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Analytic Modeling Methodology for Evaluating the
Performance of Distributed, Multiple-Computer Systems

by
Alexander Kapelnikov

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 1986

Professor Richard Muntz, Co-Chair
Professor Milos Ercegovac, Co-Chair

In this dissertation, we describe an analytic modeling methodology for
evaluating the performance of distributed, multiple-computer systems. The concepts
and techniques of this methodology are useful for the approximate analysis of a
wide range of distributed computing environments and communication networks.
The main strategy of our approach is to segregate, as much as possible, the model of
the “‘logical’’ behavior of an application (a program or a process) from the model of
its underlying execution environment. For representing program behavior, graph-
based techniques are used, while extended queueing networks are utilized for model-
ing system architectures. The solutions of both types of models are combined to es-
timate the performance of a distributed system in executing some selected applica-

tions.
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To illustrate the practical application of the methodology introduced in this
dissertation and provide an indication of its expected accuracy level, we have includ-

ed two case studies.
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CHAPTER 1
INTRODUCTION

After computers (and other machines for automating and improving some of
our human functions) had become accepted by industrial and business communities,
their original manufacturers immediately adopted the computer model championed
by von Neumann, one of the foremost pioneers of computer science. Subsequent
producers of computers and related products followed in the footsteps of their prede-
cessors and continued this trend of centrally controlled, single-processor systems
with updateable memory. Even though remarkable advances in technology, particu-
larly in electronics and manufacturing techniques, resulted in phenomenal increases
in speed and decreases in size and cost of components, the general architectural prin-
ciples remained basically unchanged [BAC78]. Perhaps, computer manufacturers
felt comfortable with the organization of the von Neumann architecture, since it
closely paralleled human organizations which had proven track records, such as
those commonly found in large corporate environments. For that and other reasons,

this traditional design approach was loyally followed for almost three decades.

However, no matter how rapidly our technology progresses, the basic laws of
physics (as currently accepted) limit the maximum speed attainable by a single-
processor computer to a very large, but still finite, value. Therefore, during the past
decade, there has been a growing interest in investigating feasible alternatives to the
von Neumann design. Particular consideration has been given to designs with distri-
buted control and multiple processing units, capable of concurrent, asynchronous
operation. Since the execution of a program requires the cooperation of these pro-

cessing units, and cooperation entails communication (similar to that in human or-



ganizations), there must be a mechanism to facilitate the exchange of pertinent infor-
mation among processors. A proper choice of this communications mechanism is
one of the most important issues in the design of such systems. Figure 1.1 is a con-
ceptual diagram of a generic, distributed, multiple-computer system. This system
consists of N nodes which are interconnected through some communication subnet-
work. Each node is comprised of a processor and a storage unit. The size and so-
phistication of each individual processor can range from those of a DMA controller
to those of a general-purpose, mainframe computer. The storage units can also vary
considerably in terms of capacity and technology used. The possibilities for the

communication subnetwork are virtually limitless (as will be shown in Chapter 2).

This thesis addresses the problem of analytic performance evaluation of dis-
tributed system architectures. In this introductory chapter, we shall first describe
some applications of the distributed system concepts and illustrate the need for per-
formance prediction. We shall then review some of the other currently availabie
performance analysis tools. Finally, we shall evaluate those tools, identify their
shortcomings and discuss what improvements we plan to achieve with our modeling

methodology.

1.1 Overview of Distributed Systems

The architectural concepts presented above can be applied at almost any level
of the computer systems hierarchy -- from the design of a circuit in a VLSI chip all
the way to the design of an intercontinental computer network. In this section, we

shall discuss their application at two of the more pertinent of these levels.

First, we consider the level of self-contained, general-purpose computers.
Data-flow architectures serve as good examples of the application of rnon-von Neu-
mann concepts at this level. A typical data-flow computer consists of a number of

processing units, which are interconnected by data buses, cross-bar switches or other
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means and one or more memory modules (usually of the associative kind), which are
used to perform the matching of instruction operands into executable sets. This
class of computers has been under investigation by many research groups since the
early 1970s. Most of the pioneering work in this field had been performed by
Dennis and his colleagues at MIT [ARV80, DEN83]. Several detailed simulators
and prototypes of such computers have been constructed at different universities and
used to obtain performance measurements and experiment with various design alter-
natives. These simulated computers are usually programmed using data-flow
languages, which are a subset of the class of functional languages [ACKS82]. In a
data-flow machine, an instruction is ready to be executed as soon as all of its
operands are available. The major advantages of such languages are that they are
free of side-effects and exploit all of the parallelism available in a program. Howev-
er, a serious drawback is the generally large instruction size, due to the overhead in-
volved in explicitly specifying all instruction sequencing. Note that, in procedural
languages used with von Neumann computers, most instruction sequencing is impli-

citly defined by the ordering of instructions in a program.

We then turn our attention to systems composed of a set of autonomous (and
possibly heterogeneous) processors, each of which can fully function in a stand-
alone fashion. These processors are usually interconnected through an external
communication network and mutually cooperate to provide a pool of distributed
computing power. These kinds of systems are typically used for transaction-oriented
processing such as accessing and updating distributed data bases and in applications
requiring a high degree of security and/or fault-tolerance [FIN84]. One of the major
advantages of applying distributed design concepts at this level is the resource-
sharing capability, which results in reducing both cost, by not having to replicate the
complete functionality of a system at each site, and system response time, by having
idle processors ‘‘assist’’ overloaded ones. The multi-processor Cm* machine built

at the Camegie-Mellon University is a good representative of this type of system



[DEM82).

1.2 Need for Performance Prediction

Even from the brief discussion presented above, we can infer that there is a
countless number of design alternatives for developing any distributed system. Some
of the more important design issues are: the configuration, size and technology of
the interconnection network; distribution of system functionality among its process-
ing units; allocation of workload (program tasks) to processors; how to synchronize
execution of tasks; the size of individual tasks; where to store various data sets. A
designer of a distributed system is presented with the dilemma of properly resolving
these issues in order to meet certain objectives. These objectives may include such
considerations as average execution times of certain types of programs, utilizations
of individual processing units, communication and synchronization overhead,
cost/performance ratios of different system configurations, modularity, and user-
friendliness. It is usually not until the final stages of system development that it is
possible to determine whether or not the original objectives have been met. Thus, an
incorrect choice, in deciding on any one of the numerous issues, can result in a very

costly and time consuming re-design and re-development effort.

Given the aforementioned considerations, one can appreciate the importance
of being able to predict the eventual performance of a system during its design pro-
cess or primeval stages of development, so that any design flaws can be detected and
corrected without great expense. With proper performance prediction tools, a
designer should be able to gradually “‘pilot’” the design into meeting all of the re-

quired objectives.



1.3 Current Methods

Currently available performance prediction methods for distributed systems
fall into two general categories. Methods of the first category employ simulation
tools to construct and run a detailed model of a system. Usually general-purpose

simulation packages, such as UCLA’s SARA System (Graph Model of Behavior)
| [VERS2], IBM’s RESQ [SAUS81b], or PAWS [INF81], are used, which have built-
in facilities for gathering and analyzing performance statistics. Different packages
can vary considerably in their modeling primitives, model definition languages, and
performance measurement facilities. Thus, a model usually has to be re-designed
and re-implemented in order to run in a different simulation environment. Itis up to
the modeler to determine what level of detail to implement in a model and how to
properly abstract the pertinent characteristics of the actual system being evaluated.
In deciding on the latter issues, one must consider what performance measures are

being sought and what accuracy level is required.

In some cases, general-purpose packages may be intolerably slow in simulat-
ing very detailed models or not be equipped to provide all of the desired perfor-
mance measures. For these reasons, several research groups have developed their
own, special-purpose, hardware and software simulators to model specific distribut-
ed systems [FIN84, THOS81]. A given special-purpose simulator can usually
represent only a particular system architecture, although some are parameterized to

be able to model different configurations of the same basic design.

The second category of performance analysis tools comprises approximate
analytic techniques. Each such technique is generally applicable only to a narrow
range of system architectures and specific types of program structures. These
methods employ either standard queueing network models or graph models, which
trace system states during program execution, e.g., Petri Nets [PET81]. The tech-

niques based only on queueing networks, such as the one proposed in [HEI83],



currently suffer from the inability to explicitly represent interdependencies of tasks
in a program. Such methods usually utilize external, Poisson arrival streams, with
‘“‘heuristically’’ chosen customer arrival rates, to represent new tasks being enabled’
(i.e., spawned by already executed tasks). Procedures for computing numerical
values for those rates vary with different modeling applications. In order to make a
model more accurate, state-dependent arrival rates and dynamic class changes by

queueing network customers can be used.

Most of the techniques based purely on graph models, such as Stochastic
Petri Nets [MOLS81], suffer from being very closely tied to a specific system archi-
tecture. In other words, the model of the program behavior is intimately linked with
the model of the execution environment. Thus, a minor architectural change may re-
quire a new model to be constructed and solved. Another limitation of most graph-
based methods is that their state space size usually grows combinatorially with
respect to the size of the particular configuration being modeled, thus, limiting their

practical applicability.

1.4 Motivation for a New Methodology

Both simulaton and analytic categories of currently available performance
prediction tools suffer from shortcomings which limit their range of practical appli-
cation. Using general-purpose simulation packages involves not only a significant
cost of developing a model, but also a large amount of expensive CPU time for
every run of the simulation. Also, even if a single parameter is changed in a model,
a complete, new set of simulation runs is required to determine the new performance
statistics. Furthermore, the type of a computing environment necessary to support
most general-purpose simulation packages is usually very sophisticated and expen-
sive. Special-purpose simulators are generally more efficient, but their development

is very costly and each is able to model only a specific system architecture.



The major limitation of most currently available analytic methods is that an
individual technique is generally applicable to modeling only a very narrow range of
systems. Methods based purely on queueing network models (e.g., the procedure
described in [I-IE183]) lack general procedures for ‘‘translating’’ the precedence re-
lationships between tasks in a program into customer arrival streams and selecting
proper arrival rates for those open customer chains. Methods based exclusively on
graph models usually cannot capture all of the pertinent details of the program exe-
cution environment without generating excessively complex graphs. Also, such
models can quickly become unmanageable by increasing the configuration size of

the system being modeled.

Thus, with currently available performance analysis tools, one must sacrifice
either computational efficiency, as with general-purpose simulators and some
graph-based methods, or generality, as with special-purpose simulators, queueing
network models, and other graph-based techniques. Our goal in this research has
been to develop a new, general modeling framework for efficiently evaluating the
performance of the broad class of distributed, multiple-computer systems, which en-
ables a modeler to control the cost of solving a model according to the level of accu-
racy desired. The major premise of our methodology is that the graph-based
methods are best suited for modeling precedence relationships between tasks in a
program, while techniques based on queueing network models are best suited for
representing the details of the execution environment. Therefore, by segregating the
model of the program behavior from the model of the system architecture, we intend
to exploit the advantages of both queueing networks and graph models where they

are most beneficial.



1.5 Organization of Thesis

In this first chapter, we have presented a general overview of distributed sys-
tems, demonstrated the need for performance prediction and motivated the develop-
ment of our modeling methodology. Chapter 2 will elaborate upon distributed
design principles, describe and exemplify variations in program structures and sys-
tem architectures and discuss design issues pertinent to achieving high system per-

formance.

In Chapter 3, we will present the modeling portion of our methodology and
describe in detail each of its two major components: the physical domain model
and the program domain model. Chapter 4 constitutes the analysis and solution por-
tion of our methodology, i.e., it details the procedure for solving the type of models
developed in Chapter 3. In Chapter 5, we will demonstrate some heuristic tech-
niques which can be used to improve the efficiency of the procedure presented in the

preceding chapter and to also extend the range of application of our methodology.

The following two chapters will show how our methodology can be applied
to the practical problem of modeling and analyzing actual distributed systems and
parallel implementations of programs or transactions. In particular, in Chapter 6, we
will study the effects of concurrency control in distributed computations and, in
Chapter 7, we will evaluate the performance of a signal processing application im-
plemented on a multiprocessor systemn. We will also analyze the accuracy of our
methodology, compare its solutions with those obtained from simulation, and dis-

cuss the implications of the results of those experiments.

Chapter 8 will conclude this thesis by reviewing the whole methodology,
identifying its main research contributions, discussing how to effectively apply its
modeling and solution procedures, and providing guidelines for conducting further

research of the yet unresolved issues.



CHAPTER 2
DISCUSSION OF DISTRIBUTED SYSTEMS

Before describing our modeling philosophy and solution methodology for
distributed systems, we will present a discussion of these systems. This will help
emphasize the importance of distributed processing, especially its impact on the in-
dustrial and academic computing communities, and the magnitude of the complexity
involved in designing and modeling multiple-computer environments, After
motivating the need for parallel computation, we will review the general principles
underlying distributed architectures, discuss different system configurations, consid-
er variations in certain properties of programs (or processes), and, finally, identify

important design issues pertaining to the development of such systems.

2.1 Need for Parallel Processing

As already mentioned in Chapter 1, conventional, centralized computer ar-
chitectures will not be able to meet the ever-increasing data processing and problem
solving needs of academic institutions, industrial organizations, and governmental
agencies. For instance, future signal processing applications, such as missile track-
ing systems, will require billions of operations per second. This kind of throughput
is not physically realizable by a single processor, no matter what kind of technology
(real or conceptual) is used for producing logic elements. Even the processing capa-
city of CRAY-2, one of the fastest vector supercomputers currently available, which
has an elementary clock cycle of 4 nanoseconds, is orders of magnitude away from
this figure. On the other hand, the recent technological advances in the miniaturiza-

tion of digital circuitry have made it possible for a significant amount of computer

10



processing power to reside on a single silicon chip. These advances will inevitably
lead to an explosion in the production of inexpensive and ultra-small processors

[COF79].

The considerations presented above make distributed, multiple-computer
systems both economically feasible and necessary to satisfy current and future com-
puting needs. Aside from performance issues, there are other important factors
which make distributed processing desirable, e.g., fault-tolerance and system cost.
Distributed architectures are inherently more fault-tolerant than centralized ones.
Namely, individual processing elements can be repaired, serviced, and replaced
without affecting the rest of the system; sensitive computations can be performed in
parallel by several proccssofs and individual results can then be compared with each
other; data can be distributed among different storage facilities and critical informa-
tion can be replicated. Computing costs can also be reduced by such systems: hun-
dreds or even thousands of microprocessors, when properly connected together, can
outperform a mainframe while having a much lower total price; sharing of system
resources (e.g., peripheral devices, storage facilities, and communication channels)
will eliminate the need for replicating expensive components; the system’s comput-
ing power can be tailored to match specific user needs, thus optimizing utilization of
each component; the computing environment can be gracefully re-configured, up-
graded, and expanded, thus reducing maintenance costs and increasing system’s life

span.

2.2 General Principles

In this thesis, we take a ‘‘broad’’ view of distributed, multiple-computer sys-
tems. In the most general sense, our definition includes any system which is com-
posed of physically separate processors (computers) which cooperate with each oth-

er (via some communications and/or storage mechanism) in executing some number

11



of programs or processes. In the context of this paper, a program (process) is defined
as a collection of fasks, each varying in complexity and functionality, which are or-
dered through precedence relationships in order to achieve some end result (e.g.,
solving a differential equation or replying to a database query). This broad
definition includes not only the latest architectures, but also many systems which

have already been in use for some time.

Distributed processing systems can vary in the type of communications
mechanism used, the degree of coupling between different processors, the policy for
scheduling execution of tasks, how synchronization of tasks is accomplished, and
the degree to which functionality and control of the system is distributed. Some of
the commonly used communications facilities are data buses, token rings, cross-bar
switches, shared memories, and coaxial or twisted-pair cables. The systems with a
high degree of connectivity or which utilize shared memories for intertask communi-
cation are normally termed ‘‘tightly coupled.’”’ Architectures with larger spatial dis-
tribution (i.e., longer propagation delays) and less frequent interaction between pro-
cessors, such as message passing systems, are called ‘‘loosely coupled.”” Distribu-
tion of control can range from the logical star configuration (i.e., a single, master
processor) to being equally shared by all computing resources. The functionality of
the system can be either replicated at each processing site or uniformly distributed
between all elements. The variations discussed above give rise to many different
classes of parallel processing architectures. Some of the more important classes are
systolic arrays, networks of von Neumann computers (either tightly or loosely cou-

pled), and data flow architectures.

Unfortunately, the class of distributed, multiple-computer systems described
above is not exempt from the idiom expressed by the common cliche: ‘‘There is no
such thing as a free lunch!’” Even though these systems offer an elegant and struc-

tured approach to attaining high computing performance, one must pay certain
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‘‘penalties’” when using them. One such penalty is the communications overhead
due to information interchange between processors. Another is the additional pro-
cessing time and storage access needed to resolve precedence relationships between
tasks. More will be.said about these two penalties when we discuss design issues in
section 2.5. Also, the task of programming such computers is made more complex
by requiring that programs be partitioned into concurrently executable tasks, which
are then ‘‘properly’’ allocated to different processing elements, and that asynchro-
nous control be provided for synchronization of tasks. In order to have high perfor-
mance and yet maintain low software development and maintenance costs, multipro-

cessor systems must be able to perform these tasks automatically and be high-level

language programmable.

2.3 Architectural Variations

In order to make our modeling methodology as computationally attractive as
possible without, however, sacrificing its generality, we will explore the potential
advantages of considering variations in certain key properties of distributed architec-
tures. In particular, we will classify the general class of distributed, multiple-
computer systems according to two pertinent criteria. The type of task allocation
policy employed by the system constitutes the first criterion. The second criterion is

the way the synchronization of tasks is performed in the system.

In this section, we will discuss each criterion individually, present our
classification of distributed systems, and then offer examples of different system

categories.
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2.3.1 Task Allocation Policies

For the purposes of our methodology, we will separate all possible task allo-
cation policies into two general categories: Dynamic and Static. With a dynamic
task allocation policy, each currently enabled task (i.e., task which is ready to be ex-
ecuted) competes, on an equal basis, with other enabled tasks for the processing and
communication resources of a distributed system. That is, the required system
resources are dynamically assigned to a task (by the task scheduling and resource
management components of the architecture) at the time when it becomes ready for
execution. The assignment of resources to tasks can be made either purely probabil-
istically -- without considering the distribution of workload currently present in the
system -- or purely adaptively -- as a deterministic function of the current system
state -- or by using a combination of these two approaches -- as a probabilistic func-

tion of the current system state.

With a staric task allocation policy, each task of a given program is a priori
allocated a pre-specified subset of the system’s processing and communication
resources. Such subsets do not necessarily have to be mutually exclusive nor
represent an exhaustive partitioning of the total available system capacity. This allo-
cation of resources is performed before commencing the execution of a program.
The main objective of most static task allocation policies is to balance, as much as
possible, the expected workload, represented by a program, among different system
components, while exploiting all of the potential parallelism available in that pro-
gram. Upon becoming enabled, each task of a program utilizes only those resources
that were statically assigned to it according to thc particular policy adopted by the
system in question. It competes for each system element against other enabled tasks
which also have that element as part of their resource allocations. As will be dis-
cussed in the next chapter, when modeling the execution of a program in an environ-

ment where a static task allocation policy is employed, we will group the tasks of
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that program according to what resources were allocated to them.

2.3.2 Synchronization Schemes

In the context of our modeling strategy, we will classify the various schemes
for synchronizing execution of tasks as being either centralized or distributed. The
reasons for making this distinction will become evident when the model itself is
described in the next chapter. With a centralized synchronization of tasks, all infor-
mation necessary to determine when each task can become enabled (i.e., status of
each disabled task) is kept in a single (central) storage facility. Whenever a task
completes its execution, it generates a completion acknowledgment -- or a result
packet -- to indicate the occurrence of that event. Those result packets are then used
to create operand packets which contain the data (operands) needed for updating the
status of some disabled tasks. Since the information about each task is stored in the
same location, only a single operand packet has to be generated from a given result
packet. That is, no decision is required to determine how many operand packets to
generate and where they should be sent. As will be shown in the following chapters,
systems which utilize a centralized synchronization mechanism can be represented
by much simpler models, which, in turn, significantly reduce the computational

complexity of the corresponding solution process.

With a distributed synchronization of tasks, storage of information about dis-
abled tasks is distributed among a number of memory modules. Each result packet
will generate as many operand packets as the number of different storage modules
which need to be updated with the information contained in that result packet. Each
generated operand packet will contain only the data required to update the status of
disabled tasks stored in a particular location and it will be sent to that module only.
The transmission and processing of operand packets generated from the same result

packet can be performed asynchronously. Usually, a distributed synchronization
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mechanism is employed in conjunction with a static task allocation policy, although,
there is no physical constraint requiring that. That is, potentially, the system
resources utilized to execute a task can be independent of where the status of that

task is stored.

From the perspective of our modeling methodology, there is a significant
difference, when evaluating the execution of programs, between architectures em-
ploying distributed synchronization schemes and those with centralized synchroniza-
tion schemes. This difference manifests itself in both the size and complexity of

models and the computational cost of the associated solution process.

2.3.3 Classification of Distributed Systems

As discussed in the preceding sections, we are primarily concerned with two
architectural criteria for classifying the broad class of distributed, multiple-computer

systems:

(a) task allocation policy: dynamic or static; and

(b) synchronization scheme: centralized or distributed.

Since the aforementioned criteria are independent of each other and each criterion
offers two possible alternatives, there is a total of four feasible combinations. Thus,
our classification of distributed, multiple-computer systems consists of the four

categories listed below:

(1) Dynamic Allocation with Centralized Synchronization
(2) Dynamic Allocation with Distributed Synchronization
(3) Static Allocation with Centralized Synchronization

(4) Static Allocation with Distributed Synchronization
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The major reason for distinguishing between these four categories is to op-
timize our methodology in terms of efficiency and ease of application. In other
words, our objective is to avoid redundant complexity in our models as much as pos-
sible. In fact, as will be shown in the next chapter, the structure of models for
representing systems of the fourth group is the most general one and can be used to
model systems belonging to other categories as well. However, this would make the
analysis of systems of other classes less efficient by introducing unnecessary com-
plexity in constructing and solving their models. Thus, although closely related to
each other, the modeling framework for each category is specifically adapted to the
corresponding system properties, containing just enough detail to allow for all dis-

tinguishing features of that category to be represented.

In the next section, we will present examples of systems of each of the four

categories.

2.3.4 Examples of Different Categories

The original data-flow computer architecture proposed by Dennis, et al. at
MIT [DEN83] examplifies the ‘‘Dynamic Allocation with Centralized Synchroniza-
tion”’ category. An example of the ‘‘Dynamic Allocation with Distributed Syn-
chronization®’ class is the Cosmic Cube, which is a tightly coupled network of gen-
eral purpose microprocessors, each with its own local memory [SEI85]. The ‘‘Static
Allocation with Centralized Synchronization’’ category is well represented by par-
ticular configurations of the Rumbaugh data-flow machine [RUM77], the Texas In-
struments system [GAU82], the Manchester University machine [GUR83], and San-
dia Labs’ SANDAC computer. The UC Irvine data-flow simulator [THO78,
GAUR2], the BBN Butterfly Machine and Hughes Dataflow Multiprocessor [FIN84]
belong to the *‘Static Allocation with Distributed Synchronization’” category. The

Cm* system, built at the Camegie-Mellon University, can be configured to
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represent any one of the four categories listed above [SWA77].

2.4 Program Variations

Programs, as defined in the context of this dissertation, can vary on both the
local (individual task) level and on the global (structural) level. Differences in indi-
vidual task properties account for variations on the local level. Differences in the
number of tasks of each type present in a program and in the precedence relation-

ships among those tasks account for variations on the global level.

In this section, we will discuss program variations on each level and how
these variations affect our modeling miethodology, and then present examples of
parallel algorithms.

2.4.1 Task Attributes

Individual tasks can consist of one or more ‘‘simple’’ instructions. By
“‘simple,”” we mean an instruction which can be translated into a single machine-
level operation (in the context of the system being modeled). We use the term
“‘granularity of a task’ to mean the number of simple instructions comprising a
task. Furthermore, depending on the types of processors used in the system, dif-
ferent machine-level operations may require different number of cycles, i.e., dif-
ferent instructions may have different execution times. Thus, the processing
demands of tasks can vary considerably. Note that, by our definition, a task is al-
ways executed as a single unit, no matter what its granularity is. That is, all of its
constituent simple instructions are executed sequentially by the same processor and
a single result packet is generated after the last instruction has been executed. This
definition of a task does not significantly limit the range of application of our metho-
dology. For instance, a task which generates several results at differenr times during

its execution can be represented as a sequential combination (described in the next
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section) of smaller tasks. Upon completion, each ‘‘subtask’’ generates one of the
results of the original task, the particular result being determined by the order in

which that subtask is executed (i.e., the i -th subtask generates the i -th result).

Depending on its granularity and precedence relationships with other tasks,
each task may generate a different number of results. Thus, the lengths of result and
operand packets may differ, depending on the originating and destination tasks.
Since the time to transmit a data packet, over most communications facilities, is a
function of its length, the communication demands of tasks can also vary

significantly.

As will be shown in Chapters 3 and 4, both the complexity of our models and
the computational cost of solving them are directly related to the degree of variation

among tasks in the programs being considered.

2.4.2 Structural Variations

Figure 2.1 illustrates some of the common programming constructs, each
represented as a combination of program modules, found in typical programs. The
sequential construct is formed by combining modules in series. It is representative
of programs consisting of a sequence of procedures, and of transactions involving a
serial application of several operations to the same data itern. In the EXCLUSIVE-
OR construct, as its name implies, exactly one out of several possible modules is
selected for execution. The i-th module is selected if and only if predicate p; is
satisfied. At each instance, exactly one predicate holds true, while the others are
false. This construct is representative of the ‘‘Case’” statement in programs and of
the conditional transaction execution. The paralle! construct is formed by combin-
ing modules in parallel. It is representative of concurrent transaction processing and
of executing independent computations in an algorithm. The loop construct is

formed by having module A enable itself after enabling module B (thus starting the
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(a) SEQUENTIAL CONSTRUCT (b) EXCLUSIVE-OR CONSTRUCT

A
-p
(¢) PARALLEL CONSTRUCT (& LOOP CONSTRUCT

Figure 2.1 Common Programming Constructs
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loop over again) if predicate p is satisfied. This construct is representatve of a
“DO loop”’ which repeats itself as long as condition p holds true, where each itera-
tion is a serial combination of modules A and B; however, a new iteration can start
as soon as module A of the current iteration is completed. It can also be used to
model a recursive procedure, having modules A and B as its body, which calls itself
- after completing module A (as long as predicate p is satisfied), with module B be-

ing independent of the new procedure invocation.

Most well structured programs can be decomposed into a hierarchy of simple
constructs, where constituents (program modules) of constructs on a given level are
themselves constructs on the lower level of the hierarchy. Conversely, common pro-
gramming constructs can be applied hierarchically in combining modules to produce
programs having very complex structures. We will elaborate on the latter issues in
Chapter 3 when describing program behavior models. In Chapter 5, we will show
that this kind of structural decomposition of programs can be effectively used to in-

crease the efficiency of our solution process.

2.4.3 Examples of Parallel Algorithms

The first example of a parallel algorithm comes from image processing appli-
cations, This algorithm is called the SOBEL operator and it is shown in Figure
2.2(a). The SOBEL operator is an edge enhancement algorithm which functions as
follows, For each pixel (E), a window of the eight nearest neighbors
(A,B,C,D,F,G,H andI) is defined. The gradient operator is then applied to
process each inside pixel of the image matrix. This is a highly repetitive applica-
tion, where operations on different pixels are all treated independently of each other

[GAUZ3].
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E = XI+IYI
X=(C+2F+I} - (A+2D+G)

Y =(A+2B+0C) - (G+2H+1)

(a) SOBEL operator

DO 20 1 =1,N
C
C DO ALL (COLUMN SWEEP)
C

DO 10J=1+1,N
X(J) = XQ) - LG, 0 - X(I)

10 CONTINUE
C
C END DO
C

20 CONTINUE

(b)Y Column Sweep algorithm

procedure quicksort (A, n)
i+n = 0 then return ({}};
i+n = 1 then return (A);
m = nf2;

i 0,
k=0
for i fromlton(i /= m) do:
if A[i] < A[m]
then j := j+l;
B[] = Ali];
else k = k+l;
Clk] = A[i};
end;
return ( quicksort (B, j) I Alm] Il quicksort (C, k) )
end quicksort

{c) recursive Quicksort procedure

Figure 2.2 Examples of Parallel Algorithms

22



The second illustration of parallel computation is taken from the domain of
linear systems. We have selected one of the algorithms for solving linear recurrence
equations. This algorithm, known as a ‘‘column sweep,”” is a forward substitution
of the current value' of the unknown, x, into all of the expressions that require this
value [MONB81]. Columns from the NxN coefficient matrix L are fetched and mul-
tiplied by the current x value, thus ‘‘sweeping’’ each column of coefficients in a sin-
gle step. An implementation of the column sweep algorithm in FORTRAN is given
by Figure 2.2(b).

The last example is given by a recursive implementation of the well known
Quicksort algorithm [KNU73]. A design definition of such implementation is dep-
icted in Figure 2.2(c). Procedure Quicksort sorts an n-element vector A into a non-
decreasing order, utilizing two auxiliary vectors: B and C. At the beginning of each
iteration, vectors B and C are empty and the middle element of A is chosen as the
sort key for that iteration. At the end of the iteration, B contains all of the elements
of A having values less than or equal to the value of the key (not including the key
itself) and C contains those elements with greater values. Finally, vectors B and C

are each sorted individually using Quicksort.

In Chapter 3, we will illustrate how to model the example programs

described in this section.

2.5 Design Issues

From the material presented in this chapter, it is clear that there is virtually
an infinite variety of possible distributed system designs. In order to make proper
design choices, a systems architect must identify those issues which are important to
achieving the specified objectives (e.g., having the system meet certain require-
ments). In the following, we will briefly discuss some of the design issues critical to

achieving high system performance.
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Perhaps the most impomant performance-oriented design issue is the com-
munications mechanism used for interchanging data and control information (e.g.,
definitions of tasks, result packets, and operand packets) among processing elements
and storage units of a system. Each individual property of such communications
mechanism must be carefully selected in order to maximize the information
throughput and system component utilizations and to minimize the communication
delays. These properdes include the physical transport medium, the topology of
processing elements and data storage modules, data interchange protocols, address-
ing and routing mechanisms, data link reliability, message sizes, data encoding, etc.
The selection of the aforementioned properties is usually constrained by the desired
speed and the size of the system, the geographical distribution of its components,
fault-tolerance and system availability requirements, and bounds on the development
and maintainance costs. In most cases, it is not possible for a given choice of the
communications mechanism to be optimal in both meeting high and balanced sys-
tem utilization and maintaining fast response time. Thus, a designer has to make a
compromise between effectively using available system resources and providing
prompt service to the user community. Various alternatives for the communications
mechanism employed by distributed architectures have been proposed and evaluated
in a number of research papers [GURS83, KUC77, THOS81, TRE82] and are beyond

the scope of this dissertation.

The proper selection of the task allocation policy and the task synchroniza-
tion scheme, such as those described in Section 2.3, is also very important to achiev-
ing high system performance. In architectures which are geared toward specialized
applications, where properties of programs to be executed are known in advance, it
is usually advantageous to employ a static task allocation policy with a distributed
synchronization mechanism. Since, with special-purpose systems, only a specific set
of applications has to be considered, a designer has an opportunity to experiment

with various task allocations a priori and to adopt the optimal one. A general-
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purpose system in an environment of dynamically changing and unpredictable user
demands would be better off using a dynamic allocation policy and a centralized

synchronization scheme.

Some of the other pertinent design issues are the granularity of individual
tasks, how the storage of data is distributed among different modules, how system
resources are shared, and how the functionality of a system is distributed among
various processing units. The granularity of tasks, in particular, has been shown to
significantly affect the execution time of a program, especially in systems having

high communication and synchronization overhead [GAU82, GAUS8S].
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CHAPTER 3
THE MODEL

Our methodology embodies two modeling domains. The first (physical)
domain consists of the physical resources comprising the distributed, multiple-
computer system being modeled, such as processors, communication buses, peri-
pheral controllers, I/O device drivers, storage facilities, etc. The second (program)
domain comprises programs or processes, each consisting of a set of cooperating

tasks, which are being executed using the constituents of the first domain.

The physical domain model is used to solve for the throughput rates of the
system for different types of tasks under various task loadings and population mixes.
These rates are then used to compute the parameters for driving the program domain
model. The solution of the program domain model, in turn, yields the average execu-

tion time of the program being analyzed.

3.1 Physical Domain Model

Our model of the physical system resources, their interconnections, and in-
teractions with each other consists of the conventional queueing network com-
ponents, with an addition of a new modeling construct. This construct is termed a
Black Box and is graphically represented as [?]. Its operation will be described in
detail later in this chapter. For now, it suffices to say that those functions of a distri-
buted system modeled by a Black Box are synchronization of execution of tasks and
creation of executable operand sets (each set containing all of the operands required

for the execution of some task) from results received from already completed tasks.
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In essence, a Black Box provides a virtual link between the two modeling domains.

The most general type of a model in this modeling domain consists of a
“P/C"” (Processing and Communication) subnetwork, an “‘M /U’ (Matching and
Updating) subnetwork and two Black Boxes. Figure 3.1 is a high-level representa-
tion of such a model. As will be shown later, however, it is sufficient (and desir-
able) to use just a P/C subnetwork and one Black Box for most modeling applica-

tions. We shall now describe each of these components in detail.

3.1.1 The P/C Subnetwork

The P/C subnetwork consists of standard queueing network elements (which
are sufficient for modeling the organization and components of most computer archi-
tectures and communication networks). Its service centers and the associated queues
represent the processing and communication resources of the distributed system be-
ing modeled and the contention for those resources. The interconnection of the ele-
ments, together with the associated routing probabilities, represent the architectural
profile of the system. The attributes of each element (e.g., service time distribution
of each customer class, number of servers, type of servers, server capacities, queue-
ing discipline used) are determined by the characteristics of the underlying physical

resource and the properties of tasks utilizing that resource.

The major distributed system functions modeled by the P/C subnetwork
are: (1) receiving executable operand sets and corresponding task definitions from
the synchronization subsystem (defined in the following section); (2) transmitting
them to the proper processing elements for execution; (3) executing task code; and
(4) transmitting the results back to the synchronization subsystem. An operand set,
the corresponding task, and the generated result are all modeled by a single queueing
network customer. In order to be able to model situations where the aforementioned

entities utilize the same system resources, queueing network customers are allowed
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Figure 3.1 Distributed System Model
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to dynamically change classes. (In the context of this thesis, the terms “‘class’’ and
“‘chain’’ are given the respective definitions used in the standard queueing network
terminology.) Class changes enable a given customer to behave differently at the
same service center during different visits, Thus, the particular entity that a customer
is representing at a given time point depends on the service center it is then visiting

and on the class to which it currently belongs.

Figure 3.2 shows an example of a section of a distributed system and the
corresponding P/C subnetwork. Service center IB; represents the delay (including
any queueing time) incurred in transmitting an instruction packet (i.e., a task
definition and its operand set), destined for processor i, on input bus {. Service
center P; represents the delay incurred in executing an instruction (task) by proces-
sor i. Service center OB; represents the delay incurred in transmitting a result pack-

et, constructed by processor i upon completion of a task execution, on cutpur bus i.

As already mentioned above, the queueing network customers which visit the
P/C subnetwork represent fasks (together with the corresponding operand sets)
which are ready to be executed and result packets generated by those tasks. These
customers may belong to different chains if the underlying tasks can be separated
into groups, where the properties of tasks in each group (e.g., degree of granularity,
average execution time, system resources required, etc.) are significantly different
from those of other groups. In such a case, the P/C subnetwork model is said to be
of a ‘“‘multiple class’’ variety. We will elaborate on this issue when we discuss

models in the program domain.

3.1.2 The M/U Subnetwork

Just like the P/C subnetwork, this subnetwork also consists of standard
queueing network elements. Its service centers represent delays incurred in contend-

ing for, accessing, using, and updating the synchronization subsystem -- the part of
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the distributed systern which is responsible for maintaining the information neces-
sary for task synchronization. An example of such subsystem is the associative
storage, where incomplete operand sets are temporarily stored. The service centers
of the M /U subnetwork are used to model such physical system resources as associ-
ative memory modules, DMA controllers, channel controllers, memory buses, etc.
If there is more than one memory module in the synchronization subsystem, then the
system belongs to the ‘‘Distributed Synchronization’’ category, as discussed in the
previous chapter. In our model, the physical resources represented by the P/C sub-
network and the ones represented by the M /U subnetwork constitute mutually ex-
clusive and exhaustive partitions of the distributed system being modeled. The rea-
son for requiring these subnetworks to be mutually exclusive is to allow each sub-
network to be solved independently of the other one, thus, reducing the computa-
tional complexity of our solution process. This issue will be elaborated on in
Chapter 4. The aforementioned restriction should not significantly limit the range

of application of our methodology.

The queueing network customers which visit the M /U subnetwork represent
operand packets (or already-executed tasks’ ‘“‘completion acknowledgments’”)
which contain information for updating and/or creating task operand sets in certain
memory modules. Operand packets are created directly from the result packets sent
by executed tasks. From each result packet, as many operand packets are generated
as the number of affected memory modules. Each operand packet is received and
processed by only a single memory module, i.e., operand packets are not shared by
multiple memory modules. We will also assume that all operand packets destined
for a given memory module exhibit the same behavior, i.e., they all place the same
demands on the processing and communication resources of the system. Thus, each
customer visits only those service centers which model the resources associated with
a particular memory module. Furthermore, there are as many customer chains in

this subnetwork as there are distinct memory modules. The particular chain to
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which a given customer belongs is determined by the memory module for which the

operand packet (represented by that customer) is destined.

As will be shown in the following section, it is not necessary to have an
M /U subnetwork as a separate entity when dealing with systems of the ‘‘Central-
ized Synchronization’ category (i.e., systems having a single, shared operand
storage facility). In such cases, it is possible to integrate the service centers con-

tained within the M /U subnetwork into the P /C subnetwork.

3.1.3 The Black Box Construct

This construct is introduced, as an addition to the standard set of tools used
in describing queueing networks, in order to facilitate convenient modeling of the
execution of parallel programs in the distributed, multiple computer environment,

We will use the [?] symbol to graphically represent this new modeling component.

The Black Box is a conceptual artifact designed to model interdependencies
between tasks in a program and synchronization of their execution, according to the
precedence relationships among them. (Precedence relationships between tasks in
programs can be easily determined from the underlying computation control graphs,
which are discussed in the next section.) When incorporated into a queueing network
model, a Black Box can be viewed as a service center having the following special
properties. Let § be the current state of the physical system with respect to the exe-
cution of the program being modeled. (The current state of the Black Box is unique-
ly determined by S.) A queueing network customer which visits the Black Box ser-
vice center is immediately ‘‘destroyed.’” In turn, for each customer chain i, f;(d!S)
customers are created, where d is either the task or the operand packet represented
by the ‘‘destroyed’” customer. The range of each f; function is the set of non-
negative integers and its definition is determined by the corresponding program

domain model. Thus, a Black Box performs the roles of both a source and a sink in a
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should be represented by such ‘‘reduced’” models.

The selection of criteria for determining when such an approximation is
justifiable and the selection of procedures for performing this approximate model
reduction are application-dependent issues and cannot be universally specified for all
cases. We will, however, attempt to give some ‘‘rules of thumb’’ to assist a modeler
in making proper decisions. The number and diversity of storage sites used for
maintaining incomplete operand sets are certainly important factors. In general, the
fewer memory modules are used and the more similar those modules are (in terms
of the associated queueing and access delays), the better the approximation should
be. The quality of approximation also strongly depends on the relative processing
and communication requirements of operand packets, as compared to those of tasks
and result packets. The latter measure indicates what percentage of the total program
execution time is spent on processing operand packets. Finally, the more homo-
geneous the behavior of operand packets destined for different storage locations is
(in terms of utilization of system resources), the more accurate the approximate
model should be. Note that the behavior of operand packets is always ‘‘homogene-
ous’’ if there is only a single storage location (i.e. if the system belongs to the

““‘Centralized Synchronization’’ category).

Since, in systems employing centralized synchronization schemes, only one
operand packet is generated from each result packet, the following heuristic ap-
proach may be used for approximating a distributed synchronization by a centralized
one. All operand packets generated from the same result packet should be represent-
ed by a single queueing network customer. To obtain an upper bound on the pro-
gram execution time, this customer should visit all service centers which represent
system resources utilized by the corresponding operand packets. In order to obtain a
lower bound, it should visit only those service centers which represent a single

storage site -- normally the one with the smallest associated queueing and access de-
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lays. One of the drawbacks of this approximation is that, depending on the applica-
tion, the bounds it generates can potentially be very loose. An example of the appli-

cation of the heuristic procedure described above will be given in Chapter 4.

3.2 Program Domain Model

A program, as defined in the context of this dissertation, is a set of tasks,
which are executed according to the precedence ordering given by the associated
computation control graph. Computation control graphs are two-dimensional, direct-
ed structures, which pictorially represent interdependencies of tasks in a program.
They will be defined and explained in detail in the following section. Tasks may
differ in terms of the number of operands required, the number of results generated,
the number of primitive (machine-level) instructions within a task, the execution

time of each primitive instruction, and the way system’s resources are utilized.

Of course, the representation of a program defined above is not the way an
application programmer would normally code an algorithm. Most end-users write
their programs in conventional, high-level languages, without regard for the archi-
tecture of the execution environment or any parallelism inherent in algorithms.
Thus, we require an intermediate processing step, which compiles or translates a
program from some high-level language into a computation control graph. This
compilation process is itself a very extensive and complex subject, which has been
addressed in detail by several research works [ACK79, ACK82], and is beyond the
scope of this paper.

The reason for choosing this type of program representation is that computa-
tion control graphs lend themselves very well to behavioral analysis, from the per-
spective of tracing the states of a program’s execution. This point will be elaborated
on in the following chapter. Also, the compilation of a program into a computation

control graph does not depend on the specific physical environment where the pro-
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gram is to be executed. We will now give a detailed definition of computation con-

trol graphs and discuss their applicability to modeling program behavior.

3.2.1 Computation Control Graphs

Computation control graphs are a mechanism (created for the purposes of
our methodology) for pictorially representing program behavior. The creation of
this mechanism has drawn on many concepts inherent to the already existing graph
models of program behavior [DEN72, EST78, FER72, KAR67, MOLS81, PET81].
However, as will become evident later, it offers a number of salient features not
found in other graph models, which make it particularly suitable for our methodolo-

gy. These novel features include:

- convenient representation of recursive relationships;

- flexibility in modeling looping constructs and multiple instantiations of tasks;
- hierarchical grouping of precedence relationships;

- allowing for automated generation of Markov processes

(to be addressed in Section 4.3.2).

Each computation control graph is a collection of nodes and directed arcs
connecting those nodes. The nodes represent the tasks comprising a program and
the arcs model the precedence relationships among those tasks. An arc is said to be
enabled when the task corresponding to its source node has completed its execution.
Several arcs can emanate from a single node and a single node can be a destination
for multiple arcs. Thus, with each node i, we will associate two sets of arcs: E (i)
and D (i).

E(i) = {s | arcs emanates from node i}.

D) = {s | arcs rerminates at node i}.

Within each set, arcs are grouped using the AND, OR and UNION operators, which
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will be discussed below.

The precedence relationships between tasks in a program are directly obtain-
able from the interconnection of nodes in the corresponding computation control
graph (i.e., the way arcs are grouped in the E (i) and D (i) sets, for each node 7).
The following rules apply when interpreting the ‘‘meaning’’ of arcs terminating at
the same node. If there are several arcs terminating at a particular node without any
symbols between their heads, then the task represented by that node cannot be ini-
tiated until all of the tasks represented by the source nodes for the arcs have com-
pleted their execution. This is an example of the (implicit) AND relationship among
arcs. For node i, this relationship is formally expressed as:

DGE) = {j1* j2* - ™* Jau}s
where j; j,..., j, are the source nodes for the arcs terminating at node i. The AND
operator is represented by the "* " symbol. The plus sign "+" is used to represent
the OR relationship among arcs. That is, if the arcs in the preceding example had
"+" symbols between their heads, then the task modeled by the destination node
could be executed as soon as any task modeled by one of the source nodes had com-

pleted its execution. For node i, this relationship is formally expressed as:
D@) = {jr1+J2+ ... +Jal,

Note that the OR relationship allows activation of multiple instances of the same

task during a particular invocation of a program.

For a given node i, both AND and OR relationships can be intermixed to-
gether, i.e., both AND and OR operators can be used together in an expression for
D (i). When interpreting such heterogeneous combinations of several arcs, the AND
relationship takes precedence over the OR relationship. For example, if
D(@i) = {j,* jo+j3}, then node i can be activated when either both nodes j; and

J2 have been executed or when node j; has been executed. In order to represent
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more complex precedence relationships among tasks in a program, arcs terminating
at the same node can be combined hierarchically by drawing ellipses around them.
This is called the UNION relationship -- it is analogous to the parentheses operator
in arithmetic. In an expression representing D (i), for some node i, the UNION
operator is represented by segregating the affected arcs using parentheses. The UN-
ION relationship takes precedence over all other relationships and can be hierarchi-
cally applied. For instance, if we modify the preceding example to have
D(i) = {j1* (jo+ j3)}, then node { can be activated when both node j, and one of
the other nodes have been executed. The rules for applying AND, OR and UNION
relationships to unions of arcs are the same as those for individual arcs. A union is
said to be enabled when enough arcs in that union have been enabled to permit the
destination node to be activated if we ignore the condition of arcs external to the un-

ion.

Arcs emanating from the same node are subject to the following interpreta-
tion. If there is a weight w (w is a real number between 0 and 1) assigned to an
arc’s tail, then, upon completion of the task represented by that arc’s source node, an
operand is sent to the task represented by the destination node for the arc with pro-
bability w (i.e., the arc is enabled with probability w). If w=1, then the arc is al-
ways enabled and the effect is equivalent to no weight being assigned at all, i.e.,
w=1 is a superfluous designation. If w=0, then the arc is never enabled and its oc-
currence in the graph is redundant, i.e., arcs with weights equal to zero should not be
present in the graph. If there are no symbols between tails of several arcs emanating
from the same node, then those arcs are joined by the (implicit) AND relationship.
For node i, this relationship is formally expressed as:

E@) = {jilwi* jalwa* . * j,lw,],
where j, j,..., j, are the destination nodes for the arcs emanating from node i and
W W,..., W, are their respective weights. In the case of arcs joined by the AND re-

lationship, the decision as to whether or not to enable an individual arc is based on
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that arc’s weight alone, i.e., any combination of such arcs can be enabled. If there is
a *‘+"" symbol between the tail of each one of several arcs, then, upon completion of
the task corresponding to the source node, exactly one of those arcs is enabled. This
is called the EXCLUSIVE-OR relationship. The probability that a particular arc is
enabled is equal to that arc’s weight. Thus, the sum of weights of all arcs joined by
the same EXCLUSIVE-OR relationship must equal to one. For node i, this relation-

ship is formally expressed as:
EG) = {jiwy+jziwa+ .. julw,] with wi+wae+ .. +w,=1

Both AND and EXCLUSIVE-OR relationships can be applied together, with
the EXCLUSIVE-OR relationship taking precedence over the AND relationship.
(This contrasts with the corresponding rule in the case of arcs terminating at the
same node.) For example, if, for some node i, E(i)={jiw; * jalwa+ j3lws),
then, after node i is executed, the arc terminating at node j, is enabled with proba-
bility w, and either the arc terminating at node j, or the arc terminating at node j;
is enabled, respective probabilities being w, and wj3. Arcs emanating from the
same node can also be combined hierarchically, by applying the UNION relationship
(denoted by drawing ellipses around them in a graph), to represent even more com-
plex precedence relationships. In an expression representing E (i), for some node /,
the UNION operator is represented by segregating the affected arcs using
parentheses. The UNION relationship takes precedence over the AND and
EXCLUSIVE-OR relationships and can be hierarchically applied. For instance, if
we modify the preceding example to have E(i)={(j; * j2)Iw,+ j3lw3), then,
after node i is executed, either the arcs terminating at nodes j; and j, are both en-
abled or the arc terminating at node j, is enabled, respective probabilities being w
and ws. The rules for assigning weights and for applying AND, EXCLUSIVE-CR,

and UNION relationships to unions of arcs are the same as those for individual arcs.



We allow both cycles and loops in computation control graphs. A cycle oc-
curs when, starting with a given node, a directed path can be traced back to that
same node. A loop occurs when a particular arc both originates and terminates at
the same node. However, we do not allow duplications, i.e., two distinct arcs cannot
have both a common originating node and a common terminating node, since dupli-

cations increase the complexity of a graph without increasing its modeling power.

As an illustration of the rules defined above, let us consider the computation
control graph pictured in Figure 3.3. Upon completion of node 1, with probability
3/4, the arc terminating at node 5 is enabled; with probability 1/3, either the arc ter-
minating at node 3 or the arc terminating at node 4 is enabled, the particular arc be-
ing chosen at random. The arc between nodes 1 and 3 and the arc between nodes 1
and 4 are joined by the UNION relationship at the source node. Upon completion of
node 2, an arc terminating at either node 4 or node 5 is enabled, the respective pro-
babilities being 5/6 and 1/6. Node 3 can be activated only after node 1 is completed.
Both nodes 1 and 2 must be completed before node 4 is activated. Node 5 can be ac-
tivated after either node 1 or node 2 has been executed. The formal expressions

describing the relationships between nodes in this graph are given below:

E()={311/2 + 411/2)I1/3 * 5134} ; D(1) = (@}
EQ)={415/6 + 511/6} ; D)= (2}
EQ)={87 ; D@3)={1}
E@®={8} ; D@)={1*2}
EG)y={@} ; D@#)={1+2)}

We conclude this section by saying that computation control graphs consti-
tute a very powerful and compact technique for pictorially representing program
behavior, which is applicable to modeling a large variety of complex programming

constructs and process scheduling algorithms. For example, the different types of
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Figure 3.3 Example of a Computation Control Graph
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programming constructs discussed in Chapter 2 can all be easily modeled with these
graphs. One of the few types of program behavior which cannot be modeled, in
some fashion, by computation control graphs is the conditional branching in the flow

of a program which is dependent on the current state of its execution environment.

3.2.2 Classes of Tasks

In order to account for varying demands on the system’s physical resources
and differences in routing behavior, we can separate tasks into groups, where
members of each group have similar processing and communication requirements.
The number of groups to use is a subjective decision and depends on the degree of
variability in the behavior of tasks, the level of solution accuracy desired, and the
bounds on the computational cost of the solution process. The accuracy vs. computa-
tional efficiency tradeoff can be summarized by saying that, the more groups are
used, the ‘‘closer’’ is the model to the actual system, and the larger is the time re-
quired to compute a solution. Each distinct group of tasks is modeled by a different
chain of queueing network customers, in both P/C and M/U subnetworks. For
each customer chain, the set of attributes of its customers, such as the service time
distribution function at each service center and routing probabilities, should be
chosen with the objective of ‘‘most closely’’ approximating the behavior of

members of the corresponding task group in the actual system.

In the case of static task allocation policy, each task group should be further
divided into smaller groups (subgroups), according to how system resources were
pre-allocated to each task in the original group. This means that we must split each
customer chain in our model into ‘‘subchains,”” with each subchain of customers
corresponding to a specific subgroup of the group represented by the original chain.
Each subchain of a particular customer chain would have the same service time dis-

tributions as the other subchains of that chain, but different routing probabilities in
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the physical domain model. Again, the more subclasses are used, the greater wiil be

the computational complexity of the solution of that model.

3.2.3 Segmentation: Hierarchical Perspective

We define a segment to be a set of nodes in a computation control graph
which has the following properties. Those nodes in a segment which are destinations
for arcs originating from some nodes external to the segment (i.e., the internal
nodes enabled by some external nodes) are always all enabled simultaneously. In
other words, after some set of nodes in a segment is enabled by external stimuli, the
execution of the nodes inside that segment proceeds without any interaction with the
nodes outside of the segment. However, all of the precedence relationships among
the nodes inside the segment are obeyed. The arcs, which originate from the nodes
internal to the segment and terminate at the nodes external to the segment, can be
enabled only after all of the nodes in the segment have completed execution (i.e.,
the enabling of external nodes by internal nodes is always done simultaneously).
The latter criterion requires that the completion of execution of nodes in a segment
be somehow synchronized. In general, this requirement can only be satisfied by
having exactly one node in a segment (perhaps representing a ‘‘dummy’” task with
zero processing and communication demands) which is the source for arcs terminat-
ing outside of the segment. Two distinct segments of the same computation control
graph cannot have any nodes in common; the segments are connected only by arcs in
the graph. A whole computation control graph itself constitutes a single segment.
Segments can be viewed as ‘‘supernodes’’ in a ‘‘higher level”’ computation control
graph. The rules for interpreting the interconnections of such “‘supernodes’’ are the

same as those for ‘‘ordinary’’ nodes.

Using the definition of a segment given above, a program, as represented by

a computation control graph, can be divided into segments usually in more than one



way. For a given program, the sizes of segments in a particular division are inverse-
Iy related to the number of segments in that division. Segments usually represent
some high level functionality of a program, such as procedures, functions, DO
loops, etc. Alternatively, we can think of a program as being constructed out of seg-
ments linked by precedence relationships. For instance, each of the common pro-
gramming constructs discussed in Chapter 2, can be represented by a proper combi-
nation of segments. It is important to note that each programming construct is itself
a segment, which can be used as a constituent of any of the constructs discussed.
Thus, this process of combining segments can be hierarchically applied to form very
complicated program structures, while using only a few simple types of constructs.
As already mentioned, a program itself constitutes one large segment and can be
combined with other segments (including other programs) to form more complex
programs. As will be shown in Chapter 5, the decomposition of programs into seg-
ments, as discussed here, presents a framework for applying structured analysis
techniques and allows for a number of optimizations and heuristic approaches to be
utilized.

3.2.4 Examples of Computation Control Graphs

We will use the algorithms described in section 2.4.3 to illustrate how pro-
grams can be represented by computation coatrol graphs. The SOBEL operator is
modeled by the graph depicted in Figure 3.4(a). Each node in this graph is labeled
with the symbol of the arithmetic operation the corresponding task performs on the
operand(s) supplied by the predecessor task(s). The structure of this graph is well
suited for segmentation.

The computation control graph shown in Figure 3.4(b) represents the Column Sweep
algorithm. The node labeled L (J, I') represents the task which computes:
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LU, D*Xd); I=1,..,N=-1; J=I+], . .,N
The task corresponding to the node labeled X (J, /') performs the computation of:

XWH-LUD*X{I),; I=,2,. ,N-1; J=I+l, ..,N
This graph cannot be represented as a hierarchical combination of segments.

The last graph, illustrated in Figure 3.4(c), models the recursive implementa-
tion of the Quicksort procedure. Each node is labeled with the description of the
operation performed by the corresponding task. The upper portion of the graph
represents the initialization of the procedure. The nodes between those labeled
“‘check i ** and *‘i «i+1" inclusive, correspond to the DO loop section. The recur-
sive procedure calls and return of results to the caller are represented by the lower
portion of the graph. This computation control graph exemplifies all of the pre-

cedence relationships discussed in Section 3.2.1.
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CHAPTER 4
APPROXIMATE ANALYTIC SOLUTION

In this chapter, we will present an analytic technique for approximately solv-
ing our model (described in the previous chapter) of program execution in a distri-
buted, multiple-computer environment. Our starting point (i.e., input to the solution
process) consists of the description of the program domain model (i.e., a computa-
tion control graph, the behavior and attributes of each task, allocation of tasks to
system resources, and where synchronization of tasks is performed) and the descrip-
tion of the physical domain model (i.., queueing network representations of the
P/C and M/U subnetworks) where the program in question is to be executed.

Having obtained this information, our methodology proceeds to:

1. solve the physical domain model to find system throughputs of various cus-

tomer chains for different states of the system;

2. construct a Markov process whose state space consists of relevant states of
program execution;

3. approximate state transition rates from the system throughputs; and, finally,

4, solve the Markov process to obtain an estimate of the average program exe-

cution time in the environment being considered.

In order to make it easier to explain our solution procedure and to illustrate
its application to solving an actual model, we will first describe an example of a real-
istic, distributed system and present the associated physical domain and program

domain models. We will then discuss, in detail, each individual step of our solution
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process and illustrate it on the example model described below.

4.1 Example of a Model

In this section we present a model of a reduced version of the ‘‘Dataflow
Multiprocessor for Continuous System Simulation” [CHA84, ERCB4]. After dis-
cussing the architecture and operation of this system, we will describe its physical
domain model, and then give a computation control graph of an example program to

be executed in this environment.

This example will be referenced throughout the remainder of this chapter.

4.1.1 Systemn Description

This section provides a brief overview of the system’s functional characteris-

tics. For a more detailed description, consult the references given above.

The system consists of » identically organized processing nodes and n com-
munication buses. Each node transmits data and control packets to the other nodes
using its own, dedicated communication bus. Each node is able to receive packets
from any of the n buses. The structure of this communication subnetwork allows
for each result packet to be transmitted only once, no matter how many nodes it is

destined to. The global view of the system’s architecture is shown in Figure 4.1(a).
Each processing node i comprises the following functional components:
1. Communicaton Interface Section {CIS)
2. Execution Section (ES)

3 Qutput Section (OS)

Figure 4.1(b) shows how these components are interconnected with each other.
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The Communication Interface Section of node i consists of n input queues,
one for each of the n buses, and the Communication Interface Processor (CIP).
Operand packets received from bus k are temporarily stored in Input Queue k. The
CIP is responsible for polling input queues, examining each received operand pack-
et, and, based on its contents, updating the incomplete operand sets stored in its local

memory. If an operand set becomes complete, the Execution Section is notified.

The Execution Section of node i consists of the Control Unit (CU) and p;
processors. The CU receives completed operand sets from the CIP and forwards the
corresponding tasks to one of the available processors for execution. Each processor
executes tasks submitted to it by the CU, generates result packets for completed

tasks, and forwards them to the Qutput Section.

The Output Section of node i consists of a single output queue, where result
packets that are waiting to be broadcast over bus i are temporarily stored. Each

result packet is received by each one of the n processing nodes.

The following rules govern the execution of programs in the environment
described above. Each task of a program is pre-allocated to some processing node
before commencing program execution. The information necessary to synchronize a
task’s execution with the rest of a program is stored at the processing node to which
that task was allocated. Thus, each processing node has, in its local memory, the
machine language code for the tasks assigned to it and sufficient information to
determine when each of its tasks can be executed. Furthermore, a given node has no
knowledge of where the other tasks are located. This requires each resuit packet to

be broadcast to every node in the system.
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4.1.2 Physical Domain Model

The distributed architecture presented in the preceding section falls into the
“‘Static Allocation with Distributed Synchronization’’ category. Thus, we need to
use both P/C and M /U subnetworks in its physical domain model.

The P/C subnetwork is depicted in Figure 4.2(a). This subnetwork consists
of n disjoint and identically structured ‘‘chains’’ of service centers. The queueing
network customers visiting the {-th chain belong to class T;, since they represent
tasks assigned to processing node i and result packets broadcast over bus i. The
CU, and P; service centers together model the queueing and processing delays at the
Execution Section of node i. P; is a multiple-server center with p; servers. The
BUS; service center represents both the queueing delay at the Output Section of pro-
cessing node i and the transmission time on communication bus i. All service

centers utilize the First-Come-First-Serve (FCFS) scheduling policy.

Figure 4.2(b) illustrates the M /U subnetwork. It also consists of n disjoint
chains, each containing one service center. The queueing network customers visit-
ing the ith chain belong to class O;, since they represent operand packets destined
for processing node i. The CIP; service center represents the Communication Inter-
face Section of node i -- it models the queueing delay at the input queues and the
processing time of the Communication Interface Processor. This service center also

adheres to the FCFS queueing discipline.

If we are willing to sacrifice some accuracy in order to reduce the complexity
of the solution process, we can approximate this physical domain model by one
representing centralized synchronization, as described in Section 3.1.3. In this ap-
proximation, there would be no class O; customers, i=1,...,n. Instead, after visiting
service center BUS;, each customer of class T; would also visit some of the CIP;

service centers. In order to obtain an upper bound on the program’s execution time,

54



P
@
BUS L
— T O——T—) | O
. Py * R
. O .
. PP .
: Pxa :
. O .
cu, * ¢ BUSN
—>— T O—>1] e
Py .
O
Py, Py

é

* CIP,
—T-O0"—>
(b} M/U SUBNETWORK

Figure 42 Physical Domain Medsl

55



each CIP,, where node & is a recipient of the corresponding result packet, would be
visited. To obtain a lower bound, it would visit only one of those service centers --
the one with the smallest utilization. As stated in Section 3.1.3, depending on the

particular values of model parameters, these bounds may potentially be very loose.

4.1.3 Program Domain Model

The computation control graph of the program chosen for this example is
shown in Figure 4.3. Even though this graph has a rather simple structure, it can,
nevertheless, be used to demonstrate all of the pertinent features of our solution pro-

cess, without obscuring the presentation by unnecessary complexity.

The configuration of the system for executing this program will consist of
n=2 processing nodes. Tasks 1, 3, and 5 will be allocated to node 1. Tasks 2 and 4
will be allocated to node 2. The intent of this allocation is to fully exploit the poten-
tial parallelism inherent to the program. The processing and communication re-
quirements of tasks are exponentially distributed, with each task having the same
distribution means. Thus, the queueing network customers in the P/C subnetwork
representing tasks 1, 3 and 5, along with the associated result packets, belong to
class T';; those representing tasks 2 and 4 belong to class T,. The customers in the
M /U subnetwork representing operand packets for tasks 3 and 5 belong to class O y;

those representing operand packets for task 4 belong to class O .

The solution to this example will be presented as illustrations of the different
steps of our solution procedure, which will be described in the remainder of this

chapter.
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4.2 Decomposition Approximation

Since our objective is to estimate the average program execution time, we are
only interested in the global, steady state throughput rates of the P/C and the M/U
subnetworks for each customer chain, not in the individual throughput rates of each
service center. Also, if we were to keep state information for each individual service
center, the size and complexity of the Markov process representing a program’s
behavior (as defined in the next section) would become unmanageable for large phy-
sical domain models. It would also require more time and effort to be spent on
evaluating the execution of different programs running in the same physical environ-
ment, thus increasing the overall computational complexity of our solution process.
The reasons given above motivate our decision to use the approximation method
described below. The objective of this method is to make the solution procedure
““faster’’ by representing the behavior of the physical domain model in a more com-

pact form.

The approximation procedure presented here is based on the notions inherent
to the Norton's Theorem for decomposing closed queueing network models
[LAV82]. The major premise of this theorem states that, if a part of a closed queue-
ing network is replaced by a state-dependent, exponential server with properly
chosen service rates and routing transition probabilites into the remainder of the net-
work, then the newly formed network is equivalent, in terms of global performance
mesures (e.g., the average total throughput and the average system response time),
to the original network [COU77, LAV82, VAN78]. The service rates are found by
constructing 2 new, smaller closed queueing network from the part of the original
network that is being aggregated into one server. This new network is formed by
changing all routing transitions to service centers external to the subnetwork into
transitions to internal service centers, the particular service centers being determined

from the relative frequencies of routing transitions in the original network. We then
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compute system throughputs of this network under all possible population mixes and
use these values for service rates of the aggregate server. The steady state probabil-
ites of transitions between the aggregate server and the remainder of the network

are also determined from the relative transition frequencies in the original network.

However, Norton’s Theorem is applicable exactly to product-form queueing
networks only. Even if both P/C and M/U subnetworks are each product-form,
when considered as closed networks individually, the complete queueing network
representing a physical domain model is, in general (except for some very trivial
cases), not product-form. Thus, in applying Norton’s Theorem to our ‘‘extended’”
(i.e., augmented with the Black Box construct) queueing network, we are approxi-

mating the behavior of the physical domain model.

Figure 4.4 shows the new physical domain model, which was obtained from
the original model (shown in Figure 3.1) by applying the approximation technique
presented above. In this new, ‘‘reduced’” model, P/C and M/U are state-dependent,
exponential service centers. n(T;) is the number of chain T; customers present at
the P/C service center -- those are the customers which represent tasks, along with
the associated result packets, belonging to group i (how tasks of a given program are
grouped is determined from the task allocation policy and behavioral properties of
tasks). n(0;) is the number of chain O; customers present at the M/U service
center -- those are the customers which represent operand packets destined for
memory module i of the synchronization subsystem. Furthermore, we require that
each service center employ the Processor-Sharing (PS) scheduling policy within
each customer class. This is equivalent to assuming that, when a customer of some
class departs from the P/C service center, it is equally likely to be any one of that
class. The reason for making this constraint is that, with the PS queueing discipline
(segregated between different classes) and an exponential service time distribution

for each customer class, we eliminate the correlation between the order in which
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customers of the same chain enter the P/C service center and the order in which
they depart. Thus, we need to keep track of only the number of customers of each

chain at a service center, not the order in which those customers are queued.

At a given time instant, the rate of departure from the P/C service center of
a chain T; customer is a function of the current values of n(T;), for all allowable j.
For a given set of values, the departure rate is found by considering the P /C subnet-
work, in isolation, as a closed queueing network, having n (T;) customers of chain
T;, for all j, and solving for the throughput of chain T;. In order to find the com-
plete range of the service rate function for the P/C service center, we need to per-
form this operation with each possible customer population vector. The service rate
function for the M /U service center (i.e., the set of departure rates for chain O; cus-

tomers, for all allowable i) is computed analogously.

As an illustration of the procedure described above, let us consider the exam-
ple presented in Section 4.1. The departure rate of a chain T; customer, with n cus-
tomers of chain T; present at the P/C service center, is equal to the throughput of
the closed queueing network shown in Figure 4.5(a) with population set to n. The
departure rate of a chain O; customer, with 2 customers of chain O; present at the
M /U service center, is equal to the throughput of the closed queueing network dep-
icted in Figure 4.5(b) with population set to n. Note that, in this example, the depar-
ture rate of customers of a given chain is not dependent on the number of customers

of other chains present (in general, not the case).

We can use a variety of existing, exact and approximate techniques for solv-
ing multiple-class, closed queueing network models, in order to compute the
throughput rates of the P/C and M/U subnetworks. These techniques range, in
terms of solution accuracy and computational complexity, from the exact and very
*“‘expensive’’ Mean Value Analysis [REI80] to the very fast but approximate (only
bounds are obtainable) Asymptotic Analysis [MUN74, ZAH82]. The choice of what
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particular method to use depends on the complexity (i.e., size and connectivity) of
each subnetwork, the number of customer classes used, relative utilizations of
servers by different classes, the level of solution accuracy required, and constraints

on the computational cost of the solution process.

4.3 Markov Process Construction

In order to find the expected time of execution of a program in the distributed
environment being modeled, we need to ‘‘track’’ its behavior during the time period
when it is being executed. Of particular interest is the degree of parallelism attained
by a program (i.e., the number of enabled tasks -- those which are either executing
or ready to be executed) during each instant of its execution time. In order to obtain
any time-dependent performance measure, we have to find a transient solution to the
system being modeled. Obtaining a transient solution analytically is a formidable
task and one usually has to resort to detailed simulation of the system. Thus, in ord-
er to make our solution process analytically tractable, we will settle for the distribu-
tion of parallelism instead, which is a steady state performance measure. In other
words, we will solve for the probability that (or fraction of time when} there are ex-
actly k enabled tasks, p(k), for k=1,2,3,..., during the program’s execution time
period, given that the program is repeatedly executed an infinite number of times.
The distribution of parallelism for program A is formally represented by the follow-
ing expression:

pak) , k=123, .. (4.1)
If there are different chains of queueing network customers in the corresponding
physical domain model, then £ becomes a vector, instead of a scalar. For instance,
if ¢ customer chains are used, then expression (4.1) becomes:

PA (k]_’ sy kc) ] klr sevy kc = 1’ 21 3’ " ’ (4-2)
where k; is the number of enabled tasks represented by customers of chain
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i, i=1,2, ...,c. After obtaining the distribution of parallelism, the average task
throughput of the system, while executing the program being modeled, u, is found
by summing over system throughputs under all possible mixes of customer chains,

multiplied by the respective probabilities. For program A, the average task

throughput, 4, is given by:
Ha= 3 oo Mk ko) pathynke) (4.3)
k=0 k=0

where p (ky, ..., k) is the system throughput (i.c., the total departure rate from the
P/C service center) with k; customers of chain i present, i=1, 2, ..., ¢. Finally, an
estimate for the average program execution time, T, is computed by dividing the
average number of tasks executed during each invocation of the program, N, by the

average task throughput, e.g., for program A:
TA ‘—'NA IIJ.A (44)

Recently, a solution approach similar to the one presented in this section was
independently developed; it is described in {THO85]. That procedure is based on
the concepts of Courtois’ Decomposition theory, which allows the level of detail of
a Markov process to be hierarchically reduced by aggregating a number of *‘l: wer-
level” states into a single, *‘higher-level”’ state {COU77]. Furthermore, only acy-

clic graph models of programs are considered in [THO85].

4.3.1 State Space Description

To begin with, we must construct a Markov process consisting of all of the
“‘important’’ states of the program’s execution history. The granularity of the Mar-
kov process has to be of a level which is sufficient to allow for unambiguous,
memoryless transitions between states. Each state must capture all essential infor-
mation for determining all of the possible transition paths to other states and their

corresponding rates. One of the key advantages of this methodology is that, for a



given program, the structure of the associated Markov process does not depend on a
particular execution environment. It only depends on the category (as classified in
Chapter 2) to which the selected physical system belongs. However, the numerical
parameters of that Markov process, such as state transition rates, are functions of the

specific system architecture.

In order to avoid having extremely large Markov processes with overly com-
plex state descriptors, we will use the approximation to the physical domain model
described in Section 4.1 to ‘‘compactly’’ represent the program’s execution en-
vironment. Figure 4.6 depicts a state descriptor for the most general category (“‘Stat-
ic Allocation with Distributed Synchronizadon’’) of the distributed, multiple-
computer systems. The part of the descriptor on the left side of the *‘;’’ separator
specifies all currently ‘‘active’” queueing network customers, i.e., those representing
enabled tasks, result packets, and operand packets. The ‘‘T; Customers’’ section of
this part lists the identities of those enabled tasks which are represented by custo-
mers of chain T; (i.e., the tasks belonging to group i), for all i -- these customers
are currently being served at the P/C service center. The ‘‘O; Customers’” section
of the left part specifies those operand packets that have not yet been processed and
which are represented by customers of chain O; (i.e., the operand packets destined
for memory module i), for all i -- these customers are currently being served at the
M /U service center. Each operand packet is described by the operands it contains,
with each operand identified by the associated task and its ‘‘operand position
number for that task. The “‘O; Customers’’ sections are not needed when modeling
systems with centralized synchronization since, in models of such systems, operand

packets are integrated with result packets (as explained in Section 3.1.3).

The part of the descriptor on the right side of the ‘“;’’ separator provides ad-
ditional information (for use by the Black Boxes in the physical domain model) by

describing all incomplete operand sets present in the synchronization subsystem.
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The *‘Incomplete_Operand_Sets;’’ section, {I0S;}, of the right part lists all incom-
plete operand sets stored in memory module i, for all i. Each set is described by the
identity of some currently disabled task and a list of operands received for that task

so far.

A state transition occurs whenever an dactive customer completes service at
either P/C or M/U service center. For a state with a non-empty ‘‘T; Customers’’
section, whenever a chain T; customer departs from the P/C service center, a transi-
tion takes place into one of several possible states, as determined by the computation
control graph of the program being modeled. Each possible transition corresponds
to an activation of some ‘‘feasible’’ subset of those arcs in the graph which emanate
from the node corresponding to the departing customer. We define a feasible subset
of arcs, for a given node in the graph, as a set where all member arcs may be en-
abled simultaneously upon completion of execution of the task represented by that
node. The number and constituency of such subsets is determined by the relation-
ships operating on the aforementioned arcs (as discussed in section 3.2.1). If a given
feasible subset of arcs includes a union of arcs, that union may be represented by
any feasible subset of arcs within the union -- each different subset internal to the
union would generate a different ‘‘global’’ feasible subset, while keeping arcs exter-
nal to the union the same. Note that all arcs (or unions of arcs) having weights equal
to one must be included in every feasible subset, since they are always enabled upon
completion of execution of the source node. Also, exactly one arc or union from
each set of arcs and unions joined by the same EXCLUSIVE-OR relationship must
be included in every feasible subset. The probability of enabling a particular feasi-
ble subset (i.e., making the corresponding state transition) is a function of how the
arcs in that subset are grouped and of their respective weights. The procedure for
computing these probabilities will be presented in the following section. For a par-
ticular state transition, the descriptor of the destination state is found by: (1) delet-

ing the identity of the departing customer from the *‘T; Customers’’ section of the
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descriptor of the current state; and (2) for each memory module j in the synchroni-
zation subsystem, adding one customer to the *‘O; Customers™ section if an
operand packet destined for that memory module was generated by enabling the

corresponding subset of arcs.

For a state with a non-empty ‘‘O; Customers’’ section, whenever a chain 0;
customer departs from the M/U service center, a transition takes place from the
current state into a state identified by the following descriptor. Starting with the
descriptor of the current state, we perform the following steps: (1) delete the identity
of the departing customer from the ‘‘O; Customers’’ section of the left part; and (2)
update the incomplete operand sets listed in the {I0S;} section of the right part, us-
ing the information contained in the operand packet corresponding to the customer
in question. Any operand set which becomes completed (after {/0S;] is updated) is
immediately deleted from the {/OS;} section and a customer, corresponding to the
task that became enabled, is added to the “‘T; Customers’ section of the state

descriptor, where j is the group to which the enabled task belongs.

The initial state of the Markov process is described by listing those queueing
network customers which represent the tasks enabled at the start of the program.
We define a final state of the Markov process as a state which contains no active
customers (i.e., the part of its descriptor to the left of *“;’’ is empty), since no transi-
tion is possible out of such a state. Note that, depending on the underlying computa-
tion control graph, there may be several final states. However, if a program is well
specified (i.e., the corresponding graph is well behaved), then there is only one final
state — the “‘empty”” state (i.e., no extraneous operands are left after the program
completes execution). If there is no final state, then the process either has an infinite
state space or constitutes one single cycle, i.e., the program never terminates and its
execution time is infinite. In order to be able to compute the steady state probabili-

ties, when constructing the Markov process, we convert all transitions to a final state
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into transitions back to the initial state. In fact, the corresponding Markov process
represents a continuously repeated execution of the same program. This interpreta-
tion correlates our methodology with both measurement and simulation approaches,
where a program (or a simulation of it) is run a number of times and its expected ex-

ecution time is estimated by averaging over execution times of individual runs.

In order to illustrate the application of the concepts described above, we will
again recall our example model. The Markov process for the computation control
graph given in that example is depicted in Figure 4.7(a). We have shown all possible
state transition paths but have not included the corresponding rates -- computation of
transition rates will be discussed in Section 4.3.3. Each active customer correspond-

ing to an operand packet is represented in a state descriptor as:

[tllol, ey r,,lok ]

where k is the number of operands contained in that packet and ¢;lo; is operand
number o; for task ¢;. The incomplete operand set for task ¢ is represented in a

state descriptor as:

{t |01, ceny Ok}

where k is the number of operands for task ¢ received so far and each o; is the posi-
tion number of one of the received operands. A detailed procedure for constructing
Markov processes from computation control graphs is given in the following sec-

tion.

If the original physical domain model were to be approximated by one with
centralized synchronization, as discussed in Section 4.1.2, the Markov process for
the aforementioned example could be considerably simplified, as illustrated in Fig-
ure 4.7(b).
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4.3.2 Generation of a Markov Process from a Computation Control Graph

As can be seen from the previous section, the construction of Markov
processes is procedurally well defined and can be easily automated and implemented
as a program. One of the main reasons for choosing computation control graphs (to
represent programs or transactions in our methodology) is that the generation of
Markov processes from such program representation lends itself well to automation.
In this section, we will present a detailed algorithm for generating a Markov process
from a computation control graph, when modeling systems of the *‘Centralized Syn-
chronization” categories. This algorithm can be easily extended to be used in solv-
ing systems of other categories. We will also discuss ways to reduce the size of the

state space of generated processes.

4.3.2.1 Markov Process Generation Algorithm

This section describes an algorithm for generating a Markov process from a
computation control graph. The Markov process is used to model the execution of
the program represented by the given graph. This algorithm assumes that, in the
system being considered, there is a single, central facility for task synchronization.
That is, each queueing network customer is assumed to model a task, its result pack-
et, and the associated operand packet. In this case, departure of a customer
represents completion of processing of the corresponding operand packet. Thus,
operand packets are not explicitly represented in a state descriptor (i.e., *‘O; Custo-
mers’’ sections are not included). Therefore, the algorithm given here is primarily
applicable to modeling systems belonging to the ‘‘Centralized Synchronization’’
categories. Although, it can also be used to model approximations to systems of

“‘Distributed Synchronization’’ categories (see Section 3.1.3).
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Before presenting our algorithm, we need to make some definitions. First, re-
call that we define a ‘‘feasible’’ arc activation, for a particular node in a computation
control graph, to be a subset of arcs and unions of arcs, emanating from that node,
which may be concurrently enabled (a detailed definition was given in Section
4.3.1). Note that arcs (unions) joined through the EXCLUSIVE-OR relationship (a
‘“+’* symbol in the graph), either directly or indirectly (i.e., through the UNION re-
lationship), cannot belong to the same feasible subset of arcs. Let S be a subset of
arcs and unions representing a feasible arc activation. Each member of S is either an
arc, which is external to any union, or a union of arcs, which is external to any other
union. If union i is a member of S, then i(S) is defined as the particular feasible
subset of arcs and unions internal to union i, which is represented in §. We also
define another set of arcs and unions, S’, to be a maximal superset of §, which also
represents a feasible arc activation for the source node. Let T(S) be a set of arcs

and unions given by S’~S. Informally, T (S) can be expressed as:

T(S)= (j |j is an ‘‘outermost’’ arc or union, emanating from the same
node as members of S; j is not a member of §; j is not joined by

the EXCLUSIVE-OR relationship with any member of S }.

(4.5)
The probability of the feasible arc activation represented by S occurring, f(S), is
equal to the probability that each member of § will be enabled and none of the
members of T(S) will be enabled. This probability is given by the following recur-

sive expression:

f© =T x T (1-w) (4.6)

where w; is the weight on arc (union) i and

w;, if i is an arc

X; .7

= Yw; xf (i(S)), if i is a union of arcs
The probability of the feasible arc activation represented by i (S) occurring, f (i (5)),
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can be computed in the same fashion as f (§) in Equation (4.6).

The notation used in describing the mechanics of our algorithm will now be
explained. The labels used during the execution of the algorithm have the following
meaning. The state which is currently being ‘‘worked on’’ is marked CURRENT. A
~state for which all possible transitions have already been found is marked PRO-
CESSED. In the descriptor of the state marked CURRENT, each task label, such
that all possible transitions due to a departure of the corresponding queueing net-
work customer have been found, is marked EXPANDED. The task label which is
currently being *‘worked on’’ is marked ACTIVE. For the ACTIVE task label, each
feasible arc activation, for which a state transition has already been created, is
marked DONE. The feasible arc activation which is currently being processed is
marked NEW.

There is a variable associated with each task label r, denoted INST (¢).
INST (¢) is the currently existing number of instances of the task labeled ¢, i.e., there
are tasks labeled t; 1, ..., tjyst(,). Different instances of a task are represented by
hierarchicaily appending instance numbers to the original (root) label of that task.

For example, the label t; represents the j-th instance of the i-th instance of the task

having label t. The INST variable is also associated with each instance of a task,

e.g., INST (t;).
The complete algorithm is presented below.
0. Create the descriptor for the initial state and initialize JNST variables:

a. For each task ¢ enabled at the start of the program, add label ¢, to the

proper ‘‘T; Customers’’ section of the state descriptor and set

INST(t)=1.
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b. For each task ¢t disabled at the start of the program, set
INST()=0.

Find a state which is not marked PROCESSED.
If none found, go to (4). Otherwise, mark the chosen state CURRENT.

Find a task label in the descriptor of the state marked CURRENT, but not
marked EXPANDED.

If none found, change the marking of the CURRENT state to PROCESSED,
and go to (1).

Otherwise, mark the chosen task label ACTIVE.
Make a list of all feasible arc activations for the ACTIVE task.

Find a feasible arc activation for the ACTIVE task which is not marked
DONE.

If none found, change the marking of the ACTIVE task to EXPANDED, and
goto (2).

Otherwise, mark the chosen feasible arc activation NEW, and perform the

following steps:
a. Make a copy of the descriptor of the CURRENT state.
b. Delete the ACTIVE task label from the descriptor copy.

c. Add operands generated by the NEW feasible arc activation to the
proper incomplete operand sets in the right part of the copy of the
CURRENT state descriptor. (Each operand is suffixed by the in-

stance number(s) of the ACTIVE task label.)
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For each task ¢+ which became enabled (i.e., its operand set was
completed) after step (c), erase the corresponding incomplete
operand set from the descriptor copy, increment INST (¢), and add la-

bel sty to the proper ‘‘T; Customers’” section of the descriptor

copy.

If the left part of the created descriptor is empty, then the proper
state transition for the NEW feasible arc activationis to the initial

state; go to (g).

Compare the created descriptor with all of the existing state descrip-
tors. If a match is found, erase the created descriptor -- the desired
state already exists. Otherwise, create a new state which is labeled

by the created descriptor.

Create a transition to the proper (either newly created or already
existing) state from the CURRENT state and label it with the pro-

bability of the NEW feasible arc activation occurring.

Change the marking of the NEW feasible arc activation to DONE
and go to start of (3).

STOP; the Markov process has been generated.

4.3.2.2 State Space Reduction

In order to reduce the total number of states in a Markov process, we can

combine two or more ‘‘equivalent”’ states into a single, aggregate state. We define

two different states to be equivalent if they have identical transitions with identical

rates to other states and if their respective descriptors have the same number of

queueing network customers in each *‘T; Customers’” section and in each *‘O; Cus-
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tomers’’ section. The descriptor of the aggregate state is formed by joining the indi-
vidual descriptors of its constituents through the *‘/’” symbol(s). That is, if “‘D1”’
and ‘“D2’’ are the respective descriptors of two ‘‘equivalent’’ states, say §1 and §2,
then the descriptor of the aggregate state is given by ‘‘D1/D2.”” This state space
reduction process can significantly reduce the computational cost of solving the
Markov process to obtain state probabilities. Figures 4.8 and 4.9 show a computa-
tion control graph and its ‘‘optimized’’ Markov process (in the case of a system be-
longing to the ‘‘Dynamic Allocation with Centralized Synchronization’” category),

respectively. Note that all tasks in this example belong to the same group.

If we are willing to sacrifice some accuracy, we can further improve the
efficiency of our solution process by aggregating states that are not equivalent but
yet ‘‘similar.,”” The criteria for determining whether or not ‘‘similarity’’ exists
between two states are subjective ones and depend, among other things, on the pro-
perties of the particular environment and the particular program being modeled. We
will, however, attempt to give some heuristic guidelines to assist a modeler in mak-
ing such a determination. Note that the following are suggestions only, as there is
no sufficient empirical evidence to support them. Thus, no claim as to the extent of

their applicability can be made.

For any two states S1 and S2, let e(S1, $2) be the maximum (in absolute
value) of the relative differences, expressed as percentiles, between the transition
rates out of S1 and the corresponding transition rates out of §2. Let M, expressed

as a percentile, be the minimum of the following quantities:

a, the accuracy of the parameters for the physical domain model (e.g., server

capacities and routing probabilities);

b. the accuracy of the parameters for the program domain model (e.g., mean

task service times and weights on arcs in the computation control graph);
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Figure 43 Computation Control Graph of an Example Program
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c. the accuracy level of the method used to solve the Markov process; and

d. the desired accuracy of the final result (i.e., the average execution time of the

program being modeled).

If e(S1,S52) <100 - M, then, in most cases, states S1 and S2 may be aggregated
without significantly decreasing the accuracy of the final solution. Even if
e(S1,52)> 100 - M, these states may still be combined if their steady state proba-
bilities are ‘‘much smaller’’ than those of other states. Note, however, that there are
pathological cases where small perturbations of state transition rates can
significantly alter the final solution [COU77].

Let state § be the aggregate of states S1 and $2. For each state Si in the
Markov process, the rate of transition from § to §i, r(S, i), should be an interpola-
tion of the respective rates for S1 and §2, r(S1, i) and r(§2, Si). Formally, this
can be expressed as:

r(S,8)=f +r(SLSI+(A-Ff)+r(S2,8i) (4.8)
where 0<f <1. The value of f in Equation (4.8) should be chosen to reflect the

»

‘‘anticipat relative difference between the values of the respective steady state

probabilities for states S1 and S 2.

4.3.3 State Transition Rates

In the preceding sections, we described how to create a Markov process for
modeling program execution, starting with a computation control graph and a
description of each task, including obtaining the topology of the chain representing
that process and probabilities of choosing particular transition paths. However, we

did not discuss how to determine the rate of making a particular state transition.
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In order to compute state transition rates, let us again refer to the ‘‘reduced’’
physical domain model presented in Section 4.2. In that model, both P/C and M /U
service centers have exponential, state-dependent service rates and use the
Processor-Sharing qﬁeucing discipline. As stated in that section, the departure rate
of a chain T; customer from the P/C service center, with n(7T;) customers of chain
T; present, for all possible j, is set equal to the throughput of customer chain T;
from the P/C subnetwork, having n(T;) customers of chain T I for all j. We will
express this throughput as:

ur, (T 1), .., n(Te)) (4.9)

where ¢ is the number of different customer chains in the P/C subnetwork. Due to
the fact that all customers of the same chain have identical service demands and
routing probabilities, the rate of a particular chain T; customer departing is equal to

the expression (4.9) divided by n(T;):
ur. (R(T ), .o n(T) )/ n(T}) (4.10)

The departure rate of a particular chain O; customer from the M /U service center is

computed analogously and is expressed as:
Mo, (n(01), ..., n(0y) )/ n(0;) (4.11)

where m is the number of different customer chains in the M /U subnetwork (i.e.,

the number of distinct memory modules in the synchronization subsystem).

For a given state of a Markov process, the rate of leaving that state due to a
departure of a particular chain T; customer is computed from expression (4.10), with
n(T;) set to the number of customers listed in the **T; Customers’”’ section of that
state’s descriptor, for all j. The rate of making a particular state transition, associat-
ed with the departure of that customer, is equal to the probability of making that
transition (i.e., the probability of enabling the corresponding feasible subset of arcs,

as discussed in Section 4.3.2.1) multiplied by the rate given above. There is only
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one possible state transition associated with a departure of a particular chain O; cus-
tomer. Its rate is given by expression (4.11), with n (O j) set to the number of custo-

mers listed in the *‘O; Customers’’ section of that state’s descriptor, for all j.

Figure 4.10 shows one of the states of the Markov process depicted in Figure

4.7. It gives state transition rates for all possible transitions out of that state.

4.4 Solving Markov Processes

After constructing the Markov process and obtaining, for each state, the tran-
sition paths and rates to other states, we now have to solve for the steady-state pro-
bability of each state, in order to find the distribution of parallelism of the program
and compute an estimate of the expected program execution time. Various solution

approaches and possible optimizations are discussed below.

4.4.1 Exact vs. Approximate Techniques

There are many different exact and approximate methods available for solv-
ing Markov processes. The choice of what particular method to use depends on the
structure of the process, the state transition rates, and the accuracy level desired.
The solution of a Markov process is equivalent to solving a linear system of N equa-
tions, N being the number of states in a process, where variables are states and
coefficients are transition rates. An exact, but computationally expensive, approach
is to compute an inverse of the N xN matrix of transition rates. However, this pro-
cess is impractical for large processes as its computational complexity is O (N>).
An important observation is that, for most programs, the Markov process will have a
very sparse state transition rate matrix. That is, on the average, the number of tran-
sitions with non-zero rates from a particular state will be a small percentage of the

total number of states. There are many techniques which take advantage of this pro-
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perty to significantly reduce the computational and storage requirements of the solu-

tion process.

For programs which exhibit the locality of reference property, computation
control graphs can be viewed as consisting of several regions, where program execu-
_tion *‘loops’’ for a while in a given region before moving on to other regions. The
state space of Markov processes generated from such graphs can usually be divided
into sets, where transition rates between states within each set are much greater than
rates of transitions to ‘‘external’’ states. The decomposition method proposed by
Courtois [COU77] would give a good tradeoff between speed and accuracy require-
ments, when applied to such Markov processes. In this method, the total state space
is divided into a number of groups, where states in each group *‘‘interact’” more fre-
quently with each other than with states in other groups. Each group is then solved
individually as a closed system and replaced by a single aggregate state. The global
interactions among groups are then found by solving the Markov process consisting
of the aggregate states. Finally, the solution of each group is combined with the glo-

bal solution to produce estimates of state probabilities in the original process.

4.4.2 Acyclic Processes and Symbolic Solution

If, after the transitions between final states and the initial state are eliminated,
a Markov process is acyclic, that is, for each state, there is no directed path back to
that state, then its transition rate matrix has a triangular structure and the solution
time is proportional to the number of arcs in the process. Thus, acyclic processes
(i.e., those having topologies of trees) require considerably less computation to solve
than cyclic processes. Furthermore, an acyclic process can be conveniently solved
symbolically -- that is the solution for state probabilities can be represented symboli-
cally in terms of transition rates, by using distinct symbols for distinct rates. We

will call such solutions algebraic. If a Markov process is solved algebraically, then
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we can evaluate it with different sets of transition rates by substituting correspond-
ing numerical values for symbols. Depending on the number of states and distinct
transition rates in the associated Markov process, the latter approach may
significantly reduce the computational cost of evaluating the execution of a particu-

lar program on many different systems.

As an illustration of the potential benefit of algebraic solutions, let us again
recall the example model given in Section 4.1. Suppose, for a given application, we
want to minimize its execution time by varying the number of processors, the capa-
city of each processor, and the bandwidth of the communication bus used by node i,
for all i. However, we are constrained by the requirement that the total system cost
must remain under a certain upper limit. Let C 1» ---» Cx be a set of all feasible ss's-
tem configurations meeting this cost constraint. For each C;, i=l, ..., k, the solu-
tion of the corresponding physical domain model produces a different set of custo-
mer throughput rates, which in turn yields a different set of state transition rates,
without, however, changing the topology of the Markov process for the application
in question. If the solution for the mean execution time of that application were
given in terms of an algebraic equation, we would have been able to quickly evaluate
C;, i=l, ..., k, by substituting symbols with numerical values from the correspond-

ing set of transition rates.

It is important to note that acyclic computation control graphs always gen-
erate acyclic Markov processes and that acyclic Markov processes can only be gen-
erated from acyclic graphs. In the next chapter, we will show that some cyclic
graphs can be made acyclic by extracting cycles, solving each cycle separately, and

then integrating individual solutions back into the original graph.
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CHAPTER 5
OPTIMIZATIONS AND HEURISTICS

In this chapter, we will describe heuristic procedures for obtaining approxi-
mate solutions to some of the common programming constructs in a computationally
efficient way. We assume that each constituent (program segment) of a given pro-
gramming construct has been completely solved (i.e., we have its mean execution
time, average number of tasks executed of each class, and distribution of parallel-
ism) and can be replaced by a compact segment descriptor (defined in Section 5.1).
We will show how the key properties of a construct (e.g., average execution time
and distribution of parallelism) can be estimated from the compact segment descrip-

tors of its constituents.

For a particular physical system, supporting a total of ¢ classes of tasks, the
distribution of parallelism for a program segment S is given by the following

discrete function of ¢ - dimensional vectors of non-negative integers:
ps (k1. ... k) , k; is a non—negative integer, i=1, ..., ¢ (5.

The range of this function is the set of real numbers between 0 and 1 (inclusive) and
the value of pg (k, ..., k.) is the probability (or fraction of time) that, while segment
S is being executed alone, there are exactly k; enabled tasks of class i, i=1, ..., c.
Since, during every instant of a segment’s execution time period, there is at least one
enabled task, ps (0, ..., 0) = 0 for any S. If the computation control graph represent-
ing segment S is acyclic, then the distribution of parallelism for S has a finite
number of nonzero members. Note that the same program segment will, in general,

have different distributions of parallelism with different system architectures.
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After defining a compact description of program segments, we -will present
techniques for approximately solving several programming constructs, discuss
hierarchical application of those techniques and compare tradeoffs between gain in
computational efficiency and loss in accuracy. In the following development, we
will restrict our attention primarily to systems of the *‘Centralized Synchronization’

categories.

5.1 Segments: Compact Description

A program segment, as defined in Section 3.2.3, can be solved as a stand-
alone program, using the procedure developed in the previous chapter, to obtain its
mean execution time, average number of tasks executed, and distribution of parallel-
ism. Thus, for a given segment S, we can ‘‘ignore’’ its underlying computation

control graph and describe it by the following triple:

(Ns,Ts, ps (kys ..., k) (5.2)

where T is its mean execution time, pg (ky, ..., k) is its distribution of parallelism,
and ¢ is the number of all task classes supported by the system, Note that the tasks
of an individual segment may only represent a subset of those classes. If ¢=1, then
Ny is the average number of tasks executed during an invocation of segment S, If
c>1, then Ng is the vector (Ng i, ..., Ng ), where Ng ; is the average number of
tasks of class i executed during an invocation of §. This compact description cap-
tures only the “‘steady-state’’ properties of a segment and ignores its time-dependent
behavior. This is analogous to making “‘fluid flow’’ approximations when modeling

queueing systems [KLE76].

How accurate a representation of a segment’s behavior this description is
depends primarily on how much the segment’s degree of parallelism varies during

its execution time. (The reader is reminded that the degree of parallelism is a time-
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dependent performance measure.) In other words, the larger the differences between
degrees of parallelism during different time intervals, the less accurate is our
representation. We can make our description more accurate (but less compact) by
representing segment S as a sequential combination of n segments, S, S, ..., S,,
where the degree of parallelism of §;, for all j, is more uniform than the degree of
parallelism of S. This representation is shown in Figure 5.1. The new, more de-
tailed description of segment S is given by the n -tuple |

[d(S 1)! d(SZ)’ ey d(Sn)] ’ (5.3)
where, for all j,

d(S;)={Ns,Ts, ps, (k1, . k) } . (5.4)

5.2 Sequential Combination

First we will consider a sequential combination, §, of two segments, seg-
ment A and segment B. The mean execution time of this combination, T, is equal
to T4 + Ty, where T4 and Tp are the mean execution times of segments A and B,
respectively. Let the distributions of parallelism for segments A and B be given by
pa (ky, s k), k20, i=l,..,c, and pg (ky, ..., k), k20, i=l, .., c, respec-
tively. Then the distribution of parallelism for the combination is
Ds (ky, ... k), k20, i=1, .., c, where:

P4 kg k) s Ty +pg (ks k) * Tp ]
- =

Ps (kyq, .n k) (5.5)

The average number of tasks executed during an invocaton of S is Ng =N, + Np.
(Ng, Ny and Np are either scalars or vectors, depending on c¢.) Thus, we can re-
place S by a single segment, having description { Ng, T, ps (k1q, ..., k.) }. Note
that, as discussed in the previous section, the greater the difference in distribution of

parallelism between segments A and B, the less accurate is this representation of S.
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A sequential combination of several segments can be solved in an analogous
fashion. Note that, in this algorithm, the sequential combination of segments A and
B is equivalent to the combination of B and A. Also, the combination of the combi-
nation of A and B with segment C is equivalent to the combination of A with the
combination of B and C. Thus, our algorithm has both commutative and associa-
tive properties, which allows the combination of several segments to be solved in

any order,

5.3 EXCLUSIVE-OR Combination

Next we will study an EXCLUSIVE-OR combination, £, of segments
S5, 85, ..., 5,, as shown in Figure 5.2. In this combination, exactly one out of # pos-
sible segments is executed during each invocation of £, with segment S; being exe-
cuted with probability w;, j=1, ..., n (the sum of w;’s must equal to one). In other
words, 100w; percent of the invocations of the combination £ will ‘‘behave’’ like

segment S;, j=1,...,n.

The mean execution time of E is given by:

n
Tg = Y w;+Ts, (5.6)

j=1
where T, is the mean execution time of segment S;, j=1, ..., #. Thus, the fraction
of time when combination E will ‘‘behave’” like segment S§; is
wj * Ts /Tg, j=1, .., n. Let the distribution of parallelism for segment §; be given
by ps, k1, ..o ko), k20, i=1, ..., ¢, for all j. Then the distribution of parallelism

for the combination is given by pg (k4 ..., k), k20, i=1, .., ¢, where:

n
> w;* TS,- * ps, (ks or k2)

pp (ky n k) = L = (5.7)




Figure52 EXCLUSIVE-OR Combination
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The average number of tasks executed during an invocaton of E is

n
Np = 3 wj*Ns, (5.8)
Jj=1
(Ns.s ..., Ns_, and N are either scalars or vectors, depending on ¢.) Thus, we can

replace E by a single segment having description { Ng, Tg, pg (ky, ....k.) }.

5.4 Parallel Combination

Now we will analyze a parallel combination, P, of segments A and B. We
will show how to estimate its mean execution time, Tp and its distribution of paral-
lelism, pp (kq, ..., k.) Kk;20, i=l, ..., c. Note that the average number of tasks
executed during an invocation of this combination, Np, is simply equal to N4, + Np.
After obtaining all of these values, combination P can be replaced by a single seg-

ment, having description { Np, Tp, pp (k1 ..., k) J.

5.4.1 Computing Mean Execution Time

Before proceeding with the derivation, we need some definitions. Let T4,
be the mean time to execute segment A if segment B started to execute at exactly
the same time that segment A did (on the same system of course). Tp|4 is defined
analogously. Thus, Tp is equal to either T, 5 or T4, depending on which segment
completes last. Without loss of generality, let us suppose that segment A is first to
finish and let B be the portion (i.e., the fraction of total number of tasks) of segment
B which was completed during the time that A had been executing (i.e., during the
first T4, time units of T4 ). B may contain a nonintegral number of tasks if some
tasks were only partially completed. The time to finish executing segment B is

given by Tp—Tys. (T is the average time it would have taken to execute the B por-

tion of segment B if B were running alone.) Thus,
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Tp=Tgia=Tqp+Tg—Tg) (5.9)
In the case that segment B completes first,

Tp=Tag=Tgia+ Ty -T;) (5.10)
with segment A analogously defined.

We will now show how to determine which segment completes first (on the
average) and how to estimate Ty,5, Ty (4, T4 and Ty as defined above, which are
necessary for obtaining the mean execution time of the parallel combination of seg-
ments A and B. The following development is applicable to solving models with
only one class of tasks (i.e,, c=1). (With c¢>1, some of the *‘independence’’ and

“‘fluid flow’” assumptions necessary for this development are no longer valid.)

5.4.1.1 Definition of Notation

First, we will define the notation being used in this development. Ny and Ny
are the average numbers of tasks executed during invocations of segments A and B,
respectively. p(k) is the throughput (or mean departure rate) of tasks of the distri-
buted system being modeled, when k& tasks are being executed concurrently,
k=1,2,... Let o4 and pp be the average throughputs of tasks of segments A and B,

respectively, when each is being executed alone:
Ha =NA”A (5.11)
fp =Np/Ty (5.12)
Thus, p, and pg depend on both u(k), for all k£, and the distributions of parallelism
of segments A and B. Let u’y and p'p be the average task throughputs of segments

A and B, respectively, during the time period when both segments are executing

concurrently.
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5.4.1.2 Estimating Average Throughputs of Tasks

We will first present the formula for computing pt’4 and discuss how it was

derived. This formula is given by the following equation:

i . .
‘(i-i-j)Pr (iof A,jof BIA&B) (5.13)

Wa=H3+j)e

Each component in the summation is a product of two terms. The first term,
W(i+j) » i/(i+)), is the throughput of segment A tasks, when there are i segment A
tasks and j segment B tasks ‘‘competing’’ for system resources. This term is
derived from the fact that the P/C subnetwork in the original physical domain
model is approximated by a single state-dependent service center which adheres to
the Processor-Sharing scheduling discipline. (Note that this expression holds true
exactly if and only if the P/C subnetwork is equivalent to a single processor-sharing
resource.) The second term represents the joint probability of exactly i tasks of seg-
ment A and exactly j tasks of segment B being enabled, while both segments are
executing in parallel. In order to obtain the exact value of this term, one must con-
struct and solve the complete Markov process for combination P, which defeats the
purpose of our approximation procedure. Thus, we will attempt to estimate this

joint probability using only already known values.

First, observe that:
Pr(iof A,jof BIA&B) = Pr(i of AIA&B)+*Pr(j of Bli of AlIA&B) (5.14)
Now, we will approximate Pr(j of Bli of AIA&B) by Pr(j of B|A&B). This
approximation is motivated by the observation that the precedence relationships of
tasks in one segment are independent of those in the other segment. However, note
that Pr(i of A|A&B) and Pr(j of B |A&B) are not truly independent of each oth-
er. The current number of enabled tasks of segment A is correlated with the number

of segment A tasks that have already completed execution. The same is true of seg-
ment B. Also, the number of segment A tasks that have already departed is correlate
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with the number of segment B tasks that have already departed (since they all had
utilized the same resources). Thus, the number of segment A tasks which are

currently enabled is correlated with that of segment B,

Next, we will replace Pr(i of AIA&B) by p,(i) and Pr(j of BIA&B) by
pp(j). This approximation is based on the assumption that the relative throughputs
of segment A tasks are not dependent on the number of segment B tasks present,
and vice-versa. The more linear the j1(k) function is, the more accurate the latter es-

timates are.

Finally, combining all of the equations presented above, we get:

Wa=3 3 GH) e ——

i) j 5.15
2z ) Pali)* pp(j) (5.15)

The formula for estimating |'p can be derived in an analogous fashion and is

presented below.

- | N
uB—Eo,Eou(W) G+ P )+ pg () (5.16)

5.4..3 Estimations of T} ¢ Ty

First, let us consider the case where segment A completes execution before
segment B does. Since, by definition, A is the portion of segment A completed by
the time segment B completes execution, T; is equal to T4. The average number of
segment B tasks completed during the execution of segment A, Ny, is given by
LWpg * T4 p. If segment B were executing alone, its average task throughput rate

would be ug. Thus, Ty can be approximated by:
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Ng (W *Taip)

Ts =
B up Hp

(5.17)

Now, let us consider the case where segment B is first to finish. Using argu-

ments analogous to the ones presented above, we will estimate T by:

Ni (W4 +Tpia)

(5.18)
K4 Ha

5.4.1.4 Computing (Average) First Complete Execution

Our first step is to determine which one of the two segments completes exe-

cution first {(on the average). Toward this goal, we prove the following lemma.
Lemma 5.1: Under the assumptions and definitions stated above,
NyW4 < Np/'p ifandonlyif Taip < Tpia

Proof: Suppose that N,/u’y < Ng/pw'g but T4 5 > Tg 4. Then the execution of
segments A and B is represented by the timing diagram shown in Figure 5.3. From

this diagram, we obtain the following relationship:
Wa*Tpa <Ny = Tpia < Na/y = Np/'p < Nyl
Thus, we obtain a contradiction.

Conversely, assuming that T4,z <Tpg 4 while Ny/W'y >Np/|\'p , we can

analogously show that this leads to a contradiction. Q.E.D.

Thus, all we need to do in order to compute T, g and Tp 4 is to obtain p'y
and p'p and apply Lemma 5.1. If N,/u'y <Np/i'p, then segment A completes ex-
ecution first, Ty 3 = Ny/Ws, and Tgis =Ty g+ Tp —Ty). If Ny/w'y >N/,
then segment B  completes execution first, Tpg 4 =Np/|'p, and
Toia=Tg1a+ Ty = Tp).
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It is important to note that, since Lemma 5.1 uses average values, we can
only determine which one of the two segments is most probable to complete execu-
tion first. More precisely, Lemma 5.1 states that, if Ny/p’y <Ng/i'p, then, when
combination P is executed an infinite number of times, segment A will be the first
to finish in a majority of instances. Observe that the greater the difference
[Ng/'s — N4/ 4] is, the greater are the number of instances where B finishes first
(i.e., the greater is the probability that B completes execution before A does during
a particular invocation of P). If segments A and B have identical segment descrip-
tors, then this difference is exactly zero -- both segments are equally likely to com-
plete execution first. Therefore, in general, the more similar the segment descriptors

of the constituents of P are, the less accurate is our solution.

5.4.2 Computing the Distribution of Parallelism

In this section, we will show how to estimate the distribution of parallelism,
pp(k), k20, for the parallel segment combination P. Without loss of generality, we
will assume that segment A is first (on the average) to complete execution, Let
s (k), k20, be the distribution of parallelism of combination P during the first Ty,
time units of the execution time period of P, i.e., s (k) is the ‘‘joint’’ distribution of
parallelism of segments A and B. Let r(k), k20, be the distribution of parallelism
of P during the remainder of the combination’s execution time. Applying argu-
ments similar to the ones used in section 5.4.1.2 to derive equations (5.15) and
(5.16), s (k) for all values of k can be estimated by:

k
s(k)= % pa(i) * pgk—i) (5.19)
i=0
Using the “‘fluid flow™ assumption that the distribution of parallelism of segment B
remains uniform over all subintervals of Ty, 7 (k) is approximately equal to pg (k).

Finally, it follows from Bayesian principles that, in the case that segment A finishes
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first, pp (k) can be estimated by:

kYT kYo {Tp -T
pplk) = [s(k)*Thip +f; )* {(Tp —T45)] for all (5.20)
P

From the symmetry of the preceding derivation, in the case that segment B

finishes first, pp (k) can be estimated by:

pplk) = [s(k)'TB"‘+'1(_k)°(T‘°_T""‘)] for all k (5.21)
P

with r (k) now being approximated by p, (k).

5.4.3 Parallel Combination of Several Segments

A parallel combination of several segments can be solved by an iterative ap-
plication of the procedures presented in sections 5.4.1 and 5.4.2. Suppose that there
are n segments to begin with. We can take two of those segments, solve them as a
parallel combination, replace them with a single, aggregate segment and end up with
a total of n—1 segments. We proceed in this fashion until only one segment is left,
which is then the desired solution. As can be seen from the formulas given above,
the algorithm for combining segments in parallel possesses both commutative and
associative properties, which allows us to combine segments in any order. Howev-
er, as discussed in section 5.4.1.4, the more similar the two segments are in terms of
size and structure, the greater a potential error in our solution. Thus, at each step, it

is best to try to choose two segments that are as ‘‘dissimilar’’ as possible.

5.4.4 Parallel Combination of Sequential Combinations

In this section, we will present a procedure for solving a parallel combination
of two sequential combinations, where we do not want to replace each sequential
combination by an aggregate segment due to accuracy considerations. The result of

this procedure is itself a sequential combination of segments. This procedure is also



applicable to solving a parallel combination of two segments, where each constituent
must be represented as a sequence of smaller segments (i.e., we cannot aggregate it

into a single segment) as discussed in section 5.1.

The type of segment combination we are considering is illustrated in Figure
5.4. A is a sequential combination of segments Ay, Ay, A3, ..., A,. B is a sequen-
tial combination of segments B ;, B, ..., B,,. The result of our solution process will
be a sequential combination P, consisting of segments Py, P, ..., P,, where
max{(n,m) < g <n+m. The exact value of ¢ can only be determined at the end of

the solution process.

Our first step is to solve a parallel combination of segments A, and B, in
order to obtain segment P ;. Without loss of generality, let us suppose that segment
A | completes execution before segment B, does. Then P, will be defined by the
following segment descriptor:  {Np ,Tp ,pp (k)}, where Np =N, +Ny and
Tp,=Ts,18,- Pp (k) is the joint distribution of parallelism of segments A and B
and can be estimated in the same fashion as s (k) in Equation (5.19). P can now be
re-defined as the sequential combination of segment P, and of the result of solving
the combination P’, as depicted in Figure 5.5(a). In this combination, segment B ; is

the complement of segment B ,, with respect to segment B .

In the case that segment B ; completes execution first, P | will be analogously
defined, with Np =Np, +N,- and Tp =T 4,. The portion of the original combi-
nation remaining after this step, P’, is shown in Figure 5.5(b), with segment A ; be-

ing the complement of segment A , with respect to segment A ;.

The next step is to solve a parallel combination of segments A 5 and B (or,
depending on the result of the first step, 4| and B ;) to obtain segment P ,. Thus, by

iteratively ‘‘reducing’’ the original combination, we can proceed to solve for seg-
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ments P, P3 P, ..., until we “‘run out” of either A -segments or B —segments. The
‘“‘leftover’’ segments can now be simply ‘‘appended,”’ in sequential order, to the
portion of P that has been obtained so far, in order to produce the final solution. At
each step, we ‘‘eliminate’’ either one A -segment or one B -segment or, in the case
that the segments (being then considered) complete execution simultaneously, both
an A -segment and a B -segment. Therefore, the maximum number of steps involved

in solving this combination is n+m .

A parallel combination of several sequential combinations can be solved in a
way analogous to solving a parallel combination of several single segments. That is,
we can proceed by successively solving two sequential combinations at a time, and
replacing them by an aggregate sequential combination, until only one combination

is left, which is then the desired solution.

5.5 Looping Constructs

In this section, we examine the programming constructs which contain loops
or cycles. These types of constructs are representative of DO loops and recursive
procedures commonly used in programs. First, we will analyze and obtain a solu-
tion for a simple looping construct. We will then use the results obtained in that

analysis as ‘‘building blocks’’ in solving more complex combinations.

5.5.1 Simple Loops

A simple ‘“‘loop’’ combination, L, of segments A and B is depicted in Figure
5.6. In this combination, after segment A completes execution, it enables segment
B and, with probability 1-p, enables another invocation of itself, thus, starting the
loop over again. After the iteration in which segment A does not re-enable itself, no
new segments are enabled -- the execution of the loop terminates after all of the then

existing segment invocations are completed. The number of iterations in loop L is a
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Figure 5.6 A Simpie Loop Combination, L
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random variable which is geometrically distributed with mean 1/p. In this section,
we will present procedures for approximately computing the mean execution time of

loop L, T; and its distribution of parallelism, p; (k), k20. Note that N, is given by:

Ny +N
N, = 22 (5.22)

p
After obtaining all of these values, loop L can be replaced by a single segment hav-
ing description (N, T, py (k)}.

5.5.1.1 Computing Loop Mean Time Execution

In order to facilitate the following derivation, we will first expand the under-
lying computation control graph in a recursive fashion. The new, cxpan&cd graph is
shown in Figure 5.7. Note that this type of recursive expansion is possible due to the
fact that the termination probability p is time invariant. Let T, be the mean time to
execute L, given that the loop has only one iteration. Let T, be the mean time to

execute L, given that the loop has more than one iteration. Using Bayesian princi-
ples, the mean time to execute this loop, T}, is given by:

Ty =pT, +(1-p)-T,, (5.23)
Now, Ty, is simply T, + T. In order to find 7} , let us refer to the timing diagram
shown in Figure 5.8. Since combination L includes at least one instance of segment
A and at least one instance of segment B, it is clear that T; | p (as defined in section
5.4.1) is greater than Tp,; (i.e., B is more likely to complete execution before L).
Thus, Ty, =T4 + T 3. By applying our algorithm for solving parallel segment
combinations, we get Ty g =T + (T —T). The result for T, is obtained by

combining all of the equations derived above.
Tp= p [Ty +Tgl+(-p) [Ty + T + Ty -Ty)]

= Ta+pTp+(1-p)e Ty -Tp)+(1-p) T,
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Figure 5.7 Expanded Representation of the Simple Loop
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T, +p +Tg +(1=p) * (TgiL — Ty
_ [To+p +Tp (pP) (TpiL = Tp)] (5.24)

We will now show how to estimate the values of Tg ; and T, in Equation
(5.24). The following development is applicable to solving models with only one
class of tasks (i.e., ¢=1). (With ¢>1, some of the ‘‘independence’’ and ‘‘fluid

flow’” assumptions necessary for this development are no longer valid.)

Obtaining Tp;; and T entails solving a parallel combination of segment B
and loop L, which is represented by a computation control graph shown in Figure
5.9(a). In order to facilitate further development, it is advantageous to recursively
expand this graph, as depicted in Figure 5.9(b). Such recursive expansion is possi-
ble due to the fact that the termination probability p is time-invariant. As can be
seen from this expanded graph, our task is to solve a parallel combination of sequen-
tial combinations. The procedure for solving such a combination has been presented
in Section 5.4.4. Thus, our first step is to solve a parallel combination of segments
A and B. First let us consider the case where Tp 4 <T, 5, i.€., segment B com-
pletes execution before the first instance of segment A in loop L does. In this case,

the solution is quite simple:

Ty = Tgia (5.25)
TL: = TA: (5.26)

Now let us look at the (more complicated) case where T4 5 <Tp 4. Once
again, we will apply the Bayesian approach to obtaining the desired solution. We
will condition on the event of loop L consisting of only one iteration, i.e., the right-
most arc emanating from segment A (in Figure 5.9(b)) not being activated. The pro-
bability of this event occurring is p. First we will find Ty ); conditioned on the oc-

currence of the event. By applying the technique of section 5.4.4, we get:
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Figure 5.9 Parallel Combination of Segment B and Loop L
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Tgip = Taip+T4 (5.27)

where B is the portion of segment B not completed during the *“T4,5’’ time period.
Using our ‘‘fluid flow™ assumption of pg (k) for all £ being uniform over all subin-
tervals of T, we can approximate Ty 5 by:

Ng
Tgip = Np

. TB ¥:] (528)

Ny is the number (possibly non-integral) of tasks constituting B and is given by

Np - Ny (the formula for estimating N; was given in section 5.4.1.3).

We will now solve for the conditional value of Tg,; given that loop L con-
sists of more than one iteration, i.e., the non-occurrence of the chosen event. The
probability of this situation is 1-p. By considering the timing diagram in Figure

5.10, and again applying the procedure given in section 5.4.4, we get:

In equation (5.29), Ty g, is the mean time to execute B when both another in-
stance of segment B and loop L are running concurrently with 8. Applying the ar-
gument used to derive equation (5.28), Ty, 5, can be estimated by:

Ng

Tg\piL = Ny *TgigiL (5.30)

The only remaining unknown value that is needed to complete the solution is
Tgipi- In order to estimate this value, we will use the following ‘‘heuristic argu-
ment. Let us consider the difference Tg g, — T, - This difference represents the
increase in the execution time of segment B (while executing concurrently with loop
L) caused by concurrent execution of a second instance of segment B. Our main as-
sumption is that the ‘‘interference’’ of the second instance of B with the execution

of the first instance of B is not significantly affected by the presence (or absence) of
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loop L. The latter assumption leads to the following approximation:

(TgigiL —TaiL) = (Tgig —Tp)

= TgipiL = Tg +(Tgi15 —Tp) (5.31)
In general, the greater the utilization of system’s resources is, the greater is the im-

pact of any additional workload (e.g., the execution of a second instance of segment
B) on the completion of the current workload (e.g., the execution of the first in-
stance of B). Since the concurrent execution of L represents an increase in the utili-
zation of system’s resources, the (linear) approximation given by equation (5.31) is,
in general, a lower bound on the value of Tz 5,;,. Note, however, that, if both B
and L have a constant degree of parallelism and the P/C subnetwork consists of a
single processor-sharing resource, then equation (5.31) becomes an exact relation-
ship. Thus, since the global throughput of a saturated queueing network is linear, the

‘‘sooner’’ the P /C subnetwork saturates, the tighter is this lower bound on Tz 5/, -

Now that we have all of the necessary components, we are ready to ‘‘put to-
gether’’ the final (approximate) solution for T, . By unconditioning on the event

of loop L having exactly one iteration, we get:

Tgie= P *[Taig +Tg gl + (1-p) * [Taip +Tg 5]
Ny
Np

= Tag+[p*Tpp+(1-p)=TypiLl*

Ny
Np

= Typ + [Tpig+(1-p) *» T -Tp)] *
Ny
Tarp +Tpip ~(1-p) Tpl =
_ B (5.32)
Nyg
[1- (l—P)N_B]

We still have to solve for the value of T, where L is the portion of loop L

completed by the time the execution of segment B has been completed, i.e., during
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the first T, time units. Let us take another look at equation (5.32):
Taip = Taip+p *Tpg+(A-p)*Tg 5, (5.33)

Thus, Ty, can be interpreted as consisting of the ‘T, 5’ time period and of either
the “Ty 5’ time period or the “‘T 5, ’" time period. The respective probabilities

of each case being p and 1—p. During the *‘T, 5"’ time period, the instance of seg-
ment A in the first iteration of loop L is completed. The mean time to execute this
part of the loop, while L is running alone on the system, is, of course, T4. Since, in
our physical domain model, the whole system is represented by a single state-
dependent, processor-sharing service center, identical segments are assumed to util-
ize system’s resources on an ‘‘equal’’ basis. Thus, the average number of tasks of
the second instance of segment B completed during the *“Ty,p"" time period is M.
From our *‘fluid flow’’ assumption that pg(k), for all £, is uniform over all subinter-
vals of Ty, the mean time to execute this portion of L is Ty Using the same
analysis, the average number of tasks of the second instance of segment B complet-
ed during the *“T o, " time period is Ng. Due to the *‘processor-sharing’’ nature
of our physical domain model and the assumption that there is only one chain of
queueing network customers, the relative rates at which two segments are being
completed are independent of any additional workload present in the system. The
preceding observations indicate that the portion of the second instance of loop L
completed during the *‘Tg . *’ time period is the same as that completed during
the *‘Tyg .’ time period. Thus, the average time needed to execute the part of the
loop completed during the ““Tg 5, *’ time period is T |, . The estimate for Ty can

now be constructed by combining the individual results, derived above, for each of

the three time periods.

Tp = Ty+p s Tz +(1-p)+ Ty,
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Ng
=Tp+[peTp+(1-p)Tp ] '7@;’ (5.34)

5.5.1.2 Loop Combination Distribution of Parallelism

In this section, we will show how to find the distribution of parallelism,
pr(k), k20, for the loop combination of segments A and B, L. The following
development is also applicable to solving models with only one class of tasks (i.e.,
c=1).

5.5.1.2.1 Definition of Notation

Consider the timing diagram shown in Figure 5.11. In this diagram, the time
period during which loop L is being executed, T;, has been separated into two
phases: Phase I and Phase II. During the first phase, the L portion of the loop is be-
ing executed. Recall that L is the portion of loop L completed during the time re-
quired to execute segment B, when the parallel combination of B and L is being ex-
ecuted. During the second (final) phase, the remaining portion of loop L, L, is being

executed to completion. We now introduce the following definitions:

tp(k): the average amount of time in Phase I of T; during which there are

exactly k enabled tasks;

tr(k): the average amount of time in Phase II of T}, during which there are

exactly k enabled tasks;

(k) the average amount of time, in both phases of T; combined, during

which there are exactly £ enabled tasks.
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5.5.1.2.2 Derivation of Average Amount of Time in Phase I

In the case where T4 <743, L is simply A. Using the *‘fluid flow’’ as-

sumption that p; (k) = p, (k), for all k, we get:

1 (k) = Tg o patk) (5.35)

We will now consider the case where T, 3 <Tp(4. From the derivation of
Ty given in section 5.5.1.1, we have that L is the sequential combination of segment
A and the EXCLUSIVE-OR combination of B and a portion of a parallel combina-
tion of B and L (the portion completed during the *‘Tys,, ** time period), respective
probabilities being p and 1-p. Before proceeding, we will introduce two assump-
tions: (1) pg(k), for all k, is uniform over all subintervals of Tp; and (2) p,
(k) , for all k, is uniform over all subintervals of T . Note that, since B is a part of
B, the portion of L completed during the *‘Ty ; ’ time period is actually a part of
L. From our assumptions, it follows that the distribution of parallelism during the
latter time period is the ‘‘joint’’ distribution of parallelism of segments B and L.
Using equation (5.19), the ‘‘joint’’ distribution of parallelism of B and L,

Pgir (k), can be estimated by:

k
Ppir k) = ¥ pgi) e prk—i) for k=12,.. (5.36)
i=0

By applying the techniques developed in sections 5.2 and 5.3 to the results

and assumptions presented above, we get:

tp(k) = Ty opak)+p *Tp *ppk)+(1-p)* Ty, *pg k)
= Ty *pak) +pTy * pg(k) + (1-p)Tg L * P (k) Ng/Ng) (5.37)
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5.5.1.2.3 Derivation of Average Amount of Time in Phase II

In the case where Tg 14 <Tai3 » L is the sequential combination of segment
A and the EXCLUSIVE-OR combination of segment B and a parallel combination
of B and L, respective probabilities being p and 1-p. Note that Ty g =Ty, p + T
Also note that, during the *‘T/"’ time period, the average amount of time when there
are exactly k enabled tasks is, by definition, #,-(k). Using these two observations

and the assumption that p;(k) = p, (k), for all k, we get:

tr(k) = T; *patk)+pTg » pgk)+ (1-p) Ty * pp (k) + 1 (k)

_ Tapa®)+p Ty opp®) + Ap)yp g

p 3
The “‘joint’’ distribution of parallelism of B and L, pg,;(k), can be estimated by

equation (5.36).

We will now consider the case where T g < Tg,4. First we note that, due to
our assumption of pg(k), for all k, being uniform over all subintervals of Ty, any
part of segment B, with Ny being the average number of tasks executed, has the
same segment descriptor as segment B. From the latter observation and the timing
diagram shown in Figure 5.11, we can see that L is the EXCLUSIVE-OR combina-
tion of segment B and the parallel combination of B with the sequential combina-
tion of a portion of L (the portion completed during the Ty, time period) and L,
respective probabilities being p and 1-p. Thus,

Ty =p+Tg+(1-p)+(Tg,, +Tp) (5.39)

From the assumptions stated in section 5.5.1.2.2, it follows that the distribu-
tion of parallelism during the Ty, time period is the joint distribution of parallel-
ism of segments B and L,p g1 (k). By applying the arguments used in the preced-
ing paragraph, we get:
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tE(k) = pe TB' *pplk)+(1-p) - TB‘IE 'pB,[:(k) + tE(k)
p *Tg e pp(k)+(1-p) * Ty * Py k)

p
_ p *Tp *pglk) +(1-p) ':B”; *pg k) (Ng/Ng) (5.40)
5.5.1.2.4 Average Fractions of Time during Loop L
Since Ty =Ty + Ty,
k) = tpk) + (k) (5.41)

By definition, p; (k) is the average fraction of time, during the execution of loop L

(i.e., during the *‘T;, "' time period), when there are exactly k enabled tasks. Thus,

4 (k)
pL(k) = "‘TL (5.42)
Analogously,
tp(k)
petk) = = (5.43)
tplk)
prk) = = (5.44)

It is important to note that the equations for estimating pr(k) form a re-
currence relationship. That is, in order to solve for p; (k), one must first obtain
pr(k-1), k=23,... The same observation applies to k), ppk), tp(k), prk)
and (k).

5.5.2 Complex Loops

In this section, we will consider some of the more complex looping struc-
tures. First, we will take a look at nested loops. Figure 5.12 is an example of such
structure. In this structure, segments L 1 and L 2, which constitute loop L, are them
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loops. We will call L1 and L2 inner loops. We can solve this segment combination
in a hierarchical fashion. First, we solve each inner loop individually, using the pro-
cedures presented in the previous section, and replace each by a single, composite
‘segment. We then have a loop consisting of two ‘‘simple’’ segments, which is
identical in structure to the simple loop that had been analyzed and solved in Section
5.5.1. We can then apply our procedures for solving simple loops one more time to

obtain the final result.

Another possible looping construct is one where the probability of termina-
tion is time-varying (i.e. it varies with each new iteration of the loop). This type of a
loop is depicted in Figure 5.13. In this combination, LV, p; is the probabilie proba-
bility that, on the i -th iteration (if it occurs), the i -th instance of segment A will not
enable the (i+1)-th instance of segment A. The probability that this loop repeats it-

self exactly n times, g(n), is given by:

n-1
q(n) = py* 3 (1-p;) (5.45)
i=1
The average number of iterations, ¢, is then equal to:

g =Y n+qn) (5.46)
n=1

We will define L (n), n=1,2... to be the variant of a simple loop which has exactly n
iterations. Loop LV can now be viewed as the EXCLUSIVE-OR combination of
loops L (1), L (2), L(3), ..., with the weight on loop L (n) being equal to g(n). Thus,
the mean time to execute LV, T;y, is given by:

Try = X q(n) o Tpy (5.47)

n=1

Its distribution of parallelism is p;y (k), k20, where:
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2 q(n) s Ty * PLontk)
pv(k) = 2= T for all k (5.48)
v

The average number of tasks executed during an invocation of loop LV is

Npy =q *» (N4+Np). An approximate solution to L (n), for each n, can be found by
representing L (n) as a simple loop, with the time-invariant probability of termina-
tion, p, set to 1/n. Note that, if L is a simple loop -with p = 1/n, then its average
number of iterations equals 7, and its mean execution time and distribution of paral-

lelism can be expressed as follows:

T, =% q()* Trgy (5.49)
j=1
i q () * Tpgy* PLgk)
pLk) = = - forall k | (5.50)
L

where g (j) is computed from equation (5.45), with p; = p, for all i. Therefore, this
representation of L (n) yields the exact solution if and only if T (,,y and py (»)(k), for

all k, are linear functions of n.

Some types of looping constructs do not lend themselves easily to the kind of
combinatorial analyses presented above. Interleaved loops are one of those types.
An exampie of an interleaved loop is shown in Figure 5.14. We have attempted to
use a heuristic approach, analogous to the ones described earlier, to optimize the
solution process of such loops. However, we have not been able to develop a pro-
cedure of less than an ‘‘overwhelming’’ complexity. Thus, for these types of con-
structs, we have to resort to applying the solution procedure developed in Chapter 4

to the computation conirol graph for the entire construct.
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5.6 Other Heuristics

We will now discuss some additional methods for optimizing our solution
procedures for certain types of program structures and distributed system architec-

tures.

8.6.1 Hierarchical Combinations

As stated in Section 2.4.2, complicated program structures can usually be
represented as nested combinations of segments, with simple programming con-
structs being used at each nesting level. Thus, we can view a program as being
represented in progressively more detail as we traverse its structural hierarchy from
top to bottom. Each level of the hierarchy is 2 combination of segments (of varying
degrees of complexity), with the description of each segment being hierarchically
defined by the lower levels. A combination at a given level can be solved once we

know the segment descriptors (as defined in section 5.1) of all of its constituents.

Thus, starting with the lowest level, we can progressively apply the algo-
rithms presented earlier in this chapter to solve each higher level and, finally, the
whole program. This approach has already been utilized in Section 5.5.2 in solving
nested loops. For most combinations of segments, there is much less computation
involved in solving each constituent individually and then combining the solutions
in the aforementioned fashion, than in constructing and solving the Markov process
for the computation control graph of the whole combination. Therefore, by
hierarchically applying the techniques presented above, we can make the analysis of

very complex programs computationally feasible.
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5.6.2 Multi-Chain Models

The various solution optimization procedures that have been developed in
this chapter do not readily apply to physical domain models with different chains of
queueing network customers. In this section, we will discuss some heuristic ap-
proaches one can take in applying the *‘single-chain’’ algorithms presented above to

solving multi-chain systems.

One approach is to convert a multi-chain system into a single-chain system
by creating a new, composite chain of queueing network customers from the dif-
ferent chains present in the original system. All of the tasks in the program being
modeled will then be represented by customers of this new chain. Attributes of the
composite chain, such as the service time distribution at each service center and
routing probabilities, will be determined from the corresponding attributes of the
original chains. We can estimate the value of a particular attribute in the composite
chain by a linear interpolation of the values of that attribute in the original chains,
with the ‘‘weight’’ on each value being based on the average number of tasks

(represented by the corresponding chain) executed during the program runtime.

If, for a given segment combination, the system resources used by the tasks
of different segments are completely disjoint, then we can take the following ap-
proach. Since the execution of tasks of one segment does not “‘interfere’’ with the
execution of tasks of another segment, the task throughput of a given segment is not
affected by other segments executing at the same time. Based on the latter observa-
tion, we can apply all of the algorithms developed in this chapter to such combina-
tions, without explicitly considering the fact that tasks from different segments are
represented by different customer chains. For example, using this approach, the
mean time to execute a parallel segment combination would be estimated by the

maximum of the mean execution times of individual segments.
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The approach of the last paragraph can be extended to cases where the
resources used by different segments are not completely disjoint, ie., some
resources are shared by several segments. In such cases, the task throughput of a
given segment, with other segments being concurrently executed, can be estimated
by reducing the capacities of the shared resources. The degree of the capacity reduc-
tion for each resource would have to be estimated from the expected utilization of
that resource by the ‘‘interfering’” segments. We can improve upon the latter ap-
proximation by iteratively solving the same model, using, at each step, the best
available (most recent) set of estimates. This procedure is analogous to the method

for solving queueing networks proposed by de Souza e Silva [SOU83].

5.6.3 Process Arrivals

So far in this chapter, we have considered one program (or a set of programs)
running alone in a distributed environment and have shown how to estimnate its mean
response time and throughput. In this section, we will analyze the behavior of a dis-
tributed, multiple-computer system with stochastic arrivals of programs or
processes. We will assume that all processes are identically structured and that their
inter-arrival times are exponentially distributed (i.e., the arrival process is Poisson).
For process A, let T, (,) be the average time needed to execute the parallel combina-
tion of n instances of A in the environment being considered. The procedure for es-
timating T, (,) was presented in section 5.4.3. (Note that, in computing T (), the
estimates for T4 (3, ..., T4 (a-1) ar¢ oObtained as a by-product.) The relative increase
in the throughput of processes of the system, when n processes are available for ex-

ne TA(I)

ecution, is given by o
An)

time for process A with different values for the process arrival rate.

. Our objective is to find the average system response
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Due to the processor-sharing nature of our physical domain model, we can
approximate the solution to this system by representing it as an M/G/1 service center
with state-dependent service rates. The work demands of the jobs (each represent-
ing an instance of process A) arriving to this service center have a general distribu-
tion with the mean equal to T4{(1). These jobs are scheduled according to the PS
"queueing discipline. (Since the PS scheduling policy is used, higher moments of the
work demand distribution are not necessary to solve this queueing model.) The

capacity function for this service center is given by:

. ﬂ , n=123, . (5.51)
Ta(m)

The solution to the type of the queueing system described above is well
known [LAVS82]. Thus, in order to estimate the mean response time for process A,
all one has to do is to obtain T, n7=1,2,..., and then apply appropriate formulas.
Note that, in practice, one would only compute the first / elements of the capacity
function. The value of I is chosen such that:

i I
Taoy Tagy

( ) < e, forall i>I , (5.52)

where 0 <e « I /T,y Thatis, the composite departure rate from the M/G/1 ser-
vice center with i jobs present, i >/, is ‘‘nearly the same’’ as that with / jobs
present. Thus, / approximates the number of instances of process A at which the

physical system *‘saturates.’’

5.7 Degree of Aggregation vs. Accuracy

In this chapter, we have presented several heuristic techniques and strategies
for reducing the computational cost of solving for the mean execution time of pro-
grams (or processes) having well-defined structures and being composed of com-
monly used programming constructs. Most of the aforementioned methods rely on
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abstracting the dynamic behavior of a program segment into a set of steady-state
performance measures, such as the ones described in section 5.1. They also assume
that, when executing concurrently, segments are stochastically independent of each
other in queueing for and utilizing system resources. Thus, in our optimization pro-
cedures, we ignore the transient changes in a segment’s behavior and how a |
segment’s distribution of parallelism is affected by concurrent execution of other
segments. These simplifications will often result in reducing the accuracy of the final

solution for the program being modeled.

The degree to which the accuracy is reduced varies from model to model and
depends on such factors as how much the segments’ behavior varies with time, rela-
tive sizes of segments, properties of individual tasks, and how many times the op-
timizations are applied hierarchically. For a particular model, the actual impact on
accuracy of a certain optimization procedure can only be determined by solving the
same model without applying that optimization. In general, the smaller the seg-
ments are (relative to the total program size) which are being aggregated and the
lower the level of the program’s hierarchy is where the optimizations are performed,
the greater is the potential error in the final results. Thus, a modeler can control the
tradeoff between computational cost and accuracy by ‘‘properly’’ choosing what
segments to aggregate and at what level of the program’s hierarchy to apply our

heuristic methods.

128



CHAPTER 6
CASE STUDY A:
CONCURRENCY CONTROL IN DISTRIBUTED COMPUTATIONS

After presenting the development of the theoretical framework of our metho-
dology, we are now ready to demonstrate its effectiveness when applied to solving
practical system design and analysis problems. In this and the following chapter, we
will present two case studies. Each is drawn from a different application area of dis-
tributed computing. These studies serve to illustrate the power and scope of our
modeling approach and provide an indication of the expected accuracy level. In each
case study, we first describe the application and the environment(s) being modeled,
including the objectives of our analysis (e.g. obtaining some performance measures
of interest). We then present our model and solution procedure and, finally, tabulate
the numerical results given by our methodology and compare them with those ob-

tained from simulation.

In this chapter, we will analyze the tradeoffs between different paralle] im-
plementations of the same algorithm. Each implementation will be evaluated on
several distributed architectures. The particular algorithm selected for this experi-
ment is that used for computing the steady state distribution of the number of custo-
mers at a service center of a queueing network. The presentation of this case study
will be deferred, however, until after we describe the simulation environment that
had been used for validating the accuracy and robustness of the results of this and

other modeling applications.
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6.1 Simulation Environment

We used the RESQ (RESearch Queueing) package (developed at the IBM
Thomas J. Watson Research Center in Yorktown Heights, New York), running
under the VM/CMS operating system, to conduct simulations of our case studies. In
this section, we will briefly review RESQ and its usage, discuss the features per-

tinent to our simulations and describe major components of our simulation models.

6.1.1 Overview of RESQ

RESQ is a system for constructing and solving (via numencal or simulation
methods) extended queueing network models [SAU81b]. The class of RESQ net-
works is called ‘‘extended’’ because it allows model characteristics not permitted in
product form queueing network models. RESQ incorporates a high level language to
concisely describe the structure of the model and to specify constraints on the solu-
tion process. These constraints include the required accuracy level (in terms of rela-
tive widths of confidence intervals) and bounds on the length of a simulation run. A
main feature of the language is the capability to describe models in a hierarchical
fashion, allowing an analyst to define parametric submodels, which are analogous to

macros or procedures in programming languages.

Major components of RESQ models are queues and nodes. Traditional ser-
vice centers are represented by ‘‘active’’ queues, which can utilize a variety of job
scheduling disciplines. ‘‘Passive’’ queues are pools of tokens, which allow con-
venient representation of simultaneous resource possession. The types of nodes used
in RESQ models include class nodes (associated with active queues); allocate,
release, create and destroy nodes {associated with passive queues); sources and
sinks; split nodes; fission and fusion nodes; and dummy nodes. Each RESQ job trav-
els from one node to another, according to the routing definition given for the custo-

mer chain to which it belongs. Models can also be supplemented with different types
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of variables; each variable can be associated with either a particular job, a single

chain or the whole model.

RESQ provides a simulation capability with special features not found in
general purpose simulation languages [SAUS81b]. The most important of these are
statistical output analysis techniques, which provide confidence intervals for simula-
tion results and stopping rules for determining when the simulation should end.
These techniques include Independent Replications, Regenerative and Spectral
methods.

The RESQ user interfaces are based on interactive dialogues, which can both
accommodate sophisticated users and large models as well as educate new users. A
transcript of a model definition dialogue is kept for the user. The user may edit this
transcript and have it translated again, with or without additional interactive dialo-
gue. In addition to the model definition dialogue and translator, there is a model
evaluation dialogue associated with the solution components. This dialogue allows
the user to selectively obtain performance measures. Models may be defined with
parameters, so that solutions of several related models may be obtained in a single

evaluation, without retranslation of the model.

6.1.2 Simulation Models

Each simulation model consists of two parts. The first part, consisting pri-
marily of active queues, is used to represent the physical resources of the distributed
system being modeled. The second part, consisting primarily of passive queues, is
used to represent the intertask dependencies of the selected program as mandated by
the corresponding computation control graph. This kind of ‘‘separation of roles’’ fa-
cilitates a convenient mechanism for simulating different programs running on the

same system or simulating the same program running in different environments.
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Each system resource is modeled by an active queue with attributes such as
the number of servers, the service time distribution of each customer class, the
queueing discipline, etc., chosen to match the properties of that resource and the
tasks it services. The interconnection of elements in the physical system is
represented by properly selected routing functions in the model. There are as many
“customer chains in the model as there are tasks in the corresponding program, each
being associated with a specific task. Each chain is defined as closed and contains as
many customers as the maximum number of possible instances of the associated
task in the program. A job variable is used to identify the particular instance of the

task represented by a given queueing network customer.

The precedence relationships among tasks are modeled using arrays of global
variables and passive queues. A set of global variable arrays and a passive queue are
associated with each customer chain in the model. Each array in a given set
represents one of the operands needed by the corresponding task. The i-th element
of each array contains information about the i-th instance of that task. Passive
queues act as ‘‘semaphores’’ by controiling the ‘‘dispatching’” of waiting customers
into the ‘‘active’’ part of the model. Upon leaving the active part of the model, each
customer updates the proper global variable arrays, as determined by the underlying
computation control graph. It then waits to obtain a token from the passive queue as-

sociated with its customer chain.

The initial state of the RESQ model has ‘‘starting’’ customers, those which
represent tasks enabled at the start of the program at the entrance to the *‘active’
part of the model; the other custdmcrs wait for tokens at their respective passive
queues; all passive queues have no tokens; global variable arrays are initialized to
indicate that no operands have been received. After the customer representing the
last task of the program departs from the ‘‘active’’ part, it ‘‘creates operands’’ for

the *‘starting’’ customers. Thus, each simulation run is equivalent to repeatedly exe-
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cuting the same program.

The statistical output analysis method of Independent Replications was used
to place confidence intervals on the performance measures. Each replication consist-
ed of a number of program executions, that number being chosen according to the
confidence level desired.

6.2 Application Description

The goal of our first study is to assess the performance of three different
parallel implementations of a particular algorithm. Each implementation will be
evaluated with a number of distributed systems, each varying in both configuration
size and architectural profile. Subsequently, we should be able to determine which
implementation is best suited for a particular environment and, conversely, which

architecture is most appropriate for a given implementation.

6.2.1 The Algorithm

The algorithm selected for this case study comes from the domain of compu-
tational methods for queueing network analysis. Its formula is shown in Figure 6.1.
The function of this algorithm is to obtain the steady state distribution of the number
of customers present at service center j, n;, of a closed, product-form queueing net-
work having a total population of N customers [LAV82]. This algorithm is a by-
product of the Convolution Algorithm for computing the normalization constant,
G (N), for closed, product-form queueing networks [LAV82]. It is applicable to
fixed-capacity service centers only. Constant G (k), k=1,2,3,...,.N is the normaliza-

tion constant for the corresponding queueing network having a total population of
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Prin; =i} = (PUGWN) +[G(n=i)=p; *GW~i-1)] , i=0,1...N

Figure 6.1
Computation of the Distribution of the Number of Customers at Service Center j
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only & customers and is assumed to have been previously computed. By definition,

G (0)=1 and G (k)=0, k <0.

In order to obtain the full range of values for the probability density function
Pr{n;=i},i=0,1,...,N, one must apply the formula given in Figure 6.1 N+1 times.
This involves the computation of factor (p; ¥ for i=1,....N. An efficient way to ac-
complish the latter computation is to preserve the value of (p; y* for calculating the
value of (p j)(’”'l). "That is:

PV = p; < [P ).

This ‘‘work conserving’’ approach will be utilized in each one of the three parallel

implementations of this algorithm presented below.

6.2.2 Implementation A

Before describing this first implementation, we will designate a task for each
of the arithmetic operations in the algorithm. In the definitions given below, R [¢]

represents the result generated by task ¢, for all 7.

task 1(i): | L/G(N) i=0
pj * R[1(-1)] i=12,..N

task 2(i): | p; - G(N-i-1) i=0,1,...N

task 3¢ ): | GAV-1)-R[2()] | i=0,1,...N

task 4(i): | R{1()]*R[3G)] | i=0,1,...N

The average execution times of these tasks are assumed to be equal.
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The computation control graph for implementation A is depicted in Figure
6.2. Node labeled ““¢#(i)”’ in this graph represents task ¢(i); t=1,2,3,4; i=0,1,....N.
In this implementation, the algorithm is essentially the body of a DO loop, with
Pr{n;=i} being computed on the i -th iteration. However, the iterations are not per-
formed sequentially but are ‘‘pipelined’’ -- the (i +1)-th iteration can start as soon as

“task 1(i) of the i -th iteration has completed its execution.

Note that the arc going from node 1(i) to node 2(i) is not necessary for
maintaining proper flow of the computation as there is no computational dependency
between task 1(i) and task 2(i). The reason for introducing this ‘‘artificial’’ depen-
dency is to ‘‘throttle’’ the execution of tasks 2(0), 2(1), ... and 2(N). As will be em-
pirically illustrated later in this chapter, such ‘‘flow control’” can improve the
overall response time of the algorithm when the number of available processors is
very small compared to N and dynamic task allocation policy is employed. The rea-
son for the latter behavior can be inferred from the observation that the result of task
3(i) is not ‘‘needed’’ until the result of task 1(i) has been obtained (i.e., until tasks
1(0), 1(1), ... and 1(i) have been executed). Thus, ‘‘early’’ activation of tasks 2(i)
and 3(i) may “‘impede’’ the execution of tasks 1(j), j=0, 1,...,i, and actually delay
the activation of task 4(i ). The latter statements will be substantiated in the next sec-
tion, when we analyze and compare the respective degrees of parallelism of imple-

mentations A and B.

6.2.3 Impiementation B

The second implementation of the algorithm in question is described by the
computation control graph illustrated in Figure 6.3. In this implementation, each task
is enabled as soon as all of the operands it needs are available. The major drawback
of implementation B is that, as will be shown below, the workload (i.e., the number

of enabled tasks) offered to the system is not uniformly distributed over the
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algorithm’s execution time period. As already discussed in the preceding section,
such workload imbalance may make this implementation less attractive in systems
with limited prbcessing resources. Alternatively, if the average, combined
throughput of the exécution environment were to increase linearly with the number
of enabled tasks (e.g., dynamic assignment of tasks to an ‘‘infinite’” pool of proces-
sors), then implementation B would give the best average response time of all possi-

ble implementations of this algorithm.

We will now clarify and elaborate on the issues discussed above. If a dynam-
ic task allocation policy is employed, then, since the average execution times of dif-
ferent tasks are the same, the characteristics of the degree of parallelism of imple-
mentation A (during its execution time period) are approximately represented by
Figure 6.4(a) when N >>1. The estimate for the average width of this curve is given
by the observation that tasks 1(i+3), 2(i+2), 3(i+1) and 4(i) can all, potentially, be
executed concurrently, for i =0,...,N-3. The characteristics of the degree of parallel-
ism of implementation B, for N>>1, are approximately represented by Figure
6.4(b). The shape of this curve is based on the following observations. Tasks 1(0),
2(0), 2(1), ..., and 2(N) are all enabled at the start of implementation B. Further-
more, upon completion of task 1(i), task 1(i+1) is immediately enabled and, upon
completion of task 2(i), task 3(i) is immediately enabled. Thus, during phase I of
this implementation’s execution time period, tasks 1(i), X (0), X (1), ... and X (V)
can all, potentially, be executed concurrently, where each *“X*’ is either *‘2°’ or

“19’

*“3.”” During phase II, exactly one of the tasks is always enabled (except for
the very end of the execution time period). Also, upon completion of task 1(i), task
4(i) can be immediately enabled (since task 3(i) was already completed in phase I).
Thus, on the average, one of the ‘‘1’’ tasks and one of the *‘4’’ tasks can, potential-

ly, be executed concurrently during phase II.
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Let C be the maximum capacity (in terms of the number of tasks that can be
executed concurrently) of the execution environment being considered. For C <2,
implementations A and B should have almost identical average execution times,
since each utilizes the full capacity of the system. When 2<C <4, implementation B
utilizes the system less during phase II of its execution than implementation A does;
thus, it should give a worse performance than A . If C >N +1, then, since the system
can always execute concurrently all of the enabled tasks, the *‘flow control”” of im-
plementation A would actually impede the execution of the algorithm and result in a
mean response time larger than that of implementation B. The interesting case is
when 4<C <N+1. In this case, implementation B utilizes the system more than im-
plementation A does during phase I and less than A during phase II. Thus, there
must be a constant C’, 4<C’<N+1, such that, if 4<C <C’, then A should perform
better, and, if C’<C <N+1, then B should perform better.

The analysis presented above is in concurrence with the empirical results of

this case study, which are presented later in this chapter.

6.2.4 Implementation C

The last implementation, which is represented by the computation control
graph depicted in Figure 6.5, is analogous to implementation A, since it also in-
cludes “‘artificial’’ dependencies for *‘throttling’” the execution of otherwise enabled
tasks. However, in implementation C, it is the completion rate of tasks 2(i),
i=0,1,...,N, that provides flow control for the execution of other tasks. This is ac-
complished by having two extra arcs in the graph in addition to those which are
necessary for maintaining computational integrity, namely the arcs going from node
2(i) to nodes 2(i+1) and 1(i).
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Figure 6.5 Computation Control Graph for Implementation C
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Implementation C is based on the observation that, in order to enable task
4(i), for each i, tasks 2(i) and 3(i) must be executed in sequence, as well as task
1(i). Thus, the intent of this implementation is to give ‘‘higher priority’’ to task
2(i), i=0,1,...,.N, by delaying the execution of task 1(i) until the time when task 3(i)

can be enabled.

6.3 Experimentation with Different Architectures

In this section, we will evaluate the computational efficiency of each one of
the three algorithm implementations described above, using different types of distri-
buted architectures for the execution environment. The types of architectures we
have experimented with include:

- tightly-coupled processors
- loosely-coupled processors/centralized synchronization

- loosely-coupled processors/distributed synchronization

Several different system configurations have been considered within each
distinct type. Descriptions of specific execution environments analyzed in this case
study, along with the corresponding numerical results which have been obtained
from our experiments, will be presented below. In section 6.4, the data from these
experiments will be used to assess the performance of each implementation on dif-
ferent system types relative to that of the other implementations. All results pro-
duced analytically will be compared with those yielded by performing detailed simu-

lations, in order to determine the accuracy level attained by our methodology.

6.3.1 Tightly-Coupled System

First, we will consider a very tightly-coupled architecture, where all globally
accessible information is almost ‘‘instantaneously’’ available to each processing ele-

ment in the system. After giving a description of such a system, the corresponding
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physical domain model will be described, and then the numerical results will be

presented.

6.3.1.1 System Description

An example of a tightly-coupled system is illustrated in Figure 6.6. The sys-
tem shown consists of p+1 processors (P P, ..., P, and §), each having its own
local storage, and a high-speed, multi-ported memory module which is accessible to
all processors in the system. Processors P ..., P, are dedicated to executing tasks
(i.e., performing the computations of the algorithm that is running), whereas proces-
sor § is reserved for maintaining synchronization between different tasks (ie.,
matching received results into executable operand sets and enabling appropriate
tasks). The global memory module is used for exchanging data between § and the
‘‘computational”” processors via two externally accessible queues. All incomplete

operand sets are maintained in the local storage of processor S.

Whenever a tﬁsk is enabled (i.e., a complete operand set is formed), it is
placed by S, along with the required operands, in the TASKS queue residing in the
shared memory. Each idle processor continuously scans the TASKS queue for tasks
available for execution. After an idle processor finds an enabled task, it removes that
task from the TASKS queue, executes it and places the generated resuli(s) in the
RESULTS queue, which also resides in the global storage. Processor § continuously
polls the RESULTS queue for newly generated results. When a new resu avatlable,
it is dequeued, interpreted and used to update the incomplete operand sets. The de-
lays encountered in accessing the TASKS and RESULTS queues are assumed to be
negligible in comparison with task execution times and the synchronization over-
head.
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6.3.1.2 Physical Domain Model

Since the system described above employs a centralized synchronization
mechanism, the M/U subnetwork need not be included in its physical domain
model. The P /C subnetwork for this architecture is shown in Figure 6.7. It consists
of two service centers: P and §. P is a multiple-server center containing p fixed-
capacity servers and is used to model the p computational processors in the system.
S contains a single fixed-capacity server which represents the synchronization pro-
cessor. Both P and S adhere to the FCFS queueing discipline. A customer in this
queueing network is first routed to service center P, representing an enabled task,

and thereafter to S, representing the generated result.

6.3.1.3 Numerical Results

The results of experimentation with this tightly-coupled system are presented
in a tabular form in Figure 6.8. The size of each configuration considered is deter-
mined by parameter p -- the number of computational processors. Parameter n
represents the number of distinct values of variable i to which the algorithm shown
in Figure 6.1 was applied, i.e., n=N+1, where N is as defined in section 6.2.1. The
other system parameters were assigned the following values:

mean time to execute a task: 5 time units

mean time to process a result packet: 2 time units

As can be seen from this table, each solution derived analytically was com-
pared with the corresponding result obtained from simulation. Relative errors were
computed by assuming the simulation results to be the *‘actual’ values. For imple-
mentation A , these relative errors seem to be insensitive to the value of n. However,
they appear to first increase and then decrease as the value of p increases. The same
is generally true for the implementation C errors. However, the results for imple-

mentation B indicate that the errors seem to be greater for larger values of n and
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n=10 n=25
P || ANALYTIC | SIMULATED | % REL.ERROR || ANALYTIC | SIMULATED | %REL.ERROR
1 2104 216.7 -2.91 516.5 531.3 -2.79
2 130.3 1389 6.19 306.1 329.7 7.6
3 1152 122.5 -5.96 263.7 280.4 596 |
4 111.7 116.3 -3.96 2528 270.3 647 |
8 1117 116.0 -3.96 252.8 265.6 482 |
1 210.7 224.0 -5.94 5282 $71.8 -1.62 |
2 1246 135.8 -8.25 313.5 341.0 -8.06
3 112.5 1172 .01 286.3 297.3 -3.70
4 112.5 113.3 0.71 286.3 291.3 -1.72
8 112.5 110.5 -1.81 286.3 291.2 -1.68
1 208.5 2142 -2.66 514.6 528.9 -2.70
2 126.8 135.8 6.63 302.7 325.5 -7.00
3 109.9 118.1 -6.94 258.4 274 8 -5.97
4 106.0 1109 442 2470 264.1 647
8 106.0 110.4 -3.99 247.0 259.7 4 89

Figure 6.8 Mean Response Times for the Tightly-Coupled System
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that they tend to decrease as the configuration size (value of p) increases, contrary to
the other implementations. Also, overall, the relative errors for implementation B
appear to be larger than those for implementations A and C. The implications of the

observations made above will be discussed in Section 6.4.

6.3.2 Loosely-Coupled System -- Centralized Synchronization

We will now study a distributed execution environment where processors are
loosely-coupled with each other. A notable aspect of such an architecture (when
compared to the tightly-coupled system considered in the preceding section) is that
the communication delays incurred in interchanging data between different comput-
ing elements can significantly impact the overall system performance. After provid-
ing a system description, the corresponding physical domain model will be

described, and then the numerical results will be presented.

6.3.2.1 System Description

The loosely-coupled architecture considered in this section employs a cen-
tralized synchronization mechanism, i.e., all incomplete operand sets are stored at a
single location. The organization of this system is depicted in Figure 6.9. There are
again p+1 processors, each having its own local storage: Py, P, ..., P, are used for
performing the computations; S is responsible for matching the operands (received

from the other processors) into executable sets and dispatching enabled tasks.

The processors exchange information among themselves by sending data
packets over the communications bus. The bus can transmit only a single packet at a
time and operates in a collision avoidance mode. Whenever a task becomes enabled,
processor S sends its description, along with the required operands, to one of the
computational processors, the particular processor being chosen at random. After

completing the execution of a task, a processor packetizes the result(s) and transmits

149



/  COMMUNICATIONSBUS  /

2] o B

Figure 6.9 Loosely-Coupled System (Centralized Synchronization)

150



the packet to S, which uses it for updating the incomplete operand sets stored in its

local memory.

6.3.2.2 Physical Domain Model

The physical domain model for this architecture is given by the queueing
network shown in Figure 6.10. Note that all system elements can be included in the
P/C subnetwork, as a centralized synchronization scheme is utilized. The model
consists of p+2 service centers, All centers are of a fixed-capacity variety and each
employs the FCFS scheduling policy. Service centers P, through P, correspond to
the computational processors; S represents the synchronization processor; and B
models the communications bus. Representing an enabled task, a customer in this
queueing network is first routed to service center B, followed by P;, the value of i
being chosen at random. Thereafter, modeling the generated result packet, it returns

back to server B and, finally, as an operand packet, it visits S.

6.3.2.3 Numerical Results

The results of experimentation with the loosely-coupled system described
above are given by the table shown in Figure 6.11. The size of each configuration
considered is determined by parameter p -- the number of computational processors.
Parameter n represents the number of different points at which the algorithm shown
in Figure 6.1 was evaluated, i.e., n=N+1, where N is as defined in section 6.2.1.

The other system parameters were assigned the following values:

mean time to execute a task: 5 time units
mean time to process a result packet: 2 time units
mean time to transmit a task on the bus: 1 time unit
mean time to transmit a result packet: 1 time unit

As shown in Figure 6.11, each solution derived analytically had been compared with
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n=i( nml$ ;
? || ANALYTIC | SIMULATED | % REL_ERROR || ANALYTIC | SIMULATED | %REL. ERROR |
1 234 236.0 .5.34 [| 5385 5634 495 %
2 1799 1919 -6.25 1 4192 4457 595
Al 1674 1790 543 1| 1859 4134 4.55
4 161.0 171.5 6,12 158.9 395.1 563
3 153.2 1625 572 348.5 373.1 639
1 258 2417 4.70 $67.3 619.5 8.43
2 1672 180.9 .7.57 1098 450.9 912
Bl3 1534 166.1 -7.65 3739 4178 1051
4 148.6 160.7 753 T 3870 410.7 1068 .
8 143.8 1543 £.99 | 358.4 1992 10.22
| 2186 230.5 : 516 | 5308 5553 4350
2 173.1 1847 6.28 4124 4359 | 539
Cis 160.1 174.1 E 3.04 1 1787 060 | 675 !
3 153.4 1632 i .6.00 ] 3814 3186.7 \ 5.54 .
(3 B 1564 | -6.35 1407 | 1680 | 742
Figure 6.11

Mean Response Times for the Loosely-Coupled System
(Centralized Synchronization)
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the corresponding result obtained from simulation. Relative errors had been comput-
ed by assuming the simulation results to be the ‘‘actual”” values. For implementation
A, these relative errors seem to be insensitive to the value of n; however, they ap-
pear to increase as the value of p increases. Overall, the same is true for the imple-
mentation C errors. In contrast, the results for implementation B indicate that the er-
rors seem to be greater for larger values of # and that they do not change much with
different configuration sizes. Also, in general, the relative errors for implementation
B appear to be larger than those for implementations A and C. The implications of

the observations made above will be analyzed in section 6.4.

6.3.3 Loosely-Coupled System -- Distributed Synchronization

In this section, we will also evaluate a loosely-coupled architecture, but one
which employs a distributed synchronization mechanism. After providing a system
description, the corresponding physical domain model will be described, and then

the numerical results will be presented.

6.3.2.1 System Description

The system being analyzed here is illustrated diagrammatically in Figure
6.12. Its architecture is similar to the one considered in the preceding section -- the
difference being that, in this system, several processors are used for maintaining in-
tertask synchronization (as opposed to just one). There are s synchronization
processors: Sy, ..., S;. Each one is responsible for maintaining operand sets for a

particular group of tasks.
Whenever the execution of a task is completed, the generated result packet is

broadcast over the communications bus to all of the synchronization processors.

However, only those processors which can use the corresponding operand(s) actual-
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ly accept this result packet -- the others simply discard it. We will assume that the
time needed for determining whether or not to accept a result packet is negligible
compared to the operand matching overhead. For the purposes of this case study, it
will also be assumed that each result packet is accepted by only one synchronization
processor and that the maintenance of operand sets is evenly distributed among all
processors (i.e., on the average, each processor accepts the same number of result

packets).

6.3.3.2 Physical Domain Model

The physical domain model for this architecture is given by the queueing
network shown in Figure 6.13. The model consists of p+s+1 service centers. All
centers are of a fixed-capacity variety and each employs the FCFS scheduling poli-
cy. Service centers P, through P, correspond to the computational processors; S
through S, represent the synchronization processors; and B models the communica-
tions bus. Representing an enabled task, a customer in this queueing network is first
routed to service center B, followed by P;, the value of i being chosen at random.
Thereafter, modeling the generated result packet, it returns back to server B and,
finally, as an operand packet, it visits §;, j being randomly chosen (since the task
synchronization work load is evenly balanced among all synchronization proces-

SOrs).

6.3.3.3 Numerical Results

The table in Figure 6.14 presents the numerical results for the distributed
synchronization system discussed above. The size of each configuration considered
is determined by parameter p -- the number of computational processors. Parameter
n represents the number of iterations of the algorithm being studied. The other sys-

tem parameters were assigned the following values:
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n=10 n=2§

P || ANALYTIC | SIMULATED | % REL.ERROR || ANALYTIC | SIMULATED | %REL.ERROR

3 160.6 175.0 -8.23 3683 399.2 -7.74
AL 1543 166.1 -7.10 350.7 379.5 -7.59

3 1462 160.0 -8.63 329.7 364.3 -9.50

8 143.0 153.8 7.2 3212 347.2 -7.49

3 147.0 159.2 -7.66 362.5 403.7 -10.21
B8 4 141.7 1515 -6.47 1548 3934 -9.81

6 136.7 145.2 -5.858 148.6 3849 -9.43

3 135.0 142.8 -5.46 3441 381.1 -3.71

3 1532 166.2 .7.82 360.8 389.9 746
C 4 146.5 159.4 -8.09 3429 373.1 -3.09

6 138.1 1508 -8.42 321.5 360.0 -10.69

8 134.9 145.3 .7.16 313.1 3317 728

Figure 614
Mean Response Times for the Loosely-Coupled System
(Distributed Synchrouization)
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mean time to execute a task: 5 time units

mean time to process a result packet: 2 time units
mean time to transmit a task on the bus: 1 time unit
mean timé to transmit a result packet: 1 time unit
number of synchronization processors, s: CEIL(p/2)

As the table indicates, each solution derived analytically was compared with the
corresponding result obtained from simulation. Relative errors were computed by
assuming the simulation results to be the “‘true’’ values. For implementation A,
these relative errors seem to be insensitive to the value of n; also, they do not appear
to be correlated with the value of p. In general, the latter statement also holds for the
implementation C errors. The results for implementation B, however, indicate that
the errors seem to be greater for larger values of n and that they do not vary
significantly with different configuration sizes. Furthermore, at larger values of n,
the relative errors for implementation B appear to be greater than those for imple-
mentations A and C. The implications of the observations made above will be dis-

cussed in the following section.

6.4 Discussion of Results

We will now analyze the combined results for all three distributed architec-
tures studied in this chapter and discuss what conclusions may be drawn from the

collected data.

Irrespective of the architecture being considered, the accuracy level of the
analytic results produced by our methodology appears to be better for implementa-
tions A and C than for implementation B, especially for larger values of n. This ob-
servation can be attributable to the following effect. The respective degrees of paral-
lelism for implementations A and C remain almost uniform throughout their respec-

tive execution time periods. The larger the value n is (i.e., the longer the algorithm’s
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execution time), the more uniform the aforementioned degrees of parallelism are.
However, since implementation B does not have any ‘‘flow control”’ to throttle the
activation of tasks, its degree of parallelism during the earlier stages of its execution
is greater than that during the later stages of its execution. As the number of tasks,
which are enabled at the beginning of implementation B ’s execution, is directly pro-
portional to n, the greater n is, the larger is the degree of parallelism during the first
portion of the execution time period. In other words, the larger the value of n, the
greater is the disparity between degrees of parallelism during different execution
stages and, thus, the greater is the variance of the distribution of parallelism of im-
plementation B. Since most of our approximation techniques are based on ‘‘fluid
flow’’ assumptions, in general, the larger the variance of a program’s distribution of

parallelism, the less accurate is our analytic solution for its execution time.

The data gathered in this study indicates that, for all three implementations,
the relative errors in our analytic results in the case of the tightly-coupled architec-
ture are, overall, fewer than those for either of the two loosely-coupled systems. A
probable explanation for the latter trend is that the global behavior of the tightly-
coupled system is closer to the characteristics of a single state-dependent, exponen-
tial service center than the respective behavior of the loosely-coupled architectures.
The particular characteristics that are important to our solution process are: (1) the
lack of correlation between the order in which customers (of the same class) arrive
and the order in which they depart; and (2) the lack of correlation between the time
that a customer has already spent in the system and its remaining time in the system.
Recall that, as a part of our solution procedure, the physical domain model is aggre-
gated into a single state-dependent, exponential service center, which utilizes the PS
queueing discipline within each customer class. Thus, the greater the correlation, in
the ‘‘original’” physical domain model, between the arrival times of customers (be-
longing to the same chain) and departure times of those customers, the greater is the

potential error in our analytic solution.

160



Another important empirical observation is that virtually all analytic solu-
tions are underestimates of the corresponding simulation results. This observation
can be theoretically substantiated by the fact that the segment aggregation techniques
used in our solution process rely on ‘‘fluid flow’’ approximations to the dynamics of
segments’ behavior, Since (as the name implies) such ‘‘fluid flow’’ assumptions do
not explicitly consider the time-dependent variations in a segment’s behavior, they

will generally result in underestimating the actual response times.

As far as the relative performance of the three implementations is concerned,
the following observations can be made. The response times of implementations A
and C are very close to each other for all of the different types of architectures and
configuration sizes used in the experiments. However, implementation C consistent-
ly produced slightly better response times than implementation A . Thus, in terms of
performance, implementation C should generally be preferable to A, regardless of
the execution environment. The performance of implementation B, relative to the
performance of the other implementations, appears to depend on both the
configuration size and the number of iterations of the algorithm. The larger the value
of p, the better is its relative performance. The larger the value of n, the worse is its
relative performance. Also, in general, the relative performance of implementation
B is better on both loosely-coupled systems than on the tightly-coupled one. A con-
clusion which may be drawn from the latter observations is: the larger the ratio of n
to the number of enabled tasks at which the system saturates, the worse is the rela-

tive performance of implementation B .
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CHAPTER 7
CASE STUDY B: SIGNAL PROCESSING APPLICATION

In this chapter, we will present an assessment of the merits of our methodol-
ogy when used in modeling the execution of a real-time, signal processing applica-
tion. The results obtained from a previous analysis of the same application will be
used to help evaluate the viability of our approach. We will consider two types of
distributed execution environment for this application: (1) a hypothetical environ-
ment with a simple structure and (2) a realistic system having a sophisticated archi-
tecture. The performance measures for the execution of the application in the simple
environment have already been obtained in a previous research study [CHU84] and
will be used to establish confidence in the results produced by employing our metho-
dology. In the second experiment, the analytic results for a more complex architec-
ture will be compared with those obtained from running a detailed simulation of the
program execution in that environment. The purpose of the second experiment is to
illustrate the power of our methodology in dealing with complex system architec-

tures.

7.1 Application Description and Analysis

The application proposed for this case study is a real-time, signal processing
program (process). This process is being periodically executed, after random time
intervals, as invoked by ‘‘arrivals’’ of new sets of input signals. Such type of
behavior is typical of on-line radar monitor and control systems. The particular pro-
cess, P, we have chosen is the one considered in the performance modeling study by

Chu and Leung [CHUB84]. The computation control graph for this process is shown
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in Figure 7.1. Note that this graph features all of the different segment combinations
analyzed in Chapter 5: sequential, EXCLUSIVE-OR, parallel and looping. These
structural properties will be fully exploited to minimize the computational cost of

our solution process.

The analysis of the behavior of this application, in each of the two environ-
ments being considered, will be accomplished in two phases. In the first phase, we
will obtain the performance measures for the execution of a single instance of pro-
cess P, when it is the only program running on the system being modeled. In the
second phase, the behavior of the process in the case of random arrivals of P will be

analyzed using the results of the first phase.

7.1.1 Single Instance of Process P

As can be seen from its computation control graph, the process being con-
sidered has a well structured form and can be conveniently decomposed into a
hierarchical combination of segments. This hierarchical decomposition is illustrated
in Figure 7.2, where process P is represented at seven different levels of abstraction.
We will now discuss each level of the process’ hierarchy in detail. On level 0, seg-
ment P represents the whole process. On level 1, segment P is revealed to be the
sequential combination of task 1, segment A, and task 15. On the second level, seg-
ment A is detailed as a simple loop, having segment B as its body. The third level
allows us to view segment B as the sequential combination of task 2, segment C,
and task 14. Level 4 reveals that segment C is the EXCLUSIVE-OR combination
of segments D, E and F. On the fifth level, we find that: segment D is the sequen-
tial combination of tasks 3 and 12; segment £ is the sequential combination of tasks
4, 6, and 9; and segment F is the sequential combination of task 5, segment G, and
task 13. Finally, on level 6, segment & is represented by the computation control

graph shown in Figure 7.2(g).
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Figure 7.1 Computation Control Graph for Process P
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Figure 7.2 Hierarchical Decompositicn of Process P
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The hierarchical decomposition of the process’ computation control graph
described above permits us to employ the segment combination techniques
developed in Chapter 5 to efficiently obtain the desired performance measures (i.e.
the segment descriptor of the whole process P). The computation of segment G’s
descriptor involves constructing and solving the Markov process depicted in Figure
7.3, according to the procedure presented in Chapter 4. Descriptors of segments D,
E and F are found by applying the sequential combination algorithms. Segment C
is solved using the EXCLUSIVE-OR combination techniques. Proceeding in the
same fashion, we can compute the descriptors of segments B, A and, finally, P it-
self. Since only sequential and EXCLUSIVE-OR segment aggregation techniques
are employed, the solution approach described above is applicable even if tasks of

process P belong to different classes.

Thus, at the end of the first phase, we have the values for the mean number
of tasks (of each class, if applicable) executed during an invocation of process P,
the average execution time of a single instance of P, and its distribution of parallel-
ism. Having obtained these results, we are now ready to commence the second stage

of our analysis.

7.1.2 Random Process Arrivals

In this phase of our analysis, we will utilize the procedure presented in sec-
tion 5.6.3. Let P(n) denote a parallel combination of n instances of process P.
According to the aforementioned procedure, the whole execution environment is
represented by a single M/G/1 service center with state-dependent service rates,
where each arriving job represents an instance of process P. In order to obtain the
service capacity function (or set of departure rates) for this M/G/1 queue, we have to
compute Tp(,y forn = 1,2, ..., 1. If there is only one class of tasks, then the parallel

combination procédure presented in section 5.4 can be directly applied to estimate
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Figure 7.3 Markov Process for Segment G
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the latter quantities. In the case that tasks of process P belong to different classes,
there are two possible solution approaches. One way is to construct and solve a
Markov process for each of the /-1 parallel combinations, P (2), ..., P({). This can
be very expensive computationally, especially for large /. The other way is to first
use the heuristics described in section 5.6.2 to combine the different task classes into
a single, aggregate class and then apply the approximation procedure of section 5.4.

The latter approach will be utilized in this case study.

After obtaining the service capacity function, we can simply apply the al-
ready existing formulas for solving an M/G/1 queue with state-dependent service
rates [LAV82] to obtain the desired performance measures and complete our evalua-
tion of this application. The numerical values of the performance measures will, of
course, depend on the particular values of the parameters Tp(,), n =1, ..., I, which,

in turn, depend on the specific execution environment being considered.

7.2 Evaluation of a Simple System

In this section, we will consider the simple, hypothetical environment pro-
posed by Chu and Leung in the aforementioned study [CHUB84]. After describing
their system, we will present the physical domain model for it, and then compare our
numerical results with those obtained in that study. This experiment will serve as a

benchmark test of the accuracy of our methodology.

7.2.1 System Description

The execution environment in question is depicted in Figure 7.4. It consists
of three identical computers, which communicate with each other through some kind
of interconnection network. Each task of process P is a priori assigned to one of the
computers to be executed. Whenever a task becomes enabled, its execution begins

on the computer allocated to it. Upon completion, it generates and sends a ‘‘mes-
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COMPUTER 1 COMPUTER 2 COMPUTER 3

Figure 7.4 Simple Execution Environment
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sage’’ to the task(s) which must be informed accordingly. Message passing between
tasks residing on the same computer occurs instantancously. However, if a message
has to be transmitted over the interconnection network, it incurs a constant commun-
ications delay (of 0.2 seconds in the model) -- queueing delays are ignored. It is
also assumed that the task synchronization overhead is nonexistent, i.e. it takes zero
time to update incomplete operand sets and enable tasks. The table shown in Figure
7.5 lists, for each task, its average execution time and the computer it is allocated to.

All task service times are assumed to be exponentially distributed.

7.2.2 Physical Domain Model

The system described above belongs to the **Static Allocation with Distribut-
ed Synchronization’’ category. However, since the task synchronization delays are
ignored, there is no need to include the M /U subnetwork and Black Box A in our
physical domain model. The P/C subnetwork for this system is illustrated in Figure
7.6. It consists of four service centers: C1, C2, C3 and IN. Service center
Ci, i=1,2,3 represents the time spent by a task in queueing for and executing on
Computer i. Each employs the FCFS scheduling discipline. IN represents the
transmission delay experienced by messages on the interconnection network. Since

this delay is assumed to be constant, /N is an Infinite Servers (IS) service center.

Each queueing network customer visits exactly one of C'1, C2 and C3 ser-
vice centers, the choice being dependent on which task that customer is representing.
If, upon completing its execution, the corresponding task has to send its result to
some task(s) residing on (an)other computer(s), i.e., a message has to be transmitted
over the interconnection network (a single message may be destined to multiple lo-
cations), the same customer also visits the /N service center. Thus, a given queue-

ing network customer represents both a task and a message it generates (if any).
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I S S
TASK# | AVERAGE EXECUTION COMPUTER
TIME (SEC.) ALLOCATED TO
1 1 1
2 1 2
3 1 3
4 1 2
5 1 1
6 2 3
7 2 1
8 2 2
9 2 1
10 2 3
11 3 2
12 3 1
13 3 1
14 3 3
15 3 2

Figure 7.5 Task Characteristics for the Simple System
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Figure 7.6 Physical Domain Model for the Simpie System
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7.2.3 Numerical Comparisons

The average individual processing loads on the three computers of this sys-
tem are 5.125 sec., 5.875 sec., and 5.625 sec., respectively, per process invocation
[CHUB4]. Thus, the bottleneck system resource is Computer 2 and the maximum
attainable ‘‘capacity’’ of the system is 1/5.875 = 0.1702 processes/sec. The values
forI,Tp(,y, n =1, ..., 1, and the capacity function for the M/G/1 queue are listed in

the table shown in Figure 7.7.

The solutions for mean process response times under various process arrival
rates are given by the table of Figure 7.8. This table also compares our analytic
results with those obtained by Chu and Leung in their study. Relative errors have
been computed by assuming the previous results to be the ‘‘actual’ values. As can
be seen from this comparison, the results produced by our methodology closely

correspond to the previously obtained analytic solution.

We will now assess the computational complexity of obtaining analytic solu-
tion for this system architecture using our methodology. Since the queueing net-
work representing the physical domain model is very simple and saturates quickly,
the amount of time required for the computation of the task throughput rates is
negligible. Approximately 600 arithmetic operations (i.e., +, —, X, or /) are needed
in order to obtain the capacity function for the aforementioned M/G/1 queue. Also,
about 60 arithmetic operations must be performed for each arrival rate considered in
order to compute the process response times. Even if all of the computations were
performed on a microcomputer, the total time (including memory access overhead)
required to produce the analytic results shown in Figure 7.8 would still be well
below 1 sec. Thus, in evaluating this simple architecture, our methodology should
be at least as ‘‘fast’’ as the analytic techniques employed in [CHUS84], based on the

information provided in that paper.

173



i | Tegy | Yy
1 17.61 1

2 | 22.18 | 1.588
3 27.22 1.941
4 | 3264 | 2158
5 | 3840 | 2293
6 44.40 | 2.380
7 | 5060 | 2.436
8 | 5694 | 2474
9 63.37 2.501
10 | 69.87 | 2.520

Figure 7.7 Capacity Function for the Simple System
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_____—___________——u—_-—-_—_..—-_—-—_-'-—-'—_-___-—-__—
|

| MEAN RESPONSE TIME (SEC.) ,‘
ARRIVAL RATE | OUR ANALYTIC | PREVIOUS RESULTS | RELATIVE ERROR |
_ (processes/sec.) (pergent) |
T 0.00 17.610 17.50 +0.63
0.04 21.737 23.0 -5.49
0.08 29.988 32.5 .1.73
0.10 38.175 41.0 -6.89

Figure 7.8 Comparison of Results for the Simple System
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7.3 Evaluation of a Sophisticated Architecture

In this section, we will analyze the performance of the application in ques-
tion when it is executed in a realistic, sophisticated environment. The architecture
of the proposed system is a loosely-coupled, multiple computer configuration, based
on the Cm* multiprocessor [DEM82]. The model of this system and its solution
will illustrate the advantages of our methodology when considering the effects of
contention for communication resources, memory access delays, and task synchroni-
zation overhead. We will first give a detailed description of this architecture, then
describe its physical domain model and, finally, compare our analytic results with

those obtained from simulation.

7.3.1 System Description

The architecture of the distributed system we are evaluating is shown in Fig-
ure 7.9. The basic component of this architecture is a Computer Module. Four such
components are present in our system, being interconnected through a communica-
tion bus. Each Computer Module consists of a processor, an intelligent switch, and
a storage unit with the associated controller. All memory references made by a pro-
cessor are sent to and interpreted by the switch of that Computer Module. All local
(with respect to the Computer Module) requests are forwarded directly to the at-
tached storage unit controller. Whenever a remote memory request is issued, it is
intercepted by the local switch, converted into a request to the switch of the proper
Computer Module, and transmitted as a data packet over the communication bus.
Upon receiving this request, the remote switch converts it into the proper memory
reference to its local storage. If data is to be retumed to the requesting switch, it is
packetized and sent back via the bus. Remote memory requests are also used by

processors to exchange messages among themselves.
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In this configuration, Computer Module 0 is designated to perform the syn-
chronization of tasks, while modules 1, 2 and 3 are dedicated to executing enabled
tasks. All of the incomplete operand sets are maintained in the local memory of
Computer Module 0. When an operand packet is received, it is first stored in
memory by the switch and then the processor is notified, which updates the affected
operand sets. The tasks corresponding to the operand sets which were completed are
enabled and each is sent to either module 1, 2 or 3 for execution, the particular
module being chosen at random. When Computer Module i, i=1,2,3 receives a task
from Computer Module 0, it first acquires the necessary data from its local storage
unit, then executes the task code, and, finally, generates a result packet (which also

serves as an operand packet) and returns it to Computer Module 0.

The timings of various operations are given by the table shown in Figure
7.10. All service times are given as means of the exponential distribution and do not
include any associated queueing delays. All execution of tasks, storage access re-
quests, and transmission of data packets are performed in the order received. Since
each resource has a finite, fixed capacity, there may be contention for any one of the

system’s resources.

7.3.2 Physical Domain Model

The system described above belongs to the ‘‘Dynamic Allocation with Cen-
tralized Synchronization’’ category. The P/C subnetwork of the physical domain
model is depicted in Figure 7.11. It consists of four ‘‘clusters’ of service centers,
CMO0,CM1,CM?2, CM3, and of service center BUS . Cluster CMi, i=0,1,2,3 which
represen Cluster CMi, i=0,1,2,3 which represents the resources of Computer
Module i, consists of service centers Pi, Mi and Si. P 0 models the time needed to
process a received operand packet. M0 represents storage access delays incurred in

updating incomplete operand sets. Service center SO models processing of local
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e —————

OPERATION AVERAGE TIME (SEC.)
EXECUTION OF A TASK 2

STORAGE ACCESS 0.5
MATCHING OF OPERANDS 0.2

TASK TRANSMISSION 0.2

RESULT PACKET TRANSMISSION 0.2

SWITCH PROCESSING 0.1

Figure 7.10 Timings for the Complex System
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packets from the communications bus, and forwarding enabled tasks to the bus for
transmission to other computer modules. Together, service centers PO, M0 and SO
represent the task synchronization overhead of our system. Pi, i=1,2,3 models the
execution and waiting times of a task at Computer Module i. Delays at server Mi,
i=1,2,3 correspond to fetching the data, which is needed to execute a received task,
from the local storage unit of module i. Si represents receiving of tasks (sent to
module i by module 0) from the communications bus, processing of storage access
requests, and transfering of result packets (generated by completed tasks) to the bus
for ransmission to Computer Module 0. Service center BUS represents the conten-
tdon for the communications bus by and the transmission time of tasks and result

packets.

Each queueing network customer in this P/C subnetwork represents either a
task, a result packet, an operand packet, or a storage access request, depending on
the stage of its ‘‘lifetime.’’ The route of a customer through the P/C subnetwork is

schematically presented below.

> 50 > M0 -> S0 -> P0->S0->BUS -> Si -> Mi -> §i -> Pi -> Si -> BUS

e

We shall now explain the routing behavior given above in detail. A customer first
visits service centers SO and MO, representing a storage access request. It then
proceeds to SO and PO, while modeling an operand packet. Afterwards, represent-

ing the transmission of an enabled task to Computer Module i (i is chosen randomly
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as either 1, 2 or 3) it again visits server S0, followed by BUS and Si. As a local
memory reference, it proceeds to Mi and then back to Si. During the subsequent
visit to service center Pi, it models the task submitted for execution. Finally,
representing a result packet, it returns to Si and then completes its route at BUS ser-
vice center. Different customer classes are used in this queueing network in order

- for customers to be able to make proper routing decisions.

7.3.3 Numerical Comparisons

The bottleneck operation in this system is the actual execution of tasks by
processors. Since the mean task execution time is 2 sec. and there are three proces-
sors available for executing tasks, the maximum achievable system throughput is 1.5
tasks/sec. The average number of tasks executed during a single instance of the pro-
cess being modeled is 8.375. Thus, the maximum “‘capacity’’ of our system is
1.5/8.375 = 0.1791 processes/sec. The values for 7, Tp(,), n=1,....J, and the capaci-
ty function for the M/G/1 queue are listed in the table shown in Figure 7.12.

The solutions for mean process response times under various process arrival
rates are given in the table of Figure 7.13. This table also compares our analytic
results with those obtained by performing a detailed simulation of this execution en-
vironment using the RESQ package. Relative errors have been computed by assum-
ing the simulation results to be the ‘‘actual’’ values. As can be seen from this com-
parison, the results produced by our methodology match very closely the ones yield-
ed by simulation.

We will now assess the computational complexity of obtaining analytic solu-
ton for this system architecture. If the Mean Value Analysis method is used to
solve the queueing network representing the physical domain model, then the com-
putation of the task throughput rates requires at most 1000 arithmetic (i.e., +, —, X or

/) operations. ions. Approximately 500 arithmetic operations are needed in order to
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i Tpi) Y (i)
1] 33639 | 1
2137930 ] 1.774
3 | 42500 | 2.375
4 | 46752 | 2.878
5 | 51.627 | 3.258
6 | 55554 | 3.633
7 | 62.113 | 3.791
8 | 65.923 | 4.082
9 | 71.991 | 4.205
10 | 75.964 | 4.428
11 | 79.168 | 4.674
12 | 83.109 | 4.857
13 | 88.883 | 4920
14 | 93.628 | 5.030
15 | 98.145 § 5.141

Figure 7.12 Capacity Function for the Compiex System
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MEAN RESPONSE TIME (SEC))

RELATIVE ERROR

184

ARRIVAL RATE | ANALYTIC SIMULATED
é_;rocesseslsec.) (per cent)
0.00 33.639 34.180 -1.58
0.04 40.840 38.854 +5.11
0.08 52.870 49910 +593
0.10 62.000 58.610 «5.78
Figure 7.13 Comparison of Results for the Complex System



obtain the capacity function for the aforementioned M/G/1 queue. Finally, about 85
operations must be performed for each process arrival rate considered. Even if all of
the computations were performed on a microcomputer, the total time (including
memory usage overhead) required to produce the analytic results shown in Figure
7.13 would still be well below 1 sec. On the other hand, for each process arrival
rate, the length of the simulation run needed to obtain the process response time was
on the order of an hour -- several orders of magnitude greater than the ime needed

by our methodology!

7.4 Interpretation of Results

The experiments described in this chapter illustrate that our methodology is
well suited for modeling realistic features of distributed systems, e.g., task syn-
chronization overhead, contention for communications facilities, and storage access
delays. As can be seen from the comparison of results of the two experiments, it is
very important to be able to represent such ‘‘overhead’ operations in a model, in
order to accurately assess the actual performance of a system. Even if the execution
of tasks is the bottieneck operation in a system, ignoring effects of overhead delays
will lead to significant underestimation of mean process response time, especially
under light load. These errors may not be as apparent in the case of heavy load,
when a system is saturated and the bottleneck resource(s) determine(s) system
throughput.

To further clarify the issues discussed above, let us consider the difference in
performance between the two architectures analyzed in this chapter. The task execu-
tion capacity of each system was identical: 3 sec. of work/sec. The total average
execution load offered to each system by an instance of the process was nearly the
same: 16.625 sec. of work in the first case and 16.750 sec. of work in the second

case. However, in the first system, the overhead due to task synchronization,
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memory references, and contention for the bus was assumed to be nonexistent.
Thus, under a low process arrival rate, the mean process response time computed
from the first model was substantially less than that given by the second model.
Under heavy waffic, this difference was less significant. Note that, when each sys-
tem is completely saturated, the response time of the second architecture will be
better than that of the first architecture, even though the execution load per process
invocation in the second system is slightly greater than that in the first system. This
behavior is due to the fact that, in the second experiment, the execution load is even-

ly balanced among the three processors, whereas, in the first case, it is not.

Another observation obtained from this case study is that the larger / (the
number of values explicitly computed for the capacity functon of the M/G/1 queue)
is, the greater is the impact of the size of the physical domain model on the overall
computational complexity of our solution process. In other words, the ‘‘faster’” the
saturation of the system occurs (as the number of processes present in the system in-
creases), the less prominent is the dependency of the total solution time on the com-

plexity of the architecture being considered.

Finally, it is important to note that, once the aforementioned capacity func-
ton has been obtained, the complexity of computing process response times for
specific arrival rates is independent of the size of the corresponding physical domain
model. This contrasts with the simulation approach, where a complete new simula-
tion run is required for each different process arrival rate. In other words, the com-
putational complexity of the simulation solution is proportional to the product of the
number of distinct arrivai rates and the physical system size. Thus, the benefits of
our methodology are especiaily evident when many different arrival rates are being

considered.
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CHAPTER 8
SUMMARY AND CONCLUSIONS

In this chapter, we shall summarize the general principles and major features
of our methodology, discuss its applicability to performance modeling and design
evaluation of distributed systems, assess its merits with respect to computational
efficiency and generality, compare it with other currently available methods and,

finally, provide suggestions for further research in this area.

8.1 Summary of the Methodology

We have drawn upon the concepts of both queueing nerwork-based tech-
niques and graph-based techniques and have combined them in an original way to
produce a foundation for an effective modeling methodology. Execution environ-
ment and program behavior are separately represented by physical domain and pro-
gram domain models, respectively. Queueing network elements of a physical
domain model are used to model the operation of physical components of a distribut-
ed system. A particular architecture is represented by the proper interconnection of
such elements and a corresponding routing algorithm for each customer class.
Depending on the category of the system being evaluated, its model includes either
one or two queueing subnetworks (called P/C and M/U). We have augmented the
standard queueing network definition with a new modeling primitive, the Black Box.
This element is used to explicitly represent the activation of tasks according to the
precedence relationships among them in a program. Queueing network customers,
possibly of different classes, are used to represent the behavior of tasks, result pack-

ets and operand packets. Finally, we have utlized the principles of Norton’s
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Decomposition Theorem to simplify the physical domain model. This is done by ap-
proximation of each subnetwork by a single service center having an exponential
service time distribution with properly chosen, state-dependent service rates. In ord-
er to reduce the complexity of system status description, it is assurned that each
‘““‘low equivalent’’ server uses the processor-sharing (PS) scheduling discipline

within each customer class,

Models in the program domain are used to represent structural properties of
programs or processes, i.e., interdependencies among different tasks. These models
are expressed in the form of computation control graphs, which constitute a power-
ful program representation mechanism. Each computation control graph is a collec-
tion of nodes and directed arcs connecting those nodes. Complex precedence rela-
tdonships among tasks can be modeled by combining arcs using AND, OR,
EXCLUSIVE-OR and UNION operators. These graphs were defined to satisfy the
special requirements of our methodology. One such requirement is to be able to au-
tomatically (and in a computationally éfﬁcient way) generate a Markov process from
a graph representation of a program’s behavior. A Markov process is used to mode!
the progression of events during the execution of a program. States of the
corresponding Markov process represent system status after occurrences of certain
‘‘important’’ events; transition rates among those states represent the rates at which
the associated events occur, given the current state. Each state is described by list-
ing all currently enabled tasks, operand packets (or task completion acknowledg-
ments) being processed and the contents of all incomplete operand sets at each
storage facility. A staie wansition occurs whenever a queueing network customer
departs from a subnetwork of the physical domain model. Thus, a state transition
corresponds to the event of completing either execution of a task or the processing
of some operand packet. State transition rates are computed from the throughputs of
P/C and M/U subnetworks with different customer populations. The average

number of tasks executed during an invocation of a program, its mean execution
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time and its distribution of parallelism are obtained by constructing (from the

corresponding computation control graph) and solving the Markov process.

We have also presented cost-effective methods for dealing with program
variations on both local (individual task) and global (structural) levels. We use dif-
ferent chains of queueing network customers to model variations in individual task
properties such as granularity, number of results generated, execution times for indi-
vidual instuctions, etc. We developed segment aggregation techniques, which ap-
proximate the behavior of a program segment by a ‘‘fluid flow’’ representation, to
optimize the analysis of different programming constructs. The techniques present-
ed in this thesis cover sequential, EXCLUSIVE-OR, parallel and looping segment
combinations. These techniques can be applied on a hierarchical basis when model-
ing well-structured programs. Furthermore, in addition to modeling the execution of
stand-alone programs, our methodology can also be used to analyze random arrivals
of processes, the limitations and potential disadvantages of which will be addressed

in the following section.

8.2 Application Considerations

Our methodology can be applied to evaluating the performance of distributed
architectures at virtually any level of the computer systems hierarchy. Its applicabil-
ity is not limited to specific structures of programs nor to certain types of physical
systems. The same general modeling principles can be utilized for each individual
case. When representing the system architecture of a particular execution environ-
ment (by a physical domain model), a modeler does not have to be concerned about
what specific programs are actually going to be evaluated with that system. All that
need to be known are the number of different types of tasks and the attributes of
each type. Conversely, when modeling the execution of a specific program, only the

category of the systern where the program is to be run must be known in order to be
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able to generate the structure (not the transition rates) of the corresponding Markov
process. Such ‘‘loose coupling’’ between models of program behavior and models
of system architectures is especially beneficial during system design and early
development stages, when the intended applications are usually not yet sufficiently
detailed. It also allows for decomposition of the solution process since the solution
of a queueing network and the construction of a Markov process can, potentially, be

performed independently.

By properly using the set of tools provided by our methodology, designers
and system planners can evaluate the performance of a proposed system with several
benchmark applicatons in a cost-effective way, enabling them to “‘pilot’’ their
design to meet specific objectives. Analysts can use the same methods for experi-
menting with various parameters within a system (without disturbing the standard
configuration and/or operation of the system itself) to optimally adjust resource utili-
zations and response times or to determine system bottlenecks. With dynamically
reconfigurable architectures, optimal (or nearly optimal) configurations for specific
applications can be quickly determined. In the case of a static task allocation policy
being employed by a system, one can ‘‘test’” a number of potential assignment algo-
rithms and adopt the one yielding the best performance.

It is important to emphasize that the solutions obtained by applying the ana-
lytic techniques presented in this thesis are estimates of the actual values and should
be treated as such. The quality of approximation will vary with each particular case
and, in general, cannot be determined a priori. However, we do believe that, in most
cases, the results yielded by our methodology will provide a reasonable indication of
the relative performance of the system being considered with respect to competing
architectures or different parameter selections. Thus, we feel that this methodology
is best suited for the kind of applications described in the preceding paragraph,

where the relative merits of alternate design proposals and different system
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configurations are being compared.

Even though no general statement on the accuracy of our methods can be
made, we would like to discuss some factors which may adversely affect the quality
of the produced estimates. The following guidelines were obtained from both exper-
imentation and theoretical consideration of the approximations and assumptions
used in the development of our methodology. If tasks utilize many resources in a
sequential and deterministic order and the FCFS queueing discipline is used, then
the validity of the ‘‘processor-sharing’’ approximation to a physical domain model
may be questionable. Analogously, if tasks have deterministic execution times and a
static allocation policy is used (with a mutually exclusive partitioning of system
resources), then the ‘‘behavior’” of the aggregate server representing the physical
domain model would certainly not be close to exponential. Architectural features
which make P/C and/or M /U subnetworks non-product-form, may also reduce the
accuracy of the ‘‘Norton’s’’ approximation. If a program includes many rypes of
tasks, each type exhibiting a ‘““‘much different’”’ behavior than the others, then that
program may not be accurately modeled unless each task type is represented by a
distinct customer chain. The behavior of a program segment, whose degree of paral-
lelism exhibits strong variance over the course of its execution, cannot, in general,
be adequately abstracted by the segment descriptor given in Section 5.1. Since such
segments violate some of the assumptions used by the segment aggregation tech-
niques developed in Chapter 5, those techniques may not yield good estimates when
utilized in such cases. Note that, when those techniques are applied hierarchically,
the variance of the degree of parallelism of the aggregate segment will, in general,

increase with each higher level of application.

It is also important to indicate what factors hinder the computational
efficiency of our methodology. Intricate looping constructs may resuit in state space

‘‘explosion’’ of the corresponding Markov processes. Systems employing distribut-
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ed synchronization and using many storage units are also subject to the latter syn-
drome. The computational complexity of obtaining state transition rates, i.e., solv-
ing for throughputs of a physical domain model, is combinatorially related to the
number of customer chains in that model. Also, many of the optimization tech-

niques presented in Chapter 5 are not directly applicable to multi-chain models.

8.3 Comparisons with Other Methods

First, we will compare our methodology with the simulation category of per-
formance prediction tools. With respect to general-purpose simulation packages,
our methodology requires substantially less processing time in both the model
development and solution phases. In virmally all cases, the design and implementa-
tdon of a model using a general-purpose simulation language would be significantly
more time-consuming than the construction of the corresponding Markov process
(even if no segment aggregation techniques are used). More importantly, the com-
putation of state transition rates and the solution of the Markov process would, in
general, take several orders of magnitude less time than the required simulation
runs. It should be noted, however, that our analytic results are only estimates of the
‘““actual” values and that no guarantee of achieving a specific accuracy level can be
made. Thus, our methodology is no substitute for detailed simulation in cases where
high accuracy is of utmost importance. However, the available empirical data indi-
cates that its overall level of accuracy is sufficient for *‘first level’’ comparisons of
performance of different system architectures. Finally, as far as performance evalua-
tion of distributed systems is concerned, the potential range of applications of our
analytic techniques is comparable with that of most general-purpose simulation
tools. (Note, though, that the computational savings offered by this methodology
may not be as significant when modeling applications with different classes of
tasks.)
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The considerations of computational efficiency and accuracy discussed above
are also applicable to special-purpose simulators. The high development cost of such
simulators is also an important factor. Furthermore, the generality of application of
our analytic methods far exceeds that of an individual special-purpose simulator.
These simulators, though able to produce highly accurate performance statistics, are
particularly effective only when the same system is frequently evaluated with dif-
ferent programs or when intricate architectural or operating system details are to be
included in the model. Thus, our methodology and special-purpose simulators com-

plement each other by satisfying different performance prediction needs.

We will now consider other currently available analytic methods. Since
techniques based only on queueing networks do not support explicit representation
of interdependencies of tasks, they are harder to use and, in general, will yield less
accurate estimates than our techniques. Furthermore, such methods are usually ap-
plicable to modeling only very simple precedence relationships, e.g., fork-join con-
structs, and cannot capture the behavior of complex program structures. As far as
graph-based methods go, there are two basic categories. Those in the first category
assume either an infinite capacity of each system resource or some other overly-
simplified architecture. Such methods, although usually reasonably accurate, are
very limited in their scope of practical applicaton since they are not capable of
modeling (much more complex) features of realistic systems -- which is easily han-
dled by our methodology. In the second category, all architectural details included in
a model are represented by nodes and arcs in a graph, intermixed together with the
representation of a program's precedence relationships. Such techniques, e.g., Sto-
chastic Petri Nets [MOLS81], are prone to rapid state space explosion as the number
of system components increases. (In our methodology, the complexity of a Markov
process is not dependent on the system size; the cost of computing state transition
rates increases with the system size, but not rearly as fast!) Also, a minor architec-

tural change may require that a compietely new graph be constructed and solved.
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Thus, compared to our methodology, the latter graph models are much more *‘ex-

pensive’’ to both generate and solve, and they are not work conserving.

8.4 Suggestions for Further Research

From the material presented in the previous chapters, we can see that
research already accomplished has resulted in the development of an original and vi-
able methodology for modeling the performance of distributed, multiple-computer
systems. However, there are still a number of interesting and important issues left
to be resolved, worthy of further investigation. In this section, we will identify the

more important of these issues and discuss possible research approaches.

If the physical domain model consists of many service centers in tandem or
if it has many servers in parallel with deterministic service times (with static alloca-
tion employed), then the ‘‘Norton’s’’ approximation made in Section 4.2 may not al-
ways yvield sufficiently accurate results. In light of this observation, it is desirable to
investigate other ways of aggregating the P/C and M /U subnetworks (such as using
a general service time distribution and/or a different queueing discipline for the ag-
'gregate server or employing two or more servers) without significantly increasing

the size and complexity of the corresponding Markov processes.

In section 4.2.4.2, we have already discussed the advantages of solving Mar-
kov processes ‘‘algebraically.”” If the Markov process is acyclic, then it is relatively
straightforward to obtain the algebraic solution. It may be worthwhile to attempt to
develop computationally feasible algorithms for algebraically solving Markov
processes containing loops and to find subsets of cyclic Markov processes where
those algorithms would be coss-effective. It would also be useful to classify compu-
tation control graphs according to whether or not algebraic solutions of the

corresponding Markov processes are cost-effective.
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In Chapter 5, we have presented heuristic techniques for optimizing the solu-
tion procedure of several common programming constructs. It would be beneficial
to identify other constructs pertinent to characterizing program behavior and
research the feasibility of developing analogous methods for evaluating those pro-
gramming constructs. It may also be possible to extend those optimization pro-
cedures to explicitly handle physical domain models containing multiple chains of
customers. Furthermore, one may want to consider how to improve the ‘‘fluid
flow’’ representation of a program segment (e.g., by including some kind of time-
dependent variance), thereby increasing the accuracy of the estimates produced by

the aforementioned techniques.

We have not yet been able to develop a general procedure for theoretically
determining the accuracy level of the results yielded by our methodology. It is im-
portant to investigate whether or not it is possible to place theoretical error bounds
on our analytic estimates, as functions of the program properties and of the architec-
ture of the system being modeled. Using such bounds, a modeler can determine the
range of application spectrum where the accuracy of our methodology is su'fﬁcicm,

the range where it is marginal and the range (if any) where it is unacceptable.

We believe that computation control graphs, as defined in Section 3.2.1, con-
stitute a powerful, compact and versatile tool for representing the structure of pro-
grams, processes and transactions. As stated previously, one of the main reasons for
developing this program representation tool is that the procedure for generating a
Markov process from a computation control graph can be conveniently automated.
However, it is conceivable that some program structures cannot casily be represent-
ed by computation control graphs. Thus, it would be useful to attempt to identify
such types of programs (if any) and develop special procedures for modeling their

behavior.
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