IN SEARCH OF EFFECTIVE DIVERSITY:
A SIX-LANGUAGE STUDY OF FAULT-TOLERANT FLIGHT
CONTROL SOFTWARE

Algirdas Avizienis November 1987
Michael R. Lyu CSD-870060
Werner Schutz

FOREWORD

This report presents the first-year summary of an investigation of fault-tolerant N-version
software for automatic flight control that is in progress at the UCLA Dependable Computing and
Fault-Tolerant Systems Laboratory. The goals of this research are:

(1) to refine the methods for generating demonstrably effective N-version software in an
industrial environment;

(2) to study the extent of effective diversity (dissimilarity) that can be attained by the use of
a rigorous methodology (a design paradigm) and the choice of different high-level
programming languages;

(3) to investigate the extent of correlation of software faults that are uncovered during the
development of N-version software, as well as those that are discovered after acceptance;

(4) to estimate the effectiveness and to evaluate the relative safety of N-version software
versus single-version software.

This research is directed by Professor Algirdas AviZienis as Principal Investigator. The
research team consists of the following graduate students in the UCLA Computer Science
Department: Michael R. Lyu, coordinator, Werner Schiitz, Johnny J. Chen, and Chi S, Wu.

Support for the first year of this research has been provided by the Sperry Commercial
Flight Systems Division of Honeywell, Inc., Phoenix, AZ, and by the Microelectronics
Innovation and Computer Research Opportunities (MICRO) program of the State of California.

Mr. John F. Williams from Honeywell, Inc. has served as the Honeywell technical liaison
person and a consultant on flight control computing to this research group. Problem
specifications, software design and test procedures, an aircraft model, sets of test cases, and
expert advice has been contributed by Mr. Williams and other members of the Honeywell
technical staff.

The UCLA research group that is conducting this investigation is fully responsible for the
conclusions of this report and for any inaccuracies that may exist.

Algirdas AviZienis
Michael R. Lyu
Werner Schiitz

November 15, 1987

TABLE OF CONTENTS

1. Introduction: Origin and Scope of the PLOJECT oo 1
2. The Problem and the CONSIAINLScvv..ucuervereereomeseeeeseesseeseeessssssess oo seesessees oo ... 3
2.1 The Automatic Landing ProbIEmcveeeeeereeveeeeeeeessessseessooeoeoeooeoooeoeoeoooeeeeoe 3
2.2 The Choice of Diversity DIMENSIONSooevveeerevsesseeessossoeosoeoeoeoossoeoeoooooeeeoeee 5
2.3 Requirements for Software TESHIE oottt ecse e, 6
2.4 The Rationale for Applying Design Diversity in TeSHNZ ...ocovvvevecemeeeeie e 7
3. Guidelines and the Process of Multi-Version Programmingc.oveeeeiceieveeeneee e ere e 8
3.1 PEISOMNEL ..oovuccitiniee et e esee e e st s e oo eeee e eeeeeeeseee e 8
3.2 Schedule of the EXPEIMENTuivuuirumneeeeceeeeereeeseeeeeseee s e oo eeeoseeeoee 8
3.3 The Programming PrOCESSewvuueiuemsesieeseeseneeseseessseessesssessssseee e eesseseeseese 10
3.4 Experience with the Communication Protocol «.......oovvoomooeooooeoooooooooo 12
4. Properties Of the VETSIONScccuuereuuesnriemmeseeensesseenseseseesenssssssesesseeseesseeeeeeeeeeesesesseee. 14
4.1 SOFIWATE MEITICS o..oov.vviceeceenenneernne st as e eseseseeeessseesesssss et e e eeeseeeeeeeesseese 14
4.2 Faults Detected during Program DeVElOPITIENE «...........vveevvoeooeooeoeooeoooooosoeeoooe 14
4.3 Additional ODSEIVALONSv.vveuivvenereneesreseeeeeeeeeenseseeessss s seseseeeeeeeeeeeeseeeseesesoe 17
5. Testing and Evaluation After Acceptance of the VErSionsoovv.oveooooooooooooooooeoooooooooo 18
6. Results of Testing and EVAIUALONuuuvveeeeeeereeeeeseessseess e oeoeeoeoeee . 21
6.1 Disagreements Detected by Flight SIMUlationsooeoveoeooooooooooooooooooooeooe 21
6.2 Faults Found During InSpection of COAEveeeerveremeoereoeeeoeeooeooeoeeoeeeoeeoeooeoooe 21
6.3 Assessment of STructural DIVETSIYo.eveeceeeeereeemereeesressesoeoeos e oo 23
6.4 Observations from the DiVersity ASSESSIMENRT w...ovevvevoeeeeoeeeeeseeeoeeoeeoeoeeooeoee 27
T CONCIUSIONS ..ovirtiitiieseteenceee et te st e sttt as e sessesseeeseee st s s s s e e e e e e e s s 29
ACKNOWIEBAZEIMEIUSeoviicaceeiresinsenies st sesssess e ssesessseossesss e seeses e sse s eeeee s ee e e eeeeseee s 30
References e E e e st e et e st sa LS e e e st oo see e sA e e e R e e antearae et e e s tae st e entesee et e s teneeanensnsrress 31

ii

In Search of Effective Diversity:

A Six-Language Study of Fault-Tolerant Flight Control Software

Algirdas AviZienis
Michael R. Lyu
Werner Schiitz

UCLA Dependable Computing and Fault-Tolerant Systems Laboratory
University of California, Los Angeles, CA 90024, U.S.A.

1. Introduction: Origin and Scope of the Project

The investigation being reported here is the consequence of a coincidence of research
interests in design diversity [Aviz82] at the UCLA Dependable Computing & Fault-Tolerant
Systems (DC & FTS) Laboratory and at the Sperry Commercial Flight Systems Division of
Honeywell, Inc., in Phoenix, Arizona (abbreviated as "H/S" in the following discussion).

Four of the long-range goals of UCLA research, which was initiated in 1975 [Aviz85a],
are: .

ey The development of rigorous design guidelines (a paradigm) that will eliminate all
identifiable causes of related design faults in two or more independently generated
versions of a program or desiga.

(2) Testing for and detailed study of all potentially related design faults that actually
produce similar errors in two or more versions independently generated from a given
specification.

3 Development of qualitative criteria that allow the assessment of the potential for
diversity through the study of a specification from which the versions are to be
generated.

(4) Development of methods for the study of a set of multiple versions to determine to what
extent diversity is actually present in the set, and search for the means to quantize the
relative diversity of versions that originate from a given specification. The relative
benefits of random vs. "enforced" diversity are also of great interest.

Honeywell/Sperry CFSD has been a very successful builder of aircraft flight control
systems for over 30 years. A recent major product of H/S is the flight control system for the
Boeing 737/300 airliner, in which a two-channel diverse design is employed [Will83].

The main research interest of H/S is the generation of demonstrably effective N-version
software in an industrial environment, such as exists now and is being further developed by
H/S. This objective includes all four above stated topics of UCLA research, referenced to the
industrial environment, as well as the estimation of the effectiveness of N-version software and
of its relative safety as compared to a single-version approach.

It was mutually agreed that an experimental investigation was necessary, in which H/S
would supply an automatic flight control problem specification, specify H/S software design and
test procedures, deliver an aircraft model and sets of realistic test cases, and also provide prompt
expert consultation. The research was initiated in October, 1986 and carried out at the UCLA
DC & FTS Laboratory, funded jointly by H/S and the State of California "MICRO" program. A
six-version programming effort in which six programming languages were used and 12
programmers were employed took place during 12 weeks of the summer of 1987. An intensive
evaluation followed, and is continuing as of November, 1987.

2. The Problem and the Constraints
2.1 The Automatic Landing Problem

Automatic (computer-controlled) landing of commercial airliners is a flight control
function that has been implemented by H/S and other companies. The specification used in the
UCLA-H/S experiment is part of a specification used by H/S to build a 3-version Demonstrator
System (hardware and software), employed to show the feasibility of N-version programming
for this type of application. The specification can be used to develop a flight control computer
(FCC) for a real aircraft, given that it is adjusted to the performance parameters of a specific
aircraft. All algorithms and control laws are specified by diagrams which have been certified by
the Federal Aviation Administration (FAA). The pitch control part of the auto-land problem,
i.e., the control of the vertical motion of the aircraft, has been selected for the experiment in
order to fit the given budget and time constraints. The major system functions of the pitch
control and its data flow are shown in Figure 1.

BAROMETRIC

) TITU
I —» ALTITUDE |- ALHOLDDE -
COMP. FILTER
i COMMAND
I ™ MONITORS |-= CM
RADIO SLO @
GLIDE SCOPE
Lo) QEe——
I —» ALTITUDE | r&eg CAPTURE LC
COMP. FILTER = & TRACK
I > DISPLAY s D
GLIDE SLOPE . T T T
1 —»| DEVIATION I = FLARE |
COMP. FILTER x ¥y z

Legend: 1= Airplane Sensor Inputs
LC = Lane Command
CM = Command Monitor Qutputs
D = Display Outputs

Figure 1: Pitch Control System Functions and Data Flow Diagram

Simulated flights begin with the initialization of the system in the Altitude Hold mode,
at a point approximately ten miles from the airport. Initial altitude is about 1500 feet, initial
speed 120 knots (200 feet per second). Pitch modes entered by the autopilot-airplane
combination, during the landing process, are: Altitude Hold, Glide Slope Capture, Glide Slope
Track, Flare, and Touchdown.

The Complementary Filters preprocess the raw data from the aircraft’s sensors. The
Barometric Altitude and Radio Altitude Complementary Filters provide estimates of true
altitude from various altitude-related signals, where the former provides the alttude reference
for the Altitude Hold mode, and the latter provides the altitude reference for the Flare mode.
The Glide Slope Deviation Complementary Filter provides estimates for beam error and radio
altitude in the Glide Slope Capture and Track modes.

Pitch mode entry and exit is determined by the Mode Logic equations, which use filtered
airplane sensor data to switch the controlling equations at the correct point in the trajectory.

Each Control Law consists of two parts, the Outer Loop and the Inner Loop, where the
Inner Loop is very similar for all three Control Laws. The Altitude Hold Control Law is
responsible for maintaining the reference altitude, by responding to turbulence-induced errors in
attitude and altitude with automatic elevator control motion. (The elevator is the surface of an
airplane that controls the vertical motion.) As soon as the edge of the glide slope beam is
reached, the airplane enters the Glide Slope Capture and Track mode and begins a pitching
motion to acquire and hold the beam center. A short time after capture, the track mode is
engaged to reduce any static displacement towards zero. Controlled by the Glide Slope Capture
and Track Control Law, the airplane maintains a constant speed along the glide slope beam.
Flare logic equations determine the precise altitude (about 50 feet) at which the Flare mode is
entered. In response to the Flare control law, the vehicle is forced along a path which targets a
vertical speed of two feet per second at touchdown.

Each program checks its final result (elevator command) against the results of the other
programs. Any disagreement is indicated by the Command Monitor output, so that the
supervisor program can take appropriate action.

The Display continuously shows information about the FCC on various panels. The
current pitch mode is displayed for the information of the pilots (Mode Display), while the
results of the Command Monitors (Fault Display) and any one of sixteen possible signals
(Signal Display) are displayed for use by the flight engineer.

Upon entering the Touchdown mode, the automatic portion of the landing is complete
and the system is automatically disengaged. This completes the automatic landing flight phase.

H/S extracted the information needed for the experiment from their original
Demonstrator specification and provided it in a "System Description Document". This
document also specified the “test points", i.e., selected intermediate values of each major system
function which had to be provided as outputs for additional error checking.

To write the specification that was given to the programmers, the UCLA coordinating
team followed the principle of supplying only minimal (i.e., only absolutely necessary)
information to the programmers, so as not to unwillingly bias the programmers’ design
decisions. The diagrams describing the major system functions were taken directly from the
"System Description Document”, while the explanatory text was shortened and made more
concise. Some general explanations about flight control and the specification of the Display
functions were added. A further enhancement to the specification was the introduction of cross-
check points [Aviz85b] and a recovery point [Tso87]. Seven cross-check points are used to
cross-check the results of the major system functions (e.g. Complementary Filters, Mode Logic,
Quter Loop, Inner Loop, etc.) with the results of the other versions before they are used in any
further computation. They have to be executed in a certain predetermined order, but again great
care was taken not to overly restrict the possible choices of computation sequence. One
recovery point is used to recover a failed version by supplying it with a set of new internal state
variables that are obtained from the other versions by the Community Error Recovery technique
[Tso87].

The original specification given to the programmers was a 64 page document (including
tables and figures) written in English. Its development required about 10 weeks of effort by two
members of the coordinating team, plus consultation by H/S experts.

2.2 The Choice of Diversity Dimensions

Design diversity is a potentially effective method to avoid similar errors that are caused
by design faults in N-version software systems. The choice of diversity dimensions in this
experiment was based on the experience gained from (1) previous experiments at UCLA
[Chen78, Kell83, Aviz84, Kell86], (2) recommendations from H/S, and (3) published work
from other sites [Gmei79, Bish86, Knig86].

Independent programming teams are the baseline dimension for design diversity. This
allows the diversity to be generated with an uncontrolled factor of "randomness”. However,
different dimensions of design diversity, including different algorithms, programming
languages, environments, implementation techniques and tools, should be investigated and
explored, and possibly used to assure a certain level of “forced" diversity [Aviz85a]. It was
decided that different algorithms were not suitable for the scope of FCCs due to potential timing
problems and difficulties in proving their correctness (guaranteed matching among them). The
investigation of different programming languages was attractive since it provides protection
from subtle compiler errors and avoids the need to certify compiler correctness. Moreover,
although research had been initiated in this direction [Gmei79, Bish86], significant comparisons
of different high order programming languages for the same critical application have not yet
been reported.

The six programming languages chosen consist of two widely used conventional
procedural languages (C and Pascal), two modern object-oriented programming languages (Ada
and Modula-2), a logic programming language (Prolog), and a functional programming
language (T, a variant of Lisp). It was hypothesized that different programming languages will
force people to think differently about the application problem and the program design, which
could lead to significant diversity of programming efforts. Choices of the Prolog and T versions
presented challenges to this project, since it was thought that they might not be suitable for this
computation-intensive application. Nevertheless, it was still considered to be worthwhile to
investigate this unexplored area, especially 10 assess the impact of Prolog and T on the structure
of the auto-land programs.

2.3 Requirements for Software Testing

H/S, along with other avionics suppliers, must adhere to the requirements of the
document DO-178A [RTCASS5], the industrial software design and test standard approved by
the FAA. The following definitions apply to software testing, as specified in [RTCAS85].

(a) Requirements-Based Tests (black box testing). Test cases are derived from the software
requirements independent of the software structure. Primarily, these are the requirements
specified in the Software Requirements Document (Software Specification), but further
requirements may emerge during the design process (e.g., scheduler requirements). These tests
demonstrate that the software performs its intended functions. Each software requirement
should be traceable to an associated verification test or tests.

(b) Software Structure-Based Tests (white box testing). Test cases are derived from the
software design itself. As such, they can address features of the implementation which may or
may not be apparent from a requirements perspective. Typically, requirements-based tests are
analyzed for structural coverage and augmented as necessary. In this sense the structure-based
tests complement the requirements-based tests to provide sufficient test coverage. Such
structure-based tests are necessary to provide some measure of protection from unintended
functions in software that may pass all of its requirements-based tests. All of the software must
be exercised to a degree commensurate with its software certification level.

Therefore, software errors are postulated to be caused by two types of human-made
faults: requirement faults and structural faults. A requirement fault exists when a specified
requirement is not or not completely complied with. A structural fault is the complement of the
requirement fault, i.e., it is any fault which is not exposed by system testing based on the system
specification,

2.4 The Rationale for Applying Design Diversity in Testing

Three categories of aircraft systems are distinguished by the FAA, namely flight critical,
flight essential, and non-essential, with different testing efforts required for each. In general,
avionics equipment is designated as “critical" when loss of the function provided by the
equipment can cause a catastrophic aircraft failure. The probability of such an occurrence must
be demonstrated by test or analysis to be 107° or less over the duration of the flight. Avionics
equipment is designated as "essential” when loss of its function can significantly impact safety.
For essential equipment the probability of loss of function must be demonstrated to be 1073 or
less over the duration of the flight.

The software portion of the critical equipment must, then, have a probability of failure
less than 10~ depending on the failure rates in remaining portions of the system. To protect
against failures in single-version software that cause total loss of a critical function, a
structural-based testing methodology is required in addition to requirements-based testing.
Any fault will manifest itself identically in all redundant computation channels that use
identical software; but this exhaustive testing procedure (Level 1) is assumed to assure the
desired reliability. For software which can fail and cause loss of an essential function only,
requirements-based testing alone is required (Level 2).

While requirements-based testing may be extensive, the number of test cases is bounded
by the system requirements. Structure-based testing, on the other hand, is likely to be very
extensive, possibly involving permutations of all inputs together with a rather subjective
evaluation of each result, If more than a few inputs are involved, the time required to prepare
and run the test, and to analyze the results becomes prohibitive and may present a serious
scheduling and cost problem. Structural testing appears to be analogous to the hardware
"failure modes and effects analysis" procedure with LSI circuits, which is acknowledged to be
extremely difficult to implement fully [Trea82]. Therefore, the FAA encourages manufacturers,
where practical, to reduce the level of testing by architectural means. The architectural
techniques to reduce test levels that the FAA has accepted, or is likely to accept, employ design
diversity as their central attribute. The application of threefold diversity in critical software is
based on the conjecture that the likelihood of two identical, critical structural faults in 3-version
software 1s, in the verified and validated release, substantially reduced from the likelihood of a
critical structural fault in a single version; thus only Level 2 testing may be required in 3-
version architectures. The FAA has recognized, however, that the conflicting requirements for
design independence and of having the diverse elements perform the same function impose an
important design constraint. Therefore, these systems must be shown to monitor each other
under all forseeable conditions and critical modes of operation.

3. Guidelines and the Process of Multi-Version Programming
3.1 Personnel

The recruitment and interviewing of programmers started about 3 months before the
12-week version generation phase in June, 1987. The summer is an especially favorable time to
recruit highly qualified personnel from the about 260 CS graduate students at UCLA, since
about 20 Teaching Assistants (many of them from programming classes) and several fellowship
holders are able to accept summer employment. About 20 candidates, most of them graduate
students at UCLA, submitted applications. The final choice of 12 programmers and their
assignment to six teams were made one month before starting the software generation. Table 1
shows the specialties, graduate standing, and qualifications of the programmers identified by
their assigned languages. (Their names are given in the Acknowledgement section.) The data
indicate a mature, experienced, and well qualified group of research programmers. The effort
was directed by the Principal Investigator, and coordinated by a three-member coordinating
team, who started the work of writing the specification and developing guidelines and
procedures, with support of H/S personnel, in Novemnber, 1986. A senior staff expert in flight
control computing from H/S maintained continuous contact and regularly made visits to UCLA.

3.2 Schedule of the Experiment

The software version generation for this experiment was conducted in six phases:

1. Training meetings (five in total, 2-4 hours each): One project-introduction meeting was
offered to all the applicants, and all other four meetings were held after the selection of
personnel. H/S presented a discussion of flight control systems as background
information. Introductory presentations were made summarizing the experiment’s
goals, requirements and the multiple version software techniques. Issues of different
programming languages were also discussed. A kick-off meeting was held on the first
day of the software development phase. At that meeting, the programmers were given
the written specifications and documentation on system tools to start their 12-week
effort. Rules and guidelines about schedules, deliverables, and communication
protocols were also clearly defined. The programmers were strongly motivated and
showed serious concerns about the project in these meetings. The need for inter-team
isolation was thoroughly discussed and clearly acknowledged by all programmers.

2. Design phase (4 weeks): At the end of this four-week phase, each team delivered a
design document following the guidelines and formats provided at the kick-off meeting.
Each team delivered a design walkthrough report after conducting a walkthrough which
was attended by UCLA and H/S principal investigators, the UCLA coordinating team,
and an H/S software expert,

Degree held CS standing in summer '87 | Programming

Team member

Field | Degree | Year | Program Year experience
Ada-1 CS B.S 1984 M.S. 2nd 3 years
ECE B.S. 1982
Ada-2 ECE MS. 1984 Ph.D. 2nd 3 years
C-1 [E B.5. 1931 Ph.D. 3rd 2 years

Cs M.S. 1983

CS B.S. 1982
C-2 cs M. 1984 Ph.D. 2nd 5 years

ECE B.S. 1982

Modula2-1 ECE M.S. 1984 Ph.D. 2nd 3 years

Modula2-2 ECE B.S. 1984 M.S. 2nd 2 years

Pascal-1 EE B.S. 1984 M.S. 4th 6 years
EECS B.S. 1984

Pascal-2 ECE M.S. 1086 Ph.D. 2nd 2 years
EE B.S. 1984

Prolog-1 cs MS. 1986 Ph.D. 2nd 3 years

Prolog-2 CS B.S. 1986 M.S. 2nd 3 years

T-1 EECS B.S. 1983 M.S. 3rd 2 years

T2 CS B.S. 1986 M.S. 2nd 3 years

ECE B.S. 1981 .

Coord-1 cs M.S. 1984 Ph.D. 4th 6 years
CS B.S. 1984

Coord-2 cs M.S. 1986 M.S. 2nd 3 years

Coord-3 ECE B.S. 1986 M.S. 2nd 2 years

Table 1: Summary of the UCLA Programmer and Coordinator Background

3. Coding phase (3 weeks): By the end of this 3-week phase, programmers had finished
coding, conducted a code walkthrough by themselves, and delivered a code development
plan and a test plan. Code Update Report forms were distributed for them to record
every change that was made after the code was generated.

4. Unit testing phase (I week): Each team was supplied with sample test data sets
(generated by H/S) for each module that were suitable to check the basic functionality of
that module. They had to pass all the unit testing data before they could proceed to the
next phase. One week was allotted to this phase. At the end of this phase, each team

conducted a codingftesting review with UCLA coordinators and H/S representatives to
present their progress and testing experience.

5. Integration testing phase (2 weeks): Four sets of partial flight simulation test data were
produced by H/S and provided to each programming team for integration testing, This
phase of testing was intended to guarantee that the software was suitable for the closed-
loop simulation of the integrated system.

6. Acceptance testing phase (2 weeks): Programmers formally submitted their programs.
Each program was run in a test harness of nine flight simulation profiles. When a
program failed a test it was returned to the programmers with the input case on which it
failed, for debugging and resubmission. By the end of this two week phase, five
programs had passed this acceptance test successfully. The T program encountered
difficulties in using the T interpreter and it was necessary to do additional work over the
next month before that version passed the acceptance test.

All the participants of this project presented concluding talks and met each other
socially at a final one-day workshop when the software generation phase ended. During that
occasion programmers were free to talk with each other and exchange their experiences. A
large variety of experiences, viewpoints and difficulties encountered were brought out during
this final workshop and following party.

3.3 The Programming Process

The software engineering process involved in this project included formal reviews,
well-planned record keeping, isolation rules, a formal communication protocol, and carefully
executed testing phases. This controlled process provided continuous interactions between the
coordinators from UCLA and H/S, and each individual team.

The design review, the coding/testing review, and the final review and workshop were
the three formal reviews within this project, all with the participation of H/S experts. These
reviews were designed to follow industrial standards as much as possible. Moreover, they
served as checkpoints to observe the progress of each programming team and to adjust the
development process according to their feedback.

For the purpose of keeping a complete record, several "deliverables" were required from
cach team. These deliverables, representing the products of the project, included two
"snapshots” of each separate module (before and after unit tests), four snapshots of the complete
program (those before and after integration tests, and those before and after acceptance tests),
two design documents (preliminary and final versions), program metrics, design walkthrough
reports, and code update reports.

10

Since error reporting was considered extremely important for this project, each team was
required to report all the changes made to their program, starting from the time when the
program first compiled successfully. All changes had to be reported, no matter whether they
were due to detected faults, efficiency improvement, specification updates, etc. For each
change a "Code Update Report”, a standardized form designed by the coordinating team, had to
be turned in. If a code change was made because of a design change, a "Design Walkthrough
Report" (another standardized form) had to be submitted as well. For the subsequent analysis,
we consider only those changes that were done to correct faults in the programs.

The purpose of imposing isolation rules on the teams was to assure the ‘‘independent
generation”’ of programs, which meant that programming efforts were carried out by
individuals or groups that did not interact with respect to the programming process. In order to
keep this constraint, the programming teams were assigned physically separated offices for their
work. Additionally, programmers were strictly admonished not to discuss any aspect of their
work with members of other teams. The coordinating team monitored the progress of each
team. Work-related communications between programmers and the coordinating team were
conducted only via a formal tool (electronic mail). The programmers directed their questions to
the coordinating team, who then tried to respond as quickly as possible. Whenever necessary,
the help of the H/S flight control experts was provided by phone calls and personal meetings to
resolve questions.

Generally, each answer was only sent to the team that submitted the corresponding
question. The answer was broadcast to all teams only if the answer led to an update or
clarification of the specification, if there was an indication of a misunderstanding common to
some teams, or if the answer was considered to be important or relevant for other teams for
some other reason. In the first case, a broadcast constituted an official amendment to the
original specification. This contrasts with the communication protocol used in the NASA
experiment {Kell86] where the answers to all questions were broadcast, regardless of which
team submitted the queston. The resulting flood of messages proved to be a bothersome
overload, that was avoided this time. The communication diagram among H/S experts, the
UCLA coordinating team and the programming teams is presented in Figure 2.

To emphasize the importance of testing, three phases of testing, unit tests, integration
tests, and acceptance tests, were introduced for error detection and debugging. At first a
reference model of control laws was implemented and provided by H/S flight control software
engineers. This version was implemented in Basic on an IBM PC to serve as the test case
generator for the unit tests and the integration tests. Later in the acceptance test, this reference
model proved to be less reliable (several faults were found) and less efficient, since the PC was
quite slow in numerical computations and I/O operations. It was necessary to replace it with a
more reliable and efficient testing procedure for a large volume of test data. For this procedure,
the outputs of the six versions were voted and the majority results were used as the reference

11

Honeywell/Sperry CFSD

Meetings,
Phone Calls
UCLA Coordinating Team
// E-mail
Ada C odula-2 Pascal Prolog T
Team Team Team Team Team Team

Figure 2: Communication Diagram of the Experiment

points to generate test data during the acceptance tests.
3.4 Experience with the Communication Protocol

The communication protocol was designed in order to: (1) prevent the ambiguity of oral
communications; (2) give the coordinating team time to think and discuss before answering a
question and to summon the help of H/S flight control experts, if necessary; (3) provide a record
of the communication for possible analysis; (4) reduce the number of messages sent to each
individual team; and (5) adhere to the principle of supplying only absolutely necessary
information to the programming teams, aiming to avoid any bias on a team’s design decisions
by supplying unnecessary and/or unrequested information.

With respect to the first three goals the protocol was very successful although
occasionally it was felt that it was more difficult to write the answer to a certain question, that
oral communication would have been easier and more efficient in some cases. The
communication with H/S was very efficient; thus it was possible to answer all questions within

12

Altogether, about 120 questions were sent by the programming teams. The answers to
only 30 of them were broadcast. The total number of broadcast messages was 40, three of
which required an additional follow-up message, to provide further clarification or to correct
errors in the original message. 10 broadcast messages were not triggered by a question; 5 of
them were sent because either the coordinating team or H/S detected an error in the
specification or for some other reason decided to update it, and 5 of them were a result of the
Design Review at which some common misinterpretations of the specification were observed.
The individual teams received between 53 and 64 messages; that constitutes a reduction by a
factor of 2 in comparison with the number of messages that would have been received if the
communication protocol of the NASA experiment [Kell86] had been used.

13

4. Properties of the Versions

As soon as the versions passed the acceptance test, a number of results became
available. They are some software metrics, collected by each programming team from its own
program, and the record of faults found during program development. All these faults were
removed from the versions before any further evaluation began.

4.1 Software Metrics

Table 2 gives a comparison of the six versions with respect to some common software
metrics [Li87]. The following metrics are considered: (1) the number of lines of code,
including comments and blank lines (LINES); (2) the number of executable statements, such as
assignment, control, I/O, or arithmetic statements (STMTS); (3) the number of lines excluding
comments and blank lines (LN-CM); (4) the size of the object code (OBJS), we note that this
metric is not applicable to the PROLOG and the T programs; (5) the number of programming
modules (subroutines, functions, procedures, etc.) used (MODS); (6) the mean number of
statements per module (STM/M); (7) the number of calls to programming modules (CALLS);
(8) the number of library functions used (LIBS), we note that this metric is not applicable to the
T program since there is no notion of "library functions”; (9) the number of calls to library
functions (LCALL), we note that this metric is also not applicable to the T program; (10) the
number of global variables (GBVAR); (11) the number of local variables (LCVAR); (12) the
number of constants (CONST), we note that this metric is not applicable to the PROLOG and
the T programs, since there local or global variables have to be used as "constants”; and (13) the
number of binary decisions (BINDE).

4.2 Faults Detected during Program Development

A total of 82 faults was found and reported during program development. The following
four tables present the distribution of these faults in the six versions under different categories.

Table 3 shows the fault distribution in each system function. The total adds up to more
than 82 since all the modules affected by one fault are counted. An asterisk indicates such a
case.

Classification of faults according to fault types is shown in Table 4. This category
considers the following type of faults: (1) typographical; (2) error of omission (missing code);
(3) unnecessary implementation (which was deleted); (4) incorrect algorithm; (5) specification
misinterpretation; and (6) specification ambiguity. "Incorrect algorithm” is the most frequent
fault type, which includes miscomputation, logic fault, initialization fault, and boundary faul.

14

Metric ADA C MODULA-2 | PASCAL | PROLOG T
LINES 2253 1378 1521 2234 1475 1575
STMTS | 1031 746 546 491 1089 1089
LN-CM || 1517 861 953 1288 * 1263
OBIJS 85.6k 83.7k 51.9k 37.5k N.A. N.A.
MODS 36 26 37 48 73 44
STM/M 29 25 15 10 15 25
CALLS 97 68 65 93 * 87
LIBS 2 2 2 10 N.A.
LCALL 3 9 6 12 54 N.A.
GBVAR | 139 141 91 81 90 97
LCVAR 117 197 132 127 209 251
CONST 68 21 18 16 N.A. N.A.
BINDE 74 114 78 118 * 86

* = Metric not provided by the team

N.A. = not applicable

Table 2: Software Metrics for the Six Programs
|l ADA | € | MODULA-2 | PASCAL | PROLOG | T | Total

Main Program 1 2 0 0 7 6 || 16
BACF 1 0 1 0 2" 3" 7
RACF 0 0 0 0 1° 1" 2
GSCF 1 1 1 4 7 2| 16
Mode Logic 1 4 0 0 1" 2" 8
Alt. Hold Outer Loop 0 0 0 1" 0 0 1
Glide Slope Outer Loop || 0 1 0 0 0 0 1
Flare Outer Loop 1 2 0 1 2" 1 7
Inner Loop 1 3 0 4" 4" 2 14
Command Monitor 0 0 0 0 1 2 3
Display 0 0 1 3 1 1 6
General, other 0 0 1 0 5" 4 10
Total 6 13 4 13 31 24 91

*: This fault affected more than one subfunction.

Table 3: Fault Distribution by Subfunctions

15

ADA | C | MODULA-2 | PASCAL | PROLOG | T || Total
Typo 0 1 0 0 9 ol 10
Omission 1 3 0 0 8 5 17
Unnecessary 1 0 0 2 0 2 5
Incorrect Algorithm 3 5 2 6 9 13 38
Spec. Misinterpretation 1 3 1 4 0 1 10
Spec. Ambiguity 0 1 0 0 0 0 1
Other 0 0 1 0 0 0 1
Total 6 13 4 12 26 21 82
Table 4: Fault Classification by Fault Types
Table 5 shows during which phases of testing the faults were detected.
ADA | C | MODULA-2 | PASCAL | PROLOG | T | Total
Coding/Unit Testing 2 4 4 10 15 7 42
Integration Testing 2 5 0 2 7 4 20
Acceptance Testing 2 4 0 0 4 10 20
Total 6 13 4 12 26 21 82

Table 5: Fault Classification by Phases

Finally, Table 6 shows the classification of faults according to
“requirements fault” and "structural fault” (see section 2.3).

the categories of

ADA | C | MODULA-2 | PASCAL | PROLOG | T || Total
Requirements 4 12 3 10 20 18 67
Structural 2 1 1 2 6 3 15
Total 6 13 4 12 26 21 82

Table 6: Fault Classification: Requirements Faults vs. Structural Faults

16

4.3 Additional Observations

All cross-check and recovery point routines were written in the C programming
language, and therefore five of the six programs had the additional problem of interfacing to
another language. The Prolog and the T team had the most severe problems. The Prolog team
had to modify the Prolog interpreter; the solution of the T team was to convert all parameters to
ASCII strings, pass them to a C routine, convert them back into numbers, do the cross-checking,
convert the results into strings, and pass them back to the T functions.

Three compiler or interpreter bugs were found during program development: the Ada
compiler did not support nested generic packages (which resulted in a design change to avoid
using this feature). With the Modula-2 compiler the expression "i+i" had to be used as an array
index instead of "2*i" to achieve the desired result. This fault is classified as the type “other" in
Table 4. The T interpreter had a problem with its garbage collection which resulted in
uncompleted long test runs. This problem delayed the T program’s passing of the acceptance
test for over a month.

In addition, we experienced a computing environment change during the experiment,
This did cost some time, but finally all teams were moved to the new Sun workstations. Only
the Modula-2 teamn had to continue to use the original VAX computers, due to their compiler
not being available on the Sun.

It is interesting to note that there was only one incidence of an identical fault, committed
by two teams, ADA and MODULA-2. In both cases the fault was discovered during unit
testing. The fault was the following: the output of an integrator in the Barometric Altitude
Complementary Filter must be limited by 65,536. Both teams mistook the comma after the
1000’s place for a decimal point and used the constant 65.536. We are not sure whether to
classify that fault as a typo or a specification misinterpretation. Although we think that this
particular number is easily readable, the example still shows that it is dangerous to provide
hand-written numbers in a specification.

In conclusion, we believe that the number of faults found indicates that all six programs
were quite thoroughly tested before they were accepted.

17

5. Testing and Evaluation After Acceptance of the Versions

Requirements-based stress testing and structural analysis are the two employed
approaches for the evaluation of the six programs. The efforts of finding more faults
(requirements-based or structure-based) and the search for evidence of structural diversity
among these programs have been the major concerns.

For the purpose of industrial-standard validation and verification, a Model Definition
Document was supplied by H/S to provide mathematical models for functions within the
landing/approach control loop, but external to the control laws defined in the System
Description Document. These models were programmed by the UCLA coordinating team to
provide a suitable control problem for the experiment. Two program versions of the aircraft
models, one in C and the other in Pascal, were independently generated. They were rather short
programs of about 100 lines of code. Nevertheless, "back-to-back" testing between these two
versions effectively revealed a bug in one of them. These versions were later certified by H/S
personnel. Generation of input data and interpretation of the results were also performed and
suggested by H/S experts.

Based on these tools, the UCLA coordinating team has been conducting H/S approved
"Level 2" stress testing for months since the software generation phase was completed in early
September 1987. The major strategy in this requirements-based testing is so-called "dynamic
closed-loop” tests, which have the purpose of verifying performance, detecting any tendency
towards dynamic mistracking between the different program versions, and exposing
requirements faults not caught in static testing. In practice, the 3 channels of diverse software
each compute a surface command to guide a simulated aircraft along its flight path. To ensure
that significant command errors could be detected, random wind turbulences of different levels
are superimposed. The individual commands are recorded and compared for discrepancies
which could indicate the presence of faults.

The configuration of the flight simulation system (shown in Figure 3) consists of three
lanes of control law computation, three command monitors, a servo control, an airplane model,
and a turbulence generator.

The lane computations and the command monitors are the redundant software versions
generated by the six UCLA programming teams. Each lane of independent computation
monitors the other two lanes. However, no single lane can make the decision as to whether
another lane is faulty. A separate servo control logic function is required to make that decision,
based on the monitor states provided by all the lanes. This control logic is based on a strategy
that ignores the elevator command from a lane when that lane is judged failed by both of the
other lanes, and these lanes are judged valid.

18

= LANEA
OMPUTATION
COMMAND
MONITOR A
.| LANEB SERVO-
OMPUTATIO ATRPLANE / SENSORS /
CONTROL/
COMMAND LANDING GEOMETRY
MONITOR B SERVOS
TURBULENCE
GENERATOR
L« LANEC
MPUTATION
COMMAND
-
MONITOR C

Figure 3: 3-Channel Flight Simulation Configuration

The airplane is a mathematical model that computes the response of the airplane to an
elevator command in terms of attitude, attitude rate, flight path, altitude, altitude rate, and
vertical acceleration. In a real aircraft these values would be directly measured by sensors. The
landing geometry model describes the deviation from the glide slope beam center as a function
of aircraft position relative to the end of the runway. Moreover, in order to provide a set of
inputs to the airplane model which create large error magnitudes, and thereby force off-nominal
software operating conditions, turbulence in the form of vertical wind gusts is introduced.

One run of flight simulation is characterized by the following five initial values: (1)
initial altitude (about 1500 feet); (2) initial distance (about 52800 feet); (3) initial nose up
relative to velocity (range from 0 to 10 degrees); (4) initial pitch attitude (range from -15 to 15
degrees); and (5) vertical velocity for the wind turbulence (0 to several ft/sec). One simulation
consists of 5000 time frame computations of 50 msec/frame, for a total landing time of 250
seconds.

19

For the purpose of efficiency, a testing procedure equivalent to Figure 3 was used
(approved by H/S): first, each lane by itself guided the airplane for a complete landing; second,
the whole history of the flight simulation was recorded; and finally, the flight profiles of all
versions were compared and analyzed to observe discrepancies and determine faults. In this
manner, over 600 flight simulations (over 3,000,000 time frames) have been exercised on the
six software versions generated from this project.

In addition to the flight simulations, a structural analysis also was carried out. The six
versions were compared to find the differences in structure and implementation that resulted
from the application of the N-version programming methodology. An additional benefit of this
analysis was that it necessitated a thorough code inspection, during which some additional
faults that were not caught by any tests were detected.

20

6. Results of Testing and Evaluation
6.1 Disagreements Detected by Flight Simulations

So far, four disagreements at the Inner Loop cross-check point have been detected
during the flight simulations. Due to the additional information provided by the test points, it
was relatively easy to determine the faulty part of the code in each case. The C version
experienced two disagreements. The first one resulted in the detection of two faults, namely
initialization with a wrong value (an intermediate value of the present time frame computation
was used instead of a result of the previous time frame computation), and the introduction and
use of an unnecessary state variable. This latter fault is related to the "underground variables”
discussed in the next section; the only difference is that in this case the fault caused a
disagreement. This fault is traceable to an ambiguity in the specification: the graphical language
used was not powerful enough to express the exact semantics of the required operation. The
third fault discovered in the C version is the too frequent initialization of a state variable (it is
re-initialized at every pitch mode change, while it should be initialized only once at the entry of
Altuwmde Hold mode). In this case, the team did not follow a specification update that was made
very late in the programming process (during integration testing).

Two disagreements were traced to an identical fault; they occurred in the Prolog and T
versions. Both teams made the same design decision to update a state variable of the Inner
Loop twice during one computation of the Inner Loop. This fault is due to the same
specification ambiguity as mentioned above, but in addition these teams did not pay attention to
a broadcast clarification that addressed exactly that problem. Although similar in nature, the two
versions disagreed in slightly different ways from the other versions.

It is noteworthy that all observed disagreements were very small, and further
experiments showed that the versions with these discrepancies are always able to achieve proper
Touchdown. Furthermore, all these faults are specification related. It is interesting to note that
the Inner Loop was the program part that was most thoroughly tested during all test phases.

6.2 Faults Found During Inspection of Code

The following faults were detected during the code inspection performed as part of the
structural analysis (see section 5):

One requirements fault was found in the Display, where rounding to 5 significant digits
was not done correctly. The error occurs only when rounding overflow (e.g., 6 or more
subsequent 9°s) changes the decimal point position. This special case was not triggered by any
of the acceptance test or flight simulation data. Other teams, however, had discovered the same
kind of fault during unit testing. Therefore one explanation might be that this team did not

21

perform the unit test sufficiently carefully.

The other six faults were three types of structural faults, discovered in the C, Modula-2,
Pascal, Prolog, and T versions. They and their possible impacts are discussed next.

One fault was Type 1, as described next. Normally, the boundaries within which the
output of certain functions (integrator, rate limiter, and magnitude limiter) had to be limited was
a finite constant, There were a few cases (in the Inner Loop and the Command Monitor),
however, where the bound was either +oo or -es. To implement these special cases, the C
version used the arbitrarily chosen values +99999.0 or -99999.0 and passed them as parameters
to the subprogram that implements the functions mentioned above, This is a structural fault
because an unintended (unspecified) function (i.e. the limiting of an output value) is performed
if this value exceeds the arbitrarily chosen values. In this application, however, this might not
be a problem since the output of the Inner Loop (elevator command) will be further limited to
*15 degrees. Similarly, the Command Monitor will indicate a disagreement between two
versions long before this structural fault has any effect.

Type 2 fauits are more serious. They are caused by the introduction of new, unspecified
state variables which we call "underground variables”, since they are neither checked nor
corrected in any cross-check or recovery point. This may lead to an inconsistent state which is
impossible to recover from. An example follows: the C team decided to move the computation
of some parameters for the Glide Slope Deviation Complementary Filter outside of this Filter.
Unfortunately, this computation depends on some other, state dependent computations in this
Filter. These latter computations were re-implemented outside the Glide Slope Deviation
Complementary Filter which also led to a duplication of their state variables. Therefore, a new
design rule for multi-version software must be stated as "Do not introduce any ‘underground’
variables”. Note that this rule is irrelevant if only cross-check points are used, since these do
not attempt to recover the internal state of the version. Only one Type 2 fault was uncovered.

Type 3 faults occurred when the C, Modula-2, Prolog, and T teams used the output of
the Mode Logic in some further (but different!) computations before it was voted upon. This
was in violation of a rule stated in the specification, explicitly forbidding that. If the Mode
Logic output is corrected by the Decision Function, an fault of this kind could lead to a situation
where the Mode Logic output is correct, but the variables dependent on this output are not,
since they were computed using the old, uncorrected values of the Mode Logic output. Then an
inconsistent state between different variables of the version might exist which could be
impossible to recover from. Apparently, more programmer training is necessary to prevent these
types of mistake since the reason for this fault is obviously a misunderstanding or unawareness
of some of the multi-version software design rules. Although this might seem a dangerous
possibility of introducing common faults, faults of this kind are easily checked for. Thus they
can be eliminated by the acceptance test. We conclude that the acceptance test should always

22

check for compliance with all the N-version software design rules specified.

The six discovered structural faults that are described above are uncorrelated, and thus
will be tolerated by the multi-version software approach.

6.3 Assessment of Structural Diversity

A fundamental first step in assessing the diversity that is present in a set of versions must
be an assessment of the potential for diversity (PFD) that is indicated by a given specification.
Some reasonable evidence that meaningful diversity can occur is needed in order to justify the
effort of multi-version programming. Here we exclude the "pseudo-diversity” that can be
attained by rearranging code, using simple substitutions of identities, etc. It is introduced too
late in the programming process to be effective, and is likely to replicate and camouflage
already existing faults.

After the PFD assessment, a decision must be made whether certain diversity shall be
“enforced”, i.e., specified; examples would be a requirement to use different algorithms
[Chen78], several versions of the specification [Kell83], different compilers, programming
languages, etc. The alternative is to depend on the isolation between programmers and on the
differences in their backgrounds and approaches to the problem as the means to get diversity.
This is the "random” approach to the attainment of diversity.

It is our position that the minimal requirement must be (1) the isolation of programming
efforts, and (2) "enforced" diversity that is needed to avoid predictable causes of common
faults, such as compiler bugs and other defects that could exist in a shared support environment.

In the present investigation the only additional choice of "enforced” diversity is the use
of six different programming langnages. One of our goals is to evaluate the effectiveness of this
choice in attaining meaningful diversity between the six versions that originated from one
specification. A summary of the observations follows.

The "PFD" column of Table 7 gives our assessment of the extent of diversity (structural
differences) that may be expected for each program module. A module has "poor" potential for
diversity if it is either so small and simple, or else if its computation sequence (in terms of
primitive operations) is so well-defined by data dependencies, that there is little room for
diversity in implementation and organizational aspects. In the modules with "good" potential
for diversity, many (between 5 and 10) independent computation paths exist which could be
traversed in any order. In the case of the Main Program the sequence of the major system
functions is determined by data dependencies (cf. Figure 1); here the PFD lies in the
organizational aspects. Modules with "medium” PFD are estimated to lie somewhere between
these two limiting cases. It must be noted that the PFD assessment is somewhat subjective; the

23

factors used in the assessment include the specification of each program module as well as the
observed structural differences.

The column "Observed Diversity” of Table 7 lists the attributes in which structural
diversity actually was observed between two or more of the six versions. Further explanations
and comments on this column follow.

Program Module PFD Observed Diversity

Main Program good level of detail implemented, information
handling, organization of state variable
initialization, placement of calls to vote
routines

Radio Altitude | poor grouping, sequence

Complementary Filter

Barometric Altitude | medium | grouping, sequence

Complementary Filter

Glide Slope Deviation | medium | grouping, sequence, time-dependent

Complementary Filter computation

Mode Logic good constants, sequence, algorithm

Altitude Hold Control | poor constants, grouping, sequence

Law, Outer Loop

Glide Slope Capture | good constants, grouping, sequence, time-

and Track Control Law, dependent computation

Outer Loop

Flare Control Law, | good constants, grouping, sequence

Outer Loop

Inner Loop poor constants, grouping, sequence, organization

Command Monitor poor grouping, algorithm, organization

Mode Display poor algorithm

Fault Display poor algorithm

Signal Display medium | algorithm

Primitive Operations poor choice, organization

Table 7: Potential for and Observed Diversity

The first notable difference between the Main Programs is the level of detail
implemented there. The Ada version is one extreme example; it deals with all the
organizational details, such as initialization of state variables, or determination of which
function to perform at a given instant, in the Main Program. This leads to a calling hierarchy

24

which is exactly one level deep, if some auxiliary subprograms and the calls to primitive
operations are ignored. The T version is similar in the sense that all the system functions are
called directly by the Main Program. However, most of the organization (especially
initialization of state variables) is done locally by these system functions. The other versions
(C, Modula-2, Pascal) generally show a two-level calling hierarchy, i.e., they define relatively
general subprograms like "Filter Module”, "Mode Logic", or "Altitude Hold Control Law", and
deal with the organization of the appropriate system functions locally. Nevertheless, there are
some differences between these latter versions, too. For instance, the C and Modula-2 versions
organize the Control Laws into three different Control Laws (one for each pitch mode), each
consisting of an Quter and an Inner Loop. The Pascal version, on the other hand, divides the
Control Laws into an Outer and an Inner Loop, where the Quter Loop consists of three different
Outer Loop procedures. Finally, the C and Modula-2 versions differ also in the organization of
their Filter Module, or their Mode Logic. The Prolog version is a special case. It has a rather
large and complex calling hierarchy because the language is such that IF-statements have to be
implemented by function calls.

Another important difference that was noted is the strategy chosen to handle
information, i.e., state, interface, and output variables. Solutions range from extensive
parameter passing (Pascal) to the exclusive use of global variables (C, Prolog). We note that
this choice was unavoidable for the Prolog version because of the language properties. The
other versions use solutions between these two extremes, by trying to define as many variables
as possible locally. The choices are partly programming language dependent, e.g., dependent
on the availability of local static variables. A related aspect is the organization of state variable
initialization: the two basic solutions are initialization by the Main Program, or initialization
within each program module.

The third aspect of diversity in the Main Program concerns the placement of vote
routines: either all vote routines are called in the Main Program, or they are called in the system
function whose result they check. The recovery point routine, however, is always called by the
Main Program.

The notation "constants” in Table 7 indicates that some teams chose to simplify the
computation by manually evaluating some expressions consisting of constants only.
"Grouping" refers to the fact that different teams chose different ways of combining primitive
operations into statements of their programming language. "Sequence” denotes that some
versions use a different computation sequence (in terms of primitive operations) to implement a
system function than others. Sometimes the differences are very minor, for instance in the
Outer Loop of the Altitude Hold Control Law or in the Inner Loop.

25

"Time-dependent computation" means that this system function contains an algorithm
that is dependent on real time. In both cases, we observe much variety among the strategies
chosen (1) to keep track of real time; and (2) to guard against effects of limited precision of real
number representation. (Note: Real time was simulated in this application.)

“Algorithm" indicates that different versions use different algorithms to implement a
certain system function. These differences are mostly minor ones; only in the Signal Display
more interesting differences can be found, both in the structure of the algorithm and in
implementation details.

"Organization" refers mainly to the fact that some versions chose to implement a certain
subprogram as a procedure (results are returned via parameter passing), while other versions
used a function (a RETURN statement or similar construct is used). In the case of the Inner
Loop, slightly different requirements existed for different pitch modes. A variety of solutions to
cope with these has been found.

Primitive operations are integrators, linear filters, magnitude limiters, and rate limiters.
The algorithms for these operations were exactly specified, however, different choices of which
primitive operations to implement as subprograms have been made, mainly whether the
integrators include limits on the magnitude of the output value (as is required in most cases), or
not. Only the Prolog version implemented a "switch" subprogram; this choice has clearly been
influenced by programming language properties — all other versions just use IF-statements. The
T version defined only a subprogram for magnitude limiting, all other primitive operations are
implemented directly in each system function. The Prolog version uses procedures to
implement these operations, all other versions use functions. Lastly, the Ada functions also do
the state update, in the case of state dependent primitive operations; all other versions have to
do this within each system function.

Due to space constraints, no examples could be given here. These and more details can
be found in [Schu87). In conclusion, we note that both the PFD assessment and the search for
meaningful structural differences were based on individual judgements of the investigators and
are somewhat subjective. However, it is evident that (1) aspects of meaningful diversity can be
identified; and (2) diversity in programming languages definitely motivates structural diversity
between the versions. We hope that our modest first steps will stimulate further investigations
into the problems of qualitative and quantitative assessment of meaningful diversity in a set of
program versions.

26

6.4 Observations from the Diversity Assessment

In general, it can be said that more diversity was observed in the aspects whose method
of implementing was not explicitly stated in the specification, such as the Signal Display, the
organization of different Inner Loop algorithms (depending on the pitch mode), the organization
of state variable initialization, or the implementation of time-dependent computations.
Furthermore, not all the design choices outlined above can be made independently. For
instance, whether a primitive operation is defined as a function or a procedure determines if it
can be combined with other operations in a single statement, or not. Similarly, if the update of
state variables is performed as part of the primitive operation the upper levels do not have to be
concerned with this. As a last example, if the state variables of a system function are defined as
local static variables, then they cannot be initialized by the Main Program.

Two factors that limit actual diversity have been observed in the course of this
assessment. One of them is that programmers obviously tend to follow a "natural” sequence,
even when coding independent computations that could be performed in any order. The
observation made was that algorithms specified by figures were generally implemented by
following the corresponding figure from top to bottom. In this case the "natural" order was
given by the normal way to read a piece of paper, i.e. from left to right and from top to bottom.
Only when enforced by data dependencies, a different order was chosen, e.g. from bottom to
top. It can be safely assumed that the same phenomenon would occur if the specification was
stated in another form than graphical; especially this is true for a textual description. The latter
can be exemplified by the Display Module: Only one team chose the order of computation Fault
Display, Mode Display, Signal Display; all other teams chose the order Mode Display, Fault
Display, Signal Display which was also the order used in the specification. That means that if
there is a number of independent computations that could be performed in any order there exist
some permutations of these computations that are more likely to be chosen than other
permutations, due to human, psychological factors.

The Quter Loops of the Glide Slope Capture and Track and the Flare Control Law, and
the Mode Logic were affected the most; their good potential diversity was not exploited as
much as expected and possible, due to this phenomenon. In retrospect, a second reason for this
lack of diversity is that we have concluded that the logic part of the Mode Logic was
overspecified. A description of the conditions that have to be met to enter the next pitch mode
would have been more appropriate than the logic diagram which biased the programmers too
much towards using identical or very similar algorithms.

One possible solution to the “"natural” sequence problem is to provide different
specifications to individual teams. They could either be required to follow a specific unique
computation sequence, or the order of presenting the independent computations could be
different in each specification while still having each team decide which sequence to follow.

27

The problem of this approach is the possibility of introducing additional faults into the
specification, i.e., more faults than would have been made in a single specification, unless the
process of generating different versions of a specification can be proven to be correct.

The H/S concept of "test points” is the second factor that tends to limit diversity. Their
purpose is to output and compare not only the final result of the major subfunctions, but also
some intermediate results. However, that restricted the programmers on their choices of which
primitive operations to combine (efficiently!) into one programming language statement. In
effect, the intermediate values to be computed were chosen for them. These restrictions are
rather unnecessary and can easily be removed. An additional benefit is that output and the use
of vote routines would become simpler. On the other hand, the test points proved very
beneficial in version debugging. A way to preserve this useful feature is to add test points only
during the testing and debugging phase, and to remove them afterwards. Each team should be
free to choose its own test points; in addition, the program development coordinator can request
specific test points if it is intended to compare the results of two or more different versions.

28

7. Conclusions

The major conclusions of this study are:

(1) The UCLA paradigm for systematic generation of multiple-version software is
sufficiently complete and stable for application in industrial environments.

(2) The use of different programming languages has supported very effective inter-team
isolation, since different support environments were used. It also has promoted the
appearance of diversity in versions that began with a common specification.

(3) Identical faults in two versions were very rare. Only one identical pair existed in the 82
faults removed from the six versions before acceptance - and it was due to a comma
being misread as a period. During post-acceptance testing and inspection, five faults
were uncovered by testing. One pair again was identical, and this fault was due to
failure to properly incorporate a clarification to a specification ambiguity. Six more
faults were discovered by code inspection, all unrelated and different.

4) The "Type 3" structural faults (section 6.2) are due to disregard of clearly stated multi-
version software design rules. They are potentially identical and therefore dangerous.
This is also true of the Type 2 "underground variable" fault. Very strict verification that
design rules were followed must be a part of the acceptance test.

(5) The order of computations that is implied by the specification has a strong influence on
the programmers’ choice, even if other alternatives exist. This is especially true of
graphical specifications used in this effort. "Test points" given in the specification also
tend to limit diversity. There is a need to develop effective means to minimize these
diversity-limiting factors.

(6) The original specification, as received from H/S, contained too much information on
implementation issues, which would tend to limit diversity. Our concentrated effort to
reduce the specification as much as possible to the "what", removing the "how", paid off
by encouraging diversity.

We also note that we found only two identical faults that cause similar errors, described
in (3) above. This is very different from previously published results by Knight and Leveson
[Knig86). Upon reviewing that reference, we conclude that there are several significant
differences: the previous problem had limited potential for diversity, the programming process
was rather informally formulated, testing was limited, and the acceptance test was totally
inadequate according to industrial standards that we have followed. For this reason, our
conjecture is that a rigorous application of the paradigm described in this paper would have led
to the elimination of most faults described in [Knig86] before acceptance of the programs.

29

Acknowledgements

This research has been supported jointly by the Sperry Commercial Flight Systems
Division of Honeywell, Inc., in Phoenix, Arizona, and the State of California "MICRQ"
program. It is with great pleasure that we acknowledge the efforts of the representative from
Honeywell/Sperry, Mr. John F. Williams, who offered tremendous help and encouragement to
this project. The collaboration of Johnny J. Chen as a member of the coordinating team is
highly appreciated. The programming efforts were contributed by the following individuals:
Hsin-Chou Chi, Andy Y. Hwang, Ting Y. Leung, Paul C. Lin, Eugene Paik, Chien-Chung Shen,
Michael D. Stiber, Tsung-Yuan Tai, Charles Tong, Tella Vijayakumar, Ping-Hann Wang, and
Chi S. Wu. We would also like to thank Rick Tyo from Honeywell/Sperry and Mark Joseph
from UCLA for their valuable suggestions, and Nick Lai for his technical assistance.

30

[Aviz82]

[Aviz84]

[Aviz85a]

[Aviz85b]

[Bish86]

[Chen78)

[Gmei79]

[Kell83]

References

A. Avizienis, ‘‘Design Diversity - The Challenge for the Eighties,”” in
Digest of 12th Annual International Symposium on Fault-Tolerant
Computing, Santa Monica, California: June 1982, pp. 44-45.

A. AvizZienis and J.P.J. Kelly, “‘Fault-Tolerance by Design Diversity:
Concepts and Experiments,”’ Computer, Vol. 17, No. 8, August 1984, pp.
67-80.

A. AviZienis, ‘‘The N-Version Approach to Fault-Tolerant Software,’’
IEEE Transactions on Software Engineering, Vol. SE-11, No. 12,
December 1985, pp. 1491-1501.

A. AviZienis, P. Gunningberg, J.P.J. Kelly, L. Strigini, P.J. Traverse, K.S.
Tso, and U. Voges, ‘“The UCLA DEDIX System: A Distributed Testbed for
Multiple-Version Software,”” in Digest of 15th Annual International
Symposium on Fault-Tolerant Computing, Ann Arbor, Michigan: June
1985, pp. 126-134.

P.G. Bishop, D.G. Esp, M. Barnes, P, Humphreys, G. Dahll, and J. Laht,
“‘PODS - A Project of Diverse Software,”’ IEEE Transactions on Software
Engineering, Vol. SE-12, No. 9, September 1986, pp. 929-940.

L. Chen and A. AviZienis, ‘‘N-Version Programming: A Fault-Tolerance
Approach to Reliability of Software Operation,”’ in Digest of 8th Annual
International Symposium on Fault-Tolerant Computing, Toulouse, France:
June 1978, pp. 3-9.

L. Gmeiner and U. Voges, ‘‘Software Diversity in Reactor Protection
Systems: An Expeniment,”’ Proceedings IFAC Workshop SAFECOMP’79,
May 1979, pp. 75-79.

J.P.J. Kelly and A. Avizienis, ‘A Specification Oriented Multi-Version
Software Experiment,”’ in Digest of 13th Annual International Symposium
on Fault-Tolerant Computing, Milan, Italy: June 1983, pp. 121-126.

31

[Kell86]

[Knig86]

[Li&87]

[RTCASS5]

[Schu87]

[Trea82)

[Ts087]

[Wili83]

I.P.J. Kelly, A. AviZienis, B.T. Ulery, B.J. Swain, R.T. Lyu, A.T. Tai, and
K.S. Tso, ““Multi-Version Software Development,” in Proceedings IFAC
Workshop SAFECOMP’ 86, Sarlat, France: October 1986, pp. 43-49.

J.C. Knight and N.G. Leveson, ‘‘An Experimental Evaluation of the
Assumption of Independence in Multiversion Programming,”” IEEE
Transactions on Software Engineering, Vol. SE-12, No. 1, January 1986,
pp. 96-109.

H. F. Li and W. K. Cheung, ‘‘An Empirical Study of Software Metrics,”’
IEEE Transactions on Software Engineering, Vol. SE-13, No. 6, June 1987,
pp. 697-708.

RTCA, Radio Technical Commission for Aeronautics, *‘‘Software
Considerations in Airborne Systems and Equipment Certification,”
Technical Report DO-178A, Washington, D.C., March 1985. Order from:
RTCA Secretariat, One McPherson Square, 1425 K Street, N.-W., Suite 500,
Washington, DC 20005.

W. Schuetz, “‘Diversity in N-Version Software: An Analysis of Six
Programs,”” Master Thesis, UCLA Computer Science Department, Los
Angeles, CA, November 1987.

J. J. Treacy, *‘Certification of Digital Avionics: A Review of Recent FAA
Experience,”” in Aerospace Congress and Exposition, Anaheim, California:
October 1982, pp. 3-7.

K.S. Tso and A. AviZienis, ‘‘Community Error Recovery in N-Version
Software: A Design Study with Experimentation,”’ in Digest of 17th Annual
International Symposium on Fault-Tolerant Computing, Pittsburgh,
Pennsylvania: July 1987, pp. 127-133.

J. F. Williams, L. J. Yount, and J. B. Flannigan, ‘“Advanced Autopilot
Flight Director System Computer Architecture for Boeing 737-300
Aircraft,”” in Proceedings Fifth Digital Avionics Systems Conference,
Seattle, WA: November 1983.

32

