
LLN
LLY

-~
LTS
"~
-
LIS
"~
L1
.
L)
LY
-~
-
LY
”~
LIS
"~
L2Y
-~
LXN
LY
-
LY
LY
-
LLY
LLS
LIS
L18
L2
L9
LXN
"~
LN
LY
-~
"~
LLY
L2
*
LIN
"~
L2Y
L1
L

L
L1
L1
L LS
(18
L2Y
(1%
-
LS
"~
-

;Alnl uctu
’

; INIT-PARSE

LN
-
LXN
LEN

-~

L2

(LY
L1Y
LEN
LY
-
-
LTS
LS
LXN
L2
LN

LY

LEY
LEN
-
(2
L2N
(2N
LLY
LEN
L2
L)
LY
L]

LLY
-
tu
(2
-
L2
(1
.
LES
L)
LN
LY
LES
LY
LI
LY
L)
LY
L1
LLY
LLY
L2N
L2
LLY
LLY
LN
™~
LEN

"~
LIS
L1N
LIS
-~
LIS

ame m)

-strea
fr =input .
v -sta
e cas've-phrase

ti

init ac
(ini

* nil)
t *next-word
(lse

il)
et *case* n
(ls

(lset we * Iill)
b

-parser)
(define.(lzizngmorpi:
(inft verb-morf e
oot *aubject'l)
{lset Mt n%l)
(ls:: *word* ni
{1ls
rocess a new word
ip

READ-WORD

.
™~
LLY
-~
ey
-
L3N
L1
n
LN
[XS
LXN
L2
L
L1
LD
LY
-~
™~

L2
L1
LTS
"~
LTS
-
LXS
‘o
-
L)
LLY
-~
LEN
"~
LIN
L2N
L2
LY
LIN
L1 S
LI
LTS
LY
LY
ta
LLS
LIS
LLY
bl
L1
L2N

(LY
LTS
LTS
LLN
LIS
LEY
.
LIS
LLY
LLY
"~
LIS

LIS

276

word))

A &"

)

x Word

(Set pr v— * k *
"word" "Ilext"’“o:d"

d)
t-word* wor
ex

(set *n

: *
ord i
ros *: *gate-outp
(forma

ord
ing w
gx**x* raad

L]

d)
d wor
e (read-wor
in
{(defi

word)

; wordTOweb

ord
the w
for
i-concept

mini

h the

:fete

-
L3S
LS
LIN
LT
LXS
LXN
LES
LN
.
.
-~
LLY
LIS
LEY
ALY

(1N
-
L3N
LIS
"~
LTS
LS
*u
L28
123
-
-~
”~
-
-
AL
LIN
L3N
"~
LL
L1N

LXN
LLY
LT
L4
L1

ALY
-~
(1N
(1
LLY
"
LTN
(LY
"~
.

[N

LL8
-~
L1S
.
L1
LIN
[1N
LI

*))
-word
*next

up

(table-look

*

-web

*next

{set

eb*))
web (po *w
(if

web)
rev-web*

*p

(set

web)

‘(!el 111 |w<)rdIoweb wOId)
Sel'. W b" 'llext Heb)
e
(

-~
L18
~
LI
LIN
[1Y
LN
LIS
LTY

.
LY
LIS
-~
.
~
L1Y
LES
LIN
LN
(38
-~
LLS
LXN
—
LES
LXN
LY
.
L2
-~
LIS
ALY
LIS
LIN
-
*
-~
2N
o
L1
LY
LN
LLN
LEN
LN
LLN
LY
.
-
-
L)
LY
ALY
LIS
(18
L2
LN
L1
LN
-~
LIS
™
LEN

LI

’

.
’

L2

"~

LIN
-~
LIN
LIS
LN

LTS

LY

LY
L
-
-
-
-~
LTS
LIN
(18
L3
LIN
LN
.~
L2
LIN
L2
LN
LY
LT
*a
-~
-
LY
-
LY
-~
"~
(23
(18
-
L2N
-~
-
LIN
"~
-~
LIN
LY
LTS
L2
LN
*u
L2
u
LE
LT
ALY
LLY
"~
LIN

"
(LY
-

LI

word))))

A“

- Ord
o]

in

pariod)})
* *p
ord ' (*break
2w
(meme?

nil-web
4
ndeveloped
"u

rd)
bla-lockup wo
(ta
word)

t-entry vll o
(get-entry av —
(get-entry nl o
(get-entry cl o
(get—entry pl o
(get-entry dl
{ge
{error

rd)
{or (null? wo
(if

(or

{define

LES

LLN
LLN
LLN
"~
-~
ALY
LIN
ALY
.
-

[

.
[L

(29
-
LN
[2N
LN
L1
LY
L1Y
.~
™
LN
LIS
-~
*a
L)
-~
tu
-~
-
LD
b
LL3
LL)
LIS
"~
LEY
LN
(2N
L2
[N
-
LY
LN
-~
LY
L1
LTS
LLN
LXN
b
LT
LY
L
-~
o
LL)
™~
LT

ebTOcase e case
. truct €
cons

-
.

L1N

LLN
LLN
LLN
ALY
-~
-
LTN
1N
.
L2

L2
L2N
-
L3N
L1
LIN
LIN
LN
LY
LY
"
LXN
LY
LY
LTS
-~
L2
LS
-
LY

-
LLN
LLN
"~
LI
LY
LLY
"~
-
LY
*
.
LEY

-
LIN
L1
-~
-
LY
-
L1
LY
LLS
LS
.
LY
LY
-~
-
LLY

radverb)

)
p t

b4

e

t ne b ver 11 rev-—w t)1 Web" ne -web"
(

)
e -
un
test-!l H-Web no mo h. rev-=w b" 'Heb" *ne Heb“
e
(
- (
(

b)
e we
e (webTCOcas

efin

“ (and web

LN

.
LIY
L1

(TS

LI
L3S
L1
L1
LI
L1N
-~
LTS
L
LIS
LN
.

L]
L1
LY
L1
LY
-~
LT
LLY
-~
LI
Ll
LLN
(1N
L2
LIN
LIS
L2
LIS
LIS
*
L2
-~
L3N
-~
L1
LN
-~
LEN
LES
L2
*a
L
-
L
-~
-
-~
-~
™~
LN
-
LLY
~

LIN

277

; PHRASE-TRIGGER
;determine which phrases in the lexicon to access at each point.

{define (index-of tcase)
(and tcase
(let {(root (get-web tcase froot})
(marker (get-web tcase "marker))
{modifier (get-web tcase ’'modifier)))
(1f (var? root)

modifier

(if (memg? modifier ’ (none nil))
root
{concatenate-symbol root modifier))))))

--

; PHRASE-TRIGGER
;bring a phrase into Active Phrase Stack

(define (phrase-trigger word)
(and word (add-to-phrases (get-entry *lex* word})))}

(define (add-to-phrases entries)
{(map (lambda (x)
{format *gate—ocutput*
" g*x**% triggering phrase: A &"
{get-web x 'comment))
(oadd active-phrase-stack (copy-deep x)))
entries))

(1set *subject* nil)
{(lset *verb* nil)
{lset *cur-slot* nil)
{lset *word* nil)
(lset *next-word* nil)
(lset *prev-word* nil)
{lset *case* nil)
(lset *web* nil)

{lset *next-web* nil)

278

(lset *prev-web* nil)
(lset *no* 0)

(herald structures (read-table *gate-read-table*))

(define-operation {check-list self))
(define-operation (get-top self))
(define-operation (get-all self))
{(define~¢operation (get-no self))

;MAKE-LEX
;make the container of lexical phrases
;intersting operations:
: oadd: add a new phrase
H get-entry: get a list of phrases through indices
(define (make~lex)
(labels (({(found nil)
{index nil)
{entry nil)
{structure nil))
{object nil

T e o . e ol S S T S S A T Y — T o S A L S S T T - — -

§ o . — —————— T ——— T S} S o A T " T T T i S - — -

({ODELETE self key)
(set structure (delg (assg key structure) structure)))
{ (OADD self phrase)
{set entry (massage-phrase phrase))
{set index
(index-of
{get-path entry ’ (pattern verb)})))
(1f (set found {aasq index structure})
{(push (cdr found) entry)
{(push structure (list index entry)))
{(format t ™ & A" (get-web entry ’comment))
entry)

0 o o ————————— T — —— " T T2 Ty oph A, LA S S S " T T . —

((SET-ENTRY self root)

279

{loop
{initial (body nil))
(for entry in structure)
(do (and (eqg? {(car entry) root)
(set bedy (cdr entry))))
(result body)))
{ (PRINT self stream)
(format stream "phrasal-lexicon"})
{ (PRETTY~PRINT self stream)
{loop (for entry in structure)
{(do (format stream ™ &** A "™ (car entry))
{loop {(for phrase in (cdr entry))
{do (newline *gate-output¥)
{(wpl phrase)))))))))

B e o ek A oD SR Y S S i ok i o A A il . S S T — ek e i

--

;MASSAGE~PHRASE
;reorganize the restrictions on case-concepts
; {to make them usefull for the unifier)

{(define (massage-phrase phrase)
{labels ({phr (makewb phrase)}
{pattern (get-web phr ’‘pattern)))
{loop (for slot in (get-slots pattern))
{(do (set-web (get-web pattern slot) ’'type
{case slot
((verb) “verb-caae)
({objectl subject cbject2} “noun-case)))))
phr})

(set *lex* (make-lex))

{define-operation (check-stack self))

........ P N N N N P N N N N R NN R R N R RN R
A A I A A R A R B A A A A N A R R R R R NN R R R R R A

;MAKE-CASE-STREAM
;make the container of lexical phrases

280

;intersting operations:
(define (make-case-stream)
(labels {({structure nil)
(no =-1))
{(ocbject nil

i v Y A S S . " S S . S S T N R " o ———

({INIT self)
{(set structure nil))

® e e e S S ot AR T Sy T =V S S S T 0 R S S S S S S

{ (QADD 3elf entry)
(increment *no¥*)
{(push structure entry)
{(set-web entry 'no *no¥)
{if (eq? (get-web entry 'type) “verb-case)
{set no *no*))
entry}

B v S ——————— —" T T T o e il S A S A N e e = A =8

& o ik Tl b S N S A A W ——— T 4 7 S - ——— -

({GET-ENTRY self number)
(loop (for kase in structure)
{(until (= number (get-web kase 'no)})
{result kase)))

B — T ——————— T T T ¥ S S S T — — —— —kr

8k b S ————— T T T v St S . L S S S T o S

((GET-TOP self)
{car structure))

o ————— - " o - i A = S . N S S W T T S — —

({PRINT self stream)
(format stream "#case-frame-input-stream”))

P ————————— PR e b D g

{ (PRETTY-PRINT self stream)
{loop (for entry in satructure)
(do (newline *gate-output¥*)
{wpl entry)))))))

B o —— —— ———————— o L. I L W " - i

(set case~frame-input-stream (make-case-stream))
(set cfis case-frame-input-stream)

281

—— o ———

——— e e L

. ————————

IIRIIIiIIEIIIiiiiiiiiiiiRIGIIRGiGRRIIGGRRGGICRPi iR i
;MAKE-PHRASE-STACK
;make the container of lexical phrases
:intersting operations:
{define (make-phrase-stack)
{labels ((structure nil))
(object nil
({(INIT 3elf)
(set structure nil))
{ (OADD self entry)
{push structure entry)
(phrase-unify entry)
entry)

> P o i 7 N . S e S S S S o T LA S S T S A S S S

& o o ——— P Y = S . S A T T - . S T T S S S S e 45

((CHECK~STACK self)
(check~active-phrases structure))

& ok P T v i S S T S v o A S T T S S S i S S e v M

((GET-TOP 3elf)
{car structure))

P —————— PR PP R S E] et b

{ (PRINT self stream)
(format stream "#phrase-stack"))

U o e —— . S < T S S T v ok I S W S S 9000 O T T o b 4 S S S S A R M S S

{ (PRETTY-PRINT self stream)
(loop (for entry in structure)
{do (newline *gate-output*)
(wpl entryl)))})))

PP ————_— PR PR L B8 1k e e i

{set active-phrase-stack (make-phrase-stack))
{set aps active-phrase-stack)

(define (change-slot-name web nl n2)
web)

282

; MAKE-CASE-STACK
;make the container of lexical cases

------------------------------- N EEEE NI RN R 8 4 % % s ¥ woa s s
Jl'lll’f!"fl'llll'Jl'J'""l‘!’ll'll'J'lll‘f'rlll’l!f'll'l'l!f’l'll!

(define (make-case-stack)
{labels ({structure nil))
{(ocbject nil
{ (INIT self)
(set structure nil))
{ (OADD self entry)
{push structure entry)
entry)

{ (ODELETE self entry)
{set structure (delg entry structure))
entry)

B o —— A i = S A e S A S S i 7Y S S M S A e S —

P o A o —————— " vl ok I} S T W T el S . S - —— -

{ (GET-TOP self)
(car structure))

A i v A ————— T 15 S - T - e ke S —

{ (PRINT self stream)
{format stream "#active-case-stack"))

& e il A il A S S S e A U T S " i} e S S S S T N W ———

({PRETTY-PRINT self stream)
{(loop (for entry in structure)
(do (newline *gate-output*)
{wpl entry)))))))

B o o o v T v il i S S A S S T N e - —————— o Y 7 S . T - - "

(set active-case~stack (make-case-stack))
(set acs active-case-stack)

(herald memory {read-table *gate-read-table*))

; INITIALIZE:

; *context* and *ltm* (long term memory) are both defined
as GATE contexts. *context* is used as working memory

A

283

lle r tu]‘.‘ Ualue.
3
WEB

text.
of the con
ﬂtopll

from the

cency,.
o i: functions,
in a

is

s
tack
s s
ized a

aniz

° are org

N ntexts

o

‘ INA ¢

MCR

n

in

1

.
’
-
’
’
’

LEY
o~
LXY
LIN
.
LLY
LLN

"~
LT9
(19
UL
LIN
LN
"
-
LY
L
LY
L)
LLS
”~
LEN
*
-
L2Y
.
—n
LY
"~
L2
-
LES
LLY
LTN
LLY
L1
LIN
LTS
-~
LTN
L
-
ALY
LL
LEN
(1N
L2N
L2
LIN
o~
LEN
LY
LN
LY
LIS
-~

-

(2
L1y
-~
"
LLN
"~

set *con)
reate
text* (cxS$c »
ate
(*ltm* (cxScre
*
{set

LN
LLY
-
LIS
~“
-~
L3N
LYN
LIS
L1
LN
LIS
L
-
-
"~
L2
LIS
*a
-
LIN
u
-~
LY
*u
-
L)
LT
ALY
LI
LTS
"~
L2
L2
o~
LTS
‘o
L
LY
b
ALY
LLY

(1N
LY
(2
LY
“~
LN
*u
LN
-
-~
LLY
~“
-
L2N
L2
LS
o~
LY
LS
b
-

L4

web

context,

c
t

a

as

eb

NT
-AUGME
; MEM

input

-
r
-
’

tu
-~
(XY
(LS
.
LES
LXN

L)
LT
.
*
LIN
L2N
(2N
[N
LYY
"~
LY
LY
*u
LY
LLY
-
LLY
LIN

-
L2Y
"~
"~
LY
LN
LY
L
-
LLY
LIS
-
-~
L2Y
[
o~
LTS
"
LN
LE
L
-
LI
-~
‘e
*a
-
-~
™
LLS
LXN
LY
LY

-~
LI
LLN

ALY

j)

-~
-~
"~

LLN
LLN
LTS
LIS
LLY
"™
o
LLY
-
.
(XY
LXN
-~
LLY

L2
L
LES
LY
ALY
-
"~
L2
LTS
L1
LLS
LY

LY
-
LIS
LLY
LEN
ALY
*u
LN
"~
L2Y
LI
LIS
LTS
LY
LN
L2
LY
-
-~
-~
LLY
w
-
(2N
LN
LTS
LYY
-
u
LEN
LY

LLN

context
n

web
i

xt
onte
ize the ¢
an
reorg
7))
ob])
Sretract mem
(cx

obi)}
Sassert mem
{cx

bi)
m o N
date me >
(memrquetrieve me
i {cx
(1f

context,
ext.
cont
b at top of
we
add

p t .
t

input
IF
ELSE

ATE
-UpD
MEM

1

{(define

.
r
-
r
.
14
r
-
’

-~
"
"
.
L1
(LY
LT
a
LY
"
(LY
(LY
-~
(23
"
(1Y
(1Y
"~
LTN

*
-~
-
-~
-~
-
-
[IN
-
"~
L1
L1
"
L2N
.
-~
*u
-~
-
-
-
LIS
[IY
-

LT
LT

"~

LY
LY
L
-
LLY
L2
*
LIN
-
L3N
L2
-~
o~
LXY
LS
-

he context
t

in

284

j

cency
arch by re
se

context, ;
i onte
i in ¢
ject exists
i cbije
ng
tchi

ma

ve o text.
ontex
of ¢
bject to top
J
move
THEN

-
-

input
IF

1

IEVE
=RETR
; MEM

r
-+
’
.
’
.
.

r

[RN] TR RN)
T R N A A I B A A B A

ELSE return NIL.

I) 4 & 5 s uw s s 0 e mn

~
.
~
~
~.
~
-
-
-
-
-
-
~
-
-
-
-~
~
~
e
.
~e
~
~e
~
-
-
-
-
-

(define (mem-retrieve mem obj)

(let {(objl (caar (reverse (cx$retrieve mem obij}))))
{and objl (mem-update mem objl}})))

+ % 2 s m s 0 a8 s e @ - 4 s 8 a a8 e .

- e s - R EEEEEEER] [N N N N N |
I'l"lI'Ill!'l"Ifllffl’l‘l'Il'l'IJ!ll?lffl"ff.l'll'!"!l'lf!!fllt

;MEM-RETRIEVE-BD

AL}

input: context, web, bd
retrieve relative to a binding list, by recency
IF matching object exists in context:
THEN move web to top of context.
RETURN the binding list
ELSE return NIL,

{define (mem-retrieve-bd mem obj bd)

{let {(objl (car (reverze (cx$retrieve-bd mem obj bd))})))
{and (car cbijl)
(mem-update mem (car objl))
(append ' (t) (ecdr objl)))))

;MEM-RETRIEVE-~OBJ

’

input: context, web, bd
retrieve relative to a binding list, by recency
IF object exists in context:
THEN move cbhject to top of context.
RETURN the object itself.
ELSE return NIL.

(define (mem-~retrieve-obj mem ocbj bd)

“m moe 4 e s s e e
F O A A N A A A N R RN N NN NN NN RN

(let ((objl (car {(reverse (cx$retrieve-bd mem obj bd)))))
{and (car objl)
{mem~update mem {car ohjl))})})

;sMEM-RETRIEVE-ALL

7

input: context, web

285

jects from the context

RETURN all matching ob

.
.

{define (mem~retrieve-all mem obj)

x)))

(car (del alikeqg? ' (t)

(cxSretrieve mem obj)))

(map (lambda (x)

;MEM-GET-ALL

web

context,
RETURN a list of objects

input

{mem-get-all mem)
{cx$retrieve mem *xx¥*)})

(define

;MEM-INTIT

context
RETURN an empty context

input

-
’

.
’

it mem)

inl

(mem-

(define

{loop

(for z in (mem-retrieve~all mem *dummy*))

(do (cx$retract mem x))))

CALLS to GATE:

1

cx$create
cx$assert

cxSretrieve

cxSretrieve~bd

cx$init

cx$Sretract

(herald reference (read-table *gate-read-table*))

286

;REFERENCE-RESOLVE

;find the appropriate referent for a reference
;1. find concept for reference in lexicon

;2. find obiject for ceoncept in memory

;TCASE is the current case-frame

;SCRT is determiner or ()

;CONCEPTS is a lisat of retrieved concepts

--

(define (reference-resolve tcase tsort)
{labels
{ (concepts (get-concept tcase))
{instl nil))
{(oer concepts
{(error "undeveloped 8 {(in reference):
definition not found for word A"
{root-of tcase}))
(set instl (case (get-web tcase ’word-type)
{ {name)
(list (mem~retrieve *context*
(get-web ({(car concepts) ’concept))))
({pronoun)
(pronoun-resoclve tcase concepts))
{else
{(case (get-web tcase ’'determiner)
{ (some this)
(list (augment *context* {(car concepts))))
{ (the)
(list (the-retrieve concepts)))
({none {) a)
(list (a-retrieve concepts)))
{else
(if (web? (get-web tcase 'determiner))
(list (possessive-retrieve tcase (car concepts)})
(error "undeveloped 5 (in reference):
strange reference™)}))))))
{splice~web tcase ’‘concept instl)
tcase))

{(define (splice-web web slot con)
{remove-slot-web web slot)

287

{loop (for elem in con)
{do {add-web web slot elem))))

;J‘;;f.:;:fllll'lfl':;Illf’lll;::llllf’!l
+ PRONQUN~RESOLVE
;find referent for a pronoun {(must be in WM)

N N I N B) T) RN]
'IIIl'f!I"l!l'lJ"llf”""llf”'ll!lll

.
~e

.
’

(define (pronoun-resolve tcase concepts)
{case (function-of tcase)
((subjective)
{list (mem-retrieve *context*
(get-web (car concepts) ‘concept))))
{{objective)
{(if (eq? (root-of tcase) ’'it)
(mem-retrieve-all *context¥*
(get-web (car concepts) ‘concept))
(list (retrieve-not-subject
(get-web (car concepts) fconcept)))}))
({possessive)
{list (mem-retrieve *context*
(get-web (car concepts) ‘concept))))))

TN -
I A I I N A

;RETRIEVE~-not-SUBJECT

;in case of "he took him" (as opposed to "he took himself™)
;find referent (for "him™) in WM which is different than
:the referent for "he".

I EEEEE) L) L) ']
IPfl'lll’f’ll'lJl'lIflIf’llllllII!l'lll‘lIIJ"!f’llll'l"!’fl!f’l’

(define (retrieve-noct-subject con)
(let ((pat (obS$fcreate ‘(UAND obj
(UNOT obj
, (get-web *subject* ’concept}) obj ,con)}))
(mem-retrieve *context* pat)))

--------- - e R EEEEEN NN s 5 5 & 8 0 s e 2 mu P R N N R A A N)
L2 L I N I R A N A A

; GET_CONCEPT
;find the concept for the reference in the lexicon

2 a2 s 4 s 883 4 4 4 4 B 8§ m s e ae s "R 4 s =4 a2 - s m s s s e s m o= .
PR R A R A A R A A R R

-~

.
L

288

{define (get-concept tcase)
(let {{root (rocot-of tcase)))
{(map (lambda (x)
{copy-deep x })
{get-entry wl root})))}

~e
-
e
~e
-
-
-

P12 INIINIININIIIINIIiiiiiiiiiRRNRNIININLNIG
;A=-RETRIEVE
;instantiate a referent for a NEW reference

.
e

FPENIIRIIIIIIININNIRRPINNEGPNiiiiiiviiiiiiiiiRiIdidiiiiii ;i
;account for multiple meanings
{define (a-retriewve concepts)

{mem—augment *context*

{(get-web (car concepts) ‘concept)))
FERIIIIRNICIIRIIEPININNINNIGEGICRNIiNNiiiiiiiiiiiiiiiiiiiin::
; THE-RETRIEVE
;instantiate a referent for a KNOWN reference
;either:

;1. find it in WM
;2. £find it as a role in an existing frame
PRI IREIRNIRNIRRRIRNIRINRRNRNRRNRNIRNRNNIRINRNINGRIIGNN:

;saccount for one meaning only
;retrieve the frame of that concept if specified
{(define (the-retrieve concepts)
(if (get-web (car concepts) ’'pres)
(mem-update *context* (frame-retrieve (car concepts)))
(mem—-retrieve *context*
(get-web (car concepts) 'concept))))

.

-~

-~
-

e
~e

L R I R R R I R R B I R R R N A N N N R N R I N N NN N] ..
L A N A A A A N i i v B e e B R A R A A N B B v B R A B N A B I B B A A RO A A A A N]

;FRAME-RETRIEVE

find the presupposition of the concept and hook it up
;i.e: the judge: find a trial script and instantiate a
judge in that script

et

; (must be in WM)

L R R R N B B R R R R R R R R R I T I T R N R R N N N N A
LA A L BN N A A A S A T A A A A AN L A B R A R AN A B A B B O A A]

A
~»
ht)
A
~»
-
-~
ht)

289

~s
-

(set *con-var* (obS$fcreate ‘(uvar name 'concept)))

{(define (frame-retrieve con)
{labels ({(frame (get-web con ‘pres)}
{concept (get-web con ‘concept))
{path {find-path~by~value frame *con-var*))
{new-frame {remove-path (copy-deep frame) path))
{inat-frame (mem-retrieve *context* new-frame))
(bdg (unifyl frame inst-frame " (t) "{))))
(if inst~frame

{if bdg
{bd-loockup ’concept bdg)
{(set-path inst-frame path concept))

{(error "no frame A found in the context™ new-frame))

;POSSESSIVE~RETRIEVE

;find referent in case of a possessive "his brother”

;three cases:

;1. his trip: a new frame where possessor "has"™ the entire frame
;2. his father: a new frame where the possessor has—-a role

:3. his money: if the object is a soc-posses then

H instantiate

H { (head possess)

; {(actor possessor)

; {obj poasessed))

R R R R R R I I I R R R N R B NI} T I N R RN N N B A N R) . IR R RN A R
FrEF PP P RPRFRFFS YRS

{define (possessive-retrieve tcase defl)
(labels
{(con {car (get-concept tcase)))
(possessor (get-web defl ’'concept))
{(possesaed nil))
{set-path tcase ’ (determiner concept) possessor)
{(if (set possessed (get-web possessor (get-web con ‘name)))
{erxror: "error 8: a role holder A of A not found”™
(get-web con ’"name)
possessor))
(mem-update *context* possessor)
{(mem-update *context* possessed)))

290

; PHRASE-UNIFY

;

;spawns demons for each one of the pattern cases

;each demon is matched against the current case in the text

P R R R R R R I I R
IR RN

{define {(phrase-unify phrase)
{labels
{{pattern {(get-web phrase ’pattern))
(verb-no (get-no cfis))

{(slots (get-slots pattern)))

{set-web phrase "unmatched-cases slots)
{set-web phrase ‘bd ’(t)}

{loop

{(initial (case-frame nil})

(for slot in slots)

{(do (set case-frame (get-web pattern slot))
(set-web case-frame ’'phrase phrase}
(zset-web case-frame ’'slot slot)
(set-web case-frame ’'no

(case slot
{{subject) (- verb-no 1))
{ (verb) verb=-no)
{ (objectl) (+ verb-no 1))
{ (object2) (+ werb-no 2))))
(cadd active-case-stack case-frame)
{if (< (get-web case-frame 'no) *no¥*)
(case-unify-prev case-frame)))
{result phrase))))

P R R R I R R R N N N R R R N R I R R I I N R R R R N L R N B BN S
L R N RN NN RN NN NN NN N AN

; CASE-UNIFY
; matches a lexical case frame with its designated

LTS

; one on the input stream

291

{define (case-unify lcase icase)
{labels {(phrase (get—web lcase ’'phrase))
(umc (get-web phrase funmatched-cases})
{slot (get-web lcase "slot))
(bd (get~web phrase 'bd)))
{(if (= (get-web lcase ’'no) (get-web icase 'no))

{block
(set bd {(unifyl lcase icase bd ' (phrase slot)))
(if bd
(set-web phrase funmatched-cases (delg slot umc))
(block

{set-web phrase ‘failed-case slot)
{(format t ™ & *** fajiled case. phrase: A lcase: A icase A"
phrase lcase icase)))
(odelete active-case-stack lcase)
(set-web phrase ‘bd bd)))

ooooo

;CASE-UNIFY-PREV
; matches a lexical case frame with previous one (for subject)

’

--

(define (case-unify-prev lcase)
(labels ((phrase (get-web lcase ’‘phrase})
(umc (get-web phrase "unmatched~cases))
(slot (get-web lcase 'slot))
{bd {get-web phrase ’‘bd))
{icases (get-all case-frame-input-stream)))

{loop
{(for icase in icases)
(do
(if (= (get-web lcase ‘no) (get-web icase 'no))
{block

{set bd (unifyl lcase icase bd ' (phrase slot)))

(if bd
(set-web phrase ’'unmatched-cases (delg slot umc))
(block

(set-web phrase ffailed-case slot)
(format t ™ & *** failed case. phrase: A lcase: A icase A"
phrase lcase icase)))

292

{odelete active-case-stack lcase)
(set-web phrase ‘bd bd))))
{until
(= (get-web lcase 'no) {(get-web icase ’'no)}))
bd))

: SCAN-CASES

;the top-level call for phrase unification

;spawns demons for each one of the pattern casea

;each demon is matched against the current case in the text

--
ll'llfIl!l'lfl'll'!ll'll'l'I"lIfllf"lItf'Il!'l'll'lllll'l'llr'!rl

(define (scan-cases icase)
{(1f icase
{(labels
({structure (get-all active-case-stack)))
{loop (for lcase in structure)
{(do (case-unify lcase icase)}))))

A A R RN RN NN NN

; SCAN-PHRASES

;the top-level call for phrase unification

;spawns demons for each one of the pattern cases

;each demon is matched against the current case in the text

LA A A L A A R S A A A T A A A AN B R A A R A A A L A R A A A I L e B R

{(define (scan-phrases)
(loop
(for phrase in {(get-all active-phrase-stack})
(initial (bd nil) {(umc nil) {result nil))
{do
{set bd {get-web phrase ’'bd))
(3et pres (get-web phrase ‘pres))
(set umc (get-web phrase ’‘unmatched-cases))
{and (null? umc) bd
(if pres
{set-web phrase ‘bd (phrase-prove phrase)))

{block
{push result phrase)

293

(1f (get-web phrase ’'concept)
{phrase-instantiate phrase)
{phrase-modify phrase)))))
{result result)))

--

--

{define (phrase-instantiate phrase)
(let ({bd {(get-web phrase ‘bd))
{con (get-web phrase ’concept))
{conl nil))
{set conl (ob$instantiate con bd))
{mem-augment *context* conl)
{format t " & instantiated concept A of phrase A &"
conl phrase)
{po conl)
conl})

--

(define (phrase-modify phrase)
{labels
{(bd {(get-web phrase ‘bd))
{medify (get-web phrase ‘modify))
{modifyl (block

(format t ™ Er*AAxxekkARLRN

bd A meodify A"™ bd modify)

{(obSinstantiate modify bd)))
{conl {(get-web modifyl ’concept})
{path (get-web modifyl ’‘path))
(val {get-web modifyl ’‘wval)))
(fomat t " O gEhkkkkkhkkkhkRkkhk
path A conl A wval A mod A"™ path conl val modifyl)
(set-path conl path wval)

294

{mem-update *context* conl)
{(format t ™ & modified concept A of phrase A &"
conl phrase)
{po ceonl)
conl))

--
I'f"”Il"llllIfr!"!l'!l"l‘J'Il'llll"f'l""l’f"’l"’fll"!’

; PHRASE-FPROVE

FFEFP P RPN PP PRI RP PR F RPN PR PP R PRSP

{define (phrase-prove phrase)
(if (get-web phrase ’'pres)
(labels ({pres (get-web phrase ’pres))
(bd {(get-web phrase ‘bd))
(bdl (mem-retrieve-bd *context* pres bd))
(presl (mem-retrieve-obj *context* pres bd)))
{if presl
{(bd-bind fpres presl hdl)
{block (format t

" & *** presupposition not found for phrase A" phrase)
nil))1))

(herald tables (read-table *gate-read-table*))

--
Il'lfllll!'ll'll!’l’l""”fFl'”’lI'!""llf‘l’l'll'll'!'ll"lll

sMBAKE-WORD-LIST
; A T object which defines access operations.

; Word lists are used for various linguistic classes such as verbs,
; nouns, particles, connectors, etc.
INPUT: name, func, items-list

hTY

H name is for reference purposes
H func is for separate treatment of each class
; items-list is the actual list

...
LA A A L A A A O B A A A A e e e e N A A A N R NN NN

{(define {(make-word-list name func items-list)
(labels ({(blist nil))
(object nil
({init self)
{set blist nil))
({cadd self tuple)
{cadd items-list tuple)

295

.
’

{set blist (append (func tuple) blist))

nil)
{{print self stream)
(format stream "{ A}"™ name}))
{ (pretty-print self stream)
{loop (for entry in blist)

{(do (format t " % A A"
{cadr entry)))))

{(car entry)
({get-entry self word)

{or (cadr (assg word blist)) nil)))))

.................

FUNC-V

the function given to the verb-list

INPUT: a list of this form:

--

{(give gave given giving gives)
(dress dressed dressed dresasing dreases)

(define (func-v five-tuple)

{labels ((clist nil)

((word-analysis five-tuple sn suff)

{push clist

(list {(nth five-tuple 3n)

(obSfcreate
Y (WORD-SPEC

root ', {(nth five-tuple 0)
lex 7, (nth five-tuple 3n)

form ’verb

suff *,s3uff))))))

(if
(egq? {(nth five-tuple 0)
(nth five-tuple 1))

(word-analysis five-tuple 0 123)

{block

(word-analy=sis five-tuple 0 1)

{(if
(egq? (nth five-tuple 1)
{nth five-tuple 2)

)

(word-analysis five-tuple 1 23)

(block

296

(word-analysis five-tuple 1 2)
(word-analysis five-~tuple 2 3}))})
{(word—-analysis five-tuple 3 4)
(word-analysis five-tuple 4 5)
clist))

--
llI"JIf’l"”'”"J"Jll'lllllll'l"I'lf'.llll'lffl"l'll'll’l!Ifl

; FUNC-AV

; the function given to the aux-verb-list
; INPUT:; a list of this form:

H {be was been being is)

...
A A A N N A A R RN NN N A N A A AN A

(define (func—-av five-tuple}
{labels ({(avlist nil)
{ (word-analysis five-tuple sn suff)
(push avlist
(list (nth five-tuple s3n)
{ob$fcreate
Y (WORD~SPEC
root 7, (nth five-tuple 0)
form ’aux-verb
suff 7,suff))))))
(if
{eq? (nth five~tuple 0)
{nth five-tuple 1))
(word-analysis five-tuple 0 123)
(block
(word-analysis five-tuple 0 1)
(if
{(eq? (nth five-tuple 1)

(nth five-tuple 2))
(word—-analysis five-tuple 1 23}
(block

{(word-analyszis five-tuple 1 2)

{(word-analysis five-tuple 2 3)))))
(word—-analysis five-tuple 3 4)
(word-analysis five-tuple 4 S5)avlist))

LA A A AN A N N A A AR A B A A A O I L A I A R B A R e B B N N B O B A B B O A]

; FUNC-AV

297

; the function given to the noun-list
; INPUT: a list of this form:

; {man men)

H {(house houses)

{(define (func-n three-tuple)
(labels ((alist nil)
(form nil)
{ (push-new key number root function tuple)
{push alist (list key
(ob$fcreate
* (WORD-SPEC
root ", root
number ’,number
lex ’,key
form "noun
function f,@function
word-type
*, (or (caddr tuple) 'ncne)))))))
{case (caddr three-tuple)
({name)
{push-new (car three-tuple) nil
(car three-tuple) ' (()) three-tuple))
({pronoun)
{cond ((and
{egq? (nth three-tuple 0) (nth three~tuple 3))
{eq? (nth three-tuple 0) (nth three-tuple 4))}
{push-new (car three-tupe) nil
(car three-tuple) f {subjective possessive objective)
three-tuple))
({eq? (nth three~tuple 4} (nth three~tuple 3));her
{push-new (nth three-tuple 4) nil
(nth three-tuple §)
‘ (objective possessive) three-tuple)
{push-new {car three-tuple) nil
{nth three-tuple 0)
' (subjective) three-tuple))
(else; of cond (it is s3till a pronoun)
(push-new {(car three-tuple) nil
{nth three-tuple 0)

298

! (subjective) three-tuple)
(push-new {(nth three~tuple 4) nil
{nth three-tuple Q)
’ {(possessive) three-tuple)
{push-new {(nth three-tuple 3) nil
{nth three-tuple 0)
f {objective) three-tuple))))
(else ; not a pronoun or a name
{format t "™ &hi three A" three-tuple)
(if (eq? (car three-tuple) (cadr three-tuple))
{push-new (nth three-tuple 0) 'common
{(nth three-tuple 0)
f{()) three-tuple)
(block
(push-new (nth three-tuple 0) ’single
{(nth three-tuple 0)
*({)) three-tuple)
{push-new (nth three-tuple 1) ’‘plural
(nth three-tuple 0)
*{()) three-tuple))))}
alist))

L A A A A A N NN NN NN N AN A

; FUNC-A
; the function given to the a-list

...
LA A A A e e A I A B A B A A A B B A B v B A RN A A B A A B B B A B A R R N BN B B B R R

(define (func-a two-tuple)
{(labels ({alist nil))
{push alist (list (car two-tuple) (obSfcreate
' (WORD-SPEC
form 7, {cadr two-tuple)
root ‘, (car two-tuple)))))alist))

; FUNC-d
; the function given to the d-list

--

(define (func-d four-tuple)

299

{labels {((alist nil)
{ (word-analysis four-tuple sn suff)
(push alist
(list (nth four-tuple sn) (cb$fcreate
¥ (WORD-SPEC
raot ', {(nth four-tuple Q)
form ’description
suff ’,suff))))))
(if
{(eq? (nth four-tuple 0)
{nth four-tuple 1})
(word-analysis four-tuple 0 12)
{(block
{word-analysis four-tuple 0 1)
{(word-analysis four-tuple 1 2)))

{word-analysis four-tuple 2 3)
(word-analysis four-tuple 3 4)
alist))

(set vl (make=-word-list ‘vl func-v verbs))

(set avl (make-word-list ’‘avl func-av ftp-list))
(set nl (make-word-list ‘nl func-n nouns))

(set dl (make-word-list ‘dl func-d ftp-list))
(set pl {(make-word-list ’al func-a ftp-list))
(set ¢l (make-word-list ’'al func-a ftp-list))

..
'llflIf’l’l"}!"l"l’f'l’l'!l'l’"’ll'"'l!'lf'lf'lll’lll!l'!'I"f

;MARE-WOLRD-LIST
; A T object which defines access operations.
; world list is used to define semantics of lexical words.

{define (make-world-list name)
{(labels ((blist nil)
{tuple nil)
{pat nil))
{object nil
({init self)

300

{set blist nil))
((odelete self word)
(set blist (delg (assg word blist) blist)))
({cadd self phr)
{set tuple (ob$fcreate phr))
(make-name-entry tuple)
{if (assqg (set pat
{get-web tuple ’‘pattern)) blist)
{(push (cdr {assg pat blist)) tuple)
(push blist (list pat tuple)))
{format *gate-output* " A " pat))
{(print self stream)
(format stream ™{ A}"™ name))
({pretty-print self stream)
{(loop {for entry in blist)
{do (format t " % A A"
(car entry) (cdr entry)))})
{ (get-entry self word)
{or (cdr (aszaqg word blist)) nil)))))

(define (make-name-entry phr)
{(if (and (get-path phr ’ {concept name))
(eq? {(get-path phr ’ (concept type)) “person))
(push *name-list* (list {get-path phr ‘ (concept name))
nil
‘name))))

{define (make-item-liat)
(let ((clist nil))
{object nil
({init self) (set clist nil))
({oadd self item) (set clist {(cons item clist)))
((get-entry self word) (assq word clist))
{(pretty-print self stream)
(map (lambda (x) (wp x)) clist)))})

(set verbs (make-item-~-list))
{set nouns (make-item-list))

(set ftp-list (make-item-list})

(set *name-list* nil)

301

{set wl {(make-world-list ’‘wl))

{herald morphology (read-table *gate-read-table*))

sMAKE-RULE-LIST
;converts rules into

[N
=]
o
o
H
e
fu
'—l
"
14

0
2]
1]
7]
o
=}
T
)
=y
| 2
o
=
%
o
o
7]

" s = 3 9 e ms0eeesesm »
FP X EFPFFFrPEF P FET

{define (make-rule-~list rule-list)
{loop ({(initial (bedy nil))
(for rule in rule-list)
(do (push body
{obSfcreate ‘(MORPH-RULE prev , (car rule)
curr , {cadr rule)
next , (caddr rule)
thus , (cadddr rule)
done , (cadddr (cdr rule))))))

-
-
-
-
-
-
~
~
-
~
-
~
~.
-
-
-
~e
e
.
b
-
.
e
-
-
-
-
-
~
~
-~

..
r

.\.

(result body)))
HF A S I R B I B S B B B B R I S B S S S I B R B B R S S i)
;MATCH-RULES
try out matching all the rules on the list

.

R R R R R R R I A B - 2 m = 8w s 8 88 % s e oamu o

lll.l"ll"l'llfllll’ll

e
-,

{define (match-rules prev curr next form rule-list mo)
(loop (for rule in rule-liat)
{initial (temp nil))
(do ; {(px rule)
{set temp (match-rule prev curr next rule form)))
{(until temp)

{result temp)))

8 % # % % 4 ¢ a s 4 e s aessaeeEes" R R R R E N I I R R N B R N B I) ey
P A I A A A A A A A A A N N N R R R NN RN
;MATCH-RULE

;try matching a single rule
sreturn a binding list if matched

4 % # 8 B 4 B 3 2 s m s e s mu s eSS4 ee s 4 s ® B B % 8 4 8 F A AR RN E S EE A S s eE T Ao
R N R A A B R A N A A I A B A A A A A A N e e A A A O R R L A

{(1lset *match-rule-ob* (ob$fcreate ' (MORPH-RULE)))}

{define (match~rule prev curr next rule form)
{labels ((wb *match-rule-ob¥*)

302

(bd nil))
(ch$set wb 'prev prev)
(ob$set wb ’curr curr)
(obSset wb ’'next next)
(set bd (unifyl rule wb ‘(t) ‘(thus done)})
(and bd (loop (for slot in (get-slots (get-web rule ‘thus)))
{do (set-web form slot
(get.-path rule (list ’thus slot))}})
(result {(cons {(inst! form bd)
(get-pathl rule ’ (done done}))))}))

{(define-cperation (oform self))
{(define-operation (test-new-web self prev curr next))
{define-settable-operation {(drules self))

L A A N R B N B B A A A A I B B I R A I A N A N R R R A B A B B R]

sMAKE-MORPH
;the obiject containing the rules

{(define (make-morph init-form)
{labels {((rules nil)
{(temp nil)
(form (obSfcreate init-form)))
(obdiect nil
{({init self)
(set form (obS$fcreate init-form)))
((test-new-web self prev curr next)
(set temp (match-rules prev curr next form rules self))}
(if (eg? {(cdr temp) 'ref)
{set-ref form self)
{if {(eq? (cdr temp) "t}
{set-case form self)
nil))
form)
({drules self) rules)
{((setter drules) self entriea)
(set rules entries)nil)
{(oform self) form))))

...
L A A A A A N N R NN R NN NN

303

: VERB

;setting up rules for verb morphology

ooooo

(set

init-verb

Y (VERB~CASE

form ’"verb

root ‘none

lex 'none

voice ‘active
polarity ‘pos
tense ’‘present
word-type nil
modifier ’none))

(set verb-morph (make-morph init-verb))

{(set
(272

(272

(272

(22

(??

{drules verb-morph) (make-rule-list ‘{

(WORD-SPEC
(WORD-SPEC

(WORD=SPEC
(WORD-SPEC

(WORD-SPEC
{WORD~SPEC

(WORD-SPEC
(WORD-SPEC

(WORD-SPEC

form 'noun)
form (UOR obij ’aux-verb obj ’verb) suff 2x)
{CASE-MODIFIER suff 7x))

root ’have) A
suff (UOR obj 3 obj r23}))
(CASE-MODIFIER aspect ’perfect))

root ’be)

form (UNOT obj (UOR cobj ’aux-verb obj ‘verb)))
{CASE~-MODIFIER root ‘isa)

{SIGNAL done "t})

root ‘be)
suff (UOR obj "3 obj 723))
{(CASE-MODIFIER voice ’'passive))

root 'be) {WORD-SPEC form (UCR verb ’aux-verb)
suff ’4)
(CASE~-MODIFIER mode ‘continucus))}

(WORD~-SPEC form ‘verb root ?x) 22

(CASE-MCDIFIER root ?2x)
(SIGNAL done ‘t))

304

mm

...
A A A R N N R NN R NN

: NOUN
;setting up rules for noun morphology

ooo
LA A A A A N A e e A B A A B A A A A A N R A A e e A R A AR L B A B AN B A

{(set init-nocun ¥ (NOUN-CASE
form ‘noun
determiner ‘none ; the a some
marker ‘none; to from by
description 'none; small yellow
lex ‘none; boys, boy, men, man
done nil
function nil; subjective
word-type nil}); name pronoun

(set noun-morph (make-morph init-noun))

{set (drules noun-morph) (make-rule-list ‘{

(?? (WORD-SPEC form ‘prep root ?x)
{WORD-SPEC form (UOR obj ‘determiner obj ’‘possessive
obj ’description obj 'noun obj ’proncun))
(CASE-MODIFIER marker ?2x))

(?? (WORD-SPEC form ’‘determiner root ?x)
(WORD-SPEC form (UOR obj ’‘noun obj ’role})
{CASE-MODIFIER determiner ?x))

(?? (WORD-SPEC word-type ‘pronoun lex 2?1
function ?p root ?x) 2?7
(CASE-MODIFIER root ?x lex 2?1
function ?p word-type ’pronoun)
(SIGNAL done ‘t))

{(?7? (WORD-SPEC word-type 'pronoun
function 'possessive lex ?1 root 7?x)
(WCRD+SPEC form ’‘noun word-type ’‘none)
(CASE-MODIFIER determiner
{NOUN~-CASE

305

--

word-type ’‘pronoun
function ’peossesasive

root ?x
lex ?21))
(SIGNAL done ’‘ref))

(?? (WORD-SPEC form 'noun root ?x lex ?1 word-type ?y
function (UAND obj (UNOT obj
obj 2z)) 22

(CASE-MODIFIER root ?x

lex 21
function ?z
word-type 7?vy)

{SIGNAL done

th

1))

fpossessive)

!ll'lfl'l!f"ll"!l'l!llfllfl'llll'l!'ll'lffllrl!t!l'}l"'ll'Il!l

(herald reader (read-table *gate-read-table¥*))}

INITIALIZE: *last-open-file* can save you when you need

to close a file

f!ff'lll'flIl'Ilf'.'!'!!?llll'llllllllll.lIIJll‘lllll'll'll'lf!ll’ll

{set *last-open-file* nil)

IIfl'lIl"!l'Ill'lJl'll'l!!f"J't.lllll'!f'll'l’ll’l""'!l’l'fl”

LOAD-FROM-FILE
input: structure, file

initialize the structure (a lexicon) and load the phrases
in the input into the structure.

L A A A A A R A e A A N R A N R RN N]

{define (load-from—-file lex file)

(unwind-protect

{(let ((stream (open file 7 (in))))
{aet *last-open-file* stream)

(init lex)

{(loop (initial (expr nil))

(while (not

(eqg?

{set expr

306

{read-object stream *gate-read-table*}) *ecf*)))
{do (ocadd lex expr))))
(close *last-open-file*))}

(define (load-phrase x y} (lcad-from-file x y))

PI T RRENIIINIRINEIRIIIINIINNIIIIIIICPIIiisiRIRRREINNINNIGIIINIIIGG
; ADD-FROM-FILE
; input: structure, file

; do NOT initialize the structure (a lexicon)
load the phrases in the input intoc the structure.

>,

A % 4 % 4 8 5 4 8 4 B A S 4 8 A A E B EEETYEEESLE YN T R N N S N I B R
I A A A A A A A e e e B A A A B R A R N R A R A I L A B A A A

e
LN N A A A A

-
-

(define (add-from-file lex file}
{(unwind-protect .
{let ({stream (copen file ’ (in))))
{set *last-open~file* stream)
{loop (initial (expr nil))
{while (not (eg? (set expr
{read~-object stream *gate-read-table*)) *eof*)))
(do ;{(format t ™ %- A" (cadr (assqg ‘comment expr}))
(cadd lex expr))))
{close *last-open-file*)))

LA N A A e R A RN NN R NSRS

; ADD-FRCM-LIST

; input: structure, list

; do NOT initialize the structure {(a lexicon)

; load the phrases in the list into the structure.

{define (add-from~list lex nlist)
{let ((stream *gate-input¥*})
(loop (for expr in nlist)
(do (oadd lex expr)))
3)

PIEIPIIIIIRIIIIFIIIICIIINIGINIRiiiGiiiiiiiiiiidiiiiiziiii:
; ADD=-FROM-TEXT

; input: structure, file

; do NOT initialize the structure (a lexicon)

307

; load phrases as they are typed in the input-window
; into the structure. terminated by ' () (e.g., NIL)

(define (add-from-text lex)
{let {{stream *gate-input*))
(loop (initial (expr nil})
{while (not (eq? (set expr
{read-object stream *gate-read-table*)) nil)))
(do (oadd lex expr))

------------------- O N O I N N O O R I N R R R R N R N N N
A A A A A A A T R A R A A A e A A A A A A N B B A B A A N B AN B A AR A A A A A

; CALLS
; all these utilities rely on QADD, an object-oriented
; operation, defined within each structure.

4 % 2 $ 2 8 % 4 a4 8 s s s e 8 e s e s e s e TETETHE P R R R R R R N R e N N N I R N B)
P A A A e A A A A NN A A A A A

308

