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Abstract

A new system of defeasible inference is presented having the following features:

¢ spurious extensions are prevented without forcing one to explicitly enumerate
exceptions,

¢ the system has a sound, clear probabilistic semantics, guaranteeing that the con-
sequences are highly probable whenever the premises are,

o the systemis clean: proofs can be constructed very much like in natural deduction
systems in logic.

Additionals implications of the framework proposed are precise, proof theoretic and
semantic accounts of defaults, and a formalization of the notion of irrelevance in the
context of non-monotonic reasoning.

1 Motivation

Belief commitment and belief revision are two distinctive characteristics of common sense
reasoning. Classical logic as well as probability theory have been shown incapable of
capturing these features by themselves. The former due to its inability to revise old beliefs
in the light of new information; the latter due to its lack of commitment: every proposition
is qualified by a degree of confidence which dynamically changes with new information.

In recent years there has been an effort to enhance both formalisms in order to overcome
these limitations. Those working within the probabilistic framework have tried to devise
‘acceptance rules’ to work on top of a body of probabilistic knowledge, as to create a body
of believed, though defeasible, set of propositions [see Loui 85, Pearl 86b]. Those working
within the logic framework, have developed ‘non-monotonic’ inference systems [AI Journal
80], based on classical logic, in which old theorems can be defeated by new information.

The purpose of these extensions has been to produce an inference machinery capable of
generating all conclusions that ‘reasonably’ follow from a given body of knowledge. It is in



fact in this respect, that the probabilistic approach has enjoyed a significant advantage over
the logicist approach. A body of probabilistic knowledge together with an acceptance rule
uniquely determines the conclusions that can be derived. Both the probabilistic knowled ge
base and the acceptance rule can be modified so as to capture those conclusions that seem
reasonable. Non monotonic logics on the other hand, have lacked such clear semantics.
Not only it has been difficult to tune the set of defeasible rules so as to ‘entail’ the desired
conclusions [see Hanks and McDermott 86], but it has even been difficult to characterize
what the desired conclusions are [see Touretzky et al. 87, “A clash of intuitions ..."].

While well understood, the probabilistic approach seems to be both too expensive and
precise for the task at hand. Too many parameters are needed to fully specify a body of
probabilistic knowledge! and, moreover, these parameters are sometimes very difficult to
assess in a comsistent way. For example, while we can estimate the probability of birds
flying; it is much more difficult to estimate the probability of non-birds flying., Furthermore,
the expense of computing with numerical parameters does not seem necessary for a coarse-
grained acceptance rule.

In this paper we show that it is possible to achieve the best of both worlds by present-
ing a system of defeasible inference which operates very much natural deduction systems
in logic and, yet, is probabilistically sound. Among the implications of the framework
proposed are new proof theoretic and semantic accounts of defaults, and a formalization
of the notion of irrelevance in the context of non-monotonic reasoning.

The resulting system of defeasible inference is closely related to those systems proposed
in the literature [Loui 86, Poole 85, Touretzky 84] which use the structure of the arguments
to eliminate spurious extensions. In our approach however, the structure of arguments is
not used for selecting an argument among many, but for preventing inferior arguments from
ever being generated. The system’s rules of inference occasionally examine the structure
of the database, and extract from it a single meta-level predicate M which permits to infer
only desirable conclusions.

The structure of the paper is as follows. In section 2 we define the object and meta-
language, as well as the rules of inference which make up the the system of defeasible
inference proposed. In section 3 we discuss its probabilistic semantics: we prove the
system to be sound, and we conjecture it to be complete in a very interesting sense. In
section 4 we go through a set of examples to show the applicability of the system proposed.
In section 5 we discuss related work. We then investigate, in section 6, ways to enhance
the expressiveness of the language to deal with defeasible defaults and reasoning about
causality. Section 7 ends the paper with a brief summary.

!Though not as many as is usually thought. See [Pearl 86a] for a discussion of structuring probabilistic
knowledge.



2 A System of Defeasible Inference

2.1 Preliminary Definitions

The language comprises two types of formulas : logical formulas and defeasible rules of the
form P — @ , where P and Q are logical formulas. The intuition of a rule of that form, is
that belief in the antecedent P, provides a reason to believe in Q. The precise probabilistic
meaning of such rules will be given later.

A contezt is a pair (L, D) of logical formulas L and defeasible rules D. We will some-
times refer to the elements of L simply as formulas, and to the elements of I as defaults.
In this subsection we will specify a set of conditions under which, a conclusion A obtained
in a context K = (L, D}, can still be preserved in the enhanced context {L U E, D), where
E is an additional set of logical formulas. These preservation conditions define a meta-level
predicate Mg (h, E; L), which will later on be used in the inference rules.

We deﬁpe an argument A*(h; L, D) for formula k in context (L, D}, as a sequence of
formulas F}, = {F},...,Fi} such that:?

o F! =h, and
o each F{ i =1,...,n, is derived from the set of formulas F} = L U F}_, as:

1. F} is either a logical axiom, a logical theorem or a member of L,
2. F} logically follows from F}

3. F{ is consistent with i, and is the consequent of a default in D whose an-
tecedent belongs to F, or

4. F} is a disjunction of formulas G, consistent with F}, such that each G, is the
consequent of a default H; — G; in D, and the disjunction of the H/’s is in F].

The existence of an argument A*(h; L, D), does not necessarely sanction h as a legitimate
conclusion in context (L, D), but it only indicates that h has a supporting reason. Note
also, that we are restricting the formulas {F},..., Fi}, in an argument A‘(h; L, D}, to be
consistent with the set of formulas L.

Since the notion of relevance will play an important role in the framework proposed,
we will restrict the term ‘argument’, to those whick do not involve logical redundancies?

?The term argument is borrowed from {Loui 86}, His use of the term is very close to ours. Likewise, both
are close to Touretzky’s ‘paths’ [Touretzky 84] and Poole’s ‘theories’ [Poole 85]; except for the irredundancy
conditions introduced below. _

3That is, if we let the justification of a formula F}, J(F}), denote the subset of formulas in ¥} used to
derive it in .A*(h; L, D), then our irredundancy conditions amount to :

e Every formula F},i = 1,...,n — 1, takes part in the justification J(F/) of a formula F{, k <! < n;
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We say that h arguable in context {L, D}, written as L by h, if there exists an argument
A'(h; L, D) satisfying these conditions. The subset of L which takes part in such an
argument will be called the support of the argument.

It will turn out to be useful to display the relationships embedded in a given context
in the form of directed graphs, as the one depicted in fig. 1. Positive links (—) connecting
a proposition P to a proposition @, will stand for either defaults P — Q. or logical im-
plications P D Q. Negative links () will denote defaults of the form P — ~Q. Since we
will usually only represent positive literals in the graphs, arguments will tend to appear
as (hyper) paths composed of positive links, possibly ending with a negative link.

F

B 4
Figure 1: Arguments

For instance, we might take figure 1, as representing the context (L, D), with L = {},
and D= {A - B,A - ~G,B — G,G — F}. In such a context, there exists an argument
A(F;{A}, D), with support {A} corresponding to the path A - B — G — F in the
figure. There is also an argument A(F; {4, B}, D), with support {B}, which corresponds
to the path B —+ G — F. Note however, that there is no argument A(F; {4, B}, D) with
support involving A, since the truth of A does not add support to F, given the truth of
B. Any such argument will involve logical redundancies, and will therefore be excluded by
our irredundancy conditions. This is clear from the figure, in which the only path from A
to F' goes through B, which was also assumed to be part of the context ({A, B}, D). The
presence of B in the context, renders A irrelevant to argue in favor of F. This is formalized
in the next definition.

Definition: We say that a set of formulas R is potentially relevant to establish
h in context (L,D), iff there is an argument A‘(h; RU L, D) with support S,
such that (§ — L)N R # 0. Otherwise we say that R is irrelevant to establish
hin (L, D), or that L blocks R from k.

o Ifa formula F} can be derived according to case 1 above, J(F}) = 0.

e If a formula F} logically foliows from J (F}) (case 2 above), then it is not the case that F} logically
follows from a proper subset of J(F}).



That is, R is potentially relevant to A if it offers a new argument in favor of k. To
test whether R is irrelevant to establish k in context (L, D), one needs to test whether L
blocks all the paths from R to h. For instance, in figure 1 , we can easily infer that A is
irrelevant to establish F' in context ({ B}, D}, by noticing that B blocks the only path from

A4 to F. Futhermore, since there are no paths to —=F, A is also irrelevant for establishing
the negation of F' in such a context.

As we stated above, we are interested in finding a set of sufficient conditions that would
allow to preserve a conclusion derived in a given context, when the context is enhanced
with an additional set of propositions. We might be tempted to think, that irrelevance
relative the negation of the conclusion would constitute such a set of sufficient conditions.
A careful analysis of figure 1, however, will reveal that this condition is not sufficient. In the
figure, F' might be a reasonable conclusion when B is all we know. Furthermore, enhancing
the context to include A does not produce counter-arguments in favor of its negation, —F.
Still, since A is relevant to -G, and G is involved in the argument supporting F, A
might potentially leave F' without support. Thus, to guarantee that the belief in a given
proposition h can be safely preserved upon leamning a new set of facts E, we must go
beyond the potential relevance of E to the negation of k, by also considering the impact

that E might have on the arguments supporting k. This is the purpose of the following
definition.

Definition: We say that a set of formulas R interferes with an argument
A'(h; L, D), with formulas F} ., iff for some 1 < j < n, there exists an argu-
ment Ak(ﬁF;; LU R, D), with formulas Fl'fm consistent with -h, 1.e. .7-',':‘“ ¥ h.
Furthermore, if R is potentially relevant to ~F}, we say that R minimally in-
terferes with the argument A'(h; L, D).

In terms of graphs, a set of formulas R interfering with a given argument A(k; L, D)
corresponds to the presence of a path from formulas in L U R, to the negation of some
formula taking part in the argument. If such a path originates in R and it is not blocked
by L, it means that R minimally interferes with such an argument. In such a case, if h was
believed in context (L, D), and A'(h; L, D) was its only supporting argument, enhancing
the context to include R might potentially leave h without support, and therefore might
lead to the retraction of our belief in 2. That was in fact the case we discussed above, in
which learning A in context ({B}, D) could lead to the retraction of the belief in F'. In
those cases, we will not only say that R interferes with an argument supporting h, but, as
the next definition states, that R interferes with the formula A itself.

Definition: We say that R interferes with a formula h in context (L, D) iff
either R is potentially relevant to —h in context {L,D), or R interferes with
every argument A*'(h; LU R, D), and minimally interferes with, at least, one of
those arguments.

Note that if R does not interfere with % in (L, D), it means either that there‘ is an
argument which is not interfered by R, or that R is irrelevant to establish the negation of
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any formula participating in arguments in favor of h.4 In any case, if h was a reasonable
conclusion in context (L, D), extending the context to include R will not provide a reason
to retract our belief in h. This motivates the following definition.

Definition: A formula  is said to be monotonic on R in contest (L, D), iff R
does not interfere with h in (L, D). We will denote this relation with the meta-
level predicate My(h, R), where K = (L, D). We will also write Mg(h, R; L"),
when h is monotonic on R in the enhanced context (LU L’, D). In this case
we also say that L’ separates R from h. If h is not monotonic on R in a given
context, we say that R undermines h in that context.

diagrammatically, determining whether M (h, R; L’) holds in a context K = (L, D),
amounts to testing either, that there is a path from LU L’ to h, not interfered by R,
or, that the formulas in L U L’, block all the paths from R which interfere with formulas
potentially relevant to h.°.

2.1.1 Examples

Example 1. Let us consider the context K = {L, D), with :

L = {bird(z) D winged_animal(z)}
D = {wingedanimal(z) — flies(z)}

bir¢ ————Pp winged animal —P flies

Tim

Figure 2: winged_animal separates bird from flies

The chain depicted in Fig, 2 displays the information conveyed by these formulas. We
can easily see that there is an argument A(flies(Tim); L U {bird(Tim)}, D), associated
with the path bird(Tim) — winged_animal(Tim) — flies(Tim). If winged_animal(Tim)
is then learned, it would render bird(Tim) irrelevant to flies(Tim), since the former
blocks the only path that connects the two. Additionally, since bird(T¢m) does not in-
terfere with the path that connects winged_animal(Tim) to flies(Tim), we have that

4And therefore, R does not interfere with any such a formula. Otherwise R would be minimally interfering
with an argument for a formula which supports h, and therefore, minimally interfering with an argument
for A.

5 These diagrammatical considerations however, are no substitute of the formal definitions. They represent
only intuitive guidelines, which will turn out te be sufficient for many of the examples we are going to deal
with in this paper



Mg ( flies(Tim), bird(Tim); winged_animal(Tim)) holds. This almost trivial relation will
provide our system with the capability to produce sound chains of inference.

Example 2. Let us consider the context K = (L, D), depicted in Fig. 3, with:

L = {adult(Tom)}
D = {ustudent(z) — adult(z), adult(z) — work(z),
u-student(z) — -~work(z), adult(z) A under 22(z) — u_student(z)}.

under 22 adult

T~
N 2

university student

work

Figure 3: u_student and adult separate under 22 from both work and -work

Clearly work(Tom) is not monotonic on under22(Tom) in context K, since
under 22(Tom) provides a new argument in favor of its negation —work(Tom), which
is not blocked by L. On other hand, work(Tom) becomes monotonic on under_22(Tom),
when u_student(Tom) is learned, since the argument in favor of —work(Tom) is blocked
by the presence of u_student(Tom) in the context.

2.2 The Rules of Inference

In this subsection we present a system of defeasible inference made up of six rules of
inference together with the meta-level predicate M defined earlier. In section 3 we provide
its probabilistic semantics and discuss its soundness and completeness properties.

A theory T = (K, E), is composed of a background contezt K = (L, D) and an evidence
set E of additional facts learned. The system of inference implicitly defines the set of
conclusions h that follow from the enhanced context (L U E, D). We will denote such a
relation as E I h, and say that A follows from the evidence set E in context K, or simply
that & can be derived from E in K. F and E’ represent any sets of logical formulas. The
rules are:

Rule 1 (Defaults)
If E— heD then Elgh

Rule 2 (Logic theorems)
IfLUEFhAhthen EKA



Rule 3 (Frame axiom)
If Elg h and Mg(h,E';E) then E,E'lz h

Rule 4 (Triangularity)
IfElghand E g E' then E,E' & h

Rule 5 (Bayes)
IfEIE and E,E'lg h then El A

Rule 6 (Deduction)
If E,E'lzh then Elz ~E'V h

Rule 1 says that if the background context includes a defeasible rule whose antecedent is
all that has been learned, then its consequent can be concluded. Rule 2 states that theorems
that logically follow from a set of formulas can be concluded in any theory containing those
formulas. Rule 3 establishes that a derived proposition remains so, when an additional set
of facts is learned which does not undermine the conclusion in the current context. Rule
4 states that the incorporation of a set of established conclusions to the current context,
does not affect the status of any other derived conclusions. Rule 5 says that any conclusion
that follows from the current context augmented by a set of conclusions established in that
context, also follows from the current context alone. Rule 6 says that if a conclusion follows
from a context augmented by a set of formulas, then either the proposition or the negation
of (the conjunction of the formulas in) the set follow from the context.

2.2.1 Some Meta-Theorems

Theorem 1 (Logical Closure 1): If E |z h and E, A k' then E g &' .
It follows by sequentially applying rules 2 and 5

Theorem 2 (Logical Closure 2): If Elz h, Elg &', and E, h,h’ - h”, then E Iz b".
By rule 4, we obtain that £, lz A’. From rule 2, we get E,h, A’ Iz ”. Applying
then rule 5 twice, the theorem is proved.

Theorem 3 (Weak Transitivity): If Etfz E’, E' iz h and Mg(h,E;E’), then Elz h .
It follows by sequentially applying rules 3 and 5.

Theorem 4 (Equivalent contexts) : If E = E’ and E |z b, then E' [z h .
Since E - E’, by applying rules 2 and 4 we get E, E' Iz h; which together with
E'} E and rules 2 and 5, leads to E' Iz A.

Theorem 5 (Disjunction) : If E bz h and E’ Iz A, then EV E’ =h.
By theorem 1 and rule 4 we have that E’, EV E' | h, and therefore EV E’lz —E'V h.

Using the same arguments we obtain F V E' Iz ~E V h. The conclusion then follows
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from theorem 2, and EV E',-EV h,-E'Vhlh.

Some non-theorems :
EF E'and E' iz h do not necessarely imply E I A.

Elz h and E’ k¢ h do not necessarely imply E, E’ I h.

Note that the first non-theorem is clearly undesirable. If accepted, it will endow our
system with monotonic characteristics of classical logic, precluding exceptions like non-
flying birds, etc. Let us just say, that neither one of them is sound, or, what amounts to
the same, it is possible to find counter-examples which intuitively violate those rules.

3 Examples

Example 3. Let us consider the theories T} = (K, E,) and T; = (K, E,), with background
context K = (L, D),

L = {penguin(z) D bird(z)},
D = {penguin(z) — —flies(z),bird(z) — flies(z)},

bird

flies

penguin

Figure 4: Penguins are birds which usually do not fly

E, = {penguin(Tim)}, and E, = {penguin(Tim),bird(Tim)}. Concluding that
‘Tim does not fly’ in context K knowing that ‘Tim is a penguin’ amounts to proving
penguin{Tim) kz ~ flies(Tim). The proof gets reduced to a single application of rule 1,
since penguin(Tim) — - flies(Tim) € D.

Proving E; Iz -~ flies(Tim) is slightly different since a new fact, bird(Tim), needs to be
assimilated. The proof goes as follows:

1. penguin(Tim) kg ~flies(Tim) by rule 1
2. penguin(Tim) g bird(Tim) by rule 2
3. penguin(Tim), bird(Tim) |z ~flies(Tim) by rule 4 on lines 1 and 2.

9



Note, that the new piece of information available in T, bird(Tim), does not alter the
consequences that followed from the older theory T, since, as reflected by rule 4, the new
information learned, was itself one of the consequences of T}. It is interesting to note that
the system proposed here, in contrast with other systems of defeasible reasoning reported
in the literature, has different proofs for the proposition - flies(Tim) in theories T(K, E,)
and T(K, E;). In fact, in the first theory, the resulting proof qualifies as a single shot
proof : it was not even necessary to consider the impact which the consequences of being
a penguin (its birdness) could have on its (in)ability to fly.

To better illustrate this difference, let us consider the new theory 7! = (K', E!), defined
in terms of Ty, with K' = (L', D), L’ = @ and E| = LUE,. T! appears identical to T,
except for the fact that the class inclusion penguin(z) D bird(z), is now treated as a learned
fact, rather than as part of the background context. We find that although both theories
share the same set of defaults D and the same set of logical formulas, L'UE{ = LU E,,
the conclusion - flies(Tim) cannot be established from T, i.e., E| lg:~flies(Tim). The
reason for this unusual, but desirable, behavior is that the system now takes the relation
‘penguins are birds’ as a new piece of knowledge, independent of the background knowledge
used to assume that most penguins do not fly. Being an independent piece of evidence,
which supports the opposite conclusion, the implication learned cannot be assimilated by
the system to preserve the conclusion that penguins usually do not fly.

What this shows is that logical formulas cannot be freely moved between the back-
ground context and the evidence set, without altering the meaning of the theory they
define. Propositions in a background context K, represent knowledge shared by all the de-
faults in K. Unlike formulas in the evidence set, they do not represent pieces of evidence
that need to be assimilated in order to reach a conclusion. That is the proof theoretic
significance of rule 1.8

Notice that if a system of defeasible inference were to allow the deriva-
tion of —flies(Tim) in background context K’ from the evidence set E, =
{penguin(Tim), penguin(Tim) D bird(Tim)}; by symmetry reasons it should also allow
the derivation of the opposite conclusion flies(Tim), in the same context K’, from the evi-
dence set Ey = {bird(Tim), bird(Tim) D penguin(Tim)}, yet both E, and E; are logically
equivalent to {penguin(Tim),bird(Tim)}. This also illustrates that the preference for the
conclusion that penguins do not fly, in spite of beings birds, is not to be explained in terms
of logical relations, but in terms of the knowledge that went into defining the default rules.
If the system cannot ensure that the default stating that most penguins do not fly already
took into account the facts that penguins are birds, and that birds usually do fly; it cannot
guarantee, upon learning the former, that it should not revise its conclusion about the
ability of penguins to fly.

It is interesting to note, that while it has long been acknowledged that the ‘meaning’
of defaults depends on the ‘theory’ in which they appear, ‘theories’ were normally taken as
composed only of a set of logical formulas and a set of defeasible rules. From this perspec-

8The semantics of defaults will be treated below, in section 4.
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tive, theories Ty and T}, should be equivalent, and they could not differ in the conclusions
they entail. As we have seen, in our framework these theories do differ since they have
different background contexts. Moreover, from both the proof theoretic and semantic
accounts of defaults in the proposed framework, the ‘meaning’ of defaults that emerges
does not depend on the whole theory, but just on the background context in which they
are defined.

Example 4. Let us consider the theory T = (K, E), with K = (L, D), and

L = {}s

D = {ustudent(z) — adult(z), adult(z) — work(z), ustudent(z) — ~work(z),
adult(z) A under 22(z) — u_student(z)},

E = {adult(Tom),under 22(Tom)}.

Before proceeding, we will briefly describe a proof strategy common to most of the
examples we are going to analyze (see Fig. 5). Roughly, the strategy consists of three main
(recursive) steps :

1. Select a set E' of formulas which separates E from h in (L, D),

2. Partition E’ into two subsets E| and E}, and prove E| Iz h and E| Iz E};

3. Prove E |- E'.

m
Hm---m

N -

ph

v
-e=cm

Figure 5: A common proof strategy to show E |z h. Dark arrows represent proofs.

A proof for E kg h can then be built by noticing that rule 4 allows to conclude E’ k¢ A
from step 2, which by virtue of theorem 4 (weak transitivity), together with the results
of steps 1 and 3, yields the desired conclusion E I h. The proof strategy is displayed in
Figure 5, where dark arrows stand for proofs, e.g. E I E;. The vertical bar indicates that
E' = E|{ U Ej, separates E from h in context K, i.e., that k is monotonic on E in context
(LU E', D).

For this example, depicted in Figure 6, we are want to show that

adult(Tom), under 22(Tom) g ~work(Tom). The set E' = {adult(Tom),.9ttfde'.rzt(Tom)},
does in fact separate E from —work(Tom). Showing then E’ |z ~work(Tom) is simple, and

11



under 22 adult

university student

work

Figure 6: Adults under 22 usually do not work

follows from rule 4, with student(Tom) iz ~work(Tom) and student(Tom) kg adult(Tom).
It only remains to show E |z E’, which follows from rules 1 and theorem 1.

It is interesting to note, that we can also derive adult(z) k —student(z). Letting a stand
for an arbitrary constant, we can show as above that adult(a), student(a) gz —work(a).
Therefore, by rule 6, we have that adult(a) Iz ~student(a) vV ~work(a), which together
with adult(a) Iz work(a), and theorem 2, yields the desired conclusion.

Example 5.[Sandewal 86, Touretzky et. al 87). Let T = (K,E), K = (L, D) and :
L = {royal.elephant(z) D elephant(z),african_elephant(z) D elephant(z)},
D {elephant(z) — gray(z),royal_elephant(z) — —gray(z)},
E = {royal_elephant(clyde),african_elephant(clyde)}.

gray ¢—————— elaphant

royal-elaphant african-elephant

Clyde

Figure 7: Clyde is not gray

The same proof strategy applies to show that E k; ~gray(clyde), once we choose the
separating set E' = {royal_elephant(clyde), elephant(ciyde)}.

Example 6. [Touretzky et. al. 87]. Let us consider now the theory T = (K, E), with
K ={(L,D), and :

L = {},
D {A-B,A—--G,B—-GB—-C,C—F,G— -F}
E = {A}.

12
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s
/7

B

c

A
Figure 8: A’s are F's

The goal is to prove that proposition F is entailed by A. For that purpose, we can
show that E’ = {C,—~G} separates the evidence A from the target proposition F. This
follows from the fact, that -G rules out any argument which involves proposition G. It
is also possible to prove that C,~G tg F, since -G is irrelevant to =F. Then, since both

Az C, and A4 Iz -G can be shown to hold, we get A Iz C A =G, and, therefore, the target
proposition F.

Example 7. Let us consider the theory T = (K, E), K = (L, D) with:
= {}

{quaker(x) — pacifist(z), republican(z) — —pacifist(z)}
= {quaker(Nizon),republican(Nizon)}.

L
D
E
pacifist

republican Quaker

Nixon

Figure 9: No conclusion can be drawn regarding Nixon’s pacifism

In this theory, no conclusion regarding Nixon’s pacifism can be drawn from E. In our
opinion, drawing no conclusion is, in this case, preferred to drawing two conflicting exten-
sions, as in normal default theories. It clearly indicates, that the knowledge embedded in
K is insufficient to integrate the available pieces of evidence in order to arrive to a conclu-
sion. Enhancing the background context to include another default like that quakers who
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also are republicans are still pacifists, would solve the ambiguity without introducing any
1mconsistencies,

Example 8: (M. Ginsberg) Let us T = (K, E), K = (L, D},
L = {}

D = {quaker(z) — dove(z),republican(z) — hawk(z), dove(z) — -~hawk(z),
hawk(z) — —~dove(z), dove(z) — pmotivated(z), hawk(z) — p-motivated(z)}
E = {quaker(Nizon),republican(Nizon)}.

p-motivated

/e

dove m hawk
Quaker republican
Nixon

Figure 10: Nixon is politically motivated

We want to show that Nixon is politically motivated. If we let E' = {dove(Nizon) Vv
hawk(Nizon)}, it is easy to see that Mg(pomotivated(Nizon), E; E") holds. More-
over since, by rules 1 and theorem 5, we can obtain that E’lz p_motivated(Nizon),
we can then infer by rule 3 that E,E’l p.motivated(Nizon). It can also be
shown that Mg(dove( Nizon) V hawk(Nizon), quaker(Nizon); republican(Nizon)) holds,
and, therefore, we can obtain E |z E’. Finally, by rule 5, the target conclusion
E Iz p-motivated(Nizon) is proved.

Example 9.[Horty et al. 87]. Let us counsider the theory T = (K, F), with K = (L, D),
L ={} and

D = {quaker(z) — pacifist(z),republican(z) — —pacifist(z),
republican(z) — football_fan(z), pacifist(z) — anti_military(z),
football_fan(z) — —anti_military(z)}

E = {quaker(Nizon),republican(Nizon)}.
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Figure 11: Is Nixon anti-military ?

In this example we can conclude football_fan(Nizon), but correctly fail to conclude
anything regarding Nixon’s pacifism or antimilitarism. This is in contrast with Horty's
skeptical inheritance algorithm [Horty et al. 87), in which the ambiguity regarding Nixon’s
pacifism permits the conclusion ~anti_military( Nizon). The uncommitment in our frame-
work seems however justified. As figure 12 shows, equivalent topologies can be constructed
in which the opposite conclusion seems more reasonable.
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Figure 12: Is Ken self-supported ?

Example 10. Let us consider now the theory T = (K, E), K = (L, D), with

L = {miserable(z) = —happy(z)}
D = {works_at(z,university) — happy(z), works_at(z,of fice) — happy(z)},
works_at(z,of fice) A works_at(z, university) — miserable(z)}

E = {works_at(John,university), works.at(John,of fice)},
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ie. working either at the university or at the office makes everybody happy. However,
working simultaneously at both, creates a conflict that makes everybody unhappy. Rule
1 together with theorem 1 leads to E bz ~happy(John). If E were reduced to either
works_at(John, university) or work_at(John,of fice), or even the disjunction of both,
the opposite conclusion would be obtained. No inconsistencies appear.

Example 11. Let us consider T=(K,E), K=(L,D), L = {}, D =
{a = c,a > b,aAc— —b} and E = {a}. The theory turns out to be inconsistent: both b
and ~b can be concluded, and then by theorem 1, any other proposition. Note that most
default logics will not regard this knowledge base as inconsistent. Yet, a theory comprising

the sets L' = {}, D' = {a — b} and E' = {a, -b} would be perfectly consistent.

4 Probabilistic Semantics

4.1 Soundness

In this section we will be concerned with probabilistic soundness of the system proposed.’

In order to prove the system sound, we will first enumerate the standard axioms of prob-
ability [Cox 46}; they are:

P-1. 0< P(Qle) <1

P-2. P({truele)=1

P-3. P(Q|e) + P(—!Qle) =1

P-4. P(QRle) = P(Q|R,e)P(R|e) = P(R|Q, &) P(Qle).

A sound inference rule would be one that, given highly likely premises, only derives highly
likely conclusions.® For that purpose we are going to map statements of the form F | A
in the meta-language to probabilistic statements of the form Pg(h|E) = 1; meaning that
h is an almost certain conclusion of E in the background context K. Pg(-) denotes any

admissible probability distribution with respect to context K. That is, Py(-) stands for
any probability distribution over the formulas of the language, such that, if K = (L, D)

7]. Pearl [Pearl 87b), has also recently advocated the use of probability theory to fill the ‘semantic gap’
that have characterized algorithms dealing with inheritance hierarchies with exceptions. He proposes an
¢-semantics, which implicitly defines, in terms of probability theory, the set of conclusions which ought to
follow from a given default hierarchy. While we also appeal to probability theory to define the semantics of
the system proposed, its soundness follows directly from the soundness of its rules of inference.

31t was recently brought to our attention that a similar paradigm was pursued by E. Adams [Adams 66],
who devised a more restricted set of inference rules. In particular his formulation does not involve the ‘frame
assumption’ embedded in our rule 3.
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then Pg(-) satisfies the following conditions:

Pg(L|E) = 1 for any body of evidence E, and
Pr(alb) = 1 for every defaulta — beD
Px(h|R,L") ~ 1 if Pg(h|L’)~ 1, whenever M (h, R; L’) holds.

To prove an inference rule sound, we show that for any such probability distribution, the

probability of its consequent is close to one when the probability of its antecedent is close
to one.

Rule 1 is clearly sound from the definition of Pg(-). To show the soundness of rule 2,
we need to show that if Px(h{E,L) =1, then Px(h|E) ~ 1. This follows by noticing that
P(h|E) > Px(h|B, L) Px(LIE) = 1.

The soundness of rule 3 follows from the third constraint imposed on Px(-). Such a
constraint imposes a reasonable ‘frame assumption’ on any admissible probabilistic model,
which states that a belief in a proposition does not change, unless there is a ‘reason’ to
believe so. What constitutes such a reason was the subject of subsection 2.1. In proba-
bilistic terms, it amounts both to make the probability of propositions without supporting
arguments very low, and to ensure that the addition of supporting arguments would not
render a proposition less likely.

For proving rule 4, we have from axioms P-3 and P-4 that :
Py(h|E) = Px(h|E,E") Px(E'|E) + Px(h|E,~E') Px(-~F'|E),

so that if, as in rule 4, we have that Px(h|E) =~ 1 and Pg(E'|E)=1 (and therefore
Py (—E'|E) = 0), then it must be the case that Px(h|E, E') =~ 1.

Rule 5 is a straightforward consequence of axiom P-4. To show the soundness of rule
6, note that from axiom P-4 :

Px(~h A E'|E) = P(-h|E, E")Px(E'|E) .

If E,E'k h, we must have, from axiom P-3, that Px(—hlE, E') ~ 0. Therefore from
axioms P-3 and P-4 we can obtain that Px(—(—h A E')|E) =~ 1 which, combined with axiom
P-2, leads to Px(h vV —E'|E) = 1 and, therefore, to the soundness of E Iz h v ~E".

4.2 Completeness Conjecture

The question arises whether the set of theorems Th(K, E) = {a|E I a}, coincides with
the set of conclusions dictated by probabilistic considerations. We have the following con-

jecture :
Completeness Conjecture. Let T = (K, E) be a theory, with an associated background
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context K = (L, D). Let P;(-) stand for any probability distribution which satisfies the
following conditions:®

Pi{L|E) = 1 for any body of evidence E , and
Pi(ald) = 1 for every default a — be D.

Then, if for some proposition « it follows'® from axioms P-1 to P-4 that Py(a|E) =~ 1,
then a e Th(K, E).

The idea is that an admissible probability distribution Pj(-), partially specified over a
set of proposition with statements of the form Pj(-) = 1, can only give nise to new P;(-)
entries either of the form Pg(-) & 1 or of the form Pj(-) = 0. We conjecture that rules
1,2,4,5 & 6, capture all these inferences.

It is clear that rules 1 & 2 capture all the original P%(-) entries. An inductive argument
showing that the five rules capture any single inference from the axioms should then suffice.
Rule 2 captures all the entries produced by axiom P-2 alone. Rules 5 and 6, together with
theorem 1 seem to capture the inferences based on axiom P-4 alone. Axiom P-3 seems to be
more problematic. However combined with axiom P-2, it only leads to obvious inferences.
Its power lies when combined with axiom P-4. In fact, axiom P-3 can be replaced by an
equivalent axiom in the same context of axioms P-1, P-2 and P-4:

3. P(RQle) + P(R~Q|e) = P(Rle) .

We show in the appendix how all the inferences that follow from this expression seem to
be captured by the proposed set of rules.

5 Related Work

As noted in [Reiter et. al. 81], the logic for default reasoning proposed by Reiter in
[Reiter 80] requires to explicitly state the exceptions of defaults, in order to prevent the
multiplicity of spurious extensions. Recently, several novel systems of defeasible inference
have been proposed, motivated by the intuition that it should be possible to filter the effect
of spurious extensions, without the need to make exceptions explicit. Among them, the
system closest in spirit to the scheme proposed in this paper, is the system of defeasible

inference proposed by Lou.

Loui’s system [Loui 86] is made up of a set of rules to evaluate arguments. He defines a
set of (syntactic) argument attributes (like ‘has more evidence’, ‘is more specific’, etc.), and

'Note that Py (L|E) == 1 obviously follows from Pg(L|E) = 1. .

10We are assuming here, that statements of the form z ~ 1, for algebraic purposes, are equivalent to
statements of the form # = 1. The distinction in the formulation, however, needs to be preserved, in order
to avoid ruling as inconsistent the probability distributions induced by most of the interesting theories.
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a set of rules, which allow the comparison, evaluation, and selection of arguments. This
set of rules, seems to implicitly embed most of the inference rules that define our system,
and can be mostly justified in terms of them. Still, it is possible to find some differences.
One such difference is that Loui’s system is not (logically) closed. It is possible to believe
propositions A and B, and still fail to believe A A B [Loui 86). In our scheme, the closure
of the propositions believed follows from theorems 1 and 2. In particular, if the arguments
for A and B in a given theory are completely symmetric, and A A B does not follow for
some reason (like conflicting evidence), then neither A nor B are going to follow.

Another difference arises due to the absolute preference given by his system to argu-
ments based on ‘more evidence’. As the following example shows, this criterion might
lead to counter-intuitive results. For instance, if we consider the context K = (L, D) (see
Fig. 13), with L = {} and D = {A — B,C — =-B,A A F — C}; Loui’s system would con-
clude ~B, given the evidence E = {4, F'}, merely because the evidence supporting the
argument A — B, constitutes a proper subset of the evidence supporting the competing
argument AA F — C — —B. Yet, if proposition C, whose truth was presumed in the
argument supporting —B, is now learned, Loui’s system would retract its belief in —B,
since C renders both F and A irrelevant to —~B, and, therefore, neither the argument
which supports B, nor the argument that supports B, can be said to be based on ‘more
evidence’ than the other. Our system, as expected, will draw no conclusion in either case,
since the joint influence of both 4 and C on B (or ~B) cannot be derived from the given

context.
F A
C

Figure 13: Loui’s system would conclude =B, when given F and A.

The system reported by Touretzky in [Touretzky 84,86] was motivated by the goal of
providing a semantics for inheritance hierarchies with exceptions. He argues that there
exists a natural ordering of defaults in inheritance hierarchies that can be used to filter
spurious extensions. In this way, his system succeeds in capturing inferences that seem
to be reasonable, but which escape unaided, fixed-point semantic systems like Reiter’s.
Still, Toureztky’s system can be regarded more as a refinement of Reiter’s logic than
as departure from it (see {Etherington 87]). As such, it still requires to test, outside
the ‘logic’, whether a given proposition holds in every (remaining) extension. Moreover,
requirements of acyclicity, are at the heart of the definition of the inferential distance
principle, restricting therefore its range of applicability.!! It is interesting to note that
both rule 4 (triangularity), and the proof strategy summarized in figure 5, seem to convey

HFor instance, examples 3 and 8 above involve cycles,

19



ideas very similar to Touretzky’s inferential distance. Still, while the inferential distance
principle is used to discard ‘inadmissible’ arguments, the rules presented in section 2, are
used to to prevent them from ever evolving to a ratified conclusion.

In {Poole 85], Poole has proposed another mechanism for dealing with the problem of
multiple, spurious, answers that arises in Reiter’s default logic. This mechanism consists
of comparing the ‘specificity’ of the knowledge embedded in the arguments supporting
contradictory conclusions. An argument shown to be strictly ‘more general’ than another
argument, can be discarded. This criterion seems in fact very close to Touretzky's in-
ferential distance. Still, they seem to differ in an important aspect. Unlike Touretzky,
Poole compares the specificity of the arguments isolated from the rest of the knowledge
base. It seems that this might lead to undesirable results. For instance, in example 4
(fig. 6), none of the arguments supporting the conclusion that Tom works, or that Tom
does not work, can be determined to be more specific, if we ignore the default that states
that most students are adults, which does not take part in the competing arguments. Like
Reiter’s and Toureztky’s, Poole’s system seems to also require to test, outside the ‘logic’,
whether a proposition holds in every (remaining) extension in order for the proposition to
be accepted.

It is interesting to examine how our system gives rise to a new ‘meaning’ of defaults.
Defaults have traditionally been taken to be very much like ‘heuristic’ rules that could be
‘applied’ to a given belief state, to get an extended belief state, whenever such applica-
tion would not lead to inconsistencies. The ‘meaning’ of defaults that emerges from our
framework is quite different. A default P — @, in a given background context, represents
a clear cut constraint among beliefs. It states that if P is all that has been learned, then
Q) can be inferred. The non-monotonicity exhibited by the system is not the result of ‘soft’
default constraints, in contrast with ‘hard’ logical constraints, but the result of the context
dependence of the former, absent from the latter. We have argued that these ‘constraints’
have a logic of their own, very much like the logic which governs classical connectives. For
example, if ‘most birds fly’ and ‘penguins are birds, but they do not fly’, then it must be
the case that ‘most birds are not penguins’. Yet, we are not aware of any Al system of
default reasoning which will draw such a conclusion.

6 Extending the expressiveness of the language

We have shown how most of the examples reported in the literature admit a solution within
the framework proposed. Yet, it seems that there are many types of relationships which
can not be reasonably coded neither as logical assertions or as defeasible rules. In this
section we discuss possible benefits that could be gained by enhancing the expressivity of
the language.
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6.1 Defeasible Defaults

An advantage of the framework proposed here over other default reasoning systems (e. g
[Reiter 80]) is the absence of the multiple extension problem. The inference rules ensure
that derived conclusions lie in the single ‘preferred’ extension. In default logic, the approach
taken to filter spurious extensions, was the use of non-normal defaults in which exceptions
are stated explicitly [Reiter et. al 81, Etherington et. al. 83]. We have shown that in
many cases these exceptions do not need to be explicated to achieve the desired behavior.
Still, there are many cases in which exceptions might be needed. For instance, we might
want to express the facts that ‘adults usually work, unless they are students’, meaning
that being an adult is a reason to conclude that s/he works, except when s/he is believed
to be a student. The difficulty to code this type of exceptions in our framework arises,
because these exceptions, rather than providing a counter argument to the consequent of
the default, only invalidate arguments based on it. That is, we do not want to imply that
students do not work, but, only, that adults known to be students do not necessarely work.

In section 2, we discussed the conditions under which a set of formulas R interferes
with a given proposition A in a given context K. The idea was that if R interferes with
h in K, extending the context K to include R might result in the retraction of the belief
in k. For that purpose we appealed to the concept of a set of formulas R interfering
with a given argument in a given context. We said that R interferes with an argument
Ai(h; L, D), when there is a counter-argument A”(*ﬂfj; LU R, D), for one of its formulas
F ; The natural way to incorporate defeasible defaults in our framework, is to extend this
definition, to allow exceptions to interfere with arguments that appeal to defaults that
they preclude. In particular, if d is a default with exception z 4, then any set containing
ry will interfere with any argument which involves default d. We shall also need to restrict
arguments, so that if A'(k; L, D) is an argument which uses default d with exception z 4,
and F} , are the formulas in the in the argument, then LU F} | ¥ z,.

This modification of the definition of ‘interference’ makes the monotonicity in context
predicate M more restrictive, thus restricting the application of rule 3. A background
context will include now, not only a set of logical formulas L and a set of defaults D, but
also a set of default exceptions X. Each default exception will be a pair {(z4, d), meaning
that z4 is an exception of default d.

Example 12. Let us consider the theory T = (K, E), with K = (L, D, X) and

{TA(z) D work(z)},
= {student(z) — adult(z),adult(z) — work(z)},
= {{student(z),adult(z) — work(z))}
= {student(Peter)}
Clearly = My (work(Peter), student(Peter); adult( Peter)), since student( Peter) interferes
now with the only argument for work(Peter). So nothing can be concluded regard-

ing whether Peter works or not. If in the present context, TA(Peter) is learned, then
work(Peter) would follow.

by o O~
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6.2 Reasoning about causality

In their AAAI-86 paper, Hanks and McDermott addressed an issue which served as the
main motivation for this work: how can knowledge be expressed as a set of logical for-
mulas and defaults, so as to allow the derivation of all, and nothing but, the ‘reasonable’
conclusions that follow. They looked at a simple example from the domain of temporal
reasoning, and showed how Reiter’s default logic and McCarthy’s circumscription failed to
derive a conclusion which seemed to be implicit in the given set of axioms.

A simplified version of the problem (without quantification) would be :

lo: gun loaded at time tg

l;: gun loaded at time ¢t; >
Ap: Ringo is alive at time ¢,

Ai: Ringo is alive at time ¢,

S1: gun shot at Ringo at time ¢,

with T = (K, E), K = (L, D) and:

L={}
D= {Ig —_ l1,A0 — Al,ll A 51 — "'Al}
E - {IO,AO, S]}

Figure 14: Shooting puzzle

In this formulation of the problem, it is possible to derive [, and still fail to derive what
seems to be the reasonable conclusion —-A;. Note however that concluding - A4; from such
a theory will not be sound — just change the interpretation of 4, to ‘Ringo alive at time
to, wearing a metal vest’. Clearly in such a case, deriving A, will not be as reasonable.

In a way, the resulting ambiguity resembles the ambiguity found in the ‘Nixon diamond’
(see Example 7), in which it was not possible to integrate in a single conclusion the pieces
of evidence supporting and denying the pacifism of Nixon. In the current example though,
the resulting ambiguity appears counter-intuitive. It seems as if there is some additional
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semantic information for the reader of the example which allows her/him to derive the
desired conclusion, which is missing from the formal formulation of the problem. 12

The ambiguity exhibited in the example, lies in the fact that it is not always the case
that ‘the pattern of influences’ among sets of propositions contains all the information
necessary to reason about their overall combined effect. As important as the structure
of the relation among propositions, is the nature of those relations. For the example
above, the fact that a person was alive, does not affect the expectation that if shot with a
loaded gun would stop living. In probabilistic terms this armounts to Pg(-A|S1, 1y, Ap) =
Pg(—4,]|51,4), and therefore, if we were able to conclude S, 1, Iz = A4;, we should be able
to derive Sy, 11, Ag g —4;. In our framework however, the conclusion follows in the first
context but not in the second. The problem being that M (—A4;, Ag; Sy, 1;) does not hold,
while it should hold, according to the intuitions that led to its definition.

It seems that the natural way to overcome the syntactic myopia of M, would consist
of enhancing the object level language to include ezplicit independence assertions among
propositions, and extending the inference machinery to take these independence assertions
into account. A first step in this direction would be the addition of another rule of inference,
rule 3’, which will take into account those weak independences that escape the syntactic
machinery of M :

Rule 3’ (weak semantic independences)
If Elg h and Ix(h,E"; E) then E,E' iz b,

where Ix(h, E’; E'), denotes the fact that h is weakly independent of E’ given E in context
K; in probabilistic terms :

Px(hE,E)~1 if Px(h|E)~1.

In the ‘shooting’ example above, we would extend the background context to K =
(L,D, I}, where I = {Ig(—A;, Ag; S Al})}, stands for a set of weak independences asser-
tions, whose only member states that ‘the conclusion that a person shot with a loaded
gun would die, would not be affected by learning that the person was alive before’. Rule
3’ would then allow to maintain the conclusion S;,lo Iz ~A;, when we also consider the
evidence Ay, i.e. we get the desired result Sy, lo, Ao Iz —A;.

Note that [(-) is the semantic counterpart of M(-). The monotonicity in context pred-
icate attempts to extract all those weak independences which follow from the (syntactic)
structural relations among the propositions in the theory. I(-) would play an analogous
role to M(-) in proof theoretic terms; but it would reflect (weak) semantic independences,
which can only be specified by the user.

12Note that including Ao in L would lead to the desired conclusion. It does not seem however, that this
‘solution’ would be general enough.
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6.3 Extensions: Discussion.

Interestingly, the probabilistic semantics of the framework we propose, suggests possible
ways in which the expressiveness of the language can be enhanced. As it follows from the
discussion in section 4, we can think of defining a background context by providing a set
of logical formulas L, a set of defeasible rules D, a set of default’s exceptions X, and a set
of weak independences I; as a way to partially specify a probability distribution Px(-).
which implicitly sanctions the set of admissible conclusions.

If we take into account the extensions we have just discussed, then for a background
context K = (L, D, X, I}, Px(-} would be partially specified by statements of the form :

o Py(L|EY} =1 for any body of evidence E,
¢ Pr(alb) = 1, for any default a — b in D,

¢ Pg(alb) ~ 1, but not necessarely P (alb,¢) ~ 1, for any default a — b with exception
cin X,

¢ Pk(ald,c) = 1if Px(alb) = 1, for weak independence assertions of the form I'x(a, ¢; b)
in .

This view suggests other ways in which the expressivity of the language could be further
enhanced. An interesting direction to investigate, would be to allow strong independence
assertions in the language, with semantics :

Py (R|E) = Py(h|E, E') .

These probabilistic statements are known to possess a logic of their own [Pearl et. al. 86¢],
and might turn out to be important for reasoning about causality.

Let us also add, that as important as providing the language with the desired expressive
power, is the design of a set of primitives in which relevant pieces of knowledge could be
easily coded. In this respect, it is also worth looking for rich semantic primitives (perhaps
like ‘predicts’, ‘causes’, ‘suggests’, etc), from which the semantic independence assertions
could automatically be extracted, rather than explicitly asserted by the user.

7 Summary

The main contribution of the proposed framework for defeasible inference is the emergence
of a precise, proof theoretic and semantic account of defaults. A default P — @, in a
background context K, represents a clear cut constraint on states of affairs, stating that
if P is all that has been learned, then Q must be concluded. We appealed to probability
theory to uncover the logic that governs this type of ‘context dependent’ implications when

24



other facts besides P are learned. We have then shown that all the inferences permitted by
our system are authorized in light of the probabilistic interpretation. Moreover, we have
also conjectured, that this set of inferences is identical to the set of inferences allowed from
probabilistic considerations.

Additionally we have defined a meta-level predicate M, which embodies a set of suffi-
cient conditions under which a belief in a proposition can be reasonably preserved when
an additional set of facts is learned. Predicate M is used, in fact, very much like a frame
axiom: we assume that the belief in a proposition does not change, unless there is a ‘reason’
to believe so. Subsection 2.1 specified what constitutes such a reason.

The scheme proposed avoids the problem of multiple, spurious extensions that normally
arises in default logics. Moreover, we do not need to explicitly consider all the extensions
in order to prove that a given proposition follows from a given theory. Proofs in our system

proceed ‘inside the logic’, and look very much like proofs constructed in natural deduction
systems in logic.

The system is also clean: the only appeal to ‘provability’ in the inferential machinery,
1s to derive the meta-level predicate M. But, in contrast to most non-monotonic logics,
there is no circularity in its definition. M is derived in terms of arguments, while it is used

to buld proofs.

We have also briefly discussed possible ways to enhance the expressive power of the
language, by accomodating both defeasible defaults and explicit independence assertions.
We have argued that the latter might turn out to be important for reasoning about causal-
ity.

Acknowledgment.

Reading [Loui 86] prompted us to realize that it should be possible to embed a notion
similar to probabilistic independence in a predicate M, computable by purely syntactic
considerations.

We want to thank Michelle Pearl, for having drawn all the figures.

References

[Adams 66] Adams E., ‘Probability and the Logic of Conditionals’, in As-
pects of Inductive Logic, J. Hintikka and P. Suppes (Eds), North
Holland Publishing Company, Amsterdam, 1966.

[AI Journal 80] Special Issue on Non-Monotonic Logics, AI Journal, No 13, 1980.

[Cox 46] Cox R., Probability, Frequency and Reasonable Expectation,

American Journal of Physics 14, 1, pp 1-13.

25



[Etherington et al. 1983] Etherington D.W., and Reiter R., ‘On Inheritance Hierarchies

[Etherington 87]

[Hanks et. al. 86]

(Horty et. al. 87]

[Loui 85]
[Loui 86]

[McCarthy 1984]

{Pearl 86a)

[Pearl 86b]

[Pearl 86¢]

[Pearl 87]

[Poole 85]

[Reiter 80]

[Reiter et. al 81]

with Exceptions’, Proceedings of the AAAI-83, 1983, pp 104-108.

Etherington D.W., ‘More on Inheritance Hierarchies with Excep-
tions. Default Theories and Inferential Distance’, Proceedings of
the AAAI-87, 1987, Seattle, Washington, pp 352-357.

Hanks S. and McDermott D., ‘Default Reasoning, Non-
Monotonic Logics, and the Frame Problem’, Proceedings of the
AAAI-86, Philadelphia, PA, 1986, pp 328-333.

Horty J.F, Thomason R.H., and Touretzky D.S., ‘A Skeptical
Theory of Inheritance in Non-monotonic Semantic Nets’, Pro-
ceedings of the AAAI-87, 1987, pp. 358-363.

Loui R.P., ‘Real Rules of Inference’, unpublished draft, 1985.

Loui R.P.,'Defeat Among Arguments: A System of Defeasible
Inference’, Dept. of Computer Science, TR-190, Dec. 1986, Uni-
versity of Rochester.

McCarthy J., ‘Applications of Circumscription to Formalizing
Common Sense Knowledge’, Proceedings of the AAAT Workshop
on Non-Monotonic Reasoning, 1984, pp 295-324.

Pearl J., ‘Fusion, Propagation, and Structuring in Belief Net-
works’, AI Journal, Vol. 29, No 3., 1986, pp 241-288.

Pearl J., ‘Distributed Revision of Belief Commitement in Multi-
Hypothesis Interpretation’, 2nd. AAAI Workshop on Uncer-
tainty in AI, 1986, Philadelphia, PA., also in Al Journal, 33,
No 2, Oct. 87T.

Pearl J. and Verma T., ‘The Logic of Representing Dependencies
by Directed Graphs’, Proceedings of the AAAI-87, Seattle, WA,
July 1987, pp 374-379.

Pearl J., ‘Probabilistic Semantics for Inheritance Hierarchies
with Exceptions’, TR-93, July 1987, Cognitive Systems Lab.,
UCLA.

Poole D. ‘On the Comparison of Theories: Preferring the Most
Specific Explanation’, Proceedings of the ITCAI-85, Los Angeles,
1985.

Reiter. R., ‘A Logic for Default Reasoning’ Al Journal, No 13,
1980, pp 81-132.

Reiter R. and Criscuolo G., ‘On Interacting Defaults’, Proceed-
ings of the IJCAI-81, pp 270-276.

26



{Sandewal 86]

[Touretzky 84]

[Touretzky 86]

[Touretzky et. al. 87]

Sandewal E., ‘Non-monotonic Inference Rules for Multiple Inher-
itance with Exceptions’, Proceedings of the IEEE, vol. T4, 1986,
pp 1345-1353,

Touretzky D.W., ‘Implicit Ordering of Defaults in Inheritance

Systems’, Proceedings of the AAAI-84, Austin, Texas, 1984, pp
322-325.

Touretzky D.W., The Mathematics of Inheritance Systems, Mor-
gan Kaufmann, Los Altos, California, 1986.

Touretzky D.W., Horty J.F., Thomason R.H., ‘A Clash of In-
tuitions: The Current State of Non-monotonic Multiple Inheri-
tance Systems’, Proceedings of the IJCAI-87, Milano, Italy, 1987.

A Completeness Conjecture (cont’d)

We want to show that all the new entries that follow from the partial specification of Pg(-),
given in section 4.2, according to the equation :

P(h|E) = P(h|E, E"\P(E'|E)+ P(h|E,~E")P(-E'|E) ,

are captured by the rules of inference proposed. We exhaustively analyze all the cases.
Probabilistic statements of the form P%(S|R) ~ 1, are translated to R Iz S, while state-
ments of the form P%(S|R) ~ 0, are translated to R Iz =S5.

1. f Ez h and E kz E’, then E, E' k¢ h.
This is in fact rule 4.

2. f Elz h and E, FE’' Iz -h, then E |z —~E’ and E,-E' | h.
We have already seen in example 4, the proof for the first consequent, which follows
from rule 6 and theorem 2. The second follows from the first antecedent, together
with the first consequent and rule 4.

3. If Elg-h and E |g E’, then E, E' Iz -h.
Again this is simply the triangle rule 4.

4. If Elz-h and E,E' kg h, then E | ~E’ and E,~E’ Iz -h.
The proof is the same as in line 2, with  substituted by —h.

5. f E,E'lzh and Ek; E', then E Ig h.

This is rule 5.

6. If E,F'lzh and E,-E' Iz h, then E I h.
This follows from theorems 4 and 5.
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