PROCESS SYNCHRONIZATION: DESIGN AND PERFORMANCE
EVALUATION OF DISTRIBUTED ALGORITHMS

Rajive Bagrodia November 1987
CSD-870062

PROCESS SYNCHRONIZATION: DESIGN AND
PERFORMANCE EVALUATION OF DISTRIBUTED
ALGORITHMS!

Rajive Bagrodia

October, 1987

Computer Science Department
3531 Boelter Hall
University of California at Los Angeles,
Los Angeles, CA 90024

Arpanet address: rajive@cs.ucla.edu.arpa

This research was partially supported by the Defence Advanced Projects Agency under
contract No, F29601-87-K-0072.

ABSTRACT

The concept of n-party rendezvous has been proposed to implement synchronous communication
among an arbitrary number of concurrent, asynchronous processes. The synchronization and exclusion
problems associated with implemeanting n-party rendezvous are expressed succintly in the context of the
committee coordination problem. This paper presents a simpie solution for the problem and shows how it
can be implemented in a variety of ways. The paper also compares the performance of the

implementations suggested in this paper with other algorithms for this problem.

1. Introduction

Some recent research efforts [Charlesworth 87, Forman 87, Milne 85, Back 84, Francez 86] have
focused on the utility of communication primitives that model synchronous communication between an
arbitrary number of asynchronous processes; this form of communication is referred to as an n-party
rendezvous. Thea synchronization and exclusion problems associated with implementing n-party
rendezvous for a set of concurrent processes are illustrated by Chandy & Misra [Chandy ed] in the

tollowing anthropomorphic description of this problem:

... Professors in a certain university have organized themselves into committees. Each committee has an
unchanging membership roster of one or more professcrs; each professor is in zero or more committees,
From time to time, a professar ... starts waiting to attend some committee meeting and remains waiting untit
a meeting of a committe, of which he is a membar, is convened. All mestings terminate in finite time. The
rastrictions on convening a meeting are as follows: (1) a meeting of a committee is convened only if all its
members are waiting, and {2) no two committees convene mestings simultaneously if they have a common
member. The problem is to devise a protocel that ensures that ... if all members of a committes are
waiting, then a meeting involving some member of this committes is convened.

We consider two recent proposals for distributed programming, Script [Francez 86} and
Raddle [Forman 87}, that incorporate communication mechanisms that can be represented by the
committee-coordination problem. The script notation was proposed as an abstraction mechanism for
communication pattemns. A script defines a communication pattern among a set of roles, where a roleis a
formal process parameter of a script. In order to participate in a paricular type of communication,
processes enroll themselves in an instance of the corresponding script. If script enrollment is allowed
within the guard of an alternative command, the problem of deciding which script-instance may be
executed, reduces to the commiitee-coordination problem as follows: a script-instance represents a
committee and an enrolfing process a professor. Since script enroliment is allowed within a guard, a
process may be ready to enroll in any one of many different script-instances. A script-instance
(committes) may be executsd {convened) If the required set of processes (professors) are waiting to

enroil,

Raddle proposes the use of tsams as an encapsulation mechanism to define the behavior of a set of
rolas, some of which may be formal process parameters of a ieam. The roles within a team communicate
via Interactions, an Interaction specifies synchronous communication among a set of ro/es. Raddle
provides a guarded construct, called a rufs, which allows an interaction in the guard. An interaction may
be executed only when all rofes named within it are ready. Once again, the problem of selecting
interactions for execution reduces to the committee-coordination problem as follows: an interaction is a

committee and roles are professors. A particular role (professor) may be ready to execute {attend) any

one of many interactions (meetings). An interaction (committee) may be executed (convened), when all

the roles (professors) named In the interaction (commitiee) are waiting.

The n-party rendezvous is an extension of the binary rendezvous that has been suggested for
CSP[Hoare 78] and AdajAda 82]. in a binary rendezvous, a communication involves the
synchronization of exactly two processes. A number of algorithms have been suggested to implement
binary rendezvous [Bernstein 80, Buckley 83,Van De Snepscheut 81, Natarajan 86, Schneider
82, Bagrodia 86]. Chandy & Misra [Chandy 87] have proposed an elegant distributed algorithm, referred
to as the committee-coordination algorithm to implement n-party rendezvous in the context of the
committee coordination problem. In this paper, we present two simple algorithms to implement n-party

rendezvous and compare their performance with the committee coordination algorithm.

Section 2 prasents a detailed description of the problem. Section 3 introduces our solution. Sections 4
and 5§ present centralized and distributed implementations of the solution. Section 6 presents a brief
description of the committee coordination algorithm. Section 7 describes a modified implementation of
the solution, which uses an algorithm for the dining philosophers problem to implement exclusion.
Section 8 compares the performance of the three algorithms discussed in this paper. Section 9 is the

conclusion.

2. The Problem

Let P = {p,,p,.....P,} be a set of n processes and E={e,.e,,....e,} be a set of m events. Each process
participates in zero or more events, The set of events in which a process p; participates is called its
event-set and is referred to as E;; each E; is a subset of E. Each event, say e, is associated with a set of
one or more processes; this set is called the process-set of the event and is referred to as Py; each P, is
a subset of P. Two events e, and e, are said to be in conflict if Pkajat{ }. The process-set of an event

and the event-set of a process are both static sets.

A process is either idie or active. An active process autonomously makes the transition to become idle.
An idle process p, is waiting to commit to any one of the events in E,. A process commits to some event
e,, only when it determines that all other processes that belong to Py will also do so. An idle process may
commit to at most one event at any time. Every process in the system satisfies the following two

conditions:
+ An idle process remains idle until it commits to some event C1

* An idle process becomes active if it commits to some event c2

An event is either enabled or disabled. An event e, is enabled iff all processes that belong to P, are
idle; e, is disabled if there exists some process p;e Py, such that p, is active. We use the phrase 'an
event e, is executed’ to mean that each process that belongs to P, has committed to e,. We are required
to devise an algorithm which allows an idle process to commit to an enabled event such that the following

safety and liveness properties are satisfied:
1. Safety(Exclusion):

a. If a process p; commits to an event e, then ije P,, process P cannot commit o
ancther event. In other words, conflicting events cannot be executed
simultaneously.

b. An active process cannot commit o any event.
2. Liveness:

a. Synchronization: It process p; commits to event e, then all processes that belong
to P, will eventually commit to event e,

b. Progress: If all processes that belong to the process-set P, of some event
e, are idle, then eventually some P that belongs to P, must
become active. This property ensures that if an event e, is
enabled, then eventually, e, is disabled.

In the above discussion, we have assumed that when a process is idfe it is waiting to commit to any
event from its event-set. In general, a process may be waiting to commit to any one of only a subset of
the events from its event-set. As indicated subsequently, the algorithm presented in this paper can be

easily extended to the general problem.

This paper does not impose any semantic association with events or their execution. We consider the
comimunication primitives associated with CSP and Ada to indicate the possible semantics that may be
associated with events and their execution. In CSP, an event represents a pair of mafched CSP
comrmunication statements. Execution of an event corresponds fo a message being sent by one process
and received by another. For instance, consider an event g, that represents synchronous communication
between two processes, say p, and p,; the process-set of e, is {p,,p,}. In this context, the term process
p, commits to event e,, may imply that p, synchronously sends a message to process p,. Similarly, in
Ada, an event represents a remote procedure call; execution of an event corresponds to the execution of
a procedure calf statement in one task (process) and a corresponding accept statement in another task.
In the context of Ada, the term process p, commits to an event may imply that a particular accept

statement was executed in task p;.

3. A Solution

For every process p, in the system, we introduce two variables as follows:
« w;: fotal number of times process p, has become idle; also referred to as the idfe-counttor p;.

* ni: total number of times process p; has committed to any event; aiso referred 10 as the
active-countfor p;.

We temporarily ignore the problem of overflow of variables w: and n,. We assume that initially, every
process is active, and variables n; and w; are initialized to 0 for every p.. In order to satisty the satety

conditions, the following invariant must be satisfied by every process in the system:
n< W<+t h|

We further claim that an event e, can be executed if the following condition is satisfied tor all processes

that belong to its process-set:
vp; € P, w,=n+1 L1

The condition L1 is henceforth referred to as the progress condition, and is used to ensure that all

processes in the process-set of a given event are idle.

In the following sections, we present various implementations that maintain the invariant and ensure

that eventually an event that satisfies the progress condition is selected for execution.

4, Centralized Algorithm

The simplest solution to the problem of n-party rendezvous is to designate a single process as a
centralized manager for the system; this manager is referred to as M. We assume that M has access to
the process-set of each event in the system and stores the idfe-count and active-count for each process.
All counters are initialized to zero. When any process p; in the system becomes idle, it sends a ready
message to M. On receiving a ready message from some p;, the manager increments the idle-count of p,
by 1 and finds an event, if any, that satisfies the progress condition L1 defined above. If such an event
exists, the manager increments the active-count n;, for every p; that belongs to P, by 1, and informs each
p; to commit to the event?. It can be shown that the above algorithm does not violate invariant 1 and the
exclusion, synchronization and progress properties are trivially satisfied. Although this algorithm may be
sultable for certain architectures, in general, the concerns of performance and reliability argue for a

distributed algorithm.

2The centralized algorithm may be implementad more simply by using a single bit in the manager to represent the current state of
each process. The above implementation is suggested as it can ba generalized in a simple manner to a distributed implementation.

5. Distributed Algorithm

5.1. Informal Description

The previous algorithm may be distributed by using multiple managers located at different processes.
The distributed implementation is referred to as the event-manager algorithm. The set of managers is
represented by M; m; represents an element of M. Each m, is assigned a set of events referred to as
g-sef. A manager may only select events for execution from its e-set. Each manager is also associated
with a set of processes referred to as its p-set. The p-set of a manager is the union of the process-sets of
all events in its e-set. The managers cooperate with one another to select events for execution without
violating the safety property. We note that no restrictions are imposed on the composition of an e-set for
a manager. In particular, a given event ¢, may be managed by more than one manager, and two events
e, and e, in the e-set of a manager may be in conflict with each other. Conflicts between two events in
the e-set of a manager may be resolved locally by the manager. Conflicts between different managers
are resolved by using a circulating tocken. A manager may select an event for execution only when it
possesses the token. Various strategies may be defined whereby a manager that holds the token may
determine the current state of processes in its p-set. One possibility may be to assign a maximal set of
non-conflicting events to each manager. On receiving the token, the manager may poll processes in
parallel for their idle and active counts, and choose events for execution that satisfy the progress
condition. The afgorithm discussed here extends the idea of the centralized algorithm in a simple
manner. Each manager stores the idle-count for every process in its p-set. The idle-count for process p,
stored by manager m, is represented as nrj(p-,) and is reterred to as its ready-count. Due to the
asynchronous nature of the system, the ready-count of a process with a manager may be less than its

idle-count. We prove subsequently that the following is an invariant for every manager m; and process p;:
nrj(pi) < w 12

The active-count for all processes in the system is carried by the token, with the count for process p;
referred to as nx(p;). On receiving the token, a manager selects events for execution that satisfy the
progress condition, This condition may be redefined in terms of the local ready-count of a manager and

the active-count carried by the token as follows:
Vp; € Py, nrj(pi) = nx(p) + 1 L2

Once a manager selects an event e, for execution, Vp,e P,, it increments the active-count for p; carried in
the token by 1, informs p; to commit to event e, and sends the token to the next manager. For brevity,

we say that manager m; executes event e, to imply that the manager has determined that e, can be

executed and has informed each process in P, accordingly. Finally, in the distributed implementation, the
invariant 11 for every process may be redefined in terms of the active-count carried by the token as

follows:
nx(p,) < w; < nx(p;)+1 13

The synchronization property is guaranteed by the algorithm, since a manager either informs all or
none of the processes in the process-set of an event, to commit to the event. The ready-count of a
process with a manager is used to satisfy the exclusion property as follows: after an event e is executed
by a manager m;, for every p; in P, nrj(pi) is exactly equal to the active-count nx(p,) carried in the token.
This implies that when the token reaches another manager m,, for every p, in P,, the ready-count nr(p;)
can be at most equal to the active-count nx{p,) for the process. Thus the progress condition L2 cannot be
satisfied for any event that conflicts with e, and manager m, cannot execute any event that conflicts with

e,. The proot for the exclusion property is presented in the next section.

Cormrectness of this algorithm only requires that each event be present in the e-set of at /east one
manager. As long as the above property is satistied, the allocation of events among managers does not
affect the correctness of the algorithm. In fact, the algorithm will work correctly even if there is only one
manager, in which case the implementation of the algorithm will reduce to a centralized impiementation.
On the other hand, the number of managers may be equal to the number of processes, with the e-set of
each manager containing the entire list of events in the system. This corresponds to having a fully
replicated event-list. In the distributed implementations with more than one manager, the performance of
the algorithm improves as the number of managers is increased. However, the improved performance is
achieved at the cost of heavier message traffic, since a larger number of ready messages need to be sent
to the various managers. Any arbitrary allocation of events to the managers can be considered in the
distributed implementation, in order to optimize the response-time/message-count trade off for a given
network configuration. However, in general, for a given number of managers, periformance will be
enhanced if the events are allocated among the managers in 2 manner such that the e-set of each
manager includes a maximal set of non-conflicting events. The performance issues are examingd in

greater detail subsequently.

5.2. Algorithm
We now give a precise description of the algorithm described above. The algorithm uses the following
three types of messages:
» ready(p,): message sent by a process p; to a manager to indicate that the process is idfe.

« execut(e,) : message sent by a manager to a process to inform the process to commit to
event e,.
k

e token(nx : array [1..p] of Integer) : This message represents the circulating token. p
represents the total number of processes in the system; nx(p) is the active-count for process

p.

Each process continuously alternates between being idle or active. When a process p, is idls, it sends
a ready message to each manager in its manager-list. Process p; then waits to receive an execut
message from some manager at which point it becomes active. In addition to variables w; and n,

introduced earlier, we introduce variables idle, and array variable com,.
» w;: integer variable that counts the number of times process p; has been ide.
» n: integer variable that counts the number of times process p; has been active.
« idle; : boolean variable set to frue when the process becomes idle; false otherwise.
» com, : comy(e,} is set o true when the process commits to event e,; false otherwise.

The code executed by a process is expressed in the form of rules P1 and P2 given below. The two
rules constitute a single guarded command. We reiterate that a process p; autonomously sets idle; to true
when it becomes idle. Initially each process is assumed to be active (idle;is set to false), variables w; and
n; are initialized to 0, and array corm, is initialized to false. The subscripts on variables have been dropped

for ease of readability.
Pl; Sending a ready message:

ne=w A ldlg =
Ve, € B, COm(e,) :mfalse;
send ready message to each manager in manager list of p,:
W mWwe1;

P2: Receliving an @xecu! massage:

Upon receiving an 6xéCuUl(e,) message =
com (e,) :=lrue;
idie: =mfalse;
N:m1;
The code executed by a manager is expressed in the form of the rules R1 and R2 given below. Each
manager m; has an integer array nr, where nrj(p,) counts the number of ready messages received by

manager m from process p,. Once again the subscripts on local variables have been dropped for ease of

readability. For every manager m, the array nr; is initialized to 0.
Rl: Raceiving a ready massage:

Upon receiving a ready(p;) massage ==>
nr(py) s=nr{p;)+1;

R2: Executing an event:

Upon receiving the loken =>
for every event e, in the manager’s e-set

if (Vp,e P, nr(p,)=nx(p,)+1) then
(Vpie P,, send execut(e,) message to p,);

{(Vp,e P,, nNx(p,):=nr(p,):
end if;
end_foz;
sand token to next manager;

5.3. Correctness

5.3.1. Safety
The two safety properties that must be satisfied by the algorithm were stated in section 2. The

properties are restated and proven as corollaries to theorem 1 and theorem 2 respectively.
Lemma 1: For every manager m; and process p;, Osnrj(pi)s W

Proof: From R1, nrj(pi) counts the number of times a ready message is received by manager m from
process p,. From P1, w; counts the number of times process p; has sent a ready message to any of its
managers. Since we assume that the message-transmission is error-free, the number of ready messages
received by a manager from some process p; may be at most equal to the number of ready messages

sent to that manager by p;.
Lemma 2: If a manager m executes an event e, then Vp,e P, nx(pi)=nrl(pi).
Prooi: Follows directly from rule R2 for a manager.

Lemma 3:For any process p, if w,=k, and a manager m; execules an event e, such that p;e Py, then

nrp) =k

Proof: Consider a process p,. From P1, we note that w; is incremented only when p, becomes idfe and
sends a ready message. We use induction on the number of ready messages sent by p, 1o prove the

above lemma.

10

From the initial value for nx and rule R2 (the only rule that modities the value of this variable), we

conclude that
nx(p) 20 and increases monotonically. A1l

Base Case: Let wj=1. Assume that some manager m; executes an event e, such that pje P,. From
the rule for executing an event (R2), it follows that in order for manager m; to execute event e, the
following condition must be satisfied:

ne{pp=nx(p)+1
Since w, is assumed to be 1, due to lemma 1, nri(p,) is either O or 1. If nrj(p,) is 0, the above condition is
satisfied only if nx(p,) is -1, which is impossible due to A1 above. It follows that nr{p,) must be 1, and thus

equal to w,

Induction Hypothesis: Let w;=k; (i.e. p) has sent exactly k, ready messages) and assume. that some

manager m; executes an event e,, such that pe Py. Then n;(p) =K,

From the above hypothesis and lemma 2, it also follows that
nx(p) =k, A2

Induction Step: We show that if wi=Kk+1 (i.e. process p, has sent k.+1 ready messages), and some

manager m; executes event ey, such that p,e Py, then nr{p) is also equal to K+1.

Since w; is assumed to be k+1, it follows from lemma 1 that nr{p)<k+1. In order for event e, to be
executed by manager m;, due to R2, nq(p,)=nx(p,)+1. Due to A1 and A2, nx(p)2k. Thus nri(pl)ak,+1.
Earlier, we showed that nr{pjsk+1. The two conditions can simultaneously be satistied only if

nrj(p|)=k|+1.

Theorem 1: Conflicting events cannot be executed simultaneously.

Proof Assume that a manager m; executes an event e,. We show that no manager may

simultaneously execute another event that conflicts with e,.

When manager m, executes event e, due to lemmas 2 and 3 the following relation must hold:
Vp;e P, nrj(pi) =nx(p;) = w;=X; (say) A3

Further, from lemma 1 and A3 above, it follows that
(Vm,Vp;e P, nn(p) <k Ad

Thus, if an event e, is executed by a manager, due to A3 and A4, the following relation must hold for any

11

manager that subsequently receives the token:

{(Vm,,Vp;e P,) nn{p) < nx(p;)
Due to the above relation, the progress condition P2 specified in rule R2 for the execution of an event,
cannot be satisfied for any event that contlicts with event e,. We conclude that if a manager executes an

event, no other manager in the system can simultaneously execute a conflicting event.

Corollary:lf a process p; commits to an event g,, no process in P, may commit to another event. In

other words,
oomi(ek)=9(‘v'e,a=ek,v p]E Pk)’ —100’”]{01))

ProofFrom rule P2, comy(e,) is set to true, only if process p; receives an execut{e,) message from some
manager. From rule R2, a manager my sends an execule,) message 1o a process p;, only if p,e P, and

m; executes e,. If E!(p,-,pje P,), such that comi(ek)/\con':j(e,), where e, #¢,, then due to rules R2 and P2,
events e, and e must have been executed simultaneously. Since p,e P ap;€ P, events ¢, and e, are in
conflict with each other and cannot be executed simultaneously due to the result of the theorem. The

result of the corollary follows directly.
Theorem 2: For any process, say p;, in the system, n,<nx(p,) <n+1

Proof: From rule R2, nx(p;) counts the number of execut messages sent to p; and from P2, r counts
the number of execut messages received by p,. Since message-transmission is assumed to be error-
free, the first part of the inequality Is trivially satistied. The exclusion condition in theorem 1 guarantees
that conflicting events are not executed simultaneously, which implies that there may be at most one

execuf message in transit to any process. The rasult of the lemma follows directly.
Corollary: An active procass cannot commit to any event.

Proof: Due to P2, a process commits to an event, only on the receipt of an exscut message. We show

that an active process may never receive an execut message, by proving that if p, is active, n,=nx(p;).

From the theorem, either nx(p)=n, or nx(p)=n+1. If nx(p)=n+1, due to P2 and R2, it must be an
execut message is in transit to process p,. This implies that a manager has executed some event e,
such that p;e P,. When a manager executes an event e,, due 10 lemmas 2 and 3, Vp,e P,.nx(p)=w;.
Subsequently, due to the exclusion condition in theorem 1, nx{(p,) could not have been incremented.
From nx(p,)=w; and nx(p;)=n;+1, it follows that w,=n+1. Due to P1, this implies that process p; is idle,

which contradicts the statement of the corollary.

12

5.3.2. Liveness
Lemma 5. The idle-count of a process is equal to or at most one more than its active-count carried by

the token. Stated otherwise: Vp, nx(p)<w;snx(p)+1
Proof: We consider two cases: process p, is idle or p is active.

Case i: p; is active. The corollary to theorem 2 implies that if p; is active, nx(p,)=n, and no execut
message is in transit to the process. From rules P1, P2 and the corollary to theorem 2, it also follows that

if p; is active, n=w,. The two relations imply that w;=nx(p,) and the invariant is satisfied.

Case ii: p; is idle. From P1, when p, is idle, wi=n+1. Further, from theorem 2, either n=nx(p) or

n=nx(p)-1. In either case, w.=nx(p,)+1, or w.=nx(p,) and the invariant is satistied.
Lemma 6: For any process p;, if w;=nx{(p;), then p, is active or eventually becomes active.

Proof: Assume that p; is idfe and w;=nx(p;). It process p, is idle, due to rule P1, it must eventually send
a ready message and increment w;, such that w;=n+1. From the assumption of the lemma, this implies
that nx(p)=n+1. Due to R2 and P2, nx(p)=n;+1 implies that an execut message has been sent 1o
process p;, but has not been received. Since message-transmission is assumed to be error-free, the

execut message must eventually be received by p, causing it to become active due to rule P2.

Theorem 3: Progress: If an event, say e, is enabled, then eventually some p, that belongs
to P, must become active.

Proof: Consider an event e,, such that ¥p,e P,, p; is idle. Due to P1, each p; must have sent a ready

message 1o its manager(s) and due to P2, no process in P, has received an execut message.

For every p; that belongs to P, let w; = k;. Since message delivery can take only finite time, eventually
for every manager m;, of a process p, that belongs to Py, we must have
”’j(pu)=ki A5
Further, due to lemma 5, for every p, that belongs to P, we also have nx(p) = k; or nx(p) + 1 =k;. It for
any p; that belongs to Py, nx(p;}=k;, then due 1o the lemma 6, p; must eventually become active and the

liveness property will be satisfied. We assume, for every p; that belongs te P
nx(p) +1 =k A6

I the processes remain idle, then due to A5 and A6 eventually, we must have some manager my, such

that when m, receives the token, for every p; that belongs to Py:

13

nx(p) +1=nn(p)
The above represents the progress condition included in rule R2 for the execution of an event by a
manager. It follows that manager m, must execute event e, causing processes that belong to P, to

become active.

5.4. Extenslon

In the general case of the n-party rendezvous problem, on becoming idfe, a process may be waiting to
commit to only a subset of the events in its event-set. The algorithm described above can be extended to
apply to the general case. The condition for the execution of an event e, by a manager is modified as
follows: the ready-count of every process in the process-set of event e, must be one more that its active-
count; in addition, each process in P, must be waiting to commit to event ;. Recall that when a process
is idle, it sends a ready message to a manager. On receiving the message, the manager implicitly
assumes that the process is waiting to commit to any one of the events from its event-set. The ready
message is modified to include explicit information that indicates the specific events, to any one of which
the process is waiting to commit. In particular, every ready message carries a boolean array elist; efis{k)
is frue if the process sending the message is waiting to commit to event e, and is falsg otherwise. In
addition, we define a boolean array status for every manager. On receiving a ready message from
process p,, status(ik) is set to true if process p; is waiting to commit to event ¢, and is set to false
otherwise. With an appropriate modification {¢ the manager's data-structures, the condition specified

above can be easily incorporated into the rule for execution of an event by a manager.

5.5. Overflow
In the description of the event-manager's algorithm, we have ignored the problem of overflow. We
present a simple solution to ensure that no variable exceeds the maximum permissible value for an

integer. The algorithm uses the following counters for each process:
*» w; represents the idle-count for process p;.
» n; represents the active-count for process p;.

. nrj(pi): counts the number of times manager m; has received ready messages from process
p;-
* nx{p,): represents the active-count carried by the token for process p;.

The values of the counters for each process are tightly coupled. If nx(p,) is monitored for overtlow, then

we can guarantee that neither of w;, n or nrj(pi) will overflow as follows: let maxint be the maximum

14

permissible value for an integer. Define a variable max such that max<maxint. As long as nx(p,) < max,
due to lemma 4, n, <max, and due to lemma 5, w; < maxint; this in turn implies V(mj), nri(pi) <maxint, due
to lemma 1. We describe a technique that monitors the value of nx(p) to prevent overflow errors. We

detine two new types of messages:
» rgset sent t0 a manager/process to reset its counters.

« ack: sent by a manager to indicate that its counters have been reset.

From the algorithm, we note that nx(p;) is incremented only when a manager possesses the token and
executes some event e, such that p,e P, (Rule R2). On executing an event e, if a manager m,
determines that 3p; : p;e P, and nx{p)=max-1, m; initiates the scheme to reset all counters; henceforth,
m; is referred to as the initiator. The Initlator resets array nx to zero and sends a reset message to afl
processes in the system. The initiator does not transmit the token until it has received an ack message
from all other managers in the system. This ensures that no events in the system are executed until all
counters have been reset. On receiving a reset message, each process sets its active-count to zero; it
resets ils idle-count to 1 if it is idle or to O if it is active. A process then sends a reset message containing
its idle-count 1o each manager. On receiving a reset message from p;, a manager m; sets nrj(pi) to the
idle-count carried in the message. After recsiving reset messages from all processes in its p-set, the
manager sends an ack message fo the initiator. The algorithm proceeds normally after the initiator has
received ack messages from ali managers in the system. We note that invariant 13 is temporarily violated
from the time a manager resets array nx until the processes receive the reset messages. However, since
no events can be executed while the reset procedure is underway, and the invariant is restored on the

compietion of the reset procedure, correctness of the algorithm is not affected.

6. Committee-Coordination Algorithm

In this section, we briefly describe the algorithm suggested by Chandy & Misra [Chandy 87]. This
algorithm, referred to as the committee-coordination algorithm splits the problem of n-parly rendezvous
into two sub-problems: exclusive selection of one among many conflicting events, and the determination
of the state of each process in the process-set of the selected event. The exclusion problem is solved by
appropriately mapping the n-party rendezvous problem onto the dining philosopher's problem. The
synchronization problem is solved by a judicious use of tokens. The commitiee-coordination algorithm
postulates a special process, called a coordinator for every event in the system. Two coordinators ¢; and

¢; are neighbors if the corresponding events e; and g caonflict with each other. Every pair of neighbors

15

share a unique fork. Each process in the system s initially assigned a fixed number of tokens, whose
count is equal to the number of events in the event-set of that process. When a process becomes idle, it
sends a token to the coordinator for every event in its event-set. On receiving tokens from all processes
in the process-set of its event, a coordinator requests forks from all its neighbors. The algorithm
guarantees that every coordinator that requests forks will eventually receive ali the forks from ils
neighbors. Once a coordinater has received all its forks, it determines if all processes in its process-set
are still idle. (This is required since a neighboring coordinator may have executed a conflicting event.)
The algorithm defines a scheme based on shuffling tokens among the coordinaters to allow a coordinator
to determine whether a conflicting event has been executed. The algorithm thus works in two steps: in
the first step, a coordinator obtains the exclusive right to execute its event by requesting forks from its
neighbors. In the second step, a coordinator that has obtained all the forks determines the current state
of processes by requesting tockens from its neighbors. In the next section, we show how the event
manager algorithm may be modified to use the selection technique suggested by the committee

coordination algorithm.

7. Modified Event Manager Algorithm

This section presents a modified version of the event manager algorithm, referred to as the Modited
Event Manager (MEM) algorithm. The MEM algerithm combines the synchronization technique used in
the event-manager (EM) algorithm (counting the number of times each process has been idle and active)
with the selection technique of the committee-coordination {CC) algorithm (using auxiliary resources to
arbitrate between conflicting events). The exclusion problem is solved in the MEM algorithm (as in the
CC algorithm) by mapping the n-party rendezvous problem onto the dining philosophers problem. The
dining philosopher’s problem [Chandy 84] may be stated as follows: Let G be a finite, undirected graph.
A philosopher is placed at each vertex of G. Two philosophers t; and 1, are neighbors if an edge exists
between them. Each edge has a fork associated with it. A philosopher is in one of three states:thinking,
hungry, or eating. A philosopher autonomously goes from thinking to hungry. When a philosopher is
hungry, he tries to obtain the forks on all edges that are incident on that philosopher. When the hungry
philosopher obtains all its forks, he starts to eat. The eating period of every philosopher is assumed to be
of finite duration. After a philosopher finishes eating, he returns to the thinking state. It is required to

devise an algorithm that enables every philosopher to eat within a finite time of his becoming hungry.

The algorithm to solve the dining philosopher’s problem as presented in [Chandy 84] is as follows: Let

16

the fork shared between philosophers t; and t, be referred o as f; . A fork is either dirty or clean. Initially
all forks are dirty. Subsequently, a fork is dirty, it it is used by a philosopher to eat and remains dirty until
it is cleaned. A dirty fork becomes clgan when it is sent by one philosophar to its neighbor. On becoming
hungry, it a philosopher 4 does not possess fork fj,k, he requests the fork from t,. A philosopher t,
responds to a request for a fork according to the following rule: if t, is not eating and the fork is dirty, then
1, cleans the fork and sends it to tj: otherwise t, complies with the request after he finishes eating. The
algorithm satisfies the exclusion property by ensuring that at most one of a group of neighboring
philosophers will possess ali the forks it shares with his neighbors at any given time. Further, the
algorithm guarantees that every philosopher's request for a fork will eventually be satisfied (and hence

every hungry philosopher will eventually eat).

We now present the MEM algorithm which solves the exclusion problem using the above algorithm and
the synchronization problem using message-counts. As in the EM algorithm, the MEM algerithm
postulates a set of managers. Each manager is associated with a set of events, referred to as its e-set®,
and a set of processes, called its p-set®. Each manager stores the idle-count and active_count for every
process that belongs to its p-set. Variables nr‘-(pi) and naj(pj) respectively represent the idle-count and
active-count stored by manager m for process p;. Two managers m; and m; are neighbors, if p-set; and
p-setl- have a common member. A unique fork is defined for every pair of neighboring managers, with fi.i

representing the fork shared by managers m; and m;. Each fork, say f,., is associated with a set of

i
processes represented by f-setirj. This set consists of processes that are members of both p-set; and
p-set;. Each fork carries the active-count for processes in its f-set. A manager is either thinking, hungry,
or eating. A manager is thinking it every event in its e-set is disabled. A thinking manager becomes
hungry when it determines that an event e; in its e-set is enabled (that is all processes in the process-set
of e; are idle). On becoming hungry, a manager requests the forks it does not possess from its neighbors.
The rules for requesting and releasing forks are identical to those described above for the dining
philosophers algorithm. When sending a fork 10 a neighbor, the manager also sends the active-count for
all processes Iin the fork's f-set. On receiving a fork f, for every p; in ff-set, a manager updates its local
active-count for p; to that carried by the tork, if the count carried by the fork is greater. A hungry manager

starts to eat whan it holds all its forks that it shares with its neighbors. Events may be executed by a

3The e-set of a manager is the set of events managed by a manager

4The p-set of a process was defined as the union of process-sets of all events managed by the manager.

17

manager only when it Is eating. An eating manager can deduce that an event e, from its e-set is enabled
if e, satisfies the progress condition. For a manager m; and an event e,, this condition is restated as

follows:

If the manager finds an event that satisfies the above condition, the event is executed by the manager.
It event e, is executed by manager m;, Vp;e P,. the manager increments nal-(pi) by 1, and sends an
execul message to every p; in P,. We now specify the conditions under which a manager makes the
transition from the thinking to hungry and eating to thinking states. (The transition from the hungry to

eating states is determined by the dining philosophers aigorithm.)

Thinking to Hungry

A manager goes from thinking to hungry, when the following condition is satistied for some event e, in its

e-set:
3e,p;€ Py, nri(p) > na(p;)

Note that due 1o arbitrary delays in message-transmission, a manager may become hungry based on

obsolete values of the idle and active-counts for a process.

Eating to Thinking
An eating manager goes to thinking after it has scanned its e-set for enabled events. We introduce a

boolean variable called fest. The variable is set to false, when a manager is thinking. It is set to true by a
manager after it has scanned its e-set for enabled events. An eating manager, say m;, goes to thinking,

within a finite time of test being set to true.

in the MEM algorithm, a hungry manager that holds all its forks, uses the active-count carried by the
fork 1o deduce the current state of a process. This obviates the need to use separate tokens to guarantee
process synchronization, thus significantly improving the performance of this algorithm with respect to the
CC algorithm. Further, unlike the EM algorithm, only managers that manage conflicting events exchange
information in the MEM algorithm, thus potentially improving its performance with respect to the EM
algeorithm, in architectures where the synchronization patterns among processes are localized. Finally, as
in the EM algorithm, the number of events in the e-set of each manager in the MEM algorithm does not
affect the correctness of the algorithm, as long as each event is present in the e-set of at least one

manager. In the MEM algorithm, as the number of events in the e-set of a manager is increased, the

18

number of neighbors for that manager also increases, which increases the selection time for the
algorithm. As the e-set of each manager is expanded, the manager is more likely to become hungry and
request forks, leading to increased fork transmissions in the network which might further increase the
average selection time for an event. This implies that the algorithm should perform optimalty when each
manager has exactly one event in its e-set. A comparative study of the performance of the three

algorithms is presented in the next section,

We now present the MEM algorithm. The rules and data structures for a process are identical to those
for the event manager algorithm and have been described In section 4.2.2 . The actions of each manager
are described in terms of the following rules. The rules for requesting and relinquishing forks have been
omitted and the reader is referred to the dining philosopher’s afgorithm as described in {Chandy 84]. For
the purpose of this paper, we assume that on becoming hungry, a manager reguests the forks it does not
possess from its neighbors and every hungry philosopher eventually obtains all its forks at which point it

goes to eating.

Each manager m; has integer arrays n and na, where nrj(p,) and nai(g) respectively refer to the idle
and active count for process p; with manager m. Arrays nr, and ng; are initialized to 0. in the following
rules, subscripts on local variables have been dropped for ease of readabilty. Note that variable testis

set to false, when a manager is hungry, and variable eating is set to true when the manager is eating.
Rl: Receiving a ready message:

On receiving a ready(p,) message =
nrip,} :=nr{p;)+1;
R2: Receiving a fork:

On receiving a fork f =
(Vpe f.£-set, if [.na(p,)>na(p,) then na(p,):=f.na(p,))

R3: Sending a fork:

On sending a fork [=
(Vp,el.£-set, f.na(p,):=na(p,))

R4: Exeguting an event:

eating ~ ~tast =
test: mirue:
for every event e, in the manager’'s a-set
if (Vpe Py, nripy)=na(p,)+1) then
(Vp;c P,, send execut{e,) message to p,);
(VP,-G Pkr na(Pj.) :=nr(pj)) ;
end if;
end for:

19

7.1. Correctness
In this section, we use some of the results proven for the EM algorithm in section 5 to prove safety and

liveness of the MEM algorithm.

7.1.1, Exclusion
Lemmas 1 and 3 in section 5 relate the idle-count of a process with its ready-count with a manager.

These lemmas are directly applicable for the MEM algerithm and are reproduced below.
Lemma 1; For every manager m, and process p;, 0< nrj(pi)s W,
Lemma 3:For any process p,, it manager m; executes an event e, such that p;e P, then nrj(pi)= W,

Ws mow use the above resuits to prove the exclusion property for the MEM algorithm.
Theorem 4: Confiicting events cannot be executed simultaneously.

Proof: When a manager m; executes an event e,, from lemma 3, we have
Vp;€ Py, nr(p)=w,=k; (say) A7

Assume that a confiicting event e, is simultaneously executed by some manager, say m. We show
that this is impossible. Managers m; and m must share a fork f; |, which due to rule R4 must be held by m;
when event e, was executed. Let a process p. be a member of both P, and P,. Due to A7, when event

e, is executed by m;, it must be that
NP =We=k,

Further, due to R4 and the above relation, nai(pc)=nrj(pc)=kc. In order to execute an event, manager
m, must obtain all its forks (including f;)). On receiving f,, from m,, due to R2 and the above relation, it

must be that
ng(p,) 2k, AB

Due to lemma 1, nn{p.)sw.. Due to A7, this implies that nn{p.) <k, , which in turn, due to A8 above
implies that na(p.) 2nr(p.). This relation violates the progress condition L3 for any event (including event
e.) that includes process p, in its process-set. It follows that event e, could not have been executed

simultaneously by manager m as assumed.

20

7.1.2. Liveness

Informal Idea The circulating token of the event manager algorithm has been implemented in this
algorithm by a set of forks, each of which is shared between two managers. In the event manager
algorithm, an event was executed only by a manager that possessed the token. Similarly, in the modified
event manager algorithm, an event may be executed only by a manager who possesses all his forks. In
order to establish a direct relationship between the active-count carried by the token in the EM algorithm,
and the active-counts distributed among managers in the MEM algorithm, we define an auxiliary variable

namax, tor the MEM algorithm, as follows:
namax(p;)=max(na,(p),nayp,), - - . "a,(py))

where m represents the total number of managers in the system. In lemma 7, we prove that if a manager
m; is eating, then Vp;e p—seg,nai(pi)snamax(pi). Further, due to rule R4, naj(pi) is incremented by 1, only
if manager m is eating and it executes an event e, such that p;e P,. The above statement, together with
lemma 7 implies that namax(p,) is incremented only when a manager executes an event e,, such that
p;€ Py and hence namax(p,) must count the number of exscut messages sent to process p,, Thus the
auxiliary variable, namax{p,) has exactly the semantics associated with the active-count nx carried by the
token in the EM algorithm. It follows that lemmas § and 6 proven for the EM algoerithm also apply for the
MEM algorithm with the active-count nx(p,) being replaced by the auxiliary variable namax{p;}. The proof
of the liveness property uses lemmas 5 and 6, which are restated here as lemmas 5" and 6 respectively,

with the variables substituted appropriately.
Lemma 5': Vp,, namax(p,) < w;< namax(p)+1
Lemma 6: For any process P; it w;=namax(p;), then p, is active or eventually becomes active.
Lemma 7: If a manager m, is eating, then Vp,e p—set;, najp)=namax(p;)

Proof Let M represent the set of neighbors of m, {excluding mj). It m, is eating, due to the dining
philosophers algorithm, it must possess all forks which it shares with its neighbors. Due to rule R2, it
must be that naj(pi) 2nay(p,), for every m e M. The result of the lemma follows from the above relation and

the definition of the variable namax.

Theorem 5: If an event e, is enabled, then eventually some p; that belongs to P, must
become active.

Proof: Consider an event e,, such that Vp;e P, p; is idle. Since the processes are idle, due to P1, each

21

P; must have sent a ready message to its manager(s) and due to P2, no process in P, has received an

execut message.

For every p, that belongs to P, let w; = k. Since message delivery can take only finite time, eventually

for every manager, say m;, of a process p; that belongs to P,, we must have
nr{p) =k; A9

Further, due to lemma 5, and the assumption that wi=k;, we have namax(p,) = k; or namax(p) +1 =k If
namax(p;)=k;, then due to lemma 6, p; must eventually become active and the liveness property will be

satisfied. We assume,
Vp, € Py, namax(p)+1=k; Al0

From the definition of the auxiliary variable namax(p;) and A10 above, it follows that for every manager,

say my, of a process p, that belongs to P,, we must have
ij,naj(pl) < kl

The above relation and A9 together imply that a manager m; that contains event e, in its e-set must
become hungry and set tesq to false. The dining philosophers algorithm guarantees that m, will
eventually eat. When m; eats, due to lemma 7, Vp;e P,, naj(pi).—.namax(pi). Due to A10, the above

relation yields Vp;e P,‘,naj(pi)n =k;, which, due to A9 yields the following result
Vp;€ P,.na(p;)+1 =m}(pi)

The above is precisely the condition in rule R4 for the execution of an event by a manager that is eating.
it follows that m will execute event e, causing all processes in p, to become active.
Overflow

As in the EM algorithm, the problem of counter overflow can be prevented by tracking the value of the
active-count for a process, and ensuring that it does not exceed max, a suitably defined number for a
particular architecture. We define a pseudo-event e The process-set of this event is delined such that
event e, is in conflict with every other event in the system. This ensures that if event e, is executed, no
other event in the system may be executed (simultaneously). A manager m; that executes event e,
initiates the procedure to reset the counters in the system, as described for the EM algorithm. It remains
to ensure that event € will be executed within a finite time of the active-count for a process becoming
equal to max. For this purpose, we introduce a set of pseudo-processes, one for each event in the
system {except ep). The pseudo-process for event e, is henceforth referred to as p‘k. Each pseudo-
process, say P, belongs to the process-set of events e, and e,. The process-set of event e, thus

consists entirely of the pseudo-processes defined in the system. On becoming active, a pseudo-process

22

immediately becomes /dle. In general, an idle pseudo-process waits to commit to either e, or e,
Howaver, if the counter reset procedure needs 1o be initiated, on next becoming idle, a pseudo-process
waits to execute only e, the pseudo-event. (Recall that in the generalized version of this problem, a
process may wait to commit to any subset of events in its event-set) This implies that eventually, the
pseudo-event e, is the only event in the system that is enabled. The liveness condition guarantees that
e, will eventually be executed by some manager, who then initiates the procedure te reset counters as

described in the EM algorithm.

8. Performance

The committee coordination problem captures two important issues in the design of distributed
systems: exclusion and synchronization. A variety of techniques exist to solve each of these problems.
Different combinations of these techniques result in a variety of algorithms, and the use of a specific
technique has a significant impact on performance. Two metrics are used in this paper 1o measure the
performance of algorithms: message-count and response time. The response time for each algorithm is
measured from the instant that an event becomes enabled (as viewed by a gfobal observer) to the instant
that it is selected for execution by a specific algorithm. The two components that determine the total

response time for an algorithm are:

1. Synchronization time:
The time taken by the algorithm to ascertain that a given event is
enabled {i.e. all processes in the process-set of the event are idle).

2. Selection time(T,): The time taken by an algorithm to select an event (possibly out of many
conflicting events) for execution.

The three algorithms discussed in this paper use different combinations of technigues to implement
exclusion and synchronization. The event manager (EM) algerithm uses a message-counting technique
to determine when an event is enabled. The synchronization time for this algorithm is determined entirely
by the average lime required for a message 1o travel from a process to a manager. Selection among
conflicting events is achieved by using a single token that circulates among managers. Hence the
synchronization time is determined primarily by the average time required by the token to travel between
two managers whose e-sets contain an event e;, The committee-coordination (CC} algorithm uses
auxiliary resources {forks and tokens) to implement both selection and synchronization. Furthermore,
these resources are transmitted onty between the coordinators for contlicting events. The coordinaters

for events that do not contfiict with each other do not exchange any messages. The selection time for this

23

algorithm is determined by the average time required by a coordinator to abtain forks from its neighbors.
This in turn depends on the number of neighbors for every coordinator and on the average distance
between neighboring coordinators. The synchronization time is determined by the time required for a
message to travel from a process to a coordinator, and also by the time required by a coordinator to
obtain tokens from its neighbors. As a result, the response time for this algorithm is heavily influenced by
the average message transmission time between coordinators for conflicting events. Finally, the modified
event manager algorithm(MEM), uses message-counting o implement synchronization and auxiliary
resources (forks) to implement selection. Thus, the synchronization time for this algorithm is determined
entirely by the average time required for a message 1o travel from a process to a manager. The selection
time for this algorithm is determined by the average time required by a manager to obiain forks from its

neighbors.

A performance study was undertaken to compare and evaluate the response time and message-count
for each of the three algorithms discussed above. Simulation models were constructed for each algorithm
using the MAY [Bagrodia 87a] simulation language. Approximate analytical models were constructed for
a restricted version of each algorithm to validate the results of the simulation. The detailed performance
study has been described in [Bagrodia 87b]. In this section, we present a summary of some significant

results.

tn order to simplify the models, the following assumptions were made about message-transmissions:
the simulation models assumed that aff processes are connected to each other via point-to-point
channels. The models also assume that the time taken to perform local computations by a process is
insignificant as compared to the message-transmission time and ignores the former in the computation of
the response time. Finally, to simplify the allotment of the manager (coordinator) processes, we assume
that, in the EM and MEM algerithms, the number of managers is equa! to the number of processes, and in
the CC algorithm, the number of coordinators is equal to the number of processes®. Due to the above
assumption, a single manager/coordiantor can be assigned uniformly to each process. None of the
above assumptions are an inherent feature of the simulation model. They were made primarily to simpilify
the code for message routing among processes. In addition to the above assumptions, the analytical

models also assume that queuing delays are negligible and can be ignored for message-transmission.

5Since the CC algorithm uses one coordinator for each event, this also implies that the number of avents is equal to the number
of processes

24

The main factors that may potentially affect the psrformance of the algorithms considered in this paper
are the total number of processes(n), the total number of events in the system(e), the average time to
transmit a message between processes(f), the level of activity a, and the synchronization pattern among
processes in the system. The level of activity in the system is determined by the frequency with which
events in the system are enabled for execution. The synchronization pattern is specified by the
cardinality of an event ¢, the degree of conflict for each event d, and the level of activity a, in the system.
We define the cardinality of an event as the number of processes in the process-set of that event, and the
degree of conflict as the maximum number of events that may be in conflict with a given event. In
addition to the above factors, the performance of the event-manager algorithm also depends on the
average distance separating two managers for any svent. This factor in turn depends on the number of
managers in the system, the number of events managed by each manager and the allocation of events
among the managers. As mentioned earlier, we assume that, the number of managers is equal to the
number of processes. Under this assumption, for the EM algorithm, it was determined that as the number
of events in the e-set of each manager is increased, the response time for the algorithm decreased and
was lowest for the configuration where each manager contained the entire list of events in its e-set. In
contrast, for the MEM algorithm, as the number of events in the e-set of each manager was increased,
the response time for the algorithm also increased and was lowest for the configuration where each
manager contained exactly one event in its e-set. Subsequent discussions in this section assume that

the e-set of each manager for the EM and MEM algorithms is set up for the minimum response time.

Experiments conducted for individual algorithms indiacted that other things being equal, the response
time for each of the three algorithms were independent of n and e. Furthermore, under the simplified
assumptions for message-transmission delays, the response time varied almost linearly with . With
respect to the level of activity, it was seen that for the CC and MEM algorithms, as the level of activity in
the system was increased, the response time for the algorithm also increased. This was due primarily to
the fact that as more events are simultaneously enabled for execution, there is greater contention for
forks among the coordinators for conflicting events, which increases the selection times for these
algerithms. However, with respect to the EM algorithm, as the level of activity was increased, the
response time for the algorithm actually decreased by a small amount. For this algorithm, as the level of
activity in the system increases, in general, the probability that a manager which currently holds the token

will contain an enabled event in its e-set also increases, thus reducing the selection time for the algorithm,

25

We now compars the fesponse time and message-counts for the three algorithms. The experiments
were performed for two different types of process configurations: uniform configurations, in which ail
Processes are equidistant from each other, and non-uniform contigurations in which processes are
organized into clusters, with the distance between processes in the same cluster being much less than
that between processes in different clusters. For simplicity, in uniform process configurations, the
experiments were restricted to synchronization patterns, where each event has the same cardinality and
degree of confiict. Each experiment was run for a duration required to schedule 500 events for execution,
The results reported in this Paper represent the average response time and number of messages required

to schedule one event for execution for each of the three algorithms.

The response time and message-counts for the uniform process configurations are presented in figures
8-1 and 9-2. This set of experiments studied the effect of varying the cardinality {¢) {and degree of
conflict d) of an event on the message-count and response time for the algorithms. The response time for
the EM algorithm was essentially independent of the degree of conflict, whereas the response time for the
CC and MEM algorithm increased as d increased. Furthermore, the respense-time for the EM algorithm
was significantly lower than that of the CC and MEM algorithms; the response time of the MEM algorithm
was lower than that for CC by exactly the amount of time required by a coordinator to obtain tokens from
its neighbors. With respect to message-counts, the EM algorithm required the maximum number of
messages, whereas the MEM algorithm had the lowest message-count. Note that the message-counts
reported in figure 9-2 also include the messages that were generated due to events that were enhabled but
were subsequently not executed (due to the execution of a conflicting event). For each algorithm, the
number of messages increased, as the cardinality and degree of conflict was increased. In case of the
EM algorithm, as the cardinality of events is increased, each manager must receive an increasing number
of ready messages for each event in its e-set, thus increasing overall message-traffic in the network.
Howaever, under the assumption of point-to-point message transmissions, the increased message-traffic
Mmay occur in parallel, and does not significantly atfect the response time for the algorithms. In case of the
MEM and CC algorithms, it total number of processes and events are held constant, increasing the
cardinality of an event increases the degree of conflict in the system. As each event is in confiict with an
increasing number of svents, the number of neighbors for each coordinator also increases. This gives
rise to an increase in the number of forks requested and transmitted, thus increasing both the response

time and the overal message-traffic in the network.

26

In the case of non-uniform process configurations, two types of synchronization patterns were
identified: localized synchronization{LS), where processes interact primarily with other processes in the
same cluster; and uniform synchronization(US), where processes interact uniformly with other processes,
regardless of their location. Figure 9-3 presents a non-uniform process configuration comprising of two
clusters. The transmission time for a message from one process to another in the same cluster is
assumed to be 7, units, and the transmission time for messages from one cluster to another is 1,, where
T, = 5t,. The results for this experiment are presented in tables 9-1 and 9-2, which compares the
performance of the two algorithms for both LS and US configurations. For the EM algorithm, the response
time was the same in both configurations, since the number of managers, and the e-set of each manager
remains the same. For the MEM and CC algerithms, in the LS configuration, the coordinators for
confiicting events are relatively close to each other, and hence the response time was small. However, in
the US configuration, the distances between coordinators for confiicting events included the large
separation between different clusters causing the response time of the algorithm to increase significantly.
As seen from the results in tables 9-1 and 9-2, In the LS configuration, the response time for the MEM
and CC algorithm was much superior 10 that of the EM algorithm, whereas in the US configuration, the

EM algorithm performed better.

9. Conclusion

The committee coordination problem is a non-trivial problem that captures the two central issues in the
design of distributed systems: synchronization and exclusion. This paper proposed a basic solution to
this problem in the form of two invariant properties. Two different implementations of the solution were
described. In general, a variety of centralized and distributed techniques exist to solve each of the two
problems. For instance, synchronization may be solved by means of polling, message-counts, or using
auxiliary resources like tokens; the exclusion problem may be solved by using timestamps, unique
process-ids, auxiliary resources(forks), or probability-based techniques. The event manager algorithm
presented in this paper used message-counts to implement synchronization and a circulating token to
implement exclusion. The committee-coordination algorithm used auxiliary resources (tokens and forks)
to implement synchronization and exclusion. The modified event manager algorithm combined the
technique of message-counts to implement synchronization, with the use of auxiliary resources to
fmplement exclusion. Other known techniques to solve synchronization and exclusion problems may be

combined with each other to suggest different ways to solve this problem. The variety of possible

28

Number of processes(n=number of events(e)= 10.
Average message transmission time between two processes(f) = 5000.

¢ d Response Time
cC MEM EM
2 2 18444 8444 £915
3 4 20574 10570 6962
4 6 21518 11516 7060
5 8 22059 12364 6986
25. -

- {4 —cc

n 23, 4 -=-EM

'g 4 —%—MEM

o 21, H /

m —

= 19.

2 1

é 17. -

£ 15. -

=13, 4

v -

0

@ ”'j

2 3.

n -

v — -

> 7.-

3 LA S B N B R S p

Event Cardinality

Figure 9-1: Cbmparison of CC and EM Algorithms: Response Time

27

solutions indlicates the strong need for some performance metrics that can be used to Identify the
suitability of a specific algorithm for a specific type of network configuration. The paper presented a brief
performance study of the three algorithms. Results from the study were used to identity the basic trade-
offs among the different algorithms. Under the assumptions of this study, in uniform process
configurations, whereas the event manager algorithm had the lowest response time, it also had the
highest message-count. In non-uniform configurations, where processes are not equidistant from each
other, the performance of the algorithms depended on the pattern of interaction among the processes.
Acknowledgements

This work was initiated at MCC. | am thankful to Dr. Ira Forman of MCC for initial discussions on the
problem. | am indebted to Professors K.M.Chandy and J.Misra, ot the University of Texas at Austin for

their invaluable input in the formulation and presentation of the algorithm.

N O 0

29

Number of processes(m=number of avents(e)= 10.
Average message transmission time between two processes(f) = 5000.

d Message Count
cC MEM EM
2 10.2 6.2 272
4 21.2 13.2 41.2
6 34.2 221 55.6
8 495 KKE:] 65.9
709
60 ~
56
40
S -
o -l
O
" 10
m -
o
5 104
4]
2 —~
T | T T T T 1 T T
1 2 3. 4 S

Event Cardinality

Figure 9-2: Comparison of CC and EM Algorithms: Message Count

30

PJ. Pg'_
T,
T, 1
t b, >
Pa T 'Ps

Figure 9-3: Network of Two Clusters

Number of processes{n) = 8.

Number of events(e) = 8; 8, = {p,,p,}; @, = {P5.P3}; €3 = {P,.P3};
84 = {P4.Ps}; 85 = {Ps.Pg}; 85 = {P4.Pg)-

Message transmission times : 7, = 5000; 1, = 25000.

Algorithm Message Count Respanse Time
CC 10.0 19188
MEM 6.0 9188
EM 18.4 25489

Table 9-1: Comparison of Algorithms : LS Configuration

Number of processes(n) = 6.

Number of events(e) = 6; 8,={p,.p,}; 8,=(P,.Po}; €4={P4.Ps}:
04={D4,Ps}: 85={P2,Ps}: 0g={P3.Pg}:

Message transmission times : T, = 5000; 1, = 25000.

Algorithm Message Count Response Time
cC 10.1 87633
MEM 6.1 37633
EM 17.3 25282

Table 9-2: Comparison of Algorithms : US Configuration

[Ada 82]

[Back 84]

[Bagrodia 88]

[Bagrodia 873a]

[Bagrodia 87h]

[Bemstein 80]

[Buckley 83]

[Chandy 84]

[Chandy 87]

[Chandy ed)]

31

References

Reference Manual for the Ada Programming Language
United States Department Of Defense, 1982.

Back, R. and Kurki-Suonig, R.

Cooperation in Distributed Systems Using Symmetric Multi-Process Handshaking.

Technical Report No. Ser. A, No. 34, Department of Information Processing and
Mathematics, Swedish University of Abo, Finland, 1984.

Bagrodia, R.

A Distributed Algorithm To Implement The Generalized Alternative Command of CSP.

In Proccedings of 6th International Conference on Distributed Systems. Cambridge,
May, 1986.

Bagrodia, R. and Chandy, K.M. and Misra, J.
A Message-Based Approach To Discrete-Event Simulation.
IEEE Transactions on Software Engineering , June, 1987.

Bagrodia, R.

An Environment For the Design and Performance Analysis of Distributed Systems.

PhD thesis, Dept. of Computer Sciences, University of Texas, Austin, Tx 78712., May,
1987.

Bernstein, A.J.
Output guards And Non-determinism in Communicating Sequential Processes.
ACM TOPLAS 2(2):234-238, April, 1980.

Buckley, G. and Silberschatz, A.
An Effective Implementation Of The Generalized Input-Output Construct of CSP.
ACM TOPLAS 5{(2):223-235, April, 1983.

Chandy, K.M. and Misra, J.
The Drinking Philosophers Problem,
ACM TOPLAS 6(4):632-646, October, 1984,

Chandy, K.M. and Misra,J.

Synchronizing Asynchronous Processes:The Committee Coordination Problem.

Technical Report, Dept. of Computer Sciences, University of Texas, Austin, Tx 78712.,
1987.

Chandy, K.M. and Misra, J.
A Foundation of Parallel Program Design.
Addison-Wesley, To be published.

[Charlesworth 87} A. Charlesworth.

[Forman 87]

[Francez 86)

The Multiway Rendezvous.
ACM Trans. on Prograrnming Languages and Systems 9(3):350-366, 1987.

Forman, L.R.

On the Design of Large Distributed Systems.

Technical Report No. STP-098-86, Microelectronics and Computer Technology Corp,
Austin, Texas, January, 1987.

Preliminary version in Proc. First Int'l Conf. on Computer Languages, Miami, Florida,
Cctober 25-27, 1986.

Francez, N., Hailpern, B. and Taubenfeld, G.
Script:A Communication Abstraction Mechanism.
Science of Computer Programming 6(1), January, 1986.

[Hoare 78]

[Milne 85]

[Natarajan 86]

[Schneider 82]

32

Hoare, C.A.R.
Communicating Sequential Processes.
CACM 21(8).666-677, August, 1978.

Milne, George.
CIRCAL and the Representation Of Communication, Concurrency and Time.
ACM TOPLAS 7(2), April, 1985.

Natarajan,N.
A Distributed Synchronization Scheme for Communicating Processes.
The Computer Journal 29(2):109-117, 1986.

Schneider,F.
Synchronization In Distributed Programs.
ACM TOPLAS 4(2):125-148, April, 1982.

[Van De Snepscheut 81)]

Van De Snepscheut, J.L.A.
Synchronous Communication Between Asynchronous Components.
IPL 13(3):127-130, December, 1981.

