Computer Science Department Technical Report
Unliversity of California
Los Angeles, CA 90024-1596

DISTRIBUTED DATA BASE MANAGEMENT FOR
REAL-TIME BMD APPLICATIONS

Wesley W. Chu September 1987
M. T. Lan CSD-870059
K. K. Leung

R. C. Lee

M. A. Merzbacher

DISTRIBUTED DATA BASE MANAGEMENT FOR
REAL-TIME BMD APPLICATIONS

FINAL REPORT FOR THE PERIOD

FROM: May 28, 1986
TO: Sept. 30, 1987

Contract No. DASG60-85-C-0059

Prepared For:
US Army Strategic Defense Command
Huntsville, Alabama 35807
Sept. 30, 1987

University of California, Los Angeles
Wesley W. Chu, Principal Investigator
Researchers: M.T. Lan, K.X. Leung, R.C. Lee,
M.A. Merzbacher, C.M. Sit

The views, opinions, and/or findings contained in this report are those of the authors and should
not be construed as an official Department of the Army position, policy or decision, unless so
designated by other official documentation,

Table of Contents

CHAPTER I: INTRODUCTION ANDSUMMARY ... I-1

CHAPTER II:
2.1 MODULE ASSIGNMENT AND PRECEDENCE RELATIONS
FOR DISTRIBUTED REAL-TIME SYSTEMS oo, II.1-1
2.2 MODULE ASSIGNMENT FOR REAL-TIME
DISTRIBUTED PROCESSING SYSTEMS ..o I.2-1

CHAPTER III: A BATCH SERVICE SCHEDULING ALGORITHM WITH TIME-OUT

FOR REAL-TIME DISTRIBUTED PROCESSING SYSTEMS II-1
CHAPTER IV: TESTBED-BASED VALIDATION OF DESIGN TECHNIQUES V-1
CHAPTER V: PERFORMANCE OF CONCURRENCY CONTROL ALGORITHMS
FOR REAL-TIME DISTRIBUTED DATABASE SYSTEMS V-1
CHAPTER VI: A KNOWLEDGE ACQUISITION METHODOLOGY FOR
SEMANTIC QUERY PROCESSINGooviveeeanannnn, VI-1

DISTRIBUTION LIST

CHAPTER

INTRODUCTION AND SUMMARY

INTRODUCTION AND SUMMARY

During the past year, we have concentrated our efforts in the following areas of distri-
buted systems: module assignment and scheduling for distributed systems, testbed validation of
design techniques, performance of concurrency control algorithm for distributed database sys-

tems, and query processing with domain semantic.

1.0 Moduie Assignment for Real-Time Distributed Processing Systems

Module assignment is a key issue that effects system performance in distributed systems.
Response time is intimately related with module assignment. Therefore, we shall use response
time as a performance measure in our research. We have investigated two related areas. The
first area considers the module precedence effect on module assignment, and the second consid-

ers the replicated module assignment to provide load balance and improves response time.

1.1 Module Assignment and Precedence Relations for Distributed Real-Time Distributed

Systems

It is well known that module assignment should consider module precedence relation-
ships. However, most of the published task allocation work has not considered the precedence
effect. This motivates us to study and understand the effects of precedence relationship (PR)
among program modules on response time. A new loading function that includes the Intermo-
dule Communication (IMC) and Accumulative Execution Time (AET) of each module is also
proposed. Our study reveals that minimizing the most heavily loaded (bottleneck) processor is a

good principle for module assignment. Further, the PR module effect can also be integrated into

the above assignment principle. When module PR is considered in the task assignment, it yields
better performance than without considering the PR effect. Detailed results are summarized in

Chapter 2.

1.2 Module Replication and Assignment for Real-Time Distributed Systems

An analytical model is developed to estimate the task response time of distributed sys-
tems. The model considers such factors as interprocessor communications, module precedence
relationship, module scheduling, interconnection network delay, and assignment of modules and
files to computers. A heuristic algorithm for module assignment is developed to iteratively
search for module assignments which provide shorter task response times. Assigning replicated
modules may reduce task response time. Therefore, the algorithm also considers module repli-
cations. Using the sum of task response time and penalty delay for the violations of specified
thread response time requirements as the objective function, an "optimal" module multiplicity
and module allocation can be determined by the proposed algorithm. The detailed model and

algorithm are presented in Chapter 2.

Our study reveals that the task response times for a given module assignment (with repli-
cations) generated by the algorithm compare closely with that of the simulation and exhaustive

search. A series of experiments is also performed to characterize the behavior of the algorithm.

2.0 A Batch Service Scheduling Algorithm with Time-Out for Real-Time Distributed Pro-

cessing Systems

A new scheduling algorithm for reducing overhead and thus response time is proposed

for distributed processing systems. The algorithm groups several module invocations into a

batch and processes them together to reduce certain scheduling overhead. A time-out clock is
used to avoid excess delay in forming a batch. The clock is set when the first invocation arrives
at the batch queue. The batch is formed when either the number of invocations reaches the
prespecified maximum batch size or the time-out period ends. We denote this scheduling algo-
rithm Batch Service with Time- out (BST). An analytical model is developed to estimate
response time for this scheduling algorithm. The response time of a module using the BST algo-
rithm depends on the invocation rate, scheduling overhead, execution time, maximum batch size,

and time-out period. The assumptions used in the model are validated by simulations.

Comparing performance of a system using BST with that of using first-come- first-served
(FCFS) scheduling algorithm, we note that the amount of improvement depends on the ratio of
the fixed scheduling overhead to the incrementa! scheduling overhead. At heavy invocation
rates, more batches will be formed when using the BST algorithm, therefore fixed scheduling
overhead is reduced and more response time improvement can be achieved (See Chapter 3). As
a result of reduction in overhead, the system using BST provides more capacity than that of

using FCFS.

3.0 Testbed-Based Validation of Design Techniques

During the past three years, we have been jointly working with Unisys SDC at Huntsville
to study and develop design methodology for tightly coupled distributed systems. Experimenta-
tion on the testbed provides us with insights on algorithm behavior. We have developed a fault
tolerant locking (FTL) algorithm for the tightly coupled multiple proccssing system [1],
designed the experiments, and studied its feasibility and performance. Experimental results
reveal that the FTL is capable of detecting a processor failure during update and recovering data

inconsistency among replicated copies. The overhead for performing the fault-tolerant locking

protocol depends on the lock frequency and its application. The parameters that may affect sys-
temn performance are: time-out period, lock granularity (record or a group of records), and lock
protocol (e.g., exclusive lock for write and shared for read, or reserve, upgrade, or exclusive

lock).

We have also used the testbed for studying the performance of lock granularity (e.g.
record, file) and the performance of reserve-upgrade locking protocol. Because of the read/write
pattern of the radar tracking application, the results reveal that simple record locking provides
better response time than file locking and reserve-upgrade locking. The detailed results are sum-

marized in Chapter 4,

4.0 Performance of Concurrency Control Algorithms for Real-Time Distributed Database

Systems

The survivability of distributed systems can be improved with multiple copies of files.
When an update is performed on a copy, the update should be written on all other file copies. If
the computer that is handling the update fails during the update process, all the copies may not

be updated, resulting in mutual inconsistency.

To study the different concurrency control techniques, we introduced new performance
measures such as accuracy and weak consistency for characterizing the performance for data
consistency. We have experimentally studied three types of protocols via simulatdon: Primary
Site Locking (PSL) [2], Exclusive Writer Protocol (EWP) [3], and Time Stamp with modified
Rollback (TMR) [4] and compared their performance in terms of response time, communication
overhead, query rate, update/query ratio, consistency, and accuracy. Detailed discussions are
given in Chapter 5. Protocols that assure weak consistency yield better performance (response

time) than those assuring strong consistency. The data consistency requirement for different

types of data is application dependent. Further, it also depends on how the data is used for deci-
sion making. It is possible that when data state is x, weak consistency is sufficient. While data

state becomes y, strong consistency is required.

5.0 A Methodology of Knowledge Acquisition for Semantic Query Processing

Query processing is a key consideration in database management systems. Conventional
approach uses a domain-independent approach for query processing design. Queries are
transformed algebraically to determine the optimal access plan for retrieving the answer.
Semantic query optimization uses a set of integrity constraints and reasoning to transform a
given query into a different but more efficient query yet yields the same answer. It has been
shown that this technique has great promise for improving system performance. However,

knowledge acquisition problem needed to be solved before this technique can be of practical use.

Data modelling provides a useful tool for database design and usage. Conventional data
models such as hierarchical, network, and relational models provide a record-based data struc-
ture for modelling database application. However, because of the lack of expressiveness of the
conventional data models in modelling various database applications, semantic data models have
been developed to provide a rich set of semantic constructs to describe various situations of the
application. Database designer then uses his knowledge about the application to define the data-
base schema. Most of the semantic data models focus only on providing structural specification
and ignore the importance of knowledge for designing the database. However, this knowledge is

very useful to semantic query processing and should be saved and used in query processing.

In this research, a semantic data model is developed that provides a knowledge
specification capability associated with the semantic constructs for schema specification. This

data model provides not only the necessary semantic expressive capability to model various

database applications, but also specifies domain knowledge which can be used to improve query
processing performance. A knowledge acquisition tool is developed for systematically collecting
useful domain knowledge for semantic query processing. A semantic database management sys-
tem (SDBMS) is proposed that integrates semantic data modelling with semantic query process-
ing. SDBMS provides facilities to systematically acquire semantic knowledge and use them to

improve query processing. Detailed discussions are given in Chapter 6.

References

[1] Chu, Wesley W. and Jung Min An, "Fault Tolerant Locking (FTL) for Tightly Coupled Sys-
tems,"” Proceedings of the 5th Symposium on Reliability in Distributed Software and
Database Systems, Los Angeles, California, January 13-15, 1986.

[2] Stonebraker, Michael, "Concurrency Control and Consistency of Multiple Copies of Data in
Distributed INGRES," IEEE Transactions on Software Engineering, vol. SE-5, no. 3, pp.
188-194, May, 1979.

[3] Chu, Wesley W. and Joseph Hellerstein, "The Exclusive Writer Approach to Updating
Replicate Files in Distributed Processing Systems,” IEEE Transactions on Computers,
pp. 489-500, June, 1985.

[4] Jajodia, Sushil and Catherine A. Meadows, "Mutual Consistency in Decentralized Distri-
buted Systems,"” Proceedings Third International Conference on Data Engineering, vol.
3, pp. 396-404, IEEE, 1987.

CHAPTER II

2.1 MODULE ASSIGNMENT AND PRECEDENCE

RELATIONS FOR DISTRIBUTED REAL-TIME SYSTEMS

TEEE TRANSACTIONS UN COMPUTERS. VOL C 36 SO & JLNE 1987

Task Allocation and Precedence Relations for
Distributed Real-Time Systems

WESLEY W. CHU, reLiLow, 1EEE. AN LANCE M-T. LAN. MEMBER. [EEE

4bstract—1n a distributed processing system with the appiica-
tion software partitioned into a3 set of program modules,
allocation of those modules to the processors is an important
problem. This paper presents a method for optimal module
allocation that satisfies certain performance constraints. Aa
objective function that includes the intermodule communication
(IMC) and accumulative execution time (AET) of each moduile is
proposed. [t minimizes the bottieneck-processor utilization—a
good principie for task allocation. Next, the effects of precedence
relationship (PR) among program modules on response iime are
studied. Both simulation and anaiytical resuits reveal that the
program-size ratio between (wo consecutive modules plays an
important roie in task response time. Finally, an algorithm based
on PR, AET, and IMC and on the proposed objective function is
presented. This atgorithm generates better module assignments
than those that do not consider the PR effects.

Index Terms—Distributed processing, intermodule communi-
cation (IMC), interprocessor communication (IPC), minimum
bottieneck, module assignment, parsilel processing, precedence
reiationship (PR), real-time systems, response time, task alloca-
tion algorithms,

I. INTRODUCTION

LTHOUGH computer speed has been increased by

several orders of magnitude in recent decades, the
demand for computing capacity increases at an even faster
pace. The required processing power for many real-time
applications cannot be achieved with a single processor. One
approach to this problem is to use distributed data processing
(DDP) that concurrently processes an application program on
multiple processors. If properly designed and planned, DDP
provides a more economical and reliable approach than that of
centralized processing systems.

Task partitioning and task allocation are two major steps in
the design of DDP systems. If these steps are not done
properly, an increase in the number of processors in a system
may actuaily result in a decrease of the total throughput [5}].
Assuming the software for an application (a fask) has been
partitioned into a set of program modules (or subroutines), in
this paper we study how to optimally allocate these modules to
the set of processors in the DDP system.

Manuscript received Sepiember 10, 1985; revised August {1, 1986, This
work was supported by the Bailistic Missile Defense Advanced Technology
Center under Contracts DASGH0-79-C-0087 and DASG60-83-C-0019.

W. W. Chu is with the Department of Computer Science. University of
California. Los Angeles. CA 90024,

L. M-T. Lan was with the Department of Computer Science, University of
California, Los Angeles. CA 90024. He is now with the Cellular Telecommu-
nicauons Laboratory. AT&T Bell Laboratories, Whippany, NJ 07981,

[EEE Log Number 8713985,

First, we shall present two important parameters for task
allocation: imermodule communication (IMC) and accumula-
tive execution time (AET) of each module. The load of a
processor consists of AET and IMC. We propose an objective
function for task allocation that is based on mimmizing the
load on the most heavily loaded processor (*‘bottleneck ™).
The precedence relation (PR) among program modules. that
specifies the execution sequence of the modules. 15 another
parameter that affects module assignment. It is studied
analytically and experimentally. A series of experiments are
presented which reveal that the program-size ratio between
two consecutive modules plays an important role in determin-
ing whether two modules should be colocated. An analyucal
model is developed that enables us to decide whether to assign
consecutive modules to the same processor. Finally, a
heuristic algorithm is developed that considers PR, IMC, and
AET to search for the minimum-bottieneck assignment.
Examples are given to illustrate the performance of the
algorithm and also the improvement that may be obtained
when considering PR in task allocation.

II. A New OsiecTIVE FUNCTION FOR TaSK ALLOCATION

In this section we shall first describe the two important
parameters, AET and IMC, for task ailocation. An objective
function based on these parameters that minimizes system
bottleneck is proposed. Then, we present the behavior of the
proposed objective function.

A, IMC and AET

The AET for moduie M, during time interval (t,, ¢4, () is
the total execution time incurred for this module during that
time interval, i.e.,

Ti(tny a1 }= Ny (ths tn 1) Y, (ths £y20)

where N;(ty, tx.1) = number of times moduie M, executes
during (fa, th+ (), @nd y;{fs, ty.) = average execution time of
M; during (ty, fy.,). Both the y; and the AET 7, can be
expressed in units of machine language instructions (MLI).
Although the execution time of a machine language instruction
varies from one instruction to another, based on a given
instruction mix we can use the megn instruction execution
time. Our study reveals that both the number of module
executions and the AET are almost independent of module
assignments when the load offered to the system is fixed. For
example, the AET's produced by five different assignments
for a module in a space-defense application, the Distributed

0018-9340/87/0600-0667$01.00 © 1987 IEEE

p———.

154900

40%00p

J6Q0Ck

11530k

27000

ACCuMULATIVE EXECuTION TIME Cin MLDD

2250

1800

1150

300

450

0 00 1000 1580 2000 2500 3000

Lima(nsec)

3500

Fig. 1. Accumulative execution time of module My, Ty(¢, ¢ + 100 ms).
Processing Architecture Design (DPAD) systemn, are almost
identical (Fig. I).

IMC is the communication between program modules and
file modules. When a moduie on a processor writes to or reads
from a shared file on another processor, such IMC incurs IPC
(interprocessor communication) and requires processing over-
head. Controf IMC is another type of IMC. As discussed in
[8], it can be treated in the same way as the file-access IMC
when we consider the control files, as opposed to the
application files. The importance of [PC minimization has
been recognized by many researchers (5], [14]. [PC can be
reduced by assigning a pair of heavily communicating modules
to the same processor. Like AET, the IMC can also be
assumed to be independent of module assignments [16]. A
method for estimating both IMC and AET has been reported in
[8].

IPC occurs only when two communicating modules are
assigned to different processors. If two moduies reside on
different processors and communicate through a replicated
shared file, then the file is assumed to be replicated on each
processor. When a module updates the file, it updates the copy
on its local processor and sends the updates to the remote
processor. This resuits in [PC, which requires processing load
on both the sending and receiving processors. Even if the
actual transfer of the update words is done in the background
by some [/O processors, the sending processor still needs to
spend time on message formatting and address initialization
for the /O processor. The receiving processor, on the other
end, will spend time on extracting the message contents and
notifying the destination module. Such IPC overhead is
eliminated if the two modules are assigned to the same
processor since both modules would share the same local file

TEEE TRANSAUTIONS ON COMPLTERS w0l = 't S} n L NF =T

copy. Module assignments also etfect [PC for other lile
structures such as partitioned files or single-copy files.

B. The Objective Function

Assuming each module is assigned 10 one and oniy one
processor. then there are 5 different ways to assign J moduies
to § processors. This can be represented by an assignment tree.
This tree has J levels. each representing a module. At each
nonleaf node there are § downward branches, each represent-
ing the choice of a processor to host the particular module.
Therefore, the tree has S leaves. each leaf corresponding to a
possible assignment.

An exhaustive search approach for module assignment 1s 10
search every /eaf of the assignment tree. The optimal module
assignment is the one that minimizes (or maximizes. ¢.g..
throughput) a given objective function. Exhaustive search is
usually undesirable because of the prohibitive time require-
ment. For example, if the computation time for a leaf 1s 250 us
on a computer system, then the enumeration for a tree with 39
leaves requires about 1O days of processing time.

Existing approaches to task allocation can be divided into
three categories: graph-theoretic [15], [20]. {2], (3], integer O-
| programming approach [4], {6], [I8], and the heuristic
approach [13], [10]. Many of these methods try to minimize a
task’s total cost which is defined as the sum, over all
processors, of both the processing cost (i.e., AET) and the
IPC cost of that task. This might be acceptable for a distributed
system shared by muitiple simultaneous nonreal-time applica-
tions (tasks), each having program moduies running on some
or all of the multiple processors. Such applications attempt to
maximize the total throughput. For a distributed system with
identical processors, this formulation is equivalent to the
minimization of IPC since the total AET is fixed.

For real-time systems, response time is the most important
performance measure. A computer system is designated solely
for a specific application, i.e., the system is nof shared by any
other application. The system is required to finish a certain
task within a specified time limit. Minimizing [PC alone may
not produce a good assignment. In fact, in a homogeneous
system where all processors are identical, a minimum-{PC
assignment will assign all program modules to a single
processor (thus, zero [PC) which will saturate that processor
and thus yield poor response time.

The processor with the heaviest loading in a distributed
system is the one that causes the bottleneck. For instance, for
a system with three processors, an assignment resulting in 58,
60, and 61 percent of processor utilizations might have a better
response time than another assignment yielding 20. 40, and 90
percent utilizations, although the total processor utilization of
the first assignment is higher than the second. This is mainly
due to the fact that the second assignment has a bottleneck
processor more heavily loaded than the first assignment. and
queueing delay is a nonlinear function that rises rapidly with
the level of bortleneck (processor load).

The processor load consists of the loads due to program
module execution and IPC. Therefore, both AET and [PC play
important roles in module assignment and influence task
response time. AET is usually represented in machine lan-

IT.1=-2

CHU AND LAN TASh ALLOC Y TTON AND PRECEDENCE RELATIONS FOR DISTRIBLTED SYSTEMS

guage nstruction «MLD. The number of transferred [PC
words can be convered into the MLI's spent by both the
processor that sends the [PC and the processor that recerves it.

For a given assignment X. the workload L(r; X)ona given
processor r is

J 5
Lir X)=E brT;"'E [IPC(r, 5; X)+IPC (s, r; X))
sl i=l

Tar

=AET (ri X0 +IPC (r; X) (D

where X' = [x,] is the assignment matrix in which X, = lor0
tndicates whether module M, is assigned to processor r. The
first term in the equation is the AET for all modules assigned
to processor ». The second term is [PC overhead due to both
the {PC originated from processor to other processors. and
incoming [PC destined to processor r from other processors.
For a system whose file-update messages dominate the [PC
traffic, we can ignore other types of {PC such as maodule-
enablement messages and system-control messages. The total
overhead due to outgoing IPC at processor r is

5 J X 5
SCU s X=Xl S VuSoh @

5= k=] s=
TAr I®r

J=t

where K is the number of files used in the distributed system;
Vi 1s the IMC message volume sent from M; to update the
replicated file F;; §;, indicates whether a replicated copy of F,
resides at processor s; the term Z5_ | 5, gives the number of
i3 Td

remote copies of £ that must be updated; and w is a weighting
constant for converting the message volume into MLI's. For a
system with message-broadcasting capability, a file update
need only be sent out once; thus, the term IS, 8y in (2)
shouid be repiaced by the constant one. sur

The AET. T, for a module M; is represented as a single
value in (1). Also, the IMC between a module and a file, V),
in (2} is represented as a single value. However, the measured
T, and ¥, vary from one time interval to another {e.g.. see
Fig. 1). Since we are concerned with system performance
during the peak-load period, we shall use the average T, and
V.« values during the peak-load period for the terms 7, and V),
in (1) and (2) to compute our objective function.

Similar to (2), the totai overhead at processor r for incoming
[PC from ail remote sites is

5 J X
SIC(n0=03 L xS Vb B

sml =l LET]

Sar inr

Based on the above discussion, we propose to use the
workload of the bottleneck processor (in unit of MLI) as the
objective function for module assignment, i.c.,

Bottleneck (X)) = max {L(r: XD}. (4)

We want to find the assignment that yields the minimum

bottieneck [7] among all possible assignments 1 e assign-
ment tree. Le.,

mi(n {Bottleneck (X}, (%)

Substituting (1) and (4) into (5) yields

rnj,n {IT?:s[AET (ri X)+IPC (r; X)]} (6)
where AET (r: X) and IPC (r; X) are the total module
execution time and total [PC overhead incurred at processor r.

A good assignment can be obtained by reducing [PC while
balancing processor loads among the set of processors. A
minimum-bottleneck assignment generally has low [PC and
fairly balanced processor ioads because of the following.

1) If the given assignment resulted in a large volume of [PC,
the sum of processor loads over all processors would be high,
which would yield high bottleneck.

2) If the loads were not fairiy balanced for an assignment,
the bottieneck (highest load of all processors) would be high
which would not yield a minimum-borttieneck assignment.

Our minimum-bottieneck approach, (6), is different from
the commoniy used measure of minimizing the sum of
processor loads (e.g.. [20]),

min {Zs: [AET (r; X)+IPC (r; X)]] .)]
x raf

An assignment obtained from (7) can be quite unbalanced. In a
homogeneous system all modules will be assigned to a single
processor as discussed before. Our minimax principie {7] is
also used in (21} which considers only the single execution of
a task, instead of using the processor load. Since each external
stimulus causes a task execution in our formulation, the
processing load is based on muitiple executions of a task.

C. Behavior of the Proposed Objective Function

To illustrate the characteristics and performance of the
proposed objective function, we apply the objective function to
the Distributed Processing Architecture Design (DPAD)
system. The DPAD system was developed to manage the data
processing and radar resources for a space-defense application
(11], {121, (18], [19]. The control-and-data-flow graph (simi-
lar to Fig. 12) consists of 23 modules which are to be assigned
to three processors.

The average AET (7,) and IMC (V) during the peak-load
period (from 1.0 to 2.0 s of mission time) for ail modules of
the DPAD systern are calculated. For example, T, = 32 055
MLI is the average of ten measured AET values for M, within
the period at each increment of 100 ms.

A program was developed to compute the proposed objec-
tive function for every assignment (corresponding to a leaf of
the assignment tree), performing an exhaustive search for the
minimum-bortleneck assignment. When an assignment yields
a bottleneck value lower than the smallest bottleneck obuined
so far, that assignment is recorded. The last ten recorded
assignments, denoted as assignment 1-10, are shown 1n Table
I. The 23 digits under the *‘assignment’’ column represent the

P

(EEE TRANSACTIONS UN COMPLTERS vl = i wes n f NE

TABLE (

TOP TEN ASSIGNMENTS FROM EXHALSTIVE SEARCH

L7A0=2 LOAD-] SATTLENESK TAPAL LOAD
FE3AZD Ixxsin LR R R R R EEEEESERE RS
TESUA Thu2 T5812 22187
TERUA TaTAg MATES 221574

5 ERETR] 75411 2200k
L ERL] RELFL] TR 223242
AL LE] BRLEL] 5911 223496
TH2TS Tungy *taary 222712
MmIATE 7411 TH 1> EFELEL)
Ti971 1u27§ TyINA 2754
LELET Tyt t1218 2221313
AR LLL Tug7 74375 222104

ASSISNHENT LARa
2z3F%33s223I3T1IFEIIIzIsazad 33338
13LK P11 12y AnNYIN 12322 123 1561
Jtm TIryr ori12y 133N 13122 32y 7%75%
Aen Tryr2 1112y 3810 11222 231 ’5u|i
A T2 1203 132209 11201 12 T517
aLn T2 1213 o0422% 13211 212
Gth 11192 12133 0n2In 33311 1 M CREY
4nm IR AR FRRRERBEFDEERFRR A TAun
iri 12123 231212 31310 21122 113 “u}ng
bLE] 11137 21212 130 21123 3413 uny
MTHIM., 12213 13121 20330 113122 223 Tunny
ANTTHE -
YECK
HOTE: 1, LOIAR-L [5 EACH PRACESSOR'S LY
2. AN ASSTANMENT WITH THE MINTMI

I3 NOT THE ASSTICNMENT WITH TH

10

Bl
Processor:

33

utiLiZATION (3]

2500 3000 3500

tine (muec)

500 1000 1500 2000

BUSY PERIOD

Processor utilization for the best module assignment seiected by
exhaustive search.

Fig. 2.

assignment of the 23 modules to the three processors (three of
the 23 modules were not implemented in the DPAD system
and are indicated here by a zero), columns 2, 3, and 4 provide
the loading on the three processors, column 5 shows the
bottleneck processor load (the largest one of the three
processor loads), and the last column is the sum of the three
processor toads. These ten assignments were simulated with the
DPAD simulator, and their performance compared. Fig. 2
shows the CPU utilization for the minimum-bottieneck assign-
ment 1. Note that the loads for the three processors are quite
balanced during the peak-load period. The processor loads for
assignments 2-10 are also fairly balanced. This verifies our
conjecture that the minimum-bottleneck objective function
provides balanced loads among processors. Fig. 3 shows the

Al FER 160 MZEC (TN INTT AF WL,
M TOTAL LOAD
E MIn{wid BOTTLENECK.

1 ExHausTIve
T oa 2 Aucomritim P-1-A
5 3 MA-1
It 4 MA-2
A | S MA-3
- & MA-4
s K
|
1%
by §
L
‘ FL-T M T 0
LI ms{nsec)
Fig. 3. Precision-Tracking Thread response times—compare the best

assignment from exhaustive search. Algonithm P-[-A. and the four
assignments from Ma et ai. [18].

Precision-Tracking port-to-port time (response time for a task
thread) for assignment 1 (curve 1). The assignments MA-i-
MA<4, reported in [18] for the DPAD system, minimize the
sum of AET and IPC and, thus, do not generate balanced-load
assignments as discussed in Section [I-B. As a result, their
response times (curves 3-6) are higher than that generated by
our objective function. (Curve 2 will be discussed later.)

II. PRECEDENCE RELATIONSHIP AND MODULE ASSIGNMENT

The precedence reiationship (PR) among program modules
is another important factor that needs to be considered in task
allocation. In this section we shail present several experiments
to illustrate the effect of PR on response time. These
experiments provide us with enough insight to formulate an

TT 1=4

CHU AND LaN TASK ALLOCATION AND PRECEDENCE RELATIONS FOR DISTRIBL TED SYSTEMS

analytical model to quantitatively study the PR effact on task
allocation. The quantitative PR effect will be used in module
grouping in our module-assignment aigorithm.

A. PR Experiments

In experiment 1. we compare three assignments of a task.
consisting of nine modules. to three processors. The control-
flow graph [Fig. 4(a)] shows the strong PR relationship among
the modules. Assume that the task arrival is a Poisson process
with rate A. When a module compietes its execution. it enables
its succeeding module according to the controi-flow graph.
The enabled module is placed at the end of the ready queue of
its residence processor in a first-come-first-served manner.
Let the execution times for all modutes be identical and equal
10 one ume unit. To clearly observe the PR effect on response
time we further assume there is no IMC between the modules
and thus there is no IPC overhead among the processors.
Three assignments (Fig. 4(b), (c) and (d)] were simulated
using the PAWS simulator [1]. The results are presented in
Fig. 5. Note that assignment 2 (pipelined) yields the best task
response time. The vertical bars in the figure represent 90
percent confidence intervals for each simulation point. The
response time varies substantially among these assignments in
spite of the fact that all the three assignments have equal and
balanced loads and there is no [PC overhead. This discrepancy
is solely due to the PR effect among modules.

[n experiment 2, the execution time of each module is
exponentially distributed (instead of being a constant), with
an qverage of one time unit. All other parameters remain
unchanged from experiment [. Experimental resuits reveal
that the task response times for the three assignments are
comparable (Fig. 5). Due to the memoryless property of the
exponential distribution, the job queue at each processor can
be approximated by an M/M/1 queue. Since the service-time
distributions of all modules are identical and ail modules are
invoked for execution at identical arrival rate, the three load-
balanced processors can be represented as three identical
queueing systems. Thus, the wait-time is the same for all
modules and all three assignments yield the same response
times.

Experiment | reveals that precedence relationship does
have an impact on task response time. Experiment 2 shows
that the PR effect on response time is aiso influenced by
module-execution-time distributions. In experiment 3, we
shall study the effect of module size on response time. We
assume that every module’s execution time is exponentially
distributed, but with a different mean value, as shown in Fig.
6. The simuiation resuits for the three assignments reveal that
assigning two consecutive modules to the same processor
yields good response times if the execution time of the
second module is much larger than that of the first module
(Fig. 7). We shall denote this as PR Principle i. For example,
because y; is considerably greater than y,, M, and M; should
be assigned to the same processor. This principle was used in
assignment 1 (Fig. 6) which yiclded the best performance.
Likewise. in assignment 1 module pairs (M, M) and (M,
M) are allocated to processors 2 and 3, respectively.

If the second module is much smailer than the first one,

(b1 ASSIGNMENT #1 (SEQUENTIAL)

PROCESSOR

MODULES #

1
1
3

(C) ASSIGNMENT #1 (FIPELIVED)

PROCESSOR | 1

(d) ASSIGNMENT #3 (SKEWED)

PROCESSOR

L)

Fig. 4. Precedence—rclationshxp expeniment 1. (a) Task control-flow graph.
(b) Sequential assignment. (¢) Pipelined assignment. (d) Skewed assignment.

oS Expeniment | }
--------- ExPERIMENT 2 i
i
o .{"
£
-
w !i
g
b
&5
b
= &l
2q SEQUENT LAY
A3
i 4 SxEw
A2
PireLine
4
1 §
9
0 [N R T B0 100
UTILIZATTON
Fig. 5. Compare the response time of three module assignments. Expern-

ment | uses deterministic execution time. Experiment 2 uses exponential
execution time.

separating the two consecutive modules and assigning
them to two different processors yields better response
time. We shall denote this as PR Principle 2. Since y; is much
less than y; in this example, M; and M, should be assigned to
different processors. Assignment | satisfies the PR Principles
for all pairs of consecutive modules. Therefore, it yields the
best response time. Assignment 2 is the worst of the three
assignments because it violates the PR Principles for all
module pairs. Assignment 3 violates PR Principle | for some

“tin

LIS SRR
L L14

1 PRI R
!
1

1 |

W, T ey

PTG IS M, ms
3 upwn oM 95 0 MIG
1B}
Fig. 6. (a) Task control-flow graph and (b} module assignments for PR
experiment 3.
70
Al

50&.

S0
ud
T 44 1
Lt
wr
g Al
&
& g
"
b
=

a

AL
19

9 @ 20 38 + S8 [] 100
UTILIZATION

Fig. 7. Performance of three moduie assignments for PR experiment 3.

module pairs (e.g., separation of M, from M) and satisfies
PR Principle 2 for some other pairs (¢.g., separation of M,
from M;), therefore its performance lies between that of
assignments 1 and 2. We repeated these experiments with
deterministic execution times and obtained similar results.
Let us now discuss the reasons why good response time can
be obtained from following the PR Principles. When a job
arrival process is deterministic, the workload is evenly spread
over time. The average queue length at every processor and
thus, the average module wait time, should be smaller than
that of a bursty arrival process. If two consecutive modules are

[EEE TRANSACTIONS ON COMPUTERS. V(O .3k S 1 GLSE 9T

assigned to the same processor and if the execution time of the
second module 15 much larger than that of the first. the second
one will act as a regulating vaive which controls the task tlow
into the next processor. This makes the arrival process at the
next processor more deterministic than the arrival process of
the first module at the first processor. [t is well known tfrom
queueing theory that for a given queueing system with a given
arrivai rate, the deterministic-arrival case yields less wait time
than that of the bursty arrival case.

We can explain the results of experiment 3 based on the
above reasoning. In assignment |, M, at processor | has a
large execution time. reguiating the task flow into processor 2.
Therefore, even though there are bursty armivals for M,, the
invocation armvals for M at processor 2 are spread fairly
evenly over time. As a result. the queue that contains
invocations for M, and M, at processor 2 would be short and
thus yield short wait times for M, and M,. Likewise, M, acts
as a regulating valve for the task flow into processor 3.

Assignment 2 yields poor response time. Since the size of
M, is small, each group of bursty invocation arrivals for M,
resuits in bursty arrtvals for M, at processor 2 (i.e., there is no
regulating valve between processors 1 and 2). As a result,
there is a high probability of having many arrivals for M,
waiting in the queue at processor 2. A newly arrived
invocation for M, (called M; invocation) at processor 2 has a
high probability of finding other previously arrived M,
invocations in the queue. Execution of the first M; invocation
in the queue generates an invocation for M; which is placed at
the end of the queue at processor 2. There is a long wait time
for the execution of this M invocation due to the large number
of M, invocations in front of it. This process is repeated with
the execution of other M. invocations in the gqueue, thus
contributing to the large response time. Furthermore, since M,
(at processor 2) is small, the consecutive M) invocations finish
their execution rapidly (although they each have a long wait
time). This generates bursty invocations for M, at processor 3.
again causing long wait time for those modules assigned at
processor 3.

From these experiments, we note that moduie-size (service
time) distribution and the module-size ratios of consecutive
module pairs influence response time. In the following, we
shall use analytical methods to derive quantitative guidelines
for determining whether or not a consecutive module pair M;
and M;, with given module-size distributions and average
sizes y; and y;, should be colocated in the same processor.

B. PR Analysis

Consider the control-flow graph with two separate threads
in Fig. 8(a) where all modules have deterministic execution
times. Assume no IMC exists among modules. Let y, = 3, »2
= y,. Thus, the module-sizeratior = ;3 = Yy = e =
¥/ y;. Furthermore, let the job arrival rates A=A = A
Under the above condition, both assignments | and 2 [Fig.
8(b)] yield equal processor loads. However, they yield
different response times. We wish to derive analytical resuits
so that the module-size ratio # can be used as a parameter for
determining whether M, and M, (also M; and M,) should be
colocated: that is. if 7 is greater than some threshold value, M,

TT 1l=f

CHL AND LAN TASK ALLOCATION aND PRECEDENCE RELATIONS FOR DISTRIBUTED SYSTEMS

..
b
Fig. 8 PR anatytical study. Two threads of consecutive modules for

studying wait-time ratio between assignments | and 2 as a function of size
ratio between the consecutive modules.

and M, shouid be assigned to the same processor; otherwise
they should be separated.

The response time for the left control thread in Fig. 8(a) is
wild, r) + yi + wiA, r) + y; while the response time for
the right thread is wy(A, r) + y; + w4, r) + Yi, where
w,{A4, r) is the queueing wait time experienced by module M.
The queueing wait time is a function of both the assignment A4
and the module-size ratio r. Because of the symmetry of the
two threads and the balanced loading on both processors, both
threads have the same response time for assignment 1, denoted
as 4. The two threads also have the same response time for
Aj;. Therefore, it is sufficient to compare A; and A, using the
response time of only one thread. The left thread is chosen for
the following analysis.

The thread response times for A, and 4, are wi(dy, r) + ¥
+ wilAdy, 7} + yrand wi(Ay, 7)) + Y+ waldy, 1) + g,
respectively. Since the values of y,, ys, ¥y, and y, are fixed and
independent of module assignment, they need not be consid-
ered. Thus, the wait-time ratio between assignments 1 and 2
is defined as

w'l(Ah r)+w2(Ah f')

R R = A T

)]

If R < 1, then assignment { yields better response time than
assignment 2, The response-time improvement is due to berter
handling of the PR effect. Under such conditions, we should
assign the pair of consecutive modules M, and M to the same
processor, and the other pair M, and M, to the alternate
processor. If R > 1, then assignment 2 has better response
time than assignment 1 and the consecutive modules should be
assigned to different processors. Thus, R (see (8)) allows us to
select the better module assignment.

Let us now discuss how to compute w,(A, r) and thus, R.
For a given control-flow graph, module assignment, and
module-size distributions, the wait-time w,'s for all modules
can be estimated via the analytical model reported in [9].
The Appendix shows how to use the model to derive the
numerator and denominator for (8). Therefore, we are able to
determine the wait-time ratio R for various module-size ratios
r. When all the modules have constant service times, we can

compute R as a function of processor uulization o for
executing M, and M, [Fig. %(a) and bikio = oy * g5, 0, =
A yiand oy = Ay, Note that R increases as r decreases from
100 to 0.4 (Fig. 9(a)]. As r further decreases from0.4. R then
reverses the trend and starts to decrease (Fig. 3(b)]. Note that
R = I. occuring at r = 2.5, is the threshold value that
determines whether two consecutive modules should be
colocated. R varies slightly with processor utilization. In the
same manner. when the module execution times are exponen-
ually distributed, we can derive the relationship between the
wait-time ratio R and the module-size ratio 7. as shown n
Figs. 9(c) and (d). In this case. the threshold value R = |
occurs at r = [,

Note from Fig. 9 that when each module execution time ts
exponentially distributed, R is less sensitive to 7, as compared
to the case of deterministic module execution time. Results
from the analytical mode! aiso confirm our observation in
experiments | and 2 that response time is more sensitive to
precedence relationship when module service times are detar-
ministic than when they are exponentially distributed.

We have extended the above analysis to encompass the case
where each control thread consists of rhree consecutive
modules. M;, M, M, are consecutive moduies in one thread
and M,, M, M, in another. Let Y= YY1 = Vs, ¥y = b,
and Ay = A;. Assignment | allocates all the consecutive
modules to the same processors, i.e.,

Processor 1: M|, M,, M,
Processor 2: M,, M, M,.

Assignment 2 allocates the consecutive modules to different
processors, i.e.,

Processor 1: Ml, 4"5, M3
Processor 2: M,, Mz, Mg.

Note that both assignments yield balanced loads. The wait-
time ratio can be expressed similar to (8). The analytical
results show that if we hold y,(= y,) fixed, then as module-size
ratio ry; = yi/yi(=ys/ys) decreases, the wait-time ratio R
between assignments | and 2 increases to a point and then
reverses the trend and starts to decrease. This is similar to the
case with two-module threads (Fig. 9). Similar relationships
are observed for a control-flow graph consisting of four
consecutive modules in a thread. All of these suggest that one
way to handle the cases with more than two consecutive
modules is to treat each pair of consecutive modules in a
control-flow graph independently. Using the PR relation (Fig.
9) one can decide whether to allocate the two modules to the
same processor. Our experience shows that assignments
generated by such an approach yield good task response time.

[V. MODULE ASSIGNMENT ALGORITHM
A. The Algorithm

Using exhaustive search to select an assignment from an
entire assignment tree is prohibitively time consuming. There-
fore, we shall propose a heuristic algorithm for module

H, Wart-Time Hatio

2 i » L] L] “w - . - - LoN
Utilizaticn
(a)
1.04
[L,
1.4
voad
1 y
P .
M .1
& ¥
Ui et
g - ————=
- i
g z
"I N T da-
P 1.0
-3 .
¥ e ————— e
- e
[+ lég
[31
(%)
[N 2
L] 1] » n 4 - L L] - - 10
ytilization

(4]

{EEE TRANSACTIONS (3% COMPLTERS 0L 0 dn WO~ JUNE e

o
2
b
. =4
I T30
s SETETR I
ll-l LN |
5
q
k 3
PN
x
14
[N
14
4 1] ”» -» - - - (] L] - L]
Utilizaticn
by
1. 34
1.
[N
1. %4
2 Y2
-4 1. r=—a 0,40
3 ¥1 0.20
_—— 0.1
8 .i—_ﬁ—-‘_—'—.—ﬁr 0.3
+ oL
i (100-’
- e
3
x
- 484
[* 4
Lt
(N}
(% L

utilization
(d)

Fig. 9. Wait-time ratio between rwo assignments as a function of program-
module-size ratio, for (a) and (b) determunistic execution times and (c) and
{d) exponentially distributed execution times.

assignment (Fig. 10) that considers PR, IMC, and AET. We
shall call it Algorithm P-I-A. This algorithm assumes that

1) there are J modules, M;, M,, - -+, M,, and 5 processors;

2) the AET (an average during the peak-load period) for
each module M;, T;, (j = 1, *++, J) is given;

3) the IMC (an average during the peak-load period)
between each module pair M; and M;, IMCy, i = 1, --- /i j
=1, --- J) is given. Each IMC; can be derived from the
Vs [8].

The algorithm consists of two phases. Phase I reduces J
modules to G groups (G < J) which corresponds to a2 much
smaller assignment tree for Phase II. This grouping can be
done with very little computation. Each group generated at the
end of Phase [is a set of modules which will be assigned as a
single unit to a processor. In Phase II these groups are
assigned to the processors such that the bottleneck (in the most
heavily utilized processor) is minimized.

The grouping of modules in Phase I is based on several
factors. To reduce IPC, heavily communicating modules may
be combined into groups. To do this, communicating module
pairs are listed in descending order of the IMC volume (Step
1.1). Module pairs with large IMC are considered first.

Next, the PR effects are considered. The decision of
whether to group two consecutive modules should be based on
the two possibly conflicting factors: IMC volume and the
effect of PR (i.e., module-size ratios). For a module pair (M.,
M;), we propose to use IMC index Ynucli, j)} = IMC,/ AET
and PR index Yegli, j) = 1 — R(ry), as defined in the
initialization in the algorithm, to evaluate these conflicting
factors. The IMC index indicates the relative IMC size
normalized by the average module size in terms of the
execution time. The typical index value should be between 0.1
and 0.5. An IMC with an index value beiow 0.1 may be
considered negligible. Grouping two modules with the small
IMC saves little IPC. The wait-time ratio R in the PR-index

TT.1-8

UHL AND Las TAaSK ALLOCATION AND PRECEDENCE RELATIONS FOR DISTRIBLTED sYSTEMS

ininalizanon:
0 Compure average AET. AET. and average processor ioad. L.
— /
AET —~ T L
T
_ i
PL =TT, 5§
2
Compure the (MC index and the PR :ndex:
C,
[N R R XY

f it ® —m=
e AET

o VA L=RUry s J gal)

Oca=et, o, withincrement aa
Do § = 3, 10 P;. with 1acrement af

Phise | — Combine modules wih large IMC into groups 1 reduce 1ol sysiem load (1e.,
10 redyce the sum of processor loads):
UL Lt ail module pawrs 14, M,) in the descending order of IMC volume.

Let ¢ach program module form a distince group (s serd:
G =Mt yalJ

1 2 If no more paies exist in the moadule -pawr list
§9 10 Phase 11
Pick ihe nex: paur of modules, M, and M, and delete thg pawr from the list.

13 Ifax Yiaac U /) * Yoo)80
go o Step 1 2,
1.4 Find the group G, that containg M,, and the froup G, that contuns M, (e,
M &G . M .5.
IFy=rtie,if M and M, are already in the same group)
et Step 1.2,

IS HTy+T, »(PLxJ)
a0 Step 1.2,
1.6 Combune the two groups G, and G, 1o a single one:
Gy — GG,
G~
Ty —=Ty+T,
Th=0

1.7 Gow Swp .2,

Phase [— Assign module FTOURS 10 processont:

2.1 Perform an exhaustive search through the new assignment tree for the asugnment
thar has che smalfest bouleneck.

22 Record the munamum-bottleneck 351 EnMend,

end;
end:

Fig. 10. The Algorithm P-I-A.

can be computed from (8). For deterministic and exponential
module execution times, from Fig. 9, R ranges between 0 and
2. R = | is the threshoid value for deciding whether to group
two consecutive moduies. The condition R < 1 corresponds to
a positive PR index Ypg{i, j), which favors the grouping of
modules M; and M;. Likewise, R > 1 indicates a negative PR
index favoring separation of M, and M;. Since the IMC index
has a range between 0.1 and 0.5 and the PR index has a range
between -1 and 1, a scaling factor « is introduced to
combine the two indexes (Step 1.3). The « value can range
from 1 to 10 and thus is a variable in Algorithm P-I-A.
Another factor to be considered is the size of a new group. If
the new group, resulting from combining two subgroups,
becomes too large, it wouid be impossible to obtain a
balanced-load assignment during Phase @O. Therefore, the
concept of processor-load threshold (PL x 3) is introduced
(Step 1.5), where PL is the average processor load and 8 is a
scale constant. If the size of a candidate new group is greater
than the threshold. the two subgroups should not be combined.
Note that a too small 3 would retard proper beneficial module
grouping while a too targe 3 makes it impossible to balance
processor loads during Phase II. Our experiences on DPAD

AR AN NG
INT9AMLL T ES

B e LERT S

*RCRABILITY 1,2 S furr awcgag[L It DL

1209

Fig. t1. Task controi-flow graph for example |.

and other systems reveal that a good range for 3 is between 0.6
and 1.2 times of the average processor load.

For each pair of « and 3 values the algorithm generates a
minimum-bottleneck assignment. We should select the assign-
ment which corresponds to the smallest minimum-bottleneck
among all sets of (a, B). If several assignments yield the same
smallest minimum-bottleneck value, then we select the one
with the smallest roral processor load.

B. Examples

In this section, we shall use an example (denoted “‘example
[”") to show that significant response-time improvement can
be achieved when PR is considered in module assignment.
Consider the control-flow graph in Fig. 11 where each
program module has a deterministic execution time of either
100 or 1000 us. Thus, the size ratios of most consecutive
module pairs are either 0.1 or 10 (except for four pairs whose
size ratios are 1.0). The job interarrival time is assumed to be
exponentially distributed, with a rate of one hundred arrivais
per unit interval. Each arrival makes an invocation to the
entire control-flow graph. Some modules are executed more
frequently than the others. Using the modei presented in (8],
the AET can be estimated for a specified time interval for each
module. The estimated AET for each unit interval is shown in
calumn 2 of Table [I. Let us assume that the IMC sizes for all
communicating module pairs are about equal, either 1400 or
1500 us (see Table [and Fig. 12) which implies that IMC
plays a lesser role than PR does. Given the PR, IMC, and
AET, the module assignment generated by Algorithm P-I-A
is shown in Table IIT along with the processor loads. In order
to compare the PR effect, we generate a second assignment
(aiso shown in Table IM) which excludes the PR effect by
replacing the Step 1.3 of Algorithm P-I-A with

1.3 If Yimc (i, f)=0.1

go to Phase II.

TABLE Il
AET T, AND FILE-UPDATE IMC ¥, FOR EXAMPLE

AgT' T L

Write- 1 File X% ik Aead-
Module 1 Lnousl spdated 1 .3l Medyles
L 12,000 101 La0a z
P 125,900 192 1400 3.4,5
] 5,250 11 1400 12
4 1,730 124 i400 1]
3 1,340 137 L4000 7.8
3 17,380 Ll 1520 9
B 1,30 t18 L1400 13
E] 15,300 19 vsgo Li
3).7s0 w10 1400 14
] 25,4300 Ll 15049 L)

2,300 1Lz 1300 11
62,3040 195 1500 Iy
2,300 il 1400 14

12,500 Lid L1400 15
130,000 -~ - -

I

* AET and Toétal [MC Juring a (d0-arrival perirod

Fig. 12. Data-flow graph for exampie 1.

When Yuucli, j)} s 0.1, the IMC effect is negligible. We
called this Algorithm I-A.

Note that in the assignment generated by Algorithm P-i-
A, most module pairs are assigned (either colocated or
separated) according to our PR Principles rather than the IMC
sizes. For example, the module-size ratio 7y = ys/y4 = 10,
thus M, and M are colocated on processor 3. On the other
hand, 55 = 0.1, thus My is separated from M, although
IMCg 9 is larger than [MC._@.

These two assignments are simulated via the PAWS
simulator. The average response time for each job arrival is
measured from when the job arrives at the system until it
finishes the execution of M,s. Fig. 13 portrays the response
time for the two assignments. Note that the assignment
generated by Algorithm P-I-A yieids better response time

IEEE TRANSACTIONS ON COMPLTERS “OL o 6 N m IUNE fus”

than that generated by Algorithm [-A. with 10.8 percent
improvemernit at processor utilization o = 0.2 and 25.7 percent
improvement at p = 0.8 percent. Both assignments yield fairly
balanced processor loads with similar bottleneck values. The
difference in response time is due to the consideration of PR in
module assignment.

We have applied both Algorithms P-I-A and [-A to the
DPAD module assignment problem. The assignment gener-
ated from Algorithm P-I-A is the same as that generated from
Algorithm [-A. This is due to the fact that there are very few
consecutive modules in the DPAD system. Note that if a
module is enabled by another through an or branch with a low
probability (say less than (.5). the PR effect of such a modul.
pair is greatly reduced. Therefore, they can logically be
viewed as nonconsecutive modules because the second module
is not always invoked for execution after the first module
finishes its execution. Many module pairs in the DPAD belong
to this type. The resuit also reveals that the performance of the
best assignment obtained from Algornthm P-I-A is compara-
ble with that of the exhaustive search (see Fig. 3). This
demonstrates that the heuristic Algorithm P-1-A can generate
an assignment which yields response time comparabie to that
of using the time-prohibitive exhaustive search method.

V. SUMMARY

The three important parameters that influence task alloca-
tion are accumulative execution time (AET) of each module,
intermoedule communication (IMC), and precedence relation-
ship (PR) among program modules. AET contributes to
processor load and is independent of task allocation. IMC is
the communication between program modules through shared
files. When a module on a processor writes to or reads from a
shared file on another processor, IMC becomes IPC (in-
terprocesser communication) which requires extra processing
and communication overhead. A task-allocation algorithm
should minimize the IPC by assigning heavily communicating
modules to the same processor.

An objective function for minimizing the bottleneck proces-
sor load (consisting of IMC and AET) has been proposed for
task allocation. It is shown to generate load-balanced assign-
ments with smail [PC.

The third parameter for task allocation is the precedence
relationship (PR). Due to PR, a program moduie¢ cannot be
enabled before its predecessor(s) finish executing. Both
simulation and analytical study revealed that the module-size
ratio of two consecutive modules affects task response time.
Two principles were observed: 1) assigning two consecutive
modules to a same processor yields good response times if the
execution time of the second module is much larger than that
of the first module; 2) if the second module is much smalier
than the first one, the two consecutive modules should be
separated and assigned to two different processors.

An analytical modet was proposed to study the PR effect on
response time which quantitatively determines whether two
consecutive modules should be colocated in a processor. Our
study reveals that this depends on the size ratio of the two
consecutive modules, module-execution-time distribution, and
processor load.

CHL ASD LAN TASK ALLOCATION AND PRECEDENCE RELATIONS FOR DIST

RIBLTED SYSTEMS

TABLE 111
MODULE ASSIGNMENTS FOR EXAMPLE |
ASSICIOMNT T-A ASSICOENT P-1-a
(W70 CONSIDIRTNG PR} (CONSIDEADNG PR}
Ut Uz oo Ut o om
1 L] 3 1 7 3
2] 5 1 10 4
MODULES 4 13 7) 13 H
[L &
10 15 .
11 1
11 12
13
"
FPROCZSSOR
LAADS 141550 144050 146850 143030 148300 147300
PERCINTACE
OF LaaD$ 32.71% 33.31% 33,96 32.61% 33.81% 33.58%
15
i4
1) I-a
12
11
- 10
=9
o 9l Per-A
3
- g
-
-7
|
[N
]
&
a4
1
2
! H
[+] 1
0 10 20 30 40 S0 60 0 80 90 100
Utilizacion
Fig. 13. Task-response-time comparison between assignments with and

without PR consideration for example 1.

A heuristic algorithm that considers PR, IMC, and AET
was developed for task allocation. In determining whether two
consecutive modules should be colocated on the same proces-
sor. the effect of PR on response time may be in conflict with
the effect of IMC. Therefore, the atlocation algorithm jointty
considers the effect of IMC and PR. Using the minimum
bottleneck as an objective function, the algorithm was applied
10 two example systems. The results revealed that module
assignments considering PR may yield better response time
than assignments without PR consideraticn.

Further investigation is needed to generalize the algorithm
to handle the assignment of replicated program modules. This
could have a significant effect on task response time [22].

GLOSSARY

F—the kth file in the system
IMC—intermodule communication
IPC —interprocessor communication
J—number of program modules

T™TT

K—number of files

L—processor loading

MLI—machine language instruction

M;—the jth program module

Nj{tx, ty. }—number of times module M, executes during (2,
:*-O-I)

R—wait-time ratio of two assignments

S—number of processors (sites)

T;(ty, th.)—accumuiative exccution time (AET) for module
A'{j dl-ll'll'ls (‘!n Ine l)

Vix—IMC message volume sent from M, to update the file £}
X = {x;,]—module assignment matrix in which x;.(=1 or 0
indicates whether module M, is assigned to processor r

r; j—size ratio between modules M; and M,

w;{(A4, r)—the queueing wait-time of module M; for assign-
ment A and module-size ratio, r

y;,—average execution time of module M, per execution

Sg—indicating function to specify whether a copy of F,
resides at processor §

T-11

! “
" \
-

) My

1 cru
#

frocesser Il

(a)

L S

Processor #1

b)

Queuing model for computing module waiting time for (a)
Assigment | and (b} Assignment 2.

Fig. 4.

A—rtask arrival rate
p—processor utilization
w—a normalizing constant for converting IMC to MLI's.

APPENDIX
. DERIVATION OF THE NUMERATOR FOR (8) (ASSIGNMENT 1)

According to0 [9]. the average wait-time wy(A,, r) and
wa(A,, r) at Processor | for Assignment 1 can be obtained as
follows. The mean wait-time for a given invocation of M,
under FCFS scheduling policy is the average time to complete
the executions of both the module invocation currently being
served by the processor and all moduie invocations waiting in
the job queue when the given M, invocation arrives. [See
Fig. 14(a)). Thus, we have

wi(Ay,)= W + B Y+ My, (A-1)

where

w,, = mean residual module-execution time at processor 1
for assignment |.
i

=3 AT+ A

|
=5k[(l+c§)yf+(l+c§)y§]

¢, = coefficient of vatiation for the execution time of M;
n, = average number of M; invocations waiting in the job
queue.

To find the waiting time for M;, we need to keep track of the
queueing behavior starting from the arrival of the invocation
for M,. Let us consider a particular tagged invocation for M.
After the completion of this tagged M, execution, its succeed-
ing tagged invocation for M, is placed at the end of the job
queue. The waiting time for this tagged M invocation consists
of three components. The first component is the total

(EEE TRANSACTIONS ON COMPUTERS V0L ¢ 5m MO & Gf NE wnt

execution time of the new invocations for M, that arrive
during the waiung and execution time of the tagged M,
invocation. The second component is due to the executions of
all the Af, invocations which are enabled by the M, invoca-
tions that wait in the job queue when the tagged M, invocation
arrives at processor |. The last component is due to the
execution of a M, invocation (with a probability of o, = AX,).
This M, invocation is enabled if module M, is in execution at
the arrival of the tagged M\ invocation. By adding these
components, we have

WI(AI' r)=[W|(A|. r) +.V—1)?\l)_':-+ E)_’;*',O[E. (A-2)

Since 1, = Aw, (Little's result [23]) and p, = Ay, (A-1) and
(A-2) become

wilA, ry=w, +0 - WA, R +p: - wid;, r) (A3

and

wilA, r)=(wA,, f)+j’-|)01+.02 * wildy, P 4oy (A4)

From (A-3) and (A-4), wy(A,, r) and wy{A,, r) can be solved
as

W,y +p|02(y—|+)72’)

Wl(Alv f)=
l—pi—o:p +p32)

(A-3)
and

Wey + o102 Y1+ ¥7)
t—p1—papi +p1)

wiA,, r}= (o1 +p2) + oY1 +72). (A-6)

Therefore, the numerator of (B) is the sum of (A-5) and (A-6).

II. DERIVATION OF THE DENOMINATOR FOR (8) (ASSIGNMENT 2)

With Assignment 2, Processor | can be treated as an M/G/!
queueing system with two types of “‘customers,”” M, and M,.
(See Fig. 14(b)). The mean wait-time for these customers is
given by

2 W,y We2

w.’
wi(Ay, r)=wdA,, r)= = = e
l-p l-pi—ps 1=Ay—Ay,

(A-T)

where
p; = processor utilization due to module {

w,3 = mean residual module execution time at processor |
for assignment 2

1
2

AyT+ D

1
=3 A1+) P2+ (1+cH).

Due to the symmetry in module threads (See Fig. 8), wy(4,, 1)
= wy{Ajy, r). Thus, the dcno_minator of (8) is equal to 2w;(A,,
7 = 2w/l = Ay — M)

ACKNOWLEDGMENT

The formulation of the wait-time ratio as a function of
module assignment and module-size ratio. was first proposed
and studied by K. K. Leung at UCLA. The Appendix is

I1.1-12

CHU AND LAN. TASK ALLOCATION AND PRECEDENCE RELATIONS FOR DISTRIBUTED SYSTEMS

adapted from his dissertation [17]. The authors would also like
to thank the referees for their comments which improved the
organization of this paper.

(

f21

(3

(4

(3]

(6]

(71

(8]

(91

19

i

(12}

(k3]

{14

13

[16]

(17

[18]

(19

[20]

21

{22]

REFERENCES

R. Berry, K. M. Chandy. J. Misra. and D. Neuse. PAWS 2.0—
Performance Analvst's Workbench System: User’s Manual, In-
form. Res. Ass., Ausun, TX, Dec. 1982,

S. H. Bokhan, Dual processor scheduling with dynamic reassign-
ment,”" [EEE Trans. Software Eng.. vol. SE-5, pp. 341-349. July
1979.

T C. K. Chou and J. A. Abraham, ~Load balancing in distributed
systems.” JEEE Trans. Software Eng.. vol. SE-B. pp. 401412, July
1982.

W. W. Chu. ""Optimal file allocation in a muitiple computer system."
[EEE Trans. Comput.. voi. C-18. pp. 885-889, Oct. 1969,

W. W.Chu, D. Lee. and B. [ffla, "* A distributed processing system for
naval data communication networks. " in Proc. AFIPS Nar. Comput,
Conf.. vol. 47, 1978, pp. 783-793.

W. W.Chuy, L.J. Holloway, M. T. Lan. and K. Efe, '*Task allocation
in distributed data processing.’ Computer, vol. 13, pp. 57-69, Nov.
1980,

W. W. Chu, . Hellerstein, M. T. Lan, J. M. An, and K. K. Leung,
**Database management aigorithms for advanced BMD applications,”
Dep. Comput. Sci., Rep. UCLA-ENG-84-07 (CSD-840031), Univ.
California, Los Angeles. Apr. 1984,

W. W. Chu, M-T. Lan, and }. Hellerstein, ' Estimation of intermodule
communicauon ([MC) and its applications in distnbuted processing
systems.’’' [EEE Trans. Comput., vol. C-33, pp. 691-699, Aug.
1984,

W. W. Chu and K. K. Leung, ''Task-response-time model and its
applications for real-time distributed processing systems,”' in Proe, Stk
Reai-Time Syst. Symp., Austin, TX, Dec. 1984, pp. 255-236.

K. Efe. “*Heunstic models of task assignment scheduling in distributed
systems.”” Computer, vol. |5, pp. 50-56, June 1982,

M. L. Green, E. Y. 5. Lee, 5. Majumdar. and D. C. Shannon, "'A
distributed reali-time operating system,'’ in Proc. Symp. Distributed
Data Acquisition, Comput. Contr., Dec. 1980, pp. 175-184.
——, Phase Il of Distributed Processing Architecture Design
{DPAD) System—The DDP Underlay Simuiator Experiment:
Tactical Appiications and d-RTOS Models, TRW Defense Space
Syst. Group, Spectal Rep. 35010-79-A005, May 15, 1980.

V. B. Gylys and J. A. Edwards, **Optimai partitioning of workload for
distributed systems.” in Proc. COMPCON Fall 76, Sep. 1976, pp.
353-357.

K. B. [rani and K-W. Chen, '“Minimization of interprocessor commun-
ication for parallel computation,’’ [EEE Trans. Comput., vol. C-31,
pp. 1067-1075. Nov. 1982.

C. J. Jenny. “'Process partitioning in distributed systems,"’ in Proc.
NTC 1977, pp. 31:1-1-31:1-10.

L. M-T. Lan, "*Characterization of intermoduie communications and
heurtstic task allocation for distributed real-time systems,’” Ph.D.
dissertation, Rep. CSD-850012, Univ. California, Los Angeles, Mar.
1985.

K. K. Leung, " Task response time and module assignment for real time
distributed processing systems.”” Ph.D. disseration, UCLA, Dec.
1985.

P.Y.R.Ma.E. Y. S. Lee. and M. Tsuchiya, ‘A task allocation model
for distributed computing systems,”” [EEE Trans. Comput., vol. C-
3L, pp. 41-47. Jan. 1982,

D. Palmer, ""On the design of distributed data processing systems,”’ in
Proc. COMPSAC 78, Chicago, IL., invited paper.

G. S. Rao. H. S. Stone, and T. C. Hu. '"Assignment of tasks in a
distributed processing system with limited memory,”” [EEE Trans.
Comput., vol, C-28. pp. 291-299, Apr. 1979,

C. C. Shen and W. H. Tsai, "'A graph maiching approach to optimal
task assignment in distributed computing systems using a minmimax
criterion.’” [EEE Trans, Comput., vol. C-34, pp. 197-203, Mar.
1985.

W. W. Chu and K. K. Leung, "*Module replication and assignment for
real-time distributed processing systems,’” Proc. [EEE, May 1987,

23

1. D. C. Lutle, " A proof of the queyeing formula L = AW, Oper.
Res.. vol. 9. pp. 183-387, (961.

CHAPTER II

2.2 MODULE ASSIGNMENT FOR REAL-TIME

DISTRIBUTED PROCESSING SYSTEMS

Module Replication and Assignment for
Real-Time Distributed Processing Systems

WESLEY W, CHU, reLLow, teee, aND KIN K. LEUNG, MEMBER, IEEE

Invited Paper

Y

Response time is an important design criterion for real-time sys-
fems. A new analytic model is deveioped to estimate task response
time, It considers such factors as interprocessor communication,
module precedence relationship, module scheduling, intercon-
nection network delay, and assignment of modules and files to
computers. Since module assignment as well as its replication have
great wimpact on task response time, a new algorithm is developed
to iteratively search for module assignments and replications that
reduce task response trme. An objective function is introduced that
is based on the sum of task response time and delay penalty for
the violations of thread response time requirements. With this
objective function, good module ailocations and replications,
which mimimize task response time and yet satisfy the thread
response time requirements, can be determined by the proposed
algorithm.

To validate the aigorithm, we compare the assignments gener-
ated by the algorithm for some sample distributed systems to the
optimal module assignments obtained from exhaustive search. it
shows that with a very small number of initial module assign-
ments, our algonthm is able to generate the optimal or close-to-
optimal assignments. The algorithm is also applied to a real-time
distributed system for space defense applications where exhaus-
tive search for the optimal assignment is not feasible. The gener-
ated module assignments (with replications) satisfy the specified
thread response times, and compare closely with the simulation
results. A series of experiments is also performed to characterize
the behavior of the algorthm. In conclusion, the aigorithm can
serve as a valuable tool for assigning modules with replications for
distributed systems.

. INTRODUCTION

Computer systems with real-time applications (e.g., pro-
cess control and space defense} have many functions that
must finish within a specified time period if the systems are
to perform properly. Distributed processing is a cost-effec-
tive technique for meeting these performance require-

Manuscript received September 1, 1985; revised January 7, 1987,
This work was supported in part by the U.S. Army under Contract
DASG60-79-C-0087, in part by Micro under Grant co-sponsored by
Hughes Aircraft Co., and in part by the University of California
under Contract 4-482516-19900,

W. W. Chu is with the Department of Computer Science, Uni-
versity of California, Los Angeles, CA 90024, USA,

K. K. Leung was with the Department of Computer Science, Uni-
versity of California, Los Angeles. He is now with AT&T Bell Lab-
oratories, Holmdei, NJ 07733, USA.

1EEE Log Number 8714298.

ments while providing such features as incremental system
growth, potential for improved system availability, and
graceful performance degradation in case of failures, In this
paper, we consider a class of real-time distributed pro-
cessing systems (RTDPS) in which there is a single appli-
cation task and message passing is used for communication
between processars.’

The application task of a real-time system is often par-
titioned into a set of software modules (or simply, modules).
The assignment of modules to processors affects sys-
tem response time, throughput, and reliability. Several
approaches for module assignment in distributed pro-
cessing systems have been proposed. These techniques
include graph-theoretic, mathematical programming, and
heuristic approaches {1]. The key parameters considered in
these approaches are module execution times and com-
munication times. The goal in module assignment is to bal-
ance the processing load among the processors such that
either the total system time is minimized or computer loads
are balanced.

Stone (2] and Rao et al. [3] use graph-theoaretic aigorithms
which are tractable only for systems with two computers.
Algorithms proposed in (4]-}7] balance the workload on
computers but neglect the impact of module precedence
relationships. Further, they assume that the application task
is invoked only once. As a resuit, the queueing delay from
muitiple invocations which is a significant portion of the
response time is ignored. Moreover, the interconnection
network delay is not considered in the module assignment
methods.

Anather important issue in sharing the processing work-
load among processors is to selectively replicate moduies
on the processors according to the loading conditions. Each
invocation for a replicated module is routed to one of its
resident processors for execution. A special algorithm is
required to perform the routing. One simple startegy is to
route invocations for a replicated module to its resident
processors in a round-robin fashion. Thus moduie repki-
cations may improve system load balancing, responsetime,
and system reliability and avaitability.

'Processor and computer are interchangeably used in this paper.

0018-9219/87/0500-0547%01.00 © 1987 1EEE

PROCEEDINGS OF THE IEEE, VOL. 75, NO. 5, MAY 1987

To remedy the shortcamings :n the existing module
assignment algorithms, the module assignment proposed
inthis paper considers repeated task invocations, queueing
effects, module precedence relationships, interconnection
network delays, and module replications.

Task response time? in an RTDPS is the time from an invo-
cation of the application task to the completion of its exe-
cution. Key factors (parameters) that affect task response
time include interprocessor communications, processor
loading, module precedence relationships, and intercon-
nection network delay. A new task response time model (8]
has been introduced which considers these key param-
eters. Often the application task consists of several
sequences of modules which are referred to as threads. For
some applications, real-time constraints may exist for cer-
tain threads (e.g., radar scheduler); the response times of
individual threads rather than the entire task are of interest.
In these cases, task response time may be deifined as the
sum of thread response times weighted by certain factors
according to the application requirements. Since task
response time is an important performance measure for
RTDPS, minimizing the response time is the major goal of
module assignment,

Im this paper, we shall first describe the task response
time model, Next, an objective function based on task
response time and penalty for violating the thread response
times are introduced, An algorithm is proposed to search
for module assignment that minimizes the objective func-
tion. The algorithm considers both the module replication
and assignment together. The effectiveness of the algo-
rithm is evaluated by applying it to a set of sample distrib-
uted systems where optimai assignments can be deter-
mined by exhaustive search. Finaily, using a real-time
distributed system for space defense applications as an
example, a series of experiments are performed to char-
acterize the behavior of the aigorithm.

1. Task RespONSE Time MODEL

The application task in an RTDPS is partitioned into a set
of modules. The logical structure and precedence rela-
tionships among the moduies may be represented by a task
controt-flow graph as shown in Fig. 1. The task is repeatedly
invoked in accordance with the application requirements.
After a module completes its execution, it sends messages
to enable (invoke) its succeeding module(s) as indicated in
the task control-flow graph. [n addition, when a moduie
finishes its execution, it may send messages to update
shared data files. Such message exchanges among modules
are referred to as intermodule communication {(IMC) [9).
Overhead for communication among modules that reside
on the same computer is usually small. If, however, mes-
sages are sent between modules that reside on different
computers, the messages are called interprocessor com-
munication (IPC). |IPC requires extra processing such as
communication protocol and management of distributed
data files. IPC also incurs interconnection network delay.
Therefore, IPC has a more significant impact on system per-
formance than IMC within a computer,

We use task response time to refer to its mean response time
uniess otherwise stated.

BRANCHING
PROBABILITIES

®a
\@@/
) ,\'

LOOM BACK FAGAASILITY 4.2 ¥ JEXIT BROBASILITY 0.8

@D

AMD=FORK TO ANO=JOINM AUSGRARM: A TQ @

i

CA~-#ORK TGO OR-JOILN SURGRARM: ¢ T O

LoOFr SuaGRAMM: E YO

Fig. 1. A sample task control-flow graph.

Simulation techniques may be used to estimate the
response time for the RTDPS, but such approaches are time-
consuming and expensive, Queueing networks [10]-{12]are
commonly used to model distributed processing systems.
In such models, computers are represented as servers,
modules’ invocations as customers, and task invocations
correspond to external arrivals. Customers are routed for
service in accordance with the task control-flow graph and
the module assignment. in distributed systems, a module
may enable more than one module (referred to as an and-
fork in the control-flow graph). Alternatively, a module may
have several immediate predecessor modules which must
complete their executions before the succeeding module
can be executed (referred to as an and-join). When a con-
trol-flow graph consists of these forks and joins, the routing
scheme in the queueing network model becomes inade-
quateto represent the logical relationship among modules.
Thus the system cannot be represented by a tractable
queueing network model. Therefore, we have intraduced
a new model to estimate the task response time.

Since a task may be repeatedly invoked and modules are
enabled in accordance with the sequenca indicated in the
controi-flow graph, task response time consists of module
waiting (queueing) times, module execution times, and
precedence waiting times. Module waiting time is the time
from a module invocation arrival to the start of its execution
on a computer. This waiting time is the time spent waiting

PROCEEDINGS OF THE 1EEE, VOL. 75, NO. 5, MAY 1987

I:I. 2'-2

for module executions and IPC processings. Module exe-
cution ume is the sum of a module’s execution time and tts
output IPC (processing) time. Module response time refers
to the sum of amodule’s waiting time and its execution time.
Precedence waiting time is the intermodule synchroniza-
tion delay resulting from the precedence relationships
among madules. Our task response time model consists of
two submodels: the module response time model and the
weighted control-flow graph model. The first submodel
computes the module response times, while the {atter con-
siders the precedence waiting times.

A. Module Response Time Model

for a given module assignment, this model is used to
compute module response times on each computer. Mod-
ule response time includes waiting {queueing) time and
module execution time. If a module needs to send mes-
sages to other computers, the output IPC time is included
as part of the moduie execution time. These IPCs are trans-
mitted over the interconnection network, and eventually
arrive at their destinations. On the destination computers,
these input IPCs can be viewed as a special module which
also contends for processing. 8ased on the module assign-
ment and IMC among modules, IPC times can be com-
puted. This computation depends on the distributed sys-
tem under consideration, and will be itlustrated by some
examples given later in this paper.

Let module execution times be characterized by prob-
ability distribution functions. Then each computer can be
modeled as a single-server queueing system with its resi-
dent modulas (customers of different types) of specified
service distributions. Based on the module assignment, the
logical structures among modules, and task invocation rate,
module invocation rates (customer arrival rates) on each
computer can be determined. |f several modules on the
same computer are invoked simultaneously, this forms a
bulk arrivat.

In our model, we assume that 1) module invocation
arrivals (singie or bulk) are independent of each other, and
2} module invocation interarrival times are exponentially
distributed. Under these assumptions, each computer in
the RTDPS becomes an independent queueing system. To
illustrate the concept, let us determine the modules’
response times on acomputer thatuses first-come-first-serve
(FCFS) scheduling policy® for module executions.

Consider a computer that has h distinct types of module
invocations (single or bulk invocations). Let the arrival rate
for the ith type of module invocations be A, and the Laplace
Transform (LT) of the service requirement be Y (s) for i =
1,2, - -+, h. One of these h types of module invocations
{say the cth) represents all the input IPC on the computer.
Then A, and Y(s) become the arrival rate and LT of pro-
cessing time for the input IPC, respectively. Suppose the
ith type of module invocation consists of a set 8, of distinct
module(s). Then

vis) = I X s)
je8,
where X' (s) is the LT of the execution time of module j. In

*The model can also be applied to other module scheduling pol-
icies by using the corresponding queueing delay equations.

case the 1ith invocation just consists of single module, 8 has
one element.

Based on assumptions 1 and 2, this queueing system s
an extension of the FCFS M/G/T queue with total arrival rate

The LT of execution time for an arbitrary invocation arrival
is
h
k =
Yesi = L 2 Y
r=1 k

For the M/G/1 queue, the first two moments of the module
invocation waiting time (i.e., the time period from the invo-
cation arrival to the start of its first module execution) are

” —
2.1 Ayl
== i
and
h ——
— Zny?
L
" R T 2
where

y! nth of moment service time for ith module invocation
p server utilization = T, A ¥,
w average module invocation waiting time.

From (1) and (2), we obtain the variance of module invo-
cation waiting time

h _ h _\2

— Ay z ?x.v.‘L

2 = Wi W = 2wl = — | = .
ol = wl = (W) = 2w + oo = | o1 g (3)

For a bulk invocation, a set of modules are invoked at the
same time. The operating system schedules these modules
for executions based on the resource requirements. Let the
execution sequence for the bulk invocation be fy, j5, =" -
jk=v ks Jiore * * + - The response time (a random variable)
for module ji is

k-1
fjo) = w+ T xtj) + xtju) (4

where w is the module invocation waiting time (indepen-
dent of module invocations as FCFS is used) and x(/,) is the
execution time for module ji.

Note that w and the summation term in {4} correspond
tothewaiting time for module j,. Theaverage responsetime
T(j.) for module j, can be caicuiated from the expected val-
ues of {4). Thus we have

k
T =w + 21 x(j,). (5)

Since w, x(), and x(j;) are independent random vari-
ables, the variance o2(j), of the response time for module
jx is the sum of variances of each component in (4). Hence

k
ottji) = ol + L 03 (6)

where o%(},) is the variance of execution time for module

CHU AND LEUNG: MODULE REPLICATION AND ASSIGNMENT FOR DISTRIBUTED PROCESSING

-

-

and gl is givenini3). Forthecaseofa single-module invo-
cation, there will be only one module in the execution
sequence.

B. Weighted Control-Flow Graph Model

The next step in computing task response time is to con-
sider precedence waiting times. Our general approach is
toclassify the types of precedence relationships and to show
how precedence waiting can be computed by mapping the
mean and variance of module response times (5) and (6))
onto the control-flow graph as arc weights (Fig. 2). The

- { ENTRY)

TASK
RESPONSE
TI=E
]
[}
,
)
'_tooe w_tmes___ 3Teokh)
]
trl -51)
—— EXI(T

Ty = MEAR MODULE 1 RESPONSE TIME
o,%- VARIANCE OF MODULE L RESMONSE TINE

Fig. 2. Weighted control-flow graph for response time esti-
mations.

response time for module i is assigned as the weight for ali
arcs emerging from module i in the control-flow graph. If
module i has executed and enables module j on a different
computer, the module enablement message is transmitted
via the interconnection network. Assuming the network
delay is independent of module response times, the mean
and variance of network delay* can be added to the weight
of the arc from module i to j. Then the task response time
can be estimated from this weighted control-flow graph
model.

There are four common types of control-flow subgraphs:
sequential thread, and-fork to and-join, or-fork to or-join,

‘Network delays among any pair of computers may be ditferent
depending upon the characteristics of the interconnection net-
work.

and foop that are based on the logical structures and prec.
edence relationships among modules(Figs. 3-6). Atask con-
trol-flow graph may contain a set of subgraphs which are
a combination of these retationships among modules. Each
of these subgraphs can be reduced to a single-node graph.
Successive graph reductions yield the estimation of
response time for the complete task.

1) Sequential Thread Subgraph: The sequential thread
subgraph {Fig. 3) is a sequence of modules connected in
series where each module (except the last) has a single suc-
cessor. Modules execute in the sequence indicated by the

1 AGGREGATION

r Z :
[
1
P2 !
. - L
1&'{ Ly
3
L -J
i 1
J Ay =
€, - RESPONSE TIME OF WODULE .
3 (RANDOM VANIABLE} 4

14 RESPONST TIME FOR THE SEQUENTIAL THREAD
(RANDOH YANIABLE)

Fig. 3. Sequentiai thread.

thread. Treating the module response times (represented
by the arc weights) as random variables, the total response
time of the sequence thread is the sum of the arc weights
of all modules in the thread.

2) And-Fork to And-Join Subgraph: This subgraph begins
from a module which simultanecusly enables several suc-
ceeding modules (an and-fork) and ends at a module which
isenabled onlywhenail of its preceding modules have com-
pleted their executions (an and-join), as shown in Fig. 4. This

SEQUENTIAL THREAD
ACGGRECATLIONS

SEQUENTIAL
THREAD

Fig. 4. And-fork to and-join subgraph.

subgraph may correspond to the case in which the modules
assigned to different computers require concurrent pro-
cessing. Since sequential threads can be reducedtoasingle
node as above, the and-fork to and-join subgraph can be
aggregated into n nodes, V;, with response time y, for / =
1,2, + - - , nwhere n is the number of threads from the and-
fork (Fig. 4). Because of the and-join function, the response
time for the subgraph is the maximum of y,s.
Computing the response time for this subgraph requires
the probability distribution functions fory,’s, which is rather
complicated. In this study, we shall emphasize the mean

PROCEEDINGS OF THE 1EEE, VOL. 75, NO. 5, MAY 1987

IT.2-4

task response time, which can usuaily be determinad by the
first two moments or module response times. Thererore,
these moments are derived from the module response time
model, and are mapped onto the task control-tlow graph
as arc weights. According to the coefficients of variation of
y.'s, they can be approxsmated by either Erlangian or hyper-
exponential distribution functions {13]. Assuming that y,'s
are independent, the joint distribution function for y.'s can
be computed. Thus the mean and variance of the response
time for the subgraph can be obtained.

3 Or-Fork ta Or-foin Subgraph: This type of subgraph
consists of an or-fork and an or-join as depicted in Fig. 5.

AGGREGATION

=1

Fig. 5. Or-fork to or-jom subgraph,

At the or-fork, the module enables one of its succeeding
modules. At the or-join, the module can be enabled by any
one of its preceding modules. This type of subgraph facil-
ities the system 1o process one of several threads based on
certain selection criteria. The branching probability of each
thread can be measured or estimated. The response time
for the subgraph is the sum of the thread response times
weighted by their invocation probabilities.

4) Loop Subgraph: Loops are often contained in a task
control-flow graph for repeatedly processing a set of mod-
ules for a task invocation. A loop may contain any of the
atorementioned subgraphs. After aggregating these
subgraphs, a loop may be represented by a cyclic single-
node graph, as shown in fig. 6. The arc weight is the

-
! AGGAECATION
i
'
i
i

'
LOOF n TIMES WITH
PEOBABILITY Y

¥, RESPONIL TIML FOR ¥ RESPONSE TINME FOR THE
4 3IN7CE LOOP LODP SUBGRAPH

Fig. 6. Loop subgraph.

response time of executing a single loop. The response time
of the loop subgraph can be computed from the average
number of times that the loop is executed multiplied by the
time required to execute a single loop.

5) Integration of Pericdic Modules with Task Control-
Flow Graph: In the preceding discussion, we are mainly
emphasizing the task control-flow graph with precedence
and logical relationships. For certain applications, some of
the modules may not be involved in any logicat or prece-

dence relationships with other modules. and are (nvoked
by the system periodicativ rather than asvnchronously by
other modules. Although these periodic modules have no
precedence relationsmps with other modules, these mod-
ules still need to communicate with each other via message
passing and/or sharing comman data files, as shown n Fig.
7. Thus periodic moduie invocations may facilitate the sys-
tem to perform certain application functions in a timely
fashion. Task response times in sych cases depend on the
logical structure of the task control-flow graph andits inter-
relationship with the periodic modules,

The task response time for these systems can be defined
as the weighted sum of the aggregated response time ior
the task control-flow graph and response times for the per)-
odic modules. The corresponding weighting factors are the
task and periodic module invocation rates normatized by
the total module invocation rate (see Fig. 7). When the task
control-flow graph consists of sequential threads and/or or-
fork to or-join subgraphs, the task response time can be
reduced to the weighted sum of response times of all mod-
ules. An example of integration of such a system is pre-
sented in Section V-A,

C. Validation of the Analytical Task Response Time Mode!

Simulation experiments [8] have been conducted to val-
idate model assumptions used by the task response time
model. Since adjacent modules may be allocated at differ-
ent processors, and since computers invoke modules asyn-
chronously, the independent module invocations can be
used as a good approximation and generate fairly accurate
module response time estimations. In case the indepen-
dent module invocation assumption generates results that
are not accurate enough, a more complex model that con-
siders dependent invocation arrivals may be used to est-
mate the modules response times [B]. More validation of the
response time modute with Poisson and non-Poisson mod-
ule invocations will be presented in Section V-C as part of
the overall performance assessment of the module assign-
ment algorithm.

HI. MODULE ASSIGNMENT ALGORITHM WITH MODULE
ReprLiCcATIONS

The reptication and assignment of modules to computers
in a distributed system is referred to as the replicated mod-
ule assignment problem (RMAP). The RMAP minimizes the
task response time by: 1) determining the optimai module
multiplicities (i.e., number of copies for each module), and
2) allocating those module copies to computers, such that
system performance objectives are satisfied. Since both
module multiplicities and assignment of module copies to
computers affect system performance, the problems are
considered jointly. For simplicity, we use module assign-
ment in the following text to refer to the replication and
assignment of modules to computers.

A. Assumptions

Let us make the following assumptions for the RTDPS:

1) All of the computers in the systems do not have mem-
ory space constraints.

2) Data files are stored in main memory at a processor
where its resident modules need to read and/or update the
files,

CHU AND LEUNG: MODULE REPLICATION AND ASSICNMENT FOR DISTRIBUTED PROCESSING

. - -

Qasponse
Time
far thne
Srapn
3
R:i.
2
(Ti, GL }
1

TASK CONTROL=-FLOW GRAPH

A
Task Response Time T = T_ +
ot ©

hegr ™ Ay *

A'*L
- - o]
JLICK
Aieg
- —— 1+2 e —
An

e dadtnd 2 n

% = = = Méstage Passing/
Commen Firle Sharing

m—— McdUule Enabling

n
Ah 7

jer+l Aeot

o

k-%»l Ay

Ay = invocation rate for Madule k

Fig. 7. Integration of periodic module invocations with task control-flow graph.

3 If a module is replicated on several processors, the
invocation rates for the module copies are equally divided
among the processors.

4) All processors in the system are identical. Thus the
execution time for each module is the same at any pro-
cessor,

5} The network delay is independent of module assign-
ment. Although different module assignments may gen-
eratedifferent IPC traffic volume in the network, we assume
that the network has sufficient bandwidth such that the
delays do not depend on module assignment.

Assumptions 4 and 5 can be relaxed by adjusting the
modules’ execution times according to the processor
speed and the interconnection network delay for each
module assignment.

B. A New Objective Function

To search for optimal module assignment, we need to
establish an objective function. Since the thread response
time requirements are usually specified by users, the RMAP
has two objectives: 1) to minimize task response time, and
2) to satisfy response time specifications for the threads. We
shall combine these two objectives into a single objective
function as follows:

T(A), if all thread response time
TonfA) = requirements are met
LT(A) + aT (A, otherwise (N
where

T(A) task response time for module assignment A

TsplA) a positive-valued delay penalty function for mod-
ule assignment A

a a positive scaling constant to weigh the impact
of violating thread response time requirements
with respect to the task response time.

This new objective function isthe sum oftask responsetime
Tand the possible defay penalty aTy,. Both Tand Ty, depend
on module assignment. For a given module assignment, a
delay penalty may be added to the objective function to
“penalize” violations of thread response time require-
ments. Clearly, if the delay penaity scaling constant a is
properly chosen such that aT,is sufficiently large com-
pared with T, T, will yield too large of an increase when
some threads violate their response time specifications.
Since any algorithm for the RMAP searches for a module
assignment with the minimum value of T, the algorithm
implicitly avoids those assignments which yield unsatis-
factory thread response times.

PROCEEDINGS OF THE {EEE, VOL. 75. NO. 5, MAY 1987

TT 2-=6

Let us define the following system parameters that will
be used to compute the task response time;

n total number of processars in the system,

m total number of modules in the applica-
tion task,

G the control-flow graph of the application
task,

x(i) average execution time for module /,

a (i) variance of execution time for module 4,

X = [x(i)] a vector of all average module execution
times, i € {1, m},

oltx) = [o%i)] a vector of all variances of module exe-
cution times, 1 € {1, m],

D et average network delay,

ala variance of network delay,

A task invocation rate,

Upon the completion of a module execution, a module may
need to communicate with other modules. The processing
time required for sending a message from module i 10 mod-
ulejis referred to as IMC (intermodule cornmunication) time
for the module pair. If the communicating modules are atlo-
cated on twao different processors, then additional pro-
cessing overhead is required on both the transmitting and
receiving computers. The processing time required for
sending a message from module i to module j at a remote
processor is referred to as the /PC (interprocessor com-
muynication) time. The IPC is equal to the IMC time plus the
protocol processing overhead at that processor. Let

teli, j) average processing time for the IMC
from module i to j

variance of processing time for the IMC
) from module i to j,

Te = [t i} average {MC time matrix, i, j € [1, m],
o¥c) = [olli, /)] variance of IMC time matrix, i, j € [1, m}.

alli,)

The module assignment matrix A = {A,] is an indicating
function such that

1, if module j resides on processor i, i € [1, n],
A, = j€(1, m]
0, otherwise.

Civen these parameters, the task response time for a mod-
ule assignment A can be computed by the task response
time model.> Let us use a function F to denote the task
response time model. Then, the task response time of the
distributed system for module assignment A can be
expressed as

T(A} = F(G, A, X, a*(x), T, 0%c), Dnews Thews A, M, N).

C. Delay Penaity Function

Assume the task consists of k distinct threads. Let R, be
the average response time requirement for thread i, and
t,{A) be the average response time for thread i for module

*Based an the means and variances, the distribution functions
for these parameters are approximated by Erlangian or hyperex-
ponential distributions. Higher order moments of these, parame-
ters used in the modei can be computed from their approximated
distribution functions.

assignment A. The response time overryn ot thread ¢ tor
module assignment A is defined as

[r,m) - R, iit(A) >R

d,(A) =
Q. otherwise

where i/ € {1, k}. We can express the thread response time
overruns of all threads for module assignment A as a vector
D(A) = [d(A), dylA), - - -, di(A)]. Fora given module assign-
ment A, if the response time specification for thread i is vio-
lated (i.e., ,{A) > R}, then d,(A) represents the discrepancy
between that thread's actual response time and its require-
ment. Let 5, be the set of all (n,) modules in thread i, and
w, be the average allowable module waiting time ior each
module in thread /, then
R~ X x(j)
W, o= —)
nl

where (/) is the mean execution time for module /. We can
express the average allowable module waiting times for all
the threads as a vector Wp = [w, w,, - -+ , W,). fora given
R, the numeratorin(8) is the maximum sum of average wait-
ing times for all modules of thread i. Since thread i consists
of n, modules, ¥, as defined by (8), represents the average
allowable waiting time for each moadule in thread i. Clearly,
the smaller the value of W, the faster the response time is
required by thread i.

To provide an efficient search for good module assign-
ments, we define the delay penalty function T, as a func-
tion of D{A} and W, so that it will have the following desir-
able properties:

Property 1. The delay penalty increases as a thread
response time overrun increases; thatis, ToolD{A), We)is an
increasing function of d,{A) for ail i & [1, k).

Property 2: For a given module assignment, if two
threads have the same thread response time overrun, then
the thread with the stricter response time requirement (i.e.,
with a smaller w,} contributes a larger component of the
total delay penailty.

Property 1 is self-explanatory. Property 2 is desirable in
that the search algorithm is guided to reduce T, by sat-
isfying those threads with stricter response time require-
ments before those with less stringent requirements. Based
onthese properties of the delay penaity function, the objec-
tive function, Ty, in (7), can guide us to search for module
assignments that reduce response time overrun for all
threads. Therefore, we define the delay penalty function
according to these properties as follows:

k
Top(DA), Wp) = L 6d,(A) 9
where

_ max {w,, Wy, -, W}
w;

f , for all /e[, k]

Note that (9) satisfies Property 1. Based on the definition of
£, we knowthatifw, > w; thent < {.ThusProperty2holds.
By the definition of d; (A}, if all thread response time require-
ments are satisfied, then T,,(D{A), W;) is equai to zero. Sub-
stituting (9) into (7), we obtain the obiective function for the

CHU AND LEUNG: MODULE REPLICATION AND ASSIGNMENT FOR DISTRIBUTED PROCESSING

L T

RAAP
Tid) = TIA} + a 2.'I td (Al (10

For a given module assignment in a distributed svstem,
each computer processes a set of assigned modules. The
module tnvocation rates at each computer can be deter-
mined from the task invocation rate and the algorithm for
serving repticated modules. Based on the task response time
model, the task response time and thread response times
can becamputed. From the thread response times and their
specified requirements, the delay penalty can then be cal-
culated.

D. Search Algorithm for the RMAP
The RMAP for the distributed system is to find module
assignment A that minimizes its objective function; that is,

To minimize

ToodAl = T(A) + aT 4, (D(A), We)

FIG. A, X, a%(x), T., 05C), Doy, Gier A, M, N}
k

+a 2 fd(A) (11)
=1

I

with constraints
n
1s XA, =n forallje(l, m]
=1

The constraint inequalities® indicate that each module must
be allocated to at least one processor or may be replicated
to every processor in the system.

The application task for the RTDPS requires repeated task
invocations, and consists of various logical and precedence
refations among modules. Therefore, the module assign-
ment problem is more complicated than the muitiproces-
sor scheduting problems [14] which have been proved to
be NP-complete. The common methods of tackling such
combinatorial optimization problems include approxima-
tion algorithms, probabilistic algorithms, branch-and-
bound and local search techniques [15). However, due to
the comptexity and the characteristics of the RMAP, we pro-
pose an algorithm that searches for local optimal solutions
and then selects the final solution from this set of local opti-
mais.

The RMAP algorithm consists of three major compo-
nents:

1)} Relocating Module from Longest Wait Processor to
Shortest Wait Processor

For a given module assignmaent, let the processor in the
system that has the longest average module waiting
{queueing) time, and the one with the shortest average
module waiting time’ be denoted by LWP and SWP, respec-

*To increase system reliability, the lower bounds of the in-
equalities may be increased to force modules to be repiicated on
more than one processor. The upper bounds may be smaller than
n, dependent upon the application requirements.

“when different types of modules have different average waiting
times for the given scheduling discipline (e.g., head-of-line preor-
ity) on a processor, the average moduie waiting time on the pro-
cessor is defined to be the sum of all average module waiting times
weighted by their respective invacation rates normalized by the
total module invocation rate.

tively. To redu e Modules mav be relocated 'one gt a
time) trom the LyWP 1o the SWP twithout changing modue
multipticities) until no tusther Improvement can be made
by such modute relocation.

2) Further Replicating Module on SWP

After module relocations from the LWP to the SWP have
reached a local optimum, the algorithm attempts to balance
the processing workload by further replicating certan
modules anto the SWP. If certain threads violate their
response time requirements, the candidates for further
reptications on the SWP are the modules in those threads.
Ifalt thread response time specifications are satisfied, those
modules currently residing on the LWP are the candidates
for further replication onto the SWP. We replicate the can-
didate module one at a ime on the SWP. After such rep-
lication, the processor loading will be altered and certain
modules may require to be relocated from the new LWP to
the SWP to improve T,,. We repeat such replication pro-
cess, and finalize the replication of a module on the SWP
that yields the minimum 7, . Note that T,,, may not always
be improved from such module replications on the SWP
because it may increase IPC and/or violate thread response
time requirements.

3) Deleting Module from LWP

it further module replication on the SWP dces not
improve T, the algorithm deletes certain modules from
the LWP. This is because 1) deleting modules may reduce
IPC in the system and 2) deleting some replicated modules
of those threads with less stringent response time require-
ments may improve T, The algorithm aiso takes a greedy
step to finalize a module deletion from the LWP that yields
the lowest T,

The RMAP algorithm is given in the following:

REPLICATED MODULE ASSIGNMENT ALGORITHM
Relocating Module from LWP to SWP

1) Determine initial module multiplicities (see Section
Hi-E for details), or use the module multiplicities of
the previous local optimal assignment as initial mod-
ule multiplicities for this iteration.

2) Generate a random module assignment Ay based on
these multiplicities.

3) Relocate module(s) from LWP to SWP without
changing moduie muitiplicities until reaching a local
optimal assignment:

3.1 Basedonthe invariant parameters, G, X, o%(x),
T., 63C), Dper, 0%, A, M, and n, compute the
assignment-dependent parameters for
assignment A, (including |PC arrival rate and
processing time for each processor).

3.2 Compute the process or utilization on each
computer for assignment A, If any com-
puter(s) is saturated (i.e., its utilization = 100
percent), stop or go to Step 1 for next itera-
tion; otherwise continue.

3.3 Invoke the task response time modet:

3.3.1 Compute T,,(Ag for assignment A,
and

3.3.2 ldentify the computers with the
longest and shortest average model
waiting times. (Denote them as
LWPAg) and SWPA), respectively.)

3.4 Llet S5, be the set of modules residing on
LWP{Ay) but not residing on SWP(A,). For each
module j € §,, perform

PROCEEDINGS OF THE IEEE, VOL. 75. NO. 5, MAY 1987

TT 2-0

3.4.1 Temporarity relocate module ; from
LWP(A)) to SWPlA,} and form a new
assignment A;

3.42 Compute the assignment-depen-
dent parameters and processor uti-
lization factors for assignment A (as
Steps 3.1 and 3.2 do);

3,43 |If any computer(s) is saturated, set
TonfA,) = >; otherwise, invoke task
response time model to compute and
record T,p(A). LWP{A), and SWP(A))
{as Step 3.3 does).

3.5 if there exists T, (A) s Typ(Ag) foranyje 5,
tested in Step 3.4, then perform

351 Set Ay « A, T,piAl Ton(A,),
LWP(Ag) — LWP{A)} and SWP(Ay) —
SWP(A,) where
Tom(A,) = r‘nin,ssl {Tob,(A,)].
(Finalize the single module reloca-
tion from LWP to SWP—a greedy
step!)

3.5.2 Goto Step 3.4

3.6 Otherwise, continue Step 4. (Reach a local
optimum with respect to module relocation.}

Replicating Modules on SWP

4) Compute thread response time overrun d,(Ay) for all
threads / where i € [1, k} and identify LWP(A,) and
SWP(A,) for assignment A,

5) If there exists d,{A,) > 0 for anyie[1, k], then let 5;
be the set of modules of all threads where d,(Ay) >
Oforaltie(1, k].(Some thread response time require-
ments violated);

Otherwise, let S be the set of modules residing on
LWP(Ay). (All thread response time requirements sat-
isfied.)

6) For each module e Sg not residing on SWP(Ay), per-
form:

6.1 Temporarily replicate module j onto SWP(A,)
and form a new assignment A;

6.2 Compute T, (A;) and relocate modules from
LWP(A)) to SWPI(A)) until reaching a focal opti-
mal assignment A, (as Step 3 does).

7} If there exists Toy,(A;0) = Tou(Ag) for any j € Sg from
Step 6, then

7.1 Set Ay — Ay, Top(Ag) — TouifAjg), LWP(AG) +
LWP(A,), and SWP(Ag) — SWP(A) where
TopiAj0) = Minigs, { ToplAil}:

{To finalize a single module replication on
SWP.)
7.2 Goto Step 4,

Deleting Modules from LWP
8) Otherwise, iet S, be the set of modules residing on
LWP(Ay). Foreach module je S, which has more than
one copy, perform
8.1 Temporarily delete module j from LWP(Ay)
and form a new assignment A;
8.2 Perform Step 6.2 to obtain the locai optimal
assignment A,
9) If there exists T,y,(A,0) S T,pi{Ag) for any j e §; from
Step 8, then
9.1 Set Ay = Ay, Ton(Ag) — Ton(Aj), LWPIAY) —
LWP(A,), and SWP(Aq) ~ SWP(Ay) where
TDb;(AJO) = min,es‘ {Tob,(A,u)}.

iTo finatize a single module celetian trom
LWP)
9.2 Goto Step 4.
10} Otherwise, stop or go to Step 1 for next iteration,
iReach the final local optimal assignment A,

E. Initial Module Multiplicities

During the execution of the algorithm, module multi-
plicities are changed due to the module replications and
deletions resuiting from the search for better assignments.
The algorithm is re-iterated with a number of randomly
sefected assignments® to provide a good module assign-
ment for a given distributed system. The finat suboptimal
solution is chosen to be the local optimal assignment that
yields the lowest T, . In addition, to explore different
assignments with the same module multiplicities, the mod-
ute multiplicities of a local optimal solution are used to gen-
erate the next random module assignment (Step 1 in the
RMAP algorithm). However, the algorithm should start with
a set of feasible initial module multiplicities. Therefore, the
initial module multiplicities should be carefully deter-
mined.

There are many ways to select the initial module muiti-
plicities. The basic requirement is that the processing
requirement for each module copy does not saturate a pro-
cessor; that is, the processing requirement of each module
copy, which is equal to the invocation rate times the mean
module execution time, should be less than processor
capacity. Further, it is desirable to select the initial module
multiplicities so that the processing workload can be easily
balanced among the processors. Based on these consid-
erations, the following procedure is devised to determine
the initial module multiplicities for the RMAP algorithm:

1) Based on the invocation rate of each module and the
mean execution time, we can compute its processor
utilization, p;, fori = 1,2, - - - , m, where m is the total
number of modules in the task.

2) Compute the mean processor utilization due to a
module

m
p= 2‘ aim.

3) Compute the initial multiplicity a; for module i for
i=12---,m

31 o, = P—:i.l
ry

3.2 if (p/a) > 1, then let o; be the smallest integer
such that (p/a) < 1.

Note that &, should be less than the totai number of pro-
cessors in the system. The initial module multiplicities
determined by the above procedure may not initially pro-
vide satisfactory thread response times. However, it pro-
vides a starting point for the RMAP to search and revise the
module multiplicities for the module assignment that min-
imizes Topje

IV. ALGORITHM VALIDATION

in order to validate the RMAP algorithm, we apply it to
two simple distributed systems and compare the best gen-

%A similar technique was used in {16] for the traveling salesman
problem.

CHU AND LEUNG: MODULE REPLICATION AND ASSIGNMENT FOR OISTRIBUTED PROCESSING

o T =)

11

T

Trreaa |
“gsoonse
T mg

x

(a)

Irangning
deayn

T Tasx
Qesponse
Time

Thread 2

Jesponse

Fig. 8. Task control-flow graphs for the sample distributed systems. {a) Task A.

(b Task 8.

erated assignments with the optimal assignment deter-
mined from exhaustive search. The distributed system con-
sits of three identical processors. Two application tasks, task
A and task B, are studied. Task A (Fig. 8{a)) represents a
sequential thread of three modules, while task 8 (Fig. 8(b))
contains an or-fork to or-join subgraph with a total of six
modules. All modules are assumed to have deterministic
processing times. Modules are processed on an FCFS basis.
Since task A has a single thread (thread #1), the thread
response time is equal to the task response time. Task B has
two threads in the or-fork to or-join subgraph: thread #1
corresponds to M, and M; and thread #2 consists of M,
and M.

We assume certain modules in the system cannot be rep-
licated and therefore only exist as single copies. We let M,
in task A and M, and M; in task 8 be single-copy modules.
Other modules can be arbitrarily replicated. Table 1 shows
eight cases which represent different task invocation rates,
with and without IPC processing for tasks A and 8. For sim-
plicity, the IMC among a pair of modules on the same pro-
cessor is assumed to be zero. If a pair of adjacent modules
(i.e., modules linked by an arc in the graphs) reside on dis-
tinct processors, then the execution times for both mod-
ules are increased by 1 s to account for the |IPC processing.
for the replicated module cases, although two adjacent
modules are colocated on the same processor, they may
generate IPC if the preceding module invokes its succeed-
ing module at a remote processor (for load balancing)

Table t Global Optimal Module Assignments by Exhaustive Search

instead of on the locat processor. Interconnection network
delay is assumed to be negligible. The optimai module
assignments, obtained by exhaustive search over all pos-
sible solutions, are presented for comparison with the best
assignment cbtained from the proposed algorithm.

To apply the RMAP algorithm, we set a = 10 (selection of
a will be discussed in detail in the next section). The cor-
responding thread response time requirements for all cases
are shown in Table 1. The procedure given in Section [1i-E
was used to determine the initial module muiltiplicities. The
RMAP algorithm was then reiterated with 5 random initial
module assignments for cases #1 through #4and 25 for cases
#5to #8. The best module assignments{in termsof T,) gen-
erated by the algorithm and their corresponding response
times are given in Table 2. We note that: 1) in maost of the
cases, the algorithm generates the optimal solutions, 2) the
response times of the suboptimal solutions generated by
the algorithm deviate only a few percent from those of the
optimal assignments, and 3} the solutions generated by the
algorithm satisfy the thread response time requirements.
Because of the relativeiy small size of solution space for task
A, the optimal module assignments were generated during
the first iteration. While for task B, cases #5 to #8, the best
module assignments were generated during the first 20 iter-
ations. The solution space of task B is in the order of 7* x
3? = 21 603 possible assignments (as four modules can be
replicated on one to three processors, while the other two
can reside only on one processor). In order to understand

Thread Response Time

Thread Response

Task Control- : - Task

Case Invocation Flow IPC Requirements (s} Time (s) Response

No. Rate, A Craph Existt Thread#1 Thread #2 CPU#t CPU#2 CPU#1 Thread #1 Thread#2 Time (s}
1 0.1 A No 8 1,2 13 13 6.87 6.87
2 0.35 A No 15 13 2 1.3 14.17 14.17
3 0.1 A Yes 15 1,23 3 3 10.02 10.02
4 0.2 A Yes 25 1,2 3 3 19.33 19.33
5 0.1 8 No 9 15 1,23 46 5.6 6.84 13.28 18.83
6 0.135 B No 1 19 123 4,6 5.6 9.77 15.52 2272
7 0.1 8 Yes 13 16 14,5 236 2,36 11.53 13.53 24.65
8 0.125 B Yes 19 21 1,2,45 236 2,36 14.78 17.09 .15

PROCEEDINGS OF THE IEEE. VOL. 75, NO. 5. MAY 1987

Table 2 Best Module Assignments Cenerated hv the RMAP Algarithen

Thread Response Time Thread Response
Requirements (s) Time (5) Percent Oft From
Task Response Optimat Task
Case No. Thread #1 Thread #2 CPU #1 CPU#2 CPU#3 Thread M Thread #2 Time (5) Response Nime
1 8 12 1.3 1.3 6.87 6.87 0
2 15 13 2 1.3 14.17 14.17 0
3 5 1.2.3 3 3 10.02 10.02 a
4 25 1,2 3 3 19.33 19.33 0
5 9 15 1,23 4.6 5.6 6.84 13.28 18.83 0
& 1 19 12,34 36 5.6 9.77 15,52 24.39 18
7 13 16 1.2.46 3,6 2,3.6 11.57 14.52 24.92 1.1
8 19 21 12,45 2,36 136 14.78 17.09 311.15 0

the response time distribution of the solution space, we Aos Aoy A

collected the response time statistics of all possible assign- T= Aot (Ty + T} + o Ty + Ty To o+ Ty + T3
. R 0

ments for cases #5 to #8 from exhaustive search. We noted !

that only about 0.09 to 1.84 percent of the possible assign- . A—OI{T + T+ Anp (T, + Ty + To)
T 7. 1 8 9

ments can yield response times that lie within the range of ‘ot Mot
5 percent from the optimal task response time. In spite of
the few assignments that yield good response times and the + A T, + Ao T + Au T
very large solution space for each case, the aigorithm Aior Mor T New
needed only to search about 400 to 850 assignments for gen- 7o, 1
erating a good module assignment with a few minutes com- + 5 = X p, b, Dautli,)
putation time on the VAX 11/780. Simifar results were S Mot S
obtained when using a different delay penalty constant(e.g., 2, 1 n
a = 1000) and different thread response time requirements. = ’E)‘_t;: T + 'g T;; E:‘ Py 8, Duedli, f)
P ra 1t Fel)

V. ALGORITHM APPLICATION: THE SENTRY SysTEM where

Next, we shail apply the RMAP algorithm to a real-time) - invocation rate for thread xx,
distributed system, the Sentry System [17], that processes xx € {08, QV, TI, OT, 0D}
radar signals for space defense applications. We shatl first A invocation rate for M ' '
describe the characteristics of the Sentry System. Then we 1 v
present the behavior of the RMAP algorithm obtained from Aot = = N, total invocation rate for all modules,
a series of experiments. Simuiation results reveal that the ,'.','1
module replication and allocation generated by the pro-
posed algorithm meet the specified thread response time. @

A. The Characteristics of the Sentry System

The Sentry System is a loosely coupied distributed sys-
tem which consists of six processors interconnected by a
high-speed bus. The application task is comprised of 12
moduies. Its control-flow graph is given in Fig. 9. Three of
these modules, My, M4y, and M,,, are periodically invoked
by the system, while the rest of them are invoked according
to the arrivals of radar return signals. When a return signal
arrives, M, is invoked. When M, completes its execution,
it selects a thread in accordance with the type of the return
signa) received. The names of various threads are given in
Fig. 9. The response time for a thread is defined as the time
from the arrival of a return signal at the system (i.e.,, M, is
invoked) until the message sent by the last module of the
thread to My, is processed by the resident processor of My,
Based on the thread response time and loading require-
ments, modules (except M) are selectively replicated on
several processors. In addition, since My, performs func-
tions that are not directly related to the rest of the modules,

P . . —— MODULE

itis not allocated to any of these six processors. To integrate EvadLIng l \{ 12
modules My, and My; which do not belong to any thread T peiaae -
with the or-fork task control-flow graph, we define the task D —

response time for the system as the weighted sum of the

average module/thread response times. Fig. 9. Task controi-flow graph for the Sentry System.

CHU AND LEUNG: MODULE REPLICATION AND ASSIGNMENT FOR DISTRIBUTED PROCESSING

ki s D B

Table 3 “Module Execution, File Access Times, and Invocation Rates t1ar the sentry

System
invocation
Exec. + Total Rates
Scheduling Read Wnite Exec. INg. of
Modules Time File/Time File/Time Time Invocations:ms)
1 138 RCF/5 206 1.58
CNF/63
2 199 CNF/98 297 0.57
3 1144 1144 0.1695
4 286 KOF/a6 ODF/149 639 0.1695
KOF/138
5 1049 QODF/64 KOF/138 1400 0.6795
ODF/149
6 355 KOF/66 QOTF149 570 0.0075
7 1406 OTFib4 QTF/149 1752 0.1015
KOF/133
8 1286 PDF/97 1383 0.0595
9 981 PDF/215 1196 0.0595
10 660 RIF16 RIF/94 770 0.2
1 1137 RIF/26 RIF/84 1247 0.01
12 269 CNF/102 N 0.2

Note: All times are 1n microseconds.

T, mean response time for M, (averaged
over the response times for all copies if
M, has replicated copies),
2y probability that M; enables M,
[1, if M, enables M, that resides on
3, J a remote processor
‘k 0, otherwise,
Doedt,) average network delay of sending

messages from M, to M,

The data flow of shared file access is presented in Fig. 10.
Each ellipse represents a data file. An arc pointing from a
meodule to a file indicates a file-update, while one pointing
from a file to a module designates a file-read. An arc with
double arrows means that the module both reads and
updates the file.

o
O

Fig. 10. Shared data files in the Sentry System.

70 RADAR

The Sentry System has an operating system for module
scheduling and 1PC processing, Invocations for arepticated
module are routed to and executed on one of its resident
processors in a round-robin manner. Module execution
times include the scheduling overheads and file access
times, and are assumed to be deterministic. Module exe-
cution times and invocation rates are shown in Table 3.
Modules communicate with other modules by sharing
common (in-memory) data files and/or direct message
exchanges. The processing time for the iMC from M, to M,
is referred to as IMC time (/MC,) for the modute pair. The
IMC times for various module pairs are presented in Table
4. If two communicating modules are located on distinct
processors, the IMC becomes IPC which requires pro-
cessing on both the transmitting and the receiving pro-
cessors. The processing time for the IPC is called I1PC time
(IPC,). In the Sentry System, the IPC times on transmitting
and receiving processors are different. IPC, = 80 us for the
transmitting processor and the /PC, = IMC, for the receiv-
ing processor. The interconnection network delay is the
bus delay in the Sentry System. This delay depends on the
message length, and ranges from 0.165 to 0.2 ms.

B. Characteristics of the RMAP Algorithm

To study the characteristics of the RMAP algorithm, we
experimented with it under different environments such as
varied thread response time requirements, initial module
multiplicities, and delay penalty scaling constant. Four
selected sets of thread response time requirements, R,, Ry,
Rc, and Rp, were used, as shown in Table 5. Among these
requirements, R, is the least stringent, Ry is the strictest,
and Ry and R lie between those of R, and Rp. Two different
sets of initial module multiplicities, a, and ay, were used
in the experiments. a, was generated in accordance with
the procedure in Section I-E; M, has two copies, M; has
five copies, and all other modules have a singie copy. In a4,
since the processor utilization for M; is 95 percent, M; is
initially duplicated into two copies to avoid possibie pro-
cessor saturation; while all other modules consistofasingte
copy. Three delay penalty scaling constants, 1, 10, and 1000,
were used in the experiments,

Eleven experiments were performed. Each of them used

PROCEEDINGS OF THE JEEE, VOL. 75, NO. 5, MAY 1587

Table 4 1MC T'mes ror Vanious Module Pairs

Fixed IMC Times

Sending Modules Receiving Modules

{us)

1 2 61
1 3 61
1 5 61
1 7 61
1] 61
2 10 54
3 4 77
4 10 54
5 3 77
5 10 34
6 10 54
7 10 54
8 9 54
9 10 54
10 radar 127

Note: AH other module pairs not listed here have zero IMC time.

a different combination of thread response time require-
ments, initial module muitiplicities, and delay penalty scal-
ing constants. Experiments #1 thraugh #9 used a, as initial
module multiplicities, while Experiments #10 and #11 used
ag. The scaling constant for Experiment #1 was 1. Experi-
ments #2 to #5 and #10 used 10, while Experiments #6 to #9
and #11 used 1000 as the scaling constant. In each exper-
iment, the RMAP aigorithm was iterated with a prespecified
number (500 or 1000} of random initial module assignments.
For each initial assignment, the algorithm generated a sub-

Yabie 5 Selected Sets ot Thread Response Nme
Requirements tor the Sentry System

;e’;o ’/”e
€p COn "y Sets of Requirements
Pips e .
’ g
6’@.9 ’b-rl ©a
v Rn\ RC‘ RC ji"()
oS 2.5 1.8 1.75 1.7
ov 7.0 6.6 6.55 6.5
Tt 10 3.2 315 i
or 45 4.0 31.95 19
oD 55 5.0 495 49

optimal assignment. Only certain local optimal assign-
ments could satisfy the thread response time requirements.
The final module assignment was selected from this set of
local optimals that yielded the minimum Tony- The experi-
ment specifications, thread response times, and T, of the
final module assignment generated from these exper-
ments are presented in Table 6. The corresponding module
assignments are shown in Table 7.

Since Ry is the most stringent thread response time
requirement, no module assignment was generated to meet
the thread response time requirements (Experiments #5 and
#9), even using 1000 randomiy selected initial module
assignments. The number of module assignments searched

Table 6 The Thread Response Times of the Module Assignments Generated by the

RMAP Algorithm

Experiment No. 1 2 3 4* 5* 6 7 8* g+ 10 "
Thread
Response Time Ry R, Ry Re Rp R, Ry R Ro Ry R
Requirements
l::::ﬂti;ﬁggi:f *a XA % @a ®a 2 Ga s a, ay ay
Penalty
Scaling] 10 10 10 10 1000 1000 1000 1000 10 1000
Constants
OSs 1.741 1.394 1.699 1.653 1.678 1.441 1.586 1.616 1.678 1.642 1.767
A
E
é‘ ov 6.051 5.894 6.052 6.136 6.153 5.657 6.236 6.309 6.131 6.044 6.261
=
¥
s T 3.204 3.186 117 3101 3.169 3.247 3 3128 3.160 3.167 3189
&
=
'E or 3.710 3.639 3.438 3.667 3.743 3.657 3.578 3.767 3.738 1.687 3.776
£
-
oD 4.977 5.057 4.954 4.797 4.848 4.556 4772 4.798 4.844 4.990 4.995
Tony 1.138 1.058 1.148 1.119 1.837 1.062 1.106 1.151 61.59 1.131 1.151
Local Optimals
Mepet 15.8% 99.8% 15.9% 0.44% 0% 99.5% 14.5% 0.33% 0% 13.2% 14.3%
Requirements

*Algonthm was iterated with 1000 initial random module assignments, while others with 500 initial random module assignments.

CHU AND LEUNG: MODULE REPLICATION AND ASSIGNMENT FOR DISTRIBUTED PROCESSING

and CPL time used to abtain tne NNal module dssignment
Table 7 “odule Assignments Generated o *he 11 varied from one experiment to another They ranged from
Expeniments 19 100 to 45 000 module assignments with various module
Expernment No. CPUT CPU2Z CPU3 CPU4 CPUS CPUG multiplicities. The required CPU times ranged from 1.48 to
3 3.48 h on the VAX 11/780 machine. We also abserved the
7 following characteristics of the algornithm:

1 Effect of T, on the stringent thread response tume

requirements:

From Experiments #2 to #4 and #6 to #8, we note that Ton
is higher’ for the cases with stricter thread response time
5 requirements. The modules in a threag w~ith a strict
response time requirement should be allocated to lightly
loaded processors in order to avoid violating the stringent

2 thread responsetime specification. Moduies with less strin-

—= 2 0w

1
2
5
1

2

el R TN
LR b =

Nuw | 2w e

[)

— e b s
U
D=3 = V3]

= b=

gentresponse time requirements may be allocated to more
heavily loaded processors. This restricts the freedom of the
search algorithm to perform module relocations, replica-
tions, and/or deletions. However, if the threads have less
stringent response time requirements, the algorithm has
more flexibility in searching for alternative assignments.

o0 N Y e
Fel-- BNV
(=3~ - - LR) Y
SOCDN—A
= D 0w b -

~

Thus the final selected module assignments may yield a
lower T,

2) Delay penaity scaling constant:

For threads that do not require strict response time
requirements, the scaling constant does not have much

o
o 0o
- DO B P
e B
==V
[3=V,]

N

efiecton module assignment. However, for stringent thread
response time requirements, selection of the scaling con-
stantis critical. Experiment #1 used a very small scaling con-
stant (a = 1). Note that the T! thread in the experiment vio-
lated its response time requirements, yet the algorithm was
2 not able to detect this violation. This is because the scaling

[Jy= V)
- D 0o —
~ W

ko

[=]
LR RV
w

— 0 0B O L bl

conswant a is so smail that the final suboptimal assignment
yieldes the minimum T, in spite of slight violations of T/
thread’s response time requirement. Meanwhile, there exist
many assignments which can meet the specifications as
indicated in Experiments #3 and #7. Therefore, the penalty
2 scaling constant should be chosen sufficiently large so that

~

-3 XM
~
w

— O el N —
(=]
— O o N —

the assignment that violates the response time specifica-
tions can be reflected in 7,,,. The scaling constant should
be selected such that T, for the final assignment {which
meets the thread response time requirements) is less than

~4
— DR
e ON
a™~-
LE I -8
OB

%)

that of other assignments which have one or more threads
violating their response time specifications. For exampie,
T (task response time) for the Sentry System is about 1 ms
and thread response times are a few times larger than T.
Experiment results indicate that using a scaling constant

(S, IR P}

[~
== I, B SR
[=3~ I, B SR

-

(=]

~ O
e k=

equal to or greater than 10 (one order of magnitude greater
than T} is large enough to detect thread response time vio-
lations. Therefore, all our experiments (except for Experi-
ment #1) use 10 or 1000 as the scaling constant. Similar
results were also obtained by using a = 50. The experi-
mental results reveal that the algorithm is insensitive to the
selections of the penalty scaling constant as long as it is

W
leGN-d
O b=
~

E-N- VN R

WO e

%)

larger than a certain threshold value {e.g., 10 x T
3) Insensitivity of the initial module multiplicities:
Experiments #3, #7, #10, and #11 had the same thread
response time requirements Ry, Experiments #3 and #7 used
@4 as initial muitiplicities whereas Experiments #10 and #11

¥, I N ¥4

10

- DN = | -
O M —

200~y
=0 e &
=

(=]
)

used a;. We note the response times for the assignments
generated in Experiments #10 and #17 are similar to those
of #3 and #7. This indicates that the RMAP algorithm is

[V, VS] - OO0 WY N

—= 0 oW
e L

1

RN -
- SR

"The decrease of T, from Experiment #3 to #4 is because Exper-
iment #4 was iterated with 1000 instead of 500 random initial as-

(=]
= DN -

N

signments as for Experiment #3.

PROCEEDINGS OF THE IEEE, VOL. 75 NO. 5. MAY 1987

II.2-14

insensitive to the initial module multipliciies provided that
no single module copy tor the inital multipiicities would
saturate a processor.

C. Validation of the RMAP Resuits via Simulations

In this section, we shaif assess the performance of the
module assignments generated by the RMAP algorithm and
also validate the accuracy of the task response time model,
The thread response times for the assignments from Exper-
iments #2, #3, and #4 were simulated and compared with
the thread response time requirements and the response
ume predictions from the analytical modei. We note that
the interarrival times of radar return signals (i.e., task/thread
invocations) for the Sentry System are not exponentially
distributed. Further, the invocation rates for OT and OD
threads are highly variable with time {Fig. 11). Thus the invo-

180,

150,

Bjsr-ﬂ/”\M

1240,
-

90,

60,

ov h

NUMBER OF |NVOCATIONS PER 100MseEc [NTERVAL

3o,

oD

cation arrivals are non-Poisson and timewarnant. To eval-
uate the RMAP algorithm and the accuracy ot the anaivtical
model twhich assumes Poisson arrivals), both Poisson and
non-Poisson (using actual arnwval statistics: thread invoca-
tion arrivals were used in the simulation. From Tabte 8, we
note that the simulated response times for both Poisson
and non-Poisson radar signal return cases compare closely
to the analytical predictions. The respanse times for the
Poisson arrivals match closer with the analytical predictions
than those of the non-Poisson cases, especially for OT and
0D threads.

When the task invocation arrival processes differ signif-
icantly from a Poisson process, the module assignment gen-
erated by the RMAP algorithm may produce a high devia-
tion from the response time predictions (see the OD thread
in Experiment #2 in Table 8). The system designers, there-
fore, shouid analyze the task invocation arrivai patterns and
make appropriate calibrations. in general, hawever, if the
task invocation rates are fairly constant in the time period
of interest, the RMAP algorithm with Poisson invocations
should be able to generate module assignments that satisfy
the required thread response times.

VI. SumMMmARy

An analytic model based on the module response time
maodel and task control-flow graph has been introduced for
estimating task and thread response times for loosely cou-
pled distributed systems. The model considers such factors
as IPC, module precedence relationships, module sched-
uling, interconnection network delay, and assignment of
the modules and files to computers. Based on this analytic
model, we have developed a new search algorithm which
uses the sum of task response time and delay penalty as the
objective function, to perform module assignment and rep-
lication for distributed systems,

To improve load balancing and response time, certain
modules may be replicated and processed on several com-
puters. The algorithm iteratively searches for module
assignments with appropriate module muitiplicities which
yield lower task response time yet satisfy the thread
response time requirements. The search process is ter-
minated if the algorithm reaches a local optimal assignment

where the objective function cannot be improved further.
The algorithm is repeated with a prespecified number of
random initial assignments, The final module assignment

TIME (SECH

Fig. 11. Thread invocation rates for the Sentry System.

Table 8 Comparison of Response Time from Analyticai Predictions with that of

Simulation
1?“:9 Experiment #2 Experiment #3 Experiment #4
):5,)”")@ o"@ Simulations Simulations Simulations
R Anal. Anal. Anai.
% R, Pred. P N-P R, Pred. P N-P Re Pred. P N-P
s 2.5 1.39 1.03 1.01 1.8 1.70 1.66 1.84 1.75 1.65 0.98 1.04
ov 70 5.89 5.40 51 6.6 6.05 5.77 5.96 6.55 6.14 5.30 5.79
T 4.0 3.19 3.03 362 32 317 3105 £y 315 3.10 293 313
or 45 364 s 4.00 4.0 .84 31.84 5.20 195 3.67 1.61 5.54
oD 55 5.06 4.63 19.56 5.0 4,95 4.94 6.22 4.95 4.80 4.57 5.07

Anai. Pred.: analyucal predictions.
P: Poisson radar signal returns.
N-P: non-Poisson radar signai returns.

CHU AND LEUNG: MODULE REPLICATION AND ASSIGNMENT FOR DISTRIBUTED PROCESSING

v+ 775

15 then selected (based an the value of T) rrom this set of
feasible local optimai assignments.

The RMAP algorithm has been validated by applying it to
a set of sampie distributed systems and a real-time distrib-
uted system for space defense applications. For the sample
distributed systemns, exhaustive search was performed to
obtain the optimal assignments. With a smatl number of
initial module assignments, the algorithm has been able to
generate the optimal solutions for mostcases; while inafew
other cases, the solution assignments generated by the
algorithm are practically identical to the response time per-
formance of the optimal sclutions.

Because of exponential growth in computation require-
ments, exhaustive search for optimal assignments for large-
size systems is not feasible. Therefore, the proposed algo-
rithm was used to generate the module assignments ior a
real-time distributed system for space defense applica-
tions. The assignment yields satisfactory task response time
while meeting the set of thread response time specifica-
tions. A series of experiments was performed to charac-
terize the behavior of the algorithm. The experiments indi-
cate that the final module assignment is rather insensitive
to initial module multiplicities. Further, the aigorithm is
quite robust over a wide range of the delay penaity scaling
constant. To assess the response time performance of the
modute assignments generated by the algorithm for the
real-time distributed system, simulations have been per-
formed for Poisson and non-Poisson task invocation cases.
Although the analytic model is based on Poisson arrivals,
the simulation results reveal that the model can be used in
many instances for approximating non-Poisson arrival
cases. Few cases of deviation are noted where the inputs
are significantly different from Poisson input arrivals. In
these cases, simulation should be used to examine their
response time performance. However, using the RMAP
algorithm can greatly reduce the time needed to search for
feasible module assignments, which could be otherwise
prohibitive. Therefore, the proposed algorithm is a valu-
abte tool for module assignment with repiications for dis-
tributed processing systems.

ACKNOWLEDGMENT

The authors wish to thank). Huang and D. Townsend of
Titan Systems, Inc,, Los Angeles, CA, for performing the
simulation for the Sentry System; J. Hellerstein of IBM
Thomas Watson Research Center, Yorktown Heights, NY,
and L. Lan of AT&T Bell Laborataries for their constructive
comments on the earlier version of this paper.

REFERENCES

[11 W.W. Chu, L.). Holloway, M. T. Lan, and K. Efe, "'Task alio-
cation in distributed data processing systems,” /££E Com-
puter, vol. 13, no. 11, pp. 57-69, Nov. 1980.

[2] H.S. Stone, “Multiprocessor scheduling with the aid of net-
work flow algorithms,’* JEEE Trans. Software Eng., vol. SE-3,
no. 1, pp. 85-93, Jan. 1977.

{31 G.5.Rao, H.S. Stone, and T. C. Hu, “Assignment of tasks in
a distributed processing system with limited memory,’” JEEE
Trans. Comput., vol. C-28, no. 4, pp. 291-299, Apr. 1979.

{41 P.Y.R Ma,E Y.5. Lee, and M. Tsuchiya, A task allocation
modei for distributed computing systems,” /EEF Trans. Com-
put., vol. C-31, no. 1, pp. 41-47, Jan. 1982,

(5] K. Efe, “Heuristic models of task assignment scheduling in
distributed systems,” /EEE Computer, vol. 15, no. 6, pp. 50-
56, June 1982.

(6] T.C.K.Chouand). A, Abraham, “Load balancing in distrib-
uted systems,’” IEEE Trans. Software Eng., vol. SE-B, no. 4, pp.

(8}

(9]

1103

o]

(121

(131

4}

(15]

(16]
(i

401-3412 Juiv 1482

C. C. Shenand W. H. Tsa), "A graph matching approach 1o
optimal task assignment 1n distributed computing svstems
using a minimax criterion.” (EEE Trans. Comput., vol. C.34,
no. 3. pp. 197-203, Mar. 1985,

W. W. Chu and K. K. Leung, "Task response ume modei and
its applications for real-time distributed processing sys-
tems,” in Proc. 5th Real-Time Symp. (Austin, TX, Dec. 1984},
pp. 225-236.

wW.W.Chu, M. T. Lan, and }. Hellerstein, “'Estimation of inter-
module commumication (IMC) and 1ts applications i dis-
tributed processing systems,” IEEE Trans. Comput., vol. C-33,
no. 8, pp. 691-699, Aug. 1984,

F. Basket, K. M. Candy, R. Muntz, and F. G. Palacios, "Open,
closed, and mixed networks of queues with different classes
of customers,” /. ACM, vol. 22, no. 2, pp. 248-260, Apr. 1975.
P.HeidelbergerandK. §. Trivedi, “Queuveing network models
for parallel processing with asynchronous tasks,”” /EEE Trans.
Comput.. vol. C-31, no. 11, pp. 1099-1109, Nov. 1982.

E. D. Lazowska, }. Zahorjan, G. 5. Graham, and K. C. Sevcik,
Quantutative System Perfarmance: Computer System Anaiy-
sis Using Queueing Network Models. Englewood Cliffs, N
Prentice-Hall, 1984,

C. H.Sauerand K. M. Chandy, Computer System Performance
Modeling. Englewoad Cliffs, N|: Prentice-Hall, 1981,

M. R, Garey and D. 5. johnson, Computers and Intractabiiity.
San Francisco, CA: W. H. Freeman, 1979.

C. H. Papadimitriou and K. Steightz, Combinatonal Gptimi-
zation: Algorithms and Complexity. Englewood Cliffs, NJ:
Prentice-Hall, 1982,

S. Lin, "Computer solutions of the Traveling Salesman prob-
lem,’” Bell Syst. Tech. |., vol. &4, pp. 2245-2269, Dec. 1965.
Titan Systems, Inc., “’Distributed data base management
(DDBM) analysis,”” Semsi-Annual Rep.. Contract No. DASC60-
83-C-0080, CORL No. ADO4, July 19, 1985,

PROCEEDINGS OF THE IEEE, VOL. 75. NO. 5. MAY 1987

II,2-16

PiM—4)<t]. Further, it can be expressed as
M=, =1
PIM~, J<t) = 1P 2t = 1= 3 P{AC) (16)
=
where
e j=Q
PIA@=] = § i 1. et L, PO (D
£ rllaor .

is the probability of exactly j invocarions arriving in a period ¢
{3].

By substituting (17) into (16) and differendating with
respect 1o t, we have

Ple<i(M-k)<hedit)
har o NP rage [AeGat® dele™ | .
'{ b .j:.'.u'-nl"“"""' [al @i }“" }‘

(19

Case Il : the tagged invocaton belongs w0 the g group,
G=g, for g=2,3,..M

The tagged invocadon waiting time depends on the
number of invocadons in the bawch queue at the instant of its
arrival, Thus, we have

=1
E[Wy iGug)= T E(Wy |Geg, Lun| P{Lnm | Guug)

for g=2,3, .., M=L (19
where

L= $1; = m = total cumber of invocations ix the
=l £ groups,

P{L=m | G=g] = probability that the 1ol number of
invocations in the g gToups is m given
that the tagged invocation belongs 10
the g% group,

E{Wg |Gmg,Lam] = expected waiting time at the batch
queue given that there are m
invocations in the g and the
tagged invocation belongs two the
£* group.

Sincelheban:h'umadeupofalem;gnpaoﬁnvo-
L =i

cations, the total number of invocatiolns in the groups,

L', must be less than M; that is, £’ = 'L, = m'aM, Thus

ml
M=
Pll=m|G=g)= ¥ Pl | L'wet’, Gug |PIL st | Geug) (20)
L]
Using (6) and nonmalizing over the probabilities of al the pos-
sible values of m’, it can be shown that pos
(a)oraomen
P(L'=n’| Gug) = 4 -)
8! (1-g)ye-t
2 [e—z] (
The conditioned probability of the total number of invocations
in the ¢ groups in (20) is
Pll=m|L'=a’, Gug} = P(L,=(m-m")] = &(1-gy-="-! Q)
where P(L,=m-m7 is the probability of having m-m’ invoca-
dons in the ¢™ group.

@1)

Substituting (21) and (22) into (20), we obtain the pro-
bability of the total number of invocations at the baich queue at

the arrival instant of the tagged invocation. This allows us to

determine that how many additional invocatons are needed to

imum waiting period for the ¢* invocaton group, Hence, we
condition E{Wy | Gmg,L=m] on the ammival instant of the ¢* invo-
cation group, r,.

E(Wy | Gug, Lam)
T.

= E[Ws | Gug. Lo, tcsy Stodt]Plt<s, ot Lum, Gug) (23)
L]

where !

Plt<t, St+dt| Lam, Gug) = probability of the tagged
invocaton arriving at t given
thaxitisingroupgandb-m.

Since the arrival instant of the £* invocation group is

not affected by the twtal number of invocations in the n invoca-
on groups, we have

P(<ty St4t] Lum, Gug) = Pit<s, S+t Guug)

Since the first invocation #roup always arrives at the in-
stant r,=0, Plt<s, <t+dt] can be interpreted as the instan; of
(g-1)* amival from a Poisson source. Therefore, ¢, is an Erlan-

gian dismribution [4]. Thus,
l.(l.l)"’ e—l'l
PI<t;<t4dtI Gmg] m U2
I'le(ht)‘" ey

wo @=2

The denominator of (25) is the normalizarion constant which is
the sum of the probabilities .
Gi :

de

(2%

queue at the time instant ¢, then the tagged invocation waiting
ume is either the time for the arrivals o?M-m invocations (1st
term of (26)), or T, if less than M-m invocadons arrive be-
fore time-out period ends (2nd term of (26)). Thus, in the same
manner as in case L, the conditionat waiting dme ar the bawch
Queue in terms of {(M-m) is

E[Wy | Gag, Lam, 1<1, 24dit)

T

= [(PIC<iM-m)srsar 1T, =0 _J PIC<iM-m)st'+dr] (26)
Vel ‘(T

By substituting (25) and (26) into (23), and (20) and
(23) into (19), we can obmin the mean waiting time of the
tagged invocation given that it is not among the first invocation
group. By further substituting the resuits from cases [(13) ang
IT (19) into (4), the mean waiting time at the batch queue can
be expressed as a function of the invocation group arrival rate,
Ag; the average number of invocations in 4 group, 1/6; the
maximumbuchsize,M;mdthedm-outpaiod.T,.

3.2 Waliting Time At Processor Queue, Wp

Module invocations are grouped into baiches and sent
10 the processor queue to wait for scheduling and execution as
shown in Figure 2. Since invocatons of different modules re-
quire different execution time and scheduling overhead, the
processor can be modeled as a single server queuing system
with multiple types of customers [5]. In addition, we assume
that the batched module invocarions arriving 1o the processor
queue are bawch Poisson arrivals. To characterize the armival
processes for each of the £ modules assigned to the processor,

III-4

we need to specify the average batch arrival rate, A;, and the
probability distribution of the number of invocations in a batch
{hereafter will be called batch size), P{Y;=y;] fory = 1, 2, .., M;.
The detailed derivation is shown in the Appendix A. The aver-
age barch arrival rate can be expressed in terms of the probabil-
ity distribudon and the invocation armival rate w the barch
queue.

A" for external invocations
E[Y;]
A

E{Y,] for intemal invocations

A=

where E[Y, my;] is the expected batch size for module i. The
mean waiting tme of an invocation at the processor ¢an be di-
vided into the mean waiting time for the batch, W,, and the
mean waiting time of the invocation after the processor starty
processing the batch, W, that is,

E{W,] = E[W H+E[W,] (27)

By considering a batch of invocations as a single custo-
mer 1o the processor, the mean batch waiting time at the pro-
cessor queue can be obtained by using the Pollaczek-Khinchin
formula for M/G/1 queuing systems [6].

xz
E[W,] = 2. . (28)
214 %)
where

A= é‘,\‘ = total batch arrival rate to the processor,
“ml

X,. X3 = the average and the second moment of the
batch processing time respectively.

X, and x_,’, can be obtained from the Laplace Transform
of the baich processing time dismribudon, X,(s), which is

& M,
Xp(s)= Zﬁ' T, Xp(s! Yi=y)PLY;=y;) 29

] ymi

where
X5 (s Y;=y;) = the Laplace Transform of the processing
time distribution for a baich with y;
invccations, .
X;/); = probabilit that a bawch contains module i
Anvocatior s)

When a barch of invocations arrive at the processor
queue, a given invocation in the batch has to wait for the com-
pleton of processing of all the preceding invocations. The
waiting time of the invocation, E[W,}, is of the overail

wajting tme (27) at the processor queue. For a baich with y;
invocations for module i, we have
R Vi+X)) F
E{W,|Y;=y]= i T EHV+X) = (1) —'3-—4-’—
£ 'Fl [
By unconditioning E{W, | Y;=y], we have,
 LE[Yi) M
E[W,]= Z-—;:— E[W, | Y;=y;JP[Y;2y:] (30)
iml y=l

where L.
ME[Y;}/A, = probabiliry that an invocation is for
R module i,
A, = YXE([Y,] = total invocation rate to the processor.

=l)
Substituting (28) and (31) into (27), we obtain the mean
waiting time of an invocation at the processor queue.

3.3 Module Scheduling Time, D

The batch scheduling overhead for module i depends on
the fixed overhead, F;; the variable overhead, V,; and the
number of invocarons in the batch, Y;. The mean scheduling
time is the weighted sum of the scheduling dme for all the pos-
sible batch sizes.

M
E[D;] = 3 E[Dy 1 Y=y, JP{Y;=y;] (3D
nul

where E{Dy | Y;=y;] can be obuined from (1).

The module response times (3) can be obtained by sum-
ming (4), (27), (31) and the module execution dmes. The
thread response times can be computed by aggregrating the
respoase time of ail the modules in the thread [2].

4. Examples
4.1 Module Scheduling for Distributed Systems

Let us apply the BST to the application task (Figure 1)
on & two-processar loosely coupled distributed system. The
task can be intytwo threads. Thread 1 consists of
modules 1, 2, 4, 8 and thread 2 consists of modules 1, 3, 5,6, 7,
8. Table 1 shows the module assignment and the BST parame-
ter values used in this example. The parameters include the
mean execution tumes, fixed and variable overheads, the max-
imum batch sizes and the time-out periods. The task is repeat-
edly invoked according to a Poisson with an average
task invocation rate Ay. From the control flow graph, we
note that 90% of the sk invocatons flow through thread 1.
Thus the modules in thread 1 are invoked more often than oth-
er modules. To reduce scheduling overhead, we use BST for
the modules in thread 1. The time-out periods are set in accor-
dance with the maximum batch sizes and the average module
invocation rates, For module 1, the time-out period starts
when a module invocation arrives and finds that the batch
queue is empty. The average time for the next invocation ar-
nvals is equal to the reciprocal of the module invocation rate.
Therefore, the time-out period is set equal to the interarrival
time of module 1 which is equal to the interarrival tme of task
invocations. By assigning equal maximum batch sizes to all
the modules in thread 1, invocations arriving at the batch
queues for modules 2, 4, and 8 will be in groups. As a result, a
smaller dme-out period is used for these modules.

The optimal module assignment to the processors using
the FCFS scheduling algorithm is shown in Table 1. This as-
signment yields the minimum task response time. We use this
module assignment to0 compare the thread response time
between the BST and the FCFS algorithms. The thread

times of FCFS are computed using the techniques in
{2]. To compute the thread response times of BST, we first
compute the module response times from our analytical model.
We then aggregate the modules in a given threads to obtain its
thread response time. The response nme of threads 1 and 2 for
the BST and the FCFS scheduling algorithms are shown in Fig-
ures 4 & 5. Note tha for , the thread response time in-
creases tially as the invocation rate increases. At low
invocarion rates, BST yields higher response tmes than those
of FCFS. This is mainly due to the delay in forming batches of
module invocarions. As maffic increases, the delay in grouping
invocations into batches decreases, which in turn decreases the
thread response time. Therefore, at high invocadon rates, BST
yields lower response times than those of FCFS. Since the
BST algorithm reduces fixed scheduling overhead, systems us-
ing BST can support a larger module invocation rates than
those using FCFS. We have also simulated the example via

the PAWS simulation {7] with Poisson task invocadon arrivals.
We note that our analytical results compared closely with the
simulations which provides a validation of the assumptions
used in cur modei.

Tor | Samacs || e
wouel X | F |V I[M [T Agﬂ
1 15 1.2 0.3 2 Wie I§ cPuz
2 v | 12 | 03 2 20 || cPu2
3 08 0.3 0.2 1 N/A cP
4 19 12 0.3 2 2.0 CPU1
] 0.5 0.3 0.2 1 N/A cPUZ
s 0.9 0.3 0.2 1 N/A cPut
7 0.5 0.3 0.2 ' N/A cPu
] 15 | 12 | o3 2 2.0 e

Table 1. Parameters for the Module Scheduling
Policy Exampie ’

% simuiztes resuls, FCRY

S
L]

" gimuistion feeuim, BT

Response Tume tor Thiead |

o T T T T T T 1 T T
900 0.0 004 008 008 0.10 0.12 014 048 0G0 0.20
Task Invocation Rate

! I T 1 T | I I R 1
0.0 119 234 354 472 500 TOR 028 %44 100 "e (%)

Processar Utilizadon with FCFS Algorithm.

Figure 4. Average Response Time for Thread { of the
Module Scheduling Example .

4.1 Scheduling for Disk I/'O

In a disk I/O access, the dme to move the disk arm to
the data mack on the disk is the fixed overhead. The time to
read the rack data depends on the data size and is the variable
overhead. The dme required to forward the data block to the
CPU is the execution time. Assuming the data to be rewieved
in the batch are stored on the same or neighboring data tacks,
then the fixed overhead can be shared. We shall show that us-

120

+ smusinn reuls, FCFE

Response Time lor Thiead 2

I 1 ¥ I | 1 1 I I
000 0.08 004 008 G080 .10 0.t2 0.14 014 Q.18 Q.20

Task |avacatian Aate

I 1 I i LI 1 T
8.0 1L 36 I4 ATZ 390 TOR 414 Hea 100

Processor Utilization wath FCFS Aigonthm.

Figure 5. Average Response Time for Thread 2 of the
Module Scheduling Example

118{%)

ing BST algorithm can substantially reduce disk [/O overhead.
Let us use the following normalized system parameters

Fixed Disk [/O Access Overhead = |

Variable Disk 1/O Overhead = 0.01
Mean Executioa Time = 0.001

Figure 6 depicts the response time for the FCFS and the
BST algorithms with selected values of M and T,. We note
that BST yields lower response ime than FCFS for high disk
access rate. Due to the time-out period delay in BST, FCFS
yields lower time than BST in the low invocaton re-
gion. Because the BST algorithm subsmntially reduces fixed
scheduling overhesd, the processor usinaFBS'l‘ can support
a larger number of disk access than that of FCFS.

Next, we study the effect of batch size and time-out
period on the re: tme. We note that at low disk 1/O rate,
larger maximum h size and longer time-out period increase
the waiting time at batch queue and thus the response tme. At
high disk /O rate, the delay at the batch queue is reduced as
the baich size increases. Therefore, as the maximum batch size
and time-out constant increase, the response tume increases at
the low disk access rate region and decreases at the high disk
access rate region,

kol o A =

7o

A wmuisnon, FCFS
A sinuiston, Wl T, =10

==T. analynesl

Time

1o

Disk

Avarage

1 | 1
2.0 0.8 1.0 1.5 2.0 2.5 10
Average Disk I/Q Rate
3 50 100 159 200 250 300 (%)
Disk O Processor Utilization with FCFS Aigorithm

Figure 6. Average Disk /O Time for FCFS and BST
Algorithms with selected values of M and T,

5. Conclusions

- A ngv;_) scheduling :lgglnsth:g‘.l u:mh Service with
ime-out (BST), is proposed for disti processing systems
for executing repeatedly invoked task(s). The analytical model
deveioped provides module response time estimates for this al-
gorithm and thus thread response time can be i Com-
paring performance of a system using BST with that of using
first-come first-served (FCFS) scheduling algorithm, we note
that the amount of improvement depends on the ratio of the
fixed scheduling overhead to the incremental scheduling over-
head. At heavy invocaton rates, more batches will be formed
when using the BST algorithm, therefore fixed scheduling
overhead is reduced and more response time improvement can
be achieved. As a result of reduction in overhead, the system
using BST provides more capacity than that of using FCFS.
To optimize the performance of BST, it is desirable to use 2
larger M and T, at heavy invocation rates and a smaller M and
T, at light invocation rates.

Appendix A - Probability Distribution of Module Batch
Size,' P(Y=y]

When an invocation group arives to a baich queue, the
invocatons in the group may be larger than the maximum
baich size. As a result, some of the invocations in the group
will be left behind at the batch queue and become the first in-
vocation group of the next barch, For mathemadcal mactability
in esomaring the invocation waiting time at the batch queue,
we assume that there are no /eft-over invocations. Although
the resuldng bawch queue waiting times compare closely with
simulatdon results, the left-over invocadons have significant
impact on the bawh size. Therefore, we relax the above as-
sumption in estimating the probabilities of the batch size distri-
budon.

Let the number of left-over invocations from a given
batch queue be a, and let the probability that the batch size
cquais y be P{Y=y].

M=
P{Y=y]= ¥, P{Ymy|coms] P{comz] (A1)
i}

where
P{Y=y| ooy = probability that the batch size is y given
that there are z left-over invocations
from the previous batch,
P{az] = probability that there are z left-over
invocarions.
Since the aumber of invocations left behind from a
batch depends oa the number of invocations left behind by the
previous barch, we have & recursive relationship as follows.

for u,v=f, .. M-l

(A2)
Assuming the limiting probabilities, limP{o,=u] and

tli_x.l;l’[cr....-v] exist and are equal to Plomu] and'-!"[-a-v} tespec-
tively, then (A.2) becomes:

M=
Plocwy) = gﬂmia.-;-v]l’[a-vl

Ml
Pla,mu}m Eﬂu.-ala..l-vma...-vj

for u.v=0,.. M=1(A.D)

Conditioning on the number of groups in the r* batch,
N,, we have

by
Pla,ul @ =v] = T Plaml Gpav Nt [P{N =, | Gy v}
1}
b for nved .., M=1.(A4)

where Plasuia.,=v.N=n] and P{N,=n,ia.,=v] can be ex-
pressed in terms of Ay, M and T,. Thus Plomu] foru =20, . .,
M-1 canM_bF obtained by first substituting (A.4) into (A.3), then

solving ¥ P{amu] = 1 and the set of linear equations in (A.3).
w=

In the same manner as in (A.4), the probabilices
P{Y=yicomz) forz=0,.., M-1 in (A.1) can be obtained by con-
ditioning on the number of invocation groups in the bawch. The
resulting conditicned probabilities can be expressed in A, M
and T,. The probability dismibution of batch size, P{Y=y] can
be estimated by subsdtuting (A.4) and (A.3) into (A.1).

! Since the analysis is the same for all modules, we drop the
subscirpt i in this Appendix.

P . |

Acknowiedgement

The authors wish to think Dr. Kin K. Leung of AT&T
Bell Laboratories for his critical reading of a draft of this pa-
per.

References

(1] W. W, Chu, K. K. Leung, "Module Replication and Assign.
ment for Real-Time Processing Systems,” Special Issue of
the IEEE Proceedings on Distributed Database Systems,
May 1987, pp. 547-562.

[2] W. W. Chu, K K. Leung, "Task Response Time Model &
Its Applications For Real Time Disoibuted Processing Sys-
tems,” Proceedings of the Real Time Systems Symposium,
Dec. 1984, pp. 225-236.

(3] W. W. Chu, "Buffer Behavior for Mixed Input Traffic and
Single Consmant Output Raw," /[EEE Transactions on Com-
munications, April 1972, pp. 230-238.

(4] L. Kleinrock, Queueing Sysiems Volume I: Theory, Wiley,
New York, 1975.

[5] F. Basket, K. M. Chandy, R. Muntz, F.G. Palacios, " Open,
Closed, and Mixed Networks of Queues with Different
Classes of Customers,” Jowrnal of the ACM, April 1975,
Pp. 248-260.

(6] S. S. Lavenberg (Editor), Computer Performance Modeling
Handbook, New York: Academic Press, 1983,

(7] R. Berry, K M. Chandy, J. Misra, and D. Neuse, PAWS 2.0
Performance Analyst s Workbench Syscem, Dec. 1982,

III-8

CHAPTER IV

TESTBED-BASED VALIDATION OF DESIGN TECHNIQUES
FOR RELIABLE DISTRIBUTED REAL-TIME SYSTEMS

Testbed-Based Validation of Design
Techniques for Reliable Distributed Real-

Time Systems

WESLEY W. CHU, reutow, 1eee, K. H. KIM, SENIOR MEMBER, IEEE,

AND WILLIAM C. McDONALD, MEMBER, IEEE

Invited Paper

Twa tghtly coupled muiti.computer testbeds, one providing
efficient inter-node communications tarlored to the application,
and the ather providing more flexible full connectivity among pro-
cessors and memories are used to support validation of the design
techrmgues for distnibuted real-time systems. The testbeds are val-
uable tools for evaluating, analyzing, and studying the behavior of
many algornthms for distributed systems. We have used the
testbeds in studying distributed recovery block scheme for han-
diing hardware and software faults. A testbed has also been used
to analyze database locking techniques and a fault-tolerant lock-
ing protocol for recovery from faults that occur during updating of
replicated copies of files in tightly coupled distnbuted systems.
Testbeds can be configured to represent the operating environ-
ments and input scenarios more accurately than software simula-
tron. Therefore, testbed-based evaluation provides more accurate
results than simulation and yields greater insight into the charac-
teristics and limitations of proposed concepts. This is an important
advantage in the complex field of distributed real-time system
design evaluation and validation. Therefore, testbed-based exper-
imentation is an effective approach to validate system concepts
and design techmques for distributed systems for real-time appii-
cations.

1. INTRODUCTION

The complexity and sophistication of the real-time data
processing problems encountered in computer-based
weapons systems severely tax all aspects of advanced data
processing technology due to requirements in reliability,
availability, cost, performance, and growth. Furthermore,
data processing solutions are required for a wide range of
system concepts and operational environments. Conven-
tional techniques such as pipelining and cache mem-

Manuscript received December 30, 1985; revised January 8, 1987.
This work was supported by the U.5. Army under Contracts
DASG60-85-C-0059, DASGCe0-85-C-0061, DASGH0-84-C-0115, and
DASGH0-82-C-0019.

W. W, Chuiswiththe Computer Science Department, University
of Califorma at Los Angeles, Los Angeles, CA 90024, USA,

K. H. Kim is with the Computer Engineering Program at the
Department of Electrical Engineering, University of California,
Irvine, CA 92717, USA,

W. C. McDonald is with UNISYS Corp., Huntsville, AL 35805, USA.

IEEE Log Number 8714297,

ory have significantly improved computer perfarmance.
Advances in circuit technology have increased processor
capacity. However, current and projected needs still rep-
resent significant challenges.

In real-time systems, such as those for ballistic missile
defense, the data processing problem is dominated by the
necessity of meeting response times while achieving total
system throughput requirements. Response times may be
as low as a few milliseconds with throughput reguirements
ranging up to hundreds of millions of instructions per sec-
ond. Frequently, the data processing system must also
remain dormant for months, activate on minutes’ notice,
and operate unattended with ultra-reliability for periods
ranging from a few hours to several days.

Distributed computing promises to satisfy the require-
ments of these systems by utilizing moderately priced con-
temporary hardware in networks. To achieve this promise,
research and development are being pursued in ail aspects
of real-time distributed computing technology. Many tech-
niques have been proposed for achieving reliability through
redundancy, detecting and recovering from errors, distrib-
uting and managing shared data, communicating reliably
between processes, allocating and scheduling resourcesin
the presence of failures and overloads, and achieving high
throughput through architectural innovation. These tech-
niques must be proven experimentally before they can be
used in a real-time system. Individually and collectively they
impose overheads that create problems in satisfying real-
time requirements. As a result, solutions to the problems
of real-time distributed computing must be provenin areal-
istic environment for the specific real-time application. This
approach, aithough initially more expensive, is in the long
run cost-effective because of the availability of low-cost
microcomputers that can be used to develop ilexible multi-
microcomputer systems.

In this paper, two tightly coupled multi-computer
testbeds (Section li) are presented, and their use in eval-
uating fault-tolerant software and database management
techniques for real-time systems is discussed. The fault-tol-

0018-9219/87/0500-0649%01.00 © 1987 IEEE

PROCEEDINGS OF THE IEEE. VOL. 75, NQ. 5, MAY 1987

erant sottware and database management experniments
were pertormed for radar-tracking application tasks.
Testbed experience has praven the feasibility of the dis-
tributed recovery block (DRB) scheme and database lock-
ing techniques. Further, experimental results provide
insight into the behawvior of these algorithms and allow
selection of the appropriate system parameters for opti-
mizing the system performance. Performance of the DR8
scheme in terms of overhead and response time is pre-
sented in Section IIl. Experiment results on database man-
agement, lock granularity, and fault-tolerant locking (FTL)
showing performance in terms of overhead, loc Jnten-
tion rate, and response time are presented in & an v,
Section V discusses how the DRB and FTL scheme.» can be
incorporated together into a system that supports reliable
real-time operation.

Il. TestBeDS FOR REAL-TiME DHSTRIBUTED SYSTEMS

This section describes two flexible distributed system
testbeds that have been established to support the devel-
opment, analysis, test, evaluation, and validation of research
in distributed computing for real-time applications.

A. Tightly Coupled Network (TCN)

The establishment of tightly coupled network (TCN) [1]
facilities at the University of South Florida (refocated to the
University of California, Irvine, 1987) was motivated by the
desire to address in detail applications with extremely strin-
gent time constraints. Therefore, efficient inter.node com-
munication was an important design requirement. A Z8001-
based single-board microcomputer, henceforth called the
OEM-Z8000, was used as the primary building block of the
TCN hardware facilities. The amount of on-board RAM
available on an OEM-Z8000 currently ranges from 32 to 120
kbytes. The interconnection approach adopted is based on
the use of a two-port buffer memory as a medium for con-
necting a pair of OEM-Z8000s. The access time of the two-
port buffer memory developed in hause is the same as that
of the on-board memory of the OEM-Z8000. A sufficient
number of these buffer memory modules were constructed
to configure a variety of network topologies involving six
microcomputer nodes.

Fig. 1 shows an example of the TCN configurations. The
example configuration consists of six nodes linked with ten
two-port buffer memories. Each node in the network is
housed on a small backplane card and comprises an QEM-
Z8000 microcomputer, local memory extension boards, and
two-port buffer memory boards. The OEM-Z8000 is equip-
ped with an interval timer and two serial I/O ports, Thetimer
generates 1200 interrupts per second. itis used to construct
a software implemented real-time clock in the TCN.

The decision to use the two-port buffer memory as a con-
nection medium was based on the following objectives: 1)
to match the network structure closely with the computa-
tion structure of a chosen real-time appilication, and 2) to
minimize the set of components shared among processing
nodes. 1t was thought that the fewer shared components
the network contained, the easier it would be to prevent
undesirable interference among processing nodes; it would
then be easier to assess and contain the damages caused
by fauits.

To support efficient development of distributed appli-

-— N

A

o= te
n:\-.::a 1
Tal=
NE0E 2 A l‘ij
i
L

ANAL Y IEEF« | Backup

Anal - LER-Z

d Pz

1 NaDE & CIMMAND SCHESULER

+ EW Iso0n
r INITTAL PRlMamr r P
@ : Twa-PoAr Bykeen
O TRy BLack uEMgA ¥
r INITLAL Bacrus CPL, OP2, Q8sEAvaTION
Try BLoCx RFzinTs

Fig. 1. Network configuration used at USF for experimen-
tation with DRB.

cation software to run on the TCN, a number of software
tools were established. A major effort was devoted to the
establishment of a virtual machine (VM) calied the Extended
Concurrent Pascal Machine (ECPM) on each node. ECPM
is a combination of a software nucleus and node hardware.
It supports concurrent programs consisting of asynchro-
nous processes communicating through monitors 21, ECPM
also contains a VM code interpreter. A compiler translates
a concurrent program written in the Extended Concurrent
Pascal language into a VM code. The VM code is executed
by ECPM after being loaded on the OEM-Z8000.

The distributed operating system containing the ECPM
and running on the TCN hardware was established. It has
an extensible structure for incorporating various fault han-
dling capabilities as well as deadline-driven scheduling
strategies (3]. A real-time apphlication program running on
the TCN was also developed. (The abstract structure is
depicted in Fig. 1.) The real-time application program, the
distributed operating system, and the TCN hardware
together formed the core of the testbed supporting exper-
imentation with various faulit tolerance schemes,

Other software toois established include a variety of con-
current programming language processors, recovery
block (RB) translators, inter-high-level-language transla-
tors, graphic displays of real-time application status, and
performance measurement programs.

B. The Crossbar Multi-Microcomputer System (CMS5)

The CMS [4]-[8] was developed to support evaluation and
analysis of distributed software technologies for real-time

PROCEEDINGS OF THE IEEE, VOL. 75, NO. 5. MAY 1987

WICAQ ws : :
COMPYTEA fom—g NTEAFACE |romubmmm |
NQ NO : : s 1
I ' \
. ' " o
]]
- L] i 1
1] 1
|
. '.
{ 1)
1 H 1
Wit) BuS 1 1 !
COMPUTER p—d WYIEAFACE BUS §
ND 6 NO 6 b '
[' |
i |
i 1
e Bus N [
VAx = ¢ o ped NTEAFACE Y e JUUS 7
N 7 | '
] [N S | 131y 4 1111 . O S L J
CLOCk MEMOAY MEMORY ¢ ,
LAG 'NTERALPT
AND SuBsYSiEm| o SUBASYSTEM
QESETS g ! %0 12 MEMORY CONTROLLER

Fig. 2. Crossbar multi-microcomputer system.

systems. The system is designed for flexibility to support
a range of fundamental architectures and for maximum
interconnectivity. Both shared-data and message-based
constructs can be investigated. It is composed of six com-
puters (OEM-ZB000} interconnected to 12 shared memory
modules through a crossbar switch as illustrated in Fig. 2.
The fuily parallel crossbar switch transfers the normal Z8001
memaory access signals (address, data, control) directly to
the shared memory. Such an interconnection avoids bus
conflict. Thus the performance obtained from the testbed
is independent of bus contention. Each shared memory
module is assigned to a separate 64-kbyte memory space
segment in the Z8001 address space, and shared memory
access is by normal Z8001 memory read/write operations.
Memory-mapped access to special functions, such as areal-
time clock, interprocessor interrupt facilities, and syn-
chronization flag memory, is provided in the same manner.
The real-time clock provides a common 31-bit, 500-kHz time
source accessible by all processors without contention for
performance evaluation. Interprocessor interrupt facilities
enable any processor to interrupt any other processor and
provide the basic facilities needed to implement maes.
sage based communication. The flag memory provides
16 384 1-bit flags that can be used for synchronizing access
to shared memory, The system is hosted by a VAX 11/780
that provides the user interface, supports experiment
development and analysis, and controis experiment exe-
cution. The VAX 11/780 also provides mass storage for the
experiment files,

The crossbar system is designed using low-power
Schottky TTL logic components. The entire system is driven
from a single 6-MHz clock to simplify design and test. Each
microcomputer has 120 kbytes of local RAM plus ROM
located in segments zero and one, and can access any loca-
tion in shared memaory at any time. Each processor is able
to access individual shared memory modules without con-
tention on the crosshar switch. Each shared memory mod-
ule includes an arbitration unit that implements a first-come
first-served policy for resolution of conflicting memory
requests. A fixed priority scheme resolves simultaneous
requests. Instructions may be executed from either shared
or local memory.

Each microcomputer and the VAX 11/780 have associated

CHU et al.: VALIDATION OF DESIGN FOR RELIABLE DISTRIBUTED SYSTEMS

T .}

interrupt registers, A processor is interrupted when another
processorwrites datato the interrupt register of the former.
The interrupted processor can then read the data. Con-
tention logic to resolve simultaneous interrupt requests is
implemented in microsequencer firmware. Any processor
can interrupt itself or read the contents of any interrupt reg-
ister. Each processor also has an interrupting interval timer
that can be used for future event scheduling or for setting
watchdog timers.

Flag memory provides synchronization mechanisms for
access to shared data. Each read request to a flag imple-
ments a true test and set operation. The value of the flag
is returned to the processor and the flag is set or cleared
based on the least significant bit of the flag address.

The VAX 11/780 has access to the crossbar switch through
ageneral-purpose Unibus interface that supports five types
of transfers: shared memory access, interrupt request, read
real-time clock, flag memory operations, and micropro-
cessor reset. An /O processor supports message transfers,
file operations, and full access to the facilities of the testbed.
RS-232 links between VAX and the microcomputers sup-
ports diagnostics, debugging, and data collection.

The operating system support for experimentation on this
distributed system testbed is supplied by three major com-
ponents-the master operating system, MOS; the appli-
cation operating system, AOS; and the kernel operating sys-
tem, KOS [9]. MOS running on the VAX provides giobal
testbed control, performing activities that require a global
view of the system. It supports interactive access to the
multi-microcomputer testbeds through the VAX, and pro-
vides services for developing, configuring, loading, and
executing experiments. AOS provides execution-time
resource control, performing activities that require knowi-
edge of an experimenter’s specific needs. It is application-
specific and controls the experimenter’s virtual architec-
ture and application processes. KOS provides low-level
direct hardware control, performing activities requiring
knowledge of the processor's local state. Services include
task loading, scheduling, and control; locai and shared
memory management; synchronization lock management;
Interrupt and message handling; and event scheduling.
KOS, which resides in each microcomputer and includes
low-level debug aids. coordinates all local activities and

—1

JSER |

w |

%05 «0%

kS x05

a0% 405

A0% s 08

————————
NOQE NODE
! ?

4PPg X_BAR

NODE
§

| APPS aPPe

[SN e g iy
I
|

|

[SHARED MEMORY

e —— ——————

Fig. 3. Crossbar muiti-microprocessor system software configuration.

provides services to AOS and MOS. Fig. 3illustrates the rela-
tionship of these O35 components and the application pro-
gram on the CMS,

An abstract simulator of a radar-tracking application,
which is a distributed real-time program, has been devel-
oped that forms the basis for the experimental application.
The simulation includes complete task control structures
and data structures for the application. Synthetic work-
loads and functional performance models are provided for
each application task to accurately model algorithm load-
ing and performance. Experiments are executed in scaled
real-time according to the ratio of the target processar per-
formance to the testbed computer performance. In this way,
timing of the sequence of events is maintained and results
can be scaled to the target system.

Other software tools that reside on the host VAX 11/780
include a Pascal-based concurrent programming language
facility for real-time applications and system programming,
a Prolog Requirements Builder for specifying experiment
requirements in Prolog form, a Design Builder for struc-
turing the distributed system design, a configuration man-
ager for maintaining the experiment software configura-
tion, and performance measurement programs for data
gathering, reduction, and analysis [9], (10].

1t]. DisTRIBUTED RECOVERY BLOCK SCHEME AND ITS
EXPERIMENTAL EVALUATIONS

A. Basic Principles of the Distributed Recovery Block
{DRB) Scheme

The DRB (distributed recovery block) scheme is a tech-
nique for unified treatment of both hardware and software
faults with minimal execution overhead. It provides effi-
cient forward recovery in contrast to more time-consuming
backward recovery such as roltback-and-retry. It is based
on a combination of both the distributed processing and
the recovery block structuring concepts. Recovery block
(RB} [11], [12] is a language construct supparting the incor-
poration of program redundancy into a fauit-tolerant pro-
gram in a concise and easily readable form. The syntax of

RB is as follows:

ensure T
by 81
else by 82

else by 8n
else error.

In the above description, T denotes the acceptance test (AT),
81 the primary try block, and Bk, 2 = k = n, the alternate
try blocks. All the try blocks are designed to produce the
same or similar computational resuits. The acceptance test
is a logical expression representing the criterion for deter-
mining the acceptability of the execution results of the try
blocks. A try (i.e., execution of a try block) is thus always
followed by an acceptance test. In a sense, R8 is an enclo-
sure of some recoverable activities of a process.

The DRB scheme exploits concurrent execution of try
blocks to facilitate fast forward recovery. The scheme also
utilizes both hardware and software components effi-
ciently to maximize the lifetime of computer systems. In
(13}, three different ORB schemes were explored and the
conclusion was that a scheme called C was the most prom-
ising, Therefore, in this paper, only scheme C is discussed.

The real-time distributed computer systems considered
in our study are assumed to have the following character-
istics:

T} A computer system consists of multiple computing
stations, each executing one and only one R8,

2) The result produced from a computing station may
become an input to another computing station or to the
application environment.

3} A computing station may consist of one or more com-
puting nodes. Multiple computing nodes within a com-
puting station can be used either in a load-sharing or in a
redundant processing mode.

For simplicity, only two try blocks in an RB, the primary
and the backup, are used to illustrate the DRB scheme. The
specification of the maximum execution time allowed for
each try block is an integral part of the DRB scheme. The

PROCEEDINGS OF THE IEEE, vOL. 75, NO. 5 MAY 1987

V-4

allowable execution time specirications of trv blocks are
used to set watchdog timers with the objective ot ensuring
timely completion of tries. A try not completed within the
time limit due to hardware faults or excessive looping is
treated as a failure. Therefore, the acceptance test can be
viewed as a combination of both logic and time acceptance

tests.

The DRB scheme realized with two nodes is depicted in
Fig. 4. Both primary and backup nodes contain the same

"y
.

W

F-- === =====--9

¥ Y
INITTAL SRIwARY NOGE)l INITTAL BACKUP NODE
.
]
1

SUCCESSIA
COMPUTING STATION

Fi Faliumg 1 INITLAL PRiMaRY

TRy BLock
$1 SWCCESS
1 INITrAL Backus
Tav BLock
ACCEPTANCE TEST

1 INPUY Burrem

U

i
O)y LOGIC anD TIwE
()

Fig. 4. Basic DRB configuration.

acceptance test, consisting of logic and time tests, and the
same set of try blocks, A and 8. However, the roies of the
two try blocks are assigned differently in the two nodes.
Primary node X uses try block A as the primary try block
initrally, whereas backup node Y uses try block B as the ini-
tial primary, Theretore, until a fault is detected, both nodes
receive the same input data, process the data by use of two
different try blocks (i.e., block A on node X and block 8 on
node Y}, and check the results by use of the acceptance test.
Both nodes perform all these tasks concurrently. The time
acceptance test is used to ensure timely behavior of both
nodes.

In a fault-free situation, both nodes will pass the accep-
tance test with the results computed with their primary try
blocks. In such a case, the primary node notifies the backup
of its success in the acceptance test. Thereafter, only the
primary node sends its output to the successor computing
station. However, if the primary node fails and the backup
node passes its test, the backup node assumes the role of
the primary, i.e., the nodes exchange their roles. To be more
specific, the primary node attempts to inform the backup
node upon its failure in passing the acceptance test, The
backup node will take over the role of the primary as soon

CHU et al.: VAUDATION OF DESIGN FOR RELIABLE DISTRIBUTED SYSTEMS
IvV=5

as it recesves notice. |t the primary node s compietely iost,
the backup node will recognize the falure ot the primary
upon expiration of the preset ime himit. [t will then become
the new primary. Since these interactions between two
nodes are done asynchronously, the scheme does not sut-
fer from synchronization overhead. On the other hand, if
the backup node fails first, the primary node need not be
disturbed. In both cases, the failed node attempts to serve
as a backup node: it attempts to roll back and retry with its
alternative try block to bring its appiication computation
state or local database up-to-date. This attempt does not
disturb the primary node.,

Under the DRB scheme, the recovery time is minimal
because the maximum concurrency is exploited in the
redundant try block execution. The scheme uses forward
recovery and does not use any special-purpose saftware
components tailored to handling particular types of faults.
Fast forward recovery is achieved regardless of whether
faults occur in the hardware or software components.

In the case where a computing station uses n nodes for
load sharing {i.e., using multiprocessing to obtain a higher
throughput than a single processor), a straightforward
application of the DRB scheme would be to group n com-
puting nodes into n/2 primary-backup node-pairs. This
should be used when the system application requires the
fastest possible recovery from faitures. Such an arrange-
ment reduces the throughput potential to one half of what
isachievable with an irredundant operation of nodes. Inthe
applications where rollback-and-retry is acceptable, the
arrangement described above is regarded as wasteful. A
more cost-effective approach is 1o connect the nodes
loosely through queues containing data sets and allow each
node to dynamically select its next task among the primary
try block, the alternate try block, and the acceptance test.
Fig. 5 presents such an approach. A data set is defined as
a set of data that communicates between computing sta-
tions and activates an execution of a processing algorithm.
In this scheme, each node may select its next job from any
of the four queues, Input Data Queue (IDQ), Try Result
Queue(TRQ), Arrival Time Record Queue (ATRQ), and Retry
Data Queue (RDQ). We shall now discuss the operations
performed with the data set picked up from each of these
queues.

1) input Data Queue (IDQ): A node that selected a data
set from this queue executes the primary try block (A) with
the data set and deposits the result (together with the orig-
inal input data) into the Try Results Queue.

2) Try Results Queue (TRQ): A nade that seiected this try
result data set first removes arecord in the Arrivat Time Rec-
ord Queue (ATRQ) which corresponds to the seiected resuit
data set. The node then executes the logic acceptance test.
Ifthe result is acceptable, an irrevocable update of the com-
puting station database is carried out with the result. The
result is then moved into the Validated Results Queue to
be picked up by the successor computing station. tf not
acceptable, the data set is moved to the Retry Data Queue.

3) Arrival Time Record Queue (ATRQ): Each data set in
this queue is an arrival time record containing both the
arrival time and the maximum expected processing time of
the corresponding data set in the Input Data Queue. This
information is used in determining if a timing fault has
occurred. In other words, a node which picked an arrival
time record checks if the record is too old. If so, the node

TRG 129

NCOE NOCE

NODE N

TAG: Ter RESULTS Queul

{08 INPYT JaTa QuELE

ATRO, AamivaL TiwE RECCROD

vRG i

QuEVE
RETHMY QaTas QUEUE

VALIDATED RESULTS
QuEuE

ROQ,
VAaQ,

SUCCESSOR
COMPUTING STATION

Fig. 5. DRB with load balancing.

moves the corresponding data set from the (nput Data
Queue to the Retry Data Queue.

4} Retry Data Queue (RDQ): A node that picked a data set
from this queue executes the alternate try block B and
deposits the resuit into the Try Results Queue.

As an illustration of the operation of this load-sharing
muylti-node computing station, assume that a data set, say
D, has just been produced by the predecessor computing
station. The data set D is entered into IDQ and at the same
time its arrival time record is entered into ATRQ. Now
assume that node 3 has been idle and looking for work.
When node 3 checks IDQ, it discovers data set O and picks
itup. Node 3 then executes the primary try block Awith data
set D and deposits the processed resuit D1 into TRQ. Sup-
pose that node 2 is idle at this time and it soon discovers
the result data set D1 in TRQ. Node 2 then executes the
acceptance test with D1 and the original input data set D.
Suppose that the result was a failure. Node 2 then moves
D and the corresponding arrival time record into RDQ.
Another idie node, say node 1, will soon discover Din RDQ,
executes the alternate try block 8 with D, and deposits the
resuit D2 into TRQ. Nade 3 is idle at this time and it soon
discovers D2 in TRQ. Node 3 thus executes the acceptance
test with D2 and D. Now the result is a success and node
3 updates the computing station database with D2. Node
3 also removes D (and the corresponding arrival time rec-
ord) from RDQ and moves D2 into Validated Resuits Queue
(VRQ) for pickup by the successor computing station.

One drawback of this scheme is that an “insane” node
can disrupt a significant portion of the network, thereby
causing a significant performance degradation. For exam-

ple, it may either get stuck to a queue or repeatedly pick
up new data sets and produce unacceptable results. Or it
may continue to pick up data sets from the Try Results
Queue and reject them even if they are good. However, it
may be possible to impiement the scheme in such a way
that the probability of an *‘insane’’ node causing significant
disturbance becomnes very small. This is a subject worthy
of further study. There are also other ways of combining the
DRB and load balancing schemes.

B. Experimental Evaluation with the TCN

To test the execution efficiency of the DRB scheme, two
experimental implementations and measurements have
been done, one on TCN and the other on the CMS.

We shall first describe the experimentation performed
on TCN. The network configuration used is shown in Fig.
1. The DRB scheme was incorporated into node 3 (Analyzer-
2) and node 6. The application program is written in
Extended Concurrent Pascal (1]. Node 5 (Data generator)
simulates a real-time device which generates stimulus data
to the rest of the network and accepts the response {com-
mand). The remaining five data processing nodes execute
input {i.e., stimulus data) classification process, various
analysis processes constituting the intelligence of the solu-
tion algorithm, and a control command scheduler process
thatdelivers the network’s response to the reai-time device.
The stimulus data from node 5 are first handled by the input
classification process which distributes inputs to the rest
of the network. The command scheduler honors requests
from various analysis processes to schedule commands for
the real-time device.

PROCEEDINGS OF THE 1EEE, VOL. 75, NQ. 5. MAY 1987

IV=6

“aa without DRB ‘with no faull lojlecteq;
== ! WLLh DRB {and with softwars faulta

% : Try block A lo the primary
LoGe Falis to pams the
scceptance tust

o7 = lnjectad st @'a)
0.6 ~
H
a 0.5 l T
14
v .
W@ .
~ 1
U 0.4 o ‘l: P _'{
E ‘P“ 3
— 1 g "
E Q.3 4 ja
o
fid =
C.2
G.1 A
O T
o

Fig. 6. Data travel time measured.

In the actual implementation of the DRB scheme, specific
choices had to be made for various parameters. The most
important parameter was the node reconfiguration strategy
{i.e., reassignment of the roles to nodes and try blocks upon
detection of failure). After extensive analysis, the following
strategy was adopted: the current primary node always uses
A as the primary try block and B as the backup try block
whereas the current backup node uses try blocks in the
reverse order. Therefore, once the primary node fails to pro-
duce an acceptable result, the roles of the primary and
backup nodes are reversed, as well as the roles of the pri-
mary and backup try blocks in both nodes. If the backup
node fails to produce an acceptable result, it merely retries
with try block A and then returns to try block 8 for sub-
sequent use as its primary. This strategy is attractive for two
reasons. First, two nodes always execute different try blocks.
Secondly, the current primary node always uses A as the
primary try block; try block A is generally designed to pro-
duce the same or better quality cutput than try block 8. tf
try block A has a residual design error that repeatedly man-
ifests itself, it is possible to have a frequent exchange of
{primary and backup) roles between the two nodes. How-
ever, this probability is very small if the DRB scheme is prop-
erly used.

The travel time of data set passing through a computing
station was measured to determine the execution overhead
caused by the introduction of the DRB scheme into the net-
waork. As a part of facilitating this measurement, ‘‘obser-
vation points’’ were established in the network. When a
data set arrives at the designated observation point in the
network, the node stamps the real time and saves a copy
of thetime-stamped datain its local memory. When enough
measured data are obtained, the time-stamped data are
transferred to another computer system for data analysis.
The observation points are usuaily established at the points
where the nodes are ready to send messages to the suc-
cessor nodes and also at the points where the nodes have
received messages. :

In this experiment, two observation points were set up
in the network. Fig. 1 shows these points established in the

CHU et al.: VALIDATION OF DESICN FOR RELIABLE DISTRIBUTED SYSTEMS

TY =7

T T
4

Prograss (sinute)

network, Observation point 1(OP1) is set up where the pri-
mary and backup nodes have taken the data set from the
queue buffer connected to the predecessor nodes. Obser-
vation point (OP2) is set up where both nodes are ready to
put the data set into the queue buffer connected to the suc-
cessor nodes,

During experimentation, faults were injected to examine
their impacts on system performance. The types of faults
studied include: 1) total node failure (simulated by node
reset); 2) transient hardware faults (e.g., transient faults of
main memory); and 3} software faults such as infinite loop-
ing, arithmetic overflow, etc. The DRB incorporated into
nodes 3 and 6 in Fig. 1 was written in Extended Cancurrent
Pascal and executed on an OEM-Z8000 microcomputer with
a clock rate of 4 MHz.

The DRB overhead consists of interprocess communi-
cation among nodes and the execution of the acceptance
test. Fig. 6 shows such overhead for incorporating the DRB
scheme into the network. The solid curve represents the
delay between OP1 and OP2 in the case of using the DR8
whereas the broken curve represents the delay in the case
without the ORB. The gap between the solid and broken
curves is the execution time increase due to the incorpo-
ration of the DRB. The average execution time increase is
approximately 30 ms. Moreover, the salid curve in Fig. 6 also
shows instances (marked by stars) where arithmetic over-
flows occur in the primary node and the fast recovery capa-
biiities of the DRB scheme are exercised. We noted that the
fault occurrences and subsequent recovery actions did not
cause any visible degradation of the system performance,
Inthe absence of fauit, the execution time increase is caused
mainly by the execution of the acceptance test and the com-
munication of the acceptance test success to the backup
node.

Considering the inefficient implementation language
(Extended Concurrent Pascal), and the slow processor
(4-MHz Z8001) used, the amount of execution time increase
shown in Fig. 6 is at least 20 times higher than that expected
in the systems buiit with current off-the-shelf hardware and
software tools. For example, use of a processor running at

0.8
-l w17 LT 1F3
“LLT o Tailt o.n oected Ti..n Ty
Q.7 R - TTe 40D
——- 1T 5PB aade falls ton Liss tne
“1th fallts (ncacced az ') iTIestance zest,
i
o
2 0.6 -
o
7}
a
— lst fayirc:
- 0.5 - iNode
E failure
‘' recovery '
v cime <~}
>
2 0.4 -
-
0.3
0.2 T T T T T T T T T T T =T ™
Q.3 0.7 0.9 1.1 1.3 1.5 1.7 1.9

Progresa (minute)

fig. 7. Data travel time measured.

20 MHz will resuitin speedup by a factor of 5. Use of a more
efficient language {an Assembly language in the extreme
case) will result in additional speedup by a factor of 4.
Fig. 7 shows the case where the primary node is reset,
resulting in the permanent loss of the node. Later an arith-
metic overflow occurs in the remaining node. The recovery

from the first fault (the loss of the primary node) took about
60 ms. This recovery time s largely a function of the timeout
period used in the DRB. When the second fault (the arith-
metic overflow) occurred in the remaining node after the
permanent loss of the first node, the node had no choice
but to roll back and retry with try block 8. Therefore, the

RSQ
RADAN il .
AAA
A1Q 429 A3
w IR {
APP_SCHEDULER APP_SCHEDULER APP_SCHEDULER AP'_!CH!DUL!. -I
M A2 A3 A A2 (%] A A2 A3 A A2 [}]
ARQ
RADAA _SCHEDULER

Fig. 8. Baseline network configuration for radar control.

Iv-8

PROCEEDINGS OF THE IEEE, VOL. 75, NO. 5, MAY 1987

recavery ime was very higho e about 290 ms. as shown
inthe ngure. Agan, the recovery ime can be easily reduced
bv aractor ot 20 bv implementing reat application systems
with current orf-the-shelf tools.

C. Experimental Evaluation with the CMS

The primarv objectives of the experiment with the CMS
[14] were: 1) to establish the 1nitial feasibility of real-time
recovery yrom hardware taslures, failures of an algorithm
to produce reasonable results, and failures of task com-
pletions; 2) to measure the impact of the recovery mech-
anisms on processing resource utilization and response
tmes, and 3) to demonstrate that the DRB approach can be
applied to real-time application processes and distributed
operating systems. The software was written in PDL (an
extension of Pascal supporting concurrent programming).
Lnlike the experiment conducted on TCN, this experiment
dealt with a load-sharing multinode computing station.

Fig. 8 depicts the distributed real-time system adopted as
the baseline configuration for this experimental study. The
system is a distributed implementation of a ctosed-loop
radar control system. One processor is dedicated to sim-
ulation of aradar and assimitation of data returned from the
radar (RRA), four processors to a set of three analysis pro-
cesses(A1,A2, A}, and asixth processor to the radar sched-
uling process. The software architecture makes use of the
multiported shared memory modules of the CMS. A shared
database ismaintained inshared memory and contains data
on the objects tracked by the radar.

The Application Program scheduler (APP scheduler) in
each of the four processors schedules analysis processes
for execution. It polls the three Input Data Queues (41Q,
A2Q, A3Q). which contain radar return data sets, in a round-
robin fashion looking for work. When an entry is found, the
scheduler activates the appropriate analysis process to work

on the data set. Atter grocessing the data ~et. an anah wis
process places a tracking request tor a tracking pulse 1in the
radar request queue {RRQ) connected ta the radar sched-
uler{RS). The radar scheduler honors such requests by plac-
ing them in appropriate slots within the radar schedule
queue (RSQ) connected to the radar.

The system clack is accessible to all processors as a time
base. Every processor in the CMS is 3 ZBO01 processor capa-
bie of periorming about 0.350 MIPS (million instructions
per second). The target processor should be much more
powerful. Therefore, the radar control simulation is run at
a much slower rate. The scale factor is based on the ratio
ofthe target machine instruction execution rate to the Z8001
instruction execution rate. This time scaling approach
enabled us to evaluate the time cost of DRB in an appli-
cation context very close tothe real operating environment.

Fig. 9 depicts the fault-tolerant distributed system can-
figuration with the ORB scheme incorporated. RB was
incorporated only for the analysis process A3, The process
AT determines if the result computed by A3 is within rea-
sonable bounds based on flight dynamics. 843 is a backup
independently coded analysis process.

All data sets produced by the radar return assimitator and
other processes are kept in the shared database. In fact,
data sets never really enter any of the queues (Fig. 9%; only
the pointers to the data sets enter the gueues, For example,
the radar return assimilation process places a pointer to a
datasetinto A3Q. If an APP scheduler picks the pointer and
activates the anaiysis process A3, then A3 makes a copy of
the data set pointed to by the pointer for its processing and
places its result into TRQ. Later, a certain APP scheduler
picks this result from TRQ and executes the acceptance test
(AT). If the result is acceptable, an update of the database
with the accepted result follows. If the resuit is not accept-
able, the AT places a pointer to the original (unprocessed)

AADAR --'E
ARA
JA RDQ
TRO A0 120 430 ATRQ BA3Q
)\ 1
Jq
4PF_SCHEDULER APP_SCHEDULED APP_1CHIDULER APP_SCIEDULIA
r-ql""‘“": mh—n‘: ml—-—N: MH—N:
b B Bl Bl) || | = o w|w|x| = IR
1 Il jy 4
i
L1 1]
TRQ: Try Results Queue !
IDQ: Input Dats Queus apam
ATRQ: Arrival Time Record Qusus SCHRDULER
BA3Q: Backup A3 Queue

(a Retry Data Queus)
Fig. 9.

CHU et 2i.: VALIDATIONM OF DESIGN FOR RELIABLE DISTRIBUTED S5YSTEMS

Fault-tolerant netwark configuration used at CMS for experimentation with DRB.

dataset into RDQ, therebycausing the backup analvsis pra-
cess BA 310 process the data set again. Also, when a pointer
to a data set s onginally entered into A3Q), a deadline for
the analysis process A3 to process the data set 1s placed n
ATRQ. ATRQ is processed by the APP scheduler to detect
data sets for which the processing by A3 is overdue. A dead-
line of 30 ms was used in this experiment to ensure that no
false alarms (reporting fault detection when there are no
faults) would accur.

This fauit-tolerant network configuration (Fig. 9 was
compared with the baseline network configuration iFig. 8)
by running it against the same radar load and measuring
a nur “er of performance parameters. Node failures were
injec.ed several times during the analysis A3, but each time
a successful recovery was accomplished for all cases.

Track response time is the time from the entry of a data
set into A3Q to the insertion of a corresponding radar
request into RSQ by the radar scheduling process. it was
used as a measure of real-time computer system effective-
ness in this study.

Fig. 10 is a track response time histogram. The track
response times are increased by inclusion of the DRBs
because the task sequence in the fauit-tolerant configu-
ration includes the acceptance test (AT) and because of the
lengthened polling loop of the APP scheduler. The mean
track response time (shown in the figure by a vertical line)
rises from 1.76 to 2.6 ms which is still considerably below
the allowable maximum, 40 ms, for this particular appli-
cation. As mentioned earlier, these numbers represent the
performance expected in the real systems built with the
tools and components required by the applications,

Fig. 11 presents maximum track response times for the
data sets processed by A1, A2, and A3 in the fault-tolerant
network configuration, The figure shows the maximum
track response times over every 50-ms interval during the
experiment. The large spike of 32 ms of A3 is caused by

recoveryirom an injected processor taillure in g computing
nade. For talse alarm control, the imeout value roe ATR(}
was set at 30 ms. Seven additional small spikes are visible
for injected algorithm errors detected by the acceptance
test function.

IV. Daragase LOCKING SCHEMES AND THEIR EXPERIMENTAL
Evatuanion {15]

In a distributed processing system, application tasks
residing at several processors often require sharing com-
mon information files. As a result, read/write conilicts ot the
common file may occur, Locking is commoniy used far
maintaining data consistency in tightly coupled distributed
systems.

The perfaormance of different concurrency control tech-
nigues used for a given set of application tasks depends on
the data access partern, their invocation rates, and the sys-
tem operating environment, Because of the complex nature
of the problem, we often have to evaluate the cost/pertor-
mance of various technigues via experimentation. (n this
section, we shall present testbed methods for experimental
evaluation and selection of the appropriate locking pro-
tocol for a given set of real-time radar tracking application
tasks.

The database for the radar tracking application consists
primarily of adynamic object track file. The size of the track
file varies as new objects are acquired, tracked, and sub-
sequently dropped as they pass through the engagement
space. The track file is composed of 512-byte records (one
for each object in track) containing object state informa-
tion. There are two types of records: earty tracks and pre-
ciston tracks. Each record in the file is updated periodically
at the track rate (normally 20 Hz}. Typical profiles ot early
and precision track sizes (number of records) are shown in
Fig. 12(a) and (b) for the database locking experiments.

100,00

80,00
n

60,00

NUMBER 0OF DATASETS *10
40,00
1

— e MEAN VALUES

T
0,30 2,00 % ,00

SASELINE (FIG.8}
----- RECOvERY BrLocx (F1G.9%

10.00

HISTOGRAM THMTERVAL (MS)

Fig. 10. Track response time histogram.

PROCEEDINGS OF THE IEEE, VOL. 75, NO. 5, MAY 1957

V=10

LRSIV

—
. LY
; - A2
I 2 =
z =4 - ol A3
-
=
-
L
o
A=
= ;q
Lo
-
z
"
=
< o
T o
-~ -
-
I -
=}
X
=
<
b3
o
&
-
@
4
@ d
° ;
- = T T T r—oroe-8—8
2.00 1.29 2.40 3.0 .80 6.00

SIMULATED TIME (5

Fig. 11. Maximum track response times.

EAHLY THAUCK RECGRLS
40.00 60,00 BU.uu
_—

2u. v

0, ou

.00 1.20 2.40 1.60 .80 6,00

CHCAGCMENT TIME (S
@)

40,00

PHECISIUN TRACK
HELCURLS
2004

0o

=3 T T T g

3,00 1.20 2,40 1.40 4.80 £.99
EHGAGEMENT TIME (8]
()]

Fig. 12. Track file profile. (a) Early track proiile. (b) Precision
track profile.

A. Locking Techniques

To manage shared data accesses, we introduce several
database locking techniques. In all cases, the locking unit
is referred to as a data item. A data item is locked prior to
its being accessed for read or write. Once an accessing task

CHU et al.: VALIDATION OF DESIGN FOR RELIABLE DISTRIBUTED SYSTEMS

Iv=11

has completed all its references to the data item, the data
item is unltocked.

Although exclusive access is required towrite adata item,
it is possible to have a single writing function execute con-
currently with multiple reads. This is accomplished by the
writing function using the following technique:

1) Reserve the data item (which permits concurrent
reads but no exclusive access or other reserves).

2) Make local copy of the data item.

3) Read and write the local copy.

4) Upgradethe reservetoexclusive access(requires that
all readers finish).

5) Write the shared copy of the data item.

6) Unlock the data item.

This approach is referred to as reserve upgrade locking.

The simple locking protocot, on the other hand, guar-
antees sole access of a processor to a data item by speci-
fying the data item as USED or NOTUSED. The reserve-
upgrade locking protocol establishes data availability based
on the type of access a processor is attempting. Three data
item access modes are defined: write (W) access, read-for-
update (RU) access, and read (R) access. Write access must
be exclusive; no W, RU, or R permission is granted to a task
in another processorwhen W permission is held onthe data
item. Read-for-update access may be granted if no other RU
access is held on the data item. RU access allows any read
access currently held to complete but does not allow any
new reads to initiate. Read permission to a data item can
be granted to as many tasks/processors as necessary, if a
W or RU is not active on that data item.

Lock contention rate is defined as the number of itera-
tions required to gain access to the record locking mech-
anism per LOCK PROCEDURE call per measurement period
(50 ms was used for these experiments). The performance
of the data locking techniques is influenced by two factors:
lock contention for the data item and the CPU time required

bv the nie access routines to execute the locking protocol
and the time tor rasks holding the fockis),

The reserve-upgrade locking scheme 1s primaniy de-
signed to reduce contention tor data by allowing simul-
taneous reads and reads with intent to update on the same
data item. This more complex file access method requires
more calls to the file access procedure and more instruc-
tions within the procedure to provide data consistency.
There 15 a tradeoff between reduction in contention and
increase in CPU utilization, which is a function ot the over-
all file activity and file access patterns of the application
problem.

1) Experiments to Evaluate Locking Techniques: We shail
present testbed experiments to explore the choice of lock-
ing granularity and the selection of lock protocol. Experi-
ments were performed with the CMS. Response time and
processor uttlization are used as performance measures.
Data were collected every 50 ms of the simulation time.

In these experiments, the application task resided at six
processors that require read and write of the common
object track files. Each Track File has a record for each object
being processed. Since read/write conflict can occur among
these application tasks, concurrency control is required.

a) Simple file locking: Simple fite locking locks the
entire track file when any type of access (read, write}is made,
This is accomplished by making a call when access to the
file is desired; then the correct number of instructions are
executed using SYNTHETIC-LOAD to simulate the appro-
priate action taken on thefile. Finally, aRELEASE call is made
to free the Track File. The obvious problem associated with
this experiment is that no two processors/tasks can work
on the Track File at the same time. n fact, this experiment
would not successfully run because of massive file con-
tention problems. For this reason the simpie file lock exper-
iment was rejected. No useful data were collected.

b) Reserve-upgrade file locking: This approach tocks
the entire Track File using the W, RU, and R operations. To
access the file, a call is made to a LOCK-PROCEDURE where
control remains until access to the lock is granted. This
technique has the advantage of altowing concurrent read-
ers to access the Track File. Contention can occur only when
a write or a read-for-update access is requested to the file
that is being used by the other processor.

¢) Reserve-upgrade record locking: This experiment is
the same as experiment in item b) except individual task
records were locked rather than files. To access a record,
a call to a LOCK-PROCEDURE is made with an index into
the Track File passed as a parameter, control remains there
until access to the Track File record is granted. This tech-
nique has the advantage of allowing concurrent readers
access to individual records, thus reducing contention to
a minimum. Contention can occur only when a write or a
read-for-update access to the current record is being used.

d) Simple record locking: The final experiment in-
volved locking individual Track-initiated records and track
records on a USED/NOTUSED basis. No two processors/
tasks could gain access to the same record regardless of the
type of access desired. To gain access to a record, a call to
a lock procedure is made with an index into the Track File
passed as a parameter. Contention occurred only when two
processors/tasks required access to the same record.

2) Discussion of Locking Experiment Results:
a) File versus record locking: Both experiments b) and

TIV=12

¢l used the read, read-tor-update. and write locks 1o min-
imize contention. A load near the point where maaimum
track response times are reached (tull svstem load) was used
as input. This corresponds to the Track file protile shown
in Fig. 12(a) and (b). Experimental results reveal that the nle
locking implementation shows much larger lock conten-
tion rate than the record locking (Fig. 13). Because ot the
time spent inthe contention, the file locking routine causes
substantially greater CPU utilization. As a result, the max-
imum Track response time for the reserve-upgrade record
locking is better than that of file locking (Fig. 14).

b) Reserve record locking versus simple record lock-
ing: Experiments c) and d) were run at the same load levels.
The results show that the reserve-upgrade tocking ytelds
slightly less contention than that of the simple locking case
(Fig. 15).

The reserve-upgrade record locking technique uses
slightly more CPU resource throughout the engagement,
as shown in Fig. 16, This is due to more subroutine calls to
service the reserve-upgrade protocol and more executed
instructions in its lock/grant loop. The read-for-update (RU}
access is a precursor to the write (W) access for each update
{radar return) in the track processing task, one to set RU,
one to set W, and a third to clear RU and W. Only two file
access subroutines are required for the simpie record lock-
ing protocol. The experimental results reveal that the
reserve-upgrade record lock enters the file access subrou-
tine approximately 22 percent more often than the simple
record locking technique.

In this testbed application task, because of its low lock
contention rate, the reserve locking protocol did not con-
tribute significantly to the time spent in the lock test/grant
loop and also did not provide any response time improve-
ment over the simple locking protocol (Fig. 14).

3) Conclusion of the Locking Experiments: Implement-
ing the lock mechanisms at the file level induced too much
contention for the application tasks. Record locking
reduced contention significantly. For the tested applica-
tions, the lock contention is at such a low level that the extra
processing load required by the reserve-upgrade locking
scheme is not compensated by the contention improve-
ments over the simple locking protocol. However, in a
higher contention environment, the response time im-
provement from the reduction in contention provided by
the reserve-upgrade lock protocol could very well out-
weigh the increase in CPU utilization.

8. Fault-Tolerant Locking

In a tightly coupled distributed processing system, mul-
tiple copies of shared files are maintained in different shared
memory modules to provide high survivability. To assure
mutual consistency among the copies, data updates should
be applied to all file copies. However, if a processor fails
during an update process, some file copies may have been
updated while others have not, resulting in mutual incon-
sistency. To recover from this type of failure and assure the
transaction is atomic {16], we propose to use the Fault-Tol-
erant Locking (FTL) [17] protocol that is installed on top of
the conventional consistency-control protocols. FTL detects
a processor failure, identifies and recovers inconsistent file
copies, and releases the file lock so that other processors
may lock and use the file again. FTL also prevents proces-

PROCEEDINGS OF THE IEEE, VOL. 75, NO. 5. MAY 1987

4.20 5. 00

40

LOCK UCUNTENTLION RATE
.00

0.c0 1.20 2.40

Teeen R-U vec Lack

Simple F:le Laock

3,60 4.80 6.00

ENGAGEMENT TIME

Fig. 13. Lock contention rate.

24,060 j2.00 4G.00

MAXIMUM TRACK HRESPUONSE TIHE (MS)
16,00

8.00

Oserer R-U Rec Lock
Simpie Rec Lock
R=U File Lock

o0.00

,00 1.20 2.40

1
3.60 4.80 E.00

ENGAGEMENT TIME

Fig. 14. Testbed measured maximum track response time for selected locking protocols.

sors from reading and updating out-of-date file copies in
case of shared memory modutes and/or path failures.

7} Concept: To provide the status of a file, a word that
indicates the current state (free, locked, update-initiated,
or failed) of that file as well as the accessible state (acces-
sible, inaccessible) of the replicated file copies of each file
copy files that are stored in the shared memory modules.
The replicated file copies are updated one at a time accord-

CHU er al.; VALIDATION OF DESIGN FOR RELIABLE DISTRIBUTED SYSTEMS
IV-13

ing to a predefined sequence. In this manner, if a processor
fails' during a file update, the update status (completely
updated, partially updated, or un-updated) of all the copies
of a file can be identified. Based on this status of the copies

'A failed processor is also assumed unable to issue any memory
reference,

40

—-ctrs &= Rec Loek

$—— Simple Rec Lock

o
-
-
-

u

-l

a

= 2

£

=}

3

-t

=

EH

[

[

o) =]

[~

v -

o]

3

3
<o
pd
-
=
(=
-
0. 2.40

3.60 4.80 6.00

ENGAGEMENT TIME

Fig. 15. Lock contention rate for record locking.

100,00

60,00 80.00

AGGREGATE SYSTEM CPU UTIL (W)
40,00

20,00

[= L R-U Qec Lock
Simple ec Lack

0.00

L]

Ll
.00 1.20 1.40

T
1.60 4.80 6.00

ENGAGEMENT TIME

Fig. 16. Aggregate CPU usage for record locking experiment,

of a file, the inconsistent copy can be detected and re-
covered from anv of the consistent copies.

When a proce= -or that hoids the lock fails, attempts from
any other processors to lock this file will, of course, be
unsuccessful, Such a processor failure will be detected after
a prespecified unsuccessful number of repeated lock
attempts (timecut) by the other processors, To prohibit fue-

ther accesses to failed copies, each processor maintains a
file copy status table in its locai memory. When a processor
experiences a memory and/or path failure while accessing
a file copy, it marks the file inaccessible on its status table.
2} FTL Operations:
a) Implementation: To implement the FTL in a tightly
coupled system, shared records are duplicated in different

PROCEEDINGS OF THE IEEE, VOL. 75, NO. 5, MAY 1987

Iv-14

shared memory moduiesiFig. 173 Each processor maintains
a record status rable (RST) in its local memory which indi-
cates the status taccessible or inaccessible} ot each record
copy. or segment, in the shared memory modules. £ach rec-

FECLEIEIY L
J 1]
=7 RST
L L
| eI KETaCEK |
. [‘ L= LC I 3
T -

g i

LM LOCAL MEMORY

M SHARED MEMORY

X' +HADOW COPY OF RECORD X

LW LOCK WORD (FOLR POSSIBLE STATES)
LC LOCK COUNTER

RST RECORD STATUS TABLE

Fig. 17. A nghtly coupled distnbuted system with FTL,

ord copy, or segment, has a lock word (LW) that indicates
one of the four possible states of the copy (free, locked,
update-initiated, or failed) and the states of the other copies
{accessible or inaccessible) (Fig. 18). The status of the copy
assures data consistency in case of path failure. Each pro-
cessor is required to read the fock word before accessing
the record copy and mark on its record status table if either
of the record copies is inaccessible.

To simplify our discussion, we assume each file has two
capies: a primary copy and a shadow copy. Before accessing
a record copy,’? a processor first checks the RST to deter-
mine if the copy is accessible, Then it reads the LW of the
record copy. If the LW of the copy indicates “failed,” the
processor marks “‘failed’” on the RST and tries the other
copy. If the requested copy is being locked or update-ini-
tiated {by some other processor}, the processor repeatedly
checks the LW until the copy becomes free. When the pro-
cessor finds the copy is free, it locks the copy and repeats
the process for the second copy. Then, it prepares updates
in its local memory. When ail updates to the record are
ready, the processor marks “update initiated” on the LW
of the first copy and performs the update. After completing
the update onto the second record copy in the same man-
ner, the processor releases the lock for both copies. The FTL
update procedures for normal operations with no failure
and no lock contention are shown in Fig. 19.

‘Far simplicity in our discussion, we assumed the record as a unit
of data items for locking and recovery, However, to reduce over-
head, a group of records (segment) may be used as 2 unit of data
item for locking and recovery.

CHU et al: VALIDATION OF DESICN FOR RELIABLE DISTRIBUTED SYSTEMS

ges pez
L4 LC DATA tvi¢ DATA

L 1

2 2

3 3

128 L 123 (]

LW = LOCK WORD

LT = LOCK COUNTER

Each louk word indicates:
1) One of four states: Free. Locked. Updare imnared. or Failed.
2) Starus of the other recard copies raccessibie or inaccessibie).

(al

REC
¥ COPY #1 COFY #2
1
2
3
128
Each enyy indicates one of twe s1ates; Accesidie of inaecesnbie,

()]

Fig. 18. Duplicated records and record status table. (a)
Duplicated records in shared memory modules. (b} Record
status table {RST) in each processor.

tAsK AECIRD X ECIRD X*
AT PROCESSDA I AT
A S SIS Y

REWEST) ‘LLL!J\A\

————
CREATE __l_f_lll___,_.—-—-'
& UPOATE
TEneonary 3
RECORD
4y WEX) o 4P
UPDATE i
3] {5’} . 8
LOCK &) {I) ™

RELEASE /) P“"“‘LL.‘__L‘__
%\-

U: O« FREE, | = LOCKED, 2 = uPDATE [MITIATED
SM = SHARED MEMORY

Fig. 19. FTL protocol for record update.

b) Detection of processor failure: When two or more
processors request to lock the same record simultaneously,
only one of them will obtain the lock grant. Other proces-
sors might experience timeout and initiate the recovery
process which is undesirable. To prevent this from occur-
ring, a Lock Counter(LC)is introduced for each record copy.
After a processor successfully locks a record copy, the LC
of the copy is incremented by one. When a record copy is
currently locked, a processor trying to lock the same copy
will repeatedly request to lock the copy until it succeeds.
When the processor finds that the LC of the requested rec-
ord copy has been incremented while waiting for a lock

T’ 1 &

grant, this imphies that the record has been released bv its
hoiding processor and focked by some other processor
again. The processor resets the tmeout counter and con-
ttinues requesting for the lock-grant. If the LC remains
unchanged after a predetermined number of lock requests
{i.e., timeout period). the processor currently holding the
lock is considered failed. The processor that detects the
timeout then increments the L C of the record copy by one.
This prevents other processors from detecting the same
failure. To prevent faise tailure detection, the timeout period
idetermined by the number of repeated lock requests) must
be larger than the lock-holding time of any application pro-
gram.

¢l Recovery from a processor failure: The processor
reads the {Ws of all copies of the requested record when
it detects a timeout for a record. Based on the LW status
table the processor takes the appropriate recovery action:
either discarding the inconsistent record copy and oper-
ating 1n a degraded mode, or copying from the consistent
record copy into the inconsistent one.

d) Handling of a shared memory failure: When a pro-
cessor detects a memory failure by hardware detection or
diagnostic program, one approach is to notify all the other
processors of the failure. Whenever the processor accesses
arecord copy in a shared memory, it needs to check mes-
sage boxes which requires large processing overhead. Fur-
ther, two or more processors may detect the same memory
failure independently and may receive duplicate failure
messages. Therefore, such a message passing technigue
requires high overhead.

To avoid such message passing overhead, we propose
the following technique for handiing memory failure. When
a processor requests a record from a shared memory mod-
ule and detects a memory failure, it marks “inaccessible’”
on its local RST (without notifying the other processors). It
also marks “inaccessible” on the LW of the record copy if
the LW is still accessible. When a second processor finds
that the (W on its requested record copy is marked
“inaccessible,” this second processor marks the "inac-
cessible” of that record in its RST. if the LW of that record
copy is inaccessible, then this record copy cannot be
accessed by any processors which assures data consis-
tency.

e} Handling of a path failure: A single point failure in
the crossbar network or in the multiple bus system may pre-
vent one or more processors from accessing a particular
memaory module.’ This wiil prevent record updating in that
memory module. However, the records may be accessed
by other processors that are not blocked by that single point
path failure, and cause data inconsistency. This can be
avoided by maintaining the status of the other record copy
in the LW of each record copy. When a processor detects
arecord is inaccessible, it marks "inaccessible” for that rec-
ord on its RST and on the LW of the accessible copy. When
another processor accesses the accessible copy, the LW will
reflect the inaccessibility of the other copy. The processor
should then mark that information on its RST to avoid fur-
ther accesses of that inaccessible copy of that record.

'Assuming the failure does not cause network partitioning; that
is, two processors having access to anly one of the two copies, but
not the same one,

C. FTL Experiments

In this section, we shail present results or experiments
to charactenze the behavior of the FTL protocol. The exper-
iments for the FTL protocol were implemented on the CAS
Testbed. The locking used by the application program 1s on
the record level. This section describes the implementation
of the protocol on the testbed and experimental results.

The Track File was duplicated and placed in shared-mem:-
ory modules of the testbed. When a task needs to modify
arecord in a shared-memory, it firstlocks the record cooes
in sequence to avoid deadlock situations. A local copy s
then created, and a synthetic load is executed simulating
an update to the local copy. After the update is completed,
the primary record copy is marked update-initiated and the
local copy written to it. If a task cannot lock both copies of
arecord in the allotted time, the processor holding the iock
is considered to have failed and a recovery procedure Is
initiated on the record. The allotted time to lock the record
copies is measured by iterations of unsuccessiul lock
attempts in the lock procedure. When a predetermineq
number of iterations are attempted, the processor attempt-
ing to lock the record transfers control to a recovery pro-
cedure that examines the lock states from the LW of the two
record copies to determine if they are consistent. If incon-
sistency exists, the lock states are used to determine which
copy is inconsistent so the consistent copy may be written
over the inconsistent copy. The lock states of both record
copies are set to "free” and the processor returns to the
thread of processing.

1) Experimental Results: A set of experiments was per-
formed for evaluating the feasibility of the FTL protocol via
the CMS Testbed. Three experiments characterize the £TL
protocol under no-processor-failure situation, in terms of
1) overhead of the FTL protocol, 2) choice of lock-request
retry period, and 3} choice of time-out period for processor
failure detection. Another experiment studies the FTL pro-
tocol recovery time in the presence of processor failures.

a} Overhead of the FTL protocol: Concurrency control
with the FTL protocol requires additional lock and update
to the second copy of each record. Therefore, it requires
more processing resources than without FTL (baseline sys-
tem). For the particular apptication, we note from Fig. 20
that FTL requires 24.2 percent more CPU time of which 7.8
percent is used to lock the second record copy, and 16.4
percentis used toexecutetheFTLcode. As aresult, the lock-
holding time of the FTL system is longer than the baseline
system. Because of larger processor utilization for the sys-
tem using FTL, the response times are also increased. From
Fig. 21 we note that for this application, using FTL increases
the Track Thread response time by 19.7 percent.

b) Lock-request retry period: When a processor faiis to
obtain a lock grant for a record, it retries repeatedly until
it receives a grant or reaches a time-out (i.e., detects a pro-
cessor failure). If the period between retries (retry period)
is too short, the number of shared memory conflicts
increases. If the retry period is too long, the processor may
be waiting for a lock even though the record is "'free.” For
the given application example a delay loopis inserted in the
tock procedure. The retry period can be controlled by vary-
ing the number of the loop iterations, Each loop (retry} iter-
ation is about 0.95 us. Fig. 22 displays the lock-grant time
as a function of the retry period. The lock-grant time varies

PROCEEDINGS OF THE IEEE, VOL. 75, NO. 5, MAY 1987

Iv-16

100 vy

80,00

60,00

AGGREGATE SYSTEM PROCESSOR UTIL ¢x}
40,060

20,00

. —

Wich FTL Protacol

) Baseline System

T

2,60 3. .0
ENGAGEMENT TTME (5
Fig. 20. Aggregate system processor utilization.
o
(=]
v
L)
With FTL Protocol
- ! Oeeeas Baseline System
[l
xz -
-
oz
x
-
e p;
= o
5 %4 A
5 . /'\'MW \"J e
E Y gakiima
Q
a
©0,00 1.20 2.40 3.40 4. 80 6.00
ENGAGEMENT TIME (S)
Fig. 21. Maximum response time for the Track Thread.

3 lock-retry period increases lock conflict, lock-grant time also
- depends on the lock-retry period [18]. Due to the fact that
ZZ 600 the application task has a very low lock conilict rate, the
i€ lock-grant time is rather insensitive to the retry period. A
5o T —— slightly lower average ock-grant time occurred at ten loop
za 1 iterations (9.5-us simulated time).
=z . . - .
5= ¢} Time-out period for processor failure detection: The

T L0 . , L time-out period for detecting a processor failure during a

10 10 10 ‘0 record update should be longer than the maximum lock-

LOCX REQUEST RETRY PERIOD
(NO. OF ITERRATIONS IN DELAY LDOF}

10 INTEQRATIONS OF THE BELAY LOCOP EQUALS
4.9 48 SIMULATION TIME,
Fig. 22. Lock-request retry period versus lock-grant time,

with the levet of lock conflict and memory conflict which
depends on the number of locked records and the number
of memory modules in the system. Futher, since reduces

holding time for any task. The time-out period is measured
as the maximum number of tock requests for a record. If
the time-out period is too long, a processor would issue
unnecessary requests for a lock that is held by a failed pro-
cessor. Onthe other hand, if the time-out period is too short,
the processor would initiate unnecessary recovery pro-
cesses. Again, the time-out period is implemented by exe-
cuting loop iterations. Each iteration runs for about 54 us.

CHU et 4l VALIDATION OF DESIGN FOR RELIABLE DISTRIBUTED SYSTEMS

-y T

For the application example, the experiment shows that 13
steratrons (corresponding to 650 us) is the lowest number
that yields no false time-out detection as shown in Fig. 23.

120

99

517

o

39 \
0

OF FALSE FAILUKE DLTECTIONS

N,

b4 4 §] 10 12 14 16 13
TIME.QUT PERTQD <MY, OF LOGK RENUESTS)

Fig. 23. Timeout period versus false failure detection.

d} Performance of the FTL protocol with processor fail-
ures: This set of experiments study the time required to
detect and recaver from a processor failure. To emulate a
failure, the processor is forced into an infinite loop while
it holds a lock. It was shown that the time for detecting the
failure and compieting the recovery is within 2 to 10 ms for
a task with a maximum allowable 40-ms response time.

D. Conclusion of the FTL Experiments

Experimental results reveal that the FTL is capable of
detecting a processor failure during update and recovering
from data inconsistency between record copies. The over-
head for performing the fauit-tolerant locking protocol
depends on the lock frequency and its application. The
parameters that may affect system performance are: time-
out period, lock granularity (record or a group of records),
and lock protocol (e.g., exclusive lock for write and shared
for read, or reserve, upgrade, or exclusive lock).

V. THe INTERRELATIONSHIP BeTween DRB anD FTL SCHEMES
IN ReaL-Time TicHTLY COUPLED SYSTEMS

The DRB scheme enhances the probability of correctly
executing the data manipulation, whereas the FTL scheme
enhances the probability of maintaining database consis-
tency in volatile environments. Therefore, DRB and FTL play
acomplementary role in real-time tightiy coupled systems.
For example, the DRB scheme may be applied to compute
anew value for adatabase item. In this case, the DRB scheme
enables a real-time process to produce a correct value for
the database item despite hardware and software failures,
On the other hand, the FTL scheme maintains database con-
sistency during the retrieval and updating of the item with
a new value produced under the DRB scheme in spite of
storage module failures or lockup of the database item by
a failed processor.

Iv-18

VI. Conciusion

Inthis paper, we have used the multi-computer testbeds
to demonstrate the feasibility of the distributed recovery
block (DRB) scheme for handling hardware and software
faults while meeting the real-time response requirements
imposed by the radar tracking application. Testbed exper-
iments also reveat that to maintain data consistency, apply-
ing 2 lock on the record level yields far less contention than
on the file level for the radar tracking application. Fur-
thermore, experiments demonstrate good performance of
a new fault-tolerant locking (FTL) protocol in handiing fau-
ure during data update in tightly coupled distributed SYs-
tems with replicated copies of files in shared memory.

The CMS has proven to be an effective tool for evaluating
distributed software technologies for real-time systems with
target architecture simifar to that of the CMS. The funda-
mental hardware and software features provide the nec-
essary primitives to enable evaluation of a variety of con-
cepts in software recovery, fault-tolerant data managerment,
resource allocation and scheduling, and process control,
Both message-based and shared-data-based concepts can
be explored and their performance quantified in a cost-
effective manner, The crosshar switch, private memory,
shared memory, flag memory, full interrupt capability, and
i/O processor, provide substantial flexibdity in this regard.
Target architectures that differ substantially from the CMS
can also be effectively emulated; however, the possible
effects on fidelity and overhead introduced by the emu-
lation must be carefully evaluated.

The TCN has also proven to be an efective tool for eval-
uating distributed reai-time software technologies. The TCN
can closely match the network structure with the com-
putation structure of a chosen real-time application. How-
ever, configuring the TCN to fit a new application some-
times involves manual hardware reconfiguration which can
be tedious. The structure of the CMS, on the other hand,
is more flexible and can represent a variety of network
structures through software reconfiguration. However,
there may be susbstantial differences between the CMS
physical structure and that of the targetapplication system.
In such cases, the types of faults that can be effectively
injected in the system may be limited. Therefore, a testbed
that combines the facilities of both the TCN and the CM$S
would be desirable.

Although testbeds are ususally more time-consuming to
construct and set up than pure software simulators, they
are capable of representing the operating environment and
input scenario more accurately than software simulators.
As a resuit, testbed-based evaluation produces mare accu-
rate results than pure software simulation. Furthermore,
testbeds can provide more specific detailed information
than simulation. Thus testbeds provide greater insight into
the characteristics and limitations of the concepts being
explored. Our experience leads us to conclude that testbed-
based experimentation is an effective approach to valida-
tion of system concepts and design techniques for real-time
distributed systems.

ACKNOWLEDCMENT

The authors wish to thank C. Davis, O, Thomas, T. Smith,
and T. Johnson of the U.S. Army Strategic Defense Com-
mand, Huntsville, AL, for their guidance, support, and

PROCEEDINGS OF THE IEEE, VOL. 75, NO. 5, MAY 1987

encouragement through the entire course of this research.
we aiso acknowledge the efforts of thase who contributed
to this project; in particular, M. Beastey, C. Bryant, |. Din-
geldine, C. Hail, M. Kurtti, and N. Vasbury for the work on
the CMS hardware and software; W. Farrar, P. Rehm, and
S. Yang for the work on the TCN hardware and software;
and J. M. An, G. Barnett, . Hellerstein, 5. Heu, W. Moquin,
H.Welch, and }. Yoon for the work in developing the exper-
iments and the analysis tools.

REFERENCES

[1] K. H. Kim, "Software techniques for fault tolerance in BMD
computing systems, Vol. |1, Testbed and tool devetopment,”
Final Rep., U.S. Army BMDATC Contract, May 1985, avaiiable
from the Defense Technical Information Center, Cat. No.
B092639L. :

[2) P. B. Hansen. The Architecture of Concurrent Programs.
Englewood Cliffs, NJ: Prentice-Hall, 1977.

{3} C.L.Liuand). W. Layland. "Scheduling algerthms for mul-
tiprogramming 1n hard-real-time environment,” J. ACM, pp.
46-61, lan. 1973,

(4] w. C. McDonald and R. W. Smith, A flexible distributed
testbed for real time appiications,” fEEE Computer, vol. 15,
no. 10, pp. 25-39, Oct. 1982

(51 W.C.mcDonald and M. W, Beasley, "“A real-time multi-micro-
computer architecture employing a fully parallel crossbar
switch,” in Proc. ICCD 83, pp. 255-258, Oct. 1983,

(6) W. C. McDonald, A flexible multicomputer testbed for
research in real-time distributed software technologies,” in
Proc. IEEE EASCON 84, pp. 269-275. Sept. 1984.

(71 T.G. williams, W. C, McDonaid, M. W. Beasley, and G. W.
Cox, A hardware architecture for a flexible distributed com-
puting testbed,” in Proc. Jrd Int. Conf. on Distributed Com-
puting Systems, pp. 404-409, Oct. 1982.

[8) T.G. Williams, M. W. Beasiey, and W. C. McDonaid, "CMS5—
A testbed for evatuating distributed architectures,” in Proc.
15th Southeastern Symp. on System Theory, pp. 153-156, Mar.
1983.

[9]1 N.Vosburyand C. Bryant, “System software for experiments
in distributed computing on a distributed testbed,” in Proc.
3rd Int. Conf. on Distributed Computing Systems, pp. 410-
415, Oct. 1982.

[10] N. A. Vosbury, "'The process design system,”” in Proc. Com-
puter Software and Applications Conf., pp. 374-379, Nov. 1979.

{11 J.).Horning, H. C. Lauer, P. M. Melliar-Smith, and B. Randell,
A program structure for error detection and recovery,” Lec-
ture Notes in Computer Science, vol. 16. New York, NY:
Springer-Verlag, 1974, pp. 171-187.

"[12] B. Randell, "System structure for software fauit tolerance,”
IEEE Trans. Software Eng., vol. SE-1, pp. 220-232, June 1975.

(13] K. H. Kim, "'Distributed execution of recovery biocks: An
approach to uniform treatment of hardware and software
faults,” in Proc. 4th int. Conf. on Distributed Computing Sys-
tems, pp. 526-532, May 1984,

[14] H. O. Weich, "Distributed recovery block performance in a
real-time control loop,” in Proc. Real-Time Systerns Symp., pp.
268-276, Dec, 1981,

[15} W. W. Chu et al., “Database management algorithm for
advanced BMD appiications,” UCLA Tech. Rep. ENG-83-20,
CSD 830430, Apr. 30, 1983.

(16] B. W. Lampsan, “Atomic transactions,”” in Distributed Sys-
tems: Architecture and Implementation. New York, NY:
Springer-Veriag, 1981, ch, 11.

[171 W.W.Chuand]. M. An, “'Fault tolerantlocking (FTL} for tightly
coupied systems,” in Proc. 5th Symp. on Reliability in Dis-
tributed Software and Database Systerns (Los Angeles, CA),
1986.

(18] W.W. Chuetal, “Distributed database management for reai
time BMD appiications,” UCLA Tech. Rep. CS5D 860040, ch.
4, July 1986.

CHU et al: VALIDATION OF DESIGN FOR RELIABLE DISTRIBUTED SYSTEMS
TV =190

CHAPTER V

PERFORMANCE OF CONCURRENCY CONTROL ALGORITHM

FOR REAL-TIME DISTRIBUTED DATABASE SYSTEMS

PERFORMANCE OF CONCURRENCY CONTROL ALGORITHMS
FOR REAL TIME DISTRIBUTED DATABASE SYSTEMS

1. Introduction

In a distributed database system, such as the BM/C> environment, replication of
data is used to improve response time and data availability. In a network of processors or
sites, each site stores some or all of the data for the application. To maintain consistency
between copies of the data, alterations to the database at one site should be reflected in all
replicated copies of the data. In addition, if one processor fails, the other processors
should take over the load of the failed computer. Although there are several available
protocols which maintain file consistency in a distributed database, most of them are not

suitable for real-time applications.

In this chapter we will present resilient versions of the Exclusive Writer Protocol
(EWP) [Chu85] and a protocol which uses Timestamping with Modified Rollback (TMR)
[Fisc82] , [Allc83]. We will evaluate the usefulness of these protocols in real-time appli-
cations and compare them with the resilient version of Primary Site Locking (PSL)

[Ston79], [An85].

2. Operating Environment

A key to anticipating the behavior of any concurrency control protocol is under-
standing the environment in which it must operate. If site failures cause network insta-
bility, then we cannot expect protocols to operate at peak efficiency. Our initial assump-
tions are that communication and hardware failures are not malicious. If a message is
sent, it either arrives intact or is lost in transit. We assume that message corruption does

not occur. Similarly, we assume that all units in the system are either working or failed.

The above restrictions assume that the hardware and environment of our system has
merely benign faults. If malicious faults occur in our system, then they may go
undetected. Undetectable faults in the system can lead concurrency protocols to operate

incorrectly.

3. Protocol Descriptions

For comparison, we will use the well-known protocol, Primary Site Locking (PSL)
[Ston79] (Figure 1) as a baseline protocol. PSL is a centralized algorithm with respect to
any given file; for each file there is one site which controls access to that file. This site,
called the Primary Site (PS), may be different for different files. When a site needs to
update the data, it requests a lock from the PS. If the data is currently unlocked, then the
PS locks the data and grants the lock to the requesting site, which may then update the
data. If the data is already locked, then the requesting site must wait for the lock to be
released to continue. PSL guarantees serializability, since only one transaction on a
given file can take place at any time. However, due to the wait for synchronization, lock-
ing delay takes too long for real-time applications. Another problem that may be
encountered with locking is deadlock. Therefore, in addition to PSL, a deadlock detec-

tion algorithm must be implemented.

To reduce overhead messages and eliminate deadlock, the Exclusive Writer Proto-
col (EWP) is introduced [Chu85] (Figure 2). Like PSL, EWP is centralized with respect
to each file, but it is an oprimistic method. When an update is required, the initiating site
sends the update to the Exclusive Writer Site (EW). The EW uses the sequence number
of the file to determine whether the update was made with the most recent value of the

data. Accepted updates are sent to all sites, while rejected updates are discarded. After

V-2

each site receives the update, it performs the update locally and increments the sequence

number for the file.

EWP guarantees data consistency but does not guarantee serializability, Should
there be an update conflict, one of the updates will be discarded. In many applications,
such as radar tracking, data are non-volatile and new readings are constantly coming in,
$o occasional updates may be discarded. By ¢liminating locks, we lose some control
over the data. However, deadlocks cannot occur and we gain a great improvement in

speed by avoiding synchronization delay.

For those applications where discarding updates is not acceptable, the Exclusive
Writer Locking Protocol (EWL) can be used (Figure 3). EWL works like EWP until an
update conflict occurs. Then, the first update to arrive is accepted, and the next update is
treated as a lock request. The EW site becomes a PS, and processing continues using
PSL. In EWL, EWP is used during conflict-free periods and PSL is used when
update/lock conflicts arise. Thus, EWL is serializable. The difference between EWL and
PSL is that EWL is an optimistic protocol; it does not incur synchronization costs when

there are no update conflicts.

There are extensions to EWP and EWL providing for site and communication
failures [An85] using one phase and a backup coordinator in case of EW failure. If net-
work partitioning occurs, to insure data consistency, only sites that remain connected to
the EW will be able to continue updating. Sites that cannot communicate with the EW
‘may not update the file. Such protocols that suspend EWP operation during network par-
titioning are too restrictive, especially in critical environments such as flight control and

battle management. More flexible concurrency control protocols are needed.

In order to continue processing during network partitioning, a time-stamp protocol
with modified rollback (TMR) has been proposed. [Fisc82] , [Allc83] , {Jajo87] (Figure
4). Like EWP, TMR is optimistic, but there is no controlling site; each site computes
updates locaily. Normally, when an update occurs, it is executed and logged at the ori-
ginating site and sent to other sites that contain replicated copies of the file being
updated. To reduce communication costs, several updates may be batched and transmit-
ted to other sites together. Likewise, after a partitioned network rejoins and communica-
tion is possible again, the batched updates are sent out to other sites. Incoming messages
are merged into the local log in the proper order based on the timestamps associated with
the update. TMR sacrifices data consistency and serializability, since the logs may be
held locally for some time between broadcasts and messages can be received out of
order. However, network partitioning will not halt updates; inconsistencies in the data are

rectified when the network is rejoined, if possible.

The table below summarizes the differences, advantages and disadvantages of the

different protocols.
Protocol Features Advantages Disadvantages
PSL Centralized | Serializable Synchronization Delays
Locking Consistent Data Partitioning Problems
w.r.t file Balanced Processing Load Deadlock Possible
EWP Centralized | Consistent Data Update Conflicts
w.r.t file Balanced Processing Load Partition Problems
No Synchronization Delay
TMR Distnibuted | Fewer Partitioning Problems | Data Inconsistent
Message Logging Merge Costs
No Synchronization Delay Extra Communication
Figure §
Summary of Protocols

To detect network failure, the resilient EWP and PSL must periodically send I-

AM-UP messages to monitor network connections. TMR must communicate a

V-4

connectivity vector - an n by n array of time stamps specifying the status of the connec-
tion to site i from site j - informing the receiving site about the sending site’s view of the
network. This information can be used for detecting network partitioning and for recov-
ering lost messages and data. TMR will have higher overall communication costs

because the connectivity vector must be transmitted with each update batch.

4. Performance Measures

There are different measures to compare the performance of concurrency control
protocols such as data availability, data consistency and accuracy, response time, and
throughput. In addition to normal operating conditions, system behavior during failure

must be considered, especially in unstable environments.

Different protocols provide varying degrees of data consistency. We define the
True Database as the portion of the database which is exactly the same as if all transac-
tions had been run on a single infinitely fast processor. Total Consistency, as the name
implies, is the strictest degree of consistency. A database is totally consistent if all data
copies at different sites are the same as the true database for both read and write opera-
tons. A database has Strong Consistency if, during a write operation, all data copies at
different sites are the same as the true database. According to our definitions, PSL is
strongly consistent. Since there is no read locking in PSL, though, it is not totally con-
sistent. EWP is not strongly consistent, since updates may be discarded. When an
update is discarded, the EWP database varies from the true database, but all the copies of
the data are mutually consistent. We say that a database has Weak Consistency if all
copies at different sites are the same, but may be different from the true database.

Clearly, this is true for EWP, but not for TMR, since the TMR database may be updated

V-§

at different sites based on different data values. These inconsistencies are later rectified

during the merge phase of TMR. Therefore, TMR is Temporarily Inconsistent.

If the database is in the true state, then we say that the concurrency control protocol
used is Serializable. The value difference between the true state of the database and the
state after a write conflict is called /naccuracy. When conflicts occur, serializability,
accuracy, and weak consistency are affected. Figure 6 shows database consistency meas-
ures as read and write conflicts occur. The database slowly deteriorates with each update
conflict until a database correction occurs. The cost and frequency of corrections to the

data is one measure of the cost of the concurrency controi protocol.

From Figure 6, it is evident that PSL provides a higher degree of data protection at
the expense of throughput and response time as shown in Figures 7 and 8. As the number
of update requests is increased, the total number of updates in the system increases. This
increase in throughput continues untl the network becomes congested with messages.
When used without message batching, TMR requires more communication than other
protocols, and, therefore, can cause rapid network congestion. In addition, as communi-
cation overhead increases, the number of updates possible (throughput) decreases.

Therefore, message batching will reduce costs, making TMR behave better.

The batching of messages in TMR increases throughput, but also increases response
time. In situations where the update rate is low, it may take too long to collect enough
updates to reach maximum batch size. A timeout period can be specified. If the timeout
is exceeded, then the incomplete batch is sent anyway. The timeout period should be

selected so that updates will not become stale while waiting to form a baich.

As the update rate increases (see Figure 8), batching keeps the communication sys-
tem from overloading, and thus response time improves. Global Response Time is the
total time from initiation of an update to completion at the final site. Local Response
Time is the time for an update to complete at the initiating site regardless of other sites.
For PSL and EWP, local response and global response are almost equivalent. Since
updates are executed immediately, TMR (with or without batching) provides excellent
local response time. Global response time for TMR may vary dramatically based on

batch size, timeout, communication overhead, and other parameters,

If network partitioning occurs, data which is separate from the EW site cannot be
updated, reducing availability to zero. Since the data is not available, effective response
time of EWP and PSL will be infinite during partitioning, as shown in Figure 9. TMR
response time will remain low at the cost of expected data inconsistency. During net-
work partitioning, there global response time is infinite for all protocols if copies of the
data are divided. If all copies of the data are in one partition, then global response time

will be slightly faster than normal due to the reduction in communication traffic.

When comparing the performance of concurrency control protocols, we must con-
sider response time, throughput, consistency, and behavior during failure. The protocol
selection should depend on the application; we may choose a protective protocot for sen-

sitive data, and a different protocol to improve data availability.

5. Simulation

Simulation is used to study protocol behavior. The simulation program is written in
the Pascal programming language. A typical run takes anywhere from 10 seconds to 1

minute of CPU time on a Sun 3.

The simulation program (Figure 10) consists of a generic driver along with system
routines, atomic actions, and specifications for handling all possible events for each of
the different protocols. Figure 11 shows a schematic of the driver. The simulation keeps
a list of events which are active in the network. Initially, the active events are all update
initializations for the length of the simulation. When the global simulation clock exceeds
an event time, that event is executed at the appropriate site. If the site is not free, then
the event is reinserted into the event queue, to execute at a later time. If the event is exe-
cuted, then the time required is calculated, and the site involved is assigned to that event
until the event is complete. The event is executed, possibly spawning more events for
the future. The simulation ends when any site’s local time exceeds the specified end time

of the simulation. Figure 13 presents a flowchart of the event driver.

Figure 13 shows the protocol dependent event handler for generic EWP. After a
'make-update’ event occurs, causing an update to be initiated, the database is read. The
EW site for the data item is calculated, and an ’update-request’ event is sent to the EW
site. In the case of the 'read’ operation, like other atomic actions, no real action occurs,

but the simulation results are updated.

When the 'update-request’ arrives at the specified EW site, the sequence number of
the record to be updated is compared with the sequence number sent by the requesting
site. If the sequence number is up-to-date, then the update is performed by sending 'do-
update’ messages to all sites containing a copy of the file in question. The file is also

updated at the EW site, and the sequence number is incremented.

When a ’'do-update’ event arrives at a site, that site updates the database if the

sequence number is correct. In a fault free environment, there will be no out-of-order

messages. However, if messages can be lost or delayed in transmission, the sequence

numbers will protect the database from corruption.

The event handling mechanisms for PSL and TMR are in Figures 14 and 15 respec-
tively. The 'forward’ box in each handler is intended for use in networks which are not
fully connected. If site A, B, and C are connected in a line, then, when A sends a mes-
sage to C, it must pass through B. Rather than separate message handling from the rest
of the system, we chose to include it as part of an integrated event handling system.
Thus, when an event arrives, and it is not for the site at which it has arrived, then it is

sent to the next node on the path towards the site.

For clarity several events were not included in the handler diagrams. These events,
such as site failure, I-AM-UP messages, site recovery, and external read from a site

without data, are not part of our discussion at this time.

Input to the simulation (Figure 16) is derived from the application domain, includ-
ing time to write and read a record, time to send a message, time between updates
(Update Rate), processing speed of the computers used, network topology and length of
the simulation. There are also such protocol dependent parameters as time between I-
AM-UP messages for EWP and merge costs for TMR. The output of the simulation (Fig-
ure 17) is a list of the number of different operations performed at each site, number of
updates accepted and rejected, the level of data consistency and availability, merge and
database reconciliation costs. The Run Information listed near the top of the results is a
description of the distribution of the data amongst the sites in the network. The numbers
(one through six, in this case) represent the different data replication possibilities. The

numbers in parentheses are a list of the sites containing data of that type, the first number

being the EW or PS site. Thus, data type 4 is at all three sites with site 2 being the EW
site. Just below that, there is a distribution of the number of records of each different

type. In this example, there are 5000 total records distributed unevenly,

Using simulation experiments, we can compare the cost and performance of
different protocols and the level of data consistency that the protocols provide before,

during, and after network partitioning.

6. Examples

We shail use a hypothetical example from the BM/C3 environment as input to the
simulation. There are three battle managers which must respond to updates of 5000
objects in a time period of 900 seconds. There is some overlap between the regions con-
trolled by the managers which creates replicated data regions. For this example, five
thousand update initiations were generated and uniformly distributed in the zero to 900
second interval. For each of the initiations a site assignment was made based on conflict
probabilities previously provided. Thus, some updates were selected for execution on

single sites, while others were run at multiple sites.

Using this data, we varied several key parameters, including update rate, inter-
process communication (IPC) cost, batch size for TMR, and coverage overlap between
the sites. The parameter values shown in Figure 16 were used as baseline values.
Response time, throughput, and the number of messages generated were measured. Fig-
ure 18 shows different distributions of the 5000 updates. The top diagram shows the
baseline conditions, with darker lines representing EW control over data. For example,
site 1 is the EW for records 0-3000 and also has replicated copies of 3000-3500. The

middle figure is a low overlap coverage, while the bottom figure is a high overlap

vV-10

coverage.

Figure 19 shows the response time of PSL, EWP and TMR as a function of IPC for
baseline coverage. As expected, the response time for TMR was higher than EWP, but
lower than PSL. It is interesting to note that although an increase in IPC causes a linear
increase in response time, the rate of increase in response is quite different because of the

varying degrees of communication required by different protocols.

Our investigation of site coverage reveals that when the data replication between
sites is low, network traffic is reduced which improves response time (Figure 20). The
volume of communication increases as the degree of replication increases, which
increases response time (Figure 21). The volume of communication between sites is
reduced when there is less data replication. As a result, response time for low replication
databases is less sensitive to communication cost. For a given update rate, PSL is more
sensitive to interprocess communication cost than TMR or EWP, The response time of

PSL increases significantly as data replication increases.

Figure 22 shows the effect of update rate on response time. As the update rate
increases, the network begins to congest. The large response delay of PSL due to waits
for locking will cause PSL response time to become prohibitive as update rates increase.
This illustrates that the added communication and delay due to locking required by PSL
make it unsuitable for real-time systems. Since locking is not required for EWP, the rate
of response time for EWP rises as update rates increase, but not as dramatically as the

rate of PSL.

Figure 23 shows the effect of batching messages in TMR for various timeout

periods. When communication costs are high, we expect to gain by batching messages,

V.11

since fewer messages will be transmitted between sites. However, the cost of batching is
demonstrated in Figure 24, where an increase in batch size causes a corresponding
increase in respor. e time. For our initial results, we assumed that the communication
costs for a message do not vary with the size of the message. Thus, response time results

for TMR without batching are better than TMR with batching.

In addition to batch size, timeout period affects the behavior of TMR. As the
timeout period increases, the number of messages in the system decreases and the global
response time increases (Figure 235). * By selecting an appropriate maximum batch size
and timeout period for TMR, we can minimize the communication overhead, while max-

imizing system throughput.

7. Future Work

Currently, we are continuing our experiments studying system behavior by varying
other key parameters, such as I-AM-UP frequency. In addition, we are developing a
methodology for measuring data consistency and accuracy for different protocols. We

plan to measure response time during failure and reconciliation costs.

To study the behavior during failure, we will inject faults into the system and
observe system response during and after the fault. We plan to investigate the fault
recovery period, system degradation, merge period during network rejoin, cost of recon-
ciliation and its effectveness. When network partitioning occurs, database availability
will be greatly reduced. We will quantify how the decrease in availability affects overall

systemwide decision making.

* Due to our assumption of constant message size, the actual increase in response time for larger
batches will be less than is shown.

Several approaches may be used to combat the reduction in data availability during
partitioning. TMR allows data handling at all working sites, but then must spend extra
time repairing the database when the network rejoins. Blocking restricts access to sensi-
tive data during partitioning, and Voting allows dynamic EW site reconfiguration. Qur

plans include an analysis of the merits and pitfalls of different strategies.

Since blocking is too restrictive, voting is costly and restrictive, and continuing nor-
mally will result in inconsistent data, we plan to use information about the data to
improve database access during partioning. Specifically, previous usage patterns, data
volatility, and data repair costs will guide us. We can also use a knowledge base to pro-
vide information and trigger or alert the system in case of failure. The knowledge base
and semantic information can be used to improve system behavior and provide fault

avoidance, detection, inspection, isolation, repair and recovery.

Based on our study, we hope to develop a methodology that uses application
requirements to guide the selection of appropriate concurrency control protocols for dis-

tributed real-time systems.

References

[Allc831 Allchin, J. E., **A Suite of Robust Algorithms for Maintaining Replicated Data
Using Weak Consitency Conditions,’’ Proc. Symposium on Reliability in
Distributed Software and Database Systems, vol. 3, pp. 47-56, IEEE, 1983.

[An85] An, Jung Min and Wesley W. Chu, “‘A Resilient Commit Protocol for Real Time
Systems,”’ Proceedings of the 1985 Rea! Time Systems Symposium, San
Diego, CA, December, 1985.

{Chu85] Chu, Wesley W. and Joseph Hellerstein, ‘“The Exclusive Writer Approach to
Updating Replicate Files in Distributed Processing Systems,”” IEEE Tran-
sactions on Computers, pp. 489-500, June, 1985.

[Fisc82] Fischer, Michael J. and Alan Michael, “‘Sacrificing Serializability to Attain
High Availability of Data in an Unreliable Network,”’ Symposium on Princi-
Dles of Database Systems, pp. 70-75, ACM, 1982.

[Ston79] Stonebraker, Michael, ‘‘Concurrency Control and Consistency of Multiple
Copies of Data in Distributed INGRES,’’ IEEE Transactions on Software
Engineering, vol. SE-5, no. 3, pp. 188-194, May, 1979.

[Jajo87] Jajodia, Sushil and Catherine A. Meadows, ‘“Mutual Consistency in Decentral-
ized Distributed Systems,”” Proc. Third International Conference on Daia
Engineering, vol. 3, pp. 396-404, IEEE, 1987.

, Lock Request

P S Lock Grant

Update #4
y

| bock Reaues

New PS :

Lock Regquest

Update #2
Lock Release

Figure 1
Resilient Primary Site Locking

//

NS

EW FAIL

Update #2

\

New EW

Update #2

Retransmit

Update Request

Update #3

Figure 2

Resilient Exclusive Writer Protocol

EWP

PSL

EWP

Update Request
#1 \

< Update Request
Lock Grant

Update #2 Update #2
m

Lock Grant \

//A
/m

Update Request

EW

Update
#4

Figure 3
EWL Protocol

Merge

Update

Update

Update Update
<
Merge
Merge
Update Update
\
~.
—
Site Fail
\
\\
\
Update
Retransmit
Site Recover
Figure 4

TMR Protocol

Time

palano?) aseqeieq

Time

Paa.I0) 9seqeleq

Time

pP8Ioanon aseqeleq

IAPUOD BIUM RIJUOD BlUM JORILOD Bl
pijuo) peay U0 alup IuoD Sl
©IuoY pesy
HJU0D Bl OIUOD Al MUY BlIp
10413 Bueiday Jo13 Bupeday Jou3 Buperday
Ul peay eleq meN WU peay Eleq moN Lt PESH BleQ MON
o
&
HU0) Sl NU0D Bl e MUY BlIM
7 &
uonebodoig o} o voneSodoig 0} a uonebodoiy 0
anp uoneIoLa)aq anp uoiesoualaQ a. anp uofe:0u319Q
g
r oo 104ju0D 3m 1MuoY alum PuoD SIMm
P ga
PIIjUOD peay 2
o« W o
PIUOY pesy Ed =
MU0 S 121U0Y) BIIMA PHuUoD LM
KIuo) aum Wijuod awm PIU0D alum
_| uo) peay
AousIsIsuoD (ejog Aoualsisuo) Buong Aouaisisuo)) yeom

Figure 6
Consistency Deterioration and Correction for PSL, EWP & TMR

Number of Updates

™R

w/ Batch

EWP

™R
w/0
Batch

PSL

Number of Sites

S~

Number of Updates

T™R
w/ Batch

PSL
TMR
w/o
Batch
Update Rate

Number of Updates

TMR
w/ Batch

EWP

PSL

™R
w/0
Batch

Communication Qverhead

Figure 7
Throughput Behavior of PSL, EWP & TMR

Global Response Time

TMR w/o Batching E
=
@
PSL 2 PSL
Q
a
@
ond
WP ®
8
-
TMR w/ Batching EWP
/m
Update Rate Update Rate

Figure 8
Response Time vs. Update Rate

Local Response Time

A
PSL & EWP
TMR
Partition Occurs Rejoin Cccurs ,
Time

LRT is smaller if site is in partition containing EW/PS
LRT is infinite if site is not in partition containing EW/PS

Figure 9

lLocal Response Time
(before, during, and after Network Partitioning)

Simulation Control

Atomic Actions [¢—

System Routines[<—

Application #1 |q |
{EWP)

Application #2 |q
(TMR)

Figure 10
Simulation System Organization

Sirmuiation:
- Controk:

Initialize

Atomic
Actions [d—

Systemn
Routines [

Pop Process -

Application
Dependent{¥—

v

Execute Instruction

Push Process

Tme<T

Tmes=T

Print Results

Figure 11

Simulation Control

l Start l

Initialize
& Read Data

Get next Event

(lowest timg) =

if process is

unavailable,
then retry later
(get next event)

Find Instruction
and Cost

"Do" Instruction;
Update Results

Time >=

End_Time
?

No

Yes

Print Resuits

End

Figure 12

Flowchart of Simulation

Send Send
do_update [lock_rel

T Forward
Write Data |4~ Read Data Msg for

- tother site T ‘ do_update msg
ock_grant ms > i

f g g — Write Increment
ait Update S.N.

—
Free Lock | 'lock_release msg

& |
lock_request l make_update event
l ock Mmessage

free Check Lock Determine

empty [Check Lock PS
Queue 1ock
=]
empty PutL_R Send LR
in Queue to PS
Grant Lock |

Figure 13
Event Handler for PSL

Forward

Msg for
other site

do_update msg
update_request msg |

Update [~ S.N.

) Write Increment
l Wait ———

T imake_update event
Check SN |_reiec!
t Read Data
l accep
Send'D_U l
‘ to rephcated Determine
‘;Tk EW Site
Update Filg l
and SN Send U_R
to EW
Figure 14

Event Handler for EWP

Msg for
other site #
request send

Forward

l

—

[s Network Request
Available? [P Sind (wait)
yes
no
[s Batch Is Wait
big enough [To®long enough
yes yes
Send log
& Vector

log
. Merge w/
ms
Wait P 0 log
make_update
event
Request
Read Data Send
Update log
and data
Request
Send
Figure 15

Event Handler for TMR

Number of Sites
5000 Objects

(%]

900.0 End Time {(in Seconds)

1 Processor Rate - Speedup cver 1 MIP machine
1 Network Topology

3 Protocol

5 Batch size (1 = No Batching) in TMR

0.25 Max Time between batches (0 = No Batching} in TMR
0.0003 costs(READ] in Seconds

0.0030 costs[WRITE] in Seconds

0.0002 costs(SEND] in Seconds

0.0500 costs(IPC] in Seconds

44 debugging level

Figure 16

Parameter Specification for Simulation
(baseline example)

Initializing
running for 3 Sites until Time = 900.00
5000 Records; Protocol = EWP: Topology = FULL

Costs {adjusted for a 1.0Q0 MIP machine):
pead: 0.0003
Wwrite: 0.0030
Send: 0.0002
IPC: 0.0500

Run Information: {(Baseline Data Replication)
1:(1) 2:(i,2) 3:(2,1) 4:(2,1,3) 5:(3,2) 6:(3)

1 2040

2 989

3 504

4 481

5 487

] 499
Total Conflicts - 2461
Conflict Rate - 32.98%
Total Rejectiona - 2942
Rejection Rate - 37.04%
simulating

simulation complete at: £99.85
Processor Inits Writes Messages Down
1 4014 4014 1974 0.00000
2 2461 2461 2942 0.00000
3 1487 1467 968 0.00000
Number of updates Completed: 5000
Mumber of updates Rejected: 2942
percentage of updates Completed: 62.9%6
Average Global Response Time: 0.02874
Maximum Global Response Time: 0.060593
Minimum Glocbal Response Time: 0.00370

30866 milleseconds processing time

End of Simulation Run

Figure 17

Sample of Simulation Output
(for baseline example)

Site 1 II----------------—————

Site 2 -——————————------—————

Site 3 B
, , Objects
0 1000 2000 3000 4000 5000

Baseline Degree of Object Replication

Site 2 T EEee—————

Site 3 T EE——————
’ ' Objects
0 1000 2000 3000

4000 5000
Low Degree of Object Repiication

Site 1 I----I---I-..--F——

Sita 2 ~—————————-4------------———-——___-

Site 3 e ea——
, ’ Objects
0 1000 2000 3000 4000 5000

High Degree of Object Repiication

=== Site with Data Control for Centralized Aigorithms

~——— Site with Replicated Data Copy, but no Data Control

Figure 18

Object Replication
for a 3 Site Battle Management Example

Response Time (seconds)

0.50 |— Run Time = 300 seconds o
5000 objects
Initial Updates = 8000 B
Conflict Rate for EWP = 38.5% Max PSL
0.40
o’.‘.'
0.30
s
0.20
R _~%Ave PSL
S Max TMR
_..-2Max EWP
610t S W e Ave TMR
...... 2Ave EWP
0.00 - | | |] |
0.02 0.04 0.06 0.08 0.10
Inter-process Communication Cost (sec/msg)
Figure 19

Response Time of PSL, EWP &TMR vs IPC
for Baseline Replication

Response Time (seconds)

0.30 Run Time = 900 seconds .,.P Max PSL

5000 objects

Initial Updates = 7000

Conflict Rate for EWP = 28.6%

‘.'°...
0.20
b“"“

0.10
0.00

0.02 0.04 0.08 0.08 0.10
Inter-process Communication Cost {sec/msg)

Figure 20

Response Time of PSL, EWP &TMR vs IPC
for Low Data Replication

Response Time (seconds)

050l Run Time = 900 seconds S Max PSL
5000 objects '
Initial Updates = 11000
Conilict Rate for EWP = 54.5%
0.40 &
iﬁ.
0.30
.P.'.
_~SAve PSL
0.20
-‘s....
s
. ra Max TMR
" _.--"*Max EWP
0.10 Ave TMR
............ 2Ave EWP
0.00 - f I l l I
0.02 0.04 0.06 0.08 0.10
Inter-process Communication Cost (sec/msg)

Figure 21

Response Time of PSL, EWP &TMR vs IPC
for High Data Replication

(4]
o

Response Time (seconds) .

0.25

0.00

-
G

{ Max PSL
5000 Objects g
[nitial Updates = 8000
Conflict Rate for EWP = 38.5%
IPC = 0.050 sec/msg
I“'
-Q"""
--“".‘.c...
St
Max TMR
~%Ave PSL
| | l]

100 200 300 400
Update Rate (Updates initated/Sec)
Figure 22

Response Time for PSL EWP & TMR vs. Update Rate

using Baseline Data Replication

Number of Messages

8000

7000

6000

5000

4000

3000

2000

Tout = 0.25 sec

2 3 4 5
Batch Size (updates/msg)

Figure 23

The Number of Messages for TMR
as a Function of Batch Size
and Selected Timeout Periods

Response Time {seconds)

0.80

Timeout Period is infinite
0.70 /
R o Batchsize = 5

=4
0.50 —

0.30

¢.20 /

0.10 /

0.00

=3

=2

=1
|

l
0.10 0.20

Figure 24
Response Time effect of TMR as a function of IPC

inter-Process Communication Cost{sec/msg)

@ 700 0.70 g
g Maximum Batch Size is infinite 3
o R
= o
s £
£ 6000 060 3
2 &
QL
sy
Global 3
i G

5000 Response T{g\e 0.50

4000 0.40

3000 0.30

Number of
Messages
2000 0.20
s
1000 0.10
&
0.00
0.0 0.25 0.50 0.75 1.0

Timeout Period (seconds)

Figure 25

Global Response Time and Number of Messages of TMR
as a Function of Timeout Period

CHAPTER VI

A KNOWLEDGE ACQUISITION METHODOLOGY

FOR SEMANTIC QUERY PROCESSING

A KNOWLEDGE ACQUISITION METHODOLOGY FOR
SEMANTIC QUERY OPTIMIZATION

1 INTRODUCTION

Query processing is a key consideration in database management systems. Conventionai
approach to query optimization mainly uses domain-independent techniques to transfer the origi-
nal query to a set of sequences of operations. Optimization usually involves determining the op-
timal sequence such that the objective function (e.g., response time, operating cost) for process-

ing the given query is minimized [CHU82, JARKS4b].

In contrast to conventional query optimization, semantic query processing uses
knowledge of application domains to ransform the original query into an equivalent one that is
cheaper to process yet yielding the same result as the original query. The transformations are
limited to those that yield a semantically equivalent query; that is, a query that results in the

same answer as the original regardless of the database state.

Much work has been done in developing heuristics and reasoning techniques in semantic
query optimization [KING81, XU83, CHAK84, CHAKS5]. However, an important area that has
been neglected is knowledge acquisition. Integrity constraints are commonly used as the
knowledge in semantic query processing. Although integrity constraints have been useful in im-
proving certain queries, their effectiveness is quite limited. A main problem is that they are
often too general to be useful in query transformation. This is because integrity constraints are
used to ensure that every allowable state of the database is a valid instance of the application,
while queries are only concerned with the current database state. Therefore, knowledge about the

current database state is more useful than the knowledge of the applications.

Therefore, a new approach for acquiring knowledge of database state is proposed in this
research. However, due to the limitation of conventional data models, for example, failure to
distinguish different generic relationships among application objects in the record-based data-
base models, the knowledge that can be collected is quite limited. Therefore, we propose to use
a semantic data model to facilitate the knowledge acquisition process. Since most semantic data
models are interested only in providing various semantic constructs to specify the structural pro-
perties of database applications, it usually lacks the knowledge specification in most data
models. To remedy this problem, a data model based on ER Model is developed to provide both
a set of semantic constructs and the knowledge specification capability. This allows us to au-

tomatically acquire semantic knowledge for semantic query processing.

In the sections that follow, we first provide an overview of the semantic query optimiza-
tion in Section 2. Next, we then discuss the inadequacy of the previous approaches. Section 4
presents the scope of our research proposal using semantic data model to automatically acquire
state knowledge of database and also its integration with the semantic query processing. Finally,
we outline the development and experimental plans to evaluate the effectiveness of this new ap-

proach as compared with the integrity constraints approach.
2 SEMANTIC QUERY OPTIMIZATION

Semantic query optimization is a technique that uses the domain knowledge to improve
the performance of query processing. The general approach to semantic query optimization is to
transform an original query intelligently into a semantically equivalent but more efficient form
for processing. Two queries are considered to be semantically equivalent if they produce the

same answer in any database state.

Basically, the technique uses a forward-chaining reasoning to induce a new set of con-

straints from a given query expression, or checks if certain constraints can be induced from other

VI-2

constraints in the same query expression. By adding or dropping certain constraints, the original
query can be transformed into a set of different queries. All of these queries yield the same
answer as the original, which are by definition semantically equivalent to the original. Semantic
query processor then computes the processing cost for each of the equivalent queries; determines
the optimal expression which has the lowest processing cost; and then forwards the optimal one

to the conventional query processor to retrieve the answer.
2.1 An Example

Consider a2 SHIP database management system that monitors the movements of about
10,000 ships. Each ship visits about 20 ports around the world yearly. Assuming such a database
contains only three relations: two entities SHIP and PORT and one relationship VISIT. Entities
SHIP and PORT have attributes describing the characteristics of each ship and port. The rela-

tionship VISIT keeps track of each visit of the ship. The database schema is given as follows:

SHIP = (ShipID, ShipType, Draft, DeadWeight, Registry)
PORT = (PortID, PortType, Depth, Country).

VISIT = (ShipID, Date, PortID, Reason).

The keys for the relations SHIP and PORT are ShipID and PortID respectively. ShipID and

Date together provide the key for the relation VISIT.

The database supports queries from various groups of users. Some classes of queries can

be answered rapidly. For example, consider the query:
Q\: "List the ports visited by ship X during the year 1986."

Q1 can be answered very quickly by using X and 1986 as the (partial) key to access the VISIT

relation. However, other queries (e.g. Q2) may need to scan the entire relation.

VI-3

Q2: "List the name of the ship with a deadweight greater than 200 thousand tons."

To answer this query, we need to access all the 10,000 ship records and check the deadweight of

each ship to find which ships satisfy this constraint. This amounts to 10,000 record accesses.

If a clustering index is provided on ShipType, then SHIP can be accessed by the index
ShipType. A ship that has a deadweight greater than 150 thousand tons is a supertanker. With
this knowledge, the database administrator can transform the query and access the SHIP relation

indexing on supertanker. The transformed query is then:

Q2’: "List the name of the ship which is a superianker with a deadweight greater than

200 thousand tons."

If less than ten percent of the ships are supertankers, answering the transformed query will be
much faster than answering the original one. Adding the extra constraint replaces a scan of
10,000 ships with accesses of less than a thousand ships, which results in an order of magnitude
reduction in retrieval cost. This type of improvement is called knowledge-based query optimiza-

tion or semantic query optimization.
2.2 Semantic Equivalence of Queries

Two queries are considered to be semantically equivalent if they yield the same answer
in any database instance that conforms to the semantic integrity constraints [HAMM?75]. Se-
mantic equivalence is not the same as logical equivalence. Two queries are logicaily equivalent
if one can be transformed into the other by the application of standard logical equivalences such
as De Morgan’s Laws. Logically equivalent queries are obviously semantically equivalent, but
semantically equivalent queries need not be logically equivalent. That is, two semantically
equivalent queries might yield different answers when posed to the database in a state where

some semantic integrity constraint is violated.

VI-4

Semantic equivalence can be explained with mathematical logic. The idea is to treat the
database as a model with the integrity constraint as the set of axioms. User’s query is considered
as a theorem to be proved. A theorem is true if the query has an answer from the database. As-
suming that the theorem is true, new theorems can be generated by applying different axioms.
All these new theorems are equivalent to the original theorem; that is, answers satisfying the ori-

ginal query will also satisfy new theorems and vice versa.

For example, suppose there is a semantic integrity constraint that if a ship is a supertank-
er, its deadweight must be greater than 150 thousand tons. If the database conforms to this condi-
tion, then the query Q2 is semantically equivalent to the query Q2’ in the previous section. The
answers will be the same because the enforcement of the semantic integrity constraint guarantees
that there is no item in the database that contradicts the aforementioned condition. However, if
the constraint is violated, say, a tanker having a deadweight of 180 thousand tons, then these

two queries will produce different results. The tanker will be in the answer of Q2 but not Q2’.

Integrity checking ensures that every allowable state of the database is a valid instance of
the application. No database state can be reached with a violation of the semantc integrity. A
violation of integrity constraints means that database contains some values which cannot be at-
tained in the application. Thus, if integrity constraints are valid at all instances of database

states, queries transformed with integrity constraints are semantically equivalent.
2.3 Semantic Query Transformation

Two approaches have been proposed to semantic query optimization for query transfor-
mation: interactive and compiled approach. The interactive approach [KING81, XU82] starts
with user’s query expression from where new constraints are induced and added onto. It uses a
forward-chaining reasoning technique, which is similar to term-rewriting in theorem proving

[CHAN73]. The method uses the constraints in the query expression to induce new constraints

VI-5

and adds to the query expression. The principle of this approach is as follows: Let ¢, c3, ..., ¢y
be a set of domain knowledge represented as integrity constraints satisfied by a database state.
By a sequence of logical transformations, the original query Q is ranslated into Q’ subject to ¢,
€2, ..., Cq such that Q’ yields lower processing cost than Q. The semantic query optimization
problem 1is to determine the set of ¢, c3, ..., ¢, that yields the minimum query processing cost;

that is,

CQ)= min C(QACIA -+ Acy)

S
i=1,....n

The compiled approach, on the other hand, started with the definition of a database, in-
duces a set of constraint residues and adds onto the definition of each database relation. The
query is then transformed by the constraint residues of the relations involved in query expres-
sion. The work was first done by Chakarvarthy [CHAKS84] in deductive database. However, it

can also be applied to conventional databases.

The method is based on subsumption of mathematical logic combining semantic reason-
ing with the compiled method of accessing techniques of deductive database. In general, a
(deductive) database is divided into two components: the extension database (EDB) and the in-
tension database (IDB). EDB contains the elementary facts while IDB contains the general laws
(rules) which define how new facts can be derived from the elementary facts in EDB. EDB may
change with time through updates while IDB contains a relatively permanent portion of the data-
base. The compiled access method of deductive databases is to transform each rule in IDB into a
form containing only EDB definitions. Each EDB definition is actually a retrieval statement pro-

viding a direct access to facts of EDB.

The compiled approach of semantic query optimization consists of two parts: semantic
compilation and query transformation. Semantic compilation is done only once and the pro-

cedure is given below:

VI-6

1. Each rule in IDB is compiled to a form containing only EDB definition.

2. Determine if an integrity constraint is merge compatible with a rule in IDB.
Merge Compatibility means that the integrity constraint partially subsumes the

rule and at least one of the residues (results of partial subsumption) is non-trivial.

3. For each rule, a set of semantically constrained rules is then generated and

merged as the form of:
HePy, oo P (G, Gi)

where H is the head of the rule, each P, is either an EDB definition or an evalu-
able constraint, and each Cj is the residue which is the result of integrity con-

straints merging with the rules.

For each user’s query, the semantically constrained rules are applied, and the query ex-
pression is then merged and factored and produces a set of new queries. With the same reason of

semantic equivalence, the new set of queries produces the same answer as the original one.
3 Inadequacies of Previous Approaches

The previous works on semantic query optimization showed its usefulness and brovided
a good framework for semantic query optimization. However, one of the major problems of se-
mantic query processing is knowledge acquisition. That is, how to effectively acquire knowledge
to construct the knowledge base for semantic query processing. Currently, integrity constraints
are used as the knowledge and is provided by the domain experts which is a time-consuming
manual process. To reduce cost and speed up the knowledge acquisition process, an automated
approach would be desirable. In the following, we shall discuss the inadequacy of the current ap-
proaches and develop a new methodology for acquiring knowledge that is more effective than

the integrity constraints and provides facilities for automated knowledge acquisition.

VI-7

3.1 Inadequacy of Using Integrity Constraints

Integrity Constraints are used as knowiedge in the previous semantic query c.ptimization.
Integrity constraints must be specified by the database administrators or domain experts who
have the expertise of the database applications. Because of the complexity and/or diversity of
database applications, it may not be easy for the database designer to provide a complete and
valid specification of integrity constraints at the database design stage. Even if the domain expert
has the expertise, he or she may not know how to exactly describe it. Due to the dynamic
features of the database domains, the validity of the constraints may change with time or en-
vironment. To reflect this situation, integrity constraints are usually specified in a general way to
cover all the possible values of database domains, which as a result, limits their usefulness as the

knowledge for semantic query processing.

Let us consider the following example. Suppose the labor law requires that companies
hire only people older than 18 years but does not set any upper limit for the employees’ age. An
integrity constraint IC1: "All employees must be older than 18." may be added to the

company’s personnel database. Let us consider processing the following query Q3:
Q3: "Which employee is older than 60?"

Clearty, IC1 will not be able to speed up in answering Q3. However, if the oldest employee in a
company X is 60 years old, which limits the age range of the employees in company X to be 18
to 60. If we have this knowledge about the current state of the database, then query Q3 can be
answered "none" immediately. Since this knowledge depends on the contents of the database at
different times, it cannot be specified as the integrity constraint, This is because integrity con-
straints is the set of knowledge about the "enterprise” while queries are only concerned with the
current instance of the "database”. This motivates us to consider using the up-to-date knowledge

(state knowledge) of the database instead of the integrity constraints for semantic query optimi-

VI-8

zation. Such knowledge can be acquired through inductive leaming from the database contents.

3.2 Limitation of Knowledge Acquisition in Conventional Data Modelling

3.2.1 Machine Learning Techniques

The acquisition of knowledge is one of the most difficult problems in the development of
a knowledge-based system. Currently, the acquisition of knowledge is still largely a manual pro-
cess as follows: A knowledge engineer using the expert system tools transforms the available
knowledge into the internal form (knowledge representation) that is understandable by the expert

system. It usually involves [MICHS&3]:

1. studying application literature to obtain fundamental background information,
2. interacting with the domain expert to obtain the expert level knowledge,
3. after all the information is collected, the knowledge engineer translates what he has

learned into the knowledge representation for the expert system,

4, through testing and further interaction with the domain expert, the knowledge base is

iteratively refined.

Such a manual process is very time-consuming. Furthermore, even if the domain experts
have the expertise, they may not be able to describe their own expertise to others. Useful

knowledge may not be easy to collect.

A different approach is to use the machine learning technique to construct the knowledge
base. Rather than the knowledge engineer learning the application, or the domain experts learn-
ing the expert system tools and using their understanding of the application to construct the
knowledge base, machine learning technique can provide a means by which the understanding of

the application and the creation of the knowledge base are accomplished automatically.

VI-9

Inductive learning is a technique of machine learning that has been used in different areas
of Al research. The problem is the following: Given a concept and a set of training examples
representing the concept (the set of examples may include counter examples), find a description
for the concept such that all the positive examples satisfy the description (and all the negative
examples contradict the description, if counter examples exist). There are two approaches to in-
ductive learning: interactive approach and taxonomical approach. The interactive approach
looks at each training example in sequence and modifies the concept description if the new train-
ing example violates the description [MICHS83, WINS84]. The approach is to keep a current hy-
pothesis of the concept description. When a positive instance does not match the description, a
generalization technique is used to generalize the hypothesis by either dropping a condition (e.g.,
A & B — Cisreplaced by A — C), or adding alternative rules {(e.g., B — Cis merged with A —
Cto get A1 B — C). When a negative example matches the hypothesis, a technique called spe-
cialization is used to add more conditions. The interactive learning technique has been used in

modelling the human learning actvities.

Taxonomical approach looks at all the training examples at the same time to determine
which descriptors are most significant in identifying the concept from other related concepts.
This approach recursively determines a set of descriptors that classify each example [QUIN79,
MICHR3). The approach is as the following: Select the best descriptor from a set of examples,
based on a statistical estimaton or theoretical information content. The set of examples is then
partitioned into subsets Sy, S, ..., Sy according to the values of the descriptor for each example.
For each S;, recursively apply this technique unless each subset contains only positive examples,

in which case, the set of descriptors describes the examples set.

Although the automated approach speeds up the knowledge acquisition process, it has
been used mainly in applications with a smaller set of training examples. To a database in which

a very large volume of data is stored, abusively applying this technique would be a disaster. An

VI-10

informative database schema would be a useful guide for the knowledge acquisition process.
However, because of the lack of semantic expressiveness of the conventional data models, the
types of useful knowledge that can be collected would be very limited. This will be discussed in

the next section.
3.2.2 Limitation Due to Conventional Data Modelling

Conventional data models, such as hierarchical, network, and relational models, provide
record-based data structures for describing the database. A fundamental problem of these
models is their limited semantic expressiveness [HAMM?79]. The record-oriented structure of
conventional data models implies the limited modelling capability, and inevitably results in loss
of information. Therefore, only a limited portion of the database designer’s knowledge of the ap-

plication will be captured.

To illustrate the limitation of the conventional data models, let us consider the same ex-
ample as in the previous section. Suppose the constraint IC1 still holds stating that the ages of

employees must be at least 18. IC1 is still useless in answering the query:
Q4:" Who is older than 50 in the company?"

If, however, the employees in the company are divided into three categories: engineers,
managers, and secretaries, each category can have a different age constraint associated with it as

follows:

(1) all engineers must be younger than 50;
(2) all secretaries must be younger than 40,

(3) no restriction on the ages of managers,

with the additional global constraint IC1: "All employees must be older than 18". Using these

kinds of constraints, the answer to the query Q4 would be "certain managers" in the company. If

VI-11

a direct access to tuples of managers is provided, the query can then be processed faster than the

original one.

This example shows how the knowledge acquisition is limited by the conventional data
model. The limitation arises from the record-based database models failure to distinguish
different generic kinds of relationships among application objects. Three generic kinds of se-
mantic relationships have been recognized and should be expressed in a data model [SMIT78,
SMIT80, MCLES82, KINGS86]: generalization, aggregation, and classification. In recent years,
there has been much effort devoted to the development of semantic data models [HAMM?78,
SMIT78, BORDS84b, KING84, STON84]. However, most of the data models focus only on
structure information which provides semantic constructs for designers to specify the database

according to their knowledge about the applications.

The understanding of the enterprise is the designer’s knowledge about the database appli-
cation. At the database designing stage, semantic data modelling provides a tool in developing
and using database systems. Intuitively, systems with more knowledge should perform better
than those systems without. Although developers of semantic data models have claimed that
systems designed with semantic data models are more efficient, seldom have they discussed how
the system performance is improved with the use of semantic information. They leave the im-

provement for users to determine.

This is because during the construction of the database, knowledge other than the struc-
tural semantics (database schema) is not used by the database management systems and there-
fore not saved. However, domain knowledge is useful to query processing. Semantic data
models should provide facility for database designers to specify and store their expertise in data
dictionary or knowiedge base to allow query processor to utilize this knowledge to improve the

performance.

VI-12

Let us use the ship database as an example to illustrate the usefulness of the knowledge
used in constructing the database. Ships in the database are divided into different categories ac-
cording to certain charactenistics. One distinguishable characteristic is the deadweight of the

ships. The following table lists the range of deadweight for each ship type:

Characteristics Table
Type Deadweight (tons)
cruisers over 10,000
light cruisers | 7,000 - 10,0600
destroyers 3,000 - 7,000
frigates 1.100 - 3,000
corvettes 500 - 1,100

The characteristics that are used to divide the ships into different types are also part of se-
mantic knowledge. These characteristics which are used to define the schema for the ship data-
base are also useful in answering queries like "Which ship has deadweight over 7,000 tons?"
The answer must be some cruisers (including light cruisers). Without this knowledge, a scan of
database is unavoidable. This example illustrate the usefulness of saving the semantic
knowledge that was used in constructing the database. A complete modelling tool is needed to

provide the knowledge specification with the schema specification.

4 SCOPE OF RESEARCH

Semantic query optimization using record-based conventional data modelling is rather
restricting because of the limited expressive capability. There is no good technique provided in
utilizing the semantic knowledge for semantic data modelling. Semantic data models provides a
useful tool and also a friendly user interface for modelling and the use of the database systems.
Works are needed to extend and develop a semantic database management system that uses se-

mantic information to improve system performance.

VI-13

A semantic database management system (SDBMS) is intended in this research to com-
bine the semantic query processing and semantic data modelling to gather knowledge and carry
out query optimization. At the data modelling level, a knowledge-based ER model is provided
for specifying and using the database. At the system level, Semantic Query Processor utilizes
reasoning and semantic knowledge to optimize the queries. An automated knowledge acquisi-
tion mechanism is proposed which uses the database schema as a guidance to induce a set of
useful knowledge from database contents through inductive machine learning. SDBMS also
provides a knowledge editor (KED) to allow domain experts to refine the knowledge base.
Combining semantic query processing and semantic data modelling with automated knowledge
acquisition mechanism will yield substantial improvement in query processing performance. We
plan to develop a prototype SDBMS systern and measure the performance improvement over the

conventional database management systems.

In the following, we first introduce the KER Model and show that it not only is a tool for
specifying the database applications, but also provides a way to systematically acquire
knowledge. Next, we then describe a knowledge acquisition methodology based on KER and
finally present the proposed SDBMS architecture.

4.1 A Knowledge-based E-R Model (KER)

A data model is for specifying the structure of database and operations for performing on
the data. Record-based data models, limited due to the simple data structure, fail to distinguish
different generic relationships among application objects. Three fundamental generic semantic
relationships that should be provided in data models are: generalization/specialization , aggrega-
tion, and classificarion. Generalization defines an object type from a set of objects (subtypes)
which corresponds to a bottom-up construction of a hierarchy (e.g., ANIMAL is a union of
DOG, CAT, HUMAN, etc.); while specialization defines a subtype of an object which

corresponds to a top-down construction of a hierarchy. Aggregarion defines an object as a rela-

VI-14

tionship among objects. Therefore, generalization/specialization and aggregation correspond to

the set theoretic operations of "union” and "cartesian product” respectively.
4.1.1 The Need of Knowledge Specification

To facilitate the knowledge acquisition process, we need a tool to systematically collect
useful knowledge. While dealing with semantic query processing, data models with the above-
mentioned constructs are not enough. An important property that should be made explicit but
generally implicit in data modelling is the with-constraint knowledge specification, For exam-

ple, one can define a PROFESSOR as a subtype of PERSON (specialization) as:
PROFESSOR isa PERSON with duty = "teaching".

The with clause defines the constraint associated with the subtype PROFESSOR which is the

knowledge to distinguish professors from other types of persons.

The with-constraint information is actually the database designer’s knowledge used to
construct the database schema. Our KER model is an extended E-R Model with the extension of
with-constraint knowledge specification. The specification of with-constraint is optional. How-
ever, it can be served as integrity constraints to enforce the integrity checking. Or, it can be
filled with the induced knowledge by the knowledge acquisition mechanism discussed in Section
4.2. In both cases, the specified or induced knowledge will be used by the query processor to

reduce the query response time.
4.1.2 Schema Specification in KER

The basic constructs in KER are: isa-with and has-with. Isa defines an Entity hierarchy
(e.g., ENGINEER isa EMPLOYEE, EMPLOYEE isa PERSON); while has defines an aggrega-
tion relationship (e.g., DEPARTMENT has MANAGER). With clause specifies the property

that has to be satisfied with the definition of isa or has. In KER Model, entities and relation-

VI-15

ships are the principal concepts. An entity is an object which can be distinctly identified. A
specific person, a department, a course are examples of entities. An entity set is a collection of
entities where each entity is distinguished by a unique idendfier. The set of unique identifiers is

called the primary key to the entity set.

The entities are classified into different entity types E;, and each type is associated with
some constraint predicate that tests whether an arbitrary entity belongs to this entity type. An
entity set E| can also be a subset of another entity set E; satisfying certain constraint ¥, which is

defined as:
E1 isa Ez with V.

A hierarchy example is "PERSON consists of subtypes PROFESSOR, STUDENT, STAFF." That
is, the personnel in a department is divided into three disjoint categories: professors, students,
and supporting staff. For each subtype, there is also a constraint restricting allowable objects of

this subtype. For example, a professor must have a Ph.D. degree, so there is a predicate stating

that degree is "Ph.D." for the subtype PROFESSOR.

A relationship is an aggregation among entities. For example, the relationship TEACH-
ING is defined as an aggregation of entities PROFESSOR and COURSE. The relationship type

is a relation among n entities which is defined as:
R; hase, € E|,e2 € Es, ...,e, € E, with V.

An entity in a relationship expresses the role the entity performs in the relationship. In a rela-
tionship set, TEACHING is defined between entities from the entity sets PROFESSOR and
'COURSE, e.g.

TEACHING has p € PROFESSOR, ¢ € COURSE with p.DEPT = c.DEPT.

VI-16

The first element in the tuple may appear in the role PROFESSOR and the second in the role

COURSE, while with portion states that both departments have to be the same.

The definitions of entity and relationship types and subtypes as well as the associated
constraints will be kept in the knowledge database (KB) for semantic query processing. Figure 1

shows a school database example.

A relational table form is used to represent the entity relations and the relationship rela-
tions. One possible implementation of type hierarchy is to provide indexing on its supertype.
For example, the type hierarchy "PERSON with subtypes PROFESSOR, STUDENT, and
STAFF" is realized by providing a maximal space for the subtypes so that a type hierarchy is
squeezed into a single table. An index on PERSON_TYPE is provided to access each subtype.
Alternative implementation is to use a table for each subtype entity. The key of the entity type
will also be the key to the subtype entities, which provides a link between the entity type and its

subtypes. We plan to compare the performance tradeoff between these two approaches.
4.2 A Model-based Knowledge Acquisition Methodology (KAM)

Database semantics can be divided into two categories: database enterprise knowledge
and database state knowledge. Enterprise knowledge refers to the semantics of the database ap-
plication. Integrity constraints are part of the enterprise knowledge. Database knowledge, on
the other hand, is an instance of the enterprise knowledge which is more concemned with the
current database contents. For example, enterprise knowledge may specify that the ages of the
employees must be older than 18, while database state knowledge contains the knowledge that

the ages are in the range of 18 to 60.

VI-17

Entiry/Relationship Sets Auributes Domains Constraints
PERSON name NAME
address STREET X CITY
phone_number NUMBER \S)
birth_date DATE
status STATUS
degree DEGREE
COURSE number COURSE_NUMBER
dept DEPARTMENT
classroom ROOM Yo
schedule TIME
TEACHING instructor PROFESSOR
course COURSE g
grader STUDENT
FPROFESSOR name NAME
paper_published NUMBER PROFESSOR isa PERSON
office ROOM with Yy
DEPT DEPARTMENT

PERSON(name, address, phone_number, birth_date, status, degree).

COU ™ SE(number, dept, classroom, schedule).
TE+ ING{(instructor, course, grader).

PROFESSOR (name, paper_published, office, dept).
PROFESSOR isa PERSON with degree = "Ph.D.” and status = "teaching”
STAFF(name, office, salary, rank}.

STAFF isa PERSON with status = “accounting” or "personnel” or "adminisirating”

STUDENT(name, advisor, program, years),

STUDENT isa PERSON with status = “studying” and (degree = "BS" or "MS$")

FULL_PROFESSOR(name).
ASSOCIATE_PROFESSOR(name).
ASSISTANT_PROFESSOR(name).

FULL _PROFESSOR isa PROFESSOR with paper_published > 30
ASSOCIATE PROFESSOR isa PROFESSOR with 10 < paper_published < 30
ASSISTANT _PROFESSOR isa PROFESSOR with paper_published < 10

Figure 1. A Database Example.

In general, queries are only concerned with the current database state. It is unreasconable
to restrict the query transformation only to those yielding semandcally equivalent queries. In

this research, we relax the definition of semantic equivalence by allowing two queries to be

VI-18

"loosely” semantically equivalent if they produce the same answer at the current database in-
stance. That is, instead of using the enterprise as the scope of semantical equivalence, we use
the current database state instead. Intuitively, if the knowledge induced from the database is
consistent with the current database state, the query transformed with this knowledge should pro-
duce the same answer at the current state. The advantage of using the induced knowled ge is that
it is more specific in describing current database instance. Induced knowledge should be more

effective than integrity constraints for semantic query optimization.

Since the database state may change by the updates, it may need to update the knowledge
base accordingly to reflect the state change. However, there is also cost associated for integrity
checking when using integrity constraints for query transformation. The tradeoff between these
two approaches depends on the update/query ratio and the cost of updating knowledge base and
that of integrity checking. If the cost for updating the knowledge base is comparatvely small as
compared to integrity checking, or the ratio of update/query is relatively small, then using state
knowledge in query transformation yields better performance improvement for query processing

than using integrity constraints,

We propose to use the database schema as a guide to induce semantic knowledge from
database contents. Knowledge acquisition can be divided into two steps. The first step is to in-
duce a set of knowledge from current database state by taxonomical inductive learning. The
second step is to refine the knowledge base either modifying the rules by the domain experts or

by the interactive machine learning when update occurs.

Using the taxonomical approach without guidance may generate meaningless knowledge.
Heuristics is needed to guide the knowledge acquisition process. In accessing a database, key is
faster than index and index is faster than a sequential search. Semantic query processing ex-
plores different opportunities that reduce the search space for query processing. We define a rar-

get anribute as an attribute which is a key or partial key to some entity or relationship.

VI-19

Knowledge is acquired based on target attributes to provide opportunities in restricting the

search space of a query, which is the basic concept of our knowledge acquisition methodology.

In a schema based on KER model, there are two types of objects: entities and relation-
ships. There are two types of semantic knowledge which are useful to query processing: domain
knowledge and structural knowledge. Domain knowledge is related to the attribute domains,
whic restricts the allowable objects of the entity or relationship sets. Each attribute in an entity
or a relationship is bounded by a certain range. For example, the age of a person is in the range
of (0 - 120), and the salary of an employee is in the range of (10,000 - 100,000), etc. Thus,

domain knowledge specifies the static properties of entities and relationships.

Structural knowledge specifies the structural properties of the database schema. A data-
base schema consists of entities and relationships. Each entty is either a stand-alone entity or an
entity in an entity hierarchy. Each relationship is an aggregation of entities while each entity
plays a role in the relationship. Structural knowledge specifies the semantics among these objects

which can be further divided into intra- and inter-strucrure knowledge.

Intra-structure knowledge specifies the relationship between attributes within the object
(an endty or a relationship). Functional dependency is an intra-structure knowledge example.
Several entities can be aggregated into a relationship according to certain semantic constraints
which is specified as the inter-structure knowledge. For example, the relationship TEACHING
aggregated by the entities INSTRUCTOR, STUDENT, and COURSE contains a constraint that
the course offered by the instructor must be in his department. This inter-structure knowledge is
induced from the inter-relationship between INSTRUCTOR and COURSE linked by the
TEACHING relationship.

After classifying different types of knowledge and defining the target attributes for

knowledge acquisition, we shall now describe the Knowledge Acquisition Methodology (KAM)

VI-20

which consists of three stages: schema generating, automated knowledge acquisition, and
knowledge base refinement as follows:
1. Schema Generating:

In this step, DBA uses KER to define database schema which includes:

a. Identify entities and associated attributes.

b. Identify entity hierarchies. The key of each entity is designated as a target attri-
bute. If the database already exists, use the clustering indexes to define subtype

entities. The indexes are the target attributes.

. Define aggregation relationships. Designate each of the referential keys as the
target attributes. A referential key is the atiribute of a relationship which is a key

to some entity.

2. Automated Knowledge Acquisition:
a. For each entity/subtype entity determine the domain constrain: for each attribute.
b. Use the taxonomical machine learning approach to induce inter-strucrure and

intra-structure knowledge related to the target attributes from the database.
3. Knowledge Base Refinement:

a. Whenever there is an update to the database, a verification will be made against
the knowledge base to see if the update violates the rules. Interactive machine
learning modifies the violated rules by generalizing them, If the system has gone
through quite a few updates, DBAs may repeat the taxonomical machine learning

~ (Step 2) to reconstruct the knowledge base.

VI-21

b. Domain experts use the knowledge editor (KED) to refine the state knowledge in
the knowledge base to improve the system performance. Since integrity con-
straints represent the most general knowledge, the refinement cannot violate the

set of integrity constraints.

Unlike the manual approach to knowledge acquisition, KAM uses the database schema to
guide the taxonomical learn;.ig process and induces knowledge from database contents. Such au-
tomated process reduces the time for knowledge acquisition. Furthermore, the knowledge base
provides an up-to-date state information about the database which is more effective than integri-
ty constraints for semantic query processing. Using our SHIP database as a testbed, experiments
will be performed using the KAM to collect knowledge. We plan to measure the cost of acquir-
ing knowledge using such an approach, the effectiveness of the induced knowledge for improv-

ing the query processing performance, and the cost for updating contents of the knowledge base.
4.3 SDBMS Architecture

After introducing the KER model, the semantic query processor, inductive learning, and
the knowledge acquisition methodology, we now present the SDBMS architecture that integrates

these components as shown in Figure 2.
The functionality of each component is listed below:
DB (darabase): the physical database that contains a large amount of facts.

KB (knowledge base): stores the up-to-date knowledge induced from the database con-
tents or provided by the domain experts. Knowledge is represented in the form of

Horn Clause.

SQP (Semantic Query Processor): performs the task of semantic query optimization

based on the knowledge from KB.

VI-22

User %Y Q

DBA

schema §
e

Semantic Conventional ©
Query Q Query access
Processor Processor plan
(5QP) (CQP)
Database
4
]
KB -
KER —_— - TIL <——-J
(Knowledge Base)
]
Update
ysgR 2pdae U 1L v Processor
(UP)

Figure 2. Architecture of Semantic Database Management Systems

Figure 2, Architecture of Semantic Database Management Systems.

CQP (Conventional Query Processor): uses a domain independent approach to transform
a query into a set of sub-queries and determines an optimal access plan for re-

trieving the answer.
UP (Update Processor). updates the database contents.

KER (Schema Definition Tools): provides DBA a set of semantic constructs to define the
database schema and also is the model used by TIL (Taxonomical Inductive

Learning Subsystem) to induce knowledge.

TIL (Taxonomical Inductive Learning Subsystem): induces sets of knowledge from data-

VI-23

base content according to KER schema definition.

IIL. (Interactively Inductive Learning Subsystem): updates KB whenever an update
violates certain rules in KB. IIL provides a partial functionality of integrity
checking, which can be enhanced as a complete integrity checking subsystem.
IIL also provides a knowledge editor (KED) to allow domain experts to refine the

content of KB interactively.

DBA (Database Administrator): defines the database schema and verifies the meaning
and effectiveness of the knowledge in KB. DBA also refines the knowledge in
KB.

USER (Person using the database): issues queries to retrieve answers from or to update

database contents.

According to the KAM methodology, the acquisition of knowledge is done in three steps:
In the Schema Generating Step, the DBAs (Database Administrators or domain experts) uses the
proposed KER specification facility to define the database schema. The with-constraint portion
can be ignored at this point. The schema specification is stored in KB (Knowledge Base or data
dictionary) for later use by TIL to induce knowledge. After data is read into the database, it
enters into the Automated Knowledge Acquisition Step. In this step, TIL (the Taxonomical In-
ductive Learning subsystem) induces a set of knowledge from database contents with the help of
the database schema. This set of knowledge will be stored in KB as part of the knowledge
specification of KER schema specificaion, and used by the SQP (Semantic Query Processor) for

transforming users’ queries.

The knowledge base (KB) can be refined/updated automatically or by domain experts.

This is done through HOL (Interactive Inductive Learning subsystem). IIL verifies each update is-

VI-24

sued to see if it violates any knowledge specification in KB and modifies the specification if vio-
lation occurs. IIL also provides domain experts a knowledge editor KED to refine the
knowledge specification in KB. This is the Knowledge Base Refinement Step in KAM metho-
dology.

4.4 Implementation and Future Research

At UCLA, we have a naval SHIP database. Ships are the certral entities in the database.
The database contains information about 1,000 ships. It was developed by Unisys SDC, Santa
Monica, California, through collaboration with the Naval Oceanic System Center in San Diego.
The database provides an unclassified yet fairly realistic naval database operational characteris-
tics for experimental study. The following is some of the operational characteristics: Ships may
be assigned to battle groups. The warfare roles of ships depend on their class characteristics and
the installed weapons systems. The ship and/or its weapon systems may be overhauled in a ship-
yard. Ships have a base port and may visit ports for purposes other than scheduled overhauls.
Ships also have positions which are reported (for US ships) or sighted (for Russian ships). The
movements of the ships are generated by the computer programs. The database consists of 17
relations and about 30,000 tuples and is in INGRES format. The database is currently running

on a MicroVax machine using Ultrix V1.2 operating system (a UNIX 4.2 compatible system).

To study the performance improvement of query processing from SDBMS, we are using
the SHIP database as a testbed. To carry out this research, we are developing a SDBMS proto-
type and plan to set up an experimental environment to measure the behavior and performance.

The implementation of the prototype is divided into six tasks:

‘1. Developing the Data Definition facility of KER which provides a language for designer

to specify database schema.

2. Developing a Taxonomical Machine Leamning subsystem and coupling it with KER to

VI-25

provide a knowledge acquisition tool.

3. Applying the knowledge acquisition tool to induce semantic knowledge from the SHIP
database.
4, Developing a Semantic Query Processor by using both interactive and compiled ap-

proaches and comparing their performance.
5. Developing an Interactive Machine Leaming subsystem to provide a learning capability.

6. Developing a Knowledge Editor (KED) to allow domain experts to verify and modify the
knowledge base.

Currently we are implementing the Semantic Query Processor and using the integrity constraints
to build the knowledge base to study the performance improvement of semantic query process-
ing. In the next stage of research, we plan to develop the KER specification language and the
machine learning subsystern and then apply the KAM methodology to build the knowledge base.
We shall then measure the performance improvement of query processing by the induced
knowledge over integrity constraints. Different types of queries will be used to measure the
query processing performance from simple single-relation queries to more complex queries con-
taining muldple relations and selected combinations of disjunctive/conjunctive constraints. We
shall also measure the cost for updating the knowledge base for selected query/update ratio. The
result of these experiments will help us understand the cost of acquiring knowledge, the perfor-
mance gain in using the induced knowledge, and identify the types of knowledge that can be

used to improve the performance of query processing.

VI-26

5 REFERENCES

[BROD84aj

[BRODg&4]

[CHAKS84]

[CHAKSS]

[CHAN73]

[CHEN76]

(CHU 82]

{CLOCS81]

[GALL78]

[HAMMT75]

[HAMMEO]

[HAMMBS1]

[JARKS84a]

Brodie, M., Mylopoulos, J., and Schmidt, J. W., (eds.) On Concepiual
Modelling. Perspectives from Artificial Intelligence, Databases, and Pro-
gramming Languages, Springer, New York, 1984.

M. Brodie and D. Ridjanovic, "On the Design of Database Transactions,” in
On Conceptual Modelling, Spring-Verlag, New York, 1984, pp. 277-312.

Chakravarthy, U. S., Fishman, D. H., and Minker, J., "Semantic Query Op-
timization in Expert Systems and Database Systems," Proceeding First
International Workshop on Expert Database Systems, Kiawah Island, Oc-
tober 1984,

Chakravarthy, U. 8., Semantic Query Optimization in Deductive Databases,
Ph.D. Thesis, Department of Computer Science, University of Maryland,
College Park, August 1985.

Chang, C. L., and Lee, R. C. T., Symbolic Logic and Mechanical Theorem
Proving, Academic Press, New York, 1973.

Chen, P.P.S., "The Entity-Relationship Model: Toward a Unified View of
Data,” ACM Transactio on Database Systems, Vo. 1, No. 1, March 1976.

Chu, W. W., and Hurley, P., "Optimal Query Processing for Distributed Da-
tabase Systems,” IEEE Trans. Comput. C-31, 9, 1982, 835-850.

Clocksin, W. F., and Mellish, C. S., Programming in Prolog, Springer-
Verlag Berlin Heidelberg New Yrok Tokyo, 1981.

Gallaire, H. and Minker, J. (eds.) Logic and Data Bases, Plenum Press, New
York, 1978.

Hammer, M., and Mcleod, D., "Semantic integrity in a relational data base
system,” In Proceedings of the First International Conference on Very Large
Data Bases, IEEE, New York, pp. 25-47, 1975.

Hammer, M. and Zdonik, S. B., Jr., "Knowledge-based query processing,” In
Proceedings of the Gth International Conference on Very Large Data Bases
(Montreal, Oct. 1-3). [EEE, New York, pp. 137-147, 1980.

Hammer, M., and McLeod, D., “Database Description with SDM: A Seman-
tic Database Model," ACM Transactions on Database Systems, Vol. 6, No.
3, September 1981.

Jarke, M., Clifford, J., and Vassillou, Y., "An Optimizing Prolog Front-End

to a Relatonal Query System," Proc of ACM SIGMOD, 14, 2, Boston, pp.
296-306, June 1984.

VI-27

[JARK84b]

[KINGS81}

[KINGS84]

[KINGS86]

(MCKES2]

[MICHS&3]

[NICO78]

(QUIN79]

[SMIT78]

[STONS4]

[WINS84]

[XU83]

Jarke, M. and Koch, J., "Query Optimization in Database Systems," ACM
Computing Surveys, Vol.16, No.2, June 1984, 111-152.

King, J. I., "QUIST: A system for semantic query optimization in relational
databases,” In proceedings of the 7th International Conference on Very
Large Data Bases (Cannes, Sept. 9-11). [EEE, New York, pp. 510-517.

King, R. and McLeod, D., "A Unified Model and Methodology for Concep-
tual Database Design," in On Conceptual Modelling, Spring-Verlag, New
York, 1984, pp. 313-331.

King, R. and McLeod, D., "Semantic Database Models,” in S. B. Yao (ed.)
Principles of Database Design, Prentice-Hall, Englewood Cliffs, N. J. 1986.

McLeod, D., and Smith, J. M., "Abstraction in Database,” Proc. Workshop
on Data Abstraction, Databases, and Conceptual Modelling, SIGMOD
Record, Vol. 11, No. 2, February 1981.

Michalski, R. S., et al, (eds.) Machine Learning: An Artificial Intelligence
Approach, Tioga Press, Palo Alto, 1983,

Nicolas, J. M., and Gallaire, H. "Data Base: Theory vs. Interpretation,” in
[GALL78].

Quinlan, J. R., "Induction Over Large Data Bases", STAN-CS-79-739, Stan-
ford University, 1979.

Smith, J. M. and Smith, D. C. P., "Principles of Conceptual Database
Design," Proc. NYU Symposium on Database Design, New York, May
1978.

Stonebraker, M., "Adding Semantic Knowledge to a Relational Database
System," in On Conceprual Modeling, ed. M. Brodie, J. Mylopoulos, and J.
Schmidt, Sprintger-Verlag, 1984,

Winston, P. H., Artificial Intelligence, Addison-Wesley, Massachusettes,
1984,

Xu, G. D., "Search control in semantic query optimization," Tech. Rep.

#83-09, Computer and Information Science Dept., University of Mas-
sachusetts, Amherst, Massachusetts, 1983,

VI-28

DISTRIBUTION LIST

Director

US Army Stategic Defense Command
P.O. Box 1500

Huntsviile, AL 35807-3801

BMDPO

ATTN: DACS-BMT

P.O. Box 1528C

Arlingron, VA 22215-0150

Commander

Ballistic Missile Defense Systems Command
BMDSC-AQLIB

P.O. Box 1500

Huntsville, AL 35807-3801

Defense Technical Information Center
Cameron Station
Alexandria, VA 22134

General Research Corporaton
ATTN: Dave Palmer

P.O. Box 6770

Santa Barbara, CA 91305

Stanford University

Stanford Electronics Laboratories
ATTN: Mike Flynn

Stanford, CA 94305

University of California, Berkeley

Dept. of Electrical Engineering & Computer Sciences
ATTN: C. V. Ramamoorthy

Berkeley, CA 94720

System Development Corporation
ATTN: SDC Library

4810 Bradford Blvd., NW
Huntsville, AL 35805

System Development Corporation
ATTN: W. C. McDonald

4810 Bradford Blvd., NW
Huntsville, AL 35805

